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PREFACE 

This volume contains the full-length papers presented at the VII European Congress on Computational 

Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016) that was held on June 5-10, 2016 

on the Crete Island, Greece.  

The main objective of the quadrennial ECCOMAS Congresses is to provide a forum for presentation and 

discussion of state-of-the-art advances in computational methods in applied sciences and engineering, 

including basic methodologies, scientific developments and industrial applications and to serve as a platform 

for establishing links between research groups of academia and industry with common as well as 

complementary activities. About 2,200 papers were presented at the ECCOMAS Congress by authors from 

53 countries around the world. This volume, consists of 667 full length accepted papers which will be 

indexed by SCOPUS database with access to the pdf file of the paper.  

The ECCOMAS Congress 2016 is organized by the Institute of Structural Analysis and Antiseismic Research of 

the National Technical University of Athens under the support of the Greek Association for Computational 

Mechanics (GRACM), the Institute of Research and Development for Computational Methods in Engineering 

Sciences (ICMES) and the Computer Applications and Education in Engineering Sciences (CAEES). 

The editor of this volume would like to thank all authors for their contributions. Special thanks go to the 

colleagues who contributed to the organization of the Minisymposia and to the reviewers who, with their 

work, contributed to the scientific quality of this e-book. 

 

 

M. Papadrakakis 

National Technical University of Athens, Greece 

 

V. Papadopoulos 

National Technical University of Athens, Greece  
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Abstract. We present a discrete element model of a masonry structure strengthened through
the application of reinforcing elements designed to work in tension. We describe the reinforced
masonry structure as a tensegrity network of masonry rods, mainly working in compression,
and tension elements corresponding to fiber-reinforced composite reinforcements, which are
assumed to behave as elastic-perfectly-plastic members. We optimize a background structure
connecting each node of the discrete model of the structure with all the neighbors lying inside
a sphere of prescribed radius, in order to determine a minimal mass resisting structure under
the given loading conditions and prescribed yielding constraints. Fiber-reinforced composite
reinforcements can be naturally replaced by any other reinforcements that are strong in tension
(e.g., timber or steel beams/ties). Some numerical examples illustrate the potential of the pro-
posed strategy in designing tensile reinforcements of a three-dimensional structure composed
of a masonry vault and supporting walls.
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1 Introduction

It is known that old masonry often features nearly zero tensile strength [1, 2, 3]. Nowadays,
it is a common practice to reinforce such structures by applying tensile reinforcements made of
traditional materials, such as steel, or innovative high-strength materials [4, 5, 6]. Strips and/or
meshes of materials like Fiber Reinforced Polymers (FRP) or Fabric Reinforced Cementitious
Matrix (FRCM) composites are often bonded to masonry structures to improve their mechanical
properties [7, 8, 9]. However, it is worth remarking that such strengthening techniques, when
improperly used, may lead to an excessive over-strength of the reinforced structure, and reduced
‘cracking-adaptation’ capacity [10].

The modern Discrete Element Modeling (DEM) of masonry structures includes computer-
assisted, funicular-network procedures [11], Lumped Stress Models [12, 13, 14, 15], and Thrust
Network Approaches (TNA) [16, 17, 18]. A recent study [19] has presented a tensegrity ap-
proach to the ‘minimal-mass’ FRP-/FRCM reinforcement of masonry vaults and domes. Such
a procedure employs tensegrity concepts to find an optimal resisting mechanism of the rein-
forced structure, under given loading conditions, in line with the ‘Italian Guide for the Design
and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures’
[21]. The latter indeed allows the designer to describe the response of the reinforced structure
through simplified schemes, on assuming that tensile stresses are directly taken by the FRP
reinforcements, and the stress level may be determined by adopting a distribution of stresses
that satisfies the equilibrium conditions but not necessarily the strain compatibility (cf. Sect.
5.2.1 of [21]). The approach proposed in [19] describes the reinforced structure as a tenseg-
rity network of masonry rods, working in compression, and tension elements corresponding
to the FRP-/FRCM- reinforcements, which are assumed to behave as elastic-perfectly-plastic
members. It optimizes a background structure connecting each node of a discrete model of the
structure with all the neighbors lying inside a sphere of prescribed radius, in order to determine
a minimal mass resisting structure under the given loading conditions and prescribed yield-
ing constraints [22]. The FRP/FRCM reinforcements can be naturally replaced by any other
reinforcements that are strong in tension (e.g., timber or steel beams/ties).

The present study generalizes the approach presented in [19, 20] to the case of 2D and 3D
discrete models of masonry structures with arbitrary shape. Such an extension allows us to
explore the potential of the tensegrity modeling of reinforced masonry structures in the design
of non-invasive reinforcement patterns of systems formed by masonry walls, vaults and domes.
We formulate a design procedure that seeks for an optimal and lightweight pattern of reinforcing
elements giving rise to a minimal mass resisting mechanisms of the examined structure, under
given loads and yielding constraints. Due to the safe theorem of the limit analysis of elastic-
plastic bodies [23], the existence of such a mechanism ensures that the reinforced structure is
safe under the examined loading conditions, on assuming elastic-perfectly-plastic response of
all members. The input variables of the proposed procedure consist of a 3D point cloud defining
the geometry of the structure to be reinforced, obtainable, e.g., through in-situ laser-scanning,
together with the material densities and yielding strengths of masonry and reinforcing elements.

The remainder of the paper is structured as follows. Section 2 illustrates the adopted minimal
mass modeling of a reinforced masonry structure under given yielding constraints and loading
conditions. Next, Sect. 3 presents case studies dealing with the FRP-/FRCM-reinforcement
of an independent cloister vault (Sect. 3.1) three-dimensional structural system formed by a
cloister vault and supporting walls (Sect. 3.2). We conclude with final remarks and directions
of future research in Sect. 4.
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2 Minimal-mass reinforcement of a masonry structure

Let us generalize the optimization strategy presented in Sections 2 and 3 of Ref. [19] to
the general case of an arbitrary masonry structure, whose geometry is described by three-
dimensional set of nn nodes with position vectors nk (k = 1, ...,nn). Such nodes may be con-
densed over one or multiple structural surfaces, e.g, the intrados and the extrados surfaces of a
planar wall or a vaulted structure.

We introduce a background structure (refer, e.g., to the example of Fig. 1) by connecting
each node nk with all the nodes n j such that it results |nk−n j| ≤ rk (interacting neighbors),
through two elements working in parallel: a compression element (or bar) bi = nk−n j; and a
tension element (or string) si = nk−n j. Assuming that such a background structure is subject
to a number m of static loading conditions, we write its equilibrium equations as follows

Ax( j) = w( j) (1)

where j is the loading condition index ( j = 1, ...,m); A is the static (or equilibrium) matrix; w( j)

is the external load vector; and x( j) is the vector collecting all the force densities in bars and
strings (refer to [22] for the analytic expression of A).

We now assume that bars and strings behave as as elastic-perfectly-plastic members, with
yield strength σbi in the generic bar (compressive yield strength), and yield strength σsi in the
generic string (tensile yield strength). We let Abi denote the cross-section area of bi, and let
Asi denote the cross-section area of si. The masses of such members are respectively given by
mbi = ρbiAbibi, and msi = ρsiAsisi, where ρbi and ρsi respectively denote the mass densities of bi
and si; bi denotes the length of bi and si denotes the length of si. Moreover, in correspondence
with the j-th loading condition, we let λ

( j)
bi

denote the force density carried by bi, and let γ
( j)
si

denote the force density carried by si, such that λ
( j)
bi

> 0 when bi is compressed, and γ
( j)
si > 0

when si is stretched. Yielding constraints impose that it results

λ
( j)
i bi ≤ σbiAbi, γ

( j)
i si ≤ σsiAsi (2)

in correspondence with all the bars and strings, and all the loading conditions.
We seek for an optimized resisting mechanism of the examined structure through the follow-

ing linear program [22, 19]

minimize
x( j),y

m = dT y

subject to


Ax( j) = w( j)

Cx( j) ≤ Dy
x( j) ≥ 0,y≥ 0

, (3)
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where

y = [Ab1 · · · Abnb
| As1 · · · Asns

]T (4)

dT = [ρbibi · · ·ρbnb
bnb | ρsisi · · ·ρsns

sns] (5)

C =

[
diag(b1, · · · ,bnb) 0

¯0 diag(s1, · · · ,sns)

]
(6)

D =

[
diag(σb1 , · · · ,σbnb

) 0
0 diag(σs1, · · · ,σsns

)

]
(7)

Figure 1: Background structure associated with a 3D point cloud describing the geometry of a cloister vault
supported by perimeter walls (dimensions in meters): (a) 3d view; (b) top view; (c)-(d) side views. The connection
distance rk is equal to 0.75 m for nodes at the connection between walls and cloister, and 0.5 m for the reimaning
nodes.

The solution to problem (3) provides minimal-mass configuration of the background struc-
ture; chooses whether a bar or a string connects each couple of interacting nodes; and returns
bars and strings with zero cross-section areas in correspondence with the interacting nodes that
do not need to be connected in the minimal mass configuration, under the given equilibrium (1)
and yielding (2) constraints.

3 Numerical Results

The present section provides a collection of numerical applications of the minimal mass op-
timization procedure described in Sect. 2, which are aimed at designing optimal reinforcements
of 3D structural complex formed by a cloister vault and supporting walls (Sects. 3.1, 3.2).
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On assuming that each analyzed structure is formed by masonry struts with uniform compres-
sive yield strength σb, and tension reinforcements with uniform yield strength σs, we employ
the in-house software ‘tensopt’ [25] to numerically solve problem (3). We convene to mark the
reinforcing elements by red lines and the masonry struts by solid black lines.

3.1 Cloister vault

We first examine a cloister vault made of ‘Neapolitan’ tufe brick masonry, which is largely
diffused in the area of Naples, with 15.0 kN/m3 self-weight, and 13 MPa compressive strength
σb. We assume a tensile strength σb equal to 376.13 MPa, which corresponds to an aver-
age value of the bond strengths of the FRP and FRCM reinforcements of masonry structures
analyzed in [7, 8], respectively (we employed formula (5.6) of [21] to estimate such a strength).

Fig. 2 shows the minimal mass FRP/FRCM reinforcements that we obtained for the present
example (t f = 0.17 mm). The geometry of the examined vault are illustrated in above figure,
together with the corresponding background structure, which features 441 nodes and 4508 con-
nections (see Figs. 2a-c). The optimal reinforcement of such a vault under vertical loading is
mainly formed by parallel FRP/FRCM strips with 0.17 mm thickness and 82 mm maximum
width near the crown (Figs. 2d-f). The above reinforcements are integrated with diagonal
FRP/FRCM strips with about 140 mm maximum width near the intersections of the four vault
segments, under combined vertical and seismic loading (Figs. 2g-l). The analyzed seismic
loading consists of horizontal forces with magnitude equal to 0.35 of the magnitude of vertical
forces in all nodes, which mimic the effects of a seismic excitation of the examined structure,
through a conventional, static approach [26]. The compressed network include couples of di-
agonal arches near the corners, parallel-line arches, and diagonal struts over the vault segments
(Figs. 2d-l).

3.2 3D system formed by planar and curved masonry structures

This second example is concerned with a 3D system composed of 4 orthogonal walls featur-
ing 4.5 m horizontal length, 3.0 m height and 50 cm thickness, which support a cloister vault
with 2.25 m central rise and 25 cm thickness (cf. Fig. 1). The two walls parallels to the y axis
of a Cartesian frame with the z-axis placed along the vertical show 1.5 m × 1.6 m central open-
ings. The background structure illustrated in Fig. 1 features 1385 nodes and 15378 potential
connections. It is worth noting that in the present case we model both the perimeter walls and
the vault as 2D membranes lying in the 3D Cartesian space.

We here assume σb = 1.21 MPa, σs = 112.5 MPa, t f = 0.17 mm, and masonry selfweight
equal to 15.0 kN/m3 (tufe masonry). The optimal design reinforcement for the current example
is illustrated in Figs. 3 and 4, under the action of pure vertical loading (structure selfweight),
and the combined action of selfweight and seismic loading in the +y direction, respectively.
The optimal reinforcements under the action of pure vertical loading are mainly placed along
the perimeter at the base of the cloister (z ≈ 3 m); along horizontal lines over the two piers of
the y-walls with openings; and along diagonal lines at the intersections of the vault segments
(Fig. 3).

For what concerns the seismic loading condition (cf. Fig. 4), we observe that the optimal
reinforcement strategy combines that corresponding to vertical loading with additional diagonal
reinforcements over the two piers of the walls featuring central openings, and reinforcements
aligned-with- or orthogonal-to-the junctions between the vaults segments, when moving to-
wards the crown of the vault (cf. Figs. 4 and 3). Due to the adopted membrane modeling of
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Figure 2: Top, side and 3D views of the optimal reinforcement patterns of a cloister vault with FRP/FRCM strips
of thickness 0.17 mm (marked in red), under different loading conditions. The widths of the FRP/FRCM reinforce-
ments are magnified by a factor 2 for visual clarity. (a)-(c): Background structure. (d)-(f): Vertical loading. (g)-(i):
Seismic loading in the +x-direction. (j)-(l): Combined vertical loading and seismic loading in two perpendicular
directions.

all the elements forming the current structure, only the two walls parallel to the direction of the
seismic forces (+y-axis) are actually interested by the effects of such forces, among all the vault
supports.

Comparing the results shown in Figs. 2 and 3-4, we realize that the presence of perimeter
walls in the current model leads us to design different topologies of the reinforcing elements,
as compared to those predicted by the modeling of the vault as an independent structure con-
strained by fixed spherical hinges at the base. This is mainly due to the fact that the perimeter
walls do not carry forces orthogonal to their planes in the current model, and therefore cannot
be exactly replaced by spherical hinges. It is worth noting that the current model predicts ma-
jor reinforcements over the perimeter walls, and lighter reinforcements over the surface of the
vault, as compared to that employed in the previous section.
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Figure 3: Optimal reinforcement patterns of the cloister vault supported by walls under vertical loading (reinforce-
ments marked in red): (a) 3d view; (b) top view; (c) xz view; (d) yz view (α = 3.343, Vf = 0.647× 10−3 m3,
µ f = 0.567×10−3). The widths of the reinforcements are magnified by a factor 2 for visual clarity.

4 Concluding remarks

We have presented an extension of the tensegrity approach formulated in Ref. [19] for the
minimal mass reinforcement of masonry vaults and domes that do not react in tension. Such an
extension allows us to analyze masonry structures of general shape and dimensions, including
2D walls, 3D walls, and structural complexes formed by an arbitrary combination of walls,
vaults and domes.

The reinforcements analyzed in the present study consist of linear elements, such as, e.g.,
FRP-/FRCM-reinforcements, steel ties, timber beams, and any other reinforcements that are
strong in tension. The adopted optimization approach allows us to design non-invasive rein-
forcement patterns, which can be able to preserve a sufficient crack-adaption capacity of the
structure [10, 19, 27], under the respect of the equilibrium equations and material yield limits.

The given numerical results have highlighted that the proposed reinforcement design ap-
proach is able to handle both in-plane and out-of-plane loadings, walls with openings, and arbi-
trary support conditions of vaulted structures. It is worth remarking that the proposed strength-
ening approach matches the safe theorem of the limit analysis of elastic-plastic bodies [23, 10],
and is in line with the recommendations of modern standards for the the design and construction
of strengthening techniques for existing structures [21].

Future directions of the present study will be aimed at analyzing the minimal mass rein-
forcement of a variety of case-studies dealing with masonry structures of arbitrary geometry
and complexity. Additional future research lines include the generalization of the proposed
design approach to tensegrity materials and structures [28]-[34], and a wide campaign of exper-
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Figure 4: Optimal reinforcement patterns of the cloister vault supported by walls under combined vertical and
seismic loadings in the +y-direction (reinforcements marked in red): (a) 3d view; (b) top view; (c) xz view; (d) yz
view (α = 3.343, Vf = 1.010×10−3 m3, µ f = 0.807×10−3 ). The widths of the reinforcements are magnified by
a factor 2 for visual clarity.

imental validations of the design procedure presented in Sect. 2, through laboratory testing of
real-scale and reduced-scale models under static and dynamic loading [35].
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Abstract: In a joint project of the EMI and Fuji Heavy Industries Ltd. a method for the mod-
eling of fiber-reinforced plastics was developed, taking into account the manufacturing pro-
cess.  Within this study, an approach for a detailed characterization and modeling of a fiber 
reinforced plastic is described and presented by the example of a PPGF30 material. The 
characterization of the orientation dependent material behavior includes tensile tests at dif-
ferent strain rates as well as tensile-unloading, compression and shear tests in 0°-, 45°- and 
90°-direction. Also, quasi-static and dynamic three-point bending tests are performed and act 
as validation tests for the simulation model. For further validation of the method and to eval-
uate the simulation model’s approximation to reality, dynamic three-point bending tests are 
performed on a component with a ribbed structure. Regarding the modeling of the mechanical 
behavior, the fiber orientation distribution is taken into account by means of injection mold-
ing simulations, both in the sample plate and the component. These simulations provide in-
formation about the orientation state at discrete material points in terms of an orientation 
tensor. By means of the eigenvalues and the respective eigenvectors of the orientation tensors, 
the degree of anisotropy and the principle fiber direction are defined. However, the degree of 
anisotropy is considered in a gradual manner by defining several material classes, each cov-
ering different ranges of the greatest eigenvalue. This is a very time consuming approach, be-
cause for each material class, one set of parameters has to be calibrated iteratively. The 
impact of considering the degree of anisotropy on the simulation results is therefore investi-
gated as well. Another crucial aspect within this work is the development of a program to au-
tomatically translate and map the injection molding simulation results to appropriate 
variables in the structural simulation model. Furthermore, high-resolution CT-scans of the 
sample plate and the component are created in order to perform a fiber analysis of the real 
material and hence to verify the injection molding simulation results.
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1 INTRODUCTION 

Injection molded glass fiber-reinforced plastics (GFRP) play an important role as modern 
lightweight construction materials, used for example for interior or exterior parts in the auto-
motive industry. Those materials combine high-strength glass fibers with a shaping polymer 
matrix. A suitable distribution of the fiber orientation and the degree of anisotropy within a 
component can contribute positively to its resistance against deformations. Furthermore, the 
injection molding process allows for a functional integration and the production of ribbed 
structures, which lead to an additional stiffness of thin-walled components. Although contin-
uous fiber-reinforced plastics with a selective orientation of the fiber strands can achieve even 
higher stiffnesses, the use of injection molded plastics is preferred due to lower manufacturing 
costs and cycle times. On the other hand, high development costs and times have to be con-
sidered. Especially the complex distribution of the fibers in injection molded components 
complicates the prediction of material properties and may require the cost-intensive manufac-
turing of prototypes. Often numerical simulations are used to predict the material behavior. 
Injection molding simulations (e.g. using Moldflow) allow for the calculation of fiber distri-
butions, orientations and joint lines whereas structural simulations (e.g. using LS-DYNA) are 
used to calculate the mechanical behavior of a component. For such a structural simulation 
material parameters are needed which have to be determined in characterization tests. The 
consideration of all those results from injection molding and structural simulations as well as 
from the characterization tests is called »integrative simulation«. As in the conventional ap-
proach, the characterization tests are simulated and the material parameters as well as the 
structural model are validated by comparing stress-strain- and force-displacement-curves. For 
an integrative simulation, in addition, process-related parameters like fiber orientation and 
degree of anisotropy are included in the structural model. 

Within this study the thorough investigation and modeling of a GFRP, subjected to dynam-
ic loading, are presented by the example of a PPGF30 material, a long glass fiber reinforced 
thermoplastic (LGFRP). The characterization tests for obtaining the material parameters for 
modeling the orientation dependent material behavior include tensile tests at different strain 
rates, as well as tensile-unloading, compression and shear tests on specimens extracted paral-
lel (0°-direction), perpendicular (90°-direction) and in 45°-direction to the main flow direc-
tion in the sample plate. When determining the material parameters, the fiber distribution is 
taken into account by means of an injection molding simulation. This simulation provides in-
formation about the orientation state at discrete material points in terms of an orientation ten-
sor. By means of the eigenvalues and the respective eigenvectors of the orientation tensors the 
degree of anisotropy and the principle fiber direction are defined. Similar to the described ap-
proach in [1] several material classes are declared to cover different degrees of anisotropy and 
for each material class one MAT_108 material card [3], available in the finite element code 
LS-DYNA, is generated. Furthermore, the material cards are assigned by means of the key-
word ELEMENT_SHELL_COMPOSITE [2]. The calibration of the MAT_108 material cards 
is based on the results from the dynamic tensile tests at nominal strain rate of 100/s. To model 
the failure behavior one MAT_ADD_EROSION card is assigned to each MAT_108 material 
card. 

The validation of the parameters is done by comparing the stress-strain- and force-
displacement-curves of the structural simulation and the experiments. In addition, to evaluate 
the predictive power of the prepared models and the introduced approach to incorporate pro-
cess simulation results in the modeling of the mechanical behavior of the PPGF30 material, 
dynamic three-point bending tests and a structural simulation of these tests are performed us-
ing a component with a ribbed structure. 
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Another crucial aspect within this work is the development of a program to automatically 
map the injection molding simulation results to appropriate variables in the structural simula-
tion model. This mapping tool not only translates information about the orientation state, but 
it also enables to overcome the mesh inconsistency between the tetrahedron mesh of the injec-
tion molding simulation and the shell mesh of the structural simulation. Furthermore, high-
resolution CT-scans of selected regions of the sample plate and the component are created to 
validate the injection molding simulation results. 

2 INTEGRATIVE SIMULATION 

As already mentioned the use of injection molded GFRP enables the development of high-
strength and very stiff components, but it comes with a complex material behavior. Different 
fiber orientation distributions, which make it difficult to predict the principle direction and the 
degree of anisotropy, can arise in various positions in the component. In addition, the outer 
and inner layers of a thin walled component can show a varying orientation distribution. 
While the fibers in the outer layers are likely oriented in the flow direction, the fibers in the 
inner layers are more deviated – in the most extreme case perpendicular to the flow direction. 
The varying fiber orientation distribution, which results due to the flow of the viscous fiber-
reinforced plastic melt while injected in the cavity, represents a challenge for the structural 
simulation, because as one can conclude it is no longer sufficient to simply assume the princi-
pal fiber alignment and degree of anisotropy. To fully exploit the advantages of a GFRP the 
fiber orientation distribution needs to be considered both in the finished component and the 
sample plate, from which the specimens for the characterization tests are extracted. One way 
to detect the fiber orientation within a component is to make CT-scans, but the disadvantage 
of this technique is that the component has to be manufactured first. Alternatively, a process 
simulation can be performed. By simulating the injection molding process of the GFRP com-
ponent the filling of the cavity and the orientation state of the final part can be predicted at 
discrete points. Incorporating quantities from a process simulation in the material modeling 
and structural simulation is called »integrative simulation«. The methodology of how the in-
tegrative simulation is realized in the present work is illustrated in Figure 1. 

 
 

Figure 1: Methodology of the realized integrative simulation. 
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Centerpiece of this methodology is a mapping-tool which automatically translates the in-
formation about the fiber orientation and distribution and which also resolves the mesh incon-
sistencies caused by different discretizations of the geometry used in the injection molding 
and in the structural simulation. In order to model different degrees of anisotropy, several ma-
terial classes are introduced. For each material class, a material card is calibrated, for which 
the elastic constants are determined using a method described by Advani and Tucker [4]. The 
plastic parameters, which are the same for all material classes/cards, are identified by an op-
timization software. 

In case of injection molded GFRP the orientation tensor is calculated at discrete material 
points in the process simulation. Strictly speaking the second order orientation tensor aij is 
calculated, which can be described as a symmetric 3x3 matrix. In order to visualize aij, its ei-
genvalues and eigenvectors are generated by performing a principal axis transformation. The 
eigenvectors display the principal directions of the fiber alignment, while the eigenvalues in-
dicate the fiber orientation distribution, ranging from 0 to 1, in the corresponding direction. 
The sum of all three eigenvalues is equal to 1. By displaying the eigenvectors and eigenvalues 
in a Cartesian coordinate system an orientation ellipsoid can be defined (see Figure 2). 

	
. 	

→
Eigenvectors:	
Eigenvalues:	  

 

 

Figure 2: Orientation ellipsoid stretched from the eigenvectors and eigenvalues of the second order orientation 
tensor. 

It is very unlikely that the fibers within one finite volume in the component are aligned in 
one direction. Instead the fibers are randomly deviated to a greater or lesser extent and lead to 
varying degrees of anisotropy and hence to varying shapes of the orientation ellipsoid. 

3 BASIC PRINCIPLE OF THE DEVELOPED MAPPING TOOL 

The flow-chart describing the mapping tool is shown in Figure 3. After importing the shell 
element model, the tetrahedral element model, and the orientation tensors a calculation algo-
rithm is started. Those orientation tensors, introduced by Advani and Tucker, have been de-
termined by an injection molding simulation for the tetrahedral elements. The mapping tool 
now divides the shell elements into several layers and calculates the space that would be oc-
cupied by each layer based on its thickness. Afterwards, the tetrahedral elements correspond-
ing to this space are assigned and averaged orientation tensors are calculated for each layer of 
the shell elements, taking into account its volume fraction. The eigenvalues (λ1, λ2, λ3) and 
eigenvectors (e1, e2, e3) of the orientation tensors are determined by a principal axis transfor-
mation.  It is assumed that only the largest eigenvalue λ1 and its eigenvector e1 are relevant for 
the calculation of the necessary parameters for the structural simulation composite shell ele-
ment model. The vector λ1e1 of each layer is now projected onto the shell element in order to 
eliminate its component normal to the element surface. The rotation angle, which rotates the 
fiber direction of the local shell element coordinate system in the direction of the projected 
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eigenvector, is directly entered into the composite shell element model. Depending on the 
length of the projected eigenvector, a material class is assigned to each layer. The number of 
the corresponding material card is also entered into the composite shell element model. 

 
Figure 3: Flow-chart of the developed mapping-tool. 

4 DEGREE OF ANISOTROPY  

For the definition of the degree of anisotropy, several material classes have to be declared 
at first. As mentioned before the sum of all three eigenvalues equals 1. In the present study a 
long fiber reinforced thermoplastic is investigated and the probability of fibers oriented in 
thickness direction is very low. Therefore, it is assumed that the eigenvectors corresponding 
to the largest and second largest eigenvalue are mainly aligned parallel to the shell plane. The 
classification of the degree of anisotropy can simply be done by defining ranges of the largest 
eigenvalue and each range is represented by a material class. Because the sum of all eigenval-
ues is 1 and the eigenvalue in the thickness direction is assumed to be 0, the minimum value 
of the largest eigenvalue is 0.5. In the present study three material classes are defined with the 
background that a composite made of a GFRP material is parted in two outer layers, two tran-
sition layers and one central layer (see Figure 4). An example for a range specification of the 
largest eigenvalue and the assignment of the corresponding material classes is presented in 
Figure 5. 

 
Figure 4: Significant layers: two outer layers (1 and 5), two transition layers (2 and 4), and one central layer (3) 

within a composite. 
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Figure 5: Material classification (degree of anisotropy) used for the material modeling. 

5 MATERIAL MODELING 

Advani and Tucker [4] proposed an approach to calculate the engineering constants of a 
material with arbitrary fiber distribution by means of the engineering constants in the uni-
directional state. However, from the tensile tests one obtains a combined Young‘s and shear 
modulus because the fiber distribution in the tested specimens are arbitrary. The approach 
proposed by Advani and Tucker is therefore reversed. Judging from the injection molding 
simulation results of the sample plate the central layer is of material class 3 and the outer and 
transition layers of material class 2. Also from the CT-scans no significant difference between 
the outer and transition layers can be observed. As an example the CT-scan of a specimen lo-
cated in the central part of a tensile specimen aligned in 0°-direction is shown in Figure 6 a. 
The extraction position from the sample plate and the location of the presented CT-scan can 
be seen in Figure 6 b. It can be observed, that the thickness of the central layer is approxi-
mately one fifth of the total thickness. Hence, specifying five layers over the thickness, with 
each layer having a thickness of one fifth of the total thickness, can be justified. 

a)  
 

b)   

Figure 6: CT-scan of a specimen extracted from position A on the sample plate. 

