ECCOMAS

Proceedia

COMPDYN 2017
6th ECCOMAS Thematic Conference on
Computational Methods in Structural Dynamics and Earthquake Engineering
M. Papadrakakis, M. Fragiadakis (eds.)
Rhodes Island, Greece, 15–17 June, 2017

HARMONIC AND RANDOM VIBRATIONS OF ANISOTROPIC BEAM

Petr E. Tovstik¹, Tatiana M. Tovstik¹, and Natalia V. Naumova²

¹St. Petersburg State University, Mathematics and Mechanics Faculty. 198504, Universitetsky pr., 28, Stary Peterhof, Russia.

e-mail: peter_tovstik@mail.ru

² St. Petersburg State University. e-mail: n.v.naumova@spbu.ru

Keywords: anisotropic beam, equations of second order accuracy, forced harmonic and random vibrations.

Abstract. Vibrations of a thin elastic beam-strip are studied. A beam is made of an anisotropic material heterogeneous in the thickness direction. The 1D model of second-order accuracy is delivered by using asymptotic expansions in powers of the relative beam thickness. A special attention is paid to the slanted anisotropy with 6 elastic modules. A spectrum of bending vibrations in the case of simply supported ends of a beam is constructed. Forced vibrations under action of a harmonic and a random excitations are studied. In the last case, the root-mean-square of deflections are found in dependence of a type of excitation.

© 2017 The Authors. Published by Eccomas Proceedia. Peer-review under responsibility of the organizing committee of COMPDYN 2017. doi: 10.7712/120117.5437.17795

1 INTRODUCTION

In this work vibrations of a thin elastic beam (strip) made of an anisotropic material heterogeneous in the thickness direction are studied. The 1D model of second-order accuracy is put forwards using asymptotic expansions in powers of the relative beam thickness. A lot of investigations are devoted to obtaining approximate equations describing beams, plates and shells deformations. For homogeneous isotropic material the well-known Kirchhoff–Love and Timoshenko–Reissner models may be used. For anisotropic materials with a general anisotropy (with 21 elastic modules) the additional difficulties arise [1, 2, 3, 4, 5]. The more exact equations of second-order accuracy for beams and plates made of a transversely isotropic heterogeneous (or multi-layered) material were constructed in [6, 7, 8, 9]. In the case of the general anisotropy the construction of models of second-order accuracy is more difficult. In [10] such a model for an infinite long-waved beam vibrations and waves was constructed.

In the present paper the same problem is solved for a beam with finite length and simply supported edges. Forced harmonic and random vibrations are studied. The effects of general anisotropy are discussed.

2 THE MAIN EQUATIONS AND ASSUMPTIONS

A linear plane dynamic problem for a multi-layered anisotropic beam-strip of constant thickness h and length L is studied. A system of equations is as follows:

$$\frac{\partial \sigma_{11}}{\partial x} + \frac{\partial \sigma_{13}}{\partial z} - \rho \frac{\partial^2 u}{\partial t^2} + f_1(x, z, t) = 0, \quad \frac{\partial \sigma_{13}}{\partial x} + \frac{\partial \sigma_{33}}{\partial z} - \rho \frac{\partial^2 w}{\partial t^2} + f_3(x, z, t) = 0, \quad (1)$$

where x, z are the Cartesian co-ordinates $(0 \le x \le L, 0 \le z \le h)$, t is the time, σ_{ij} are the stresses, f_1, f_3 are the projections of the external body load intensity, u(x,z,t), w(x,z,t) are the deflection projections on the x- and z-directions, respectively, $\rho = \rho(z)$ is the material density (Fig. 1).

Figure 1: A beam.

The planes z = 0 and z = h are free, that leads to the boundary conditions

$$\sigma_{13}(x, z, t) = \sigma_{33}(x, z, t) = 0, \quad z = 0, h.$$
 (2)

In the case of general anisotropy, the elasticity relations read as

$$\sigma_{11} = E_{11}\varepsilon_{11} + H_{1}\varepsilon_{13} + E_{13}\varepsilon_{33},
\sigma_{13} = H_{1}\varepsilon_{11} + G_{13}\varepsilon_{13} + H_{3}\varepsilon_{33},
\sigma_{33} = E_{13}\varepsilon_{11} + H_{3}\varepsilon_{13} + E_{33}\varepsilon_{33},
E = \begin{pmatrix} E_{11} & H_{1} & E_{13} \\ H_{1} & G_{13} & H_{3} \\ E_{13} & H_{3} & E_{33} \end{pmatrix},$$
(3)

$$\varepsilon_{11} = \frac{\partial u}{\partial x}, \quad \varepsilon_{13} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}, \quad \varepsilon_{33} = \frac{\partial w}{\partial z},$$
(4)

where ε_{ij} are the strains.

