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Abstract. This paper compares experimental measurements with predictions of different 

rocking models. These comparisons are carried out on the base of recent experimental results 

obtained by shake-table tests of four simple unreinforced load-bearing clay masonry walls 

that have exhibited a significant rocking behaviour for the highest acceleration inputs. In a 

first stage, the simple model proposed by Housner is used after slight modifications needed to 

properly consider the actual mass distribution. Two parameters are identified as governing 

the model response, namely the criterion defining the initiation of motion and the restitution 

coefficient. Then, a two stacked blocks model is developed and solved by an event-driven 

strategy. This two-block model is intended to allow a better description of the behaviour of 

tested specimens through a more precise modelling of the additional mass. Finally, the pres-

ence of rubber layers positioned at the top and bottom of two of the tested walls with the pur-

pose of improving their acoustic behaviour required the development of an updated rocking 

model with viscous and flexible interfaces at the base of the wall and between the two stacked 

blocks. The properties of these interfaces are deduced from experimental data and their sig-

nificant influence on the response is evidenced. 
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1 INTRODUCTION 

Rocking has been originally studied by Housner in 1963 [1] with the aim of explaining the 

survival of tall slender structures during earthquakes. To this purpose, the equation describing 

the rocking motion of a rigid block resting on a rigid base has been developed under the as-

sumption of neither sliding between the block and its foundation nor bouncing. Numerous 

studies and scientific contributions resulted from this original “inverted pendulum” model and 

the interest in this topic is still relevant today. 

Some authors have used the simple model of Housner to investigate analytically and nu-

merically the rocking response of rigid blocks subjected to a seismic action as well as their 

stability [2, 3, 4, 5], while others have defined a new formulation to unify the piecewise equa-

tion describing the rocking motion [6] or developed numerical tools based on the Discrete El-

ement Method (DEM) to model the rigid block [7]. 

Extensions of the simple model have been carried out on various aspects. First, the as-

sumption of a rigid support has been discussed. Psycharis and Jennings [8] introduced an elas-

tic foundation with damping in the problem and compared two possible solutions, namely the 

Winkler model and a simplified unilateral two-spring model. They concluded that both solu-

tions were equivalent, allowing the use of the simple one. The former solution was also stud-

ied in [9], whilst the latter was used in [10, 11]. ElGawady et al. [12] investigated the 

influence of the material constituting the interface through experimental tests and Vassilou 

and Makris [13] examined the benefits of different types of isolated base thanks to numerical 

simulations. A main outcome of this research showed that ancient classical columns of Greek 

temples are more stable without any isolation. Then, the consideration of sliding and bounc-

ing has been included. Shenton III and Jones established criteria for the transition between the 

possible modes of response (sliding, rocking, etc.) and derived the corresponding governing 

equations [14]. A particular attention is given to the effects of the friction coefficients in [15]. 

Finally, the deformability of the block has been taken into account. Psycharis carried out a 

parametric analysis on a SDOF oscillator with a harmonic excitation and outlined the im-

portance of the ratio of the natural period of the structure to the period of excitation [16]. 

Oliveto et al. enhanced previous models with a novel set of coordinates and transition condi-

tions [17] and Acikgos and DeJong were focused on the interaction between elasticity and 

rocking [18].  

All these contributions have extended the range of application defined by the simple model 

developed by Housner. Nevertheless, these studies were limited to a single symmetric block 

and horizontal bases. Plaut et al. studied the consequences of an asymmetric geometry and 

tilted foundations on the rocking behaviour of blocks [19]. They conclude that, in the case of 

asymmetric bodies, the initial direction of the excitation can significantly affect the response. 

Two other studies on non-symmetric rigid bodies dealt with the overturning criteria [20] and 

the assessment of the advantages of base isolation for such blocks [21]. The literature review 

has also pointed out some attempts to translate the research work into design procedures. To 

this purpose, Priestley et al. [22] represented the rocking block as an equivalent SDOF oscilla-

tor with damping. This analogy was however shown as unsubstantiated and oversimplified 

[23]. More recently, Kelly presented a design method aiming at substituting for special study 

required by the latest version of New Zealand code, NZS 1170.5 [24]. 

