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Abstract. This paper presents presents an effective numerical approach to the nonlinear dy-
namics of columns of tensegrity prisms subject to impulsive compressive loading. The equations
of motions of the analyzed structures are formulated in vector form, by modeling the cables as
deformable members and the bars as rigid bodies. The given numerical results investigate the
wave dynamics of tensegrity columns, with focus on the propagation of compression solitary
waves with variable size and amplitude throughout the system, as a function of the applied
impact velocity and the state of prestress of the structure. The engineering potential of the
examined structures as tunable acoustic actuators is discussed.
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1 INTRODUCTION

Recent studies have shown that tensegrity lattices exhibit a tunable geometrically nonlinear
response, which switches from stiffening to softening by playing with a number of mechanical,
geometrical, and prestress variables [1, 2, 3, 4]. Tensegrity lattices consists of networks of
prestressable truss structures, obtained by connecting compressive members (bars or struts)
through pre-stretched tensile elements (cables or strings). Special attention is receiving the
formulation of analytical and numerical procedures for the optimal design of such structures,
due to both their easy control (geometry, size, topology and prestress control) [5, 6], and the
fact that such structures provide minimum mass systems under different loading conditions
[5, 7, 8, 9, 10, 11, 12].

The importance of protecting materials and buildings against impacts with external objects
is well known (cf., e.g., [13, 14]). Equally, there is growing interest in research into noninvasive
tools to target defects in materials, and for monitoring structural health in materials and struc-
tures [16, 17, 18, 19]. Highly efficient and unconventional mechanisms for protecting materials
and focusing mechanical waves through the use of rarefaction and compression solitary waves
have recently been discovered by [4, 15]. It is worth noting that arrays of tensegrity lattices with
elastically hardening response can be employed to fabricate tunable focus acoustic lenses that
support extremely compact solitary waves [4, 15].

Three-dimensional finite element (FE) models of lattice structures usually make use of tetra-
hedral elements with a large number of degrees of freedom [20]. Such models are hardly ap-
plicable to dynamic simulations, even for lattices constituted by a small number of cells. A
key goal of the present work is to develop efficient and accurate models of tensegrity lattices
that make use of 3D assemblies of one-dimensional models for bars and strings. By describing
the bars as rigid members and the cables as elastically deformable elements, we develop the
dynamics of an arbitrary tensegrity network in vector form. Sucha formulation proves to be
useful in order to coupling the proposed model with standard FE models that may interact with
tensegrity networks. The time-integration of the equations of motion is conducted through a
Runge-Kutta algorithm that accounts for a rigidity constraint of the bars [21].

IWe apply the proposed numerical model to investigate the nonlinear wave dynamics of
tensegrity columns under impact loading, by establishing comparisons with the alternative
model proposed in Ref. [22]. We show that our 3D modeling of tensegrity columns allows
us to detect different strain wave profiles, as a function of the applied prestress, and a rigidity
parameter describing the kinematics of the terminal bases. Such tunable response can be prof-
itably used to build tensegrity actuators, which can subjected to different levels of prestress, so
as to generate solitary waves with different phases that coalesce at a focal point in an adjacent
host medium [16, 17].

2 VECTOR FORM OF THE DYNAMICS OF TENSEGRITY NETWORKS

Let us consider a tensegrity network made up of nn nodes (or joints), nb bars and ns cables.
The joints are frictionless hinges, and each member carries only axial forces. The bars (i.e., the
compressed members) are assumed to behave as straight rigid bodies (rods) with uniform mass
density, constant cross-section, and negligible rotational inertia about the longitudinal axis. The
cables are instead modeled as straight elastic springs that can carry only tensile forces.

The generic node i, with i 2 [1, ..., nn], is located by the vector ni 2 R3 in the three-
dimensional Euclidean space, and is loaded with an external force vector wi 2 R3. By suitably
collecting the vectors ni and wi, we introduce the following nodal and force matrices:
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N =

⇥
n1 n2 ... ni ... nnn

⇤
2 R3⇥nn (1)

W =

⇥
w1 w2 ... wi ... wnn

⇤
2 R3⇥nn (2)

The k-th bar (or cable) k of the network, with k 2 [1, ..., nb] (or k 2 [1, ..., ns]), is located
by the vector bk 2 R3 (or sk 2 R3). For example, if the k-th bar connects nodes i and j, then
bk = nj � ni. By stacking up the bar and string vectors, we obtain the following matrices
describing the geometry of all bars and cables:

B =

⇥
b1 b2 ... bk ... bnb

⇤
2 R3⇥nb

, (3)
S =

⇥
s1 s2 ... sk ... sns

⇤
2 R3⇥ns (4)

The center of mass of the k-th bar between nodes i and j is located by the vector rk =

(ni + nj) /2. Collecting all the rk vectors, we get the matrix:

R =

⇥
r1 r2 ... rk ... rnb

⇤
2 R3⇥nb (5)

It is useful to rewrite the above matrices as follows:

B = NCT
B, S = NCT

S , R = NCT
R (6)

where CB 2 Rnb⇥nn and CS 2 Rns⇥nn are connectivity matrices of bars and cables, respec-
tively. The general ith row of CB (or CS) corresponds to the i

th bar (or cable), and the element
CBij (or CSij) is equal to: �1 if vector bi (or si) is directed away from node j

th, 1 if vector bi

(or si) is directed toward node j

th, and 0 if vector bi (or si) does not touch node j. Similarly,
the i

th row of CR 2 Rnb⇥nn corresponds to the bar bi, and the element CRij is equal to: 1 if
vector bi is touching node j, or 0 if vector bi does not touch node j. Following Ref. [5], we
say that a tensegrity network is of class n, if the maximum number of bars concurring in each
node is equal to n.

Let us consider now the generic cable (say the k-th one) with Young modulus of the material
Esk, cross-section area Ask, rest length Lk, and stretched length sk (i.e. sk = kskk, and sk �
Lk). We define the stiffness ksk and the prestrain pk through the following equations:

ksk =
EskAsk

Lk
, (7)

pk =
sk � Lk

Lk
(8)

The force density carried by the current cable is given by the following (unilateral) constituve
equation (elastic, no-compression response):

�k = max


ksk

✓
1� Lk

sk

◆
, 0

�
, if : sk � Lk, (9)

�k = 0, if : sk < Lk (10)
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As we shall see in the sequel, it is convenient to collect all the quantities �k into the diagonal
matrix: �̂ = diag

�
�1 �2 . . . �ns

�
2 Rns⇥ns .

On adopting the matrix from of the tensegrity dynamics presented in Ref. [24], we write the
equations of motion of a class 1 tensegrity network as follows:

N̈M+NK = W (11)

where:

M = CT
Bm̂CB

1

12

+CT
Rm̂CR 2 Rnn⇥nn (12)

K = CT
S �̂CS �CT

B�̂CB 2 Rnn⇥nn (13)

and:

m̂ = diag (m1,m2, . . . ,mnb
) 2 Rnb⇥nb (14)

��̂ =

j
ḂTḂ

k
m̂ˆ̀�2 1

12

+

⌅
BT

(W � S�̂CS)C
T
B

⇧
ˆ̀�21

2

2 Rnb⇥nb (15)

ˆ̀�2
= diag

�
kb1k�2

, kb2k�2
, . . . , kbnb

k�2
�
2 Rnb⇥nb (16)

The generalization of the above equations to the case of a class k system is straightforward, by
making recourse to the Lagrange multipliers technique illustrated in [25].

The vector form of the equations of motions (11) is as follows:

Mnn̈+Knn = w 2 R3nn (17)

where: n = vec (N), Mn = M⌦ I3, and Kn = K⌦ I3. On applying the vectorizing operator
to (11), we obtain:

vec

⇣
N̈M

⌘
+ vec (NK) = vec (W) 2 R3nn (18)

which implies, after some calculations:

�
MT ⌦ I3

�
n̈+

�
KT ⌦ I3

�
n = w 2 R3nn (19)

Since M and K are symmetric, upon defining Mn = M⌦ I3 and Kn = K⌦ I3, we can finally
reduce Eqn. (19) to the vector form (17). We employ the Runge-Kutta integration algorithm
described in Ref. [21] to perform the time-integration of Eqn. (17). Such an algorithm prevents
numerical violations of the rigidity constraint of the bars, ensuring that the bar vectors bk remain
constant at each time step.

3 WAVE DYNAMICS OF TENSEGRITY COLUMNS

Let us examine the wave dynamics of tensegrity columns which may feature either flexible
(Fig. 1(a-b)) or rigid bases (Fig. 1(c-d)) in each prism, and are equipped with np = 50 right-
handed prisms and cables featuring Young modulus Es = 5.48x10

6
N/m

2, and cross-section
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radius rs = 0.14mm. The lattice constant a of the anlyzed columns is set equal to 5 mm, while
the reference height of each prism is equal to h0 = 6.2mm, giving a total height of the column
of 0.31m. The bases of the prisms forming the coulmn are endowed with lumped masses and
the total mass of each unit is equal to 0.0249kg. We characterize the state of prestrain/prestress
of the column through the cross-string prestrain p. We refer to the quantity ✏ = (h�h0)/h as the
axial strain of the prism (positive when the prism is stretched from the reference configuration),
h denoting the current (deformed) height of the generic prism. The wave dynamics of the
analyzed systems is studied through the numerical model given in Sect. 2, by applying different
initial velocities v0 to the nodes of the free end (right-end), which are directed along the axis of
the column, so as to generate a compressive impulsive loading (impact velocites).

Figure 1: Top views and front views of tensegrity columns of right handed prisms with flexible bases (a-b: FB
columns), and rigid bases (c-d: RB colums).