Assume that the modules of elasticity in Eqs. (3) and the density ρ are independent of x, but they may depend on z. Therefore, the multilayered beams and the beams made of functionally graded material are not excluded from consideration. The matrix \mathbf{E} is supposed to be positively definite.

From Eqs. (3) we have

$$\varepsilon_{33} = c_3 \sigma_{33} - c_{\nu} \varepsilon_{11} - c_1 \varepsilon_{13},
\varepsilon_{13} = -c_h \varepsilon_{11} + c_g \sigma_{13} - c_1 \sigma_{33},
\sigma_{11} = c_0 \varepsilon_{11} + c_h \sigma_{13} + c_{\nu} \sigma_{33},$$
(5)

where

$$c_{0} = E_{11} - \frac{E_{13}^{2}G_{13} - 2H_{1}H_{3}E_{13} + H_{1}^{2}E_{33}}{\Delta_{1}} = \frac{\Delta}{\Delta_{1}} > 0, \quad \Delta_{1} = G_{13}E_{33} - H_{3}^{2} > 0,$$

$$c_{3} = \frac{G_{13}}{\Delta_{1}}, \quad c_{1} = \frac{H_{3}}{\Delta_{1}}, \quad c_{h} = \frac{E_{33}H_{1} - E_{13}H_{3}}{\Delta_{1}}, \quad c_{\nu} = \frac{E_{13}G_{13} - H_{1}H_{3}}{\Delta_{1}}, \quad c_{g} = \frac{E_{33}}{\Delta_{1}},$$

$$(6)$$

and $\Delta > 0$ is the determinant of the matrix **E**.

The main unknowns in Eqs. (1), (3) are $w, u, \sigma_{13}, \sigma_{33}$. According to Eqs. (5) they satisfy the system:

$$\frac{\partial w}{\partial z} = -c_{\nu} \frac{\partial u}{\partial x} - c_{1} \sigma_{13} + c_{3} \sigma_{33},
\frac{\partial u}{\partial z} = -\frac{\partial w}{\partial x} - c_{h} \frac{\partial u}{\partial x} + c_{g} \sigma_{13} - c_{1} \sigma_{33},
\frac{\partial \sigma_{13}}{\partial z} = -c_{0} \frac{\partial^{2} u}{\partial x^{2}} - c_{h} \frac{\partial \sigma_{13}}{\partial x} - c_{\nu} \frac{\partial \sigma_{33}}{\partial x} + \rho \frac{\partial^{2} u}{\partial t^{2}} - f_{1}(x, z, t),
\frac{\partial \sigma_{33}}{\partial z} = -\frac{\partial \sigma_{13}}{\partial x} + \rho \frac{\partial^{2} w}{\partial t^{2}} - f_{3}(x, z, t).$$
(7)

We introduce the dimensionless variables (with the hat-sign):

$$\{u, w, z\} = h\{\hat{u}, \hat{w}, \hat{z}\}, \quad \{\sigma_{ij}, E_{ij}, G_{13}, H_i, c_0\} = E_0\{\hat{\sigma}_{ij}, \hat{E}_{ij}, \hat{G}_{13}, \hat{H}_i, \hat{c}_0\},$$

$$x = L\hat{x}, \quad \{c_1, c_3, c_g\} = \frac{1}{E_0}\{\hat{c}_1, \hat{c}_3, \hat{c}_g\}, \quad \rho = \rho_0\hat{\rho}, \quad t = T\hat{t}, \quad \mu = \frac{h}{L},$$

$$\{f_1, f_3\} = \frac{E_0}{h}\{\hat{f}_1, \hat{f}_3\}, \quad E_0 = \frac{1}{h} \int_0^h c_0(z)dz, \quad \rho_0 = \frac{1}{h} \int_0^h \rho(z)dz, \quad T = \sqrt{\frac{\rho_0 L^4}{E_0 h^2}}.$$

$$(8)$$

Here, E_0 , ρ_0 are the average values of the equivalent longitudinal stresses c_0 and of material density. The dimensionless time \hat{t} is introduced so that the minimal natural frequency is of the order of unity, μ is the small thickness parameter. Further we omit the hat-sign.

