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Abstract. A two-stage Bayesian spectral density approach was formulated for ambient modal 
analysis recently. The interaction between spectrum variables (e.g., frequency, damping ratio 
as well as the magnitude of modal excitation and prediction error) and spatial variables (e.g., 
mode shape components) can be decoupled so that they can be identified separately. The pro-
posed method can be implemented in the environment of a wireless sensor network through a 
distributed computing strategy so that local mode shapes as well as their uncertainties con-
fined to different clusters can be identified. However, the difficulty on how to assemble these 
local mode shapes estimated from multiple clusters is still a problem required to be resolved 
properly. In this study, a Bayesian mode shape assembly methodology is proposed so that the 
weight for different clusters is accounted for properly according to their data quality. The op-
timal values for the global mode shape components corresponding to all measured dofs can 
be obtained by a fast iterative scheme, while the associated uncertainties can be derived ana-
lytically. There is no need to share the same set of reference dofs for all clusters for scaling 
purpose when using ambient vibration data. The proposed mode shape assembly method is 
investigated with a shear building model. Results show that the overall mode shape can be 
effectively identified by the proposed method.  
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1 INTRODUCTION 

Ambient modal analysis, which aims to identify structural modal properties by using out-
put-only measured response without the knowledge of the input, has aroused increasing atten-
tion in industrial applications due to its efficiency and economic implementation. It has also 
been one of the most important issues in wireless sensor network (WSN) based structural 
health monitoring (SHM) systems. Recent interest has arisen to calculate the uncertainties of 
identified modal parameters by using Bayesian approaches [1]. In the context of ambient 
modal analysis, a number of Bayesian approaches have been proposed [2, 3, 4]. These meth-
ods provide rigorous means for obtaining optimal modal properties as well as their uncertain-
ties. However, computational difficulty has severely hindered the wider application of these 
approaches in real-life engineering applications.  

A breakthrough was made by Au [5, 6, 7] recently to address the computational challenges 
of conventional Bayesian FFT approach. Motivated by Au’s work, a two-stage fast Bayesian 
spectral density approach has been proposed for ambient modal analysis when there are sepa-
rated modes and closely spaced modes [8]. The proposed method is able to separate spectrum 
variables (e.g., frequency, damping ratio as well as the magnitude of modal excitation and 
prediction error) and spatial variables (e.g., mode shape components) so that these two kinds 
of variables can be identified independently in two stages. The proposed method can be im-
plemented through a distributed computing strategy in the environment of wireless sensor 
networks. As a result, a group of local mode shapes identified from different sensor clusters 
sharing some reference sensors can be obtained. The local mode shapes identified from dif-
ferent clusters may have different senses and scaling factors since they are normalized indi-
vidually [9]. The assembly of these local modes shapes to form a global mode shape is an 
important issue in modal analysis. A novel global least square method with an automated pro-
cedure for determining the global mode shape by minimizing a measure-of-fit function was 
proposed recently by Au [9]. However, the global least square approach assigns the same 
weights for all setups. There is still room for improvement since the quality of originally well-
identified clusters may be corrupted by the quality of some more problematic setups [10]. 
Therefore, it is reasonable to try to incorporate the uncertainty information of different clus-
ters into the mode shape assembly procedure. In particular, local mode shapes not well identi-
fied in particular clusters should be assigned less weight due to their relatively unreliable data 
quality. As a sequel to the global least square method [9], a Bayesian mode shape assembly 
approach is developed in this study so that the weight for different clusters can be accounted 
for properly according to the data quality.    

2 REVISITING THE TWO-STAGE BAYESIAN APPROACH FOR AMBIENT 
MODAL ANALYSIS  

Bayesian spectral density approach (BSDA) [4] proposed previously is novel since it can 
consider different kinds of uncertainties and provides a rigorous means for obtaining modal 
properties as well as their uncertainties which is useful for further risk assessment. However, 
there are some challenges related to its practical implementation: (1) BSDA requires solving a 
high-dimensional numerical optimization problem whose computational effort grows with the 
number of measured dofs and the number of modes to be identified. (2)When calculating the 
posterior covariance function, BSDA involves computing the inverse of a Hessian matrix, for 
which the computational effort and required memory space grow with the number of meas-
ured dofs and the number of modes. (3) BSDA involves repeated evaluations of the determi-
nant and inverse of a rank deficient (singular) matrix. Therefore, the minimization problem 
may be ill-conditioned. (4) The dofs of interest will be always measured and processed sepa-
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rately in different setups or clusters, resulting in different tour size among different setups. 
Therefore, BSDA encounters the difficulty on how to combine the parameters and their uncer-
tainties identified from different setups.   

