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Abstract. Reinforced concrete (R/C) buildings designed according to older seismic codes 
represent a large part of the total building stock; hence, it is important to accurately and effi-
ciently assess their response to actions induced by natural hazards, such as earthquake. Sub-
standard R/C structural elements are prone to shear failure subsequent, or even prior, to 
yielding of their longitudinal reinforcement. This can potentially lead to loss of axial load 
bearing capacity of vertical elements and initiate progressive collapse of the building. 

So far, there have been efforts to model the full-range behaviour of such elements following a 
macro-modelling approach, usually based on quite a limited amount of experimental results, 
especially with respect to the post-peak part of their response, and adopting assumptions that 
are not entirely appropriate. 

In the present study, an extensive database of shear and flexure-shear critical rectangular 
R/C columns has been compiled, to the purpose of investigating R/C member post-peak re-
sponse and calibrating the models mentioned below. It includes both monotonic and cyclic 
tests, the latter constituting the majority, it spans a broad range of design, material and load-
ing parameters and the majority of the specimens have been tested up to axial failure. 

A shear macro-model is developed, which is able to capture the full hysteretic behaviour of 
R/C elements. In addition to the behaviour up to peak shear resistance, an effort is made to 
properly capture the post-peak response, calibrating an empirical model for the descending 
branch directly, instead of indirectly defining it through shear and axial failure that has tradi-
tionally been the case. The angle of the shear failure plane is an important parameter of this 
model, hence an empirical relationship has been developed for it, as well. The onset of axial 
failure constitutes a vital aspect of post-peak response, since it signals the initiation of a pro-
cess of loss of an individual R/C element’s axial load-bearing capacity simultaneously with 
the redistribution of vertical loads to neighbouring ones; thus, it was also closely examined 
and empirical models were derived. 
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1 INTRODUCTION 

Reinforced concrete frame buildings designed according to older seismic codes (or even 
without adhering to any code) represent a large part of the total building stock. Transverse 
reinforcement in their structural elements is typically inadequate, widely spaced or poorly de-
tailed, rendering them vulnerable to shear failure subsequent, or even prior, to yielding of 
their longitudinal reinforcement. This can eventually lead to loss of axial load capacity of ver-
tical elements, through disintegration of the poorly confined concrete core and consequent 
axial load capacity decrease [1], and initiate vertical progressive collapse of a building. This 
collapse type has been shown through post-earthquake reconnaissance to be the most common 
reason of R/C frame building collapse, primarily due to failure of columns or beam-column 
joints [2]. Thus, it would be useful to be able to accurately and efficiently assess their re-
sponse to earthquake-induced actions. Naturally, in such complex and computationally de-
manding analyses, especially when an attempt to model progressive collapse is made, the 
need for a macro-modelling approach of element behaviour arises. 

2 CRITICAL REVIEW OF EXISTING MODELS 

There have been several studies, especially in the recent years, attempting to model the 
full-range cyclic behaviour of shear-deficient elements. Some of the best-known models offer 
reasonable predictions of member response, but this is often not true in the post-peak range. In 
some cases, the post-peak descending branch is not explicitly considered, i.e. shear failure and 
axial failure models are calibrated and the descending branch is assumed to be the “connect-
ing line” between these two, falling short of predicting the response measured experimentally 
(e.g. [3], [4]). Moreover, the shear strength is typically considered zero at the onset of axial 
failure - although this is not always the case, as will be shown later on, resulting in higher po-
tential deviations. Another model [5] explicitly accounts for the post-peak descending branch, 
but is not calibrated against experimental results at all, thus being less accurate, as shown 
through the model verification against experimentally obtained results and noted by the au-
thors; those that consider it directly and are indeed calibrated, are either associated with sub-
stantial scatter [6] or they neglect the effect of some critical parameters, such as transverse 
reinforcement [7]; furthermore, the datasets on which their empirical models were based are 
quite limited ([6], [7]), largely due to the scarcity of experimental tests of specimens up to the 
onset of axial failure until recently. Most of these constitutive models are based on inter-
storey drift ratio (e.g. [3], [4], [7]), although it has been pointed out that a localised drift ratio 
(at the shear-damaged region) might be more appropriate, since deformations tend to concen-
trate at that region after shear failure [8]. Another shortcoming of some models is the consid-
eration of a horizontal residual strength branch without solid experimental basis [6], [9], [10]. 

