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Abstract. On the classical example of a rod (membrane, string) with periodically located in-

ertial inclusions, it is proved that all eigenfrequencies of a finite periodic structure fall into 

pass-bands of corresponding infinite system in the symmetrical case. In the unsymmetrical 

case, some eigenfrequencies may not follow this rule. 

The exact equations for eigenfrequencies and the explicit expressions for power flow are ob-

tained. The asymptotic analysis of power flow in an infinite periodic structure is carried out 

and the structure of pass- and stop-bands is explored. The modes of free vibrations of a finite 

periodic structure are analyzed with the special attention to edge effects. 
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1 INTRODUCTION 

Wave phenomena in periodic structures are intensively explored during last years [1-4]. The 

extensive bibliography is represented in [1] for example. In the process of numerical calcula-

tions in [4] was noticed that the eigenfrequencies of a finite periodic structure fall into the 

pass-bands of corresponding infinite system. 

In this work on the classical example of a rod (membrane, string) with periodically located 

inertial inclusions is analytically proved that all eigenfrequencies of a finite periodic structure 

fall into pass-bands of corresponding infinite system in the symmetrical case. In the unsym-

metrical case, some eigenfrequencies may not follow this rule. The stationary problem is con-

sidered.  

2 INFINITE PERIODIC STRUCTURE 

On the interval  ( , )x    the following equation is considered 

 

 2''( ) 1 ( ) ( ) 0
j

M
u x k x jl u x







 
    

 
  (1) 

 

It describes propagation of stationary waves in the string (membrane) or longitudinal waves in 

the rod with periodic point masses (the distance between masses of weight M is equal l ). 

Here /k c , where /c T   - in the case of a string (membrane) or /c ES   - in the case 

of longitudinal waves in a rod,   - linear density, T - tension in string, E - Jung modulus, S - 

cross section of the rod. The dependence on time is i te   and is omitted. In this model each 

cell of periodicity consists one mass. 

Further we shall use the dimensionless parameters :k kl , /m M l , dimensionless 

variable : /x x l  and dimensionless functions ( ) : ( ) /u x u x l  and ( ) : ( )x l x  . The equa-

tion in terms of dimensionless parameters, variables and functions, having kept former desig-

nations is 

 

 2''( ) 1 ( ) ( ) 0
j

u x k m x j u x




 
    

 
  (2) 

 

The Floquet solution of equation (1) is built by the contact method. The following contact 

conditions are used in the points jx  where the concentrated masses are located: 

The continuity of displacements 

 

 ( 0) ( 0) ( )j j ju x u x u x      

 

The condition of the jump of the forces  

 

 
2

'( 0) '( 0) ( )j j j

k
u x u x Mu x


       
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Floquet condition 

 

 ( ) ( ) iu x l u x e   , ( , )x    ,  

 

where ie   is the Floquet factor between the cells of periodicity and ( )k   is determined 

from equality 

 

cos cos sin
2

m
k k k    

 

On the interval  0,1x  the solution has the view 

 

 
  1

( ) ( )
ik xikxu x A e f k e

 
   (3) 

 

The general solution in arbitrary point  ,x    has the form 

 

 
               1/ 2 1/ 2/ 2( ) ( ) ( )

ik x ik xik x ik xik x ik xik iku x Ae e f k e e Ae e e f k e
    

     (4) 

 

where  x  is the floor part of x ,  x  is the fraction part of x , A  is the arbitrary constant and 

 

    ( ) ( , ( )) sin ( ( ) ) / 2 / sin ( ( ) ) / 2f k f k k k k k k       (5) 

 

The energy flux (averaged on the period of oscillations) is 

 

 ( ) Im( ' )
2

k T u u


     or   ( ) Im( ' )
2

k ES u u


    

 

in the case of the string (membrane) or the rod correspondingly. The energy flux of the wave 

(4) normalized on the energy flux of corresponding wave ikxAe  in the homogeneous system 

has the view 

 

 
2

( ) 1 ( )k f k    (6) 

 

The elementary analysis of the energy flux shows: 

 

 ( ) 1k  , if 0m  . 
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 Asymptotic: 
4 1

( ) 1k O
mk k

  
     

  
, if k  . 

