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Abstract 

The vulnerability of wind turbine towers is an actual theme, considered the recent diffusion of 

aeolian parks. In many cases collapses of wind towers after severe actions have been ob-

served. The analysis of structures subjected to variable actions can be performed by means of 

several methods with different levels of accuracy. Nonlinear dynamics is generally considered 

the most reliable one. This paper presents a numerical procedure for the analysis of rigid-

plastic response of a wind turbine tower, considered a cantilever beam subjected to harmonic 

forcing motion of the base support. The failure is assumed depending on the formation shear 

hinges and the results are expressed in general terms for application to real cases. The pro-

posed model is an evolution of the cantilever model with a single degree of freedom, since the 

plastic hinges can form in every section of the beam. For the solution of the problem, a nu-

merical procedure has been developed that provides simple relationships between the 

strength of the structure and parameters useful for design purposes. The approach presents 

the advantages of rigid-plastic procedure and an efficient representation of the post-elastic 

behaviour of the structure, low computational competence and limited number of mechanical 

parameters are involved. 
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1 INTRODUCTION 

The need of clear energy has enhanced the diffusion of the aeolian parks, i.e. sets of mod-

ern wind turbine for the production of electric power. Several of these parks have been real-

ized in seismic areas. Many of them have been built in Irpinia, a region of Southern Italy 

devastated by a strong earthquake in 1980. Recent collapses of wind towers after severe ac-

tions (Figure 1) has lead to the search of reliable tool to examine the effects of earthquake ac-

tions on these structures [1]. 

Nonlinear dynamics can be a one of these, although it needs a great level of expertise, as 

well as cost and time necessary for calculation [2]. 

In general when the elastic response can be disregarded and micromechanical behaviour 

involves complex experimental tests, constitutive and structural models with sufficient accu-

racy and low numerical complexities are useful [3, 4]. Among them, rigid-plastic approxima-

tions, largely diffused in earthquake engineering, give rise to simplified procedures [5], 

although its implementation within conventional stiffness-based computer methods, the in-

stantaneous jump of stiffness between zero and infinite. The model examined in this paper, 

together with those developed for rigid-plastic bending frames, overcomes this last limit [6, 7]. 

In literature, in fact, constitutive models for rigid-plastic bending frames are diffused, differ-

ently from the shear constitutive ones. A large amount of literature exists in fact for the dy-

namic plastic bending response of structural elements, both steel and reinforced concrete 

structures. Bending hinges represent in fact general response characteristics of several struc-

tural elements under transverse load [8, 9]. A minor number of papers concerning dynamic 

analyses of plastic shear failure can be found. The key aspect to be studied in both the bend-

ing and shear problems is the localization and extension of plastic hinges.  

Figure 1: Collapsed wind tower [18] 

In a nonlinear dynamic analysis the rigid-plastic cantilever beam can be a simple structural 

scheme to model the behaviour of more complex structures [10]. The single-degree-of-

freedom model provides a preliminary assessment of the structure and a good estimation of 

the response mode [11], which is normally responsible for overall structural failure, as in the 

case of wind turbine towers in near fault ground motions. These motions are often character-

ized by pulse sequences with simple shapes that can be recognized in the accelerograms by 

means of spectral analysis [12]. The acceleration pulse responsible for most of the inelastic 

deformations of structures can be distinguished among them [13].  

In general if accurate harmonic pulses are used to represent the ground motion the devel-

opment of elastic and inelastic response spectra are facilitated [14]. These considerations are 
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the basis of the numerical analysis performed, since the harmonic pulse can be a suitable rep-

resentation of near-fault ground motions [15]. 

The rigid-plastic dynamic response of slender structures subjected to base pulse is exam-

ined in this paper [16]. The case study is a wind turbine tower considered like a cantilever 

beam subjected to harmonic forcing motion of the base support. The failure is assumed de-

pending on the formation shear hinges and the results are expressed in general terms for ap-

plication to real cases. The proposed model is an evolution of the SDOF cantilever beam, 

since the plastic hinges can form in every section of the beam. For the solution of the problem, 

a numerical procedure has been developed that provides simple relationships between the 

strength of the structure and parameters useful for design purposes. 

2 GENERAL THEORETICAL MODEL 

Rigid-plastic models allow simpler solutions than elastic-plastic theory [17], so that ap-

proximated methods adopting the rigid-plastic models are useful in case of estimate of major 

deformations due to very large dynamic loads. This estimation can be successively refined to 

include the initially neglected aspects. In what follows geometry changes are small and the 

yield stress is assumed to be independent on the strain rate. Reference is made to the elastic 

perfectly plastic body in Figure 2. 