One of the most recent and comprehensive member-type models, which however does not 
cover the behaviour of R/C elements subsequent to the onset of shear failure, is the phenome-
nological, force-based, spread inelasticity model by Mergos & Kappos [11]–[13]. It is com-
posed of 3 sub-elements, accounting for flexural, shear and anchorage-slip deformations 
(Figure 1). The shear sub-element primary V-γ curve includes the shear cracking point, the 
onset of yielding of the transverse reinforcement, where the maximum shear strength is at-
tained, and a horizontal branch, where shear strains increase with constant force up to the on-
set of shear failure. The curve can be altered according to the flexural deformations in the 
plastic hinge zones, thus accounting for shear-flexure interaction.  

The model was tested against different column specimens, which had failed in flexure, 
shear or flexure-shear, and adequate correlation was found. A specimen of interest for this 
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study in particular, i.e. a column specimen typical of buildings with inadequate transverse re-
inforcement [1], has been analysed using this model [14] and is presented herein. The analyti-
cal predictions are shown in Figure 2 along with the experimental results. The comparison 
with the experimentally observed behaviour up to the point of the onset of shear failure yields 
good accuracy. 

 
Figure 1: Finite element model: (a) geometry of R/C member; (b) beam–column finite element with rigid offsets; 

(c) flexural sub-element; (d) shear sub-element; (e) anchorage slip sub-element. [12] 

 
Figure 2: Sezen & Moehle [1] Specimen-1: (a) full lateral load vs total displacement hysteretic behaviour, as 
obtained from the experimental test; (b) lateral load vs total displacement hysteretic response resulting from 

analysis compared with the corresponding part of the experimental response [14]. 

Subsequent to the initiation of shear failure, the model is incapable of capturing the sub-
stantial strength degradation and follow the descending part of the response, which extends up 
to axial failure of the column. However, this part is critical in assessing the behaviour of an 
existing structure, even more so when it comes to predicting the initiation and cascade of pro-
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gressive collapse in a building. Therefore, the primary aim of the present study is to incorpo-
rate post-peak shear strength degradation mechanisms to the existing member-type model, 
with a view to accurately capturing the response of shear-deficient elements up to the onset of 
axial failure. 

3 POST-PEAK RESPONSE MODELLING 

3.1 Database compiled 

For the investigation of RC element post-peak response and the calibration of subsequent 
sub-models, a large database of shear and flexure-shear critical elements, which were cycled 
beyond the onset of shear failure, was compiled. It comprises 150 rectangular R/C columns, 
67 of which have sustained flexure-shear failure and 83 failed in shear. Their main character-
istics are summarised in Table 1. 

 

 Min Mean Max 

ρl (%) 0.16 2.25 4.76 

ρw (%) 0.08 0.38 1.59 

s/d 0.11 0.44 2.52 

Ls/d 0.88 1.94 4.00 

τave,max / √fc 0.22 0.57 1.23 

v -0.26 0.26 0.80 

Table 1: Main specimen characteristics of the database. 

3.2 Modelling approach 

The basic assumption adopted is that after the onset of shear or flexure-shear failure, the 
flexural and slip-induced deformations do not increase further than their values at failure, i.e. 
all post-peak deformations are localised in the shear sub-element. This assumption has been 
adopted in similar models (e.g. [4]) and is also experimentally validated through deformation 
decomposition (e.g. [15], [16]).  

Furthermore, it has been observed that after the onset of shear failure, shear deformations 
tend to concentrate in a specific member region, the ‘critical length’ [8], [17]; this length is 
defined by the critical shear crack angle.  

Based on the aforementioned assumptions, shear deformations are expressed as: 

 , , cot
pp pp

sh f sh f
cr shL h

δ δ
θ

γ γ γ+ = +=   (1) 

where γ is the average shear strain in the critical zone, γsh,f is the shear strain at the onset of 
shear failure, δpp is the post-peak total lateral displacement, Lcr is the critical length, h is the 
height of the section and θsh is the angle of the critical shear crack (with respect to the member 
axis). 

