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Abstract. 4 comprehensive rational methodology for the structural assessment of existing
bridges is presented and specifically applied to a historic reinforced concrete arch bridge.
The methodology is based on the use of non-destructive testing tools and structural model up-
dating procedures and involves: (a) preliminary documented research and on-site geometric
surveys (aimed at collecting information on the “as built’’ geometry); (b) ambient vibration
testing performed by using a grid of conventional high-sensitivity accelerometers, aimed spe-
cifically at investigating the vertical dynamic characteristics of the bridge and c) development
of an updated Finite Element (FE) model of the structure.

The investigated bridge, completed in May 1917, crosses the Adda river between Brivio
(province of Lecco) and Cisano Bergamasco (province of Bergamo), about 50 km North-East
from Milano, Northern Italy. Given the still strategic position of the bridge in the current
road transportation network and within a systematic surveillance program of main infrastruc-
tures by the Province of Lecco, dynamic tests were performed under operational conditions.
Main results in terms of Operational Modal Analysis and FE modelling and updating are pre-
sented and discussed. A hierarchy of FE models with different levels of refinement is devel-
oped, with the purpose of a future selection of the model that better reproduces the current
structural properties of the bridge. In this paper an automated system identification proce-
dure has been developed and applied to the simplest of the assembled (consistent) FE models,
whose results will constitute a benchmark for further studies upon the other most refined
models. The aim is to perform a final baseline reference model to be used for reliability as-
sessment within Structural Health Monitoring (SHM) purposes.
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1 INTRODUCTION

Nowadays the development of methodologies for accurate and reliable condition assess-
ment of bridges, or other typologies of civil infrastructures, is becoming increasingly im-
portant. The process of developing or improving methodologies for determining and tracking
the structural integrity of infrastructures based on automated monitoring systems is a main
scope of SHM [1].

FE models play a key-role in the ordinary design process of new structures and in the as-
sessment of existing ones [2]. With the current advances in numerical modeling and computa-
tional capabilities, it is generally expected that a FE model consistently based on original
technical design drawings, on-site geometric surveys, engineering judgment and assessment
processes, shall reliably reproduce both static and dynamic behaviors of a structure.

However, acquired experience shows that the process of developing a FE model of a struc-
ture involves assumptions and simplifications that may induce considerable errors, which are
a consequence of the underlying complexity of the structural modeling, of the uncertainty of
the boundary conditions and of the real mechanical behavior of materials and structural ele-
ments [3]. Moreover, variations in these features during the lifespan of a structure may occur
due to the appearance of smeared or localized damage, causing final discrepancies between
the characteristics of the structure at design stage and at the current state of duty and conser-
vation.

Structural identification via modal dynamic analysis [4] and subsequent Finite Element
Model Updating [5,6] represent consistent and widespread tools towards condition assessment
of existing civil constructions, like bridges or structures endowed with historical values. In
fact, it is well known that changes in the physical properties of a structure correspond to
changes in the modal parameters (notably frequencies, mode shapes, and modal damping rati-
0s) [7]. In most of Model Updating techniques the stiffness, mass and damping distributions
of a numerical model chosen as reference configuration, are iteratively updated, so that the
differences between the measured and the analytical values of the modal parameters are min-
imized [2]. There appear several works in the dedicated literature in which the results ob-
tained from modal identification have revealed useful for performing model updating of a
numerical model of existing bridges [2-3,8-14]. Within such a field, this paper presents the
results obtained from a research study that involved both experimental and analytical modal
analysis as well as subsequent finite element model updating of a reinforced concrete bridge
with parabolic arches, namely the Brivio bridge (1917), Italy, as described below.