Besides the rocking behaviour of single block, a few researchers have been interested in 

the dynamic behaviour of stacked blocks although related experimental investigations are ra-

ther limited. The analytical formulation of the equations translating the rocking motion of two 

blocks with no sliding was developed by Psycharis [25]. Such structures can behave accord-

ing to eight different configurations, as illustrated in Figure 1. Spanos et al. [26] improved 
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these developments by adding different contributions to the transition criteria from one con-

figuration to another and proposed an alternative method for the linearization of the nonlinear 

piecewise equations. Kounadis et al. assessed the minimum amplitude ground excitation lead-

ing to the overturning instability [27]. In order to consider these structures in design proce-

dures, DeJong and Dimitrakopoulos proposed a methodology to derive approximate 

equivalence between rocking blocks and SDOF structures [28]. An experimental campaign 

has also been performed at the National Laboratory of Civil Engineering (LNEC) and where 

single blocks were tested, as well as multi-block structures lying on a rigid support [29]. This 

campaign allowed a better understanding of the rocking mechanisms and a comparison of 

measurements with model predictions. 

 

Figure 1: Rocking configurations for two-block assemblies 

The present contribution takes place in the general context of experimental shaking table 

tests carried out at the EQUALS Laboratory in the framework of the SERIES project. The 

tested specimens are four simple unreinforced load-bearing masonry walls. The walls have 

two different aspect ratios, namely 1.1 (long walls) and 0.4 (short walls), and are loaded with 

an additional 5-ton steel mass lying on their top. They are made of thin-bed layered clay ma-

sonry with empty vertical joints. One wall of each aspect ratio includes soundproofing rubber 

layers located at the wall bottom and top for acoustic reasons. Pictures of the walls are given 

in Figure 2. The objectives of this campaign are to enhance the understanding of the dynamic 

behaviour of unreinforced masonry and to investigate the influence of the rubber layers. The 

preliminary assessment based on equivalent static procedure predicted a shear collapse. The 

observed behaviour of the walls was actually characterized by a significant rocking effect, at 

least for the highest acceleration inputs. The importance of this rocking effect has also proved 

to be strongly dependent on the aspect ratio and the presence of acoustic devices. Details of 

this experimental campaign are given in [30]. 

 

Figure 2: Tested specimens 

The present paper is focused on the use of rocking models in view of comparing their pre-

dictive capacities with experimental measurements. On the one hand, the results obtained for 

walls without acoustic elements are assumed to be predictable by the simple model of Hous-
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ner. Several adjustments of the original theory are however needed in order to take into ac-

count the upper steel mass lying on the top of the wall. Two main parameters governing the 

model response are identified, namely the criterion of motion initiation and the restitution co-

efficient. A two-block model is then used to better describe the tested specimens by properly 

considering the upper mass, a priori likely to rock with respect to the underlying wall. On the 

other hand, a new rocking model is derived for the specimens with rubber devices. It aims at 

modelling two-block structures with viscous and flexible interfaces between the blocks as 

well as between the bottom block and the foundation. The properties of these interfaces are 

deduced from experimental data and highly influence the model response. 

2 ROCKING MODELS FOR WALLS WITHOUT RUBBER LAYERS 

A previous contribution of the same authors [31] already tried to reproduce the hereby con-

sidered experimental measurements with a model based on the theory developed by Housner. 

This model was chosen for its simplicity, but some modifications have been performed to fit 

with the experimental configurations and to consider the additional mass placed on the wall 

top especially. The results and conclusions of this work are summarized in the first part of this 

section. The second part is dedicated to the more complex two-block model. This one matches 

better the experimental reality as the masonry wall and the upper mass are both represented by 

a specific block. It is however time-consuming in comparison to the simple model (from 2 to 

5 times more). 

2.1 Comparison with modified Housner’s theory 

Figure 3 illustrates the studied rigid block assuming that the additional steel mass can be 

considered as a point mass, drawn in red. The mass of the block is assumed to be negligible 

compared to the top mass. In comparison to the developments of Housner, the consideration 

of the upper mass involves differences for the parameters R and , representing the radial 

distance from the centre of rotation O to the gravity centre and the angle between this distance 

and the vertical axis respectively. 

