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Abstract. Time integration is the most versatile tool in analysis of semi-discretized equations 
of motion. The computational cost might be considerable, especially when the excitation is 
available as a digitized record. Concentrating on analysis of structural systems against 
earthquakes, a technique is proposed in 2008 for reducing the analysis computational cost by 
summarizing the record of the ground motion. The main parameter to be set before implemen-
tation of the technique is the largest period of oscillations with considerable contribution in 
the response. Apparently, the definition of the parameter is vague, and besides we cannot eas-
ily estimate the parameter prior to the analysis. In this paper, the computational cost reduc-
tion technique is enhanced to a technique that can be simply implemented regardless of the 
above-mentioned parameter. The way of implementation is modified, such that the need to the 
parameter is eliminated without adding any new parameter or ambiguity. The basis of the en-
hancement is the error control comment traditionally recommended in the practice. As ob-
served in numerical tests, by implementing the enhanced technique, besides further clarity, 
the time integration analyses can be more efficient compared to traditional analyses.  
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1 INTRODUCTION 
Time integration is a versatile tool in analysis of transient behaviors; see [1-10]. Concen-

trating on structural analysis against digitized ground motion records, after discretization in 
space, the mathematical model can be stated as [11-18]:  
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In Eqs. (1), M is the mass matrix, intf  implies the internal force, Γ  stands for the matrix relat-
ing the excited degrees of freedom to the rest of the structure [17, 18], gu&&  denotes the excita-
tion at the excited degrees of freedom, e.g. ground acceleration (including multi-support 
excitations) [17, 18], Q represents the restrictions originating in nonlinearity, e.g. see [19, 20], 
t and endt  respectively represent the time and the time interval, and “0” as a right subscript 
indicates that the argument is at its initial status [17, 18]. The main process of time integration 
is pictorially addressed in Fig. 1, where it is apparent that the integration step size, tΔ , has the 
main role in the analysis. The broadly accepted comment for selecting the integration step size 
is as stated below [12, 17, 18, 21, 22]:  
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In Eq. (2), T denotes the size of the smallest oscillatory period with considerable contribution 
in the response, crtΔ  represents the largest integration step size leading to numerically stable 
responses, rtΔ  implies the smallest step size, according to which, we accept to have the record 
of the response, and tf Δ  stands for the step size, by which, the earthquake (or digitized exci-
tation) is recorded (see [21]), and as addressed in [23], 
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Figure 1: Pictorial description of time integration analysis [21]. 
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When the excitation step size, tf Δ , is such small to satisfy 

 ⎟⎟
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ΔΔ<Δ rcrf ttTt ,,Min

χ
 (4) 

Eq. (2) may result in values for the integration step size not needed for the accuracy of the 
time integration and disadvantageous for the computational cost. For these cases, a technique 
is proposed in 2008 [24], that replaces the original excitation record with a record digitized at 
the larger steps, { })1-(   +∈Δ=Δ Zntnt fnewf . The original steps, tf Δ , are enlarged by the 
integer scale n, and the record data is changed, such that to preserve responses convergence 
(see [24]). As the consequence, after the time integration analysis, the response deviates neg-
ligibly from the response of the ordinary analysis with steps equal to tf Δ , i.e. the technique 
leads to less computational cost, in the price of no specific inaccuracy, when [21] 

 ⎟⎟
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⎞
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⎛
ΔΔ≤Δ<Δ rcrnewff ttTtt ,,Min

χ
 (5) 

(for detailed explanations, on this technique, see [21, 24, 25], and for other computational cost 
reduction techniques potentially considering digitized excitations, and the comparison of the 
techniques, see [21, 26-29]). An enhanced version of the technique [24, 25] takes into account 
fractional enlargement of step sizes; see [30]. (Table 1 reports some experiences on the tech-
nique.) As implied above, the amount of the integration steps enlargement, n, is to be set such 
that ( +Z  is the set of positive integer numbers): 
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System analyzed Cost reduction with no signifi-
cant additional inaccuracy (%) Source 

SDOF system 75 [25] 
2-DOF nonlinear system 49.27 [25] 
Eight storey shear frame 80 [31] 
Thirty-storey building 50 [32] 
3-component earthquakes 66.7 [33] 
Silos with linear/nonlinear behavior 77.65 [34, 35] 
Water tank (the structure and the fluid) 66.7 [36, 37] 
Building in pounding 12.7 [38] 
Bridges with linear/nonlinear behavior 45-80 [39, 40] 
Power stations > 50 [41] 
Regular residential buildings 50-87 [42] 
Bridges with pre-stressed elements subjected to 
multi-support excitations 30-70 [39] 

Residential building with irregularities in height 50-80 [43] 
Space Structures >50 [44] 
A cooling tower >50 [45] 
Milad telecommunication tower (linear/nonlinear) >50 [46, 47] 
Beams/beams assemblages subjected to digitized static loading        >80 [48] 
Three real buildings (linear and nonlinear) >50 [49] 

