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Abstract: The aim of this paper is to illustrate the active control of vibration of a flexible truss 

structure using a model-based digital controller. The state-space model of the system is derived 

using a system identification technique known as the Observer/Kalman Filter Identification 

(OKID) method together with Eigensystem Realization Algorithm (ERA). Based on the measured 

response of the structure to a chirp input, an explicit state-space model of the equivalent linear 

system is determined. To reduce the vibrations caused by an impulse force, two active strut 

members are installed along a vertical of the base bay of the truss. The active strut element consists 

of a piezoelectric ceramic stack actuator, a force transducer and mechanical interfaces. An integral 

controller is designed to suppress vibration of the truss. The controller, formulated with the root 

locus approach, is designed to maximize modal damping of a constructed truss structure. 

Experimental results illustrate that the active piezoceramic strut actuators and the integral 

controller can effectively reduce vibration of the truss.
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1 INTRODUCTION 

Smart structures, which use actuators, sensors and a controller, can be used to suppress vibration 

in situations where passive measures are undesirable because of weight or space constraints. 

Frequently, piezoelectric actuators and sensors are used as they are light, cheap and convenient to 

bond to structures ([1], [2]). Lead zirconate titanate (PZT) is often used as an actuator because it is 

relatively stiff and couples well to a structure. 

A truss structure is one of the most commonly used structures in aerospace and civil engineering 

[3]. Because it is desirable to use the minimum amount of material for construction, the trusses are 

becoming lighter and more flexible which means they are more susceptible to vibration. A 

convenient way of controlling a truss structure is to incorporate a piezoelectric stack actuator into 

one of the truss members [4]. Research on the damping of truss structures began in the late 80’s. 

Fanson et al. [5], Chen et al. [6] and Anderson et al. [7] designed active members made of 

piezoelectric transducers. Preumont et al. [8] used a local control strategy to suppress the low 

frequency vibrations of a truss structure using piezoelectric actuators. Their strategy involved the 

application of integrated force feedback using two force gauges each collocated with the 

piezoelectric actuators, which were fitted into different beam elements in the structure. Carvalhal 

et al. [9] used an efficient modal control strategy for the active vibration control of a truss structure. 

In that approach, a feedback force is applied to each mode to be controlled according to a weighting 

factor that is determined by assessing how much that mode is excited by the primary source. To 

test the effectiveness of the control strategy it was compared with an alternative approach and the 

numerical results showed that with the proposed strategy it is possible to significantly reduce the 

control effort required, with a minimal reduction in control performance. Abreu et al. [10] used a 

standard H∞ robust controller design framework to suppress undesirable structural vibrations in a 

truss structure containing piezoelectric actuators and collocated force transducers.  Li and Huang 

[11] developed a linear-quadratic-Gaussian (LQG) model for vibration control for an adaptive 

truss. Numerical examples and the vibration control experiments were used to validate the 

efficiency of the proposed method. Abreu et al. [2] verified experimentally the application of a self-

organizing fuzzy controller (SOFC) to suppress the vibrations of a truss structure using a pair of 

piezoceramic stack actuators. In that study, a decentralized active damping with local SOFCs 

connecting each actuator to its collocated force transducer were used. Experimental tests were 

performed, which illustrated the effectiveness of the controller in reducing the vibrations of a truss 

structure. The experimental results have shown that piezoceramic stack actuators control efficiently 

the vibrations of the truss structure. 

Active damping of truss structures with integral control was introduced at the beginning of the 

90’s [8] and has since been thoroughly studied both theoretically and experimentally [12]. This 

paper investigates numerically an integral force feedback controller for suppressing the undesired 

structural vibrations in a truss structure containing piezoelectric stack actuators and collocated 

force sensors forming a so-called smart/intelligent truss structure. It is shown that the control 

system consists of independent SISO loops, i.e. a decentralized active damping with local 

controllers connecting each actuator to its collocated force sensor. It is also demonstrated that this 

control problem can be formulated with the root locus approach. 

Although actuators and sensors are crucial elements in the design of a smart structure, they are 

not the focus of this paper. The focus is on the design of the integral controller. The model based 

controller can be further subdivided into two types; one type uses a numerical model of the structure 

derived theoretically, using finite element models ([13], [14]), for example. The second type 

involves the determination of a model of the structure using measured input and output data [15]. 

This paper concentrates on this approach, and demonstrates the procedure to design such a 
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controller. The main objective is to investigate the combination of a system identification method 

and the integral control technique to actively control vibration in a truss structure. 