To address the problems aforementioned, a two-stage Bayesian spectral density approach 
has been developed [8]. Following a “divide and conquer” strategy, the frequency band can be 
divided into multiple sub-bands and one can only focus on a specified sub-band each time. 
There are two possible cases over each selected frequency band: case of separated modes and 
case of closely spaced modes. For both cases, the interaction between spectrum variables (e.g., 
frequency, damping ratio as well as the magnitude of modal excitation and prediction error) 
and spatial variables (e.g., mode shape components) can be decoupled so that they can be 
conquered in two consecutive stages. In the first stage, the spectrum variables as well as their 
uncertainties can be identified through ‘fast Bayesian spectrum trace approach’ (FBSTA) by 
employing the statistical properties of the trace of the spectral density matrix. The information 
contained in all measured dofs from different setups can be collected together, thus avoiding 
the difficulty of posterior data fusion. Once the spectrum variables are extracted, the spatial 
variables as well as their uncertainties can be identified in a second stage by ‘fast Bayesian 
spectrum density approach’ (FBSDA) using the statistical information of the spectrum density 
matrix. In this stage, the matrix determinant lemma and matrix inverse lemma are employed 
to avoid the ill-conditioning of conventional BSDA. The proposed method can deal with the 
practical difficulties of conventional Bayesian spectrum density approach even for a large 
number of measured dofs. The case of separated modes and the case of closely spaced modes 
are discussed separately in [8].  

3 HIERARCHICAL ARCHITECTURE OF WSN 

As shown in Figure 1, the proposed two-stage Bayesian spectrum density approach for 
ambient modal analysis can be implemented through a distributed computing strategy, which 
is formed as a three-level hierarchical architecture. Wireless sensors can be divided into hier-
archical communities, with each community composed of a cluster head node and several leaf 
nodes. All cluster head nodes can report to the manager node, while the manager node can 
report to the base station node directly connected to a PC. The ambient modal analysis can be 
implemented in two stages. In the first stage, the auto-spectrum density of all measured dofs 
is collected centrally in the manager node so that the spectrum variables and their associated 
uncertainties can be identified by FBSTA. The identified results will be transmitted to the 
cluster head nodes from the manager node in the second stage. Then the optimal local mode 
shapes and their covariance matrix for each community can be identified by FBSDA. Global 
mode shapes and their uncertainties can then be assembled with the aid of the overlapping 
nodes public for different clusters, as will be shown in next section. 

 

Leaf Nodes

Cluster Head Nodes

Manage Nodes

Base Station Node

FBSTA

FBSDA

FFT

 
Figure 1: Three-level hierarchical architecture of WSN. 
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4  ASSEMBLING MODE SHAPE FROM MULTIPLE CLUSTERS 

4.1 Negative Logarithm Likelihood Function 

For the - thr given mode, let ,ˆ in
r i ψ  and 

,

i i

r i

n nψC be the optimal values and covariance 
matrix of the mode shape confined to the measured dofs of the - thi cluster ( 1, 2, , )ti n  ; in is 
the number of sensors measured in the - thi cluster and tn is the total number of clusters includ-
ed in the ambient vibration test. Assume that ln is the total number of distinct measured dofs 

from all clusters, which should satisfy
1

tn

l i
i

n n


 since some dofs are shared by more than one 

cluster.  
Let ln

r φ be the - thr  given global mode shape covering all measured dofs, and ,
in

r i φ be 
the components of rφ corresponding to the measured dofs in the - thi cluster. The local mode 
shape ,r iφ can be mathematically related to the assembled global mode shape rφ as [9] 

 ,r i i rφ L φ  (1) 

where i ln n
i

L is a selection matrix, where ( , ) 1i j k L if the - thj sensor in the - thi cluster gives 
the - thk dof of the global mode shape and zero otherwise. The mode shape assembly problem 
under the Bayesian framework is to determine the global mode shape so that it can best fit the 
identified counterparts by assigning different weight for various clusters according to their 
data quality. It is worth noting that ,ˆ

r iψ is normalized to unity when it is identified by FBSDA. 
Therefore, the measure-of-fit should be implemented based on the discrepancy be-
tween , ,r i r iφ φ and ,ˆ

r iψ both of unit norms. Since the identified local mode shape can be well-
approximated by a Gaussian PDF with mean ,ˆ

r iψ and covariance matrix
,r iψC , the likelihood 

function of the -thi  local mode shape is given by, 

 
, ,

1
, , , , , , , ,

1ˆ ˆ ˆ( , ) exp[ ( ) ( )( )]
2r i r i

T
r i r i r i r i r i r i r i r ip    ψ ψψ C φ φ φ ψ C φ φ ψ  (2) 