 

Table 1: Experiences regarding time integration step size enlargement technique proposed in [24]. 
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Considering the role of T in Eqs. (5) and (6) and the value of n, and the ambiguity in the defi-
nition of T [21], the objective in this paper is to eliminate the parameter T from the implemen-
tation of the technique proposed in [24, 25]. The main idea can be summarized in: (1) 
replacing the accuracy-based approach of time integration analysis with a computational-cost-
based approach [50], (2) consistent and conventional changes of n and tf Δ  in the first relation 
in Eq. (6), when needed, and with less importance (3) Engineering-based control of the accu-
racy. The main idea is stated in the next section. The remaining theory leading to a new and 
practical way for implementation of the technique proposed in [24, 25] are discussed later. 
The numerical study is presented in continuation, and finally, the paper is concluded with a 
brief set of the achievements and remarks.  

2 THE MAIN IDEA 
The purpose of Eq. (2) and its predecessor (set for continuous excitations) [24, 25, 30], i.e. 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔΔ≅≤Δ rcr ttTt ,,Min

χ
 (7) 

and specifically the term 
χ
T  in this equation is providing sufficient accuracy. This is while, as 

recommended not only in the structural dynamics literature, e.g. see [17], but also in the struc-
tural codes, e.g. see [23], and the literature of numerical solution of differential equations, e.g. 
[51], the accuracy of time integration analysis is to be controlled after the analysis. The most 
conventional comment in this regard is repetition of the analysis with half steps and somehow 
comparing the responses [17, 23]; for other practical comments, for instance, see [52, 53]. In 
other words, traditionally, after the time integration analysis, we would rather check the accu-
racy by somehow comparing the responses with some other responses supposed to be more 

accurate. In brief, we once adapt the analysis to the accuracy prior to the analysis, via 
χ
T  in 

Eqs. (2) or (7), and once again control the accuracy after the analysis by repetition of the 
analysis. Since the first control is involved in ambiguities [21], it is reasonable to decrease the 
accuracy controlling role of Eqs. (2) and (7) by eliminating the term 

χ
T . This would replace 

Eqs. (2), (5), and (6), with the much simpler equations below: 
 ( )rcr ttt ΔΔ≅≤Δ ,Min  (8) 

 newff ttnt Δ=Δ=Δ  (9) 

 ( )rcrnewff tttt ΔΔ≤Δ<Δ ,Min  (10) 

 ( ) ( ) { }1,1,Min −∈Δ+<ΔΔ≤Δ +Zntntttn frcrf  (11) 

with attention to which, after implementing the technique proposed in [24, 25] while 

 ( )
t

ttn
f

rcr

Δ
ΔΔ

≅≤
,Min  (12) 

we can carry out the analysis. Therefore, the enlargement scale n can be determined inde-
pendent from T, prior to implementation of the technique and carrying out the analysis. 
Meanwhile, in view of an existing comment [13, 54, 55], on numerical stability, i.e. 
 ∞→Δ crt  (13) 
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In view of Eq. (13) and the fact that the technique proposed in [24, 25] is enhanced to a tech-
nique taking into account fractional values for n [30], Eq. (12) can simply be replaced with: 
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Δ

=:  (14) 

leading to more simplicity and likely less computational cost for the time integration. The ac-
curacy still needs investigation. 

3 CONTROL OF ACCURACY  
The discussion presented in the previous section provides the capability to implement the 

technique proposed in [24, 25] or its enhanced version proposed in [30], independent from T 
(and in fact independent from the frequency content of the response) and with steps sized be-
low: 
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Regarding repetition of the analysis with half or smaller steps, questions exist. They are; 
which term(s) in the right hand side of the first relation in Eq. (15) and how much should each 
term be decreased in the repetition? In response, in view of the necessity of errors' consistent 
decrease discussed in [24, 56], in order to preserve the second order convergence (see also [13, 
24, 54-56]), n  and tf Δ  would rather converge consistently. In this regard, by considering the 
first analysis and its repetition carried out respectively with steps below: 
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it is sufficient to satisfy (pay attention to the fact that the ideal limiting values of n  and tf Δ  
are respectively ‘1’ and ‘0’): 
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2

2
1

1
2

1
2

t
t

n
n

f
f

Δ
=Δ

+
=

 (18) 

Accordingly and in view of the fact that 
 2,1,1 => ini  (19) 

the analysis and error control will converge (never exactly correspond) to the ordinary control 
of errors, based on repetition with half steps. 
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Consequently, after we enlarge the excitation steps from tf Δ  to rtΔ , and carry out the first 

analysis, considering tt ff Δ=Δ 1  and 
t

t
n

f

r

Δ

Δ
=1   (see Eq. (14)), 

 rf
f

r tt
t

tt Δ=Δ
Δ

Δ
=Δ 1  (20) 

we can repeat the analysis with the smaller steps below: 
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and study the accuracy by comparing the responses obtained from the two analyses, and if 
needed carry out the second and more repetitions, by step sizes obtained from 
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For the sake of clarity, it is essential to note that Eqs. (22) imply that in each repetition of the 
analysis the excitation steps are to be scaled down to jf tΔ  and the excitation digitized at the 
smaller steps should be determined using linear interpolation. Then the excitation record to be 
implemented in the analysis can be obtained, by applying the technique proposed in [30] to 
the record digitized jf tΔ , taking into account the corresponding value of n, addressed in 
Eqs. (22), i.e. jnn = . 

