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Abstract

In the aftermath of major earthquakes, a rapid and accurate structural damage assessment is
crucial for emergency response and recovery. Convolutional Neural Networks (CNNs) have
emerged as effective tools for automating this process, offering standardized evaluations that
complement traditional visual inspections. This study explores the use of the VGG16 archi-
tecture for post-earthquake damage classification, leveraging transfer learning and data aug-
mentation techniques to enhance accuracy. The dataset comprises 5,000 RGB images sourced
from the PHI-Net dataset and the INGV DFM database, categorized into four damage lev-
els. Through extensive pre-processing and augmentation, VGGI16 achieved a test accuracy
of 89.33%, with high precision and recall for undamaged and severe damage classes. How-
ever, distinguishing minor damage remains still challenging. These findings highlight CNNs’
potential in automating structural damage assessment, supporting more efficient post-disaster
decision-making.
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1 INTRODUCTION

In the field of structural and seismic engineering, a prompt and precise evaluation of struc-
tural integrity following an earthquake is crucial. Assessing damage of buildings caused by
seismic activity is fundamental for disaster response and recovery planning. After a major
earthquake, immediate inspections are essential to determine the safety condition of affected
structures. Traditionally, this process involves a “tagging” methodology, which relies on visual
surveys and expert evaluations to classify the severity of damage [1, 2]. However, a thorough
and quantitative estimation of the remaining structural capacity is necessary to guide decisions
regarding re-occupancy and whether to repair or demolish [3]]. Accurate and timely classifi-
cation of damage levels can significantly improve emergency response efficiency, inform com-
putational structural models for refinement, and optimize the distribution of resources for risk
management. Despite their reliability, conventional approaches are often labor-intensive and
dependent on expert judgment, limiting their effectiveness in large-scale post-disaster assess-
ments.

Machine learning techniques, particularly Deep Learning (DL) and Convolutional Neural
Networks (CNNs), offer a promising pathway for Structural Health Monitoring (SHM), facil-
itating automation and standardization of image-based evaluations while improving accuracy
and efficiency.

Recent progress in artificial intelligence has enabled the development of automated dam-
age recognition frameworks, such as the crack detection method introduced in [4]. Notably,
CNNs have exhibited exceptional performance in image-based classification, as evidenced by
Gao and Mosalam [5], who utilized DL techniques to estimate seismic damage. Similarly, the
PEER (Pacific Earthquake Engineering Research Center) Hub ImageNet (PHI-Net or ®-Net)
Challenge has significantly advanced the field by providing benchmark datasets for training and
validating structural damage identification algorithms. Nevertheless, existing models frequently
suffer from limited and inconsistently labeled datasets, reducing their generalization capability
in practical scenarios.

A comprehensive review by Azimi et al. [6] outlined the application of data-driven SHM
techniques using DL-based methodologies. Their findings emphasize the high potential of Al-
driven approaches in analyzing structural data with remarkable precision. The integration of
these techniques enables continuous monitoring and near real-time evaluation, thereby mini-
mizing dependence on manual inspections.

Gao and Mosalam [7] investigated the role of deep transfer learning in image-based damage
recognition, demonstrating that utilizing pre-trained networks significantly enhances classifica-
tion accuracy. This method mitigates challenges associated with limited datasets by leveraging
large-scale models, fine-tuned for specific structural assessment tasks. Their research highlights
how transfer learning improves the reliability of automated damage evaluation systems [7, |8],
while the ®-Net dataset provides an extensive benchmark resource for structural image analysis,
enabling rigorous evaluation of DL-based classification techniques [9], essential for advancing
the field.

Building upon these foundational studies, Ogunjinmi et al. [10] explored the effectiveness of
transfer learning in CNNs for rapid post-seismic structural assessment. Their study employed
CNNis to classify damage in structural imagery, successfully identifying and categorizing sever-
ity levels. Transfer learning facilitated model adaptation by utilizing knowledge from large
pre-trained datasets, thereby improving performance in real-world conditions.