In particular, for a beam made of an orthotropic material in the dimensionless notation we get:

$$H_1 = H_3 = 0, \ c_1 = c_h = 0, \ c_0 = E_{11} - \frac{E_{13}^2}{E_{33}}, \ c_g = \frac{1}{G_{13}}, \ c_\nu = \frac{E_{13}}{E_{33}}, \ c_3 = \frac{1}{E_{33}}$$
 (9)

and for an isotropic material:

$$c_0 = \frac{E}{E_0(1-\nu^2)}, \ c_g = \frac{2(1+\nu)E_0}{E}, \ c_\nu = \frac{\nu}{1-\nu}, \ c_3 = \frac{E_0(1-2\nu)(1+\nu)}{E(1-\nu)}, \tag{10}$$

where E(z), $\nu(z)$ are, respectively, the Young modulus and the Poisson ratio.

If $H_1 \neq 0$ and/or $H_3 \neq 0$, we have the slanted anisotropy with $c_1 \neq 0$ and/or $c_h \neq 0$. In the opposite case the material is orthotropic or isotropic.

In the dimensionless variables the boundary-value problem (7), (2) is written as:

$$\frac{\partial w}{\partial z} = -\mu c_{\nu} \frac{\partial u}{\partial x} - c_{1} \sigma_{13} + c_{3} \sigma_{33},$$

$$\frac{\partial u}{\partial z} = -\mu \frac{\partial w}{\partial x} - \mu c_{h} \frac{\partial u}{\partial x} + c_{g} \sigma_{13} - c_{1} \sigma_{33},$$

$$\frac{\partial \sigma_{13}}{\partial z} = -\mu^{2} c_{0} \frac{\partial^{2} u}{\partial x^{2}} - \mu c_{h} \frac{\partial \sigma_{13}}{\partial x} - \mu c_{\nu} \frac{\partial \sigma_{33}}{\partial x} + \mu^{4} \rho \frac{\partial^{2} u}{\partial t^{2}} - f_{1} \equiv Z_{1}$$

$$\frac{\partial \sigma_{33}}{\partial z} = -\mu \frac{\partial \sigma_{13}}{\partial x} + \mu^{4} \rho \frac{\partial^{2} w}{\partial t^{2}} - f_{3} \equiv Z_{2},$$

$$\sigma_{13}(x, z, t) = \sigma_{33}(x, z, t) = 0, \quad z = 0, 1.$$
(11)

The right-hand sides of Eqs. (11) are small — this is why the asymptotic expansions to construct the solution may be applied.

3 THE ASYMPTOTIC SOLUTION OF THE PROBLEM (11)

We assume that the plate is under action of the normal external pressure applied to the plane z=0. Then in Eqs. (11)

$$f_1(x, z, t) = 0, \quad f_3(x, z, t) = F_3(t)\delta(z),$$
 (12)

where $\delta(z)$ is the Dirac delta function, and $F_3(t)$ is independent of x.

We assume that for low-frequency transversal vibrations the deflection w is of the order of unity, and the differentiation in x and t does not change the orders of the unknown functions in Eqs. (11). Then the orders of the unknown functions are as follows:

$$w = O(1), \quad u = O(\mu), \quad \sigma_{13} = O(\mu^3), \quad \sigma_{33} = O(\mu^4),$$
 (13)

with $F_3 = O(\mu^4)$.

We seek the solution of Eqs. (11) as a formal asymptotic series:

$$w(x, z, t, \mu) = w^{(0)}(x, z, t) + \mu w^{(1)}(x, z, t) + \mu^{2} w^{(2)}(x, z, t),$$

$$u(x, z, t, \mu) = \mu \left(u^{(0)}(x, z, t) + \mu u^{(1)}(x, z, t) + \mu^{2} u^{(2)}(x, z, t) \right),$$

$$\sigma_{13}(x, z, t, \mu) = \mu^{3} \left(\sigma_{13}^{(0)}(x, z, t) + \mu \sigma_{13}^{(1)}(x, z, t) + \mu^{2} \sigma_{13}^{(2)}(x, z, t) \right),$$

$$\sigma_{33}(x, z, t, \mu) = \mu^{4} \left(\sigma_{33}^{(0)}(x, z, t) + \mu \sigma_{33}^{(1)}(x, z, t) + \mu^{2} \sigma_{33}^{(2)}(x, z, t) \right).$$
(14)

Further we shall content ourselves only with the first three terms of these series.