To calculate the Young’s and shear moduli for the three specified material classes the 
Young’s moduli and the in-plane shear modulus determined from tensile and shear tests in 0°- 
and 90°-direction are used. 
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It is assumed, that the Young’s moduli and the in-plane shear modulus are composed as 
follows: 

 ° 1 , (1)

 
° 1 , (2)

 
°/ ° 1  , (3)

with η = 0.2. 
The upper index indicates the material class and the lower index indicates the mainly in-

volved direction of the orthotropic material. 
By means of the Young‘s moduli and the shear modulus from the characterization tests the 

engineering constants of the uni-directional material is calculated using an optimization algo-
rithm. In the uni-directional state all fibers are aligned in one direction and the largest eigen-
value is λ1 = 1. For material classes 1, 2 and 3 values of λ1

(1) = 0.9, λ1
(2) = 0.7 and λ1

(3) = 0.5 
are used. With the normalized moduli of E0° = 3.74 MPa, E90° = 2.05 MPa and G0°/90° = 1 MPa 
the normalized engineering constants for each defined material class are obtained as shown in 
Table 1. Because the optimization algorithm could not calculate reasonable values for the 
Poisson ratios, the values of ν12 = 0.34, ν23 = 0.2 and ν31 = 0.21 are assumed. 

 
Material class  λ1 E1 [MPa] E2 [MPa] G12 [MPa] 
1  0.9  6.20  1.14 0.61 
2  0.7  4.01  1.90 0.98 
3  0.5  2.64  2.64 1.10 

Table 1: Engineering constants for the three defined material classes. 

For each of the three material classes one MAT_108 material card is created. While the 
previously calculated engineering constants can be inserted directly for the elastic parameters, 
further calibrations have to be done to generate the plastic parameters. Hence, a structural 
simulation model of the tensile test in 0°-, 45°- and 90°-direction at nominal strain rate of 
100/s is created. The shell meshes used for the structural simulations and the main alignment 
of the fibers in each direction are presented in Figure 7. 

 
Figure 7: Shell meshes used for the simulations of the tensile test at nominal strain rate of 100/s in 0°-, 45°-, and 

90°-direction. 
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To account for the fiber orientation distribution, the injection molding simulation result of 
the sample plate is mapped to the shell mesh of the structural simulation models. 

By means of the software LS-OPT by LS-DYNA the plastic parameters are calibrated and 
the same values are used for all material cards. For this the respective smooth force-
displacement curves of the tensile tests in 0°-, 45°-, and 90°-direction at a nominal strain rate 
of 100/s (haul-off speed of 9720 mm/s) are compared to the simulated curves. 

During the calibration of the plastic parameters with LS-OPT the elastic parameters for 
each material class are held constant.  

Failure is modeled by assigning one MAT_ADD_EROSION card to each MAT_108 mate-
rial card, whereby the defined failure criteria are identical for all three 
MAT_ADD_EROSION cards. The failure parameters are obtained from the tensile tests at a 
nominal strain rate of 100/s. As failure criteria a value for the maximum stress and maximum 
strain is inserted. The value for the maximum strain is the average failure strain from the ten-
sile tests at haul-off speed of 9720 mm/s in 90°-direction. The maximum stress is generated 
by reverse engineering. To prevent the failure of the integration points under compression 
loading a value of -20 MPa (pressure is negative for tensile) for the minimum pressure is in-
serted as well. Variable NCS (number of failure conditions to satisfy before failure occurs) is 
set to 2. In this manner failure occurs if two failure criteria are met, e.g. maximum stress and 
minimum pressure. 

As can be seen in Figure 8 and Figure 9 the force-displacement and stress-strain curves 
from the tensile tests at haul-off speed of 9720 mm/s in 0°-, 45°-, and 90°-direction can be 
represented well with the generated elastic and yield parameters. Also, failure can be simulat-
ed sufficiently. 

 
Figure 8: Comparison of the simulated and experimentally determined force-displacement curves from the ten-

sile tests at a haul-off speed of 9720 mm/s in 0°-, 45°-, and 90°-direction. 
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Figure 9: Comparison of the simulated and experimentally determined stress-strain curves from the tensile tests 

at a haul-off speed of 9720 mm/s in 0°-, 45°-, and 90°-direction. 

6 VALIDATION OF THE METHOD 

To validate the developed approach comprising the mapping tool, the calculation of engi-
neering constants for various degrees of anisotropy, and the generation of the material cards, 
three-point bending tests are performed on a component part made of a PPGF30 material. The 
test set-up on the servo-hydraulic high strain rate testing machine is shown in Figure 10. For 
better tracking of the deformation the edges of the components are painted with a white mark-
er. Furthermore, a stop on the left side and on the back is used to align the components and 
thus to minimize the scatter. 

 
Figure 10: Three-point bending test set-up on the VHS testing machine. 
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Due to the draft angle the outer ribs of the component form a trapezoid and also the thick-
ness of the ribs increases in the direction of the bottom. The trapezoidal shape is considered in 
the simulation model and the component is aligned accordingly. The simulation model of the 
three-point bending test is shown in Figure 11. Here it can be seen, that the ribs are divided in 
19 sections, or 19 shell element rows, over the height. To represent the varying thickness of 
the ribs, the average thickness of each section is assigned to the shell elements within the sec-
tions. 

 
Figure 11: Simulation model of the three-point bending test. 

The generated structural simulation model of the component consists of 8155 shell ele-
ments and 8200 nodes and the calculations are performed with LS-DYNA version R7.1.1 re-
vision 88541. The edge length of the elements is approximately 2 mm and fully integrated 
shell elements (ELFORM = 16) are used. The supports and the fin are represented by surfaces 
and are defined as rigid bodies. While the supports move upwards, the fin is fixed. The veloci-
ty boundary condition assigned to the supports is derived from the velocity of the piston dur-
ing the test. Between the component and the rigid bodies, a contact is defined, with an 
assumed static friction value of FS = 0.2, a dynamic friction value of FD = 0.15 and a decay 
of DC = 0.5. Also a self-contact is defined for the component and the same friction values as 
mentioned before are assumed. 

The force-displacement curves of the five valid tests and the simulation are shown in Fig-
ure 12. The progressions of the test curves are similar and only a small scatter can be ob-
served. It is assumed that the large scatter at larger displacements can be explained by 
different post failure behavior of the component in each test. Due to the oscillations and the 
fact, that only the front side of the component can be observed it is difficult to trace variations 
of the force signal to occurring deformations of the part. However, four pictures, which show 
the deformation of the components at significant incidents during the tests, are selected exem-
plarily from Test 1. The selected pictures and the associated moment in the force-
displacement curve (marked as blue rectangles in the diagram) of the experiment and the sim-
ulation are presented in Figure 12. The first picture shows the initial contact between the fin 
and the part. The total failure of the upper rib right below the fin can be seen in the second 
picture. After a drop of the force-displacement curve the force increases again. As can be seen 
in the third picture, this is where the edge between the left transverse and left upper rib strikes 
the fin. The last picture shows the total failure of the lower rib, but due to the varying post 
failure behavior in each test this picture is of no significance. 

The simulation result agrees well with the experiments regarding the curve progression, the 
force level and also the deformation behavior and thus the predictive power of the method can 
be illustrated. However, it should be noted that the simulation result strongly depends on the 
number of failed integration points prior to element deletion NUMFIP in the 
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MAT_ADD_EROSION card and on the friction values in the contact definitions. For the pre-
sent simulation the previously mentioned contact friction values are inserted and for NUMFIP 
a value of -105 (When NUMFIP < -100, elements erode when |NUMFIP|-100 integration 
points fail. Also, for NUMFIP < -100, the stress at an integration point immediately drops to 
zero when failure is detected at that integration point) is applied. 

1) 2) 

 
3) 4) 

 

 
Figure 12: Simulated and experimentally determined force-displacement curves from the dynamic three-point 

bending tests and pictures of significant incidents during the test and simulation. 

7 FIBER ANALYSIS BASED ON CT-SCANS 

To further improve the results of an integrative simulation, the injection molding simula-
tion results have to be validated. For this, the fiber orientation in the real material has to be 
determined via CT-scans and a fiber analysis. Such a fiber analysis was done using the soft-
ware VGStudio MAX 2.2. The exemplary result of a fiber analysis of the investigated 
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PPGF30 material is shown in Figure 13 together with the fiber orientations determined from 
the injection molding simulation. On the bottom, cross sectional views of the material with 
thickness t are shown. The different colors in the middle layer of the cross sectional view of 
the fiber analysis indicate a different orientation of the fibers in this layer compared to the 
outer layers. Sectional views through the middle layer (A) and the outer layer (B) confirm this 
result: The fibers in the outer layer are oriented mainly in flow direction (0°), whereas in the 
middle layer the fibers are deflected from the flow direction by angles between 40°-60°. The 
same can be seen in the results from the injection molding simulation. However, the deflec-
tion of the fibers in the middle layer is much lower (10°-15°) than in the real material. 

 
Figure 13: Fiber analysis of an injection molded fiber-reinforced plastic based on CT-scans compared to an in-

jection molding simulation. 

8 IMPACT OF CONSIDERUNG THE DEGREE OF ANISOTROPY 

In the presented methodology of an integrative simulation the degree of anisotropy is con-
sidered in a gradual manner by defining several material classes, each covering different 
ranges of the greatest eigenvalue. But considering the degree of anisotropy in this way is a 
rather time consuming approach, because for each material class, one set of parameters has to 
be calibrated iteratively using the software LS-OPT. Due to this fact it is reasonable to ask 
about the advantages of considering the degree of anisotropy compared to less complex mod-
elling approaches. To answer this, the effect of considering the degree of anisotropy was fur-
ther investigated by performing two additional simulations of the dynamic three-point 
bending test. In the first simulation only the fiber orientation was considered. Furthermore, 
the values for the elastic and plastic parameters in the longitudinal and transversal material 
direction are derived solely from the dynamic tensile tests in 0°- and 90°-direction, respective-
ly. In the second simulation an isotropic material behavior was used. For both simulations all 
other parameters, e.g. friction values, are adopted from the structural simulation model pre-
sented in section 6. 
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In Figure 14  the simulation considering only the fiber direction, and in Figure 15 the simu-
lation using an isotropic material behavior is compared to the experiment and the simulation 
considering the degree of anisotropy. 

 

 
 

 
 

Figure 14: Comparison of the simulation considering only the fiber orientation with the simulation considering 
the fiber orientation and the degree of anisotropy. 
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Figure 15: Comparison of the simulation using an isotropic material behavior with the simulation considering the 

fiber orientation and the degree of anisotropy. 

Regarding the initial curve progression and the force level, both simulations show equally 
good agreement with the experiment. But in contrast to the experiment in the simulation con-
sidering only the fiber orientation the upper part of the bottom wall remains intact longer. In 
addition, the upper rib is not bent. For this reason the force increases significantly and the to-
tal failure occurs much earlier than in the experiments. The same can be observed in the simu-
lation using an isotropic material behavior. Here the upper part of the bottom wall fails in a 
larger region, but the edge between the upper and bottom wall is not impressed. Latter can be 
observed in all other simulations and the experiment. 

In conclusion the simulation considering the degree of anisotropy shows the best agree-
ment with the experiment throughout the entire length of the test, regarding the curve progres-
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sion, the force level and the deformation behavior. When considering only the fiber orienta-
tion or using an isotropic material behavior, the deformation behavior cannot be represented 
well and in the present study failure occurs too early. However, regarding the curve progres-
sion and force level only, the simulations show comparable good results. 

9 CONCLUSIONS  

 The mechanical behavior of a long fiber reinforced thermoplastic material is character-
ized and modeled in detail by taking into account the fiber orientation distribution within 
the material 

 For this purpose, the fiber distribution is thoroughly investigated by performing injection 
molding simulations and CT-scans of a ribbed component and a sample plate, from 
which the specimens for the characterization tests are extracted. Together with the results 
of injection molding simulations, characterization tests and additional structural simula-
tions of the characterization tests, parameters for the material modeling are identified. 

 In the present study this approach, also known as integrative simulation, is shown by 
means of a PPGF30 material, a long glass fiber reinforced thermoplastic. But it should be 
generally applicable for all long fiber reinforced plastics. 

 The characterization of the orientation dependent material behavior includes tensile tests 
at different strain rates as well as tensile-unloading, compression and shear tests in 0°-, 
45°-, and 90°-direction 

 Injection molding simulations of the sample plate and the component have been carried 
out and provide information about the fiber orientation state in terms of the second order 
orientation tensor 

 The largest eigenvalue of the orientation tensor is a measure for the degree of anisotropy 
and the associated eigenvector delivers the principle fiber direction. The classification of 
the degree of anisotropy is made in terms of several material classes, which cover differ-
ent ranges of the largest eigenvalue. For each material class one MAT_108 material card 
is defined. The determination of the material parameters is done in two steps. At first the 
elastic parameters are calculated by means of an optimization algorithm. The underlying 
equation is derived from an approach proposed by Advani and Tucker to calculate the 
engineering constants of a material with arbitrary fiber distribution by means of the engi-
neering constants in the uni-directional state. In a second step a structural simulation 
model of the tensile tests at haul-off speed of 9720 mm/s in 0°-, 45°-, and 90°-direction is 
created. 

 In order to also account for the fiber orientation state in the material a mapping tool is 
developed, which automatically calculates quantities from the injection molding simula-
tion results and integrates them in the structural simulation model. With this mapping 
tool the fiber orientation and the material card is specified for each layer of the shell ele-
ment meshes of the tensile specimens with the keyword 
ELEMENT_SHELL_COMPOSITE in LS-DYNA. 

 The calibration of the plastic material parameters is carried out using the software LS-
OPT. In addition, the failure behavior is modeled by assigning one 
MAT_ADD_EROSION card to each MAT_108 material card. The failure parameters are 
generated by reverse engineering. 
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 With the elastic, plastic and failure parameters obtained in this way the force-
displacement and stress-strain curves of the tensile tests at haul-off speed of 9720 mm/s 
can be represented well in 0°-, 45°-, and 90°-direction.  

 For further validation of the mapping tool and the generated material parameters dynamic 
three-point bending tests are performed on a ribbed component. Judging from the force-
displacement curves and the analysis of the deformation of the component the experi-
ments can be represented well by the generated structural simulation model. 

 CT-scans are made from selected areas of the sample plate and the component. Based on 
the data obtained from these CT-scans fiber analyses are performed and serve as valida-
tion of the injection molding simulation results.  

 The impact of considering the degree of anisotropy was investigated in detail and a com-
parison with a simulation considering only the fiber orientation and a simulation using an 
isotropic material behavior was made. The simulation considering the degree of anisotro-
py showed the best agreement with the experiment throughout the entire length of the 
test, regarding the curve progression, the force level and the deformation behavior. The 
other two simulations could not represent the deformation behavior well, but regarding 
the curve progression and force level, comparable good results can be shown. 
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Abstract. Homogenization assumes that a unit-cell of a periodic composite material is infi-

nitely small and it has periodic boundary conditions. In practice, such material comprises a 

finite number of measurable unit-cells and the stress fields are not periodic near the structure 

boundary. It is thus critical to investigate in the scope of the present work whether the opti-

mized unit-cell topologies obtained are affected when applied in the context of real compos-

ites. This is done here by scaling the unit-cell an increasing number of times and accessing 

the micro (or local) stresses of the resulting composite by means of standard numerical ex-

periments and comparing them to the homogenization predictions. The outcome indicates that 

it is sufficient to have a low scale factor to replace the non-homogeneous composite by the 

equivalent homogeneous material with the stress field computed by homogenization. 
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1 INTRODUCTION 

Stress-based topology optimization problems are more realistic to engineering practice 

than the conventional maximum stiffness approaches because one may guarantee not only 

very efficient designs but also feasible ones. However, dealing with stress criteria is specially 

challenging due to the: (1) "singularity" problem; (2) local nature of the stress constraint; (3) 

highly non-linear stress behavior. Several contributions have been made to handle these issues 

to the point that fine results are now obtained for macroscopic structures [1-4]. The present 

paper expands the analysis of stresses to material microstructures which may lay the ground-

work for the optimal topology design of material "unit-cells" including stress criteria [5]. An 

"unit-cell" represents here the smallest periodic heterogeneity of periodic composite/cellular 

media. In general, periodic homogenization models are used to compute the elastic properties 

and local stresses of periodic composite materials based on the shape/periodicity of a given 

material unit-cell [6,7]. Conversely, in material design, the unit-cell is not known a priori, and 

the goal is to design it to attain specific properties values – inverse homogenization problem 

[8]. This design problem is solved here by formulating it as an optimization problem. How-

ever, homogenization assumes that the unit-cell is infinitely small and it has periodic bound-

ary conditions (BC's). In practice, the composite material comprises a finite number of 

measurable unit-cells and the stress fields are not periodic near the structure boundary. It is 

thus critical to investigate in the scope of the present work whether the obtained unit-cell to-

pologies are affected when applied in the context of real composites. This is done here by 

scaling the unit-cell an increasing number of times and accessing the micro (or local) stresses 

of the resulting composite by means of standard numerical experiments and comparing them 

to the homogenization predictions. This furthers previous work [9] related to compliance and 

elastic coefficients convergence to homogenization predictions. Here, the outcome also indi-

cates that it is sufficient to have a low scale factor to replace the non-homogeneous composite 

by the equivalent homogeneous material with the stress field computed by homogenization. 

2 MATERIAL MODEL 

Figure 1 presents the periodic material model mixing strong, E
(1)

, and weak, E
(2)

, materials 

(see also [9]). The  unit-cell volume Y (of feature size d) is cubic and one repeats it n
3
 times 

resulting in volume Ψ (D = Ψ =1). Therefore, the ratio n = D/d can be seen as a scale factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Material model. Finite element discretization of Y with periodic BC’s. Array of 5×5×5 unit-cells of 

global size D (macroscale) and one unit-cell of size d (microscale). 
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The asymptotic homogenization model used implies that stresses are calculated when n → 

∞ and thus no size is given to the unit-cell, i.e. d → 0. The stiffness ratio, E
(1)

/E
(2)

, is here 

equal to 10
1
 or 10

12 
representing a composite or cellular material, respectively. Both phases 

are solid isotropic. One keeps phase 1 as the reference, i.e. E
(1)

 = 300MPa and ν = 0.3  (prop-

erties of a biodegradable polymer currently used in scaffolds for tissue engineering, see [10]).  

3 OPTIMIZATION PROBLEM 

The unit-cell topology shown in Figure 2 is obtained by inverse homogenization solving 

the following compliance minimization problem subject to a volume fraction constraint [11],  
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Here σσσσ0
 is a macroscopic hydrostatic stress state (σ = 1MPa), volume 1Y =  and C
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homogenized compliance tensor computed as the inverse of the stiffness tensor E
H
 through, 
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with the microstructure material elastic properties, pqrsE , depending on density design 

variables, µµµµ, in order to interpolate between two base materials according to the power law, 
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and the homogenized tensor depends on the material unit cell deformation modes or micro-

displacements klχ  (Y-periodic), which are solution of the set of equilibrium equations defined 

in Y (six equations in three dimensions), 
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Figure 2: Unit-cell. a) Box-type (isometric view); b) Section view using cutting plane π normal to the octahedral 

direction, c) Shifted design results from translation along octahedral direction (material 2 is unselected only for 

design comprehension, see also [10]); d) Graphical representation of anisotropy as in [9], units in [Pa]. 
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4 STRESS ANALYSIS  

4.1 Homogenization prediction  

The micro-stresses σij (in the level of material microstructure) are obtained from asymp-

totic homogenization theory, by considering the displacement test fields rs

kχ  from Eq. (5) as, 

 0

rs

m

rs

k
mskrijkmij

y
E ε

χ
δδσ 









∂
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−=  (6) 

where 0

rsε  is the macroscopic (average) strain field related to the macroscopic stress in (1), 

 00

pq

H

rspqrs C σε =  (7) 

The σij results represent the three-dimensional stress states varying throughout the unit-cell 

domain Y (see Figure 4a). Here, the methodology used for obtaining such stresses is based on 

the software POSTMAT [12,13].  

4.2 Numerical experiments 

The commercial finite element code ANSYS@ is used here to perform standard numerical 

testing procedures with specific BC's to calculate the stress field inside the domain Ψ of the 

periodic composite/cellular material as the scale factor n increases from 1 to 5, see periodic 

patterns in Figure 3. It is shown half the domain, 2/Ψ , in order to highlight the central unit-

cell where the stress field is measured (see also Figure 4b,c) and compared to the results given 

by homogenization running POSTMAT (Figure 4a). Shifted design (as shown in Figure 2c) 

must be used in some arrays (for n = even number) to guarantee that the unit-cell topology 

extracted from the center of the periodic pattern matches exactly the one (no-shifted) evalu-

ated by POSTMAT. Finite element meshes for each periodic pattern are not shown in Figure 

3 because they would become so refined with increasing n that elements wouldn't be clearly 

observed. Anyway, each unit-cell comprises a regular mesh 10×10×10 of 8-node isoparamet-

ric hexahedral finite elements. This means that a total of 1000×n
3
 finite elements are used in 

the numerical model associated with scale factor n. 

 

 

 

 

 

Figure 3: Volume Ψ (half represented) containing arrays n×n×n of unit-cells where n varies from 1 to 5. Unit-

cell design is shifted when arrays take even numbers. The unit-cell located at the center of Ψ is highlighted.  

One considers the Dirichlet and Neumman-type BC's (see [9,14]) given by, respectively,   

 ( )
Ψ∂Ψ∂

•= yΘyu   (8) 

 ( )
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•• = nΘnyσ0
 (9) 
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and ∂Ψ is the boundary of Ψ, u is the displacement vector, y is the spatial position vector, 

n is the outward normal unit vector and β is the constant characterizing the hydrostatic tensor 

ΘΘΘΘ. On one hand, Eq. (8) applies in ∂Ψ a displacement field y linearly dependent such that Ψ is 

tested at a uniform macroscopic strain β, i.e.  
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On the other hand, Eq. (9) means that the test is carried out on Ψ at a uniform macroscopic 

stress β (also on average holds βσ =
Ψ

). In both tests β must be chosen such that consis-

tency with POSTMAT is ensured, see Eq. (6) and (7). However, BC's in Eq. (9) can't be ap-

plied to the analysis of cellular (or porous) material, E
(1)

/E
(2)

 = 10
12

, because the pressure on 

the top of the finite elements modeling the void phase results in excessive compliance. Never-

theless, Dirichlet-type BC's can be applied to both ratios, 10
1
 (composite) and 10

12
 (cellular).  

 

 

 

 

 

 

 

 

Figure 4: Von-Mises stress is shown for the ratio E
(1)

/E
(2) 

= 10
12

 (averaged values are shown only for the sake of 

getting a smoother display). a) POSTMAT results; b) ANSYS results for the array 5×5×5 of unit-cells (unde-

formed design in dashed lines); c) Section view of the array using plane π as used in Figure 2.  

5 CONVERGENCE ANALYSIS 

The purpose of this study is the convergence analysis of stress fields to homogenization 

predictions. These predictions are obtained running the POSTMAT code. Then a battery of 

ANSYS analyses is carried out such that stresses can be read from the post-processor for each 

array presented in Figure 3 with specific BC's and stiffness ratio.  

ANSYS code provides individual stress components as well as the equivalent stress (Von-

Mises) at each node and element. To simplify the comparative analysis between POSTMAT 

and ANSYS one chooses to compare element equivalent stresses that in ANSYS are com-

puted as follows, 

 ( ) ( ) ( )[ ] ( )2

13

2

23

2

12

2

1133

2

3322

2

2211 3
2

1
σσσσσσσσσσ +++−+−+−=eq  (12) 

2240



Pedro G. Coelho, Rui A. Reis and José M. Guedes 

where 
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σ  with N = 8 (number of Gauss points) (13) 

  POSTMAT post-processor is properly adapted to do these same calculations of equivalent 

stress. Finally, one proceeds evaluating the deviation of ANSYS stress results toward 

POSTMAT according to the formula,  

 [ ]
( )

100%Deviation
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POSTMAT

eq

ANSYS

eq
×

−
=

σ

σσ
 (14) 

This stress deviation measure is evaluated at each finite element of the unit-cell (in the 

ANSYS model is the central unit-cell, see also Figure 3). Using the mesh 10×10×10, the re-

sulting data for plotting comprises 1000 points. However, due to the symmetry seen in the re-

sulting distribution only half the points are of interest. Therefore, the first five charts 

presented in Figures 5 to 7 show the elements number (1 to 500) in the abscissa axis and the 

deviation is represented along the ordinate axis [%]. Each one of these charts is obtained for 

an increasing number of the scale factor n, 1 to 5. Looking only at clusters of points here 

doesn't help much drawing some conclusions. So, the last chart shown in Figures 5 to 7 is an 

attempt to provide the scale-size effect analysis in a nutshell and should be seen along with 

Table 1. This table presents some statistical analysis of the plotted deviations in terms of 

maximum and minimum values, mean (simple average) and standard deviation. Table 1 and 

Figures 5 to 7 present data in the same order, i.e. first the composite material case (E
(1)

/E
(2)

 = 

10
1
) is treated and the results with Neumann-type BC's precede the Dirichlet's results. Finally, 

the cellular material case (E
(1)

/E
(2)

 = 10
12

) is presented with the respective results considering 

Dirichlet-type BC's only (as explained in section 4.2).  

 

B.C. ratio Measures 1××××1××××1 2××××2××××2 3××××3××××3 4××××4××××4 5××××5××××5 

max 3445,707 747,230 70,011 10,301 2,872 

e  647,289 156,114 11,965 0,659 -0,836 

min -47,988 -28,788 -28,786 -5,818 -1,665 

 

Neumann 

 

101 

s 930,933 215,734 20,560 3,174 0,540 

max 209,803 21,159 2,770 1,413 1,282 

e  2,994 -6,564 -0,421 0,805 0,389 

min -50,748 -44,030 -5,102 -0,391 -0,226 

 

101 

s 32,650 12,517 1,474 0,274 0,196 

max 178,462 4,407 1,154 1,536 0,701 

e  3,697 2,846 1,072 1,504 0,675 

min -18,911 -6,465 0,581 1,314 0,656 

 

D
ir

ic
h

le
t 

 

1012 

s 30,799 1,351 0,073 0,026 0,009 

Table 1: Statistical summary of deviations plotted in Figures 5 to 7. Mean e , standard deviation s and extreme de-

viations (max and min) attained [%]. 