The axial load capacity degrades with lateral displacement reversals, due to the disintegra-
tion of the confined concrete core [1]; the onset of axial failure is defined at the point where 
capacity and axial load demand become equal. It has long been claimed (e.g. [18]), based on 
limited amount of experimental data (e.g. [19], [20]), that axial failure occurs when shear 
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strength degrades to zero (or is at least negligible); many post-peak models have been based 
on this assumption (e.g. [3], [4]). Nonetheless, this can certainly not be assumed for all spec-
imens. In fact, for some of them it’s completely misleading and this can be readily shown in 
Figure 3, where the lateral strength at the onset of axial failure of the 88 specimens that have 
sustained axial failure in the database, is shown (normalised to the respective strength at shear 
failure, to get the residual lateral strength). Apparently, the shear strength of only a fraction of 
the specimens has degraded below 10% of the maximum strength.  

 
Figure 3: Distribution of the remaining shear strength (normalised by the maximum shear strength) at the onset 
of axial failure. The ostensibly extraordinary values near 1.00 are due to the inclusion of specimens having un-

dergone simultaneous shear and axial failure. 

Consequently, the assumption of zero strength at the onset of axial failure is not verified 
experimentally and will not be adopted in this model; instead, a displacement-based criterion 
will be sought. Simultaneously, of course, if the shear strength does indeed degrade to zero 
before this critical deformation is reached, that point will be considered the onset of axial fail-
ure, i.e. shear strength will not be allowed to assume negative values. 

3.3 Critical crack angle  

The critical shear crack angle has often been assumed independent of column properties 
(e.g. 45o) in the process of developing a shear strength or an axial failure displacement model. 
As this angle affects (through Lcr) the modelling of the post-peak part of the shear force vs 
deformation curve, a realistic estimate of its value would be more appropriate; hence an ap-
propriate model for this angle was sought. 

It is first noted that this angle is not the angle of the first shear crack(s) that appear on a 
specimen along the principal compressive stress trajectories, when the tensile strength of con-
crete is reached. These can be readily calculated according to structural mechanics principles 
and result in steeper angles than the experimentally observed ones [8]. The critical shear crack 
angle corresponds to an idealised failure plane, which forms at or before shear failure and is 
different to the initial crack inclination.  

Statistical analysis was performed on a subset of the database with either a given value of 
angle, or adequate photographic evidence to measure it directly; the crack angle was meas-
ured with respect to the longitudinal axis of the member. In the case of flexure-shear critical 
members with a fan-shaped crack pattern at the end-region, the steepest one was taken into 
account - being considered equivalent to the inclination of the crack that would form in the 
intermediate region without prior development of flexural hinges [21] -, disregarding potential 
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horizontal parts due to flexural cracking. Furthermore, cracks parallel to the longitudinal axis 
- usually caused by bond-split of the longitudinal reinforcement - were disregarded. Only 
double-curvature experiments were taken into account, since the few cantilever ones were ob-
served to develop higher angle values which might not be representative of an actual building 
column. There were 51 shear critical (S) and 32 flexure-shear critical (FS) specimens satisfy-
ing the aforementioned criteria. Based on this dataset, the following patterns emerge (Figure 
4): 
• In line with structural mechanics principles, increasing axial load ratio (ν) tends to de-

crease the shear crack angle, since the trajectories of the principal compressive stresses - 
along which the first shear cracks will form – are oriented closer to the longitudinal axis 
of the member. The inclination of the shear failure plane, which is investigated herein, 
seems to have a similar correlation with the axial load ratio, being of course partly de-
pendent on the initial shear cracks’ inclination (it is emphasised again, though, that it 
forms generally at a different angle). 

• Transverse reinforcement ratio (ρw) has a strong positive correlation with the angle. It is 
recalled that transverse reinforcement has hardly any influence on the principal stress tra-
jectories prior to shear cracking, hence on the initial crack inclination. However, the an-
gle of interest in the present model apparently includes the propagation of shear crack at 
varying angles, the angle change being significantly affected by the yielding transverse 
reinforcement. 

 
Figure 4: Correlation of the measured angle (in degrees) with axial load ratio (top left), transverse reinforcement 
ratio (top right), longitudinal reinforcement ratio (centre left), aspect ratio (centre right), hoop spacing over ef-

fective depth (bottom left) and maximum average shear stress (bottom right), divided into shear (S) and flexure-
shear (FS) critical specimens. 
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• Longitudinal reinforcement ratio (ρl) seems to play no role whatsoever in either case (S 
or FS). This is consistent with the mechanics of shear cracking and contradicts previous 
studies (e.g. [21]) that have considered it as one of the main parameters. 