To ensure the robustness of this study, a curated and meticulously annotated dataset has been
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compiled, consisting of:
1. An optimized version of the ®-Net dataset, refined for consistency and accuracy;

2. Anewly constructed dataset derived from the Macroseismic Photographic Database (DFM)
by INGV (Italian National Institute of Geophysics and Volcanology) [11], which includes
labeled samples from past Italian earthquakes.

This dataset is used to train and validate different CNN-based architectures for the classi-
fication of the damage levels of buildings. Among the twelve implemented architectures, the
VGG16 has provided the best performance with an overall accuracy of 89.33%, hence estab-
lishing as a good approach for real-world scenarios.

The remainder of this paper is structured as follows. Section [2| provides an overview of
damage evaluation methodologies. Section 3] details the proposed approach, including dataset
preparation, preprocessing steps, and training strategies. The results are presented in Section 4]
while Section [5] describes a possible framework for a vision-based assessment of buildings’
seismic residual capacity in post-earthquake scenarios. Finally, Section [6]discusses conclusions
and potential directions for future research.

2 BACKGROUND AND DAMAGE LEVEL CRITERIA

A comprehensive analysis of methodologies employed at both national and international lev-
els, with a particular focus on seismically active regions, has been conducted to establish appro-
priate classification criteria for assessing earthquake-induced damage and the residual structural
capacity of existing buildings.

During the late 1990s, the United States saw the introduction of a quantitative framework
by the Federal Emergency Management Agency (FEMA) for evaluating the residual seismic
performance of earthquake-affected reinforced concrete (RC) and masonry structures (FEMA
306, [12]). This methodology relies on capacity reduction factors applied to damaged structural
elements, modifying the plastic hinges’ response in terms of stiffness, strength, and ductility.
These reductions are associated to observed damage in post-earthquake visual inspections, re-
quiring experts to categorize damage severity into four distinct levels: Insignificant, Slight,
Moderate, and Extreme. Additionally, to support the selection of the capacity reduction factors,
FEMA 306 provides both descriptive guidelines and graphical representations of typical crack
patterns corresponding to various damage levels and structural components.

A conceptually comparable approach has been adopted in Japan, where the Japan Building
Disaster Prevention Association (JBDPA) developed a classification system outlined in its offi-
cial guidelines (summarized in English in [[13]). This system categorizes structural damage into
five classes, from “I” to “V”, with the latter indicating the most severe deterioration.

Following the 1999 Kocaeli and Duzce earthquakes, Turkey introduced a mandatory seismic
insurance system, leading to the development of a rapid post-earthquake damage assessment
protocol by the Turkish Catastrophe Insurance Pool (TCIP) [14]. This framework classifies
damage at both the building and component levels. The categorization of overall building
damage includes six levels: (i) No Damage, (ii) Slight Damage, (iii) Moderate Damage, (iv)
Severe Damage, (v) Urgent Demolition Required, and (vi) Collapse. Similarly, damage to
structural components—both vertical and horizontal—is classified into five categories, ranging
from “Type O” (minimal damage) to “Type D” (extensive structural failure).

In Europe, a significant milestone was the development of the European Macroseismic Scale
(EMS-98) [135]], which has become a widely accepted reference within the scientific commu-
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nity. This classification delineates five progressive damage levels: D1 (negligible to slight),
D2 (moderate), D3 (substantial to heavy), D4 (very heavy), and D5 (collapse). The EMS-98
framework also includes detailed illustrations and reference images to facilitate the damage
classification of various structural typologies.

Italy has adopted a specialized approach through the AeDES (“Agibilita e Danno nell’Emergenza
Sismica”) form, developed by the Italian National Seismic Protection Group (GNDT) [2]. De-
signed as an essential tool for post-earthquake damage assessment, the AeDES form enables
certified engineers to systematically evaluate building conditions, propose immediate safety
measures, and determine usability following seismic events [12]. Figure 1 illustrates the dam-
age classification system employed in the AeDES form, which is derived from the EMS-98

scale but simplifies the framework by merging damage levels D2 with D3 and D4 with D5, as
summarized in Table 1.