Ljung [16] provides an excellent introduction to the subject of system identification, and 

describes the various methodologies that have been developed. Among the time domain methods, 

the Observer/Kalman Filter Identification (OKID) algorithm has shown to be efficient and robust 

([17], [18]), and has been applied to space structures, such as the Shuttle Remote Manipulator 

System [19]. It has several advantages for the active vibration control application discussed here. 

First, it assumes that the system is a discrete linear time-invariant (LTI) state-space system. Second, 

it requires only input and output data to formulate the model (no priori knowledge of the plant is 

needed). Third, a pseudo-Kalman state estimator is produced, and lastly, any residual truncation 

errors will be small. Together with the OKID algorithm, the Eigensystem Realization Algorithm 

(ERA) ([18], [20]) generates a low order state-space model of the system to be controlled.  

The paper is organized as follows. In section 2, the OKID and ERA approaches are summarized. 

Section 3 describes the experimental work in which the model and the controller of the truss 

structure, fitted with piezoelectric actuators and force sensors, is determined. Following this, real 

time control is implemented to demonstrate the efficacy of the integral control approach. Section 4 

concludes the paper with some concluding remarks. 

2 IDENTIFICATION OF THE DYNAMIC MODEL 

In this section an overview is given of system identification technique used to determine a model 

of the system to be controlled. It consists of two parts: the OKID method to determine the system’s 

Markov parameters, and the ERA to translate these parameters into a state-space model of the 

system. 

2.1 Description of the Okid technique 

The OKID method was developed to compute the Markov parameters of a linear system, which 

are the same as the sampled impulse response of the system. It is a time domain method which can 

work with general response data such as random vibration, impulsive signals or chirps. First, the 

observer Markov parameters are calculated, then the system Markov parameters are determined 

recursively from the Markov parameters of the observer system. The process of system 

identification using this method is described in ([17], [18]). In this section a brief overview of the 

process is given. 

Consider first a general linear system expressed in discrete-time state-space form as 

𝐱(𝑘 + 1) = 𝐀𝐱(𝑘) + 𝐁𝐮(𝑘) 

𝐲(𝑘) = 𝐂𝐱(𝑘) + 𝐃𝐮(𝑘) 

(1a,b) 

where 𝐱 is an 𝑛 × 1 state vector, 𝐮 an 𝑚 × 1 input or control vector and 𝐲 a 𝑞 × 1 output vector. 

Matrices 𝐀, 𝐁, 𝐂 and 𝐃 are the state, input, output, and direct influence matrix, respectively. The 

integer k represents sampled time. 

The input–output description of the system with zero initial conditions can be obtained from Eq. 

(1) recursively as 

4427



C. F. Joventino, G. L. C. M. Abreu, V. Lopes Jr. 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

𝐲(𝑘) = ∑ 𝐘𝑖

𝑘−1

𝑖=0

𝐮(𝑘 − 𝑖 − 1) + 𝐃𝐮(𝑘) (2) 

where 𝐘𝑖 = 𝐂𝐀𝑖𝐁 and 𝐃 are the Markov parameters of the system. They are also samples of the

system impulse response. For a lightly damped system, many Markov parameters are needed 

because the impulse response takes a long time to decay away. To reduce this number, an observer 

is introduced to artificially add damping and hence reduce the length of the impulse response of 

the combined system. If (𝐀, 𝐂) is an observable pair, then there exists an observer of the form 

 𝐱̂(𝑘 + 1) = 𝐀𝐱̂(𝑘) + 𝐁𝐮(𝑘) − 𝐌[𝐲(𝑘) − 𝐲̂(𝑘)] 

 = (𝐀 + 𝐌𝐂)𝐱̂(𝑘) + (𝐁 + 𝐌𝐃)𝐮(𝑘) − 𝐌𝐲(𝑘) 

 𝐲̂(𝑘) = 𝐂𝐱̂(𝑘) + 𝐃𝐮(𝑘) 

(3a,b) 

Matrix 𝐌 can be interpreted as an observer gain matrix. Consider the special case where all 

eigenvalues of 𝐀 + 𝐌𝐂 are zero. Thus, the estimated state 𝐱̂ converges to the true state 𝐱(𝑘) after 

at most 𝑛 steps where 𝑛 is the order of the system. Equation (3) then becomes 

 𝐱(𝑘 + 1) = (𝐀 + 𝐌𝐂)𝐱(𝑘) + (𝐁 + 𝐌𝐃)𝐮(𝑘) − 𝐌𝐲(𝑘) 

 𝐲(𝑘) = 𝐂𝐱(𝑘) + 𝐃𝐮(𝑘) 

(4a,b) 