The investigation dealt within this paper involves: (a) exploiting OMA techniques to Am-
bient Vibration Testing (AVT) [3]; (b) establishing three FE models of the bridge with in-
creasing levels of detail, based on the available design drawings and on surveys performed in
situ; (¢) exploring the sensitivity of the natural frequencies of a 2D FE model of the bridge to
changes in some uncertain structural parameters; (d)setting the parameters of such
2D FE model, that appear good candidates for the updating procedure and (e) identifying such
parameters, in order to enhance the fitting between experimental and theoretical natural fre-
quencies and mode shapes. The aim is to create an improved FE model which can be adopted
as a benchmark for further scheduled analyses on more complex and detailed numerical mod-
els.

Report on this present research investigation is organized in two companion papers. Com-
panion work [15] focuses on the analysis of the various data coming from the different adopt-
ed instrumentation, accounting also for data fusion and for reliability and uncertainty
assessment of the acquired data, while the present note exposes the detailed AVT performed
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with conventional high-sensitivity accelerometers and the development of an updated FE
models of the bridge, specifically in terms of prediction of modal properties.

The present paper is structured as follows. Section 2 describes the main characteristics of
the Brivio bridge, which is the benchmark structural object taken for this study. In Section 3
the results of the output-only model identification performed on the bridge are presented. In
Section 4 the three performed FE models are described in detail. Section 5 concerns the sensi-
tivity analysis for the selection of the parameters to be considered within the model updating
procedure, which is explained in Section 6. Finally, main conclusions are outlined in closing
Section 7.

2 SALIENT FEATURESOF THE BRIVIO BRIDGE

The Brivio bridge (Figs. 1, 2), designed by Italian engineer Giuseppe Banfi on June 1912
and completed on May 1917, is a three-span historical reinforced concrete bridge with para-
bolic arches located in Lombardia, Northern Italy, about 50 km North-East away from Mila-
no [16]. It crosses the Adda river at about 8 m from water, between the municipalities of
Brivio and Cisano Bergamasco, linking the two provinces of Lecco and Bergamo. The spans
of the bridge are 43.40 m, 44.00 m and 43.40 m long respectively, and consist of a deck
joined on each of their sides to two lateral parabolic arches. The suspension is performed by
means of sixteen hangers, per each side of each span, with rectangular cross-section that is
32 cm wide and 60 cm high. All structural elements are made of reinforced concrete.

The total width of the deck is 9.20 m, hosting a double-lane road and two pedestrian walk-
ways, each 0.80 m wide. The deck cross section (Fig. 2) is constituted by two outer longitudi-
nal girders framed by floor beams; girders, spaced 8.60 m center to center, display
approximately rectangular cross sections with width of 45 cm and height of 100 cm, and
floor beams, provided every 2.30 m, also show rectangular cross sections with width of
28 cm, but variable height along the beam axis. The floor beams are further connected to oth-
er two longitudinal ribs of width of 20 cm, placed symmetrically at a distance of 1 m with re-
spect to the vertical longitudinal middle plane of the bridge. The resulting frame is covered by
a reinforced concrete slab of 15 cm of high, which constitutes the support of the road.

Figure 1: Contemporary views of Brivio bridge seen from Brivio’s riverside (right bank).
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Figure 2: Historical representation of the technical drawings of the bridge [17].

The arches of the bridge show a span of about 42.80 m between the two ends and a rise of
8.00 m at the keystone. They display a rectangular cross section characterized by a constant
width, equal to 60 cm, and a variable tapered height starting from around 1.50 m at the
extrema to 1.25 m at the middle. To achieve higher structural stability, the arches are linked in
the upper part by eight transverse girders, tapered from the end to the center.

Each span rests on either a pier or an abutment, where outer longitudinal girders end,
through a mechanical system made of trusses, in order to allow little axial elongations, due e.g.
to changes of temperature.

3 MODAL DYNAMIC IDENTIFICATION OF THE BRIDGE

This Section reports the modal estimates that have been obtained from output-only identi-
fication techniques based on the operational response data acquired on the bridge by using
conventional high-sensitivity accelerometers.