The integration in z of the two first equations (11) introduces arbitrary functions $w_n(x,t)$, $u_n(x,t)$, n=0,1,2, and equations for these functions follow from the compatibility conditions of the rest two equations (11) and the boundary conditions $\sigma_{13} = \sigma_{13} = 0$ at z = 0,1:

$$\langle Z_k(z)\rangle = 0, \quad k = 1, 2, \qquad \langle Y\rangle = \int_0^1 Y(z) \, dz,$$
 (15)

where $\langle Y \rangle$ is the averaging operator in the thickness direction. In particular, the relations $\langle c_0 \rangle = 1$ and $\langle \rho \rangle = 1$ are valid.

For shortness, we introduce the integral operator $I(X) = \int_0^z X dz$. For any functions X(z) and Y(z), we have

$$\langle \mathbf{I}(X) \rangle = \langle X \rangle - \langle zX \rangle, \quad \langle X\mathbf{I}(Y) \rangle + \langle Y\mathbf{I}(X) \rangle = \langle X \rangle \langle Y \rangle.$$
 (16)

The zero approximation. According to the first of equations (11) the function $w^{(0)}(x,z,t)$ does not depend on z, $w^{(0)}(x,z,t) = w_0(x,t)$. Then we find consequently

$$u^{(0)} = u_0(x,t) + z_* \frac{\partial w_0}{\partial x}, \quad z_* = a - z, \quad a = \langle c_0 z \rangle, \quad \sigma_{13}^{(0)} = -\mathbf{I}(c_0 z_*) \frac{\partial^3 w_0}{\partial x^3}, \tag{17}$$

$$D\frac{\partial^4 w_0}{\partial x^4} = -\frac{\partial^2 w_0}{\partial t^2} + F_3(t), \quad D = \langle \mathbf{I}(c_0 z_*) \rangle = \langle c_0 z_*^2 \rangle, \qquad \frac{\partial^2 u_0}{\partial x^2} = 0, \tag{18}$$

$$\sigma_{33}^{(0)} = \mathbf{I}(\mathbf{I}(c_0 z_*)) \frac{\partial^4 w_0}{\partial x^4} + \mathbf{I}(\rho) \frac{\partial^2 w_0}{\partial t^2} - F_3(t), \tag{19}$$

where a is the neutral lower co-ordinate, D is the dimensionless bending stiffness, u_0 is the horizontal deflection of the neutral layer. Equation (18) may be obtained in the frames of the Kirchhoff-Love Hypotheses with the corresponding value of the equivalent longitudinal stiffness c_0 (see (6)).

The zero and the second approximations coincide with those obtained in [7] - [9] for a transversely isotropic plate, because at $c_h = c_1 = 0$ the both problems are described by the same Eqs. (11).

For the slanted anisotropy in the *first approximation* again we have $w^{(1)} = w_1(x,t)$, where w_1 are independent of z, and

$$u^{(1)} = u_1(x,t) + z_* \frac{\partial w_1}{\partial x} - \mathbf{I}(c_h) \frac{\partial u_0}{\partial x} - \mathbf{I}(c_h z_*) \frac{\partial^2 w_0}{\partial x^2}.$$
 (20)

The arbitrary functions u_1 and w_1 may be found from the compatibility conditions (15); they satisfy equations

$$\frac{\partial^2 u_1}{\partial x^2} = U_1 \frac{\partial^4 w_0}{\partial x^4} = \frac{U_1}{D} \left(F_3 - \frac{\partial^2 w_0}{\partial t^2} \right), \quad U_1 = \langle c_0 \mathbf{I}(c_h z_*) + c_h \mathbf{I}(c_0 z_*) \rangle,
D \frac{\partial^4 w_1}{\partial x^4} + \frac{\partial^2 w_1}{\partial t^2} = 0.$$
(21)

Thus, we find $\sigma_{13}^{(1)}$ and $\sigma_{33}^{(1)}$. For the orthotropic beam $U_1=0$, the first approximation identically vanishing.

In the second approximation

$$w^{(2)} = w_2 - \mathbf{I}(c_{\nu}) \frac{\partial u_0}{\partial x} - \mathbf{I}(c_{\nu}z_*) \frac{\partial^2 w_0}{\partial x^2},$$

$$u^{(2)} = u_2 + z_* \frac{\partial w_2}{\partial x} - \mathbf{I}(c_h) \frac{\partial u_1}{\partial x} - \mathbf{I}(c_hz_*) \frac{\partial^2 w_1}{\partial x^2} +$$

$$(\mathbf{II}(c_{\nu}z_*) + \mathbf{I}(c_h\mathbf{I}(c_hz_*)) - \mathbf{I}(c_g\mathbf{I}(c_0z_*))) \frac{\partial^3 w_0}{\partial x^3}.$$
(22)