DAMAGE ("
Damage level
~ extension D4-D5 D2-D3 D1
Very Heavy Medium-Severe Light
) ) ® 3
Structural ® SN ) ® N ® » N ® =
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Figure 1: The (Italian) AeDES form: damage levels for each structural element.

Damage level Description
Dl Beams: crack width < 1 mm (not vertical)
Negligible to slight damage Columns or walls: crack width < 0.5 mm (not vertical)
Infill walls: diagonal cracks < 1 mm (up to 2 mm if at the frame interface)
D2-D3 Beams: cracks =4-5 mm
Moderate/Substantial to Columns: cracks = 2-3 mm
heavy damage Imperceptible leaning

Incipient buckling of reinforcing bars
Concrete cover spalling

Infill walls: diagonal cracks up to a few mm, evident crushing at the cor-
ners in contact

D4-D5 Collapse or inclination more than 1%
Very heavy/Collapse damage Beams: cracks > 5 mm

Columns: cracks > 3 mm

Buckling of reinforcing bars

Table 1: AeDES damage level classification and description of the observed damage to structural and
non-structural components.

In this research, the AeDES classification is employed for the development of an automated
damage evaluation algorithm. Aligning the proposed approach with AeDES criteria guaran-
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tees that the damage categorization adheres to established Italian standards, ensuring a region-
specific and precise assessment.

3 METHODOLOGY
3.1 Dataset

The dataset employed in this research consists of a diverse collection of open-access RGB
images, resized to a uniform resolution of 224 x 224 pixels. These images originate from multi-
ple high-resolution repositories, ensuring a comprehensive representation of structural damage.
The primary sources include the PEER Hub ImageNet (®-Net) [5, [16], which aggregates data
from platforms such as NISEE (National Information Service for Earthquake Engineering),
NEEShub (Network for Earthquake Engineering Simulation), EERI (Earthquake Engineering
Research Institute), and Google Images. Additional contributions come from the INGV Macro-
seismic Photographic Database (DFM) [[11]], reports from ReLUISS (Network of Seismic and
Structural Engineering Laboratories), as well as images obtained from academic literature, sci-
entific studies, and publicly available post-earthquake surveys, including documentation from
the 2023 Turkey Earthquake.

Database source Number of images
PEER Image Net Challenge dataset 2625
(NISEE, NEEShub, EERI, Google images)

INGV DEM - Database Fotografico Macrosismico 1537
RELUISS reports 245
Turkey Earthquake 2023 survey 194
Scientific related papers and articles 104
Total 4705

Table 2: Number of images in the considered data sources.

As detailed in Table [2, a total of 4,705 RGB images were gathered, categorized into four
damage levels: “Heavy” (H), “Moderate” (M), “Slight” (S), and “Undamaged” (U). The dataset
construction involved the identification of critical structural components displaying seismic
damage indicators such as cracks, fractures, and deformations. Structural elements, includ-
ing beams, columns, and walls. Images were then resized and cropped to maintain a clear focus
on the damaged sections, enhancing clarity for model training. Table [3| provides an overview
of the number of images corresponding to different structural components and building types
included in the dataset.

To ensure label accuracy, all images underwent a rigorous relabeling process conducted by
expert structural engineers from our institution. Given their expertise in post-earthquake dam-
age assessment, the engineers carefully analyzed each image and assigned labels reflecting the
severity of structural damage. This procedure aligned the dataset with the damage classification
criteria defined in the AeDES manual, ensuring consistency with established post-earthquake
assessment standards. To this aim, an image labeling script was developed in a Google Colab
environment and deployed on a shared Google Drive workspace through the Graphical User
Interface (GUI) shown in Figure [2| This approach enabled all members of the research team to
collaboratively label the dataset remotely, streamlining the annotation process while maintain-
ing uniform classification standards.
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Element type Count Building type Count
Wall 1792 Reinforced Concrete 2606
Column 1180 Masonry 1852
Beam 394 Steel 19
Non structural 1178 Other 228
Stairs 22

Other 139

Table 3: Count of element and building types in the dataset.