It is assumed that local mode shapes identified from different setups are statistically inde-
pendent. Therefore, the likelihood function of the local mode shapes measured from all setups 
is given by,  

 
,,ˆ, , ,

1

ˆ ˆ({ , : 1, , } ) ( , )
t

r ir i

n

r i t r r i r i
i

p i n p


  ψψψ C φ ψ C φ  (3) 

Under the Bayesian framework, the updated probabilities of the global mode shape given the 

measured local mode shapes 
,ˆ,ˆ{ , : 1, , }

r ir i ti n ψψ C  should be   

 0( ) ( ) ( )r r rp c p p  φ φ φ  (4) 

In the case where a non-informative prior is used, the posterior PDF of rφ is proportional to 
the likelihood function ( )rp φ , which can be written in terms of the ‘negative logarithm like-
lihood function’ (NLLF) , where the index ‘as’ stands for ‘assembly’,  

 
,

1
, , , , , ,

1

1 ˆ ˆ( ) ( )
2

t

r i

n
T

as r i r i r i r i r i r i
i

L 



   ψφ φ ψ C φ φ ψ  (5) 
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Writing (5) explicitly in terms of the global mode shape rφ gives  

 
,

1
, ,

1

1 ˆ ˆ( ) ( ) ( )
2

t

r i

n
T

as i r i r r i i r i r r i
i

L 



   ψL φ L φ ψ C L φ L φ ψ  (6) 

To enforce the norm constraint of rφ , i.e. 2 1r φ , (6) can be rearranged by using the La-
grange multipliers [9],  

 
,

1
, ,

1

1 ˆ ˆ( ) ( )( ) (1 )
2

t

r i

n
T T

as i r i r r i i r i r r i r r r
i

L 



     ψL φ L φ ψ C L φ L φ ψ φ φ  (7) 

where r is Lagrange multiplier that enforces 2 1r φ . As seen, (7) is not a quadratic function 
of rφ , thus the optimal value of rφ cannot be determined analytically. To avoid the above dif-
ficulty, the auxiliary variables ,1 ,, ,

tr r n   similar to [9] are introduced  

 22
, 1r i i r  L φ  (8) 

As a result, the objective function can be re-formulated by using the Lagrange multipliers ap-
proach: 

 
,

21 2
, , , , , ,

1 1

1 ˆ ˆ( ) ( )( ) (1 ) ( 1)
2

t t

r i

n n
T T

as r i i r r i r i i r r i r r r r i r i i r
i i

L     

 

       ψL φ ψ C L φ ψ φ φ L φ  (9) 

where ,r i are Lagrange multipliers that enforce equation (8).   

4.2 Most Probable Values 

The full set of parameters to be identified includes  , ,, , , : 1,2, ,as r r r i r i ti n   λ φ  . Direct 
solution for the optimal global mode shapes from the objective function (9) is not trivial due 
to its high-dimensional as well as nonlinear features. In this study, an iterative solution strate-
gy will be employed. The optimal values of ,r i and ,r i in terms of rφ and r  are first derived 
analytically firstly, following which the optimal value of rφ  and r given the remaining pa-
rameters are derived. A sequence of iterations comprised of the following linear optimization 
problems can be implemented: 

 (1)  Optimization for ,r i and ,r i  

The gradient of ( )ass rL φ with respect to ,r i is given by  

 
, ,

21 1
, , , ,

,

ˆ( ) ( )( ) ( ) ( )( ) 2
r i r i

T Tas
r i i r i r r i i r r i r i i r
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L
  


 
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 ψ ψL φ C L φ ψ C L φ L φ  (10) 

Setting
,

0as

r i

L







and solving for ,r i gives 

 ,

,

1
,

, 21
,

ˆ( ) ( )( )

( ) ( )( ) 2
r i

r i

T
r i i r

r i T
i r i r r i i r











ψ

ψ

ψ C L φ

L φ C L φ L φ
 (11) 

Substituting (11) into (8) leads to two roots for ,r i  

 , ,

1 1
,

, 2

ˆ ˆ( ) ( )( ) ( ) ( )( )