• Aspect ratio (Ls/d) has a negative correlation in the case of shear critical elements, as ex-
pected, because of the influence on the trajectories of the principal compressive stresses. 
However, no definite trend was observed in flexure-shear critical elements, so no clear 
conclusions could be drawn. 

• The normalised maximum average shear stress (τave,max / √fc = Vmax / bd√fc) in S elements 
has the expected correlation according to the mechanics of cracking initiation, i.e. the 
higher the shear stress, the higher the angle. However, in FS specimens, the inverse 
seems to be the case.  

• Hoop spacing over effective depth (s/d) has the inverse correlation of transverse rein-
forcement ratio, as expected, since the two parameters are highly correlated.  

• In general, FS members seem to have higher shear crack angle values, the crack being 
confined in the end-region of the member that has yielded.  

• Other important parameters that influence the shear crack angle, like cross-section shape 
and loading conditions, were beyond the scope of the current investigation, which was 
based on a database of only rectangular specimens - mainly square - and included only a 
double-curvature loading condition with forces acting at the ends of the members. 

Existing shear crack angle models were tested against the experimentally measured values 
(Figure 5), to select an appropriate one to use in the context of the current model. Moharrami 
et al.’s model [22] is based on structural mechanics principles, hence the resulting angles are 
much steeper, in line with Elwood & Moehle’s remarks [8]; this model was part of the devel-
opment of a shear strength model, not a shear crack model per se. Chang’s model [23] seems 
to heavily underestimate the angle, as well; probably because it’s theoretically derived and not 
calibrated against experimental results, albeit not predicting the first shear cracks like the pre-
vious model. Ousalem et al.’s model [24] produces substantial scatter, largely attributed to the 
axial load ratio; both low and high values lead to great over- or underestimation, as it was de-
veloped based on specimens roughly in the range (0.05, 0.35). The only model which could 
decently represent the observed angles, is Kim & Mander’s [21]. Still, it produces considera-
ble scatter with a mean experimental-to-predicted value of 1.07 and a CoV of 23.9%, while it 
takes into account the longitudinal reinforcement ratio and disregards the effect of the axial 
load ratio.  

Based on the aforementioned trends and significance tests of the predictor variables at a 
significance level of 5%, various empirical relationships were explored, since no existing 
model was deemed adequate. The best model developed is the following: 

 
0.14

1
min maxtan 45

2 0.9
ow

sh
s

h
L v

ρθ θ β θ−= < < =
+

=  (2) 

where β is a parameter that differentiates between shear and flexure-shear critical elements 
and is equal to 66 for S and 75 for FS elements and ρw is introduced with its actual value (not 
in %). The minimum value is a geometrical limitation of the shear crack applying to columns 
with a very low aspect ratio, as also explained by Elwood & Moehle [8]. Were this limit not 
imposed, the angle could be lower than the angle of the diagonal connecting the two ends of 
the column, essentially leading to an Lcr higher than the length of the column itself. 

The model (Eq. 2) yields a mean experimental-to-predicted value of 1.00, a median of 0.97 
and a Coefficient of Variation (CoV) of 19.6% (Figure 6). It applies to specimens in the fol-
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lowing range of parameters: -0.26 ≤ ν < 0.75, 0.00 < ρw < 1.35 (%), 1.18 ≤ ρl ≤ 4.28 (%), 330 
≤ fyl ≤ 700 (MPa), 270 ≤ fyw ≤ 587 (MPa), 13.5 ≤ fc ≤ 86 (MPa), 0.9 ≤ Ls/d ≤ 4.0.  

 
Figure 5: Shear crack angles (in degrees) measured experimentally against the ones calculated according to the 

predictive models of Chang [23] (top left), Kim & Mander [21] (top right), Ousalem et al. [24] (bottom left) and 
Moharrami et al. [22] (bottom right). 