One discusses first the composite stress results in Figures 5 and 6. Here one makes the dis-

tinction between the stress deviations measured in the material 1 which is stronger (see the 

black dots plotted) and material 2 which is weaker (see the empty dots plotted). As a result of 

separating things this way one concludes that the higher deviations are typically identified 

with the elements where stress values are lower (material 2), see Figures 5a,b,c and 6a,b,c. In 

regions where stress values are higher or critical (material 1) the stress values from ANSYS 

and POSTMAT compare much better which is, in practice, a significant result because ulti-
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mately one would compare the maximum value of POSTMAT with the material Yield Stress 

(σY) for design feasibility. The relative importance of the composite phases in the magnitude 

of the deviations is far more noticed for low scale factors n, typically between 1 and 3. For n ≥ 

4 the deviations measured in materials 2 become eventually as big as the deviations seen in 

material 1 and typically both come to be below 2% which is here an excellent convergence 

result (see Figures 5e and 6e).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Scale-size effects analysis for composite E(1)/E(2) = 101
 with Neumann B.C. Deviation computed 

through Eq. (14) in all elements of the central unit-cell taken from different arrays: a) 1×1×1; b) 2×2×2; c) 3×3×3; 

d) 4×4×4; e) 5×5×5. f) Statistical summary in terms of mean and standard deviation. 
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However, despite higher n, one observes that deviations computed in only four elements 

(numbers 445, 446, 455, 456) are comparatively much higher, reaching 22%. These elements 

are located right in the middle of the unit-cell domain Y (in material 2) and their stress value 

(order of 10
2
) is the minimum found in Y whether by POSTMAT or ANSYS (the order of the 

maximum stress found is 10
6
). These deviations are classified here as outliers and the statisti-

cal analysis carried out in Table 1 excludes them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Scale-size effects analysis for composite E(1)/E(2) = 101
 with Dirichlet B.C. Deviation computed 

through Eq. (14) in all elements of the central unit-cell taken from different arrays: a) 1×1×1; b) 2×2×2; c) 3×3×3; 

d) 4×4×4; e) 5×5×5. f) Statistical summary in terms of mean and standard deviation. 
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Considering now the cellular material case, one notices that the stresses are basically zero 

(e.g. 10
-6

) in elements representing the void phase that's why one decides overlooking them 

when calculating deviations and doing statistics (Figure 7 contains then comparatively lesser 

points). Due to this simplification one notices the standard deviation decreasing faster than the 

other cases. The min, max and mean values in Table 1 are all below 1% for n = 5 which is im-

pressive for such a low scale factor.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Scale-size effects analysis for cellular material E(1)/E(2) = 1012
 with Dirichlet B.C. Deviation com-

puted through Eq. (14) in all elements of the central unit-cell taken from different arrays: a) 1×1×1; b) 2×2×2; c) 

3×3×3; d) 4×4×4; e) 5×5×5. f) Statistical summary in terms of mean and standard deviation. 
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In general, one perceives a fair convergence to the homogenizations predictions. Since the 

shifted design is used in arrays with even number of unit-cells, it is more fair to compare re-

sults among n=1,3,5 and then between n=2,4 because the material distribution in the boundary, 

∂Ψ, where loads are applied, differs depending on whether the design is shifted or not (see 

Figure 3). The standard deviation measure gives probably more insight in this analysis than 

the mean value. The mean may go up and down (changing sign as well) as n increases be-

cause ANSYS may target POSTMAT either from above or below. The resulting trend for the 

mean is not so consistent when compared to the standard deviation trend which always de-

crease with increasing n. Anyway, for n=5 the mean deviation is below 1% in all cases. The 

maximum and minimum deviation values are also quite good as a result of excluding outliers  

as aforementioned.   

 

6 CONCLUSIONS  

• Stress-based topology optimization is quite appealing for engineering practice due to the 

fact that an optimal design must be a feasible one too.  

• The inverse homogenization method is straightforward to generate unit-cell designs for 

periodic composites. However the assumptions of ideal periodicity as well as dimen-

sionless unit-cell have to be checked in the context of real composites which motivates 

the scale-size effect analysis presented in this work.  

• As an outcome the present study indicates that it is sufficient to have a low scale factor 

(n=5) to replace the non-homogeneous composite by the equivalent homogeneous mate-

rial with the stress field computed by homogenization. 

• A single unit-cell topology design was investigated in this work and a coarse finite ele-

ment mesh was used to discretize the stress field that is in general highly non-linear. 

These simplifications may motivate further detailed analyses on scale-size effects.  
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Abstract. In this paper the composite load-carrying support structure of wind turbine blades 

is investigated. The buckling behavior of wind turbine blades is studied numerically by using 

the finite element method, as experimental experience shows that local buckling is a major 

failure mode that dominantly influences the total collapse of the blade. Significant advantages 

are derived from the combination of different fiber-reinforced polymers in hybrid material 

structures, but also from kevlar-fiber blades. 
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1 INTRODUCTION 

In recent years, wind energy has noted the highest growth rate in comparison with other 

renewable energy sources [1]. This is mainly due to the increasing energy needs and the si-

multaneous depletion of natural resources, but also to the lack of environmental hazards and 

the practically unlimited resources. Consequently, the exploitation of wind energy systems, 

e.g. wind turbines, forms an industry domain that gathers strong interest in both research and 

construction activities. The need to optimize their performance results in higher power wind 

turbines with significantly longer blades and innovative features in terms of geometry and ma-

terials. 

The blades are perhaps the most critical structural members of the wind turbine, since the 

increasing diameter of the rotor brings many challenges to the surface, regarding the design 

and construction. The wind turbine blade (WTB) is essentially a cantilever beam mounted on 

a rotating hub with key design criteria the high stiffness, the low weight and the aerodynamic 

shape. These features are covered by fiber-reinforced composite materials. Such fiber-

reinforced polymer materials are implemented in laminates and sandwich structures for the 

outer aerodynamic shell, but also for the internal load-carrying structure, ensuring the re-

quired strength and stiffness of the blade. 

In this paper the support structure is investigated for the case of a hollow one-piece con-

struction cross-section (box girder). Through parametric analyses an attempt was made to in-

vestigate the buckling behavior of the load-carrying box girder due to flap-wise bending, with 

respect to the following parameters: the geometry, the loading imposition and the material 

properties. This study offers a clear perspective about the buckling capacity and its sensitivity 

on the parameters mentioned above, but also about the post-buckling behavior of the models. 

Furthermore, this investigation leads to useful conclusions for the material design optimiza-

tion of the load-carrying box girder, as significant advantages are derived from the combina-

tion of different fiber-reinforced polymers in hybrid material structures, but also from kevlar-

fiber blades. 

2 NUMERICAL MODELING AND ANALYSIS 

2.1 Geometrical model 

There are currently two major types of configuration for the internal geometry of the blade, 

which differ in terms of design and connection to the outer shell. The first case is the so-called 

two-piece construction and consists of two distinct vertical stiffness joints, known as shear-

webs, which extend along the blade and provide the required internal support. The second 

case is the so-called one-piece construction and is extensively studied in the present paper. 

Here, the internal support of the blade is provided by a single hollow section structure, which 

extends almost to the entire length of the blade and is usually called box girder. The tension 

and the compression flange of this structure are welded to the upwind and downwind outer 

shell respectively. The parts welded to the shell are called spar-caps and they are linked to the 

shear-webs, which are placed vertically in the cross-section, at 15% and 50% of the length of 

the chord c, as measured from the leading edge of the blade (Fig.1). 
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Figure 1: Cross-section of the blade for the one-piece construction case [2] 

The box girder provides the required strength and stiffness of the outer shell of the blade, 

both locally and globally. For this reason, the box girder was chosen to be studied separately, 

since the dominant deformation mode is almost identical to the one of the blade, while the in-

creased slenderness of the panels makes it sensitive to local buckling phenomena. Experimen-

tal data show that local (or shear) buckling is a major failure mode that significantly 

influences the total collapse of the blade [3-5]. 

The present study models the internal load-carrying box girder of a horizontal axis wind 

turbine, with nominal power 1MW, 64.14m tower and 63.04m rotor diameter, for the case of 

a single box-like, hollow section internal support. The total length of the blade, (from the rota-

tional axis to the blade tip) equals to 30m. The blades are divided into three sections, depend-

ing on the deformation levels due to the stress loads [2]. In our case, the root segment is 

2.10m long (equal to 7% of the blade length), the transition segment 5.40m (equal to 18% of 

the blade length) and the main box girder segment 22.50m, inside of which the internal sup-

port mechanism is located (hatched area in Fig. 2). 

For the numerical analysis, a finite element code was developed, using the ANSYS 14.5 

software [6]. The analysis parameters chosen were: a) the geometry of the cross-section, b) 

the simulation of the flap-wise loading and c) the fiber-reinforced composite material proper-

ties. In all cases both linear and nonlinear buckling analyses were performed. From the latter, 

the respective equilibrium paths (load-displacement curves) were extracted. 

Figure 2: Division of the blade [5]. 
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Figure 3: Geometrical model. 

The dimensions and the design details of the examined blade correspond to the S818 airfoil 

model [2]. The coordinates of 24 points (6 for each of the 4 cross-sections) were calculated at 

the beginning (location z=0.0m), the end (location z=22.5m) and two intermediate positions 

of the box girder. Then the finite element model was constructed by presuming linear longitu-

dinal tapering (Fig. 3). During the designing process, it is assumed double symmetry condi-

tions for the cross section with respect to the axes X and Y, which in fact is not entirely true, 

as it can be shown in Figure 1. However it is acceptable, since the same assumption is made 

in relevant studies of the literature [3]. 

Shell elements were used (shell281 in ANSYS [6]) for the simulation, which are the most 

common type of finite elements in WTB analysis. A mesh convergence study was conducted, 

in order to determine the size of the finite elements for which satisfactory accuracy is 

achieved within reasonable computing time. So for the discretization of the models, shell ele-

ments with side length equal to 300mm were considered. 

As it is obvious from Figure 3, the FE model was initially designed with the assumption of 

an angle formed in the transition area from the spar-cap to the shear-web. This assumption is 

adopted in similar studies [7]. However, it is not completely realistic since there is some cur-

vature in the transition area. This happens in order to achieve a smooth transition to the thin-

ner shear-web and to avoid high stress concentration. The technique applied in similar cases 

in composites is called “ply-drop analysis” and is implemented with gradual termination of 

some layers in the required region that leads to thickness reduction [3, 5, 8]. 

Ply-drop analysis cannot be applied efficiently in a macro-scale level, so in this study a 

small curvature was given as a simplistic alternative (Fig. 4a), at the initial corner of the spar-

cap (Fig. 4b). This modification in the cross section design was used as an analysis parameter, 

in order to determine whether a small variation of the geometry of the model could affect the 

buckling load and the deformation of the panels. 
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Figure 4: FEA model at the z=0.0m location: a) with curvature and b) without curvature at the transition area. 

2.2 Boundary and loading conditions 

There are two types of bending for the WTB: the edge-wise bending, which is vertical to 

one of the two edges of the blade (leading edge and trailing edge) and is caused by the gravity 

loads of the blade and the flap-wise bending, that is caused by the wind loads and is vertical to 

the large surface of the blade. Based on the global coordinate system shown in Figure 3, the 

edge-wise bending takes place around the Y-axis and the flap-wise around the X-axis. The 

blade also endures centrifugal forces due to the rotation of the rotor, although they are not 

significant and are usually neglected in the analysis. 

In this study, four different loading simulations were examined in order to determine 

whether there is an influence in the critical buckling load and in the size and shape of the de-

formations. Moreover, in case of similar results we could reach to a conclusion regarding the 

most inexpensive performance. 

All of our load alternatives cause flap-wise bending to the box girder, because it is the 

most critical condition and the one that usually leads to failure at local and/or global level [3, 

9]. Specifically, the load was simulated with: a) uniform pressure, vertically spaced at the up-

per spar-cap (red lines matrix in Figure 5a), b) linear load along the model imposed in the 

middle of the upper spar-cap (Fig. 5b), c) concentrated load at the free end of the model acting 

on the middle of the spar-cap (Fig. 5c) and d) two concentrated loads of equal magnitude at 

locations z = 7.5m and z = 15m (Fig. 5d). All the loads are static, imposed by an incremental 

step-by-step process (Newton-Raphson method) and are applied in a way that the upper spar-

cap is tensioned (upwind) and the lower spar-cap is compressed (downwind). 

Regarding the boundary conditions, all four sides of the cross section at the z=0 location, 

are assumed fully fixed (restrained rotation and displacement of the axes X, Y and Z). 
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Figure 5: The four different load simulations. 

2.3 Design and Material selection 

The selection of appropriate materials, which can optimally cover the increasing require-

ments of safety, efficiency and service life of a modern, high-power, wind turbine, is perhaps 

the most critical task and also a great challenge for the designers. The selected materials 

should have three basic properties: i) high material stiffness, to maintain the optimal aerody-

namic shape of the blade, but also to prevent contact with the turbine tower and local buckling 

phenomena, ii) low density in order to minimize the gravity loads and iii) long fatigue life to 

reduce material degradation during the operation and to ensure at least a 20-year service life 

[10]. 

For the blade construction, polymers reinforced with glass fibers (glass fiber reinforced 

plastics-GFRP) or carbon fibers (carbon fiber reinforced plastics-CFRP) are commonly used. 

The high-strength fibers operate as reinforcement and are retained by load bearing mean, the 

matrix, which is usually made of epoxy, because of its excellent properties. Such materials are 

light and additionally, their fibers have a much higher strength-to-weight ratio and stiffness-

to-weight in comparison with steel or wood, which were initially used for blade manufactur-

ing. 

The outer airfoil skins are sandwich structures while the internal load-carrying box girder 

combines laminate with sandwich layup. Specifically, spar-caps are consisted of alternating 

equal thickness layers of triaxial laminates (-45°/0°/45°), and unidirectional laminates. The 

unidirectional laminates are providing the required bending stiffness, while laminates with 

fibers at ±45° direction are providing torsional stiffness and buckling resistance for the sur-

face under compression. Shear-webs are constructed using a sandwich-like material consisting 
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of triaxial composite laminate face sheets separated by a balsa wood core. The application of 

a core material increases locally the bending strength and buckling resistance. The layer order 

is shown in Figure 6, while the identification number of each material is provided in Table 1, 

along with the thickness of the corresponding layer. 

The thickness of the spar-caps is constant along the blade length and equal to 21.6mm, 

while the thickness of the shear-webs is 17.69mm at the z=0m location and 12.92mm at the 

z=22.5m location (linear reduction as a function of the chord length).  

Figure 6: Model layup for the laminate structure of the spar-cap and the sandwich structure of the shear-web. 

Table 1: Composite laminate layup identification and thickness 

In this analysis, a comparison was conducted between three different fiber-reinforced com-

posites: a) polymer with electrical glass fibers (GFRP), b) polymer with carbon fibers (CFRP), 

c) polymer with aramid fibers (AFRP) but also combination of the above in hybrid models. In

all cases, the same epoxy-based matrix was used, as well as the same layup in the spar-caps 

and shear-webs. 

Material number Material Layer thickness (mm) 

1 gel 0.68 

2 Random material 0.59 

3 Tri-axial material 1.20 

4 Balsa core 0.005×chord length c 

5 Uni-axial material 1.20 
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Glass fibers are currently the most widely used fibers for blade construction. They are 

available in various types and different chemical compositions, but E-glass fibers are those 

primarily used for the blades, due to their mechanical performance and resistance to corrosion. 

However, limited information is available on the structural design process of blades (i.e. 

properties, layup and layer thickness), since the information remains confidential between the 

manufacturers. Therefore the material properties of the GFRP model, such as the thickness, 

sequence and orientation of individual layers were obtained from a previous study [5] and 

have derived from experimental results for the given fiber orientations and arrangement of 

materials used in another experimental study [11]. The properties of the GFRP as well as 

those of the core material are provided in Table 2, where Exx is the axial Young’s modulus, 

Eyy is the transverse Young’s modulus, Gxy is the in-plane shear modulus, vxy is the Poisson’s 

ratio, vf is the fiber volume fraction, wf is the fiber weight fraction, and ρ is the density. 

Table 2: GFRP Material properties. 

The size growth and the decreasing cost of carbon fibers have made them quite popular in 

the last 10-15 years. Carbon fibers present an exceptional combination of high stiffness, high 

strength and low density. Overall, they have much better performance than glass fibers, but 

yet they are of limited use because of their higher cost. In this study, the material properties of 

CFRP were obtained by applying formulas of composite materials theory [12] due to lack of 

experimental data similar to those used for the GFRP model. For our calculations we used the 

properties of AS4-D carbon fibers type and the same epoxy-based as the one used in the 

GFRP model. The properties of CFRP are shown in Table 3. 

Table 3: CFRP material properties. 

Properties 
Uni-

axial (#5) 

Tri-

axial(#3) 

Ran-

dom (#2) 

Balsa 

(#4) 

Gel 

(#1) 

Epoxy 

adhesive 

Exx (GPa) 31.00 24.20 9.65 2.07 3.44 2.76 

Eyy (GPa) 7.59 8.97 9.65 2.07 3.44 2.76 

Gxy (GPa) 3.52 4.97 3.86 0.14 1.38 1.10 

νxy 0.31 0.39 0.30 0.22 0.30 0.30 

uf 0.40 0.40 - - - - 

wf 0.61 0.61 - - - - 

ρ (g/cm
3
) 1.70 1.70 1.67 0.14 1.23 1.15 

Properties Uni-axial Tri-axial Random 

Exx (GPa) 146.00 65.00 62.47 

Eyy (GPa) 18.53 22.50 62.47 

Gxy (GPa) 9.41 13.46 24.19 

νxy 0.27 0.29 0.29 
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In recent years aramid fibers are widely used, replacing metallic and inorganic fibers in 

composite structures in aerospace, maritime and automobile industry. Aramid fibers not only 

have better material properties than steel and glass fibers for the same weight level, but also 

maintain these properties at high temperatures, since they have high thermal insulation and 

fire resistance. Furthermore, aramid fiber reinforced polymers are proven to have much higher 

tensile strength and better resistance to fatigue from polymers with glass fibers [13]. Despite 

the positive characteristics that they present and their wide range of applications, the possibil-

ity of using them in WTBs manufacturing has not yet been examined. This paper investigates 

their buckling capacity, compared to glass and carbon fiber reinforced polymers, as they were 

presented above. 

Aramid presents many valuable properties, depending on the treatment and the application 

in hand. One of its most popular derivatives is Kevlar, which is the trade name for aramid. 

There are many Kevlar fiber categories like Kevlar 29, Kevlar 49, Kevlar 68, Kevlar 119, 

Kevlar 129 and Kevlar 149. Kevlar 149 is one of the most recent categories in the Kevlar 

family. They have much higher Young’s modulus than Kevlar fibers 29 and 49, while having 

approximately the same density and diameter, but a very low sensitivity to moisture (they are 

mainly used in aerospace). Because of these properties, Kevlar fibers 149 were chosen to be 

used for the fiber-reinforced polymer of the internal load carrying box girder. The mechanical 

properties of AFPR model were obtained by applying the same formulas used in the CFRP 

model and they are shown in Table 4. 

Table 4: AFRP material properties. 

3 ANALYSIS RESULTS 

3.1 Finite element analysis 

We initially present the analysis results for the model considered: the E-GFRP model with-

out curvature at the transition area between the spar-cap and the shear-web, where the load is 

simulated with uniform pressure vertically spaced at the upper spar-cap. We performed both 

eigenvalue and nonlinear buckling analysis for the baseline case as well as for all the other 

cases. 

Eigenvalue analysis (linear buckling analysis) offers a quick estimate about the response of 

the model, while a rough value of the critical buckling load is calculated. The critical buckling 

load was estimated through linear analysis equal to 12.47KPa. However no information re-

garding the size of deformations or the post-buckling response of the model can be derived 

from the linear analysis. Moreover, linear analysis is insufficient for reaching precise conclu-

sions because it is based on the assumption of small displacements and does not take into ac-

count the influence of nonlinear phenomena (large deformations, imperfections etc.). The 

most realistic behavior of the model can be obtained from the nonlinear buckling analysis. For 

the latter, we took into account the geometrical nonlinearity (where changes in geometry due 

Properties Uni-axial Tri-axial Random 

Exx (GPa) 113 50.87 48.88 

Eyy (GPa) 15.24 18.28 48.88 

Gxy (GPa) 7.46 10.72 18.63 

νxy 0.37 0.34 0.31 
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to large deformations significantly affect the relationship between the applied load and the 

displacement) and the results are presented below. 

An early conclusion based on the deformed model (Fig. 7), is that the global deflection of 

the model is not considerably affected by local buckling. In a closer look, we can see that the 

local buckling area lies in the compressed spar-cap, near the root. Also, shear buckling occurs 

at the same position in the shear-webs. In Figure 8 the Brazier effect [8] of the blade is con-

firmed by the deformed shape, as the ovalization of the cross-section during buckling is ap-

parent.  

Figure 7: Global and local deformation of the model after the load imposition. 

Figure 8: a) The model cross-section just before the local buckling and b) the cross-section ovalization. 
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The maximum local deformation (in the Y direction) of the compressed spar-cap is de-

tected on D-spot in Fig.9 while the maximum local deformation of shear-web (in the X- direc-

tion) occurs on Z-spot in Fig. 10. The equilibrium paths are shown in Figs 11 and 12. The 

curves exhibit linear behavior (pre-buckling phase) up to 8.41KPa (critical buckling load), 

where the bifurcation point Α is reached. After this point, the model has stable non-linear re-

sponse, up to 13KPa (point C) (post-buckling phase).  

Figure 9: Spar-cap local buckling and von Mises stresses distribution 

Figure 10: Displacements in the X-direction (in mm) 
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Figure 11: Load-displacement path (displacement at the Y-direction). 

Figure 12: Load-displacement path (displacement at the X-direction). 

3.2 Cross-section geometry parameter 

We compare two models based on the GFRP material properties, with uniform pressure on 

the spar-cap and the geometrical discrepancies described in Section 2.1. From the load-

displacement paths (Fig. 13), we can see that the two models have similar response both in the 

pre-buckling and the post-buckling phase, with equal stiffness and about the same critical 

buckling load. The deformed shape of both models is identical in terms of position and num-

ber of folds. However, the post-buckling path for the model with the curvature at the transi-

tion area has higher inclination and the size of deformations is smaller. 
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Figure 13: Load-displacement path (displacement at the Y-direction). 

3.3 Loading imposition parameter 

Based on specific examples of the literature [3, 9, 14], we examined four different ways of 

the loading simulation, which were described in Section 2.2. More specifically, except uni-

form pressure it is imposed: linear load in the middle of upper spar-cap of maximum value 

Pmax = 6.32KN/m, concentrated load at the free end of the model of maximum value 

Pmax=60KN and two concentrated loads of equal magnitude, with maximum value 63KN each. 

To allow comparison between pressure (KPa), linear load (KN/m) and concentrated loads 

(KN), we convert everything into equivalent bending moment at the support of the model for 

each load step. 

Figure 14: Load-displacement path (displacement at the Y-direction). 

From Figure 14, it is clear that the models have similar behavior both in the pre-buckling 

and post-buckling phase. The pre-buckling paths are in general very close, while they are 

identical for the cases of the linear load and the two concentrated loads. However, there are 
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differences in the critical buckling load, where the maximum value emerged when we im-

posed uniform pressure. On the other hand, the critical load for the concentrated load at the 

free-end case is closer to the average value, while the size of the deformations is smaller. It is 

noted that there were no significant savings regarding computational efficiency in any of the 

examined cases. 

Based on the above and the relatively small deviations observed, it can be deduced that the 

different loading simulations may indeed affect the distribution of the stresses across the 

model but they do not affect crucially its load carrying capacity and response. Therefore we 

can neither recommend nor exclude any of these load simulation methods based on our results. 

3.4 Material properties parametric analysis 

• Comparison between glass, carbon and kevlar-fiber models

The fiber-reinforced composite material properties are the last and most important analysis 

parameters in our study. The equilibrium paths (Fig. 15) indicate that the CFRP model has 

more than twice the buckling capacity of the GFRP model and also much higher stiffness 

(pre-buckling path with higher slope). This was expected, due to the remarkable properties of 

carbon. The AFRP model also has high critical buckling load and stiffness in comparison with 

the GFRP. Additionally, a significant restriction of deflections is observed prior the bifurca-

tion point. 

However, the AFRP model exhibits unstable post-buckling behavior, as it is indicated by 

the displacement values after the bifurcation point is reached. This instability can also be ob-

served in the deformed shape of the model, as multiple deformation peaks emerge during 

loading history.  

Figure 15: Load-displacement path (displacement at the Y-direction). 

• Comparison between hybrid models of GFRP and CFRP

The need to further increase the strength-to-weight ratio and the stiffness-to-weight ratio of 

the blades has turned wind turbine industry towards hybrid structures. Hybrid models are 

likely to have higher strength and lower density compared to blades that are exclusively con-

structed by glass fibers. In this section, the following 3 cases are investigated: i) replacement 
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of the GFRP by CFRP material in the shear-webs (the GFRP_spar-cap/ CFRP_shear-web 

model), ii) replacement of the GFRP by CFRP material in spar-caps (the CFRP_spar-cap/ 

GFRP_shear-web model) and iii) replacement of the GFRP by CFRP material in the uni-axial 

layers in spar-caps (the CFRP_uni-axial in spar-cap model). 

The nonlinear curves (Fig 16) indicate that the GFRP_spar-cap/ CFRP_shear-web has al-

most the same response as the GFRP model. The hybrid model has a slightly greater stiffness. 

The CFRP_spar-cap/ GFRP_shear-web model has exactly the same pre-buckling path as the 

CFRP model up to the critical buckling load. However, this model does not have an increas-

ing post-buckling section (stiffening). The lack of sufficient post-buckling strength is a sig-

nificant disadvantage. The most reasonable combination is that of the carbon fibers placed 

only in the uni-axial layers of the spar-caps. In this case, the hybrid model is found to have a 

sufficient combination of load carrying capacity and post-buckling strength, but also mini-

mum use of the expensive carbon material. This conclusion is also reached in relevant studies 

of the literature [15, 16]. 

Figure 16: Load-displacement path (displacement at the Y-direction). 

• Comparison between hybrid models of CFRP and AFRP

The response of hybrid models constructed by carbon and aramid fibers was also investi-

gated. In particular, the following cases were studied: i) the replacement of the CFRP material 

by the AFRP material in spar-caps (the AFRP_spar-cap/ CFRP_shear-web model) and ii) the 

replacement of the CFRP by AFRP material in shear-webs (the CFRP_spar-cap/ 

AFRP_shear-web model). 

The AFRP_spar-cap/ CFRP_shear-web model has the same curve with the AFRP model, 

without the unstable post-buckling behavior that the latter exhibits. This result is characterized 

as a positive contribution. The CFRP_spar-cap/ AFRP_shear-web model has exactly the same 

response, stiffness and stable post-buckling behavior as the CFRP model (their load-

displacement paths are identical). Furthermore, the deformed models differ slightly (Fig. 18). 

Thus, the following useful conclusion results: when CFRP material is used in the spar-caps 

and AFRP material in shear-webs, a model can be created with the same load carrying capac-

ity and buckling strength as the CFRP model, with significant savings in cost and weight (the 

Kevlar fibers 149 are cheaper and lighter than carbon fibers). 
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Figure 17: Load-displacement path (displacement at the Y-direction). 

Figure 18: Local deformations and von Mises stress distribution at the critical buckling load for: a) the CFRP 

model and b) the CFRP_spar-cap/ AFRP_shear-web model 

• Comparison between hybrid models GFRP and AFRP

Finally, the response of hybrid models, constructed by glass and aramid fibers, was inves-

tigated. The following cases were studied: i) the replacement of the AFRP material by the 

GFRP material in the spar-caps (the GFRP_spar-cap/ AFRP_shear-web model model), ii) the 

replacement of the GFRP by AFRP material in the spar-caps (the AFRP_spar-cap/ 
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GFRP_shear-web model) and iii) replacement of the GFRP by AFRP material in the uni-axial 

layers of the spar-caps (the AFRP_uni-axial in spar-cap model). 

The GFRP_spar-cap/ AFRP_shear-web model has slightly higher stiffness and critical 

buckling load than the GFRP model (Fig. 19). The AFRP_spar-cap/ GFRP_shear-web model 

exhibits sufficient load carrying capacity, without the unstable post-buckling behavior that 

was observed at the AFRP model analysis. The load-displacement curve for the AFRP_uni-

axial in spar-cap model is in the middle of the rest, presenting a satisfatory combination of 

load carrying capacity and post-buckling strength. As a total conclusion from all the hybrid 

cases considered, it should be noted that the response and the stiffness of the hybrid models 

are defined by the spar-cap material. 

Figure 19: Load-displacement path (displacement at the Y-direction). 

4 CONCLUSIONS 

This paper studies the buckling capacity of the internal support of WTBs, by performing 

parametric analyses with respect to geometry, loading and material properties. The nonlinear 

buckling analysis results are consistent with a related study of the literature [3]. On the other 

hand, the eigenvalue analysis was proved extremely conservative, since the critical buckling 

load values are overestimated in all cases examined. The above confirms the necessity of the 

nonlinear analysis, despite the increased computational cost required. Nonlinear analysis leads 

to more realistic results and should always be performed in cases where changes in the ge-

ometry, due to large deformations, significantly affect the relationship between the applied 

load and the displacement. 