The input–output description of the system described by Eq. (4) is given by (for 𝑘 ≥ 𝑛) 

𝐲(𝑘) = ∑ 𝐘𝑖

𝑛−1

𝑖=0

[𝐮(𝑘 − 𝑖 − 1) 𝐲(𝑘 − 𝑖 − 1)]𝑇 + 𝐃𝐮(𝑘) (5) 

where 

𝐘𝑖 = [𝐂(𝐀 + 𝐌𝐂)𝑖(𝐁 + 𝐌𝐃) −𝐂(𝐀 + 𝐌𝐂)𝑖𝐌] = [𝐘𝑖
(1)

𝐘𝑖
(2)],

in which 𝐘̅𝑖 and 𝐃 are the Markov parameters of the observer system. 

A particular feature of this type of observer is that the Markov parameters 𝐘̅𝑖 will become 

identically zero after a finite number of time steps. A standard recursive least-squares technique is 

used to solve Eq. (5) and then the observer Markov parameters are computed. Once the Markov 

parameters of the observer system are identified, the actual system Markov parameters can be 

calculated. The relationship between the Markov parameters of the observer system and those of 

the actual system is given by 

𝐘𝑖 = 𝐂𝐀𝑖𝐁 = 𝐘𝑖
(1)

+ ∑ 𝐘𝑘
(2)

𝑖−1

𝑘=0

𝐘𝑖−𝑘−1 + 𝐘𝑖
(2)

𝐃 (6) 

Once the system Markov parameters have been determined, a state-space model of the system 

can then be derived using the ERA, which is described in the following section. 

2.2 Minimum realization of the system model using the ERA 

The estimated state-space model (𝐀̂, 𝐁̂, 𝐂̂, 𝐃̂) of a system is determined from the system Markov 

parameters 𝐘𝑖 obtained by OKID using the ERA. Details of this approach can be found in ([18], 
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[20]), so only a brief overview is given here. The algorithm begins by forming the 𝑙 × 𝑙 block 

Hankel matrix 𝐇(𝑙, 𝑖) given by 

𝐇(𝑙, 𝑖) = [

𝐘𝑖 𝐘𝑖+1 ⋯ 𝐘𝑖+𝑙−1

𝐘𝑖+1 𝐘𝑖+2 ⋯ 𝐘𝑖+𝑙

⋮ ⋮  ⋮
𝐘𝑖+𝑙−1 𝐘𝑖+𝑙 ⋯ 𝐘𝑖+2𝑙−2

] (7) 

The order of the system is determined from the singular value decomposition of 𝐇(𝑙, 0) which 

is given by 

𝐇(𝑙, 0) = 𝐔𝐕𝑇 (8) 

where the matrix 𝐔 and 𝐕 are unitary matrices,  is an 𝑛 × 𝑛 diagonal matrix of positive singular 

values, and 𝑛 is the order of the system. Defining a 𝑞 × 𝑙𝑞 matrix 𝐄𝑞
𝑇 and an 𝑚 × 𝑙𝑚 matrix 𝐄𝑚

𝑇

made up of identity and null matrices of the form 

𝐄𝑞
𝑇 = [𝐈𝑞 𝟎𝑞×(𝑙−1)𝑞]

𝐄𝑚
𝑇 = [𝐈𝑚 𝟎𝑚×(𝑙−1)𝑚],

(9a,b) 

a discrete-time minimal order realization of the system can be written as 

𝐀̂ = −1/2𝐔𝑇𝐇(𝑙, 1)𝐕−1/2 (10) 

𝐁̂ = 1/2𝐕𝑇𝐄𝑚
(11) 

𝐂̂ = 𝐄𝑞
𝑇𝐔1/2 (12) 

and the direct influence matrix 𝐃̂ can be identified by solving Eq. (5). 

Obviously, the 𝐀̂, 𝐁̂, 𝐂̂, 𝐃̂ matrices describe the state space model, which are functions of the 

singular values of the collected data. Note that now the state space variables allow one to give a 

clear physical meaning to the identified state-space system. 

3 EXPERIMENTAL WORK 

The system identification procedure and the subsequent controller design methodology were 

carried out in a truss structure with a multiple-input multiple-output system. Figure 1 shows the 

experimental setup. 
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Figure 1. Truss structure used in the experimental tests. The detail shows the active member, with force transducer 

and the PZT stack actuator (Cedrat model PPA20M) 

The truss structure (Fig. 1) is composed of 10 cubic bays assembled from a combination of 104 

elements that begin and terminate in an aluminum node ball. There are a total of 44 node balls 

constituting the truss and the nodes at the bottom are clamped. The passive members are made of 

steel with a diameter of 8 mm. The structure is approximately 135 mm in length, 135 mm wide and 

1.3 m tall (from the base plate). 