As before, we find equations for the functions u_2 and w_2 from Eqs. (15):

$$\frac{\partial^2 u_2}{\partial x^2} = \frac{\partial^2 u_0}{\partial t^2} - \frac{U_1}{D} \frac{\partial^2 w_1}{\partial t^2} - \frac{U_2}{D} \frac{\partial^3 w_0}{\partial x \partial t^2},$$

$$D \frac{\partial^4 w_2}{\partial x^4} = -\frac{\partial^2 w_2}{\partial t^2} - \frac{W_2}{D} \frac{\partial^4 w_0}{\partial x^2 \partial t^2} + (a_\rho - a) \frac{\partial^3 u_0}{\partial t^2 \partial x}, \quad a_\rho = \langle z\rho \rangle.$$
(23)

According to the expansions (14) and Eqs. (18), (21) and (22) we get the equations of second-order accuracy for the functions $u(x,t) = \mu u_0 + \mu^2 u_1 + \mu^3 u_2$ and $w(x,t) = w_0 + \mu w_1 + \mu^2 w_2$:

$$\frac{\partial^2 u}{\partial x^2} = \mu^2 \frac{\partial^2 u}{\partial t^2} - \mu^2 \frac{U_1}{D} \frac{\partial^2 w}{\partial t^2} - \mu^3 \frac{U_2}{D} \frac{\partial^3 w}{\partial x \partial t^2} + \mu^2 \frac{U_1}{D} F_3, \tag{24}$$

$$D\frac{\partial^4 w}{\partial x^4} = -\frac{\partial^2 w}{\partial t^2} + F_3 - \mu^2 \frac{W_2}{D} \frac{\partial^4 w}{\partial x^2 \partial t^2} + \mu(a_\rho - a) \frac{\partial^3 u}{\partial t^2 \partial x}.$$
 (25)

Here u(x,t) is the horizontal deflection of a point from the neutral line z=a, and w(x,t) is the vertical deflection from the line z=0.

In the zero approximation it is possible to study the longitudinal and bending vibrations separately. In the first approximation (for slanted anisotropy with $U_1 \neq 0$) the longitudinal vibrations depend on the bending ones. In the second approximation Eqs. (24) and (25) in the general case are connected with each other. But for $a_{\rho} = a$ Eq.(24) may be solved separately. Here $z = a_{\rho}$ is the co-ordinate of the beam center of gravity.

The coefficients U_2 and W_2 in Eqs. (24) and (25) are very complicated functions of beam parameters, and are presented in [10]. For a homogeneous material, we get

$$D = \frac{1}{12}, \quad a = \frac{1}{2}, \quad U_1 = \frac{c_h}{6}, \quad U_2 = \frac{c_h^2 + c_g - c_\nu}{24}, \quad W_2 = -\frac{1}{144} - \frac{3c_g - c_\nu + c_h^2}{360}.$$
 (26)

Calculations [10] show that Eqs. (24), (25) give a more exact result compared with the zero and with the first approximations especially in the cases when the orders of elastic modules in (3) differ from each other.

4 THE BOUNDARY CONDITIONS AND THE NATURAL FREQUENCIES

Let the boundary conditions

$$w(x,z) = 0$$
, $\sigma_{11}(x,z) = 0$ at all $z \in [0,1]$ and $x = 0,1$ (27)

be given. Replacing the condition $\sigma_{11}=0$ by the two conditions $\langle \sigma_{11}\rangle=0$ and $\langle z_*\sigma_{11}\rangle=0$ we obtain the conditions

$$\frac{\partial u}{\partial x} = 0, \quad w = 0, \quad \frac{\partial^2 w}{\partial x^2} = 0 \quad \text{at} \quad x = 0, 1.$$
 (28)

Dividing variables,

$$u(x,t) = u(x)e^{i\omega t}, \quad w(x,t) = w(x)e^{i\omega t}, \quad F_3(t) = F_3^0 e^{i\omega t}, \quad i = \sqrt{-1}$$
 (29)

Equations (24), (25) read as:

$$\frac{d^2u}{dx^2} + \mu^2\omega^2 u = \mu^2\omega^2 b_1 w - \mu^3\omega^2 b_2 \frac{dw}{dx} + \mu^2 b_1 F_3^0,$$
(30)

$$D\frac{d^4w}{dx^4} - \omega^2 w = F_3^0 - \mu^2 \omega^2 b_3 \frac{d^2w}{dx^2} - \mu \omega^2 b_4 \frac{du}{dx}$$
 (31)

with

$$b_1 = \frac{U_1}{D}, \quad b_2 = -\frac{U_2}{D}, \quad b_3 = -\frac{W_2}{D} > 0, \quad b_4 = a_\rho - a.$$

Here the coefficients b_1 ; b_2 , b_3 , and b_4 describe the effects of slanted anisotropy, of non-classic transversal (mainly, shear) deformations, and of the difference between the neutral layer and the center of gravity position.