 Width of pass bands: 
4 1

1 O
mk k

  
   

  
, if k   

 

2

0
0

1 1
lim ( , ) ( ) 1

1 1k

m
k m m

m

 
     

 
 

The typical view of the energy flux dependence on the wave number k  (for 1.0m  ) is 

shown on the Fig. 1a (the numerical results are fulfilled for : /k k  ). The condition of exis-

tence of propagating waves in the system will have the form 

 

 ( ) 2T k    

 

where ( ) sin 2cosT k mk k k  . The areas on the plain ( , )m k , where ( ) 2T k   are marked 

by red color on the Fig. 1b. These points are corresponded to nonhomogeneous waves (in the 

stop bands). The areas outside (where ( ) 2T k  ) are corresponded homogeneous waves (in 

the pass bands). The borders between them ( ( ) 2T k  ) are corresponded the special wave 

regime with zero energy flux. 

 

 
 

a) Energy flux, as function of /k   b) /k   as function m (Pass and stop bands) 

 

Figure 1: Infinite periodic structure 

3 FINITE PERIODIC STRUCTURE  

The finite segment (  ,x a b ), consisting of several ( N ) cells of periodicity of the infinite 

periodic system is considered. In the common situation of different masses the equation (2) 

can be rewritten in the form  

 

 2

0

''( ) 1 ( ) ( ) 0
N

j j

j

u x k m x x u x


 
    

 
   
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Let us consider the case of one mass for simplicity (the case of greater number of weights is 

considered similarly) 

 

 ''( ) ( ) ( ) 0u x x u x        or     ( ) ( ) ( )Lu x x u x   

 

where ( ) 1 ( )x m x   , 2k  , 
2

2

d
L

dx
  . 

Let's notice that if ( )x  is continuous positive function then it is a classical case of Sturm-

Liouville problem with weight ( )x . The generalization of this problem on investigated case 

is based on the following statements. 

Operator 
2

2

d
L

dx
   is symmetric concerning scalar product in 2 ( , )L a b  

 

  ( , ) '' ' ' ( , )

b
b

a
a

Lu v u vdx u v uv u Lv       (2a) 

 

since extraintegrated members are equal to zero owing to our boundary conditions. For the 

existence of integral in (2a) it is enough to demand the limitation of energy norm 

 

  
2 2 2| | | ' |

b

a

u u u dx  ,   i.e.   
1 1

2 ( , ) ( , )u W a b H a b    

 

By the way in our case expression 

 

 ( ( ) , ) ( ) ( ) (0) (0)

b

a

x u v u x v x dx mu v   ,    0m    

 

sets scalar product with weight ( )x : ( , ) ( ( ) , )u v x u v  . By using this scalar product the fol-

lowing facts can be obtained on the traditional way. 

The spectrum n , 1,2,...n   is discrete and simple. 0n  . Eigenfunctions ,n mu v  are or-

thogonal via scalar product with weight ( )x , i.e. ( , ) 0n mu v   , if n m .  

Now the case of odd and even number of point masses will be considered separately. 

3.1 The case of odd number of masses N=2n+1 

For odd number of point masses the equation (2) on interval  ,x a b  is transformed to 

 

 2''( ) 1 ( ) ( ) 0
n

j n

u x k m x j u x


 
    

 
  (7a) 
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Where 1a n s    , b n s  , 0 1s   .  