Figure 2: The elastic perfectly plastic body 

where: 

t u     : total boundary of the body   and t u     

,t u   :  free and constrained boundary of the body   

( ) ( )t t x : surface loads on the free boundary t  

( ) ( )t b x : body forces in   

( , )g tu x : assigned velocity vector and ( , )0 u x 0  on u

( )t : time dependent load multiplier function. 

The solution of the elastoplastic problem gives the strain rate ( , )tE x  and velocity fields 

( , )tu x  satisfying the kinematical admissibility conditions and the stress field ( , )tT x  equili-
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brated with the applied loads ( ) ( )t t x , ( ) ( )t b x  and the inertial forces 
*( ) ( , )t x u x , be-

ing ( ) x  the mass density function. In the following the approximate response field [34] is 

assumed in the form: 

*( , ) ( ) ( )t L tu x Φ x  (1) 

with: 
*( , ) ( , )gt tu x u x on u  ; 

*( , )t u x 0  in   and t

where the assigned vector ( )Φ x  depends on the initial position only and ( )L t  is an un-

known scalar function of the time [35] to be determined. 

The difference between the real stress field and the approximate one is in balance with the 

variation of the associate force fields, reduced to the difference between the inertial forces.  

The problem solution does not require that 
*( , )tT x  and 

*( , )tE x  are associated by the plas-

tic law, so that the stress field is dynamically admissible with respect to the D’Alembert prin-

ciple. 

Applying the principle of virtual power 

* * * *( ) ( ) ( ) ( )d d 0
 
          u u u u Τ Τ E E (2) 

and stating 

* *1
( ) ( ) ( )

2
t d


      u u u u (3) 

the first derivative of ( )t  is calculated: 

* *( ) ( )
d

d
dt 


     u u u u  (4) 

In view of (4) and (2) it has: 

* *( ) ( )
d

d 0
dt 


      Τ Τ E E  

thus: 

* * * * * * *( ) ( ) ( ) ( )
d

d d
dt  


                    Τ Τ E Τ Τ E Τ Τ E Τ Τ E  (5) 

The stress field Τ  and the strain rate E  are associated through the plastic flow rule, while 
*

Τ  satisfies the plasticity condition. The Drucker's stability postulate holds: 

*( ) 0  Τ Τ E . (6) 

In the regions where 
*( , )t E x 0 , the generalized stress field *

*

E
Τ  associated to 

*
E  through 

the flow rule satisfies the plasticity condition: 

*

* *( ) 0  
E

Τ Τ E . (7) 

By Drucker's stability postulate the equation (5) may therefore be put in the form: 

* * *( ) ( )
d

d
dt 


         Τ Τ Ε Τ Τ Ε (8.a) 
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* *

* * * * * *( ) ( ) ( )d d d
  

             E E
T T E T Τ E Τ T E  (8.b) 

*

* * *( ) ( ) ( ) 0d t t


        E
Τ T E  (8.c) 

where the first and the second integral in 8(b) are both less or equal to zero, hence the last 

term in (8.c) results non-negative, so that: 

( )
d

t
dt


 . (9) 

The integration of the previous relation from 0 to time t gives the approximation measure 

( )t : 

0

( ) ( ) ( )

t

t t t dt     . (10) 

The maximum value m  of the non decreasing time function ( )t
 is ( )T

, being T the 

duration of the external forcing function. The function ( )L t  satisfies the initial conditions: 

( )L 0 0 . (11) 

Due to the condition 
*( , )0 0u x . If ( )Ψ x  is the vector involving the strain generalized 

components associated to modal vector ( )Φ x , the acceleration 
*( , )tu x  and the strain rate *

E

are given by: 

*( , ) ( ) ( )t L tu x Φ x   ;  
*( , ) ( ) ( )t L tE x Ψ x  (12) 

The principle of virtual velocity gives: 

* * * * *( , ) [ ( , ) ] ( , ) ( , )
LS

t dS t d t t d
 

         p x u F x u u Τ x E x  (13) 

that can be manipulated with reference to (1) and (12): 

  *

( , ) ( ) ( , ) ( )

( ) ( ) ( ) ( , ) ( )

L

T T

S

T

t dS t d

L t d t d



 



  

 

 

 

 

p x Φ x F x Φ x

x Φ x Φ x Τ x Ψ x

so that the function ( )L t  can be evaluated by integration of the following function: 

*( , ) ( ) ( , ) ( ) ( , ) ( )
( )

( ) ( ) ( )

L

T T

S

T

t dS t d t d
L t

d

 



 

 

 

  



p x Φ x F x Φ x Τ x Ψ x

x Φ x Φ x
. (14) 

This method can be applied to pulse loads, with the two conditions that the tractions ap-

plied to t  are null and the initial velocities are prescribed over the whole structure at time 

t 0 ; therefore, no external forces do work on the structure. 