At $F_3^0 = 0$ equations (30), (31), and (28) describe the boundary-value problem for the lower part of the free vibrations spectrum. With $b_4 = 0$ Eq. (30) and (31) give the bending part of the spectrum

$$w(x) = w_n(x) = \sin n\pi x, \quad \omega_n^2 = \frac{D(n\pi)^4}{1 + \mu^2(n\pi)^2 b_3},$$

$$u_n(x) = \frac{\mu^2 \omega_n^2 b_1(\sin n\pi x - v_n(x)) - \mu^3 \omega_n^2 b_2 n\pi \cos n\pi x}{p_n^2 - (n\pi)^2}, \quad n = 1, 2, \dots,$$

$$v_n(x) = n\pi p_n^{-1}(\cos p_n x(\cot p_n - (-1)^n) + \sin p_n x), \quad p_n = \mu \omega_n,$$
(32)

where $v_n(x)$ is the solution to the homogeneous equation (30). From Eq. (32) it follows that the bending vibrations are accompanied by small longitudinal deflections u, and in the case of slanted anisotropy ($b_1 \neq 0$) the order of u is larger. With $b_4 \neq 0$ the more complicated formulas close to (32) have place.

If $p_n \approx n\pi$ the special consideration is necessary. In this case the "internal resonance" appears at which the bending frequency is close to the longitudinal one. For small enough numbers n (such that $(\mu n\pi)^2(D-b_3)<1$) the internal resonance does not appear.

5 THE FORCED HARMONIC AND RANDOM VIBRATIONS

The forced stable vibrations under tge action of the harmonic excitation $F_3(t) = F_3^0 e^{i\omega t}$ are described by Eqs. (30), (31), and (28). The solution may be written as:

$$u(x,t,\omega) = s_u(x,\omega)e^{i\omega t}, \quad w(x,t,\omega) = s_w(x,\omega)e^{i\omega t}.$$
 (33)

The functions $s_u(x,\omega)$ and $s_w(x,\omega)$ go off to infinity at $\omega \to \omega_n$ where ω_n are the natural frequencies. To get finite amplitudes it is necessary to place constraints.

The simplest way consists in the replacing the elastic material by a visco-elastic one with the complex modules. If we assume that all modules E_{jk} , G_{13} , H_ji in the matrix (3) are changed

by $(1+i\gamma)E_{jk}$, $(1+i\gamma)G_{13}$, $(1+i\gamma)H_j$ with the same small dimensionless coefficient γ , then Eqs. (30), (31) read as:

$$(1+i\gamma)\frac{d^{2}u}{dx^{2}} + \mu^{2}\omega^{2}u = \mu^{2}\omega^{2}b_{1}w - \mu^{3}\omega^{2}b_{2}\frac{dw}{dx} + \mu^{2}b_{1}F_{3}^{0},$$

$$(1+i\gamma)D\frac{d^{4}w}{dx^{4}} - \omega^{2}w = F_{3}^{0} - \mu^{2}\omega^{2}b_{3}\frac{d^{2}w}{dx^{2}} - \mu\omega^{2}b_{4}\frac{du}{dx}.$$
(34)

Instead of Eqs. (33) we get the bounded solution

$$u(x,t,\omega) = \mathbf{Re}(s_u(x,\omega)e^{i\omega t}), \quad w(x,t,\omega) = \mathbf{Re}(s_w(x,\omega)e^{i\omega t}),$$
 (35)

where s_u and s_w are solutions of Eqs. (34).

Let now $F_3(t)$ be the random stationary process with spectral density $S_F(\omega)$. Then for a fixed x the processes u(x,t), w(x,t) are also stationary with spectral densities

$$S_u(x,\omega) = |s_u(x,\omega)|^2 S_F(\omega), \qquad S_w(x,\omega) = |s_w(x,\omega)|^2 S_F(\omega)$$
(36)

with the same s_u and s_w . There are various characteristics of the processes u(x,t), w(x,t). For example, the root-mean-squares

$$\sigma_u^2(x) = \int_{-\infty}^{\infty} S_u(x,\omega) d\omega, \qquad \sigma_w^2(x) = \int_{-\infty}^{\infty} S_w(x,\omega) d\omega.$$
 (37)

6 NUMERICAL EXAMPLE

Consider a soft isotropic homogeneous material (matrix) uniformly reinforced by a system of hard straight fibres, at angle α with the x-axis. After averaging we get a material with slanted anisotropy (Fig. 2).