 

For the particular case of one mass (n=0, N=1) the following equations on eigenfrequen-

cies can be obtained according to the boundary conditions (BC): 

 

If ( ) 0 ( )u a u b   (rigid fixing) then 1 1( , ) sin (1 )sin sin 0r r k s mk k s ks k      (7b) 

 

If '( ) 0 '( )u a u b   (free fixing) then 1 1( , ) cos (1 )cos sin 0f f k s mk k s ks k      (7c) 

 

If ( ) 0 '( )u a u b   (combined BC) then 1 1( , ) sin (1 )cos cos 0g g k s mk k s ks k      (7d) 

 

In the symmetric case ( 1/ 2s  ) these equations are simplified: 

 

 1 1/ 2
( , ) sin sin cos 0

2 2 2 2s

k m k k
r k s k



 
   

 
 (8) 

 1 1/ 2
( , ) cos cos sin 0

2 2 2 2s

k m k k
f k s k



 
   

 
 (9) 

 

 2 2

1 1/ 2
( , ) cos sin sin cos 0 ( ) 0

2 2 2 2s

k k k k
g k s mk T k


       (10) 

 

On the Fig. 2a,b is shown the corresponding dependencies of eigenfrequencies on parame-

ter m  for fixing (8) and free (9) boundary conditions (red and blue lines accordingly). Green 

curve on the Fig. 2b corresponds combined (10) boundary condition. After multiplication of 

equations (8) and (9) the following equation can be obtained 

 

  2

1 11/ 2 1/ 2
( , ) ( , ) ( ) 4 / 4 0 ( ) 2

s s
r k s f k s T k T k

 
      (11) 

 

The curves determined by this equation coincide with the borders of pass and stop bands of 

consequent infinite periodic system (Fig. 1b).  

 

  
a) Roots of equations (8) and (9) b) Roots of equations (8), (9) and (10) 

 

Figure 2: Eigenfrequencies as functions m  
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In the case of 1n   the equations on eigenfrequencies have the form 

 

  2 2

1

1

( , ) ( ) 0
n

j

j

r k s T k C


     or   2 2

1

1

( , ) ( ) 0
n

j

j

f k s T k C


   (12) 

 

for rigid and free fixing accordingly.  

In the symmetric case ( 1/ 2s  ) the equation for combined fixing has the form 

 

  2 2

1

( ) ( ) 0
n

j

j

T k T k B


   (13) 

 

And multiplication of equations of free and rigid fixing (12) leads to equation 

 

    
2

2 2 2

1

( ) 4 ( ) 0
n

j

j

T k T k C


    (14) 

 

The multiplication of equations of combined fixing on itself leads to equation 

 

  
2

2 2 2

1

( ) ( ) 0
n

j

j

T k T k B


   (15) 

 

Here , 0j jC B   are the constants depending on N . The first values of them are represented 

in the tables 

 

 1C  2C  3C  

3N   1   

4N   2    

5N    5 1 / 2   5 1 / 2   

6N   1 3   

7N   0.445042  1.24698  1.80194  

8N   2 2  2  2 2  

Table 1: The values of constants jC . 

 

 1B  2B  3B  

2N   2    

3N   3    
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4N   2 2  2 2   

5N    5 5 / 2   5 5 / 2   

6N   2  2 3  2 3  

Table 2: The values of constants jB . 

3.2 The case of even number of masses N=2n 

For even number of point masses the equation on interval  ,x a b  is transformed to 

 

 
1

2 2 1
''( ) 1 ( ) 0

2

n

j n

j
u x k m x u x





  
     

  
  (16a) 

 

where 
2 1

2

n
a s


   , 

2 1

2

n
b s


  , 0 1s  . 