3 THE WIND TURBINE SDOF MODEL 

Dynamic behaviour of wind turbine towers can be easily represented by that of a cantilever 

beam supported at the base, with all the advantages of a single-degree-of-freedom (SDOF) 

model. The problem is one-dimensional, so that parameters and relations developed in the 
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previous section become scalar. The Cartesian reference frame has the origin in the support 

section and the z axis coincident with the wind tower axis ( Figure 2a). The local yield kine-

matism corresponds to the activation of a shear hinge in which the total shear force ( )T z,t  at-

tains its bound value. The mechanical characteristics are shown in Figure 3b and 3c: 

( )gu t

( , )
( , )

v z t
z t

z







dv

dz

( , )z t

z h

h

z=0

z

0
T 

0
T 

0
T 



T
(a) (b) 

(c) 

Figure 3: Wind turbine tower geometry (a), rigid-plastic constitutive law (b) and shear strain representation (c) 

where: 

( )z : linear mass density of the tower 

( )gu t : horizontal motion of the supported section 

( )T z,t : shear stress whose bounds are ( )
0

T z  and ( )
0

T z

( , )z t : shear strain

h : total length of the tower. 

The shear plastic constitutive relations are the following: 

( , ) ( ) ( , ) ( ) ( , ) 0

( ) ( , ) ( )

0 0

0 0

T z t T z T z t T z z t

T z T z t T z

 

 

        

  

(15) 

that is 

and

.

0 0 0 0

0 0

0 0

T T T 0 T T 0 T T 0

T T 0 T T 0

T T 0 T T 0

  

 

 

   

 

 

              

      

       
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where the plastic strain rate   depends on the shear stress only. The dynamic equilibrium 

equation in the cross section at the z level involves the inertial forces only: 

( , )
( ) ( , ) ( )[ ( ) ( , )]g

T z t
z u z t z u t v z t

z
 


  


. (16) 

where: 

( , ) ( ) ( , )gu z t u t v z t  , (17) 

is the absolute displacement and: 

( , ) ( , ) ( , )

z z t

0 0 0

v z t x t dx x d dx       (18) 

is the relative one. A plastic shear hinge occurs when the limit value of shear stress is 

reached. One or more shear hinges can be activated in the sections 1 2, , ..., nz z z  during the 

plastic phase, and their abscissa varies according to the time. The kinematic compatibility 

states that the plastic strain rate is non null in the active hinges only: 

( , )v z t
( , )

( , ) '( , )
v z t

z t v z t
z




 


. (19) 

The relative displacement in (18) can be deduced integrating (19) with respect to z  and in-

troducing the Heaviside function ( )H z  ( ( ) forH z 0 z 0  , ( )H z 1 for z 0  ): 

 ( , ) ( , ) ( , ) , ( )

z z h

0 0 0

v z t v x t dx x t dx x t H z x dx       . (20) 

A double time derivation gives the relative acceleration ( , )v z t : 

 ( , ) ( , ) , ( )

z h

0 0

v z t x t dx x t H z x dx     (21) 

In case of only one shear hinge active the time dependent position is denoted with ( )0z t , 

so the relative displacement velocity and the plastic strain rate have the form: 

( , ) ( ) [ ( )]1 0v z t v t H z z t   

( , ) '( , ) ( ) [ ( )]1 0z t v z t v t z z t     

being [ ( )]0z z t   the Dirac function relative to the plastic hinge position. The shear stress 

become: 

( , ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( ) [ ( )]

z z z z

g g 1 0

h h h h

T z t u t x dx x v x t dx u t x dx v t x H x z t dx          

The mass functions are: 

( ) ( ) ; [ , ( )] ( ) [ ( )]

z z

H 0 0

h h

m z x dx m z z t x H x z t dx      (22) 

the time derivative of the second relation (22) gives: 
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[ , ( )] [ , ( )]
( ) ( ) [ ( )] ( ) .H 0 H 0

0 0 0

m z z t m z z t
z z t H z z t z t

t z


 
    

 
 

The shear stress and its derivatives in function of the masses are: 

( , ) ( ) ( ) ( ) [ , ( )]g 1 H 0T z t u t m z v t m z z t   

[ , ( )]( , )
( ) ( ) ( )

[ , ( )]( , )
( ) ( ) ( ) [ , ( )] ( ) ( ) .