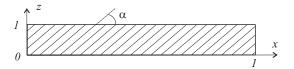


Figure 2: A reinforced beam.

For the elastic modules in (3) the following relations are valid [11]:

$$E_{11} = \frac{E(1-\delta)}{1-\nu^2} + E_n \delta \cos^4 \alpha, \qquad E_{13} = \frac{E\nu(1-\delta)}{1-\nu^2} + E_n \delta \sin^2 \alpha \cos^2 \alpha,$$

$$E_{33} = \frac{E(1-\delta)}{1-\nu^2} + E_n \delta \sin^4 \alpha, \qquad G_{13} = \frac{E(1-\delta)}{2(1+\nu)} + E_n \delta \sin^2 \alpha \cos^2 \alpha,$$

$$H_1 = E_n \delta \sin \alpha \cos^3 \alpha, \qquad H_3 = E_n \delta \sin^2 \alpha \cos \alpha,$$
(38)

where E and ν are, respectively, the Young modulus and the Poisson ratio of a matrix, E_n is the Young modulus of fibers, δ is the part of volume occupied by fibers.

We accept the following dimensionless parameters:

$$\nu = 0.3, \quad E_n/E = 1000, \quad \delta = 0.1, \quad \rho = 1, \quad \alpha = \pi/18, \quad \mu = 0.05, \quad \gamma = 0.1.$$
 (39)

The material is homogeneous, therefore $b_4 = 0$, and from Eqs. (6), (8), (26) we find the coefficients in Eqs. (30), (31):

$$b_1 = 9.95, \quad b_2 = -13.82, \quad b_3 = 1.24.$$
 (40)

Equation (32) gives the first bending frequencies

$$\omega_1 = 2.81, \quad \omega_2 = 10.76, \quad \omega_3 = 22.71, \quad \omega_4 = 32.35, \quad \omega_5 = 53.62, \dots$$

The even modes are not exited in the studied case when F_3 does not depend on x.

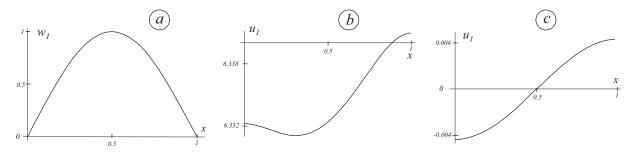


Figure 3: Eigen-functions $w_1(x)$, $u_1(x)$, and $u_1(x)$ at $b_1 = 0$.

Let us discuss the first eigen-functions (32). The function $w_1(x)$ is an ordinary sine (see Fig. 3(a)). The function u_1 is a solution of Eq. (30) at $\omega = \omega_1$, $w = \sin \pi x$ and $F_3^0 = 0$. To satisfy boundary conditions

$$\frac{du}{dx} = 0 \quad \text{at} \quad x = 0, \quad x = 1 \tag{41}$$

it is necessary to add a solution $v_1(x)$ of the homogeneous equation $\frac{d^2u}{dx^2} + \mu^2\omega_1^2u = 0$. As a result we get the function (32) $u_1(x)$ which is large compared with $w_1(x)$ and almost constant (see Fig. 3(b)). If we put $b_1 = 0$ (an orthotropic material) then $u_1(x)$ becomes very small (see Fig. 3(c)). Also the function $u_1(x)$ is small if one or two conditions (41) be replaced by u = 0.

The functions $s_w(x,\omega)$ and $s_u(x,\omega)$ may be written in terms of the Fourier expansions:

$$s_{w}(x,\omega) = \sum_{n=1,3,\dots} \frac{4\sin n\pi x}{Dn^{5}\pi^{4}(\omega_{n}^{2}(1+i\gamma)-\omega^{2})},$$

$$s_{u}(x,\omega) = \sum_{n=1,3} \frac{4\left(\mu^{2}\omega_{n}^{2}b_{1}(\sin n\pi x - v_{n}(x)) - \mu^{3}\omega_{n}^{2}b_{2}n\pi\cos n\pi x\right)}{Dn^{5}\pi^{4}(\omega_{n}^{2}(1+i\gamma)-\omega^{2})((1+i\gamma)p_{n}^{2}-(n\pi)^{2})}.$$
(42)