22
r i r i

T T
i r i r r i i r

r i
i ri r


 

  
ψ ψL φ C L φ ψ C L φ

L φL φ
 (12) 
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It is worth noting that the Hessian of asL with respect to ,r i is given by 

  
,

2
21

,2
,

( ) ( )( ) 2
r i

Tas
i r i r r i i r

r i

L



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The minimum of asL occurs only when
2

2
,

0as

r i

L







, which implies that  

 , ,

1 1
,
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ˆ( ) ( )( ) ( ) ( )( )

22
r i r i

T T
i r i r r i i r

r i
i ri r


 

  
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 (14) 

 Substituting (14) into (11) leads to, 

  ,

,

,

1
1, 1

, ,1
,

ˆ ( )
ˆsgn

ˆ
r i

r i

r i

T
r i i r T

r i r i i r i rT
r i i r i r







 

ψ

ψ

ψ

ψ C L φ
ψ C L φ L φ

ψ C L φ L φ
 (15) 

Here  sgn  denotes the signum function.   

 (2) Optimization for rφ and r  

The gradient of asL  with respect to rφ is given by 

 
, ,

1 1 2
, , , , , ,

1 1 1

ˆ( ) ( )( ) ( ) ( ) 2 2 ( ) ( )
t s t

r i r i

n n n
T T Tas

r i i r i i r r i i r i r r r i r i i i r
i i ir

L
      

  


   

   ψ ψL C L φ L C ψ φ L L φ
φ

 (16) 

Setting 0as

r

L


φ
and solving for rφ gives  

 r r r r r Α φ b φ  (17) 

where
,

1 2
, , , ,

1 1

1 ( ) ( )( ) ( )( )
2

t t

r i

n n
T T

r r i i r i i r i r i i i
i i

   

 

   ψL C L L L  and 
,

1
, ,

1

1 ˆ( ) ( )
2

t

r i

n
T

r r i i r i
i

 



   ψb L C ψ . Equation 

(17) is subject to the constraint 2 1r φ , which forms a constrained eigenvalue problem differ-
ent than the conventional eigenvalue problem. It can be solved by constructing an augmented 
vector that satisfies the standard eigenvalue equation [9]. As a result, all optimal parameters 
can be obtained in groups given the remaining ones until convergence is achieved instead of 
optimizing the full set of parameters simultaneously. 

4.3 Posterior Uncertainties  

The posterior uncertainty of the global mode shape can also be obtained by inversing the Hes-
sian matrix of asL with respect to asλ . The uncertainty of model parameters well approximated 
by a Gaussian distribution centered at the most probable parameter values and with covari-
ance matrix equal to the inverse of the Hessian of the function asΓ calculated at the optimal pa-
rameters ˆ

asλ . This Hessian matrix is given by 
                                              

       

       

       

r r r r r r r r

r r r r r r r r

r r r r r r r r

r r r r r r r r

as

 
 
 

  
 
  
 

φ φ φ χ φ β φ γ

χ φ χ χ χ β χ γ

β φ β χ β β β γ

γ φ γ χ γ β γ γ

L L L L

L L L L
Γ

L L L L

L L L L

  (18)
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In (18), 1[ , , , , ]
m

T T T T
r n  χ χ χ χ with the -thr  block ,1 , ,[ , , , , ]

t

T T
r r r i r n    χ ; 1[ , , , , ]

m

T T T T
r n  β β β β  

with the -thr  block ,1 , ,[ , , , , ]
t

T T
r r r i r n    β .  r rφ φL denotes the second order derivatives of 

asL with respect to rφ . Similar explanation can be given to other blocked members in (18).  

asΓ is a symmetrical matrix, and only the blocked members in the upper triangle  r rφ φL ,  r rφ χL , 
 r rφ βL ,  r rφ γL ,   ,r rχ χL   ,r rχ βL  r rχ γL ,   ,r rβ βL   r rβ γL and  r rγ γL  need to be computed analytically. Among 

these blocks,  r r tnχ γL ,  r r t tn nβ βL ,  r r tnβ γL and   1r r γ γL  are all zero matrixes.  The non-
zero blocks can be derived analytically as follows:  
 (1) Derivatives of  r rφ φL   

 r r l ln nφ φL can be obtained by taking the derivative of (9) with respect to rφ , which can be 
formulated as  