And finally, the criterion to control the accuracy can be set arbitrarily considering different 
norms [57]. Nevertheless, as a selection consistent with practice, the comment of the seismic 
code of New Zealand [23] is taken into account. Accordingly, the relative difference of the 
peak target responses in an analysis and its repetition is to be not more than 5%. However, 
since different from the comment stated in [23], the step sizes do not precisely halve in each 
repetition (see Eqs. (16) and (17), the peaks difference need to be controlled as noted below 
[58] ( 1P  and 2P  are the peaks, i.e. maximum absolute values, of the target response through-
out the time interval respectively in the an analysis and its repetition): 
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4 NUMERICAL STUDY 
Since the discussion in the previous section is carried out in a mostly rigorous manner and 

meanwhile this paper reports an “in progress” study (in its final stages), only one example is 
presented here. (Four examples from experiences addressed in Table 1 are being tested on the 
performance of the approach proposed in this paper; see [58].) 

Consider the structural system defined in Fig. 2 and Table 2, where the lateral displace-
ment of the top floor is the target response (with the exact top floor displacement displayed in 
Fig. 3 and the exact peak value equal to 0.177058778 m), the average acceleration method of  
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Figure 2: Structural system under consideration: (a) Structural model, (b) Ground acceleration. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Some properties of the structural system in Fig. 2. 

 
 
 
 
 
 
 
 
 
 

Figure 3 __ Exact history of the top displacement. 

Newmark [17, 18, 59] is the integration method, and sec05.0=Δ rt .  
In implementation of the traditional analysis approach, we first time integrate with steps 

equal to sec005.01 =Δ=Δ tt f , and then repeat the analysis with steps equal to  
sec0025.05.0 12 =Δ=Δ tt , and if the accuracy control is not passed, we sequentially repeat the 

analysis with half steps, till the relative difference of the peak top floor displacements in two 
sequential analyses is not more than 5 %. This condition is satisfied after the first repetition 
(the peaks in the first two analyses equal 0.176781 m and 0.176975 m, apparently in less than 
5% relative difference), implying the total number of integration steps below: 
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In implementation of the way of implementation (of the technique proposed in [24, 25]) 
proposed in this paper, the peaks difference satisfies the condition, which is now changed to 
Eq. (23), again after two sequential analyses (the two peaks respectively equal to 
0.1848861 m and 0.17566966 m), carried out with steps stated below: 
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and the condition is satisfied as stated below: 
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The corresponding total number of integration steps is reported below: 

 1856
01375.0
20

05.0
20

2
=+=TN  (27) 

in view of Eq. (24), implying about 85 % reduction of total number of integration steps com-
pared to the traditional approach (in view of the linear behavior, the computational cost has 
undergone a similar decrease; see [21, 24, 60]), and even in consideration of the third analysis 
only for the new approach, still about 54 % reduction of cost is provided. The target responses 
both very accurate are pictorially not recognizable and hence are not included here for the 
sake of brevity. Consequently, not only the new way of implementation of the technique is 
clearer than its predecessor, but also at least for this example the analysis is more efficient. 
The study is being continued with other integration methods, other excitations, other structur-
al systems, other values of rtΔ , and while also considering different nonlinear behaviors; see 
[58].  

5 CONCLUDING REMARKS 
After addressing a practical ambiguity in implementation of a time integration computa-

tional cost reduction technique (also see [21]), a new way of implementation is proposed, to-
tally eliminating the weak point. Specifically and as the consequences,   

1. For simpler efficient time integration analysis against ground motions, the computa-
tional cost reduction technique proposed in 2008 [24], and enhanced in 2017 [30], is 
implemented in a completely different way, considering less accuracy-controlling role 
in the integration step size selection stage.  

2. Compared to its predecessor [24, 25], the new way of implementation is much simpler 
and clearer, in consistence with the engineering accuracy-controlling com-
ments/conventions, and still can be more efficient compared to ordinary time integra-
tion analyses. 

Finally, it is worth noting that since the earthquake data recording instrumentation is in 
rapid progress [61] and consideration of records with smaller steps is recommended [62], the 
need to the technique proposed in [24, 25], and the related researches will increase. Accord-
ingly more research on the continuation of the discussions presented in this paper is strongly 
recommended.  
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