  

Figure 3: Modified model for simple rigid block 

Rocking motion of a single rigid block resting on a rigid foundation and subjected to a hor-

izontal acceleration gx  is characterized by its rotation around one of its bottom corners, meas-

ured with the positive clockwise variable θ. The following equation describes this motion 

     0sincos   signMgRsignxMRI gO
  (1) 

where  [s-2] is the second time derivative of θ [-], IO [kgm2] is the moment of inertia, M [kg] 

is the mass and g [ms-2] is the gravitational acceleration.  

O O’ 

  

 

2h 

2b 



R  
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Rocking is initiated if the overturning moment becomes larger than the restoring one, see 

eq. (2). The block and the support being rigid, energy dissipation only occurs when the block 

impacts on the base. This is practically translated by an instantaneous reduction of the angular 

velocity. Considering no bouncing, the angular momentum around the corner is conserved 

and allows the quantification of this reduction according to eq. (3). 

 bMgxhM g 2  (2) 

 2
2

sin21
OI

MR
e   (3) 

The equation of motion has been solved using a standard Newmark integration scheme un-

der the assumption of a constant acceleration. The comparisons of numerical predictions with 

measurements are given in Figure 4 (left) for the short wall and in Figure 4 (right) for the long 

wall respectively. The results correspond to the last shaking table test with the highest accel-

eration input, characterized by a PGA of 0.234g and 0.688g for the short and the long wall 

respectively.  
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Figure 4: Comparison of the numerical predictions with experimental measurements for the short (left) and long 

(right) walls without rubber under the assumption of a rigid body 

Figure 4 highlights differences between theoretical predictions and experimental measure-

ments. Two issues are identified. First, the initially chosen criterion for defining the initiation 

of the rocking motion is felt as not appropriate, since the predictions do not capture the mo-

ment when rocking starts during the shaking table test on the short wall. This is observed as 

well for the long wall or for tests with a lower acceleration level for which the numerical sim-

ulations do not predict any motion, contrary to the observations. Moreover, the restitution co-

efficient seems also not to be appropriate. The rotation is indeed getting damped at a slower 

rate in the model than in reality. Modifications are proposed in [31] and principally consist in 

discussing the description of the rigid body motion, leading to the choice of a global rotation 

around an arbitrary point rather than a rotation around the external bottom corners. It results 

in a change in the parameters R and  as well as in the criterion of motion initiation and resti-

tution coefficient. This latter also integrates a dependence on the square of the aspect ratio and 

on the ratio of the overall maximum rotation to the one reached during the oscillation before 

the considered impact. The consequences of these changes on the model predictions are illus-

trated in Figure 5 for the short wall.  
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Figure 5: Comparison of the numerical predictions with experimental measurements for the short 

The modifications proposed in [31] improve significantly the model predictions. The start-

ing of the rocking motion is better captured and the damping issues at the end of the signal 

have vanished, albeit some differences remain present. In the case of the long wall, the model 

is able to predict the occurrence of rotation peak but overestimate their magnitude. Therefore, 

it can be concluded that such a simple model is not suitable for the present masonry walls. 

The modelling of the additional mass with a material point located at the block top is identi-

fied as a possible reason. A proper consideration of this body should thus enhance the results, 

which constitutes the topic of the second part of this paper. Another reason for the discrepan-

cies is certainly the need for an educated-guess involved by relaxing the rigid body assump-

tion. Indeed, several possibilities do exist regarding the position of the rotation point. 

Moreover, the formulation of the restitution coefficient is questionable since the contact be-

tween the block and its base is no longer a point. 

2.2 Comparison with a two stacked blocks model 

With regard to the specimen's configuration and to the results presented in the previous 

section, the two stacked blocks model seems to be more adapted. In this model, the masonry 

wall and the upper steel mass are indeed each more consistently represented by a block. The 

equations of motion implemented in the present model are based on the developments of 

Spanos et al. [26]. Nevertheless, another linearization of these equations is applied and the 

adopted numerical scheme resorts to an event-driven strategy which principles are detailed in 

[32] and summarized as follows. The resolution method consists in the integration of the line-

arized equations of motion corresponding to the current configuration of the system. Once the 

system configuration changes, the integration is stopped and the event-driven strategy is acti-

vated for the handling of the transition. An event localization function is first applied in the 

perspective of detecting accurately the moment of the transition. The update of the system 

variables is then operated. The equations of motion corresponding to the new configuration 

are chosen and the integration restarts. The activation of the event-driven strategy is con-

trolled by “gap” functions defining the conditions to fulfil to change of configurations. In the 

present case, these “gap” functions are given by the equations translating the transition be-

tween configurations with or without impact. 