To excite the vibration of the truss, an impact hammer (model PCB 086C04) was used. To 

achieve the maximum excitation effect, the truss was excited at its free end by the impact hammer. 

To achieve active suppression of the vibration of the truss, a pair of active members (Fig. 1) which 

consists of a force transducer (model PCB 208C03) and a PZT stack actuator were installed as 

vertical active members in the bay next to the base. Each active member replaces a regular strut 

member. A more detailed description of the truss and its finite element model and the positions of 

PZT actuator/force sensor can be found in reference [21]. 

In this experiment, the PZT stack actuator (model PPA20M) manufactured by Cedrat was used. 

This preloaded PZT actuator is a high resolution linear translator for static and dynamic 

applications. It provides sub millisecond response and sub nanometric resolution. The translators 

are equipped with high reliability multilayer PZT ceramic stacks protected by an internally spring-

preloaded non-magnetic stainless steel case. The actuator provides a displacement up to 20 µm, a 

push force and a pulling force up to 800 N and 400 N, respectively, and an operating voltage range 

of -20 to 150 V. The voltage amplifier (model Cedrat LA75B) and the charge amplifier (model 

PCB 482C15 with gain of 20 V/V) shown in Fig. 1 were used to power the PZT stack actuator and 

to condition the signal from the force transducers, respectively. The truss response was measured 

by the force sensors collocated with the PZT stack actuators. The dSPACE system along with 

Matlab/Simulink® was used for digital data acquisition and real-time control. 

Base 

Cedrat LA75B 

Voltage Amplifier 
PCB 482C15 

Conditioner 

Impact 

Hammer 

Truss Structure 

Active members 

Force 

Transducer 

PZT 

Actuator 
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3.1 Frequency response identification 

Prior to designing the active controller, it was necessary to identify the frequency response of 

the truss system [2], whose input was the force of the impact hammer that excited at free end of the 

truss and whose output is each force sensor. The frequency response functions of the impact 

hammer-sensor systems were obtained using the Matlab/Simulink® software together with a PC 

and the dSPACE 1103 board. The frequency responses (calculated from 20 averages) of the system 

(in terms of the impact force applied by the hammer and the voltage measured from the force 

transducer) from 0 to 100 Hz are displayed in Fig. 2. 

    (a)    (b) 

Figure 2. Frequency response of the force transducers: (a) 1 and (b) 2. 

By examining the frequency response plots, the frequency of the dominant mode below 20 Hz 

is determined to be at 12.57 and 34.42 Hz. The strategy is to control simultaneously the first two 

modes (𝜔1 = 78.98  rad/s and 𝜔2 = 216.27 rad/s) by using two active members (PZT struts) 

positioned in the elements shown in Fig. 1, and two decentralized integral controllers connecting 

each actuator to its collocated force transducer. 

3.2 Identification of a model for the truss structure 

To identify a model of the system, the experimental setup shown in Fig. 3 was used. A dSPACE 

1103 board together with the Matlab/Simulink® software were used to generate and process the 

signals. The truss was driven with chirp signal (with frequency of 0 up to 100 Hz in 41 seconds) 

through the PZT actuators and the truss responses were measured using the force sensors. A 

sampling frequency of 1 kHz was used. 
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Figure 3. Experimental setup for model identification of the system. 

Using the method described previously, the Markov parameters of the observer and the system 

were calculated, and consequently a state-space model of the truss structure was determined by 

using 45 states. As it was intended to control the first two modes of the system only, it was 

necessary to reduce the state space model. The Hankel norm model reduction technique [22] was 

used generate a fourteenth order model of the system. 

The measured frequency response functions (calculated from 20 averages) of the system (in 

terms of the voltage applied to the PZT actuators and the force signals measured from the force 

sensors) together with the reconstructed frequency response functions from the model are shown 

in Fig. 4. It can be seen that the frequency responses of the identified model are a reasonable match 

to the frequency responses of the actual system for the first two modes. 
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(c) (d) 

Figure 4. Frequency response functions: (a) actuator 1 to force sensor 1; (b) actuator 1 to force sensor 2; (c) actuator 

2 to force sensor 1 and (d) actuator 2 to force sensor 2. 

3.3 Controller design 

According to the integral control technique [12], the collocated 𝑖-th force sensor (𝑦𝑖) is 

integrated and fed back to the 𝑖-th control input voltage (𝑢𝑖): 

𝑢𝑖(𝑠) = −
𝑘𝑖

𝑠 + 𝜀
𝑦𝑖(𝑠) (13) 

where 𝑘𝑖 is the gain of the 𝑖-th controller and the constant 𝜀 is a forgetting factor that can be 

introduced by slightly moving the pole of the compensator from the origin to the negative real axis. 