The comparison between the GFRP, CFRP and AFRP models, showed that the CFRP 

model has greater stiffness and strength compared with the GFRP model and approximately 

double critical buckling load. Positive results are obtained from the use of Kevlar fibers, since 

the stiffness and the critical buckling load of the AFRP model is quite larger than those of the 

GFRP model. However, the unstable post-buckling behavior of the AFRP model is negatively 

evaluated. This instability is eliminated immediately, in cases where aramid fibers were used 

in conjunction with glass or carbon fibers in hybrid models. This is a strong prompt towards 

further research in the use of Kevlar fibers in wind turbine blades. Additionally, it is of great 

interest that if the CFRP material is used in the spar-caps and the AFRP material in shear-
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webs (instead of CFRP material), a model can be produced with the same strength and buck-

ling capacity as the CFRP material, but significantly cheaper and lighter, since the Kevlar 149 

fibers have a lower cost and weight. 

This study offers a clear perspective about the buckling capacity of the blade and its sensi-

tivity when the material parameters are changed, but also about the post-buckling behavior 

and strength of the models. Nevertheless, there is space for improvement in the FEM simula-

tion (e.g. more realistic configuration of the geometrical model, without the assumption of 

double symmetry at the X and Y axes, with more detailed ply-drop design in the transition 

area etc.). Further studies should also include material nonlinearity, by testing various models 

of plasticity for the composite fiber reinforced polymers. Moreover, the significant advantages 

that seemed to arise from the use of aramid fibers should be further tested, in order to examine 

their response in experimental models. 
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Abstract. A micropolar discrete-continuum coupling model is proposed to link the collec-
tively particulate mechanical simulations at high-order representative elementary volume to
field-scale boundary value problems. By incorporating high-order kinematics to the homoge-
nization procedure, contact moment and force exerted on grain contacts are homogenized into
a non-symmetric Cauchy stress and higher-order couple stress. These stress measures in re-
turn become the constitutive updates for the macroscopic finite element model for micropolar
continua. Unlike the non-lcoal weighted averaging models in which the intrinsic length scale
must be a prior knowledge to compute the nonlocal damage or strain measures, the proposed
model introduces the physical length scale directly through the higher-order kinematics. As a
result, there is no need to tune or adjust the intrinsic length scale. Furthermore, since consti-
tutive updates are provided directly from micro-structures, there is also no need to calibrate
any high-order material parameters that are difficult to infer from experiments. These salient
features are demonstrated by numerical examples. The classical result from Mindlin is used as
a benchmark to verify the proposed model.
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1 INTRODUCTION

A granular material is a conglomeration of interacting solid particles. Collectively, these par-
ticles may store elastic strain energy while they are bonded or in contact with each other [1, 2],
and dissipate energy due to grain sliding, rotation and fracture or fragmentation. The applica-
tions and handling of granular materials are central to numerous industries, such as geotechnical
engineering, pharmaceutical and food processing. When the particles of the granular assembly
are neither bonded nor subjected to confining pressure, granular flow may occur [3]. On the
other hand, the collective macroscopic responses of these interacting particles may exhibit traits
that are similar to those of a solid continuum [4, 5, 6, 1, 7].

In the past decades, theoretical and computational models designed to model granular ma-
terials in solid-like state have achieved great success. In particular, the critical state theory has
been widely used as a tool to predict granular materials in both dense and loose states. Nev-
ertheless, the prediction of constitutive responses of granular materials after the onset of strain
localization remains a challenging task. One ongoing problems is that numerical methods, such
as finite element or finite volume method requires the usage of macroscopic elasto-plastic con-
stitutive law to approximate nonlinear responses with incremental updates. Without proper the
so-called regularization limiter, the incremental numerical solution may exhibit spurious depen-
dence on the mesh size when material bifurcation described in Rudnicki and Rice [8] occurs.
In additional to introduce rate dependence in the constitutive responses, one possible remedy is
to incorporate higher-order kinematics into the constitutive laws [9, 10, 11]. One example of
the higher-order theory is the Cosserat theory originated by the Cosserat brothers in their trea-
tise. [12]. The Cosserat theory has been re-discovered and studied by researchers that model
granular continua with micropolar kinematics. A micropolar continuum is different than the
classical Cauchy-Boltzmann continuum in the sense that material points are associated with
microstructures that have orientations characterized by micro-rotation [12, 13]. This additional
degree of freedom allows characteristic length or physical length scale to be introduced into the
micropolar constitutive law and hence can be used as a mean to resolve the mesh sensitivity
issue and captured the material size effects [14, 15, 16].

Nevertheless, developing phenomenological constitutive laws for micropolar continua is not
a trivial task. This difficulty is not only due to the increased complexity of the higher-order
constitutive laws, but also the extra burden to identify material parameters corresponding to the
micropolar effect. While it is true that the pathological mesh dependence at the post-bifurcation
regime can be resolved by explicitly modeling the interactions among grains with discrete ele-
ment simulations, such an approach is not feasible for field-scale problem where large amount
of particles are involved.

The purpose of this study is to propose a new multi-scale model that combines the strengths
of the detailed grain-scale discrete simulations and the efficient high-order continuum-based
finite element methods. The offspring discrete-continuum model able to (1) establish informa-
tion exchange paths that prescribe higher order deformation (curvature) on DEM representative
volume elements (RVEs) and extract higher order stress (couple stress) from RVEs, (2) natu-
rally incorporate material length scale (related to particle size) into the multiscale model and
thus improves the performance on capturing the material size effect in poly-disperse granular
materials, (3) provide the physical underpinning from DEM simulations, and (4) resolve the
problems associated with the mesh sensitivity when strain localization occurs.

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘·’ denotes a
single contraction of adjacent indices of two tensors (e.g. a · b = aibi or c · d = cijdjk ); the
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symbol ‘:’ denotes a double contraction of adjacent indices of tensor of rank two or higher ( e.g.
C : εe = Cijklεekl ); the symbol ‘⊗’ denotes a juxtaposition of two vectors (e.g. a ⊗ b = aibj)
or two symmetric second order tensors (e.g. (α ⊗ β) = αijβkl). As for sign conventions,
we consider the direction of the tensile stress and dilative pressure as positive. We impose a
superscript (·)DEM on a variable to emphasize that such variable is inferred from DEM.

2 THEORETICAL BASIS FOR MICROPOLAR DISCRETE-CONTINUUM MODEL

Previous work on hierarchical DEM-FEM coupling models have been mainly focused on
establishing coupling between discrete element simulations and Cauchy-type-continuum finite
element analysis via first-order homogenization procedure [17, 6, 18, 19]. This first order ho-
mogenization is, nevertheless, only valid if the separation of scales exists [20, 21]. A separation
of scales means that the characteristic length of macroscale problem lmacro, the size of RVEs
lmeso and particle size lmicro fulfills the following inequality, i.e.

lmicro � lmeso � lmacro. (1)

However, there are situations (e.g. presence of defects, inclusions, crack tips, dislocation) in
which the meso-scale characteristic length lmeso is of comparable size of the macroscopic coun-
terpart lmarco. In those cases, it is important to properly reflect the size effect in the homoge-
nization procedure.

Figure 1: Multiscale discrete-micropolar continuum model

This can be done by using a high-order homogenization procedure to incorporate the size ef-
fect. The higher-order discrete-continuum coupling model proposed in this paper requires three
building blocks (as shown in Fig.1): (1) the macroscopic finite element solver that provides in-
cremental kinematic updates to the DEM solver, (2) the second order homogenization scheme
that acts as an interface between the DEM and FEM solvers by converting macroscopic strain
measures into constraints for RVE and up-scaling stress measures from the RVE to the integra-
tion points of the FEM solver and, (3) the DEM solver that calculate the first- and high-order
stress based on the force and moment exerted on the grain contacts. To provide a proof of con-
cepts, we have implemented a 2D micropolar DEM-FEM model for small strain problems. The
following sections provide a brief outline of the the key ingredients of the numerical model, in
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particular the infinitesimal micropolar theroy in 2D [22] and the second order homogenization
theory [23].

2.1 2D small strain micropolar balance principle for macroscopic problems

Here we limit our attention on a prototype model that assumes the strain is infinitesimal
and under plane strain condition. Recall that the kinematics of the micropolar continua can be
defined by two sets of kinematic degrees of freedom that describe the changes of the position
and orientation, e.g. The Cosserat strain γ that takes account of the higher-order kinematics is
defined as a function of both the deformation gradient ui,j and the curvature tensor κ, i.e.,

γij = ui,j − εijkθk
= eij + wij − εijkθk
= eij − εijk(θk − ωk)

(2)

κij = θi,j (3)

where eij = 1
2
(ui,j +uj,i) and wij = 1

2
(ui,j −uj,i) are the components of the infinitesimal strain

and infinitesimal rotation tensors. εijk is the component of the Levi-Civita tensor
3

E. ωk is the
axial vector of the skew-symmetric infinitesimal rotation tensor wij .

Figure 2: Micropolar kinematics. Left: displacement and rotation of a particle. Right: difference between the
orientations of neighbor particles

The stress measures energy-conjugate to the micropolar strain and curvature are Cauchy
stress σ and couple stress µ, respectively. µ takes into the account of the moment induced by
curvature. Note that, in the context of micropolar theory, the Cauchy stress σ no longer holds
symmetry and is sometime referred as the force stress tensor [16]. Neglecting the inertia effect,
the balance principle of linear and angular momentum for the static equilibrium reads,

∂σik
∂xi

+ fk = 0, (4)

∂µik
∂xi

+ εimkσim = 0. (5)

For two-dimensional problem, Eq.(5) can be simplified as,
∂µ13

∂x1
+
∂µ23

∂x2
+ σ12 − σ21 = 0, (6)
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2.2 Micropolar homogenization procedure on DEM unit cells

The procedure that applies macroscopic deformation gradient FM and curvature κM to mi-
croscopic problem is developed by Larsson and Diebels [23]. This scheme is extended to DEM
RVEs based on [17]. Note the position of the center of a particle in reference configuration as
X and in current configuration as x. The mapping betweenX and x reads [23],

x = FM ·X +
1

2
((RM ⊗∇X) ·X) ·X + uf (X), (7)

where uf (X) is the microstructural fluctuation of the particle center. The Hill-Mandel micro-
heterogeneity condition requires that the macroscopic deformation gradient FM is the volume
average of the microscopic deformation gradient F . This imposes two constraints on the DEM
RVE problem: (1) the origin of the local coordinate system is set to the center of gravity of
the grain assembly; (2) uf (X) = 0 for all particles on the boundary. This corresponds to the
uniform displacement boundary condition on DEM RVE.

The deformed RVEs by first-order and second-order homogenization are shown in Fig. 3.
Note that in first-order the deformation is composed of extension/compression and simple shear
modes, while in second-order there are additionally curvature modes.

Figure 3: Deformation of DEM RVE by first-order and second-order theory

Upon deforming the RVE to a new equilibrium configuration, the macroscopic Cauchy stress
is homogenized from DEM:

< σ(x, t) >RVE=
1

VRVE

Nc∑
c

f c ⊗ lc (8)

where f c is the contact force at the grain contact xc and lc is the branch vector that connects
the centroids of two grains forming the contact (xa and xb) [24, 25]. VRVE is the volume of the
RVE and Nc is the total number of particles in the RVE. The homogenized macroscopic couple
stress can be expressed as [26]:

< µ(x, t) >RVE=
1

VRVE

Nc∑
c

(
3

E ·f c⊗(xb⊗(xc−xb)−xa⊗(xc−xa))+mc⊗(xb−xa)) (9)
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The couple stress consists of two contributions: the eccentric contact force f c and the contact
momentmc.

3 NUMERICAL METHODS

The micropolar FEM-DEM model for plane strain problems is formulated in this section.
Firstly, to construct the macroscopic boundary-value problem for micropolar continuum, con-
sider a domain B with its boundary ∂B composed of Dirichlet boundaries (displacement ∂Bu,
micro-rotation ∂Bθ ) and Von Neumann boundaries (surface traction ∂Bt, surface moment ∂Bm
) satisfying {

∂B = ∂Bu ∪ ∂Bt = ∂Bθ ∪ ∂Bm
∅ = ∂Bu ∩ ∂Bt = ∂Bθ ∩ ∂Bm

(10)

The prescribed boundary conditions are
u = u on ∂Bu

n · σ = t on ∂Bt
θ = θ on ∂Bθ

n · µ = m on ∂Bm

(11)

where (·) denotes prescribed values and n is outward unit normal of surface ∂B.
Following the standard procedures of the variational formulation, we obtain the weak form

of the balance of linear momentum and angular momentum

G : Vu × Vη → R

G(u,η) =

∫
B
∇η : σDEM dV−

∫
B
η · ρg dV

−
∫
∂Bt
η · t dΓ = 0 (12)

H : Vθ × Vψ → R

H(θ,ψ) =

∫
B
∇ψ : µDEM dV−

∫
B
ψ ·

3

E : σDEM dV−
∫
B
ψ · ρJ · c dV

−
∫
∂Bm

ψ ·m dΓ = 0 (13)

The displacement and micro-rotation trial spaces for the weak form are defined as

Vu = {u : B → R3|u ∈ [H1(B)]3,u|∂Bu = u} (14)

Vθ = {θ : B → R3|θ ∈ [H1(B)]3,θ|∂Bθ = θ} (15)

and the corresponding admissible spaces of variations are defined as

Vη = {η : B → R3|η ∈ [H1(B)]3,η|∂Bu = 0} (16)
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Vψ = {ψ : B → R3|ψ ∈ [H1(B)]3,ψ|∂Bθ = 0} (17)

where H1 denotes the Sobolev space of degree one.
The spatially discretized equations can be derived following the standard Galerkin procedure.

Shape functions Nu(x) and Nθ(x) are used for approximation of solid motion u and micro-
rotation θ respectively: {

u = NuU , η = Nuη̄

θ = NθΘ, ψ = Nθψ̄
(18)

withU being the nodal displacement vector, Θ being the nodal micro-rotation vector, and η̄, ψ̄
being their variations.

In the DEM-FEM implementation, a Cartesian coordinate system is adopted with axes de-
noted as (x1,x2 x3). In the two-dimensional case, we consider the cross section orthogo-
nal to the x3-axis. A equal-order quadrilateral mixed finite element is used to interpolate
the displacement and micro-rotation fields with the same standard bilinear shape functions:
N = Nu = Nθ. For the two-dimensional problems expressed in Cartesian coordinates, the
nodal generalized displacement vector contains three degree of freedoms, two for displacement
and one for change of orientation, i.e.,

d = [u1 u2 θ3]
T (19)

The generalized strain vector for 2D plane strain problems consists of the micropolar strain γ
and the curvature κ:

E = [γ11 γ22 γ33 γ12 γ21 κ31 κ32]
T (20)

The Cauchy stress σ and the couple stress µ homogenized from DEM RVEs at each integration
point are grouped into the generalized stress vector written as:

SDEM = [σ11 σ22 σ33 σ12 σ21 µ31 µ32]
T (21)

Accordingly, the element shape function matrix N e and the generalized element B matrix Be

can be expressed as,

N e =


N1 0 0 N2 0 0 . . . . . .

0 N1 0 0 N2 0 . . . . . .

0 0 N1 0 0 N2 . . . . . .

 (22)

Be =



∂N1

x1
0 0 . . . . . .

0 ∂N1

x2
0 . . . . . .

0 0 0 . . . . . .

∂N1

x2
0 N1 . . . . . .

0 ∂N1

x1
−N1 . . . . . .

0 0 ∂N1

x1
. . . . . .

0 0 ∂N1

x2
. . . . . .


(23)
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Finally, the finite element equation for balance of linear momentum and angular momentum
in domain B is written in a compact form as:∫

B
BTSDEM dV︸ ︷︷ ︸
F int(d)

=

∫
B
NTF dV +

∫
∂B
NTT dA︸ ︷︷ ︸

F ext

(24)

where T = [t̄1 t̄2 m̄3]
T and F = [ρg1 ρg2 ρ(J · c)3]T are generalized traction and body

force vectors, respectively. The non-linear system of equations is solved by a modified implicit-
explicit scheme which is originally proposed in Hughes et al. [27] and Prevost [28] to solve
single-scale hydro-mechanical transient problems. This solution scheme for DEM-FEM model
allows larger time step size compared to explicit scheme and avoids additional computational
cost in computing the elasto-plastic tangential stiffness from DEM RVEs in fully implicit
scheme. The implicit-explicit predictor-corrector scheme is performed by evaluating a portion
of the left hand side forces explicitly using the predicted solution d̃ defined as:

d̃ = dn (25)

and by treating the remaining portion implicitly with the solution dn+1:

dn+1 = d̃+ ∆dn+1 (26)

The implicit-explicit partition reads,

F int
IMP(dn+1) + F int

EXP(d̃) = F extn+1 (27)

To obtain the incremental update of the macroscopic displacement and micropolar rotation from
the non-linear system of equations, Newton-Raphson method is employed. As a result, the
consistent linearization of the implicit part F IMP is required. The resulting tangential stiffness
matrix depends on what force terms are included in F int

IMP.
Since computation of the homogenizedKs from DEM RVEs produces considerable compu-

tational cost, in the proposed multi-scale solution scheme, we choose to treat the elastic stiffness
Ke implicitly and Kep explicitly. In particular, we assume that the elastic response is linear
and isotropic and use a perturbation method to obtain the all the non-polar and micropolar elas-
tic material parameters from the RVEs at the initial step. The resultant operator-split stiffness
matrices read, KT

implicit =
∂F int

IMP

∂d
= Ke

KT
explicit = −Kep

(28)

4 NUMERICAL EXAMPLES

The micropolar FEM-DEM model is verified against the problem of stress concentration
around a circular hole in a field of uniaxial and uniform tension. Consider a plane stress problem
where a circular hole with radius r is streched by an uniform tensile stress field P . Classical
elasticity theory states that the stress concentration factorKc (ratio between the maximum value
of tensile stress around the hole and P ) is 3. In the realm of microplar theory, however, a
reduction of this factor is predicated. The analytical solutions are studied by Mindlin [29] using
the couple-stress theory, by Kaloni and Ariman [30] and Neuber [31] using the micropolar
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theory, and the solutions are unified by Cowin [32]. These studies conclude that Kc, instead
of having the constant value of 3, depends on geometry and material properties, namely the
Poisson’s ratio ν, the ratio of r to the material characteristic length l and a coupling number N .
The micropolar material parameters are explained in details in [33].

The spatial domain, finite element discretization and boundary conditions of the numerical
problem are illustrated in Fig. 4. Due to the symmetry of the problem domain, only a quarter
of the circular hole is solved. On the two cutting-planes, the normal displacements as well as
the rotations are restricted to zero. The circular hole has the radius of 0.05m while the patch
size is 1m, ensuring a uniform tension field P applied around the hole. A strongly gradated
mesh is used to efficiently capture the stress concentration field around the hole. The DEM
sample attached to all Gauss integration points of the finite elements is also shown. The grains
with radius of 0.05m are arranged in a 5x5 cubic array and a concrete interaction model is used
to allow tensile forces between the particles [34]. The DEM sample is initially stress-free and
remains in elastic region under the uniaxial tension field.

x 

y 

𝑷 = 𝟏𝟎 𝑲𝑷𝒂 

𝒖𝒙 = 𝟎 
𝜽𝒛 = 𝟎  

𝒖𝒚 = 𝟎 
𝜽𝒛 = 𝟎  

Figure 4: Geometry, mesh, boundary conditions and DEM RVE for stress concentration problem

The material parameters in the context of the micropolar elasticity theory and the values
identified from the DEM concrete sample using the perturbation method are recapitulated in
Table 1. Note that the internal length l is 0.718 of the grain radius, which is in accordance with
the Mindlin’s statement that l is about 0.75 of the radius of a sphere when the identical elastic
spheres are arranged in a simple cubic array [29].

The Cauchy stress and couple-stress fields around the circular hole given by the micropolar
FEM-DEM model are presented in Fig.5. The stress concentration factor Kc = max(σxx)/P
is about 2.6, smaller than the value of 3 predicted by the classical continuum theory. The
distributions of couple-stress µxz and µyz are symmetric about the bisectrix line. The existence
of these couple-stresses results in the asymmetry of the Cauchy stress, as illustrated by the field
of difference of shear stresses |σxy − σyx| (Fig. 5(c)).

To illustrate the effect of material length scale l on the stress concentration factor, the grain
radius of the DEM concrete sample is varied (r = 0.1m, 0.05m, 0.01m, 0.005m, 0.001m).
The length scales l are always 0.718 of the corresponding radius and the Poisson’s ratio ν and
the coupling number N remain the same values. The stress concentration factor Kc is plotted
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Micropolar material parameters
(notations in consistent with [33]) Value identified from DEM

Micropolar Young’s modulus Em 4.802× 109 Pa
Poisson’s ratio ν 0.235

Micropolar shear modulus Gm 2.255× 109 Pa
Shear modulus µ∗ 1.916× 109 Pa

Modulus between anti-symmetric parts κ 6.783× 108 Pa
Modulus of curvature γ 1.163× 107 N

Coupling number N (N =
√

κ
2(µ∗+κ)

) 0.362

Internal length scale l (l =
√

γ
2(2µ∗+κ)

) 0.0359m

Table 1: Micropolar elasticity material parameters in the stress concentration problem

(a) (b)

(c)

Figure 5: Stress field around a circular hole under tension.

against the length ratio r/l in Fig. 6. The same variation trend of Kc between the multiscale
solution and the analytical solution is observed. This study provides evidence that our multiscale
model intrinsically incorporates the internal material length scale.

5 CONCLUSIONS

A new higher-order DEM-FEM model for granular materials is established by incorporating
higher-order kinematics and second-order homogenization theory. This work demonstrates the
possibility of using grain-scale simulations as a replacement of phenomenological constitutive
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Figure 6: The stress concentration factor Kc as a function of length ratio r/l. Comparison between multiscale
model solutions and analytical solutions [32]

law for micropolar continua. The resultant scheme retrieves the characteristic length naturally
from the DEM assemblies, without the need to explicitly define one via a nonlocal integral.
Another key upshot of the proposed high-order multiscale scheme is that it does not require
any additional material parameters other than the one required for DEM. These features greatly
simplifies the material identification procedure an allow one to analyze the interplay between
evolution of micro-structural attributes and the macroscopic outcome.
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Abstract. Low-alloyed TRIP steels are often used in the automotive industry due to their favor-
able mechanical properties such as high ductility and strength and their moderate production
costs. These steels possess a heterogeneous multiphase microstructure, initially consisting of
ferrite, bainite and retained austenite which is responsible for the mechanical properties. Upon
deformation, a diffusionless, stress-induced, martensitic phase transformation from austenite to
martensite is observed, enhancing ductility and strength.
We focus on multi-scale methods in the sense of FE2 to describe the macroscopic behavior of
low-alloyed TRIP-steels, because this approach allows for a straightforward inclusion of var-
ious influencing factors such as residual stress distribution, graded material properties which
can hardly included in phenomenological descriptions of these heterogeneous multiphase ma-
terials. In order to allow for efficient computations, a simplified microstructure is used in an
illustrative direct micro-macro simulation. The inelastic processes in the austenitic inclusions
involve the phase transformation from austenite to martensite and the inelastic deformation of
these two phases. The isotropic, rate-independent, hyperelastic-plastic material model of Hall-
berg et al. (IJP, 23, pp.1213–1239, 2007), originally proposed for high-alloyed TRIP steel, is
adopted here for the inclusion phase. Minor modifications of the model are proposed to improve
its implementation and performance. The influence of various material parameters associated
with the phase transformation on the evolution of retained austenite is studied for different
homogeneous deformation states. The non-monotonic stress-state dependence observed in ex-
periments is clearly captured by the model. A numerical two-scale calculation is carried out
to enlighten the ductility enhancement in low-alloyed TRIP-steels due to the martensitic phase
transformation.
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1 INTRODUCTION

Low-alloyed TRIP-steels offer a favorable combination of both high strength and pronounced
ductility, leading to a high energy absorption capacity. This is desired especially for automotive
applications, because it allows for light-weight and crashworthy constructions and therefore
leads to safer and more efficient automobiles. These favorable mechanical properties can be
achieved at lower costs compared to high-alloyed TRIP-steels, due to the reduced amount of
alloying elements required. In contrast to high-alloyed, initially fully austenititc TRIP-steels,
low-alloyed TRIP-steels possess a multiphase microstructure, consisting of ferrite, bainite and
retained austenite. In order to obtain the favorable mechanical properties the microstructure is
optimized by a sophisticated heat treatment procedure and a smart alloy design, cf. [1]. Mi-
cromechanical considerations [2] lead to the conclusion that the high ductility of these steels
cannot be solely attributed to the deformation-induced martensitic phase transformation from
the metastable, retained austenite to martensite, because its volume fraction is typically in the
range of 10-15% and therefore simply too low. Therefore, the multiphase character of the mi-
crostructure is responsible for the pronounced ductility. However, the phase transformation in
the retained austenite plays an important role in this type of steel as it dynamically influences the
stress and strain partitioning between different phases during deformation [3, 4, 5] and delays
microcracking [6], leading to composite type microstructure with adaptive properties. The rate
of the austenite to martensite transformation depends on various factors: (i) ambient tempera-
ture cf. [7], (ii) stress-state cf. [8], (iii) austenite grain size and morphology [9], (iv) neighboring
constituents [9].
A variety of constitutive models has been proposed for the description of the deformation
and transformation behavior of low-alloyed TRIP-steels. Phenomenological approaches such
as [10, 11, 12, 13] mainly focus on capturing the influences of temperature and stress-state on
the transformation kinetics. They are mostly used in single scale (macroscopic) simulations
due to their low computational costs. Modeling approaches that incorporate analytical homog-
enization schemes, like for instance [14, 15, 16, 17, 18, 20] are better suited to account for the
strengthening effect of the evolving martensite and multiphase character of the microstructure.
However, simplifying assumptions regarding the microstructure morphology and field fluctua-
tions within the phases have to be made, which may lead to inaccurate assessment of failure
initialization. Direct microstructural simulations allow for a straightforward incorporation of
all of the above mentioned influencing factors (i)-(iv). However, they are computationally very
demanding as the macroscopic constitutive response is obtained by the solution of microscopic
boundary value problems for a suitable representative volume element. In the context of low-
alloyed TRIP-steels a two-dimensional microstructural section [21] or artificial inclusion type
microstructure [22] as well as polyhedral inclusions representing single crystalline phases [23]
have been used as representative volume elements.
In the current contribution, we follow the direct micro-macro simulation approach as this frame-
work is in general sufficient to study the above mentioned influencing factors on the phase trans-
formation behavior of low-alloyed TRIP-steels. The paper is organized as follows. In section 2,
the basic equations for the direct micro-macro scale transition are summarized, whereas in sec-
tion 3 a suitable material model for the phase transformation from austenite to martensite is
adopted from the literature. In section 4, the influence of model parameters on the phase trans-
formation behavior is illustrated and the effective mechanical behavior of a simplified three-
dimensional microstructure for low-alloyed TRIP-steel is presented. Section 5 summarizes the
main findings.