Only the first terms of these series are essential because the second terms are 3^5 times smaller. We consider a random stationary excitation F(t) with unit dispersion and spectral density

$$S_F(\omega) = \frac{1}{\pi} \frac{2\alpha(\alpha^2 + \beta^2)}{(\omega^2 - \alpha^2 - \beta^2)^2 + 4\alpha^2\omega^2}, \quad \alpha = 0.2\beta.$$
 (43)

The function $S_F(\omega)$ has a maximum at $\omega \approx \beta$. At $\beta = 1$ the function $S_F(\omega)$ is shown in Fig. 4(a). In Fig. 4(b) and in Fig. 4(c) the root-mean-squares $\sigma_u(\beta)$ and $\sigma_w(\beta)$ of the deflections of the point x = 1/2 calculated by Eqs. (36) and (37) are shown.

The functions $\sigma_u(\beta)$ and $\sigma_w(\beta)$ have a maximum at β close to $\omega_1=2.81$ namely a resonance at random excitation also has place. As for the eigen-functions, the inequality $\sigma_u(\beta)>\sigma_w(\beta)$ is valid.

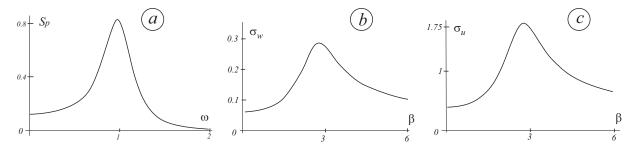


Figure 4: The spectral density of excitation $S_F(\omega)$ at $\beta=1$, and the root-mean-squares $\sigma_u(\beta)$ and $\sigma_w(\beta)$ of the deflections of the point x=1/2.

7 CONCLUSIONS

Vibrations of a thin elastic beam-strip made of an anisotropic material are studied. The 1D model of second-order accuracy is delivered. A special attention is paid to the slanted anisotropy with 6 elastic modules. The main peculiarity is that in the case of slanted anisotropy the beam with simply supported edges has very large horizontal deflections at a vertical excitation.

The work was supported by the Russian Foundation of Basic Researches, grants nos. 16.01.00580-a, 14.01.271, 16.51.52025 MHT-a.

REFERENCES

- [1] L.A. Agalovyan Asymptotic theory of anisotropic plates and shells. Nauka, Moscow, 1997. [in Russian].
- [2] B.A. Zimin, I.S. Zorin On the stability of a flat shape balance inhomogeneous anisotropic elastic plates and rods. *Vestnik St. Petersburg Univ. Mathematics.* 1, 2016.
- [3] P.E. Tovstik Two-dimensional models of plates made of an anisotropic material. *Doklady Physics*, **54**(4), 205–209, 2009.
- [4] P.E. Tovstik, T.P. Tovstik Two-dimensional models of shells made of an anisotropic material. *Acta mechanica*, **225**(3), 647–661. 2014.
- [5] P.E. Tovstik, T.P. Tovstik Two-dimensional model of plate made of anisotropic inhomogeneous material. *International Conference on Numerical Analysis and Applied Mathematics* 2014 (ICNAAM-2014) **1648**, 300011, 2014.
- [6] R. Kienzler, P. Shneider Comparison of various linear plate theories in the light of a consistent second order approximation. *Shell Structures: Theory and Applications. Proc. 10th SSTA 2013 Conf.* **3**, 109–112, 2014.
- [7] P.E. Tovstik, T.P. Tovstik A thin-plate bending equation of second-order accuracy. *Doklady Physics*, **59**(8), 389–392, 2014.
- [8] N.F. Morozov, P.E. Tovstik, T.P. Tovstik Generalized Timoshenko–Reissner models for multilayered plate. *Mechanics of Solids, Izv. RAS*, 5. 2016.

- [9] P.E. Tovstik, T.P. Tovstik Generalized Timoshenko–Reissner models for beams and plates, strongly heterogeneous in the thickness direction. *ZAMM*, DOI 10.1002/zamm.201600052, 2016.
- [10] P.E. Tovstik, T.P. Tovstik, N.V. Naumova Long-wave vibrations and waves in anisotropic beam. *Vestnik St.Petersburg Univ. Mathematics*, 2, 2017.
- [11] P.E. Tovstik, T.P. Tovstik Two-dimensional models of anisotropic plates. *Tr. seminara* "Computer methods in Continuum mechanics". St. Petersburg Univ. Press, 4–16, 2008. [in Russian]