The response of the bridge was measured at eighteen selected points, as shown in Fig. 3.
Since it was decided to simultaneously use ten wired accelerometers during the tests, two set-
ups were performed to measure the acceleration at opposite sides of eight cross-sections of the
deck, considering two sensors as reference transducers, which were kept at the same locations
in all the set-ups.

Two time windows of 3600 s were collected for each sensor layout, with a sampling rate of
200 Hz, which is higher than that required for this bridge, as the natural frequencies of the
dominant modes are below 20 Hz. Hence, low pass filtering and decimation were applied to
the data before the use of the identification tools, reducing the sampling rate from 200 Hz to
25 Hz.

The output-only modal identification was carried out by using both the Frequency Domain
Decomposition (FDD) [18] and the data-driven Stochastic Subspace Identification (SSI-data)
methods [19] available in the commercial software ARTeMIS [20].

The results of modal identification are summarized in Figs. 4-5 and in Table 1. The natural
frequencies of the identified modes can be easily identified in Fig. 4 from the local maxima of
the first Singular Value (SV) line resulting from the application of the FDD method; the cor-
responding mode shapes are shown in Fig. 5.
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The inspection of Fig. 5 highlights that: (a) almost all mode shapes exhibit regular and
smooth shape with dominant bending or torsion, with the exception of the 7th mode, which is
characterized by coupled bending and torsion; (b) the first two modes exhibit different fre-
quencies but practically the same mode shape. In addition, the 7th vibration mode also exhib-
its complex behaviour (i.e. the modal deflection phases significantly deviate from O or 7).
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Figure 4: Singular value (SV) lines and identification of natural frequencies from the wired accelerometers data

(b)

Figure 3: Points instrumented using wired accelerometers: (a) Set-up 1; (b) Set-up 2.
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1 3.564 3.449 4.60 0.997
2 3.857 3.887 4.09 0.991
3 6.018 5.968 3.17 0.998
4 7.178 7.146 1.51 0.989
5 7.690 7.592 2.82 0.991
6 9.009 8.928 1.67 0.990
7 11.377 11.390 1.28 0.938
8 13.086 13.040 2.01 0.987
9 17.017 16.990 1.44 0.935

Very close results, in terms of natural frequencies and mode shapes, are obtained by apply-
ing the SSI-data method, as it is summarized in Table 1. Furthermore, Table 1 reveals that the

Table 1: Identified frequencies f; [Hz], first span, wired accelerometers.

damping ratios of the first two modes are larger than 4%.

It should be noticed that the “splitting” of 1st mode (with quite high damping ratios) and
the complex behaviour of the 7th mode deserves further investigation since both the observed
phenomena might be related to the poor state of preservation and cracking of some vertical
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hangers. In more details, the co-existence of two close spectral peaks with similar mode
shapes in place of one single mode is sometimes referred to as “dispersive phenomenon” [21]
and was mainly observed in the response of cracked reinforced concrete structures. The same
physical behaviour has been recently detected in ambient vibration testing of two different
arch bridges [22].

(a) f=3.56 Hz (b) f=3.86 Hz () f=6.02H

(d)f=7.18 Hz (e)f=7.69H (Hf=9.01H

(h) f=13.09 Hz

Figure 5: Vibration modes identified from the wired accelerometers data (FDD).

4 FEMODELING OF THE BRIDGE

Three Finite Element models of the Brivio Bridge with different levels of refinement have
been assembled [16]. In particular, one two-dimensional model and two three-dimensional
models have been implemented within the commercial FE code ABAQUS [23].