2281
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2 DIRECT MICRO-MACRO SCALE TRANSITION

Employing the direct micro-macro scale transition approach enables the computation of ef-
fective, macroscopic material behavior for a representative volume element with arbitrary com-
plex microstructure by means of the solution of microscopic boundary value problems and ap-
propriate averaging schemes of the microscopic fields. Here, we focus on a purely mechanical
setting and state the basic relations, required for the computations. According to Hill [24] the
stress power per unit reference volume at the macroscopic scale, expressed in terms of average
quantities, should be equal to the microscopic counterpart, yielding

〈P : Ḟ 〉 = 〈P 〉 : 〈Ḟ 〉 , (1)

where P denotes the 1st Piola-Kirchhoff stress tensor, Ḟ is the material time derivative of the
deformation gradient and the volume average over the reference configuration is defined as
〈·〉 = 1

V

∫
B0
· dV . As the current study relies on representative volume elements with a peri-

odic microstructure, it is convenient to apply periodic boundary conditions in order to enforce
eq. (1). Based on the decomposition of the deformation field in a homogeneous deformation
and fluctuation as

ẋ = Ḟ ·X + ˙̃w , (2)

the periodic boundary conditions require a periodic fluctuation field w̃ and antiperiodic traction
vectors t0 along the boundary, namely

˙̃w
+

= ˙̃w
−

and t+0 = −t−0 on ∂B0 . (3)

3 MATERIAL MODEL AT THE MICRO-SCALE

In order to obtain reliable predictions of the macroscopic, effective deformation and transfor-
mation behavior of low-alloyed TRIP-steels, suitable material models that capture the essential
features of inelastic processes are required at micro-scale. The aim of the present contribution
is to describe the overall behavior of low-alloyed TRIP-steels under isothermal conditions and
excluding rate-dependent effects. Therefore, rate-independent models that incorporate the two
main inelastic processes, plasticity and the austenite to martensite phase transformation, should
be chosen. Furthermore, assuming a polycrystalline microstructure at the micro-scale, the con-
stitutive model proposed by Hallberg [25] for high-alloyed TRIP-steels is a suitable choice,
because it is contains only a relatively small number of material parameters, but still includes
plasticity and phase transformation as two independently evolving inelastic processes and their
interaction in a simplified manner. In contrast to the originally proposed model, we apply some
minor modifications which allow for a more convenient implementation, but the essential fea-
tures of the model remain and in particular the thermodynamic consistency is still guaranteed.
The material model is based on the multiplicative split of the deformation gradient

F = F e · F in (4)

into an elastic and an inelastic part where the latter is associated with any inelastic process oc-
curring in the material. Employing the assumption of isotropic elastic behavior and an additive
split of the free energy according to

ρ0Ψ(be, α1, α2, . . .) = ρ0Ψe(be) + ρ0Ψin(α1, α2, . . .) , (5)
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with αi representing the internal variables, the Kirchhoff-stress is defined as

τ = 2ρ0
∂Ψ

∂be
· be . (6)

Herein, the elastic left Cauchy-Green tensor is given as be = F e ·F eT . In particular, the elastic
energy function

ρ0Ψe =
λ

2

[∑
A

ln(λe
A)

]2

+ µ
∑
A

[ln(λe
A)]2 (7)

is utilized, which is described in terms of principle elastic stretches λe
A and the Lamé constants

λ, µ. The principle elastic stretches are obtained by the eigenvalue decomposition of be. The
elastic left Cauchy-Green tensor can be related to the inelastic right Cauchy-Green tensorC in =

F inT · F in via
be = F ·C in−1 · F T , (8)

whereas the temporal evolution of be and C in is expressed as

L(be) = F ·
(
C in−1

)· · F T (9)

where L is the Lie derivative. An alternative representation of eq. (9) solely in terms ofC in and
F is obtained if the additive split of the rate of deformation l = Ḟ · F−1 = le + lin is used in
conjunction with the assumption of isotropic elastic and inelastic behavior, which is considered
here, i.e. (

C in−1
)·

= −2F−1 ·
∑
p

λ̇p
∂Φp

∂τ︸ ︷︷ ︸
=din

·F ·C in−1 . (10)

As proposed by Hallberg [25] the inelastic rate of deformation din is additively split into mul-
tiple contributions stemming from different inelastic processes, characterized by independent
limit surfaces Φp and the corresponding consistency parameters λ̇p. Similar to small strain
elastic-plastic formulations, the antimetric part of the inelastic velocity gradient remains unde-
termined.
For the rate-independent plasticity a limit surface of VON MISES-type with nonlinear isotropic
hardening is chosen.

Φpl :=
√

3J2 − σy(αpl, fm) (11)

Herein the second invariant of the Kirchhoff stress deviator is defined as J2 = 1
2
dev(τ ) :

dev(τ ), whereas αpl and fm are the isotropic hardening variable and the martensite volume
fraction, respectively. The yield stress is computed from an exponential hardening law and a
nonlinear rule of mixture, according to

σy(αpl, fm) = σy
0m̄(fm) + Hκ(αpl) (12)

with
m̄(fm) = 1 + (exp(f1fm)− 1)f2 (13)

and
κ(αpl) =

R∞
H

[
1− exp

(
− H

R∞
αpl
)]

, (14)
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τhyd

τ eq

(a)

τIII

τIIτI

(b) αpt1

ḡ

ḡ0

(c)
Figure 1: Limit surface for phase transformation: (a) section containing the hydrostatic axis with tensile (−−)
and compressive meridian (—) and the corresponding cone (· · ·), (b) non-circular cross-section in the π-plane, (c)
evolution of the transformation barrier.

where the hardening variable evolves according to α̇pl = λ̇pl. The equations (12), (13), (14)
introduce three material parameters (σy

0 ,H,R∞) for the hardening and two material parameters
(f1, f2) in the rule of mixture.
The limit surface for phase transformation is taken here as a hyperbolic approximation of Hall-
berg’s conical transformation surface and is inspired by the proposal given in [26]. It possesses
the form

Φpt :=

√√√√(τ eq)2

(
1 + k

J3

J
3/2
2

)2

R2 + ∆2
v(κ2

1(αpt, T )− 1)(τhyd)2 +

∆vκ2(αpt, T )τhyd − Rκ1(αpt, T ) , (15)

with

κ1(αpt, T ) =

√(
1

∆v

(ḡ(αpt)−∆ga→m(T ))
)2

− c2 (16)

κ2(αpt, T ) =
1

∆v

ḡ(αpt)−∆ga→m(T )

κ1

. (17)

The transformation surface introduces the material parameters ∆v,R which correspond to the
volumetric and deviatoric transformation strain, as well as the shape parameters k and c. The
parameter k controls the deviation from the circular cross-section in the π-plane, i.e. the de-
viatoric plane that contains the origin and the parameter c determines the transition from the
hyperbolic surface to the conical surface (see fig. 1). The latter parameter, however, is of minor
importance in the studies considered in this paper. Although it guarantees a continuous differ-
entiable limit surface under purely hydrostatic loading conditions, for the stress states reached
in the loading scenarios considered, the hyperbolic approximation of the transformation surface
is very close to the original conical surface. Furthermore, τhyd, τ eq,∆ga→m(T ) and ḡ(αpt) de-
note the hydrostatic part of the Kirchhoff stress, the VON MISES equivalent Kirchhoff stress,
the temperature dependent energy difference between the austenitic (a) and the martensitic (m)
phase and the transformation barrier, respectively. The evolution equations for the internal
variables associated with the transformation, namely the hardening variable for transformation
hardening α1 := αpt and the martensite volume fraction α2 := fm are derived following the
procedure for generalized standard materials [27]. Therefore, the portion of the free energy
function corresponding to inelastic processes, introduced in eq. (5), is further specified as

ρ0Ψin(αpt, αpl, fm) = ρ0Ψpl(αpl) + ρ0Ψpt(αpt) + ρ0Ψchem(fm;T ) (18)

with
ρ0Ψchem(fm;T ) = (1− fm)ρ0Ψchem

a (T ) + fmρ0Ψchem
m (T ) (19)
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and
ρ0Ψpt(αpt) = ḡ1

((
1− αpt

) (
ln(1− αpt)− 1

)
+ 1

)
. (20)

Herein, Ψpl(αpl) is linked to the isotropic hardening of the VON MISES criterion and chosen
identical to the proposal of Hallberg [25] and is not included here for brevity. Upon defining
the driving forces Kαpt = ρ0

∂Ψpt

∂αpt and Kfm = ρ0
∂Ψchem

∂fm
= −∆ga→m(T ), the evolution equations

are defined as

˙fm = −λ̇pt ∂Φpt

∂Kfm

(21)

α̇pt = −λ̇pt ∂Φpt

∂Kαpt

. (22)

From the structure of the transformation surface it can be readily verified that αpt = fm. The
transformation barrier evolves according to the transformation hardening law

ḡ(αpt) = ḡ0 − ḡ1 ln(1− αpt) (23)

with the initial transformation barrier ḡ0 and the initial hardening modulus ḡ1. As can be seen
from fig. 1c the barrier is progressively increasing, limiting the hardening variable to αpt ≤ 1.
The material model described above is implemented into the Finite Element Program FEAP and
employs a combination of the operator split and a general return mapping algorithm proposed
by Aurrichio et al. [28] to integrate the set of nonlinear evolution equations. Furthermore, the
return mapping algorithm has been extended to handle non-smooth intersections of multiple
limit surfaces as discussed in [29, p.206ff].

4 RESULTS

4.1 Parameter study

The material model described in section 3 contains 12 material parameters, which need to be
adjusted in order to capture the deformation and transformation behavior of the retained austen-
ite and the evolving martensite. The parameters associated with elasticity and plasticity of the
austenitic/martensitic material can be chosen rather easily, if the individual hardening curves
are known. In the present paper the parameters are set such that the austenite and martensite
hardening curves of an experimental TRIP-steel presented in [19] are reproduced. For later ref-
erence they are listed in table 1. The influence of three of the remaining parameters, namely the

E [MPa] ν σy
0 [MPa] H [MPa] R∞[MPa] f1 f2 ∆v R

200000 0.3 300 3500 420 1.65 1.1 0.04 0.07

Table 1: Material parameters of the austenitic/martensitic material

initial transformation barrier ḡ0, the initial transformation hardening modulus ḡ1 and the shape
parameter k is studied in order to get a reasonable estimate for the range of parameters and
their impact on the transformation kinetics. It is well known from experiments that the phase
transformation in low-alloyed TRIP-steels is stress-state dependent. In particular, this depen-
dence is non-monotonic with respect to the stress-triaxiality measure h = τhyd

τeq
, based on the

experimental results presented in [8] and depicted in fig.2c. Herein, 4 mechanical tests (simple
shear, uniaxial tension, biaxial tension and the Marchiniak test) are carried out, where each of

2285
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Figure 2: Influence on transformation kinetics: (a) variation of initial transformation barrier, (b) variation of trans-
formation hardening modulus, (c) experimentally determined non-monotonic stress-state dependence cf. [8], (d)
simulated non-monotonic stress-state dependence (symbols indicate the experimental trends: lowest transforma-
tion rate in simple shear and highest rate in Marciniak test)

these tests is characterized by a different stress state. These four tests are simulated employing
deformation controlled one element tests with an initially fully austenitic microstructure and
analyzing the evolution of retained austenite as a function of the overall equivalent strain εeq. It
can be seen from fig. 2a,b that initially only phase transformation and no plastic deformation is
predicted by the model for the given choice of parameters. While varying the initial transfor-
mation barrier changes the onset of plasticity, i.e. both inelastic deformation mechanisms are
active at the same time and keeps the asymptotically reached value of retained austenite more or
less unaltered, a modification of the hardening modulus influences both the onset of plasticity
and the asymptotically reached value of retained austenite. In both studies a value of k=0.24
and ḡ1 = 150 mJ

mm3 and ḡ0 = 32 mJ
mm3 is kept while varying the other parameters. Although only

the results for the uniaxial tensile test are presented, the same trend can be observed for all the
homogeneous tests.
In a third study the shape parameter k is altered in the range of −0.24 ≤ k ≤ 0.24 leading to
convex, non-circular cross-sections of the transformation in the π-plane. The initial transfor-
mation barrier and the transformation hardening are chosen in this study as ḡ0 = 40 mJ

mm3 and
ḡ1 = 200 mJ

mm3 . It can be seen from fig. 2d that the non-monotonic stress-state dependency is
clearly captured for the choice k= 0.24, as the transformation rate in biaxial tension (h = 2/3)
is lower than in the Marciniak test (h = 0.42). However, the transformation rate predicted
by the material model in uniaxial tension contradicts the experimentally observed trend, which
indicates the need for further parameter studies. For lower values of k the highest rate of trans-
formation is observed in biaxial tension, leading to a proportional increase in transformation
rate with increasing stress triaxiality.
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Figure 3: Simplified microstructure (a) and overall true stress-strain curve for uniaxial tension (b)

4.2 Simplified microstructure

In order to study the influence of the martensitic phase transformation on the macroscopic de-
formation behavior of low-alloyed TRIP-steels a simplified microstructure is considered which
consists of a regular cubic arrangement of spherical, retained austenite inclusions embedded in
ferritic/bainitic matrix. Note that more sophisticated but still efficient statistically similar repre-
sentative volume elements may be constructed following the approach in Balzani et al. [30], see
also Brands et al. [31] for an analysis in the context of DP steels. Consistent with experimental
data, the initial volume fraction of retained austenite is chosen fa = 0.12. In the matrix a mix-
ture of ferrite and bainite is employed with the volume fractions set to ff = 0.5 and fb = 0.38,
corresponding to the phase composition of an experimental TRIP-steel presented in [19]. Both
in the matrix and in the inclusion the material model described in section 3 is utilized. In the
inclusion the material parameters given in table 1 and ḡ0 = 40 mJ

mm3 , ḡ1 = 200 mJ
mm3 and k= 0.24

have been selected. As no phase transformation is observed in the matrix a rather high initial
transformation barrier is used to switch off the transformation criterion. The material param-
eters associated with the nonlinear hardening law are computed to reasonable approximate the
ferrite and bainite hardening curves given in [19]. All the material parameters required for the
ferrite/bainite mixture are listed in table 2.
The representative volume element (RVE) containing the simplified microstructure is subjected
to a displacement controlled uniaxial tensile test prescribing an axial true strain of ε̄ = 0.34.
Due to the symmetry intrinsic to the boundary value problem, only 1/8 of the RVE as depicted

EMatr [MPa] νMatr σy
0,Matr [MPa] H [MPa] R∞,Matr[MPa] f1,Matr f2,Matr

200000 0.3 548 1800 550 1.65 1.1

Table 2: Material parameters for the ferritic/bainitic matrix

in fig. 3a is simulated. The overall true stress-strain curve is shown in fig. 3b for the cases of a
transforming and a non-transforming retained austenite inclusion. The latter case corresponds
to conditions of higher ambient temperatures where the retained austenite is stabilized leading
to negligible transformation rates. Although the increase in the overall stress due to transfor-
mation is less than 100 MPa, the ductility is enhanced substantially (+0.05 true strain). The
Considère criterion is employed as a measure of ductility, which estimates the limit of uniform
elongation under uniaxial tension by the intersection of the flow curve and the instantaneous
hardening modulus, i.e. σ̄ = ∂σ̄

∂ε̄
. The increase in ductility cannot be attributed solely to the

transformation strains, but rather to the change in the yield behavior, because the inclusion has
only transformed partly (see fig. 3b), indicating a dynamic stress and strain redistribution during
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(c)

fm σhyd

σhyd

Figure 4: Distribution of martensite volume fraction (a) and hydrostatic Cauchy stress: (b) with and (c) without
a→m transformation at the micro-scale under macroscopic uniaxial tension (ε̄ = 0.34)

loading.
Also on the micro-scale, significantly different stress distributions are obtained. Comparing
fig. 4b and c, one observes higher hydrostatic stresses in the matrix close to the transforming
inclusion, revealing a potential location of ductile damage initiation, which is absent in the
microstructure with non-transforming retained austenite. Here the highest hydrostatic stress is
observed in the inclusion.

5 CONCLUSIONS

In this contribution a simple material model for the austenite to martensite phase transfor-
mation in high-alloyed TRIP-steels is adopted for the direct micro-macro simulation of multi-
phase, low-alloyed TRIP-steels. Minor modifications of the model are proposed to improve its
implementation and performance. A parameter study is conducted to illustrate the influence of
material parameters, such as the initial transformation barrier, transformation hardening mod-
ulus and a shape parameter of the transformation surface on the phase transformation kinetics
under different homogeneous loading conditions. Comparing the simulated evolution of re-
tained austenite to experiments, it is found that the non-monotonic stress-state dependence can
be reproduced by the model. For a reasonable choice of the material parameters of the single
phases, a direct micro-macro simulation of a low-alloyed TRIP-steel is carried out employing
a simplified, periodic microstructure. It is observed that austenite to martensite phase transfor-
mation enhances the ductility through a dynamic stress and strain redistribution between the
constituents.
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S. Prüger, A. Gandhi and D. Balzani

[28] F. Auricchio and R.L. Taylor, A return-map algorithm for general associative isotropic
elasto-plastic materials in large deformation regimes, International Journal of Plasticity,
15, 1999.

[29] J.C. Simo, T.J.R. Hughes, Computational Inelasticity. Springer, 1998.

[30] D. Balzani, L. Scheunemann, D. Brands, J. Schröder, Construction of two- and three-
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Abstract. Two types of novel architectured cellular materials have been developed [1,2]. To estimate 
the effective material properties and to optimally design such materials, a suitable homogenization 
method was needed. An existing asymptotic homogenization process has provided an effective means 
for the multiscale modeling of continuum solids; however, that method was not easily adapted to the 
aforementioned materials, which are naturally discrete systems. First, we developed a strain-based 
homogenization method equivalent to the existing asymptotic homogenization method, but it was de-
veloped based on an engineering approach rather than on a mathematical approach such as the one 
used in asymptotic homogenization. The new approach separates the strain field into a homogenized 
strain field and a strain variation field in the local cellular domain superposed on the homogenized 
strain field. The Principle of Virtual Displacements for the relationship between the strain variation 
field and the homogenized strain field is then used to condense the strain variation field onto the ho-
mogenized strain field, and the homogenization process becomes a coordinate reduction process com-
parable to the Guyan Reduction used in structural dynamics analyses. The characteristic modes and 
the stress recovery process are also discussed. The new method is then extended to a stress-based ho-
mogenization process based on the Principle of Virtual Forces, and it is further applied to address the 
discrete systems of the aforementioned architectured cellular materials. 
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Figure 1: Novel architectured cellular materials. 
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1 INTRODUCTION 
Multiscale modeling and homogenization have become rich areas of research. Fruitful results have 

been published with a wide range of applications, as listed in recent literature review papers [3-5]. 
Homogenization, especially asymptotic homogenization [6-8], provides a powerful mathematical tool 
for bridging different scale modeling problem, and solving micro-macro, local-global, nano-macro, 
etc., multiscale modeling problems. The applicable areas include so-called heterogeneous materials, 
cellular materials, granular materials, fiber-reinforced polymers, etc. The homogenization method has 
also been utilized in topology optimization processes [9-11]. 

Two types of useful architectured cellular materials have been developed in the literature [1,2]. 
One type is three-dimensional Negative Poisson’s Ratio (NPR) materials [1] (shown in Fig. 1a), and 
the other is so-called Biomimetic Tendon-Reinforced (BTR) materials [2] (shown in Fig. 1b). Both are 
originally obtained through the topology optimization process developed in [9]. These new materials 
are similar to traditional lattice materials, but they can be made of multiple raw materials and cannot 
be referred to as “micro” because of their relatively larger sizes. To estimate the effective material 
properties and to optimally design such materials, a suitable homogenization method was needed.  

The advantages in the mathematical process of asymptotic homogenization should be appreciated; 
however, they are often overlooked in favor of the “mechanics logics” inside the homogenization 
modeling process. Existing asymptotic homogenization methods have provided effective means for the 
multiscale modeling of continuum solids; however, there is a need for extending them to more general 
applications such as handling the discrete systems discussed in this paper. 

This paper provides a view of the existing homogenization process that is based on engineering and 
mechanics rather than on mathematics. Furthermore, most discoveries in this paper actually exist 
elsewhere in various previous publications [12-16]; however, it is useful to provide a more systematic 
explanation for mechanics-based homogenization. Another important point is that theoretically the 
mathematical asymptotic homogenization process requires the micro-cell to be small or infinitely 
small to assume convergence of the process, but this is not necessary for mechanics-based homogeni-
zation. In fact, mechanics-based homogenization can be considered a coordinate reduction process like 
the Guyan Reduction [17], which is widely used in solving structural dynamics problems. Therefore, 
relatively larger size cells can be treated in various applications, including in architectured cellular 
materials.   

First, continuum solids are considered, and a mechanics-based homogenization process is devel-
oped based on the Principle of Virtual Displacements. Although the resultant formulations for the ho-
mogenized material stiffness matrix are the same as those obtained from the asymptotic 
homogenization method, mechanics-based homogenization provides a better understanding in terms of 
the mechanics behind the homogenization process. The new approach separates the strain field into a 
homogenized strain field along with a strain variation field in the local cellular domain superposed on 
the homogenized strain field. The Principle of Virtual Displacements describing the relationship be-
tween the strain variation field and the homogenized strain field is then used to condense the strain 
variation field to the homogenized strain field. Hence, the homogenization process is treated as a co-
ordinate reduction process like the Guyan Reduction.  

New formulas are also obtained to calculate the effective mass density and body forces with im-
proved approximations, which can be further extended to consider other body forces such as thermal 
and magnetic forces. The characteristic stain modes and corresponding characteristic displacement 
modes are discussed. A recovery process is further considered for recovering the local strain and stress 
in the cellular domain after the global analysis.  

The new method can have two variants: one is strain-based homogenization, and the other is stress-
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based homogenization. The stress-based homogenization process is obtained based on the Principle of 
Virtual Forces. Similar to strain-based homogenization, strain-based homogenization separates the 
stress field into a homogenized stress field and a stress variation field superposed on the homogenized 
stress field. The principle of virtual forces is then used to condense the stress variation field into the 
homogenized stress field. The stress-based homogenization process can be extended easily to address 
discrete systems. The new method is then utilized to obtain the effective material properties of the ar-
chitectured cellular materials discussed in this paper. 
2 THE ASYMPTOTIC HOMOGENIZATION METHOD  

An asymptotic homogenization method [3-5] for an elastostatic continuum is derived using the 
mathematical approach described below. First, supposing that the structure in a domain   has a Y-
periodic microstructure, the state equation can be written as: 

 0   for 
t

i kijkl i i i i
j l

u vE d f v d t v d v Vy y 


  

           . (1) 

The periodic microstructure is assumed to be near to an arbitrary point x of a given linearly elastic 
structure. The periodicity is represented by a parameter  , which is very small, and the elastic tensor 
is given in the form of 

 ,  ijkl ijkl
xE E x 

     , (2) 

where  y,xEy ijkl  is Y-periodic, x is the macroscopic variation of the material parameters, and 
y x   gives the microscopic, periodic variations. Now, supposing that the structure is subjected to a 

macroscopic body force and a macroscopic surface traction, the resulting displacement field  u x  
can then be expanded as 

     2
0 1 2,  ,  x xu x u x u x u x   

              , (3) 
 
where the leading term  xu0  is a macroscopic deformation field that is independent of the microscop-
ic variable. Substituting Eqs. (2) and (3) into Eq. (1) and comparing the terms in the same order of  , 
one can obtain the effective rigidity tensor 

       dyyy,xEy,xEYxE Y q

kl
p

ijpqijkl
H
ijkl  






 1 . (4) 

Here, kl  is a microscopic displacement field that is given as the Y-periodic solution of the cell prob-
lem in the weak form 
    kl

p i i
ijpq ijklY Yq j j

v y v yE dy E dyy y y
      . (5) 

The homogenized equation of Eq. (1) becomes 

 0   for 
t

H Hi kijkl i i i i
j l

u vE d f v d t v d v Vy y  
           , (6) 
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where H
if  is an average of the force if on the cellular domain. 

 1H
i iYf f dyY   (7) 

Note that the above approach is obtained based on the assumption of infinitely small cellular cells; 
however, it does not explain why, in many cases, one cannot obtain better results by considering high-
er order terms of  , which indicates that the Taylor expansion in Eq. (3) may not generally converge. 
The approach also has a theoretical limitation in the extension to larger cells. It lacks explicit instruc-
tions for how to determine the boundary conditions in a micro-cell analysis, with the exception of 
mentioning the use of the periodic boundary conditions. In fact, the periodic boundary conditions may 
not be able to remove the rigid body motion of the micro-cell, and different boundary conditions may 
be required to solve different subcases in the homogenization process, which will be discussed in Sec. 
4.2. 
3 HOMOGENIZATION AS A COORDINATE REDUCTION PROCESS  
3.1 Problem Definition 

The elastostatics problem in Eq. (1) is converted into a form of Principle of Virtual Displacements 
and extended to an elastic-dynamics problem.   ( 3R  ) is assumed to be the structural domain 
with a cellular structure that is in periodic or other forms, as long as the proper connections among the 
adjacent cells can be defined; t  is the traction boundary of  . The equilibrium of these types of 
cellular materials can be formulated by the Principle of Virtual Displacements: 
 

t

T T T T
td d d d

  

      
   

       ε D ε u u u f u t , (8) 

where ε  denotes the engineering strain vector (  , , , , , TT
x y z yz zx xy     ε ), u denotes the dis-

placement vector, 
2

2t
 

uu  denotes the acceleration vector, f  denotes the body force vector, and t  
is the boundary traction vector; ε  denotes the virtual stain vector, u  denotes the virtual displace-
ment vector,  1H ( ) | 0

d
V      u u  denotes the space of kinematically admissible displace-

ment fields, and d  is the displacement boundary. 1H ( )s  is the Sobolev space in which the strain 
energy of the structure is finite. D  denotes the elasticity matrix before the homogenization, and   
is the density before the homogenization.  

For simplicity, in the following, we assume a three-dimensional solids problem, even though the 
formulation obtained can be applied to two-dimensional solids problems and problems such as beams, 
plates, or shells. We also assume a linear elasticity problem with a constitute law σ Dε , where σ  is 
a Cauchy stress vector (  , , , , , TT

x y z yz zx xy     σ ), and 6 6ijD    D is the material stiffness 
matrix, even though the formulation obtained can be extended easily to nonlinear problems.  

Note, the Principle of Virtual Displacements requires the following continuity conditions to be sat-
isfied: 
 ( ) ( )    ε E u,  ε E u  (9) 
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where  

  
0 0 0

0 0 0

0 0 0

x z y

y z x

z y x

                       

T

E   (10) 

3.2 Homogenized Process as a Coordinate Reduction 
The asymptotic homogenization method described in Sec. 2 is derived from a mathematical treat-

ment. Now, we employ an approach based on an engineering approach and the mechanics of the prob-
lem. We consider mechanics-based homogenization as a coordinate reduction process that is 
analogous to the Guyan Reduction described in Appendix A.  

Instead of separating the nodal coordinates into internal coordinates and boundary coordinates as in 
the Guyan Reduction, we separate the strain field ε into a homogenized strain field hε  that is constant 
over the cellular domain and continuous over the homogenized structural domain, and a strain varia-
tion field ( )v v yε ε  ( y Y ) superposed on hε , which is defined in cellular Y domain and varies in 
Y, to obtain 
 h vε ε +ε . (11) 

The displacement fields corresponding to hε and vε  are denoted as hu  and vu , and we get  
 h v u u u , (12) 
as well as the following relationships: 
 ( ) ( ) ( ) ( )h h v vin in Y    ε E u       and   ε E u   . (13) 

Substituting Eq. (11) into Eq. (8) produces 
    

t

T T T T
h v h v td d d d

  

       
   

         ε ε D ε ε u u u f u t . (14) 

Equation (14) can be separated as 

 
 

  0      ( )
t

T T T T
h h v t

T
v h v

Y

d d d d
dy Y

  

  

 

    


   
           

   


ε D ε ε u u u f u t
ε D ε ε



. (15) 

Notably, if both equations in Eq. (15) are satisfied while satisfying the continuity conditions in Eq. 
(13) and the connectivity among adjacent cells, then the original equation, Eq. (14) (i.e., Eq. (8)), will 
be satisfied. Here, theoretically, we do not have to assume that the cellular Y domain is small. 