 
Figure 6: Shear crack angles (in degrees) measured experimentally against the ones calculated by the predictive 

model (Eq. 2). 
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3.4 Descending branch 

With a view to developing a shear strength degradation model, the appropriate shape of the 
post-peak branch of the shear force vs deformation curve was investigated. From an observa-
tion-based classification, a bi-linear curve with a horizontal branch representing residual 
strength was a viable option for less than 10% of all specimens. This suggests either that prac-
tically no residual strength is developed in R/C members with the characteristics of this data-
base, or that axial failure occurs in most specimens before they reach their residual capacity. 
Another option could be a non-linear branch, which would have to encompass both concave 
and convex degradation curves. However, a linear post-peak branch model was pursued, tak-
ing into account its simplicity, its compatibility with existing shear behaviour macro-models 
and its match with the experimental results, with the Coefficient of Determination (R2) of fit-
ting a linear least-squares line to the experimental post-peak response of each individual spec-
imen of the database having an average value of 0.95 and a Coefficient of Variation (CoV) of 
7.43%. Thus, the proposed strength degradation model is the following: 

,
max

1 ( )pp sh f
V S

V
γγ= − − (3) 

where Vmax is the maximum shear strength that occurs at the onset of shear failure, γsh,f  the 
corresponding shear strain, γ ≥ γsh,f and V ≤ Vmax the shear strain and strength at any loading 
level after shear failure and Spp the slope of the post-peak curve, i.e. the rate of shear strength 
degradation (see Figure 7). 

Figure 7: V-γ primary curve including the post-peak range (without shear-flexure interaction). 

The post-peak behaviour of specimens with a degradation of at least 30% of Vmax was con-
sidered, in order to obtain a genuine descending branch in the response. Thus, experiments 
that were conducted up to 85% or 80% of Vmax, which constituted the overwhelming majority 
until recently, were excluded. The critical crack angle - for the calculation of the critical 
length and the normalisation of the lateral displacements - was calculated according to the 
aforementioned predictive model (Eq. 2). The principal direction, i.e. the direction of shear 
failure occurrence, was considered only, since the other one is influenced by the preceding 
shear failure, so it is not necessarily identical to the principal one.  

Considering the slope of monotonic and cyclic specimens with various lateral displacement 
protocols (47 flexure-shear and 71 shear critical specimens) led to excessive scatter; for ex-
ample, the best models would hardly amount to an R2 of 0.45 and a CoV less than 60%. Fur-
thermore, lumping them all together would lead to confusion between the capacity boundary 
of monotonic specimens as well as those with large displacement reversals and the cyclic en-
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velopes of cyclic specimens with smaller reversals, hence confounding in-cycle with cyclic 
degradation. It has been pointed out theoretically that these degradation types should be sepa-
rated (e.g. in FEMA P440A [25]); it was also proven experimentally, for example by observ-
ing the apparent difference in the descending branch slope of the identical specimens D13 and 
D14, which were cycled following different loading protocols [26]. Therefore, it was decided 
to treat them separately. A fraction of the specimens was selected, which were either mono-
tonic or cyclic with very large lateral displacement reversals (exhibiting apparent in-cycle 
degradation). These amounted to a total of 28, 18 of which were shear critical and 10 flexure-
shear.  

Examining the correlation of the descending branch slope (in a curve depicting V/Vmax vs γ) 
with design and loading parameters (Figure 8), the following are observed: 
• Higher axial load ratio increases the post-peak slope, as has been often noted in similar

studies (e.g. [7]). Naturally, it leads to higher stresses along the inclined crack interface,
causing faster deterioration of shear resisting mechanisms, albeit increasing shear friction
at the same time.

• Higher longitudinal reinforcement is beneficial, decreasing the degradation rate, mainly
through the dowel action of the longitudinal bars as well as carrying a - potentially sig-
nificant - part of the vertical load, hence reducing the damage inflicted on the crack inter-
face during each reversal. Interestingly, the longitudinal reinforcement area normalised
by the confined section area gives a better prediction than when normalised by the entire
section area, the latter being the usual variable of preference in pre-peak models. This is
possibly due to the fact that after the critical shear crack has formed at the onset of shear
degradation, the effective area is the confined one, as the unconfined cover concrete ei-
ther has already failed due to spalling of the section at the member critical length or it
does not actively contribute as resistance mechanism, due to substantial reduction in its
strength.