The main assumptions considered in the present FE models of the bridge are the following:

e Euler-Bernoulli beam finite elements have been used to model all the elements of the
bridge, except for one of the two 3D models in which four-nodes shell elements have
been employed to model the deck;

euniform cross sections, homogeneous material properties and linear elastic mechanical
behavior have been assumed; Poisson’s ratio of reinforced concrete has been held
constant and set equal to 0.20;

e an additional weight per unit volume of 10 kN/m’ has been considered on the deck slab,
to account for the effects of the asphalt pavement and of the walkways;

erigid links between the concrete slab and the grid of hangers and between the latter and
the arches have been applied, for taking into account the real lengths of the structural
elements; each of these links provides a rigid constraint for translation and rotation of one
node with respect to the degrees of freedom of the other one;

e the deck has been assumed to be able to rotate only on one side, while on the opposite
side boundary conditions have been modeled according to the design characteristics of
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the bearing supports (which shall allow for longitudinal displacement); hence, a hinge-
roller scheme has been assumed for the boundary conditions of each span;

ea single representative span of 42.80 m has been considered and no continuous beam
effects are investigated so far.

In the following Sections 4.1-4.3 a brief description of each FE model is reported.

41 2D FE Beam model

The assembled 2D FE model of the bridge is depicted in Fig. 6. The x and y axes represent
the longitudinal axis and the vertical axis of the bridge, respectively. The model is composed
of 224 elements and 178 nodes, for a total of 986 free variables in the internal code represen-
tation [23].

¥

O

Figure 6: Assembled 2D FE Beam model (green markers specify where lumped masses have been placed).

According to the original design (see Fig. 2), the arches are composed of nineteen chunks
with different heights; then, ten types of different double rectangular cross sections with
height decreasing from the ends towards the top have been modeled. The hangers have been
also represented by elements with a double rectangular cross section. The masses of the ele-
ments whose axes lie out of the plane of the model have been lumped at the corresponding

nodal positions; the values of the lumped masses are reported in Table 2. Rotational inertia
values are considered to be negligible.

Element Mass [kg]
Transverse deck beam 5193
Transverse deck beam at the ends 7419
Transverse beam of the arches 3080

Table 2: Lumped masses added to the 2D FE Beam model.

The global geometrical parameters which characterize the 2D Beam model of the bridge
are reported in Table 3. As a first step, the total mass has been evaluated by assuming a rein-

forced concrete density of 2500 kg/m’. Further data on the geometrical characteristics are re-
ported in [16].

Parameter FE model value
Total mass 754.8 t
Component x of the center of mass 2140 m
Component y of the center of mass 1.93 m

Moment of inertia about axis z on the center of mass 1.18 10° kg m”

Table 3: Global geometric parameters of the 2D FE Beam model (concrete density = 2500 kg/m’).
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4.2 3D FE Beam model

The 3D FE beam model of the bridge is shown in Fig. 7. It has been assembled via exclu-
sive use of only 3D beam elements. The x, y and z axes represent the longitudinal axis, the
vertical axis and the horizontal transverse axis of the bridge, respectively. The FE model
counts for 808 elements and 668 nodes, with a total number of free variables equal to 5900.

According to the original design drawings, each arch has been modeled as in the 2D FE
model. Eight superior beam elements with T cross section have been added to the model, set-
ting the two arches at a relative distance of 8.60 m. The deck has been modeled as a frame-
work of beams. In the longitudinal direction, six beam elements have been placed, playing the
role of longitudinal girders, included the reinforced concrete slab above. The cross sections of
these elements have been modeled for best fitting the shape of the deck cross section, de-
picted in Fig. 2. In the transverse direction, beams with variable rectangular cross section
have been placed.

¥

i

Figure 7: Assembled 3D FE Beam model.

The global geometrical characteristics of the 3D Beam model are reported in Table 4. Fur-
ther data are available in [16].

Parameter FE model value
Total mass 762.6 t
Component x of the center of mass 21.40 m
Component y of the center of mass 1.92 m
Component z of the center of mass 430 m

Moment of inertia about axis x on the center of mass 1.53 10° kg m®
Moment of inertia about axis y on the center of mass 1.23 10° kg m’
Moment of inertia about axis z on the center of mass 1.20 10® kg m’

Table 4: Global geometric parameters of the 3D FE Beam model (concrete density = 2500 kg/m3).