H 0
g 1

H 0
g 1 H 0 0 1

m z z tT z t
z u t v t

z z

m z z tT z t
m z u t v t m z z t z t v t

t z




 
 


  

 

The approximation by the Taylor series of the shear stress is: 

[ , ( )]
( , ) ( , ) ( ) ( ) ( )

[ , ( )]
( ) ( ) ( ) [ , ( )] ( ) ( ) .

0

0

H 0
0 0 0 0 g 1 o

z z

H 0
0 g 1 H 0 0 1 0

z z

m z z t
T z dz t dt T z t z u t v t dz

z

m z z t
m z u t v t m z z t v t z t dt

z






  
      

  

  
   

  

(23) 

taking in mind that in the plastic hinge the shear is equal to the yield value ( , ) ( )0 0T z t T z . 

Indeed, if at the instant t dt  the position of the plastic shear hinge is 0 0z dz , it must be also 

( , ) ( )0 0 0 0 0T z dz t dt T z dz    , and ( , ) ( ) ( )0 0 0 0 0 0 0T z dz t dt T z T z dz    . The equation (23) 

in this case is more conveniently written as: 

[ , ( )]
( ) ( ) ( )

[ , ( )]
( ) ( ) ( ) [ , ( )] ( ) ( ) ( )

0

0

H 0
0 g 1 0

z z

H 0
0 g 1 H 0 0 1 0 0 0 0

z z

m z z t
z u t v t dz

z

m z z t
m z u t v t m z z t v t z t dt T z dz

z






  
  

  

  
    

  

(24) 

and being 0
0

dz
z

dt
 , it is: 

 [ ( ) ( ) ( )] ( ) ( ) ( ) [ , ( )]0 g 0 0 0 0 g 1 H 0 0z u t T z z t m z u t v t m z z t 0     . 

By equation (22) the time evolution of the plastic shear hinge is governed by the relation: 

( ) ( ) ( ) ( ) [ ( )]
( ) .

( ) ( ) ( )

0 g 1 0

0

0 g 0 0

m z u t v t H 0 m z t
z t

z u t T z


 


 (25) 

When the plastic hinge moves, residual plastic deformations ( , )r 0z t  can be detected in

the previous position: 

( )
( , )

( )

1
r 0

0

v t
z t

z t
 

and their value do not vary until the plastic hinge forms again at the same position. Hence 

the acceleration ( , )v z t  can be determined as functions of the shear: 
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( )
( , ) ( ) ( , ) ( )

( )

( )
( , ) ( ) ( , ) ( ).

( )

0
g0

0
g0

T z
T z t T z v z t u t

z

T z
T z t T z v z t u t

z














    


    

At the abscissa z  the inertial force: 

( ) ( )[ ( ) ( , ) ]

z

g

0

q z z u t x t dx      

allows the total shear written as: 

( , ) ( ) ( ) ( ) ( ) ( , )

z z x

g

h h 0

T z t q x dx u t m z x y t dy dx       . (26) 

The (26) can be put after some algebraic manipulations [7] in the form: 

( ) ( )
[ ( ) ( , ) ][ ( ) ( , ) ]

( ) ( )

( ) ( )
( ) ( , ) ,

( ) ( )

1 1

1

z z

1 10 0
g g

1 10 0

z

0 0
g 1

0

T z T z
u t y t dy u t y t dy 0

m z m z

T z T z
u t y t dy z z

m z m z

 



 

 

    

    

 



(27) 

According the (27) the plastic deformations stop at the abscissa 
pz  and cannot propagate 

upward. The abscissa 
pz  can be obtained solving a minimum problem independent on time t 

and on ground acceleration ( )gu t : 

 

 

,

,

( ) ( )

( ) ( )
( , )

( ) ( )

( ) ( )

p10 0
p1

z 0 h
p1

p p1 p2

p20 0
p2

z 0 h
p2

T z T z
z min

m z m z
z max z z

T z T z
z min

m z m z

 

 





 
   

  
 

  
    

  

 (28) 

when equation (28) is satisfied for pz 0  the beam response involves only one degree of 

freedom. A wind turbine tower can be represented by a vertical cantilever beam subjected to 

harmonic base motion and symmetric yield response of the variable hollow circular cross sec-

tion in the motion plane [7]. 