In this paper, 𝜀 is assumed be equal to 𝜀 =
𝜔1

2
= 39.49 rad/s. The integral term 1/s introduces a 90º 

phase shift in the feedback path and thus damping in the system. It also introduces a -20 dB/dec 

slope in the open-loop frequency response, and thus reduces the risks of spillover instability [6]. 

The control law described by (13) can be implemented in a decentralized manner, with each 

actuator interacting only with the collocated sensor. In this case, the control system consists of 

independent SISO loops, whose stability can be readily established from the root locus of [12]: 

𝑘𝑖𝐶𝑖(𝑠)𝐺𝑖(𝑠) (14) 

where 𝐺𝑖(𝑠) is the structure transfer function between the actuator and the collocated sensor (Figs.

4a and 4d), and 𝐶𝑖(𝑠) is the active compensator given by 𝐶𝑖(𝑠) =
1

𝑠+𝜀
. 

Figure 5 shows the root locus of the closed-loop system when the controller is tuned on mode 1 

(5a and 5b) and mode 2 (5c and 5d), respectively, i.e., it shows the evolution of the closed-loop 

poles when 𝑘1 and 𝑘2 increase from 0 to  . 
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(a) (b) 

(c) (d) 

Figure 5. Root locus of the closed-loop system when the controller is tuned on (a), (b) mode 1 and (c), (d) mode 2. 

Examining the Fig. 5, it is readily established from the root locus that the system is conditionally 

stable for a specific value of the gain 𝑘𝑖. Thus, as shown in Figs. 5b and 5d, there are stability limits 

which are reached when the closed-loop gains are equal to 14.2 for 𝑘1, and 12.1 for 𝑘2, respectively. 

A slightly upper value of the gain 𝑘1 or 𝑘2 would make the closed-loop system unstable. Therefore, 

the gains 𝑘1 and 𝑘2 can be chosen in such a way to avoid that condition. In this work, the gains 𝑘𝑖 

were chosen equal to 10 for both integral controllers. 

3.4 Experimental results 

As the controller was designed using the procedure discussed previously, some preliminary 

experiments were carried out with some initial control parameters set arbitrarily. The experiment 

was set up as shown in Fig. 3 but now the computer was set in control mode instead of system 

identification mode. The controller was implemented using Matlab/Simulink® software together 

with a PC and the dSPACE 1103 board. Figure 6 shows a Simulink® block diagram of the 

controller. 
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Figure 6. Simulink® block diagram of the controller. 

The truss was excited at its free end by using the impact hammer (model PCB 086C04) shown 

in Fig. 1. The responses of the truss were measured by the sensor forces, with and without control. 

The time-domain results of the control experiment are given in Fig. 7. 

Figures 7a and 7b show the open and closed-loop responses of the force sensors, and Figs. 7c 

and 7d show the corresponding control voltages. It is thus clear that the main effect of the control 

was to add more damping to the system. 

(a) (b) 

(c) (d) 

Figure 7. Time histories from the control experiments in which an impulsive force was applied to the free-end of the 

truss using a hammer, (a) and (b) force transducers 1 and 2 (c) and (d) control voltages applied to the PZT actuators 1 

and 2. 
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Figure 8 shows the experimental open-loop and closed-loop frequency response functions 

determined from the time histories shown in Figs. 7a and 7b, and the time history of the force 

applied to the truss using the instrumented hammer. It can be noted that the control system reduced 

the vibrations in the frequency range containing the first two modes. From the results shown 

bellow, it can be observed that the frequency responses are reduced greatly, approximately 20 dB 

for first mode and 30 dB for second mode. 

(a) (b) 

Figure 8. Open and closed-loop transfer functions of the truss in which an impulsive force was applied to the free-

end of the structure using a hammer (a) force sensor 1, (b) force sensor 2. 

4 CONCLUSIONS 

This paper has described the system identification, controller design, and subsequent 

implementation to control the vibration of a truss structure. An integral controller was designed 

and experimentally implemented on a truss structure containing a pair of piezoelectric linear 

actuators collinear with force transducers. It was demonstrated that this control problem can be 

formulated with the root locus approach by using a model obtained through OKID/ERA system 

identification technique, using inputs and outputs vibration data from the truss. Two modes of the 

truss were controlled. From the experimental results, it was observed that satisfactory performance 

of vibration attenuation was achieved. 
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