43 3D FE Beam & Shell model

A further improvement in the FE description of the bridge has been performed by consider-
ing shell elements, instead of beam elements, in the modelization of the deck, as represented
in Fig. 8. The use of shell elements allows to describe the mean line of the deck cross section,
by providing a more accurate reproduction of its peculiar shape. Twelve shell elements with
six different thicknesses have been employed in the model. The final assembly of the FE
model counts for 3678 elements and 4188 nodes, with a total number of 22660 free variables.
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Figure 8: Assembled 3D FE Beam & Shell model.

The global geometrical parameters of the 3D Beam & Shell model of the bridge are report-
ed in Table 5.

Parameter FE model value
Total mass 767.0t
Component x of the center of mass 2140 m
Component y of the center of mass 1.90 m
Component z of the center of mass 430 m

Moment of inertia about axis x on the center of mass 1.55 10% kg m’
Moment of inertia about axis y on the center of mass 1.23 10° kg m*
Moment of inertia about axis z on the center of mass 1.19 10° kg m’

Table 5: Global geometric parameters of the 3D FE Beam & Shell model (concrete density = 2500 kg/m’).

As Tables 3-5 show, the FE models appear with a good level of similarity referring to the
geometrical characteristics, demonstrating the consistency of the models themselves.

5 SENSITIVITY ANALYSIS

As mentioned in Introduction, the sensitivity analysis and the optimization procedure have
been based on the simplest of the assembled FE models, that is, the 2D Beam model.

It is well known that the selection of the parameters to be updated is crucial, and that sensi-
tivity analysis constitutes an efficient tool which allows for the selection of the parameters
that most influence the structural responses. The sensitivity coefficients can be computed as
the rate of change of a particular response of the model with respect to a change of the struc-
tural parameters [3]. Then, the sensitivity matrix S can be calculated as follows:

S OR;

T (1)

where R; and P; represent a structural response index and a structural parameter, respectively,
with i=1,...,N, for N response indexes and j=1,...,M, for M structural parameters. The sensi-
tivity matrix can be computed for all physical element properties (material, geometrical,
boundary, etc.), by using direct derivation or approximation techniques [2].

Eq. (1) evaluates the absolute sensitivities, which are characterized by the dimensions of
responses and parameter values. If sensitivities for different types of parameters have to be
compared, a normalized relative sensitivity matrix S, should be better used:

PSS —_— 2
77 9P; R, @)
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Hence, the problem may be determined, over-determined or under-determined, depending
on whether matrix S, is square (N=M), tall-rectangular (N>M) or wide-rectangular (N<M),
respectively. If the estimation of too many parameters is attempted, then the problem may ap-
pear ill-conditioned, in particular when observations are limited, as it usually occurs in vibra-
tion testing. Therefore, to achieve a well-conditioned updating problem it is necessary to
select a smaller as possible number of updating parameters, which will be the most effective
ones in producing a genuine improvement in the modeling of the structure [2].

In light of this, also concerning their influence in the overall dynamic behavior of the
bridge, the following structural parameters have been selected to be used in the updating pro-
cedure:

e  Young’s modulus of reinforced concrete deck (Ezecx);

® Young’s modulus of reinforced concrete arches and hangers (Euchghang);
e mass per unit volume of reinforced concrete (pconc).

As mentioned in the work of Brownjohn et al. [2], when performing a model updating pro-
cedure, it is very important to determine a suitable initial value of a selected parameter, i.e. a
reasonable starting point for the optimization process; this is because if the initial value is too
far away from its real value and large discrepancies exist between the experimental and the
numerical model, the iterative process may result in convergence to another (local) minimum,
or even in divergence. It is usually recommended to carry out a prior manual tuning, by engi-
neering judgment or relevant preliminarily estimations, towards obtaining a reasonable ap-
proximation of the start point and of the parameter bounds before starting the optimization
procedure.