• Higher transverse reinforcement is beneficial, as expected, as the transverse steel bars
crossing the critical crack are one of the main resistance mechanisms.

• The average diameter of longitudinal bars (normalised by the effective depth, to avoid
scaling issues), Φl,ave/d, seems to play an important role, too. The same longitudinal rein-
forcement ratio realised through less bars of larger diameter will increase the shear resist-
ed by dowel action.

• Aspect ratio is an important parameter of a member’s shear behaviour, but was found not
to hold high predictive strength herein. This is due to the fact that shear strains concen-
trated in the critical length were considered, therefore eliminating the effect of aspect ra-
tio, which is pronounced when taking into account the inter-storey drift ratio (e.g. in  [7]).
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Figure 8: Correlation of the measured slope of the linear post-peak branch with axial load ratio (top left), longi-

tudinal reinforcement index (top right), transverse reinforcement ratio (bottom left), average longitudinal bar 
diameter normalised to the effective depth (bottom right), for shear (S) and flexure-shear (FS) critical specimens. 

Based on these trends and significance tests of the predictor variables at a significance lev-
el of 5%, various empirical models were explored. The best predictive model was the follow-
ing: 
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  (4) 

where ρw and ρl are introduced with their actual value (not in %) and fyl in MPa. This model 
yields an R2 of 0.82, which is considered quite high, taking into account the high uncertainty 
inherent in post-peak phenomena (for instance, the effect of experimental set-up and the ran-
domness of the succession of degrading phenomena taking place at a lower level) as well as 
comparing it with existing models (e.g. R2 of 0.6 in [6]). The mean experimental-to-predicted 
value is 1.00 and the median 0.87 (Figure 9). It can be applied to specimens in the ranges: 
0.05 ≤ ν ≤ 0.60, 0.00 < ρw < 0.85 (%), 0.045 ≤ Φl,ave/d ≤ 0.075, 1.50 ≤ ρl/Aconf,% ≤ 4.30 (%), 
330 ≤ fyl ≤ 700 (MPa), 270 ≤ fyw ≤ 587 (MPa), 13.5 ≤ fc ≤ 86 (MPa), 1.1 ≤ Ls/d ≤ 3.8. 
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Figure 9: Values of the post-peak descending branch slope (dimensionless) measured experimentally against the 
ones calculated using the predictive model (Eq. 4). 

3.5 Axial failure 

Existing models predicting the lateral displacement at the onset of axial failure were ap-
plied in this extensive dataset of 88 specimens having sustained axial failure, to find the most 
accurate one to employ. Nonetheless, their predictive ability was not adequate (Figure 10). 
Ousalem et al. and Yoshimura models [26], [27] seem to systematically overestimate the lat-
eral displacement. Matamoros & Von Ramin model [28], on the other hand, seems to system-
atically underestimate it. Elwood & Moehle, Zhu et al., and Wibowo et al. models [7], [8], [29] 
seem to capture the displacements on average, albeit exhibiting very high scatter. Most of 
these models ([8], [26], [28], [29]) apply only to flexure-shear critical specimens. Furthermore, 
all of them but one [7] are based on a rather limited dataset. 

Consequently, it was decided to develop a new empirical model that would accurately cap-
ture the trends observed in this dataset and would fit with the shear model of this study.The 
variable chosen to fit the shear model - and because it correlates better with predictive varia-
bles - was the following: 

, ,
,

δ δ
γ =

−ax f
t p

sh
p

f

crL
(5) 

where γt,pp is the total post-peak shear strain (see Figure 6), δax,f is the lateral displacement at 
the onset of axial failure, δsh,f is the lateral displacement at the onset of shear failure and Lcr is 
the already mentioned critical length, where shear strains concentrate after the onset of shear 
failure. 
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Figure 10: Existing models of lateral displacement at the onset of axial failure applied in the specific database. 
The measured displacements lie on the horizontal axis, while the predicted ones on the vertical. The plotted line 
is the “identity” line, i.e. where these two would be exactly equal. The models depicted are: Elwood & Moehle 
[8] (top left), Matamoros & Von Ramin [28] (top right), Zhu et al. [29] (centre left),  Wibowo et al. [7] (centre 

right), Yoshimura [27] (bottom left) and Ousalem et al. [26] (bottom right). 