 

For the particular case of two masses ( 1n  , 2N  ) the following equations on eigenfre-

quencies can be obtained according to BC: 

 

If ( ) 0 ( )u a u b   (rigid fixing) then 2 2 ( , ) 0r r k s  , where 

 

 2 2sin 2 (2cos 2 cos(2 ( 1)) cos 2 2 sin( (1 ))sin sin )r k km k k s ks mk k s ks k        (16b) 

 

If '( ) 0 '( )u a u b   (free fixing) then 2 2 ( , ) 0f f k s  , where 

 

     2 2sin2 2cos2 cos 2 ( 1) cos2 (cos cos (1 2 )f k km k k s ks mk k k s         (16c) 

 

If ( ) 0 '( )u a u b    (combined conditions) then 2 2 ( , ) 0g g k s  , where 

 

       2 2

2 4 cos2 cos 2 ( 1) cos2 4sin 2 4cos sin (1 2 )g k m k km km k s ks k k k s km        

 

In the symmetric case 1/ 2s   these equations on eigenfrequencies are simplified 

 

 2 1/ 2
( , ) sin sin cos ( ) 0

2 2 2 2s

k m k k
r k s k T k



 
   

 
 (17) 

 

 2 1/ 2
( , ) cos cos sin ( ) 0

2 2 2 2s

k m k k
f k s k T k



 
   

 
 (18) 
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  
2 2

2 1/ 2
( , ) 2 2cos sin 2 ( ) 0

s
g k s k km k T k


       (19) 

 

The multiplication of equations (17) and (18) gives the equation  

 

  2 2( ) 4 ( ) 0T k T k   (20) 

 

The multiplication of equation (19) on itself gives the equation  

 

  
2

2

2 21/ 2 1/ 2
( , ) ( , ) ( ) 2 0

s s
g k s g k s T k

 
    (21) 

 

 

In the case of 1n   the equations on eigenfrequencies have the form 

 

  
1

2 2

2

1

( , ) ( ) 0
n

j

j

r k s T k C




    or   
1

2 2

2

1

( , ) ( ) 0
n

j

j

f k s T k C




   (22) 

 

for rigid and free fixing accordingly. In the symmetric case ( 1/ 2s  ) the equation for com-

bined fixing has the form 

 

  2 2

1

( ) 0
n

j

j

T k B


   (23) 

 

and the multiplication of equations of free and rigid fixing leads to equation 

 

    
1

2
2 2 2 2

1

( ) 4 ( ) ( ) 0
n

j

j

T k T k T k C




    (24) 

 

The multiplication of equations of combined fixing on itself leads to equation 

 

  
2

2 2

1

( ) 0
n

j

j

T k B


   (25) 

 

3.3 The summary for equations on eigenvalues 

Further in the table  
1

2 2

1

( )
n

N j

j

T k C




   ,    
1

2 2

1

( )
n

N j

j

T k B




   ,    2 2

1

( )
n

N j

j

T k B


    
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  2 1N n   2N n  

1n   

1

2
s   1 0r   1 0f   1 0g   2 0r   2 0f   2 0g   

1

2
s   

1

1
0

2
r
 

 
 

 1

1
0

2
f
 

 
 

 0T   2

1
0

2
r
 

 
 

 2

1
0

2
f
 

 
 

 2 2 0T    

2 4 0T    2 0T    2 24 0T T    
2

2 2 0T    

2n   

1

2
s   1 0Nr   1 0Nf    0NG   2 0Nr    2 0Nf    0NG   

1

2
s   

1 0Nr   1 0Nf    0NT   2 0Nr    2 0Nf    0N   

 2 24 0NT     2 2 0NT     2 2 24 0NT T    2 0N   

 

Table 3: The view of equations on eigenvalues for different N  and s . 

 

4 THE PROOF OF THE STATEMENT 

The proof that all eigenfrequencies of a finite periodic structure fall into pass-bands of corres-

ponding infinite system in the symmetrical case ( 1/ 2s  ) is based on two statements: 

 The structure of the equations on eigenfrequencies has the above-stated view for any ar-

bitrary finite number of masses. 

 All constants ,j jC B  in equations on eigenfrequencies satisfy the inequality , 2j jC B  . 