To accomplish such manual tuning, a set of preliminary modal analyses have been per-
formed on the 2D FE model of the bridge by varying the three parameters listed above. At this
first stage, the goal was that of assuring that the chosen parameters truly affected the modal
response of the structure and to roughly match experimental and numerical modal results.
Considering 3.564 Hz as the first modal frequency of the bridge, the manual tuning of the pa-
rameters of the FE model has provided a significant matching with respect to the experimental
outcomes. In particular, very good results have been obtained using the values of 33.0 GPa,
36.5 GPa and 2400 kg/m3 , for the Young’s modulus of deck (Eg.x), the Young’s modulus of
arches/hangers (Eu ch&hang) and the concrete mass density (pconc), respectively. The FE model
characterized by this particular set of parameters will be referred to as “base model” in the
following. Fig. 9 shows the results of the modal analysis performed through the 2D FE base
model.

Vi ,ﬁ'"DD 3.565 Hz fFE =3.601 Hz V2 fFDD =6.018 Hz ]FFE =6.084 Hz
//////’ﬁ'_“ﬁ“\\\ ,/”F__“““.\\
///"’d_"___ ‘x%\ ==l
Ss=7, = = e

V3 frop=7.690Hz  fr;=7.667 Hz V4  fripp=13.086Hz  fip=12.029 Hz

// R e ///- -\ /— _ /.-ﬁ_“

//,/"_"‘\ \\“_\&_ / LL \\ o= \\ / N \ -

Figure 9: First four vibration modes of the 2D FE base model of the bridge (not updated).
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The correlation between the dynamic characteristics of the FE base model and those com-
ing from the experimental results is shown in Table 6, for the first four vibration modes, via
the absolute frequency discrepancy and the modal assurance criterion (MAC) [24], to check

correspondences of the mode shapes. The latter is defined as follows (MAC matrix):

¢iexpT q’;lum 3

(¢?x1)T ‘q’f’xp )1/2 ‘(¢r'mmT '¢r'mm)1/2 ( )
i i J J

are the i-th experimental and j-th numerical mode shape vectors, respec-

MAC, (9 9" )=

m

where ¢ and ¢’

tively. Each value of the MAC matrix defined in Eq. (3) effectively represents a correla-
tion coefficient ranging from 0 to 1, where a value of 1 represents a perfect correlation of the
two mode shape vectors (i.e. a linear dependence), while a value close to 0 indicates uncorre-
lated vectors (i.e. linear independence or orthogonality condition). In general, a MAC value
larger than 0.85+0.90 is considered as a good match, while a MAC value less than 0.50 is
considered to be a poor match [3].

Experimental 2D Beam FE base model
Mode identifier Mode N  frpp (Hz) frE (Hz) Ar (%) MAC
Vi 1 3.564 3.601 1.02 1.000
V2 3 6.018 6.084 1.10 0.991
V3 5 7.690 7.667 -0.31 0.993
V4 8 13.086 12.029 -8.08 0.889

Table 6: Correlation between experimental and 2D Beam FE base model dynamic characteristics for the first
four vertical bending modes.

Some attempts have been also performed considering the value of 3.857 Hz as the frequen-
cy of the first vertical mode of the bridge, but the outcomes of the manual tuning have turned
out unsatisfactory.

The normalized sensitivities (Eq. (2)) of the first six modal frequencies of the vertical
bending modes with respect to the parameters above are represented in Fig. 10. The sensitivi-
ties have been evaluated by varying each time one of the parameters and keeping fixed the
others to those of the base model. The plots in Fig. 10 have been obtained by linear interpola-
tion of the point-wise values of partial derivatives of Eq. (2), which have been calculated by
using a central difference evaluation.