Using the two-block model with the short wall geometry and the acceleration signal as in-

puts provides the results given in Figure 6. 
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Figure 6: Predictions of the two-stacked-block model for the short wall 

As it was observed with the simple model in the previous section (Figure 4), the two-

stacked-block model cannot reproduce the specimen response. Nonetheless, the prediction of 

the initiation of the rocking motion is better, as is the energy dissipation. The assumption of a 

rigid block to model the masonry wall is also questionable. Similar modifications are made to 

consider a block rotating around another point than its corner, except for the energy dissipa-

tion. This leads to the results presented in Figure 7.  
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Figure 7: Predictions of the modified two-stacked-block model for the short wall 

The initiation of the rocking is now properly captured, but the magnitude of the first theo-

retical rotation peak is overestimated and occurs too late. This result is possibly due to inade-

quate account for the energy dissipation. Additional modifications are therefore required. 

Different attempts have been performed to improve the dissipation of energy at the impacts 

with a formulation based on the conservation of the angular momentum. These attempts allow 

a better approximation for the magnitude of the first peak, but the overall response remains 

remote from the measurements.  

As a conclusion, the two stacked blocks model gives better results than the simple model, 

when based on a similar set of assumptions. Improvements are however required and the as-

sumption of a rigid block for representing the masonry wall seems to be inappropriate. Ac-

cording to the authors, the main reason is the presence of empty vertical joints. Relaxing this 

assumption to allow rotation around a point to be determined leads to a better prediction of 

the rocking motion initiation, but makes questionable the quantification of the energy dissipa-
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tion by means of the principle of conservation of the angular momentum. This last point will 

be the topic of forthcoming investigations. 

3 ROCKING MODEL FOR WALLS WITH RUBBER LAYERS 

Literature review has highlighted a huge interest in the rocking behaviour of single block. 

Different assumptions have been made on the block, its foundation and the possible behav-

iours. Besides this, a few research works were focused on the rocking behaviour of two or 

more stacked blocks. These latter are however limited to rigid blocks standing on a rigid sup-

port. This section aims at developing a new rocking model for two-stacked rigid blocks with 

viscous and flexible interfaces between the support and the bottom block, like blocks standing 

on a flexible foundation, as well as between the blocks. This model will be then used to com-

pare theoretical predictions with measurements recorded during the shaking table tests on the 

unreinforced masonry walls including rubber devices. 

3.1 Development of the new rocking model 

The geometry of the modelled blocks is given in Figure 8 (left).  The blocks are symmetric 

and have bases 2bi, heights 2hi, masses mi and centroid moments of inertia IGi (i is equal to 1 

for the base block and 2 for the top block). The centroid of the block is denoted by Gi. The 

interfaces have heights eb and et respectively and are characterized by a stiffness (kb or kt) and 

a damping ratio (cb or ct). Rocking motion of rigid blocks including viscous and flexible inter-

faces can be described with four variables, namely the rotation of the blocks, θ1 or θ2, and the 

vertical displacement of the interfaces, zb,1 and zb,2, as denoted in Figure 8 (right). The friction 

is supposed to be large enough to avoid sliding. 

 

Figure 8: Two-stacked blocks model with viscous and flexible interfaces 

It is assumed that the interfaces have no tensile strength. Therefore, uplift occurs when the 

upward displacement of a part of the base is larger than the deflection due to gravity load. 

Four different configurations can thus be observed, namely (i) no uplift, (ii) uplift at the base 

interface, (iii) uplift at the top interface and (iv) uplift at both interfaces. Two parameters gb 

and gt are defined in order to define the configuration. They are equal to the unit if there is no 
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uplift and become zero in the contrary. The conditions to define the value of the parameters 

are given by (4) and (5). 