To solve the second equation in Eq. (15), we represent the strain variation ( )v v yε ε  with a mode 
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superposition technique; whereas, in Eq. (16), ( )yφ is a matrix constructed of d modes (d=6 for the 
three-dimensional solids, d=3 for the two-dimensional solids, and d can be other numbers for, e.g., 
beams, plates, and shells problems) with hε as the modal coordinates, namely 
 ( ) ( )v hy yε φ ε      ( y Y ). (16) 

Note, Eq. (16) is an equivalent transformation; therefore, there is no error induced as long as the 
modes in φ  are linearly independent. Substituting Eq. (16) into the second row equation in Eq. (15) 
results in 

   0T
v h

Y
dy     ε D I φ ε  (17) 

or 
   0T

v
Y

dy   ε D I φ . (18) 
Solving Eq. (18) with the continuity conditions in Eq. (13) and the properly defined boundary con-

ditions (periodic boundary conditions for now), we obtain ( )yφ  ( y Y ), and vε  now becomes a 
function of hε . We now assume that the displacement field corresponding to vε can be obtained as  
 ( )v hu θ y u      ( y Y ), (19) 
where ( )θ y  satisfies 
 ( ) ( ) ( )y y φ E θ      ( y Y ). (20) 

Then, substituting Eqs. (16) and (19) into the first row equation in Eq. (15) results in 
 

t

T H T H T H T H
h h h h h h td d d d    

   
       ε D ε u u u f u t  (21) 

where,  stands for the homogenized domain of  , and 
 1 ( )H

Y
dyY

 D D I φ  (22) 

    1 ( ) ( )TH
Y

dyY
  ρ I θ y I θ y  (23) 

  1 ( ) TH
v

Y
dyY

 f I θ y f  (24) 

  1 ( )
tY

TH dsL 
 t I θ y t  (25) 

where, tY t Y    . 
Notably, the homogenized material stiffness matrix in Eq. (22) is exactly the same as in Eq. (4) ob-

tained from the asymptotic homogenization method; however, the effective mass density in Eq. (23), 
the effective internal force in Eq. (24), and the effective traction in Eq. (25) are different from the tra-
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ditional asymptotic homogenization process, which may provide better approximations for these quan-
tities. 
3.3 Solution using a Finite Element Method 

By following a standard finite element approach and assuming an assembly of nodal displacement 
vectors, (1) (2) ( ), ,..., d   χ χ χ χ  and a shape function ( )yN N  in Y, ( )yθ in Eq. (19) can be repre-
sented as  
 ( )yθ Ν χ , (26) 
and we can have 
 Yφ=B χ   and   1 Y ε =B ξ , (27) 
where 
   ( )Y y B E N . (28) 

Substituting Eq. (27) into Eq. (18) gives 
   0T T T T

Y Y YY Ydy dy    ξ B D B χ ξ B D  . (29) 
Equation (29) results in the following finite element equations: 

  ( ) ( ) 1, 2, ,i i
Y Y i d K χ F   , (30) 

where 
  T

Y Y YY dy K B D B , (31) 
and ( )i

YF is the i-th column in YF  and 
 T

Y YY dy F B D . (32) 
Solving Eq. (30) for (1) (2) ( ), ,..., d   χ χ χ χ  gives  

 
1

1 T T
Y Y Y Y Y

Y Y
dy dy 


             χ K F B D B B D , (33) 

and then the homogenized material stiffness matrix can be obtained as 

  1H
YY dyY

 D D I B χ . (34) 

Note, it is interesting to compare Eq. (33) to Eq. (A-5) in the Guyan Reduction to see the similari-
ties, as well as the similarity of the homogenization process with the Guyan Reduction.  
3.4 Characteristic Strain Modes and Deformation Modes 
   

Notably, φ  in Eq. (16) is a matrix constructed of d vectors (e.g., d=6 for three-dimensional solids), 
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namely (1) (2) ( ), , , d  φ= φ φ φ , where each ( )iφ  is labeled a characteristic strain mode of the cellu-
lar structure corresponding to a forced unique strain field applied over the cellular Y domain, where 

1, 2, ,i d     . In fact, Eq. (16) can be rewritten as 

 ( ) ( )
1

d i i
v h

i


=
ε  φ , (35) 

where (1) (2) ( ), , d
h x h y h xy         ,  , and hε can be rewritten using a strain coordinates system, 

( ) ( 1, 2, , )i i    de   , as 

 ( ) ( )
1

d i i
h h

i


=
ε = e . (36) 

Here, for 6d  , 

 (1) (2) (6)

1 0 0
0 1 0
0 0 0, , ,0 0 0
0 0 0
0 0 1

                                               

e  e   e . (37) 

  
By substituting Eqs. (35) and (36) into the second row equation in Eq. (16), the equation for each 

characteristic strain mode ( )iφ can be obtained: 

 ( ) ( ) 0 ( 1, 2, , )T i T i
v vY Ydy dy i d     ε D φ ε D e       . (38) 

Equation (38) describes the physical meaning of the characteristic strain mode ( )iφ , which is the 
response to an applied uniform unit strain field ( )ie in the cellular domain. As shown in the second 
term of Eq. (38), each uniform stain ( )ie results in a stress field, described as a pre-stress applied in the 
cellular domain, such that: 
  ( ) ( )

0 1, 2, ,i i i d σ D e      . (39) 
Therefore, Eq. (38) can also be rewritten as 

 ( ) ( )
0 0 ( 1, 2, , )T i T i

v vY Ydy dy i d    ε D φ ε σ         . (40) 
The characteristic deformation modes of the cell can be obtained by solving Eq. (30) with the fol-

lowing loading condition: 
  ( ) ( ) 1, 2, ,i T i

Y YY dy i d  F B D e      . (41) 
Solving Eq. (30) with Eq. (41) for ( )iχ  results in  
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1

( ) ( )   ( 1,  2,  ,  )i T T i
Y Y

dy dy i d 
            χ B D B B D e  . (42) 

As a special example, for a two-dimensional solid problem, we have  , , TT
x y xy  ε , 

 , TT
x yu uu ,  , TT

x yf ff ,  , TT
x yt tt , and hε can be written as 

 3 ( ) ( )
1

i i
h h

i


=
ε = e , (43) 

where 

 (1) (2) (3)
1 0 0
0 , 1 , 0
0 0 1

                           
e  e  e . (44) 

 
Figure 2 illustrates the uniform unit strain fields in Eq. (44) applied in the two-dimensional cellular 

domain. 
 
 

 ( ) , , T1e 1 0 0  ( ) , , T2e 0 1 0  ( ) , , T3e 0 0 1   
Figure 2: The unit uniform strain field ( ) ( 1,2,3)i i e  applied in the 2-dimesional cellular domain. 

 
Note, in Eq. (43), it is assumed that (1) (2) (3), ,h x h y h xy         . 
3.5 Strain and Stress Recoveries 

When the global analysis is conducted and the homogenized strain hε  is obtained, it is easy to re-
cover the local strain in the cellular domain as 
 ( )h v h   ε ε ε I φ ε , (45) 
and therefore the local stress can be written as 
 ( ) ( )h h

     σ D ε D I φ ε I φ σ . (46) 
Note that these local strain and stress equations can be used to determine the failure and failure 

modes of cellular structures, or to predict the plastic deformation in the cellular domain. Furthermore, 
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the failure modes can be analyzed to determine the critical loads and to improve the local architecture 
design of the cellular material. 
4 EXTENSION TO THE STRESS-BASED HOMOGENIZATION 
4.1 Continuum Systems 
The elastostatics problem in Eq. (8) can also be stated using the Principle of Virtual Forces as 
 0

u
T Td d


     σ A σ p u , (47) 

where σ  (  , , , , , TT
x y z yz zx xy     σ for 3-dimensional solids) stands for the stress vector satisfy-

ing 
  T   E σ f   in    and   T u  E σ t  on  , (48) 
where A is the material flexibility matrix; in general, we obtain 
 1     A D . (49) 
It is also assumed that σ  satisfies  
   0T

  E σ   in    and    T
u   E σ p  on  . (50) 

Similar to the process described in Sec. 3.2, we assume  
 h v σ σ σ , (51) 
where hσ  stands for the homogenized stress field, vσ  is the stress variation from the homogenized 
stress field in the cellular domain; also, we assume   
 h v p p p , (52) 
where hp stands for the boundary force corresponding to the homogenized stress field hσ , vp  stands 
for the boundary force corresponding to the stress variation vσ . Eq. (47) can be rewritten as 

    
 

0
0

u

TT
h h v h v

T
v h vY

d d
dy Y





 


 

         
 


 σ A σ σ p p u

  σ A σ σ        for . (53) 

Similar to the process in Sec. 3.2, we assume 

 ( ) ( )
1

1

d i i
h h

i


σ = e  and  ( ) ( )
1

1

d i i
v h

i


σ  = z . (54) 
Substituting Eq. (54) into the second row equation in Eq. (53) results in 

 ( ) ( )
1 0 ( 1, 2, , )T i T i

v vY Ydy dy i d     σ A z σ A e       . (55) 
( )
1 ( 1, 2, , )i i dz    can be obtained by solving Eq. (55) with the properly defined (periodic) boundary 

conditions, and then the first row equation in Eq. (53) becomes 
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 0
u

T H T H
h h hd d     σ A σ p u , (56) 

where 

  1
1H

Y dyY
 A A I z  and (57) 

  1
uY

TH dsL  u I ω u , (58) 

such that 
   1

T
uY uY uand Y     E z ω  on      . (59) 

Note, it is not necessary for the stress-based homogenization process to produce the same effective 
material properties as the strain-based homogenization process. In fact, based on the Principle of Vir-
tual Displacements and Principle of Virtual Forces, the strain-based homogenization process may 
provide an upper boundary for the effective material properties; the stress-based homogenization pro-
cess provides a lower bound for the effective material properties. 

As a special example, for a two-dimensional solids problem, we have  , , TT
x y xy  σ , and hσ  

becomes 

 3 ( ) ( )
1

i i
h h

i


=
σ = e . (60) 

Figure 3 illustrates the uniform unit stress fields in Eq. (61) applied in the two-dimensional cellular 
domain. 

 
 

 ( ) , , T1e 1 0 0  ( ) , , T2e 0 1 0  ( ) , , T3e 0 0 1

1 1

1

1

1

1

  
Figure 3: A unit uniform stress field ( ) ( 1,2,3)i i e   applied on the 2-dimesional cellular domain. 

 
Note that in Eq. (60), (1) (2) (3), ,h x h y h xy          is assumed. 
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4.2 Extension to the Discrete Systems 
With the above understanding, the extension to discrete systems can easily be performed by first, 

converting the applied unit stress field into concentrated forces and applying them to the proper nodes 
of the cellular structure; second, one must calculate the displacements at the properly selected nodes to 
approximate the strain in the cellular domain and use the obtained information to approximate the ef-
fective material properties. As an example, Fig. 4 uses a two-dimensional version of the NPR material 
shown in Fig. 1a to illustrate the loading conditions and boundary conditions for the homogenization 
of a 2D NPR cell structure. 

P2

X
YO E

A C

(1,1,1)

(0,0,1) (0,0,1)P2

 ( ) , , T2e 0 1 0

1 1

P1

X
YO E

A C

(1,1,1)

 ( ) , , T1e 1 0 01

1

(0,0,1) (0,0,1)

(0,1,1)F (0,1,1)F

  

P3

E

A C

(1, 1, p)

(1, 0, p)
(=A)

F

 ( ) , , T3e 0 0 1
1

1

 
Figure 4: The loading and boundary conditions for the homogenization of a 2D NPR cell structure. 

In Fig. 4, the vertical direction is set as the x-direction, and the horizontal direction is as the y-
direction. As shown in Figure 4, there are three analysis cases in total corresponding to the three char-
acteristic modes in the homogenization problem. Each loading case corresponds to a unit stress field, 
discussed in Sec. 4.1, with an amplitude equal to the facing area multiplied by the unit stress, which is 
1. The boundary conditions are determined by the periodicity consideration as well as the symmetry of 
the cell structure and the connectivity to the adjacent cells.  

As shown in the left figure in Fig. 4, a concentrated force 1P  is applied at Point F, which represents 
the tension stress on the top of the cell. Here, boundary condition E (1, 1, 1) indicates that node E is 
fixed along all of the directions, including the x- and y-directions as well as the deformation angle. 
Additionally, A (0, 0, 1) indicates that only the deformation angle is fixed at node A, and this is the 
same for node C.  

As shown in the middle figure in Fig. 4, two concentrated forces with equal amplitudes 2P  are ap-
plied at Points A and C in opposite directions, representing the tension stress on the two sides of the 
cell. Here, the boundary conditions are the same as in the left figure. 

The right figure in Fig. 4 illustrates a shear force applied on the cellular cell, for which C=A indi-
cates the periodicity boundary conditions needing to be applied at nodes A and C, and F (1, 1, p) and E 
(1, 1, p) indicate the periodicity boundary condition for the deformation angle at nodes F and E.   

Note that the boundary conditions must be considered case by case for the typical cell configura-
tion, structural symmetry, and connectivity with the adjacent cells in addition to the periodic arrange-
ment of the cells in the global domain.      
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5 EXAMPLES 
5.1 Three-dimensional NPR Materials 

Figure 5 illustrates the material cell model for the three-dimensional NPR materials invented in the 
literature [1]. NPR materials are also called auxetic, anti-rubber, and dilational materials. Since Lakes 
published his article in Science in 1987 [18], NPR materials have attracted increasingly more attention 
because of their unique behavior. Unlike conventional materials, NPR materials may shrink when 
compressed (expand when stretched) along the perpendicular direction. The unique features of the 
NPR materials include, but are not limited to, 1) stiffening under a load, 2) impact energy absorption, 
3) function-graded and function-oriented design, and 4) the ability to be engineered to have other de-
sired functionalities. 

As shown in Fig. 5, the invented NPR structure comprises a pyramid-shaped unit cell having four 
base points, A, B, C, and D, defining the corners of a square lying in a horizontal plane. Four stuffers 
of equal length or different lengths extend from a respective one of the base points to a point E spaced 
apart from the plane. Four tendons of equal length or different lengths, but less than the lengths of the 
stuffers, extend from one of the base points to a point F between point E and the plane. There are, in 
general, five parameters that determine the cell geometry, i.e., (1) (2) (1) (2)

1 1 2 2, , , , eh       . For simplici-
ty, in this paper, we assume (1) (2)

1 1 1    and (1) (2)
2 2 2    , such that the geometrical parameters 

are reduced to three, 1 2, , eh   . The design parameters of the NPR cell also include the material 
properties of the stuffers and the tendons, as well as shapes of the strips and the cross-section shapes 
of the stuffers and tendons. In this paper, we assume that all of the strips are straight and have constant 
cross-sectional shapes that can be represented by 1 1 1 1, , ,E A I    for the stuffers and 2 2 2 2, , ,E A I    for 
the tendons. Note, in these examples, we assume both the stuffers and the tendons are made of steel. 

In the three-dimensional configurations, a collection of unit cells is arranged as tiles in the same 
horizontal plane with the base points of each cell connected to the base points of the adjoining cells, 
thereby forming a horizontal layer. A collection of horizontal layers is then stacked with each point E 
of the cells in one horizontal layer being connected to a point F of the cells in an adjacent layer. The 
above facts can be used to determine the connectivity among the adjacent cells and then used to de-
termine the boundary conditions for the cell analyses in the homogenization process.   

 

θ1
θ1

θ2
θ2

heθ1
θ1

θ2
θ2

he

Cross-section shape

Cross-section shape 
Design Variables:
• ,      ,      ,     , 
• Tendon material, strip 

shape, cross-section 
shape and dimensions

• Stuffer material, strip 
shape, cross-section 
shape and dimensions

Stuffer material

Tendon materialCell Model 

Stuffer strip shape

Tendon strip shape
(1)

(2)

(1)

(2)

( ) 1
1

( ) 2
1

( ) 1
2

( ) 2
2 eh

A
B CD

E

F

 
Figure 5: Design variables in a 3D NPR cell. 
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Figure 4 has illustrated three analytical cases with the loading and boundary conditions for the ho-
mogenization of a 2D NPR cell structure. In the following analyses, we consider the homogenization 
problem of a 3D NPR material shown in Fig. 5. Due to the symmetry of the cell structure, we can con-
sider only a quarter of the cell structure, which results in a two-dimensional analysis problem, as 
shown in Fig. 6; meanwhile, Fig. 6 illustrates the problem setup for the first mode under a unit stress  (1) 1,0,0,0,0,0 Te . Here, in Fig. 6, the concentrated force 1P  should be a quarter of the total force 
(unit stress multiplied by the top area of the cell) applied on the top of the cell. The boundary condi-
tions are determined by considering the periodic conditions as well as the connectivity among the ad-
jacent cells, as discussed in Sec. 4.2.  

2

1

P1

eh

l2

l1

D1

X
YO E

A

F

(1,1,1)

(0,0,1)

(0,1,1)

 ( ) , , , , , T1e 1 0 0 0 0 0
1

1D2

1 1 1 1, , ,E A I    2 2 2 2, , ,E A I    

 
Figure 6: Analysis model for characteristic mode 1. 

The analytical problem shown in Fig. 6 can be analytically solved using the assumption of the Eu-
ler–Bernoulli beam for the bending along with the tension of all of the members. As a result, we obtain 
the analytical solution for 1D  and 2D  as functions of 1P  as follows: 

 
    2

1 1

2 1

P

P

     D  D 

1 2 1 2 1 2
11 11 22 22 12 12

1 2
11 11

2 1 2 1
11 12 12 11

1 2
11 11

g g g g g g  = g g
g g g g=                              g g

, (61) 

where 

  
1 2 2
11 1 1 1 1
1
12 1 1 1 1
1 2 2
22 1 1 1 1

sin cos
sin cos

cos sin

g a b
g a b
g a b

 
 

 
      

   ,       
2 2 2
11 2 2 2 2
2
12 2 2 2 2
2 2 2
22 2 2 2 2

sin cos
sin cos

cos sin

g a b
g a b
g a b

 
 

 
      

 (62) 

 
3 3

1 1 2 21 1 2 2
1 1 1 1 2 2 2 2

, , ,12 12
l l l la b a bE A E I E A E I      . (63) 

In the above formulation, there are only 3 independent design variables among 1 2 1 2, , , andl l     , 
and the following relationship exists: 
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 1 1 2 2sin sinl l  . (64) 
The mass density can be obtained as 

  1 1 1 2 2 24H
el A l A V    , (65) 

where eV  is the total volume of the cell.  
Based on the above analysis, the corresponding strains along X and Y directions are obtained. Here, 

1 /X eh  D  and 2 1 1( sin )Y l  D . Figure 7 illustrates the effective Young’s modulus (GPa) as a 
function of two design variables 1 and 2 . Here, the horizontal axis is 1 , and the vertical axis is the 
difference angle between 2 and 1 . For this typical setup, the material becomes stiffer when 1 be-
comes small and the difference between 2 and 1 becomes small; the effective Young’s modulus (in 
black) can vary from 1 GPa to 50 GPa in the parameter range considered. Figure 7 also shows the den-
sity contour (in red) as a percentage with respect to the design variables. It is seen that the density also 
increases when 1 becomes small and the angle difference becomes small; meanwhile, from the map, 
the optimal designs can be obtained for the given densities. For example, a 50 GPa design can be ob-
tained at a material density of 25% when 1  is approximately 8 degrees and 2 is 53 degrees. Figure 8 
illustrates the effective Poisson’s ratio (as a percentage) obtained from the analysis. It is seen that the 
Poisson’s ratio reaches the most negative number (less than -0.6) when 1 is within 10-15 degrees, 

2 is within 20-30 degrees, and the material density is near 25%. Figure 9 further illustrates the critical 
pressure of the cellular material, indicating that a failure analyses can also be conducted using the 
model developed. Notably, the analysis results depend on the other parameters used for the cell ele-
ment, and studying the actual material properties is not the purpose of this paper. 
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Figure 7: The effective Young’s modulus (in black and GPa) for mode 1. 
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Figure 8: The effective Poisson’s ratio (in black and 100%) for mode 1. 

 

0
10

20
30

40

5
10

15
20

25
30

35
40

45
0

1

2

3

4

5

6

7

8
x 105

Member 1 angle (degrees)

Critical Pressure

Member 2 angle difference (degrees)

Cri
tica

l P
res

sur
e (

psi
)

1.17e+05

1.77e+05

2.38e+05

2.99e+05

3.59e+05
4.2e+05

4.81e+05

5.42e+05

6.02e+05

6.63e+05

Member 1 angle (degrees)

Me
mb

er 2
 an

gle
 dif

fer
enc

e (
deg

ree
s)

5 10 15 20 25 30 35 405

10

15

20

25

30

35

40

45

 
Figure 9: The critical pressure of the cellular structure for mode 1. 

 
Figure 10 illustrates the problem setup for the second mode under a unit stress  (2) 0,1,0,0,0,0 Te . Due to the symmetry of the cell structure, we can also consider only a quarter 

of the cell structure and a two-dimensional analysis problem, as show in Fig. 10. Here, the concentrat-
ed force 2P  should be the total force due to the unit stress applied on the side of the cell.  
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Figure 10: The analysis model for characteristic mode 2. 
 
The analytical problem shown in Fig. 10 can be analytically solved with the same assumption as in 

the first case. As a result, for mode 2, we have  

 
1 2

2 2

P

P

 D  D 

2 1 2 1
11 12 12 11

1 2
11 11

1 2
11 12

1 2
11 11

g g g g  = g g
g g=       g g

. (66) 

Figure 11 illustrates the effective Young’s modulus (GPa) (in black) as a function of the two design 
variables 1 and 2 . For this typical setup, the material becomes stiffer when 1 becomes larger, and 
the difference between 2 and 1 becomes larger; the effective Young’s modulus can vary from 0.5 
GPa to 20 GPa in the parameter range considered. Figure 12 illustrates the effective Poisson’s ratio 
(100%) obtained from the analysis. The Poisson’s ratio reaches the most negative number (less than -
2.0) when 1 approaches 40 degrees and 2 is within 70-80 degrees. Figure 13 further illustrates the 
critical pressure on the side of the cellular structure indicating that side failure analyses can also be 
conducted using the model developed.  
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Figure 11: The effective Young’s modulus (in black and GPa) for mode 2. 

-2

-1.6

-1.2

-1.2

-0.8

-0.8

-0.6

-0.4

-0.2

0

Member 1 angle (degrees)

Me
mb

er 
2 a

ngl
e d

iffe
ren

ce 
(de

gre
es)

5
6

8

10

15

25

50

5 10 15 20 25 30 35 405

10

15

20

25

30

35

40

45

 
Figure 12: The effective Poisson’s ratio (in black and 100%) for mode 2. 
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Figure 13: The critical pressure of the cellular structure for mode 2. 

Note that the shear mode shown on the right in Fig. 4 and other shear modes in the three-
dimensional problem can also be considered; in fact, two of the shear modes can be obtained using the 
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analysis model shown in Fig. 4, which is omitted in this paper. 
5.2 BTR Materials 

Figure 14 illustrates the parameterization of the BTR materials proposed in the literature [2]. As 
shown in Fig. 14, BTR has three major components: 1) cover sheets on the top and bottom, which are 
usually made of thin composites (such as fiber-reinforced polymer) or metallic sheets; 2) stuffers, 
which are usually made of stiff materials such as metallic columns, ceramics, or high stiffness compo-
sites; and 3) tendons, which are usually made of high strength tension materials, such as metal wires or 
high strength fibers. In summary, BTR materials can be made of various raw materials depending on 
the applications. One of major features of the BTR materials is their lightweight characteristics and 
high material efficiencies, especially, for the out-of-plane bending stiffness as compared to the exist-
ing composite materials. As shown in Fig. 14, the major design parameters for the geometry of BTR 
materials are 2 1 1, , andh l t   . Other design parameters include the material properties of sheets, stuff-
ers, and tendons represented by and ( 1, 2,3)i iE i    , the cross-sectional area of the stuffers repre-
sented by 2A , and the cross-sectional area of the tendons, 3A . 

 

Design Variables:
• ,     ,      
• Tendon material 

property, cross-section 
area and density

• Stuffer material 
property, cross-section 
area and density 

• Covering sheet material 
property

Cell Model 
• Covering sheet material

h2 l1h2

l1

t1

t1

Periodic Structure 

,E 1 1

, ,E A 2 2 2

, ,E A 3 3 3  
Figure 14: The design variables in a BTR cell.  

 

c) Pure bendinga) In-plane tension b) Out-plane compression  
Figure 15：The strain modes of the BTR cell.  
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To estimate the effective material properties of BTR materials, a strain-based homogenization pro-
cess is used. Fig. 15 illustrates the three major strain modes considered in this paper. Note that the 
two-dimensional figures shown in Fig. 15 actually represent three-dimensional structures. Additionally, 
note that because a major advantage of BTR materials is the high out-of-plane bending stiffness and 
out-of-plane bending strength, the effective bending stiffness is considered (Fig. 15c) instead of shear 
modulus.  

From Fig. 15a, the homogenized in-plane tension modulus H
in planeE  can be obtained as  

   
2

1 31 1 332 22 1 22 1 1 2

22
2 2

H
in plane

l AtE E Eh t h t l h
   

= . (67) 

From Fig. 15b, the homogenized out-of-plane compression modulus H
out planeE  can be obtained as  

    
 

3
2 1 1 2 2 1 2 3

2 332 2 21 2 1 1 2 21 1 2

2 4 21
2

H
out plane

h t E E h t h AE A El h E t E l l h


      
= . (68) 

From Fig. 15c, the homogenized (unit) bending stiffness  H
bendingEI can be obtained as  

      3 3
1 2 1 2

1 212
H
bendingEI E h t h   = . (69) 

And the effective mass density H can be obtained as  

 
2 2

1 2 31 21 2 32 2
2 1 1 1 2

42
2

H l h At A
h t l l h    = . (70) 

Figures 16-18 illustrate example results obtained from the above formulations for a typical design 
case. Here, only two design variables, the stuffer height 2h  and the sheet thickness 1t , are varied for 
the parametric studies. Note that all of the results in Figs. 16-18 are normalized with the initial values 

1 1t  mm and 2 15h  mm.  
Figure 16 shows the normalized bending stiffness with the normalized area density. The bending 

stiffness increases by increasing either design parameter, but an increase in the stuffer height is more 
effective than increasing the sheet thickness. This map is useful for selecting a proper design. For ex-
ample, by selecting 1 1.5t  mm and 2 21.6h  mm, we can increase the bending stiffness 3 times 
while only increasing the area density by 1.4 times.  

Figure 17 shows the normalized in-plane modulus with the normalized area density. The in-plane 
modulus is insensitive to the design changes in this case. Figure 18 further shows the normalized out-
plane modulus with the normalized area density. In this case, the out-of-plane modulus decreases 
when the stuffer height is increased, and it is less sensitive to design changes in the sheet thickness. 
Note that the analysis results also depend on the other parameters used for the cell element and study-
ing the actual material properties is not the purpose of this paper. 
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Figure 16：The normalized bending stiffness – normalized area density map.  
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Figure 17：The normalized in-plane modulus – normalized area density map.  
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Figure 18：The normalized out-plane modulus – normalized area density map.  
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6 CONCLUSIONS  
A mechanics-base homogenization approach is presented, resulting in two versions of the method: 

strain-based homogenization and stress-based homogenization. The strain-based homogenization pro-
cess is obtained based on the Principle of Virtual Displacements; meanwhile, the stress-based homog-
enization process is obtained based on the Principle of Virtual Forces. Strain-based homogenization 
separates the strain field into a homogenized strain field and a strain variation field superposed on the 
homogenized strain field. The stress-based separates the stress field into a homogenized stress field 
and a stress variation field. The Principle of Virtual Displacements (Principle of Virtual Forces) for 
the relationship between the strain (stress) variation field and the homogenized strain (stress) field is 
then used to condense the strain (stress) variation field to the homogenized strain (stress) field, and the 
homogenization processes become coordinate reduction similar to the Guyan Reduction. 

The new derivation in this paper provides improved engineering insight and enhanced physical un-
derstanding for dealing with boundary conditions, internal forces, and other issues in homogenization 
modeling processes. The stress-based homogenization process can be extended easily to handle dis-
crete systems, providing a bridge between discrete and continuum systems. The mode analysis and the 
recovery process presented in this paper are useful tools for failure mode prediction, failure mode 
management, and design optimization of architectured materials. 