The plastic yield shear is given by: 

2

2

( ) ( ) ( )
( ) 4

4 ( )
0 0

z R z z
T z

R z

  


 
  

 

where ( )R z is the inner radius of the cross section, ( )z is its thickness and 0  is the mate-

rial shear yield stress. Considering that the thickness is negligible with regard to the radius, it 

is possible to express ( )0T z  as a quadratic function of z, in the hypotheses of linear variation 

of both ( )R z  and ( )z . 

The case study is the wind turbine whose geometrical properties are reported in (29): 
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6.9 10 30 , 4.904 10
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

   



  

    





  
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










    

(29) 

The plastic boundary ( )0z t  evolves depending on the harmonic forcing time history. The 

numerical analyses identify two plastic hinges: the first one near the support (0.5 m) and the 

second one at 13 m level. 

( 0.5 )z m  ( ) / 5gu t ( ) / 5gu t

[ ]t s [ ]t s

2

1

[ ]

[ ]

gu ms

s





2

1

[ ]

[ ]

gu ms

s





( 13 )z m 

Figure 4: Time histories of the plastic shear strain rate at the base (left) and at the 13 m hinges level (right) 

The relative displacements in this last hinge are significantly larger than those evaluated 

near the support. The time histories of the plastic shear strain rate at the base and at the 13 m 

level are reported in Figure 4, together with the base acceleration for amplitude 0.30a g  and 

0.4775
2

f Hz



   with 

13s  . For graphical clarity the scale of the ground acceleration 

has been reduced. The same parameters have been used for digrams of Figure 5. 

( 13 )v z m2 ( )gu t 2 ( )gu t

[ ]t s

( 0.5 )v z m

2[ ]

[ ]
gu ms

v cm



( 76 )v z m

2[ ]

[ ]
gu ms

v cm



[ ]t s

 Figure 5 Time histories of the displacement at the plastic hinge levels (left) and at the top of the tower (right) 
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In Figure 5 the variation of the displacement at the plastic hinge level and at the top of the 

tower can be detected. As it can be noted the displacements in the range below the 13 m plas-

tic hinge are periodic, while those of the upper part are increasing with the number of cycles. 

The displacement of the top section of the tower is reported only as an example. Those rela-

tive to the other cross sections between the 13 m level and the top one are coincident, due to 

the simplified constitutive rigid-plastic model, so that the relative displacements curves are 

coincident with that represented in Figure 5, right, and relative to the top of the tower. The 

ordinates of the graph relative to the ground acceleration have been doubled to improve read-

ing. In Figure 6 the maximum and minimum displacements versus the amplitude /0a g  of the 

base acceleration corresponding to different excitation frequencies are represented. 

maxv minv

[ ]v m

0 /a g

maxv minv

maxv minv
maxv minv

0 /a g
0 /a g

0 /a g

[ ]v m

[ ]v m [ ]v m

f = 0.5 Hz f = 2 Hz 

f = 1 Hz f = 4 Hz 

Figure 6: Variation of the maximum and minimum displacement versus the base motion acceleration ampli-

tude corresponding to different frequencies 

[ ]z m

f = 1 Hz 

0 /a g

[ ]z m

f = 2 Hz 

0 /a g

Figure 7: Variation of the plastic hinges position versus amplitude for two different frequencies

The values of both maximum and minimum displacements decrease with increasing fre-

quencies and show in every examined case a peak value at about / 0.20a g  . The position of 
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plastic shear hinges are reported in Figure 7 for two different frequencies. It can be noted that 

the position of the plastic hinge oscillates in a range variable between 13 m and 55 m.. 

4 CONCLUSIONS 

The dynamic response of a wind turbine tower subjected to inertia forces due to harmonic 

base motion have been presented in this paper. Failure is considered due to the formation of 

shear hinges and a step by step integration method is adopted to calculate the dynamic re-

sponse of the structure in the whole time domain. The procedure allow the representation of 

the hinge patterns and an estimation of the maximum and minimum displacement under dif-

ferent base motions. The numerical results show that there is a range of frequencies and ac-

celerations that induce large displacements in the tower. 

The proposed procedure provides an efficient representation of the tower post-elastic be-

haviour and a good estimation of the fundamental response modes with the benefit of low 

computational efforts and limited number of mechanical parameters. This procedure can be 

extended to steel building structures, since it can provide the localization of damage due to the 

extension of the plastic front that allows the designer to recognize the segment of structure 

needing special attention. 
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