Image state:

Good: KEEP IT Bad: DISCARD

Damage Detection: Damage Level: Building Type: Element Type:

Damaged Undamaged Reinforced Concrete Beam

Undamaged Light Damage Masonry Column
Not sure Moderate Damage Steel Wwall
Heavy Damage Other Non structural
Not sure Not sure Stairs
Other

Not sure

Figure 2: The labeling dataset GUI.

The dataset was split into training and test subsets, with an initial allocation of 3,505 images
for training and 1,200 for testing, as presented in TableE[ The test set is well balanced, consist-
ing of 300 images per damage category, while the training set retains an unbalanced distribution
reflective of real-world scenarios.

Damage level

Set None Slight Moderate Heavy Total
Training 552 732 1014 1207 3505
Test 300 300 300 300 1200
Total 852 1032 1314 1507 4705

Table 4: Distribution of damage levels in the dataset and its split into training and test sets.

3.2 Data Augmentation

To improve model generalization and increase data diversity, extensive augmentation tech-
niques were applied. These included horizontal flipping, slight rotational transformations (up
to 10 degrees), and Gaussian noise injection.

Several training sets were generated using different data augmentation strategies. The pri-
mary goal was to create a more balanced dataset across damage classes while increasing the
total number of images and their variability.

Initially, the model was trained on the original dataset, which contained 3,505 images and
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exhibited class imbalance. To address this, oversampling was applied in Training set 2, where
underrepresented classes were randomly duplicated to improve balance, leading to a total of
4,828 images.

Further augmentation was introduced in subsequent training sets by incorporating geometric
transformations to enhance data diversity. Training set 3 included horizontal flips, doubling the
dataset size, while Training set 4 expanded this approach with random rotation transformations
up to 10° by increasing the number of augmented images, reaching 14,484 samples. Training set
5 further improved variability by adding Gaussian noise with zero mean and standard deviation
set to 0.2, simulating real-world image degradation, and producing a total of 19,312 images.
Finally, Training set 6 explored perspective transformations to introduce additional distortions
that could enhance model robustness.

These augmentations were implemented in Python using NumPy and Albumentations li-
braries, ensuring an efficient and systematic approach to dataset expansion. The final dataset
compositions after augmentation are detailed in Table [5]

Dataset Oversampling Transformations Total
Original training set — — 3505
Training set 2 Yes — 4828
Training set 3 Yes Horizontal Flip 9656
Training set 4 Yes Horizontal Flip and 10° Rotation 14484
Training set 5 Yes Horizontal Flip, 10° Rotation, Adding Noise 19312
Training set 6 Yes Horizontal Flip, 10° Rotation, Perspective transf. 19312

Table 5: Different dataset compositions after augmentation.

Overall, the data augmentation expanded the training set size yielding a final dataset of
19,312 augmented training images. The test set remained unchanged to preserve evaluation con-
sistency. This augmentation strategy was initially validated through a baseline CNN model [4],
demonstrating optimal performance when trained on the expanded dataset. This extensive and
well-structured collection provided a solid foundation for training and testing the CNNs used in
this study. The integration of multiple data sources, coupled with augmentation and resampling
techniques, enhances the model’s capacity to generalize across diverse post-earthquake struc-
tural damage scenarios, ultimately improving the accuracy and reliability of automated seismic
damage assessment.

3.3 CNN Architectures and Training Strategy

In this paper, we implemented twelve different and well-known CNN models. Among all
these architectures, the best performing was the VGG16 model [[17]. This is a CNN architecture
consisting of 16 layers, including 13 convolutional layers and 3 fully connected layers. VGG16
is renowned for its simplicity and effectiveness: in fact, despite its simplicity compared to more
recent architectures, it usually provides excellent performance.

To improve the effectiveness and reliability of the considered models, we exploited the trans-
fer learning approach by using the pre-trained version of the VGG16 network [18]. The transfer
learning is a technique in deep learning where a pre-trained (usually on the ImageNet) model is
used as a starting point for a new related task, hence allowing to leverage the knowledge already
gained by the pre-trained model.