The normalized relative sensitivities in Fig. 10 show that the chosen parameters truly affect
the modal response of the structure. In particular, the plots show that: (a) the parameter that
most influences the variations of the lower frequencies is the concrete mass density, with all
sensitivity coefficients over 45% and almost constant for the considered frequencies; (b) con-
cerning Young’s moduli of deck and arches/hangers, the corresponding sensitivities range
from 10% to 20% and from 30% to 40%, respectively; (c) the fundamental frequency f; of the
first mode, which displays the typical antisymmetric mode shape of a vibrating arch, is indeed
influenced mainly by Young’s modulus of arches/hangers and, if compared to the other
modes, is less influenced by the elastic modulus of deck.

Based on the obtained results, the parameters above have been set as the starting point for
the optimization procedure of the 2D FE model of the bridge, as described in the following.
Table 6 shows a fairly good correlation between experimental outcomes and numerical results
from the base model for the first three flexural vertical modes: the higher frequency discrep-
ancy ranges up to about 1% and the MAC index is never below 0.99. The forth vertical mode
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shapes displays large deviations, in particular for the frequency discrepancy which is about
the 8%. Then, it has not been considered in the optimization procedure.
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Figure 10: Sensitivity coefficients for the first six modal frequencies of the 2D Beam FE model.
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6 OPTIMIZATION PROCEDURE FOR MODEL UPDATING

The optimization phase allows for obtaining the parameter values that minimize the differ-
ences between the experimental and numerical modal estimates. Then, this phase involves the
definition of an appropriate objective function and the application of an optimization tech-
nique based on a non-linear least square algorithm. The algorithm of inverse analysis herein
adopted is described in the following Section 6.1. It takes largely inspiration from the identifi-
cation work performed in [25], in quite a different context (material indentation tests). In Sec-
tion 6.2 the results obtained from the optimization procedure are reported.

6.1 Formulation

The algorithm makes use of two sources of information: experimental recorded dynamic
results available before running, from which frequencies and mode shapes have been estimat-
ed through Operational Modal Analysis (FDD); numerical data that, depending on a number
of modeling parameters to be identified (here three material parameters: Egeck, Earchghang and
Peonc), arise from numerical simulations of modal analysis (Lanczos' method [23]) from the FE
model.

The discrepancies among target data and simulated data are minimized, towards the identi-
fication of the material parameters allowing for most effective calibration. Such discrepancy
minimization is measured in terms of an appropriate objective function, which quantifies,
through a vector measure, the difference between target and predicted data. In the present case,
the assumed objective function, @(x), corresponds to a discrete non-negative, non-
dimensional, vector least-square discrepancy measure, and two types of terms, one related to
the relative discrepancy of natural frequencies and another related to the MAC values [11] are

considered:
T

o= a[%J (1=@)(1-MAC (99! )F | , i=123 (&)

where ¥ and f"" are the experimental and numerical frequencies of mode i, ¢/ and

num

@"" are the eigenvectors containing the experimental and numerical modal information re-

garding mode i and x is the (3x1) vector including the parameters to be optimized with re-
spect to the first three flexural vertical modes. If the MAC values between measured and
updated models are near to one and the frequency differences between measured and updated
estimates are near to zero, the model updating is deemed to be successful.

In Eq. (4) a represents a weight coefficient [25], bounded between zero and one (0 <a < 1),
allowing to shift the importance of information from frequencies and mode shapes (possibly
based also on their availability or estimated accuracy), towards the identification process.
Fundamental choices are (a) a=0 (information from MAC matrix only, that is from mode
shapes only); (b) a=0.5 (equal information from natural frequencies and MAC matrix);
(c) a=1 (information from natural frequencies only). For other values of a ranging between
0 and 1, both test profiles could be taken into account, with variable importance, depending
on the specific reliability of estimated frequencies and mode shapes.