The first statement can be proved by mathematical induction method. In order to prove the 

second statement let’s consider one of the factors 
2 2( )T k C  from product 

j

 . After select-

ing tg k  the following expression can be obtained 

 

   2 2 2 2 2 2 2 2( ) cos tg 4 tg 4T k C k m k C k mk k C       (26) 

 

The multiplier with tg k  can be factorized as a square polynomial 

 

     2 2 2 2 2 2 2 2( , ) tg 4 tg 4 tg ( ) tg ( )R k m m k C k mk k C m k C k A k k A k           (27) 

 

where 

 

 
 

2 2 2

2 2 2

2 4
( )

mk C m k C
A k

m k C


  



 (28) 
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If 24 0C   in (28), the simple analyses shows that equation ( , ) 0R k m   has the real roots 

for every value of m  (from geometrical method of solving of the equation at least).  

If 24 0C  , then the expression 2 2 24m k C   under the radical can be made negative by 

choosing m . The corresponding real root transforms into the complex one and we obtain the 

violation with Sturm-Liouville problem. So all constants , 2j jC B   and thereby all eigenfre-

quencies of a finite periodic structure fall into pass-bands of corresponding infinite system in 

the symmetrical case ( 1/ 2s  ).  

If 1/ 2s   then some eigenfrequencies may not follow this rule. It will be shown in the 

next item. 

5 THE INFLUENCE OF UNSYMMETRY 

In this section the influence of parameter s  on the processes is numerically analyzed. The 

figures are obtained for the case of five point masses and combined BC (the fixed left and free 

right border). On these figures the curves corresponding dimensionless eigenfrequencies /k   

of the finite system as functions of mass m  are designated by blue color, and the curves cor-

responding the boundary of stop bands of the infinite system are designated by red color.  

In the case of symmetrical conditions ( 0.5s  , Fig. 3a) all the curves corresponding eigen-

frequencies do not overstep the bounds of stop bands, according to the proved statement. 

In the unsymmetrical case 0.27s   as on the Fig. 3b, two curves, in each interval 

 , 1n n , 0,1n   on axes k  penetrate into the corresponding stop bands. The modes, corres-

ponding these points of curves when they lie in the stop bands, unlike the corresponding mod-

es for the symmetrical case look like nonhomogeneous waves, i.e. oscillations modulated by 

decreasing or increasing exponent.  

The numerical experiments showed the localization of the mode of finite periodic structure 

near the boundaries when its eigenfrequency falls into the stop band of corresponding infinite 

structure. The both direction of decreasing (increasing) are realized for different modes. This 

“decaying” mode (standing wave) can be interpreted as the combination of non homogeneous 

waves from the stop band of corresponding infinite periodic structure. This reasoning is ana-

logous to the case of the standing wave as the combination of propagating waves in a finite 

homogeneous rod.  

 

 
 

a) 0.5s   b) 0.87s   
 

Figure 3: Eigenfrequencies as functions of m  for different s . Combined BC 

 

In the case of fixed and free BC the eigenfrequency curves locating in the stop bands are 

fully determined by the equations (7b), (7c) and (16b), (16c) correspondingly (according to 
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(12,13) and (22,23)). It can be interpreted as the eigenfrequencies related with the border cells 

(masses). The calculations show that if the eigenfrequency curve lies in the stop band it lies 

there wholly in this case.  

If combined BC is considered then not only border cells take part in forming of these 

curves. New opportunities are realized for this situation. For example the curve can cross the 

border of the stop band several times and interact with another curve in the stop band (as on 

the Fig. 3b). 

6 CONCLUSIONS  

These results can be generalised on the case of differential equations of higher order 

(bending displacements of the ribbed plates, shells e.t.c.). They can be used for design of fi-

nite periodical structures with eigenfrequencies located only in the pass bands of correspond-

ing infinite periodical structure. To achieve this goal, the symmetry of cells and special 

symmetry at the boundaries are requested. 
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