The fine-tuning training procedure integrates supervised learning strategies with a structured
validation approach. To effectively monitor the performance, a 10% of the training dataset
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was set aside for its validation. The model was fine-tuned using mini-batches of 16 samples
per iteration, optimizing the categorical cross-entropy loss function. The Adam optimizer was
employed, with a learning rate scheduler ensuring efficient convergence. Specifically, the Re-
ducelLROnPlateau strategy was applied, decreasing the learning rate by a factor of 2 whenever
validation loss failed to improve over five consecutive epochs. The initial learning rate was
configured at 10~°, while all other hyperparameters remained at their default values.

Simulations have been performed on a standard office PC equipped with an Intel 14-th gen-
eration 19-14900KF CPU and 32 GB of RAM memory, and a Geforce RTX 3050 8 GB GPU.
The data augmentation and classification pipeline are implemented in Python.

4 RESULTS AND DISCUSSION

Numerical results are evaluated by using the overall accuracy and the well known per-class
precision, recall, and F1-score metrics, and their weighted averages evaluated on the predictions
of the same test set (1200 images, see table Ef[)

The application of data augmentation techniques significantly improved the performance of
the VGG16 model in classifying earthquake-induced structural damage. Table [6] shows the
classification metrics obtained on the different training sets used in this work and described in
Table 5] Initially, the model was trained on the original dataset, which exhibited an imbalance
across damage classes. To address this, oversampling was employed by randomly duplicating
images from underrepresented classes, effectively balancing the dataset (Training set 2). This
enhancement strategy led to noticeable improvements in classification accuracy and generaliza-
tion, as detailed in the results table [6| Further enhancements were achieved by incorporating
geometric transformations into the training process. By progressively augmenting the dataset
with modified copies of the original images (Training set 3 and Training set 4), the model’s
robustness to variations in real-world damage scenarios was increased. The most substantial
performance gain was observed when the training set was expanded using a combination of
horizontal flipping, 10-degree rotation, and Gaussian noise addition (Training set 5). These
transformations introduced additional diversity while preserving structural features relevant to
damage classification. The last line in Table [ shows that the use of perspective transformations
to introduce additional distortions (Training set 6) is not effective for the classification accuracy.

From a careful comparison of the rows in Table [6] we can argue that the best augmented
training set is that exploiting horizontal flips, random rotation transformations up to 10°, and an
injection of Gaussian noise (Training set 5).

Overall, the VGG16 is able to obtain an overall accuracy of 89.33% on the Training set 5,
showing an improvement of more than 3% with respect to the original training set. This clearly
demonstrates the effectiveness of the implemented data augmentation approach. The VGG16
model also provides similar values for precision, recall, and F1-score, once again confirming its
effectiveness.

The confusion matrices obtained by the VG(G16 architecture on the original training set, the
Training set 2, and the Training set 5 (the best performing), are shown in the three pictures in
Figure 3] This figure clearly shows the advantages of the implemented data augmentation tech-
niques, since the number of true positive entries increase by passing from the original training
set to the Training set 2, and to Training set 5. Interestingly enough, the use of training set 5
decreases the number of images that are incorrectly classified as belonging to the “Moderate”
class. In fact, by using the original training set 44 images with no damages and 65 images with
a slight damage have been classified as a “Moderate” level, while using the Training set 5, these
numbers reduce to 18 and 24, respectively. This fact is very important for the implementation
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Training set Accuracy Precision Recall F1-score
Original training set 86.25 88.33 86.25 86.45
Training set 2 87.75 88.59 87.75 87.78
Training set 3 87.92 89.05 87.92 87.97
Training set 4 88.75 89.66 88.75 88.78
Training set 5 89.33 89.53 89.33 89.37
Training set 6 87.58 88.99 87.58 87.77

Table 6: Comparisons of VGG16 test set classification metrics (in percentage) using different data aug-
mentation approaches.

of a robust and reliable tool for automatic classification of the damage level of buildings. How-
ever, we have to underline that some difficulties in distinguish between “Slight” and “Moderate”
damage levels still persists and will be addressed in future works. The only drawback of the
proposed approach is that, despite the general improvement of performance, the true positive
entries for the “Moderate” class slightly decreases by using the Training set 5 with a consequent
increase of the “Slight” class.