 









111

111

sin1

sin0





bzif

bzif
g

b

b

b  (4) 

 

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






222

222

sin1
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



bzif

bzif
g

b

b

t  (5) 

The equations of motion for the possible configurations are obtained by the Lagrange’s 

method. Details of these equations will be provided in an upcoming contribution. A lineariza-

tion is then performed and Eq. (6) presents the result in matrix form when the blocks are sub-

jected to seismic horizontal ẍg and vertical żg accelerations. 

These linearized equations are implemented in a numerical procedure and is combined 

with an event-driven strategy for the handling of the transition between configurations. The 

corresponding “gap” functions are defined by the equations translating the change of value for 

the two parameters gb and gt. 
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The energy dissipation in this model is a continuous process. The viscous and flexible inter-

faces indeed dissipate energy through damping in the dash-pots. 
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3.2 Comparison of the new model with experimental results 

The application of the model requires the calibration of the mechanical properties of the in-

terfaces representing the rubber layers. This is one topic of [33] and is based on seismic tests 

at a low-to-moderate acceleration level. During these tests, the specimens remained in contact 

with the support. Deteriorated properties have however been chosen as tests at lower accelera-

tion levels probably damage the rubber devices. Tests at the highest seismic input have been 

therefore performed on damaged specimens. The interfaces are supposed to behave linearly 

and elastically. The others model inputs are the blocks geometry and the acceleration signals. 

The chosen acceleration signals have a PGA of 0.171g for the short wall and of 0.457g for the 

long wall. The results in terms of top and bottom rotations are presented in Figure 9 and Fig-

ure 10 for the short and the long walls with rubber respectively. 
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Figure 9: Comparison between model predictions and experimental measurements (short wall) 
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Figure 10: Comparison between model predictions and experimental measurements (long wall) 

The mechanical properties used are 4.95 (3.85) MPa for the elastic modulus and 5.44 

(1.67) % for the damping ratio in the case of the short (long) wall. The model predictions are 

in good agreements with the experimental measurements. The beginning of the rocking mo-

tion is well approximated without any further modifications. The assumptions of rigid blocks 

can indeed be felt here as realistic when referring the rigidity of the block to the one of the 

joints, which was of course not the case without rubber joints since, in that configuration, the 

rigidity of the blocks had to be referred to an infinitely rigid foundation. Nevertheless, some 

differences are observed, especially concerning the peak magnitudes. Consequently, further 

investigations are required. A larger parameter study is planned to highlight the most relevant 

properties to be tuned at the level of the interfaces. The possible influence of choosing another 

type of material law for the rubber layers has also to be studied, these interfaces being the 

main issue of the model. 
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4 CONCLUSIONS 

This paper deals with the rocking behaviour of masonry structures subjected to seismic 

loading. The main motivation of this paper is the observation during shake-table tests that a 

significant rocking motion was experienced by the structures when the tested unreinforced 

load-bearing clay masonry walls including or not soundproofing rubber layers are shaken at a 

sufficient acceleration level. 

On the one hand, the paper is focused on the rocking behaviour of walls without rubber. A 

first model is developed, based on the simple theory of Housner and modified to consider the 

additional mass placed on the walls top. The comparisons of the model predictions with the 

experimental measurements highlight the need in modelling the additional mass properly and 

the inconveniency of the assumption of a rigid block for the masonry walls. A second model 

of two-stacked blocks is therefore implemented with the developments of Spanos et al. This is 

accompanied with an event-driven strategy for the handling of the transition between configu-

rations. Additional investigations are however still required to allow the masonry walls not to 

be considered as rigid anymore. The energy dissipation is a main issue since the blocks do not 

rotate around their corners and, thus, the use of the principle of conservation of the angular 

momentum is not valid. 

On the other hand, a new two-stacked blocks model is developed for the walls with rubber. 

The main innovation is the consideration of a viscous and flexible interface between the 

blocks. A good agreement between model prediction and experimental data is found, even if 

some differences are outlined. In this case, the masonry walls can be assumed as rigid in 

comparison to the rubber interfaces. The comparison leads to a quite good agreement between 

theoretical results and experimental measurements. In order to improve the results, further 

developments are however still in progress, especially regarding the mechanical properties of 

the interfaces to be used in the model. Details of the new model will be the topic of an upcom-

ing contribution. 
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