The new method provides a way to further improve the accuracy and efficiency of multi-scale 
analysis problems, especially in nonlinear and structural dynamics analyses, and it more easily extend-
ed to handle various mechanical simulation and design problems. The newly derived method has been 
utilized to obtain effective material properties of the architectured cellular materials discussed in this 
paper. 
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APPENDIX A: GUYAN REDUCTION  
Guyan Reduction [17] is well known and widely used in the analyses of finite element-based struc-

ture dynamics problems to reduce the size of the problem to be solved. It is assumed that the finite el-
ement equation of a substructure can be written as: 
  mu ku f  (A-1) 
where u stands for the nodal coordinate vector of the finite element model; m , c , k , and f stand for 
the mass matrix, damping matrix, stiffness matrix, and nodal force vector of the structure, respectively.  

The Guyan Reduction process divides the nodal coordinates u as  

 
I
J

    
uu u , (A-2) 

where Ju  contains the remaining coordinates (in which force is applied), and Iu contains the coordi-
nates to be condensed (in which no force is applied). One can rewrite the corresponding static problem 
of Eq. (A-1) as 

  
II I IJ J
JI I JJ J J

    
k u k u 0
k u k u f . (A-3) 

Because there is no force applied on Iu , Iu can be consider a function depending on Ju ; namely, 
we can find a matrix X that satisfies 
 I Ju Xu . (A-4) 

Substituting Eq. (A-4) into the first row equation in Eq. (A-3) gives  
 II IJ

  1X k k . (A-5) 
Substituting Eqs. (A-4) and (A-5) into the second row equation in Eq. (A-3) gives  

 *
J Jk u f , (A-6) 

where, *k in Eq. (A-7) is called the reduced stiffness matrix (or condensed stiffness matrix, effective 
stiffness matrix), 
 *

JJ JI II IJ
  1k k k k k . (A-7) 

Equations (A-4) and (A-5) can also be used to condense the mass matrix in Eq. (A-1), and we have 
 * T T

JJ IJ JI II   m m X m m X X m X , (A-8) 
where *m  is called the reduced mass matrix. 
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Abstract. The present study proposes a homogenization technique for the estimation of the
overall behavior of composite materials characterized by a nonlinear behavior. A mixed nonuni-
form TFA procedure is proposed in order to study the mechanical response of periodic compos-
ites characterized by linear isotropic hardening plasticity. As the case of periodic composites is
considered, the homogenization is performed on a repetitive unit cell that plays the equivalent
role of representative volume element for random media. A numerical application is performed
to test the effectiveness of the proposed technique. In particular, the homogenization results are
compared with the ones carried out by micromechanical nonlinear finite element analyses.
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1 INTRODUCTION

The popularity and the use of composite materials have recently increased in the realm of
structural engineering, due to their high performances deriving from their superior properties in
terms of light weight and resistance. For this reason, effective tools able to predict the mechani-
cal behavior of these media at different scales are required in the design of composite materials.
A significant contribution is given by homogenization techniques, which allow to determine the
overall behavior of a composite medium starting from its microscopic properties and finally to
derive an equivalent homogenized material for numerical computations.

Among the homogenization techniques, an interesting approach for the investigation of the
nonlinear response of composites is the Transformation Field Analysis (TFA), originally pro-
posed in [1]. This technique takes into account the nonlinear behavior of the constituents, in-
troducing an approximation of the inelastic strain. In the literature, several TFA schemes have
been developed, differing mainly in the assumption concerning the distribution of the inelastic
strain and in the computation of the internal variable evolution [2, 3, 4, 5, 6].

Recently, a new mixed nonuniform TFA (MxTFA) scheme has been presented by the authors
[7], with the aim to improve the description of the inelastic strain field and the computation of
the evolutive problem. In this paper, an extension of the MxTFA to the analysis of periodic
composites characterized by linear isotropic hardening plasticity is presented. In particular,
a mixed variational approach, originally proposed in [8] and recently implemented in [9, 10],
involving the weak form of compatibility and plastic admissibility equations is adopted to derive
the evolution laws of the internal variables in the TFA framework. In fact, the literature shows
how stress recovery techniques are able to produce very good results [11, 12].

According to the MxTFA, the RVE is subdivided into subsets and in each subset a uniform
plastic multiplier and equilibrated, linearly varying stresses are assumed. As a result, the inelas-
tic strain distribution depends on the assumed distributions of stresses and plastic multiplier, that
are the independent variables of the problem, and whose parameters are simultaneously evalu-
ated by enforcing the compatibility condition and the elasto-plastic consistency condition.

The effectiveness of the proposed procedure is shown through a numerical example in the
framework of 2D plane stress hardening plasticity, where the results are compared with the ones
carried out by micromechanical nonlinear finite element analyses.

In the following, the Voigt notation is adopted; the strain and stress tensors are reported as
the vectors with 3 components ε = {ε11 ε22 γ12}T and σ = {σ11 σ22 σ12}T , respectively.

2 MxFTA HOMOGENIZATION WITH HARDENING PLASTICITY

Let a composite material be considered assuming a periodic microstructure, so that the mi-
cromechanical analysis and the homogenization of the material can be performed on a unit cell
(UC) .

The micromechanical and homogenization problem for the UC denoted by Ω consists in
computing the periodic displacement field ũ, the strain field ε, the periodic strain field ε̃,
the inelastic strain field π = {π11 π22 π12}T , the stress field σ and its average value σ̄, for
a prescribed value of the average strain ε̄ assigned in Ω. To this end the compatibility, the
constitutive, the equilibrium with zero body forces equations, with periodic suitable boundary
conditions as well as the strain and the stress average equations have to be satisfied.

The total strain at the point x of the UC depends on the contributions deriving from the
average strain ε̄ and the inelastic strain π. The periodic strain field ε̃ can be therefore split into:
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ε̃ = ε̃ε + ε̃π with ε̃ε = Lεε̄ , ε̃π = Lππ (1)

with ε̃ε and ε̃π the perturbation strains due to the average strain ε̄ and to the presence of the
inelastic field π, respectively; Lε and Lπ are localization matrices depending on the point x.

Assuming an associative evolution law, the evolution of the inelastic strain is governed by:

π̇ = γ̇ N (σ) with N (σ) =
∂f

∂σ
, (2)

where γ is the plastic multiplier and f is the yield function, satisfying the Kuhn-Tucker and
consistency conditions:

f (σ) ≤ 0 , γ̇ ≥ 0 , f (σ) γ̇ = 0 , ḟ (σ) γ̇ = 0 . (3)

The compatibility condition and the Kuhn-Tucker conditions (3) can be rewritten in the weak
form as: ∫

Ω

δσTC−1σ dV −
∫

Ω

δσT (ε̄+ Dũ− π) dV = 0 ∀ δσ : DT δσ = 0, (4)∫
Ω

δγ f (σ) dV ≤ 0 , γ̇ ≥ 0 ,

∫
Ω

δγ f (σ) γ̇ dV = 0 ∀ δγ ≥ 0 , (5)

where D is the compatibility matrix operator, DT the equilibrium operator, C the material
constitutive matrix and V the volume of Ω.

Considering plane stress elasto-plasticity with a von Mises yield criterion in the framework
of linear isotropic hardening, the limit function is:

f (σ) =
3

2
σTMσ − (σy +H ε̄p)

2 , (6)

where

M =
1

3

 2 −1 0
−1 2 0

0 0 6

 ,
σy is the flow stress, H is the hardening parameter, and ε̄p is the accumulated plastic strain,
whose evolution is defined as:

ε̇p =

√
2

3
‖π̇‖. (7)

Let the UC be divided into n subsets Ωj with j = 1, .., n, each of them characterized by a
volume V j , such that:

Ω =
n⋃
j=1

Ωj , V =
n∑
j=1

V j . (8)

A representation form is assumed for both the stress and plastic multiplier fields. In particu-
lar, it is assumed that on the j−th subset Ωj :

σj = Pj σ̂j , (9)
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γ̇j =

ρ∑
i=1

ri (x) ˙̂γ
j

i =
(
rj
)T ˙̂γ

j
, (10)

where Pj is a 3× p matrix collecting a set of p self-equilibrated stress modes, σ̂j the vector of
the unknown p stress parameters, rj and ˙̂γ

j
are the two vectors collecting the ρ approximation

functions and coefficients of a linear combination, respectively. In particular, it is assumed a
linear approximation for the stress field in the subset Ωj; consequently, it results p = 7 and

Pj =

 1 0 0 x2 0 x1 0
0 1 0 0 x1 0 x2

0 0 1 0 0 −x2 −x1

 ; (11)

moreover, it is set ρ = 1, so that the plastic multiplier is approximated in the typical subset Ωj

by a uniform function, i.e. γ̇j = ˙̂γ
j
.

Taking into account the equations (9) and (10), the flow rule equation (2) in the subset Ωj

takes the form:

π̇j =
(
rj
)T ˙̂γ

j
N̂
(
σ̂j
)

with N̂
(
σ̂j
)

= N
(
Pj σ̂j

)
. (12)

From Equation (12) it can be highlighted that the representation form for the inelastic strain
rate depends on the approximations introduced for the stress and plastic multiplier.

Substituting the introduced approximations in equations (6) and (12) for each subset Ωj

the discretized form of the yield function and of the evolution law are recovered. Finally, the
evolution problem is solved adopting a step-by-step backward Euler algorithm. At each time
step, the solution of the evolution problem is performed by establishing a predictor-corrector
strategy. Details on the numerical model can be found in [7].

3 NUMERICAL TEST

In this section, the performance of the proposed homogenization procedure is verified on
the repetitive UC representative of a realistic application, subjected to periodic boundary con-
ditions. The microstructure of the UC is characterized by a plastic matrix embedding elastic
circular inclusions with volume fraction equal to 36%. The UC geometry is shown in Fig. 1a;
due to symmetry only one quarter of the UC is modeled. The following geometrical parameters
are assumed: a = 0.5 mm and r = 0.34 mm. The material parameters are collected in Table 1.

The localization matrices Lε,j and Lπ
i,j are evaluated performing linear elastic finite element

analyses of the UC subjected to each component, assumed equal to one, of ε̄ and of πi, respec-
tively, determining the perturbation strain at each Gauss point of the finite element mesh. The
MxTFA homogenization analysis is performed discretizing the UC with 7 subsets (6 subsets
for the matrix and 1 subset for the inclusion), as shown Fig. 1b. Thus, the number of linear
elastic pre-analyses is equal to the 3 components of ε̄ plus the number of the subsets times the
7 components of σ̂j (3 + 6× 7 = 45); the number of internal variables results 6× 7 = 42. For
the finite element model employed to perform the linear elastic pre-analyses and to compute
the micromechanical reference solution, the quarter of UC is discretized using 2D plane stress
four-node finite elements. In particular, 304 finite elements are used, 176 for the matrix and 128
for the inclusion. The internal variables of the nonlinear micromechanical analysis are equal to
176× 4× 3 = 2112, significantly higher than the ones of the MxTFA.
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The results obtained with the homogenization procedure are compared with nonlinear mi-
cromechanical analyses (FEA), carried out using finite elements characterized by elastic and
plastic constitutive models.

Figure 1: Geometry of the UC (a) and subset discretization (b).

Constituent E [MPa] ν σy [MPa] H [MPa]
Inclusion (elastic material) 410000 0.19 - -
Matrix (plastic material) 75000 0.33 426 2894

Table 1: Material properties of the constituents.

In this test the UC is subjected to uniaxial loading along the x1-axis, with the average strain
ε̄11 monotonically increased until the final value ε̄11 = 0.03. Fig. 2 shows the constitutive
response in both cases of elasto perfectly plastic and linear hardening (LH) of the equivalent
homogenized material in terms of σ̄11 and ε̄11, together with the micromechanical reference
solution. As it can be noted, the MxTFA is able to accurately reproduce the overall behavior
of the UC. Moreover, the final value of the average stress σ̄11 obtained with the MxTFA is
compared with the reference one deriving from the micromechanical analysis in Table 2; as it
can be noted, the error is less than 12%.

4 CONCLUSIONS

A new mixed nonuniform TFA for the analysis of periodic composites characterized by linear
isotropic hardening is proposed. The inelastic field is recovered from the equilibrated stresses
and plastic multiplier parameters, that are the independent variables of the problem. The evolu-
tion equations involving the internal variables are rationally derived from a variational principle
based on the complementary formulation.
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Figure 2: Mechanical response of the UC subjected to uniaxial loading.

Type of analysis σ̄11(MPa) Error (%)
FEA 486.71 -
MxTFA 499.66 2.66
FEA LH 627.73 -
MxTFA LH 697.53 11.11

Table 2: Uniaxial loading: final value of the average stress.

The numerical example shows the ability of the proposed MxTFA technique in reproducing
the micromechanical nonlinear response for periodic composite characterized by Mises linear
isotropic hardening behavior.

The presented approach is much less expensive than the micromechanical finite element
analyses from a computational point of view. In fact, in the proposed approach the elasto-plastic
problem is solved at each time-step iteration at subset level, adopting a variational formulation
resulting in a system of equation involving a number of internal variables significantly lower
than in the nonlinear micromechanical analysis.

Because of the computation efficiency, the proposed MxTFA approach results very promis-
ing for being implemented at the Gauss point level for the development of an effective multiscale
procedure.
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Abstract. The prediction of formability is one of the most important tasks in sheet metal pro-

cess simulation. The forming limit diagram (FLD) is an important tool that is used to under-

stand and characterize the formability of sheet metals. This method meets both manufacturer 

and user’s requirements and is widely used in factory and research laboratories [1, 2]. How-

ever, experimental measurements and determination of the FLD is costly and time consuming. 

Therefore analytical and numerical predictions based on the theory of plastic instability allow 

determining the critical value under different loading paths and has already attracted signifi-

cant attention for formability evaluation.  

In this contribution, a mathematical formulation is derived by using Swift and Hill analytical 

theory. The formulation is numerically implemented in a user developed FLD MATLAB script 

to predict diffuse and localized necking. This work also presents and discusses the influence 

of different yield surface and asymmetrical effect on the formability under different loading 

strain path. 

2323



Shenghua Wu, Nannan Song, F.M.Andrade Pires 

1 INTRODUCTION 

In sheet metal forming, necking and wrinkling are commonly observed failure. In order to 

describe the occurrence of necking and present the formability, a most realistic and general 

method was introduced at the beginning of 1960s by Keeler [1] and Goodwin [2] who pro-

posed the concept of Forming Limit Diagram, which involved a wide range of forming limit 

strains of a homogeneous material at different strain-states (from uniaxial tension, to plane 

strain tension and biaxial tension). The forming limit strain was constructed with experiments 

on various proportional loading paths by measuring the distortions of small grids pre-marked 

on the sheet surface [3-5]. However, due to the time-consuming, costly and tedious experi-

mental work involved in FLD measurement, a theoretical prediction of the FLD has become 

popular and essentially important in sheet metal forming and the related industries.  

Since the 1950s, based on different failure criteria, a number of analytical/theoretical mod-

els for predicting FLDs have been developed [6]. According to the concept the limit strains 

can be calculated on the basis of certain plastic instability criteria. One of the first criteria 

made in order to evaluate diffuse instability and evaluate formability of sheet material was 

proposed by Swift in 1952 [7]. He estimates diffuse necking to occur for an isotropic material 

when the major principal strain reaches limit values. This swift criterion is limited to isotropic 

material. To overcome this limitation Moore and Wallace [8] expanded the criterion to take 

into account anisotropic behavior using Hills’s 48 yield criterion. Hill in 1952 [9]  found that 

the forming limits predicted by the diffuse plastic instability criterion underestimate the form-

ing capacity for the left hand side of forming limit diagram. To overcome this underprediction, 

Hill proposed a localized plastic instability criterion, which states that a local instability can 

occur only after the formation of a diffuse instability, the necking direction is coincident with 

the direction of zero-elongation, and gave the final limited strain formulation for isotropic ma-

terials. This study led to the well-known zero extension assumption, i.e. that the localization 

band develops along the zero extension direction in a sheet metal. This analysis predicted that 

localized necking would not occur in a uniform sheet, subject to positive biaxial stretching for 

which no zero extension direction exists. Therefore, Hill’s criterion is only applicable to the 

LHS of the FLD. J. Majak et al [10] and Dudzinski et al [11] proposed a simple algorithm for 

anisotropic yield criteria, however, this algorithm cannot capture the shape evolution of yield 

surface and strength differential (SD) effect for asymmetrical material. 

The purpose of this contribution is to extend the algorithm proposed by Majak and develop 

new theories to capture the anisotropic and asymmetrical mechanical behavior simultaneously. 

This algorithm is used for the limited strain determination in connection with the Swifts insta-

bility condition for diffuse necking and the Hills instability condition for localized necking. 

2 THEORETICAL FRAMEWORK 

2.1 Yield function 

To describe both the asymmetry between tension and compression and the incompressible 

plastic anisotropy observed in HCP metal sheets, Cazacu and Barlat [12] introduced a general 

and rigorous method which is based on the theory of representation of tensor functions. A 4
th

 

order linear transformation is operated on the stress deviator S to obtain the transformed stress 

 , which can be defined as  

Σ = CS                                                             (1) 

where C  is a constant 4th order tensor, which includes 9 independent anisotropy coefficients, 

Let  x, y,z  be the reference frame associated with orthotropy. In the case of a sheet, ,x y  and 
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z  represent the rolling, transverse, and the normal directions. Relative to the orthotropy axes 

 x, y,z , the tensor C  is represent by 

11 11 11

11 11 11

11 11 11

11

11

11

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
C

C

C

C

 
 
 
 

  
 
 
 
  

                               (2) 

Thus, the final orthotropic yield function can be given by 

     
1

1 1 2 2 3 3

/ a
a a a

k k k            
  

                  (3) 

where 1 , 2 , 3  are the principal values of  . The only restrictions imposed on the tensor 

C  are: (i) to satisfy the major and minor symmetries and (ii) to be invariant with respect to 

the orthotropy group. Thus, for 3-D stress conditions the orthotropic criterion involves 9 in-

dependent anisotropy coefficients; it reduces to the isotropic criterion when C  equal to the 

4th order identify tensor. It is worth noting that although the transformed tensor is not devia-

toric, the orthotropic criterion is insensitive to hydrostatic pressure and thus the condition of 

plastic incompressibility is satisfied. For  11k ,   and any integer 1a  , the anisotropic yield 

function is convex in the variables 1 , 2 , 3  (principal transformed stresses). 

For the sheet metal forming, the material is considered to behave as an orthotropic mem-

brane under the plane stress conditions, thus the stress and strain component in the third direc-

tion are vanished, as 

33 13 230 0 0, ,                                              (4) 

Thus the transformed stress can be rewritten as  

1 11 1 22

2 11 2 22

3 11 3 22

44 12C

  

   


   



 
 


 
 
 
 

                                                 (5) 

In this situation, the principle stress can be rewritten as 

       

       

2

1 2 11 1 2 22 1 2 11 1 2 22 2 2

1 44 12

2

1 2 11 1 2 22 1 2 11 1 2 22 2 2

2 44 12

3 3 11 3 22

2 2

2 2

C

C

           
 

           
 

    

      
   

 

      
   

 

 

        (6) 

where  
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Since the effective stress   is the first order homogeneous function in stresses, from the work 

equivalence principle it follows that the law of evolution for the effective plastic strain (asso-

ciated with ) reduces to d d  .  

2.2 Plastic instability formulation 

The first instability criterion was proposed by Considère in 1885 [13], who analyses the 

formation of the necking in tensile specimens. The geometrical construction is given by the 

relationship 

F A                                                             (7) 

where F ,   and A  are the force, stress and cross-sectional area respectively, and by the total 

differential 

dF dA d A                                                               (8) 

Under tensile conditions, the force-displacement curves presents a local maximum at the 

beginning of the neck formation, 0dF  , then equations yields 

Swift used Considère’s criterion to determinate the limit strains in biaxial tension. The 

sheet element was analyzed for two perpendicular directions. Therefore the diffuse necking 

should be occur when the force differentials at these two perpendicular directions are equals 

to zero, as  

1

2

0

0

dF

dF




                                                            (9) 

After a mathematical manipulation by taking the plastic incompressibility into account, the 

diffuse constraints can be written as 

 
1 1 1

2 2 2

d d

d d

  

  




                                                            (10) 

Combining with proportional loading constraints, the Swift’s diffuse necking condition can be 

presented in tensor notations as 

1

Swift

i jd A d                                                         (11) 

where the Swift’s instability tensor can be calculated by 

 
1 0

0

Swift

ijA 


 
  
 

. 

where  represents the stress ratio ( 2 1/   ). 
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For analysis of the negative minor strain region of FLD, the localized necking develops 

along one direction, which is inclined with respect to the loading direction. Hill’s localized 

necking condition is employed. According to Hill’s instability condition the localized necking 

(through thickness neck) occurs when the rate of strain hardening is equal to the rate of geo-

metric softening.  

1 1 0dT d t dt                                                   (12) 

where t represents the thickness of the sheet. 

Taking the strain though thickness place of in-plane strain, the constraints of localized 

necking are written as following 

 1 1 1 2

2 1

d d d

d d

   

  

 


                                                (13) 

Similarly, we can written it as a compact form, the Hill’s localized necking condition reads 

1

Hill

i ij jd A d                                                          (14) 

where Hill

ijA is the Hill’s instability tensor, which can be calculated by 

 
1 1

Hill

ijA 
 

 
  
 

                                             (15) 

After comparison with Swift instability tensor, it is clear seen that two instability condition 

has similar formulation, so here we can written it as a generic way by 

1

instability

i jd A d                                               (16) 

where instabilityA is taken equal with Hill

ijA and SwiftA , respectively. 

The mechanical response of the sheet metal will be described by a rigid-plastic model. 

Hence for the total strains and total strain increments are equal to the corresponding plastic 

strains and plastic strain increments, respectively. Given the strain history from the previous 

step, the effective strain increment at current step, strain path   (stress path  ), stress, strain, 

strain increment in region (a) can be calculated. The main ingredient of the constitutive model 

is the yield function: 

   11 22, 0Y                                                          (17) 

where Y  represent equivalent stress and is calculated from the hardening law. 

If the normality flow rule is assumed to hold for plastic flow of materials, according to the 

consistency condition 0d  , the differential yield function can be written as 

0Y
i

i

d d d d
 

  
  

 
    

  
                            (18) 

By applying classical plasticity theory the instability criterion is derived in above subsection, 

the plastic anisotropy, associated plastic flow law and hardening parameters, the final plastic 

instability function should be written as 

1 1 1
0instability Y

ij

i j Y

A
f

  

     

  
  

   
                            (19) 

where the function f  is given by ratio 1/f   . 

Due to the equivalent stress is a homogeneous function of degree one with respect to the 

stress components, the first item of the above equation is only dependent on the equivalent 

plastic strain. After solving this equation by using iterative methods, the limit strains *  can 

be obtained. 
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3 RESULTS AND DISCUSSION 

The material used in this contribution was high-purity (99%) titanium. The initial texture 

of the as received material has a basal texture, with the majority of the grains having their c-

axis at 30
0
 to the normal to the plane of the plate. It is considered that the materials’hardening 

is isotropic and governed by the equivalent plastic strain according to a power-law: 

 0

n

Y K                                                            (20) 

where K , 0  and n are materials parameters. 

All the material parameters can be seen in Table 1 and Table 2. 

 0

n

Y K     

K  0  n  

413MPa 0.6445 1.0 

Table 1: Materials parameters of pure titanium. 

  k   22C   33C
 12C

 13C
 23C

 44C
 

0.02 -0.304 0.971 1.316 0.022 0.189 0.152 0.972 

0.05 -0.313 0.989 1.243 0.089 0.193 0.173 0.909 

0.1 -0.363 0.992 1.046 0.016 0.075 0.053 0.983 

0.15 -0.419 0.996 0.915 -0.015 0.021 0.000 1.016 

0.2 -0.472 0.998 0.849 -0.048 -0.012 -0.034 1.050 

0.25 -0.518 0.998 0.815 -0.089 -0.041 -0.068 1.092 

0.3 -0.554 0.998 0.797 -0.130 -0.068 -0.099 1.134 

0.35 -0.635 1.000 0.772 -0.178 -0.097 -0.135 1.183 

Table 2: Coefficients of Cazacu06 for pure titanium [14]. 

The yield surface evolution at different deformation level was shown in Figure1. From 

there, it is clear seen that the shape of yield surface changed when the material suffer different 

deformation. It leads to the identified anisotropic parameters in Cazacu06 model at different 

equivalent plastic deformations have different value, and equivalent stress value is not only 

dependent on the stress, but also the equivalent plastic strain. Therefore, it is necessary to take 

this effect into account when we use the analytical method to predict formability. 

 

Figure 1: Yield surface evolution of pure titanium. 

2328



Shenghua Wu, Nannan Song, F.M.Andrade Pires 

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

 

 

 k=-0.9

 k=-0.5

 k=-0.2

 k=-0.1

 k=0.0

 k=0.1

 k=0.2

 k=0.5

 k=0.9

 




 

Figure 2: FLD for different k value. 

To determine a complete FLD, Swift’s and Hill’s theories are used calculate the forming 

limit strains on the left and the right side, respectively, of the FLD. Before start to study yield 

surface evolution, we want to demonstrate the influence of material parameter k in Cazacu06 

yield function on the FLD, which can be seen in Figure 2. By comparison of FLD at different 

k values, it can be seen that the coefficient k has great effect on the forming limited strain at 

the right hand side of FLD.  

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

 fix

 Mises

 variable

 




 

Figure 3: FLD for different yield surfaces. 

Figure 3 displays the predicted FLD for von Mises yield criterion, Cazacu06 with fixed an-

isotropic coefficients (it means that the shape of the yield surface doesn’t changes when the 

materials surfer plastic deformation), Cazacu06 with different anisotropic coefficients for dif-
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ferent deformation level. It is clear seen that the Cazacu06 with fixed coefficient overestimat-

ed the formability of the materials, particularly for the right hand side of FLD.  

4 CONCLUSIONS  

In this paper, an extended Swift and Hill’s plastic instability by considering the yield sur-

face evolution was proposed and implemented into a unified instability analytical algorithm. 

The shape of the yield surface has a great influence on the forming limit strains. By consider-

ing the yield surface evolution, it can reduce the overestimation of limited strains. 
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Abstract. The work is devoted to modeling the gas flows in microchannels of technical sys-
tems in conditions of multiscale computational domain. As an example, the problem of nitro-
gen flow in nickel microchannel for three-dimensional geometry is considered. General 
attention is paid to the calculation of gaseous medium macroparameters considering the mo-
lecular processes that occur in the gas flow and on the walls of the microchannel. The differ-
ence in the scales of the computational domain (the length of the channel, cross section of the 
channel, the free path of the molecules, the thickness of the boundary layer) and near-surface 
interaction of the gas with the metal lead to the necessity taking into account the relief and 
the properties of the microchannel at the molecular level. As a result, the mathematical model 
of the research flow can not be fully formulated within the framework of the macroscopic ap-
proach. For decision of the problem multiscale approach combining the solution of a 
quasigasdynamic (QGD) equations and correction of gasdynamic parameters by molecular 
dynamics method (MD), is used. QGD system of equations is solved by method of finite vol-
umes. The MD system of equations is applied within each control volume and is solved by 
Verlet scheme. In MD calculations particles interactions are described by the potentials de-
termining the basic properties of the components of the considered system. Parallel imple-
mentation of the approach is based on method of splitting into physical processes and 
separation of areas. Algorithms are focused on the use of computer systems with central and 
hybrid architectures. Calculations showed that the overall numerical algorithm is resistant to 
the use of data for the flow correction obtained by the MD calculations. With the help of MD 
methods basic coefficient relations for QGD system were obtained, the transitions from MD 
to QGD and back were checked, three-dimensional calculation of the nitrogen flow in the 
nickel microchannel was produced. The results confirmed the efficiency of the developed ap-
proach. 
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1 INTRODUCTION 
Present paper is devoted to the description and the parallel program realization of the 

multiscale approach intended for modeling of nonlinear processes of gas mixture transporta-
tion via the technical systems microchannels. The physics for functioning of similar systems 
is usually described by whole hierarchy of mathematical models descending down to the 
atomic level. As a result of such association the possibility appears to make an exact predict-
ing the properties of the modeled objects and processes. However at the same time the level of 
computing complexity of specific tasks significantly increases that becomes surmountable 
only by using powerful clusters and supercomputers. 