  
,

1 2
, , , ,

1 1
( ) ( )( ) 2 2

t t

r r

r i l

n n
T T

r i i r i i r i r i i i r n
i i

    

 

   φ φ
ψL L C L L L I  (19) 

(2) Derivatives of  r rφ χL  
 r r l tn nφ χL is a matrix formulated as   

 ,,1 , ( )( ) ( )( ) [ , , , , ]r r nr r r r i tr r

l tn n

 
   φφ φφL L L L  (20) 

where  ,r r iφ χ
L can be expressed as  

  ,

, ,

1 1
, , , ,ˆ2 ( )( )( ) ( )( ) 4 ( )( )r r i

r i r i

T T T
r i i i r i r i r i r i i i r

      φ

ψ ψL L C L φ L C ψ L L φ  (21) 

(3) Derivatives of  r rφ βL  

 r r l tn nφ βL is a matrix formulated as    

 ,,1 , ( )( ) ( )( ) [ , , , , ]r r nr r r r i tr r

l tn n   φ βφ β φ βφ βL L L L  (22) 

where the -thi block  ,r r i lnφ β
L can be expressed as:  

  , 2
,2r r i T

r i i i rφ β
L L L φ  (23) 

 (4) Derivatives of ( )r rφ γL  

( ) lr r nφ γL is a vector which can be expressed as  

  , 2r r i

r

  φ
L φ  (24) 

 (5) Derivatives of  r rχ χL  

 r r t tn nχ χL is a diagonal matrix shown as follows 

   , ,( )( )r i r ir r diagonal χ χχ χL L  (25) 

whose -thi diagonal entry can be derived analytically as follows,   

  , ,

,

21
,( ) ( )( ) 2r i r i

r i

T
i r i r r i i r χ χ

ψL L φ C L φ L φ  (26) 

 (6) Derivatives of  r rχ βL  
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 r r t tn nχ βL is a diagonal matrix shown as follows 

   , ,( )( )r i r ir r diagonal χ βχ βL L  (27) 

whose -thi diagonal entry can be derived analytically as follows,   

  , , 2
,2r i r i

r i i rχ β
L L φ  (28) 

5 NUMERICIAL STUDY 

To illustrate the accuracy of the proposed approach, simulated data of a linear and time-
invariant system are processed. The system is a 15-story shear building with a uniformly dis-
tributed mass and stiffness at each floor. The stiffness to mass ratio is chosen to be 22500s . 
Rayleigh damping is assumed here, and the damping ratios for the first two modes are set to 
be 1%. The structure is assumed to be excited with a ground acceleration gx which can be ad-
equately modeled as Gaussian white noise with auto spectral intensity 2 30.25m s . The predic-
tion error level is taken to be 10%.  It is assumed that the 15 dofs are measured using sensors 
arranged in 3 clusters as shown in Table 1.    

 

Setup Measured dofs 
1 1, 2, 3, 4, 5,6,7 
2 6, 7, 8, 9, 10,11,12 
3 11, 12, 13, 14, 15 

Table 1: Setup information. 

It is assumed that 20 sets of acceleration data of 500-seconds duration are available in each 
dof.  Figure 2 shows the most probable global mode shapes of the first four modes of the 
structure by using the method introduced in section 4. The solid line denotes the exact mode 
shapes, whereas the squares represent the identified global mode shape assembled from local 
ones. These two mode shapes almost coincide. The MAC between the identified global mode 
shape and the exact one is calculated to be 0.999, 0.999, 0.995 and 0.985 for the first to fourth 
modes, respectively. The numericial example indicates that the Bayesian mode shape assem-
bly approach yields satisfactory results. Moreover, there is no need to share the same refer-
ence dofs for all setups.  
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Figure 2: Assembled global mode shape from multiple setups. 
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6 CONCLUDING REMARKS 

A two-stage Bayesian spectrum density approach proposed for ambient modal analysis can be 
implemented in the environment of wireless sensor networks through a distributed computing 
strategy. The local mode shapes as well as their uncertainties confined to different clusters can 
be identified. To assemble the local mode shapes, a Bayesian assembly methodology is pro-
posed in this study so that the weights for different clusters can be accounted for properly ac-
cording to their data qualities. The optimal values for the global mode shape confined to all 
measured dofs can be obtained by a fast iterative scheme. The associated uncertainties can 
also be obtained analytically. A shear building model subject to ground motion is employed to 
demonstrate and verify the proposed method. Results show that the global mode shapes can 
be effectively and accurately identified by the proposed method.  
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