Examining the correlation of the total post-peak shear strain with design and loading pa-
rameters (Figure 11), the following are observed: 
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• Axial load ratio is a pivotal parameter, decreasing the member’s deformability, as has 
been noted time and time again in similar studies (e.g. [1], [7], [8], [30]). Interestingly 
enough, the axial load ratio was found much less significant than the longitudinal rein-
forcement axial load ratio (vl = P / (Asl fyl)), which was proposed as a predictor in a pre-
vious study [19], so the latter was used in model development herein.  

Figure 11: Correlation of the total post-peak shear strain at the onset of axial failure (derived from the experi-
mentally measured values and based on the abovementioned angle model, Eq. 2) with axial load ratio based on 
the capacity of the longitudinal reinforcement (top left), longitudinal reinforcement ratio divided by the percent-
age of confined area (top right), transverse reinforcement ratio multiplied by its yield strength (centre left), hoop 

spacing over effective depth (centre right), maximum average shear stress (bottom left) and the loading type, 
divided into shear (S) and flexure-shear (FS) critical specimens (bottom right). 

• According to these data, it seems that simultaneous shear and axial failure does not nec-
essarily occur when the aforementioned ratio is higher than unity, some of these speci-
mens reaching a total post-peak shear strain of 0.047; however, in specimens with a ratio 
higher than two, it was in every case less than 0.01 and mostly zero, indicating that this 
could be an appropriate threshold for certain simultaneous shear and axial failure. How-
ever, this should not be the only criterion, since there are even specimens with a ratio 
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lower than unity, which have experienced such failure. Each of these specimens, though, 
had a ratio higher than 0.65, in line with observations of a previous study [31]. 

• Higher longitudinal reinforcement is beneficial, increasing the post-peak deformability, 
as observed in previous studies [19], [31]. Longitudinal bars take up part of the axial load, 
partially relieving the confined concrete core from damage inflicted by the displacement 
reversals. Also, it allows for redistribution of a higher percentage of the axial load from 
the concrete in later stages. 

• Naturally, transverse reinforcement is beneficial, as underlined repeatedly in the past (e.g. 
[8], [17], [27], [30]). It confines the concrete core, allowing for higher load capacity and 
takes up a significant part of the shear demand, decreasing the shear strength degradation 
of the member and the damage inflicted to the core along the shear failure plane. 

• Lower hoop spacing decreases the buckling potential of longitudinal bars and increases 
the confinement of the core, even with constant transverse reinforcement ratio, hence in-
creasing deformability. This has led to appreciating that larger ties at larger spacing lead 
to lower deformability (e.g. [17]). 

• The higher the average shear stress at the point of maximum lateral loading - causing 
more damage, hence higher degradation -, the lower the achieved deformation at the on-
set of axial failure, as expected. 

• It has been noted several times that monotonic response (M) leads to higher deformabil-
ity than the cyclic one (e.g. [1], [19]). From the correlations, it seems that also the cyclic 
specimens with large displacement reversals (C-L), so large that in-cycle degradation is 
obvious, have also higher deformation capacity, as compared with the ones with small 
reversals and no in-cycle degradation (C-S). A simplified parameter is introduced herein 
to account for this effect, in lack of series of experimental tests with various displace-
ment protocols, so as to investigate this issue in depth.  

• Flexure-shear critical specimens (FS) seem to exhibit higher deformability on average, 
when contrasted to shear-critical ones (S).  

Based on these trends and significance tests of the predictor variables at a significance lev-
el of 5%, various empirical relationships were explored. The best models developed are the 
following two: 
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where Ft is a parameter that differentiates between shear and flexure-shear critical elements 
and is equal to 1 for S and 1.07 for FS elements, Lt is equal to 1 for cyclic displacement proto-
cols and 1.35 for monotonic response and ρl, ρw are introduced with their actual value (not in 
%). The first model (Eq. 6) yields a mean experimental-to-predicted value of 1.04, a median 
of 0.94 and an R2 of 0.84, while the second one (Eq. 7) 1.02, 1.02 and 0.83 (Figure 12).Both 
models apply to specimens in the following range of parameters: 0.07 < ν < 0.66, 0.00 < ρw ≤ 
1.35 (%), 0.15 < ρl ≤ 3.8 (%), 331 ≤ fyl ≤ 700 (MPa), 303 ≤ fyw ≤ 587 (MPa),  
13.5 ≤ fc ≤ 33.6 (MPa), 1 < Ls/d ≤ 4.25.  
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Figure 12: Values of the total post-peak shear strain at the onset of axial failure (derived from the experimentally 
measured values and based on the abovementioned angle model, Eq. 2) against the ones calculated using the 1st 

predictive model (Eq. 6) (left) and the 2nd one (Eq. 7) (right). 