Fig. 11 presents a synoptic flowchart that illustrates the iterative process of calibration of
the numerical model. The process involves the concatenated use of two software packages:
ABAQUS [23] as structural solver and MATLAB optimization toolbox [26] as optimization
routine. In the ABAQUS environment the numerical algorithm for the eigenvalues and eigen-
vectors problem of the FE models is run based on a set of initial parameter values. In the
MATLAB routine, based on the experimental modal information, the mode pairing between
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experimental and numerical modes is performed through the application of a least square op-
timization procedure. The minimization of the residuals in the objective function is achieved,
by using a Trust Region method through the “Isgnonlin” function of the Optimization

Toolbox [21].

Start point x,
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Figure 11: Flowchart of the optimization process for FE model updating (adapted from [25]).

The “Isqnonlin” function in MATLAB requires the following entries: the evaluation of the
objective function; a start point x, from which the search of the absolute minimum departs;
lower and upper bounds for the optimization variables, which are applied to the procedure to
assure that the variations of the parameters do not lay outside some reasonable limits. Then,
the function proceeds to an iterative search towards the absolute minimum, by varying the op-
timization variables (material parameters), evaluating through them the objective function and
its jacobian at each iteration, and checking convergence/stopping criteria, as reported in [25].

6.2 Optimization results

The updated value of Young’s modulus of the deck is 34.9 GPa, of Young’s modulus of
arches/hangers is 35.7 GPa and of concrete density is 2437 kg/m’, with a percentage variation
of 5.76%, -2.19%, and 1.54%, respectively, if compared to the initially-assumed values in the
base model.

The updated frequencies f; are listed in the fourth column of Table 7. The frequency per-
centage discrepancies and mode-shape correlation MAC values between the measured and
updated modes are reported in the fifth and sixth column in Table 7, respectively.

Experimental 2D updated model
Mode identifier Mode N  frpp (Hz) fre (Hz) Ar (%) MAC
Vi 1 3.564 3.564 -0.02 1.000
V2 3 6.018 6.065 0.78 0.992
V3 5 7.690 7.627 -0.81 0.993
V4 8 13.086 11.942 -8.74 0.889

Table 7: Correlation between experimental and FE updated model dynamic characteristics of the first four verti-
cal bending modes.
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The optimization procedure has resulted quite successful. The results show maximum fre-
quency difference of lower than 1% and very high MAC values larger than 99% for the
modes within the frequency range 0-10 Hz (first three modes).

7 CONCLUSIONS

Ambient vibration testing with conventional high-sensitivity accelerometers, the assembly
of three FE models with different levels of refinement and the calibration of a simplified nu-
merical FE model (2D) of a historic reinforced concrete arch bridge have been presented in
this paper.

From the results of the identification analysis based on the operational response data col-
lected on the bridge it is possible to observe that: (a) almost all identified mode shapes exhibit
regular and smooth shape with dominant bending or torsion, with the exception of the 7th
mode, which is characterized by coupled bending and torsion and exhibits complex behaviour;
(b) the “splitting” of first mode and the complex behaviour of the 7th mode deserves further
investigation since both the observed phenomena might be related to the poor state of preser-
vation and cracking of some vertical hangers (“dispersive phenomenon”).

The calibration of the 2D FE model of the bridge has been based on the estimated dynamic
characteristics of the structure determined through an operational modal analysis and it has
involved a prior manual tuning of structural parameters selected by engineering judgments.
Then, a sensitivity analysis and a subsequent optimization process have been performed. The
sensitivity analysis has confirmed as a good choice the structural parameters selected for
model updating. The application of the updating procedure has provided a 2D linear elastic
model of the bridge, adequately representing the modal behavior of the structure in its present
condition. In fact, good correlations with the experimental results (natural frequencies and
mode shapes) have been obtained in the frequency range 0-10 Hz.

The structural parameters determined for the 2D FE model will be set as the starting point
in the updating procedures of the more refined 3D FE models, in order to finally constitute a
FE model as a baseline reference within a possible long-term monitoring framework of the
bridge.
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