Original training set Training set 2

Undam. PZ¥ 250 250 250

200 200 200

Slight

150 150

True label
True label
True label

Moderate

100 100

Heavy 50

\)(\sb (’)\\ obé ‘2@?
=
Predicted label Predicted label Predicted label

() (b) ()

Figure 3: Test set confusion matrices related to VGG16 model trained using different datasets: the
original training set (a), Training set 2 (b), and Training set 5 (c).

Comparisons with respect to the other eleven state-of-the-art approaches considered in this
work, and evaluated on the Training set 5, are shown in Table Specifically, we compare
the results of the VGG16 model with well-known and famous architectures, such as AlexNet,
GoogleNet DenseNet201, MobilNet-V2, EfficientNet-B0, ResNet, XceptionNet, InceptionV3,
and the CNN network introduced in [4] considered as a baseline. These architectures have been
widely used in literature about crack detection and SHM tasks [6} 9, |18} [19].

S SEISMIC RESIDUAL CAPACITY ASSESSMENT FRAMEWORK

The proposed CNN-based tool for visual-based damage classification can be used to sup-
port a detailed assessment of buildings’ seismic residual capacity in post-earthquake scenarios.
The information on the observed earthquake-related damage to structural components can be
linked to capacity reduction factors for their plastic hinges’ response, following state-of-the-art
approaches in literature (e.g., FEMA 306, 1998). This way, it is possible to assess the seismic
performance of the structure in its post-earthquake (i.e., damaged) configuration and evaluate
its seismic residual capacity. The potential flowchart for vision-based seismic residual capacity
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Architecture Accuracy Precision Recall F1-score
Baseline CNN 82.33 83.80 82.30 83.10
AlexNet 82.75 83.96 82.75 82.35
MobileNet-V2 83.25 84.80 83.30 84.00
EfficientNet-BO 84.42 86.80 84.40 84.60
DenseNet201 84.66 86.20 84.70 85.50
GoogLeNet 85.50 86.50 85.50 85.40
ResNet50 87.50 89.14 87.50 87.69
ResNet101 87.67 89.40 87.67 87.79
XceptionNet 87.50 88.82 87.50 87.58
InceptionV3 87.83 88.61 87.83 87.89
VGGI19 88.75 89.57 88.75 88.90
VGG16 89.33 89.53 89.33 89.37

Table 7: Comparative results (in percentage) with respect to other state-of-the-art architectures evaluated
on the same test set after training the models on Training set 5.

assessment of buildings is schematically illustrated in Figure[4] in line also with recent research
in literature [20} 21]]. Each step is briefly discussed below referring to an RC frame structure.

Step 1: Observed damage Step 2: CNN-based damage Step 3: Model update and Step 4: Residual capacity
detection vulnerability assessment and decision-making
ey A Capacity Spectrum Method
i S,1  Demand spectrum
E 2 i Performance
Pl D JE S A > D .~ point
- H
Undamaged darf:JZ‘;d Pushover curves \
J Vb Sd
Intact Safety @ Losses
frooec 5
Damaged hd -
(Undamageq) A Decision-making i

Figure 4: Flowchart for vision-based residual capacity assessment of earthquake-damaged buildings.

Firstly (Step 1), the information on the observed post-earthquake damage is collected (pho-
tographic surveys). In the emergency phase, this data can be obtained through both rapid
post-earthquake surveys using drones (mainly for the damage observable from the outside) and
in-situ inspection (outside and, in the absence of safety issues, inside the damaged building).
These data are then processed using the proposed CNN-based algorithm (Step 2), thus obtain-
ing as output information on the member typology (e.g., beams, columns, walls, non-structural
components) and the level of damage (from “insignificant” to “heavy damage”). For the correct
implementation of the framework, for each analyzed building, it is also fundamental to evaluate
the number of damaged structural components and their location with respect to the structural
skeleton (e.g., damage to a base column can be more critical than the same damage to a column
in the last story). Results provided by the CNN-based tool are then used to update the structural
model, in order to define its damaged configuration (Step 3).