4 CONCLUSIONS  

The post-peak response of shear-deficient members was the focus of this study. This is the 
core of the effort to extend the capabilities of an existing efficient member-type model [12], 
with a view to reliably capturing the full-range response of such members. From a rather large 
database of rectangular shear and flexure-shear critical specimens that was compiled, it was 
found that the best modelling approach for the post-peak descending branch of the shear force 
vs deformation curve is a straight line, due to its simplicity, compatibility with other existing 
models and matching the experimentally determined response. 

A predictive model  for the critical shear crack angle of an R/C member, which differenti-
ates between shear and flexure-shear critical elements, is put forward. It was found to yield 
rather accurate predictions and it was used for the development of the subsequent models. De-
creasing axial load ratio, as well as increasing transverse reinforcement ratio, lead to an in-
crease in the critical angle, influencing the initiation and propagation of shear cracks, 
respectively. The longitudinal reinforcement ratio was found to have no effect, despite having 
been considered influential in previous studies. The change in shear crack propagation as the 
failure type changes from shear to flexure-shear leads to larger angles in the latter case, as 
well as inverse correlation of the angle with the aspect ratio and the maximum average shear 
stress.  

A model for the linear degradation rate of shear strength as deformation increases was also 
developed. It was found to be very accurate, considering monotonic and cyclic specimens 
with large displacement reversals. Higher transverse and longitudinal reinforcement ratios, 
longitudinal reinforcement yield strength, and average diameter of longitudinal bars have a 
beneficial effect, reducing the shear strength degradation rate. On the other hand, increasing 
axial load ratio leads to more pronounced strength degradation. The aspect ratio does not have 
a significant effect in this model, largely due to the assumption that post-peak shear strains are 
concentrated within a critical length, rather than being evenly distributed along the R/C mem-
ber. 

Shear strength has been typically considered zero at the onset of axial failure, due to exten-
sive degradation, based on a limited pool of experimental results. It was demonstrated herein 
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that this is usually not the case, thus it cannot always be considered a valid assumption. This, 
of course, does not imply a residual lateral strength during (or after) axial failure; that is a 
separate matter to be further investigated. 

Two alternative predictive models are put forward among those developed for the total 
post-peak shear strain of an R/C member. They are considered accurate in the context of the 
phenomenon under study, the latter model being more parsimonious. This strain is found to 
positively correlate with transverse and longitudinal reinforcement, smaller hoops spaced 
more closely and lower axial and shear loads. Moreover, members that fail in shear after prior 
yielding of longitudinal reinforcement, as well as members loaded monotonically or undergo-
ing larger - and fewer - displacement cycles seem to reach higher deformation. 

Simultaneous shear and axial failure, a daunting phenomenon in the context of vertical 
progressive collapse of R/C frame structures, was briefly examined herein. It seems that a 
longitudinal reinforcement axial load ratio (axial load over longitudinal reinforcement axial 
capacity) of 0.65 can be considered an appropriate threshold for its occurrence. Conversely, a 
ratio equal or higher than 2.00 is associated with such failure. The “grey area” in-between 
should be further investigated for additional appropriate classification criteria. 

Accounting for the effect of different cyclic loading protocols on the post-peak degradation 
of shear strength is a necessary future step, with a view to properly capturing the effect of cy-
clic (as opposed to in-cycle) degradation of the shear mechanism. Furthermore, considering a 
potential non-linear post-peak branch of the shear response curve is deemed a worthwhile ef-
fort, which might increase the accuracy in the prediction of this phase of the response. A rec-
ommended future endeavour would be to conduct a series of experimental tests with various 
displacement protocols and put forward a parameter to capture properly the damage caused by 
continuous displacement reversals, including large displacement reversals as well as low-
cycle fatigue. 
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