We compare the dynamics of columns composed of prisms with flexible bases (hereafter re-
ferred to as FB-columns) with that of columns composed of prisms equipped with rigid bases
(RB-columns). The analyzed columns have the same geometric and mass data of those analized
in [22]. We consider tensegrity columns subject to a state of prestress in the reference configura-
tion, which is obtained by applying a prestrain p = 0.002 to the cross cables. The compression
wave dynamics of prestressed FB columns is illustrated in Fig. 2, for impact velocities ranging
between v0 = 0.1m/s, and v0 = 0.15m/s. We apply larger impact velocities to the prestressed
column, as compared to the column under zero prestress, to account for the prestress-induced
increse in the acoustic impedence of the system. We note the propagation of leading compres-
sion pulses with oscillatory tails, which span approximatively 4 prisms at t = 0.5s, and exhibit
speed varying from 0.248m/s for v0 = 0.1m/s to 0.372m/s for v0 = 0.15m/s (Fig. 2). The
leading strain pulses illustrated in Fig. 2 have amplitudes of: ✏ = 5.4⇥ 10

�2 for v0 = 0.1m/s;
✏ = 6.97⇥ 10

�2 for v0 = 0.125m/s; and ✏ = 8.5⇥ 10

�2 for v0 = 0.15m/s.
The response of prestressed RB columns to impact velocities ranging between v0 = 0.1m/s,

and v0 = 0.15m/s is illustrated in Fig. 3. One observes the propagation of compact solitary
pulses spanning about 3 units and featuring the following amplitudes: ✏ = 8.93 ⇥ 10

�2 for
v0 = 0.1m/s; ✏ = 0.106 for v0 = 0.125 ÷ 0.15m/s. The mean speeds of the compression
pulses are: 0.186m/s for v0 = 0.1m/s, and 0.248m/s for v0 = 0.125÷ 0.15m/s.
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Figure 2: Axial strain wave profiles in a FB chain of 50 prisms under cross string prestrain p = 0.002, for various
initial velocities: (a) v0 = 0.1m/s, (b) v0 = 0.125m/s, (c) v0 = 0.15m/s.

4 CONCLUSIONS

We have presented a three-dimensional numerical model for the dynamics of arbitrary tenseg-
rity networks that accounts for a rigidity constraint of the compressed members, elastic response
of cable elements, and vector form of the equations of motions. Such a model can be easily cou-
pled with standard FE models of bodies and structures interacting with tensegrity networks, and
proves to be useful for studying the highly nonlinear dynamics of tensegrity metamaterials. It
has been applied to investigate the wave dynamics of tensegrity columns traversed by propagat-
ing compressive strains waves under impulsive impact loading.

The numerical results presented in Sect. 3 allow us to conclude that the more rigid is the
response of the bases of the units, the more compact is the nature of the compressive solitary
pulses that traverse tensegrity columns, under initial compressive disturbances. We are led to
conclude that it is possible to exploit the use of highly nonlinear dynamic response in tensegrity
units to create novel metamaterials that will enable unconventional wavefocusing methodolo-
gies. Arrays of tensegrity columns may indeed be employed to fabricate tunable focus acoustic
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Figure 3: Axial strain wave profiles in a RB chain of 50 prisms under cross string prestrain p = 0.002, for various
initial velocities: (a) v0 = 0.1m/s, (b) v0 = 0.125m/s, (c) v0 = 0.15m/s.

lenses supporting extremely compact solitary waves. Such lattices can be subjected to different
levels of prestress, so as to generate compact solitary waves with different phases within the
lens, which will coalesce at a focal point [16, 17] in an adjacent host medium (i.e., a material
defect to be targeted). The 3D modeling presented in this work offers a very useful tool to sim-
ulate the mechanical response of such spatial arrays of tensegrity columns, and can also be used
to deal with their design by computation. As compared to acoustic lenses based on arrays of
granular metamaterials [16, 17], tensegrity acoustic lenses will profit from the adjustable width
of compression solitary waves in such metamaterials (cf. Sect. 3). While compression solitary
waves in uniform granular chains have a constant width, which is independent of the amplitude
[29], the width of similar waves in tensegrity metamaterials changes with amplitude and speed,
and the solitary wave tends to concentrate on a single lattice spacing in the high energy regime
[15, 4].

We address specific studies about engineering applications of tensegrity networks to future
work. A key goal of such a research will regard the design of 3D innovative devices for moni-
toring structural health and damage detection in materials and structures. Combined tensegrity
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actuators and sensors will be tested to detect the mechanical properties and/or the presence of
damage in materials and structures through closed-loop identification procedures [26, 18, 19].
A second goal will regard the design, manufacture and testing of effective impact mitigation
systems based on tensegrity metamaterials with softening-type response. Such nonlinear meta-
materials will be able to transform compressive disturbances into solitary rarefaction waves
with progressively vanishing oscillatory tail, and/or rarefaction shock-like waves [4]. Finally,
we address to future studies the employment of tensegrity concepts in a variety of mechanical
problems involving innvovative materials and structures [61]-[65].
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