According to state-of-the-art procedures, the seismic residual capacity of earthquake-damaged
buildings can be assessed through simplified pushover-based methods employing capacity re-
duction factors for plastic hinges’ response of damaged components. Among others, in the
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FEMA 306 procedure, reduction factors are used to modify the response in terms of stiffness
(Ak), strength (\g), and ductility (Ap). These A-factors can be defined as a function of the ob-
served damage during visual inspections; to this end, the FEMA 306 report includes a schematic
illustration of the crack patterns for different components, behavior modes and damage levels.

In line with this approach, research effort has been devoted in the past years to deriving plas-
tic hinges’ modification factors for damaged RC components through either experimental data
or numerical simulations [22, 23| 24, 25, 26, 27]. Past research also investigated the possibility
of linking suitable modification factors to observed damage [22]. Moreover, several frameworks
to assess seismic residual capacity for damaged structures through a nonlinear static approach
have been proposed, either employing numerical simulations [28} 29, 30, 31, 32]] or simplified
analytical-mechanical procedures [33} 34, 35].

If the FEMA 306 approach is adopted, information on the typology of components and the
damage level can be used to select suitable reduction factors to update the plastic hinge re-
sponse of damaged structural components. This information allows evaluating the structure’s
force-displacement capacity curve (pushover curve) in its damaged configuration. The force-
displacement capacity curve of the structure in its “damaged” configuration is expected to show
a lower (or at least the same) seismic performance than the “intact” (i.e., as-built) configuration.
Specifically, a reduction in terms of stiffness, strength, and ductility can be obtained also for the
building-level response. Finally (Step 4), the pushover curve can be used to perform seismic
response analysis via spectrum-based approache, e.g., the Capacity Spectrum Method (CSM)
[36]] or the N-2 method [377]. Moreover, safety evaluation and loss assessment can be carried
out through simplified pushover-based procedures, e.g., the approach described in the Italian
“Seismic-bonus” guidelines [38]]. The results can be used to support the decision-making in
re-occupancy as well as repair versus demolition and reconstruction. Furthermore, if a simpli-
fied analytical/mechanical procedure — rather than numerical software-based simulations — is
employed [34, 135], a rapid assessment tool for the emergency phase can be developed, allow-
ing for a visual-based (yet mechanically informed) safety evaluation of earthquake-damaged
buildings since from the early emergency phases.

6 CONCLUSIONS

In conclusion, this study demonstrates the significant potential of CNN-based deep learning
techniques for automating post-earthquake structural damage assessments. Our implementa-
tion of the VGG16 model—enhanced through extensive data augmentation, transfer learning,
and dataset balancing—yields an impressive overall accuracy exceeding 89% and robust F1-
scores, particularly for damage classes well represented in the dataset. These results not only
validate the use of deep learning as a reliable alternative to traditional visual inspections but
also highlight its capacity for rapid, consistent, and objective evaluation in critical post-disaster
scenarios.

Despite these promising outcomes, our experiments have also revealed persistent challenges,
notably in differentiating between slight and moderate damage levels. This limitation suggests
that further refinement is needed, potentially through the integration of more sophisticated ar-
chitectures or additional data modalities that capture subtle variations in damage characteristics.

Future research will focus on several key areas: expanding the dataset with images from re-
cent seismic events to enhance model generalization; exploring ensemble techniques and multi-
scale feature extraction to better capture nuanced damage patterns; and integrating the CNN-
based damage classification with seismic residual capacity assessment frameworks to provide a
more comprehensive tool for post-earthquake evaluation and decision-making. Ultimately, the
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advancement of such automated systems holds the promise of significantly improving emer-
gency response and long-term structural safety in seismically active regions.
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