As an example the supersonic cold gasdynamic spraying (SCGS) the nanoparticles on a 
substrate [1] is considered. This problem is relevant for many directions of nanotechnology, 
including the production of new materials in electronics and medicine. The main technologi-
cal process in the SCGS installations is called a nanoimprinting, it is accelerating nanoparti-
cles by a supersonic flow and delivering them to the substrate warmed up to the necessary 
temperature where sticking occurs. Among the various aspects of the problem let’s distin-
guish a transport question that is related to the calculations of gas flow parameters in all parts 
of the SCGS installation. The purpose of such calculation is to determine the optimum flow 
conditions. 

Features of a transport problem are connected with a spraying installation design. In the 
simplified look the SCGS installation consists of a Dewar bottle up to several tens liters in 
lower part of which there is the mobile work desk with a set of replaceable substrates. Over a 
table there is a subsystem supplying gas and nanoparticles, this subsystem is attached to the 
top wall of the reservoir. The free space in the reservoir is filled with either technical vacuum, 
or strongly rarefied gas. The subsystem giving the nanoparticles consists of ballons with pure 
gas mixture and gas mixture with nanoparticles, of micronozzles matrix and of microchannels 
on which nanoparticles are fed to a near area of a substrate. Thus a pure gas mixture is used to 
manage the process, and the gas mixture with nanoparticles is used to give them a start pulse. 

From the mathematical point of view the transport problem consists in calculating the gas 
and nanoparticles motions in all parts of installation. It is necessary to consider that the simu-
lated environment near solid surfaces is not continuous, and the equation of state for gas mix-
ture with nanoparticles is unknown. Modeling of a transport problem in full leads to take into 
account the real geometry of the SCGS installation and all physical processes proceeding in it 
in different scales on time and space. It demands too big computing expenses. 

Within this work the following combined approach is offered. It combines calculations of 
the gaseous medium flow in specific microchannels and calculations of interacting the 
streams with a substrate, and also movements of nanoparticles in a gas flow and their interac-
tion with a substrate at contact with the deposition place. At that simulation is carried out on 
two scale levels – the basic level having the characteristic sizes from several tens microns to 
tens of millimeters, and additional level having the characteristic sizes about a micron or less. 
At the basic level (in macroscale) gas and nanoparticles flows in all parts of installation are 
calculated, and also the external factors connected with management of spraying process are 
taken into account. At the additional level (in microscale) the interactions are calculated for: 1) 
gas molecules among themselves (forming the equation of state for mixture and realizing the 
mixing of components), 2) gas molecules and solid surfaces atoms (describing phenomena in 
boundary layers), 3) gas molecules and nanoparticles atoms (describing formation of bounda-
ry layers on a surface of nanoparticles), 4) gas molecules and substrate atoms (considering 
processes of heat exchange with a substrate), 5) atoms of nanoparticles with the substrate at-
oms (processes of repulsion, sticking, implementation of nanoparticles into substrate). 
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The specified physical processes are complex and multistage. Therefore at this stage of re-
searches the simplified description of a problem is used. It assumes splitting into physical 
processes. The main simulation loop represents alternation in time of calculations at the mac-
ro- and microlevels. In the represented embodiment of research the calculation of nitrogen - 
hydrogen mixture flow after leaving the nozzle and exiting to the half-open microchannel and 
further in free space is considered (Fig. 1). 

 
Figure 1: The geometry of a model problem for convenience presented in the form of a two-dimensional section. 
From a tank through a micronozzle in microchannel the gas mixture is supplied. Gas mixture is used to manage 

the nanoparticles trajectories for delivering them in the right places of a substrate. 

Some part of research has been done in the previous works [2-6]. In particular, in [2-5] 
methods of thermodynamic equilibrium calculations in metal-metal, gas-gas and gas-metal 
systems were developed. In work [6] association micro- and macromodels of the gas envi-
ronment in uniform object of research was proposed and partially approved. The main objec-
tive of this research is development of a full three-dimensional multiscale numerical method 
and parallel algorithm for its realization, suitable for calculating of gas mixture flow in the 
microchannel and near a substrate taking into account the boundary effects resolved by MD 
[7]. Description of the model and the algorithm details is given in the following sections. 

2 MATEMATICAL MODELS 

2.1 Macroscopic model 
The macroscopic model of the flow in all parts of installation is based on the 

quasigasdynamic (QGD) equations [8]. The choice of QGD equations is associated with two 
factors. Firstly, QGD equations well proved in calculating supersonic flows of the rarefied 
viscous and heat-conducting gases. Secondly, they are well suited to calculating the flows in 
microsystems as the natural parameter of a nondimensionalization in them is the mean free 
path. Thirdly, QGD system of the equations is applicable in the wide range of Knudsen num-
bers that gives the chance to model complex system of microchannels with different diameters, 
using the same mathematical model. 

In case of gas mixture the QGD system of equations is written for each gas separately and 
has an identical form [8-9]. These equations in case of binary mixture in invariant concerning 
system of coordinates with the constraint and the equations of state have the form: 
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Here we assume that gas mixture consists of a  and b gases with numerical densities (con-
centrations) an  and bn  and mass densities a a am n   and b b bm n  , where am  and bm  – 
masses of gas molecules a  and b . Each gas is characterized by its temperature lT  and macro-
scopic velocity lu . Other parameters of mixture components: lp  – partial pressures, lE  – to-
tal energy densities, l  – specific internal energies, lH  – total enthalpies,  l l lT   and 

 l l lT   – coefficients of viscosity and heat conduction,  l l lZ Z T  – compressibility co-

efficients,  , ,V l V l lс с T  – specific heat capacities at constant volume, /l B lk m   – gas con-

stants ( Bk  – Boltzmann constant). Vectors  
l
W ,  ku

l
W ,  E

lW  up to a sign are identical to 
the density flux of the corresponding components of the momentum density and energy densi-
ty, l l w  – QGD correction vectors to the density flux, that are proportional to the Maxwell 
relaxation time   for gas mixtures, ke  – unit vectors. 

The exchange members  ku
lS   and  E

lS  take into account the redistribution of momentum 
and energy between the mixture components. They contain components of velocity *

lu  and 
energy *

lE , calculated at the molecular level (see Section 2.2), as well as 'll  –frequency of 
mutual collisions between molecules of variety l with molecules of variety l', which are calcu-
lated via l  – frequency of mutual collisions between the molecules of one type: 
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where ld  – molecules diameters of variety l, l  – dimensionless parameters characterizing 
the collision molecules of type l [10]. 

Coefficients of viscosity l , heat conduction l  and compressibility lZ , and the specific 
heats ,V lс  and the mean free path l  for the mixture components are determined from a data-
base of molecular calculations or by direct MD computations (see Section 2.2). The local 
sound velocities for the mixture components are calculated according to the formulas: 
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where  l l lT   – adiabatic indexes. 
The parameters of the gas mixture at macrolevel are defined as follows: 
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To determine the viscosity of the mixture we use the Buddenberg-Wilke formula [11]: 

 

1 1

2 1

1 1 ,

1 2 2 1 .

b a a b
a ab b ba

a b b a

a b a
ab

b a b

M MG G
M M

M MG
M M

 
  

 




 



   
      

   

    
             

 (8) 

Here aM  and bM  – molar masses of gases a  and b . Value baG  is calculated similarly by 
cyclic substitution of the indexes. The average local sound velocity, and the mean free path, 
the Mach number and the Reynolds number for the mixture are equal to: 

 , , , Re .a a b b a a b b

a b a b

m a m a m ma Ma
m m m m a

  



 

   
 

u u
 (9) 

The system of equations (1)-(3) is closed initial and boundary conditions. The initial condi-
tions correspond to the equilibrium gas environment in the absence of interaction with exter-
nal factors: 

 ,0 ,0 0, 0, , , , .l l l l l lp p T T l a b     u  (10) 

Here ,0l , ,0lp  – the initial densities and pressures of gas components, 0T  – initial temperature. 
The area of a nozzle and a tank with gas mixture were not included into calculation. It was 

assumed that in an initial time the partition between the nozzle and the area of the 
microchannel opened, and gas from area of a high pressure began to come to the area of low 
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pressure. The nozzle was considered as an ideal adiabatic Laval nozzle. Parameters of the gas 
environment at the exit from a nozzle (that is on an entrance to the medium) were calculated 
according to the known formulas: 
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Here the parameters with index bal  correspond to the values of parameters in the tank, and 
the parameters with index in  – the respective parameters on the entrance to the environment. 

At the microchannel walls and on the substrate following boundary conditions are imposed: 
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Generally the gas molecules can get into a metal wall, or be reflected from it at some cor-
ner. Interaction with a wall can be elastic or inelastic, thermal or isothermal. It is convenient 
near a wall to enter the special microsystem consisting of gas molecules and metal atoms. In 
this microsystem gas components have densities of masses ( )w

l , moments ( ) ( )w w
l l u  and total 

energy ( )w
lE . Boundary conditions on a wall can be written down in the form of third-type 

boundary conditions describing an exchange of mass, momentum and energy components be-
tween the gas mixture in the flow and near the walls. Coefficients l , ,l k  and l , associated 
with accommodation coefficients [12], The coefficients associated with the coefficients ac-
commodation are priori unknown but can be determined from either physical quantities tables 
(which is possible only to a limited range of temperatures and pressures), or can be calculated 
using molecular dynamics. The second approach seems the most justified as it is universal 
and will help to coordinate the interaction processes on micro- and macrolevels. 

On the free surfaces a "soft" boundary conditions are given [8]: 

  0 , 0 , 0, , .l ll lp l a b
n n n

  
   

  
u

 (13) 

In the case of pumping the mixture out of the system in (13) the minimum pressure is given 
instead of the last condition: minlp p . 

2.2 Microscopic model 
The microscopic model can be used for various purposes. First, it can help to clarify the 

equation of state (both on pressure, and on energy) and kinetic coefficients (viscosity, heat 
conduction, diffusion, etc.) used in QGD equations. Secondly, the microscopic model can be 
used to calculate the exchange members in the equations for momentum and energy. Thirdly, 
the microscopic model is especially demanded in calculation of the wall interactions of gas 
molecules with walls atoms. In this work all listed above situations are considered. 

In a case when at the macrolevel the flow of the binary gas mixture without nanoparticles 
is calculated, at the microlevel it is also possible to be limited to consideration the molecules 
of two types a  and b . However it is only valid far from the walls of the microchannel. Near 
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the walls it is necessary to add to consideration the particles of type c , making a material of 
walls. In the presence of nanoparticles it is necessary to add to consideration the particles of 
other types. 

In this work we consider the case of pure binary mixture and one type of metal particles. 
Then at the microlevel the gas-metal system is represented as a set of particles which behavior 
is described by Newton's equations [7]: 

 , ,
, , ,, , 1,..., , , , ,l i l i

l i l i l i l

d d
m i N l a b c

dt dt
   

v r
F v  (14) 

where i  – particle number, , ,l a b c  – particle type ( a  – molecules of first gas, b  – mole-
cules of second gas, c  – metal atoms), lN  –total particles number of type l , ,l im  – particle 

mass of type l  with number i ,  , , , , , , ,, ,l i x l i y l i z l ir r rr  and  , , , , , , ,, ,l i x l i y l i z l iv v vv  – position vec-

tor and velocity vector of the i -th particle of type l ,  , , , , , , ,, ,l i x l i y l i z l iF F FF  – the total force 
acting on a this particle. 

The forces are the sum of the component of i -th particle interaction with the surrounding 
particles and the component responsible for external action: 
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where U  – total potential energy, ,
ext
l iF  – force of interaction with the environment. 

Potential energy of the system depends on particles coordinates and describes the interac-
tion between them. The choice of interaction potential is based on comparison of mechanical 
properties of potential model and real material. For the solution of an objective it is necessary 
to consider interactions gas-gas, metal-metal and gas-metal: 
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Each type of interaction is described by a corresponding potential 'll . For hydrogen-
nitrogen mixture it was used Mi's potential in the form of "n-6" [13] adapted in work [14] to 
calculations of hydrogen and nitrogen mixture depending on their volume ratio in the allocat-
ed microvolume. For interaction of nickel atoms among themselves it was used the form of 
EAM [15] potential which considers not only pair interactions 2,cc , but also the impact of the 
environment on a particular particle 1,cc . To account the gas-metal interactions a standard po-
tential Lennard-Jones [16] and Morse potential [17] were used. 

The calculation of the compressibility factor and heat capacity is described in detail in [4]. 
The coefficients of viscosity and heat conduction were calculated according to the formulas 
[18]: 
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where V  – volume of the investigated system, ,l i  – instantaneous total energy of molecule i  
of type l , 0t  – initial time in calculating the coefficients. 

The mean free path is calculated according to the formulas [19]: 
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where l  – effective interaction radius of molecules of type l  [14]. 
The initial conditions at the microlevel are defined by an equilibrium thermodynamic state 

of particles system. Calculations of gas environment usually start with normal conditions or at 
first it is reduced to thermodynamic equilibrium at a given temperature and pressure. Metal 
parts of a microsystem must have at the start the lattice structure according to metal at given 
temperature. They should be no excessive stress. For more information about calculating the 
equilibrium state in metal-metal, gas-gas and gas-metal microsystems see the works [2-5]. 

The boundary conditions at the molecular level are selected depending on the simulated 
situation. In particular, when calculations are aimed on determining the properties of the me-
dium, a certain allocated three-dimensional its volume is considered, out if which the periodic 
continuation medium unlimited distances in all three spatial directions is assumed. In this case, 
periodic boundary conditions are used [7]. 

If the calculations are made of real geometry microsystem, the one or more directions have 
a finite size. In this case as boundary conditions can be used or mirror boundary conditions 
(when particles interact with the specular reflection and don't leave thereof abroad), or a free 
exit of particles on one side of the allocated volume and an entrance of a particles flow – on 
another. For metal microsystems it is also characterized total absence of boundary conditions 
which are complied in a view of the forces of a mutual attraction of atoms in a metal lattice. 

In this work both periodic, and mirror boundary conditions, and also an entrance of a parti-
cles flow in environment and a free exit of particles from it were used. In addition separate 
parts of Microsystems were thermostatted [20, 21]. 

3 REALIZATION 
Realization of the developed multiscale approach relied on the numerical algorithm based 

on splitting into physical processes and using grid approximations of QGD equations (1)-(3) 
and subgrid calculations on the Newtonian dynamics equations (14)-(16). 

The algorithm is as follows. In an initial time on the chosen grid the equilibrium condition 
of a macrosystem is given (10). If it is necessary near the borders of computational area equi-
librium condition of gas and metal microsystems is also given. 
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Further on each time step predictor calculation of gas components macroparameters on 
grid analogs of QGD equations (1)-(3) without exchange members is made at first (QGD pro-
gram block). As a result of calculation new gas components macroparameters in each control 
volume of a spatial grid are defined. 

Then the subgrid MD computation in order to calculate the exchange members and kinetic 
coefficients is performed (MD program block). It is carried out independently in each control 
volume (cell) of a grid and produced with significantly smaller time step connected with evo-
lution of a molecular subsystem. Criterion for stopping the MD calculation is or to achieve 
characteristic evolution time of molecular system, or change (for 1-2%) one or several 
macroparameters of molecular system (averages momentum, kinetic or potential energy). If 
strong changes of macroparameters don't happen, then the calculation is performed to achieve 
some predetermined points in time proportional to the Maxwellization time of MD system. 
Also in MD block the return to macroscopic level is carried out and correction of momentum 
densities and total energy densities is calculated by means of the computed exchange mem-
bers. Correction is performed in each point of a grid. MD calculation process is finalized by 
calculations of kinetic coefficients and the equation of state. Thus, communication of macro- 
and microlevels in grid spatial and temporal areas is carried out by alternately recalculation of 
macroparameters on QGD and MD equations. 

In case of nanoparticles presence in the flow the third block of calculations (NP program 
block) is used. In NP block it is decided or the convection-diffusion equations for concentra-
tion of nanoparticles of each type (this situation is considered for a case of small nanoparti-
cles), or Newton's equations for the ballistic transport of nanoparticles (in the case of large 
nanoparticles). In this paper, that part of calculations is not considered. 

The described part of algorithm is completed with check the criterion of the calculations 
end and transition to the following step on time in case of non-performance of criterion. 

3.1 Finite volume scheme for QGD equations  
The grid numerical method having a finite-volume method in the basis is used for calcula-

tion the macroparameters on QGD equations [22-24]. For this in the computational domain 
D  the spatial grid D  with cells mC  ( 1,...,m M ) and time grid t  with variable step t  
was introduced. Grid D  in general is a hybrid, that is, it includes several element types: tet-
rahedrons, pentahedrons, hexahedrons, octahedrons and heptahedrons. 

All parameters of gas components (density, pressure, temperatures, velocity vector compo-
nents, etc.) have been carried to the centers of mass of grid elements, that is to the centers of 
cells. Stream variables have been set in the centers of cells sides. Spatial approximations of 
the main members have been executed by the technique presented in work [25]. The compu-
ting scheme on time was obvious. The resulting grid equations at a predictor stage have an 
appearance: 
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Here ˆ,m mf f  – values of the corresponding functions on the lower and upper layers in time 
in the center of the control volume mV  (coinciding into effect of the selected approximation 

with grid cell mC ), mV  – value of the control volume mV , ,m pS  – faces squares ,m pS  of the 

control volume mV , mM  – faces number of the control volume mV , ( )
, ,n m pW   – scalar multiplica-

tion of flux ( )
,m p
W  via face ,m pS  on the external normal ,m pn  to this face 

( , , , ,x y zu u u E     ). Fluxes approximations ( )
,m p
W  are similar to the proposals in [25], 

but do not use artificial viscosity. 
Obtained predictor variables ˆl , ˆ ˆl l u , ˆ

lE  are transmitted in MD block. Modified parame-

ters *ˆ ˆl l u  and *ˆ
lE  are calculated in the result of its work. According to it the final values of 

momentum **ˆ ˆl l u  and energies **ˆ
lE  densities are calculated: 
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By the received in MD block macroparameters all the kinetic coefficients ( l , l ), the 
mean free path l  and the parameters in the equations of state  lZ , ,V lс  are calculated. 

3.2 Algorithm for solving Newton’s equations  
The equation system (15) - (17) is solved by the Velocity Verlet algorithm [26]: 
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Here t  – integration step, n  – step number, ,
n
l iF  – force value on step n , F  – procedure for 

calculating the forces based on formulas (15), (16). 
Berendsen thermostat [20] is used to achieve the desired temperatures of gas and metal. 

Langevin thermostat [21] is used to achieve the desired temperature and momentum of gas. 

3.3 Parallel realization 
Parallel realization of algorithm assumes using the cluster (or a supercomputer) with the 

central or hybrid architecture having on each node several multicore central processing units 
(CPU), and also several vector or graphic processing units (VPU or GPU). Parallelization of 
algorithm is made on the principles of geometrical parallelism and separating the areas. The 
main gasdynamic calculation is performed on discrete QGD equations on the grid distributed 
between cluster nodes by using technique "domain decomposition" [27]. Inside the QGD node 
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the computations are distributed between CPU threads. Subgrid MD computations are as-
signed to the CPU or VPU, or GPU, in its presence. Distribution of QGD calculations be-
tween CPU threads is also made geometrically. Parallelization of MD computations is made 
by partition of entire particles set relating to one cell of a grid on groups of identical power 
(explicitly these calculations were represented in [5]). Each unit of CPU or VPU, or GPU 
threads processes one or several molecular groups relating to one or several grid nodes. Pro-
gram implementation of algorithm is executed on the hybrid technology [28] using MPI [29], 
OpenMP [30] and CUDA [31]. 

4 NUMERICAL EXPERIMENTS 
For approbation of the developed approach the following preliminary testing was held. As 

computational domain the microchannel of rectangular section with sizes 15х15x90 3m  and 
with rectangular hole for nozzle of the diffuser with sizes 3х3 2m  was selected (see Fig. 2). 
The channel ended with an output in the free space, however in it the flow wasn't calculated 
any more. Pure nitrogen was considered as gas. Nickel was considered as the walls material. 

 
Figure 2: The model calculated area. 

In a given computational domain uniform Cartesian grid, consisting of a cubic cells was 
constructed. The starting grid (0)  had (0) 15 15 90 20250VM      cells of linear size 

(0) 1a m . Subsequent grid was obtained by grinding the cells of previous grid on 8 parts 
(by 2 times in each direction). As a result, grid ( )k  had ( ) (0)8k k

V VM M  cells. The volume of 

each cell in such grid is equal to  3( ) ( ) 3k k
mV a m . The number of cells abutting to the side 

surface of calculated area excluding the input and output holes for grid ( )k  amounts 
to ( ) 5400 4 216 2k k k

SM     . Values ( )k
VM  and ( )k

SM  define the computing capacity of the 
developed algorithm. What they are bigger the more computing capacity of QGD block and 
less computing capacity of MD program block it is needed. We show this by example. 

If the metal surface of the channel is described by a single repulsive potential without re-
gard to its actual structure, we can restrict the following arguments. In each cell (0)

mC  of start-

ing grid (0)  (having the volume (0) 31mV m ) at normal conditions ( 101325p Pa , 
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273.15T К ) there is a number of nitrogen molecules that is equal to 
(0) (0) 1 72.6867811 10part A mN N V V

   ( 23 16.022140857 10AN
mol

   – Avogadro's number, 

3
1522.413962 10 mV

mol


   – mole volume gas at normal conditions). This amount is suffi-

cient to obtain a representative statistics at MD calculations, however, too much for the actual 
calculations. Therefore, in the long-term calculations it is better to use a more detailed grid 
containing a larger number of cells, but with a smaller volume of single cell and comprising a 
smaller number of particles in it (see Table 1). The analysis shows that the optimal ratio of 
grid cells and particles in one cell of the grid is achieved for the grid (3) . If the initial pres-
sure in the channel is 0.001 atm, the starting number of gas molecules in the cell decreases to 
52. This amount is insufficient for correct usage of local MD calculations within a single cell. 
Therefore, in areas of low pressure it is necessary to increase linear size of the cell the ex-
pense of neighboring cells. The particles number is calculated on the basis of densities values 
in the considered and the neighboring cells: 

, ', ', '
, , , ', ', ' , , ', ', '

', ', ' ,..., ', ', ' ,...,
, , , ,l i i j j k k

l i j k i i j j k k i j k i i j j k k
i j k m m i j k m ml

N V V V l a b
m

   
     

   

     (22) 

where 0,1, 2,...m   – the number of neighboring cells for each positive direction, which 
should be considered in the MD calculations. 
 

k ( )k
VM  ( )k

SM  ( )ka , m  ( )k
mV , 3m  ( )k

partN  

0 20 250 5 616 1 1 26 867 811 
1 162 000 22 032 0.5 0.125 3 358 476 
2 1 296 000 87 264 0.25 0.015625 419 810 
3 10 368 000 347 328 0.125 0.001953125 52 476 
4 82 944 000 1 385 856 0.0625 0.000244140625 6 560 

 
Table 1: Parameters of grids and amount of nitrogen particles in each cell. 

If the metal surface is viewed at the atomic level, then in MD block computing it becomes 
necessary accounting nickel crystal lattice structure. However, in this paper, this case is not 
considered. 

Testing of the developed approach was carried out on supercomputer MVS-10P (JSCC 
RAS). The calculations were performed on the central processors Intel Xeon E5-2690 and 
vector processors Intel Xeon Phi 7110X. The number of CPU cores ranged from 16 to 2048. 
The number of VPU cores ranged from 60 to 7680. Calculations were carried out on grids 

( )k  for k=2,3,4. The results of a computation speedup testing are shown in Figure 3. It 
demonstrates a good parallel solution used in the constructed software. 

The preliminary computation of steady state flow on grid (3)  shows the following. A 
zone of gas condensation with a high pressure appears near the nozzle. It prevents a further 
acceleration of gas and acts as a stabilizer of a flow. A similar density distribution is given in 
the experimental paper [32]. A comparison of these data shows a good enough qualitative 
agreement of our calculations with the measurements (see Figure 4). On the other hand, in [32] 
the nozzle parameters are not specified and moreover, the measured temperature distribution 
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is given for two-temperature approximation that is not used in our predictions. Therefore, it is 
not possible to conduct a quantitative comparison of flow parameters for this experiment. 

 
Figure 3: The speedup computations for grid (3) . 

  
Figure 4: The distributions of the number density in experiments [32] (on the left side) and the data from 

our computations (on the right side). 

5 CONCLUSIONS  

 The problem of modeling the gas flows in microchannels of technical systems in the 
conditions of many scales of computational domain is considered. For a solution the two-
scale approach combining the solution of QGD equations and correction of gasdynamic 
parameters by MD method is offered. 

 The general numerical algorithm is based on solving the QGD equations system by a grid 
finite-volume method. The system of MD equations is used independently in each cell of 
a grid and is solved by means of Verlet scheme. 

 The parallel implementation of approach is based on the methods of splitting into physi-
cal processes and domain decomposition. The parallel program is focused on the use of 
modern computing systems with the central and hybrid architectures. The program is re-
alized by means of MPI, OpenMP and CUDA technologies. 
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 The research of proposed approach showed the following. The developed parallel algo-
rithm is quite effective and steady to using the data of MD computations correcting the 
flow. By means of the developed program it is possible to calculate dependences of ki-
netic coefficients of QGD system on temperature and other factors. Transition from 
macrolevel to microlevel and back is carried out correctly. 

 Comparing the calculated macroparameters of a three-dimensional flow agrees well with 
the results of natural experiments. 
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Abstract. In this work, we investigate the limits of classical homogenization theories pertaining
to homogenization of periodic linear elastic composite materials at low scale separations and
demonstrate the effectiveness of higher-order periodic homogenization in alleviating this limi-
tation. Classical homogenization techniques are known to be very effective for materials with
large scale separation between the scale of the heterogeneity and the macro-scale dimension,
but inaccurate at low scale separations. Literature suggests that asymptotic homogenization is
capable of pushing the limit to smaller scale separation by taking on board higher-order terms
of the asymptotic expansion. We studied infinite two-dimensional elastic two-phase composite
materials consisting of stiff inclusions in a soft matrix, subjected to a periodic body force, for
various scale ratios between the period of the body force and that of the inclusions. We cre-
ated reference solution using direct numerical simulation and used ensemble averaging for the
complete family of all possible microstructures to obtain the reference homogenized solution.
We show that the response predicted using zeroth order classical homogenization deviates from
this reference homogenized solution for scale ratios below 10. The higher-order asymptotic
homogenization solution still gives a very good approximation even in the low scale separation
regime and it becomes better as more higher-order terms are included. The higher-order theory
results in a size-dependent macroscopic model, which indeed allows one to push the limitations
of homogenization in the direction of less scale separation.
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1 INTRODUCTION

All matter is heterogeneous at some scale, but frequently it is convenient to treat it as homo-
geneous. Some of the well-known examples are metal alloys, concrete, porous structures and
fibrous composites. The distinct features of their microstructures respond quite differently to
mechanical loading and hence their deformation is heterogeneously distributed at the scale of
that microstructure. It is the combination of the different microstructural features which governs
the overall response of the material to the loading.

Homogenization is a mathematical technique for studying partial differential equations with
rapidly oscillating coefficients, which are typical of the equations that govern the physics of het-
erogeneous materials. An important aspect in the analysis of multiphase materials is to deduce
their effective behavior (e.g. mechanical stiffness, thermal expansion properties, etc.) from
the corresponding single-phase behaviors and the geometrical arrangement of the phases. This
concept of rendering “homogeneous” a heterogeneous material is what we call homogenization.

Figure 1: Homogenization: schematic

Conventional homogenization methods are based on a separation of scales, given by: l <<
L, where l is the size of the heterogeneity and L represents the macroscopic length scale. How-
ever, if the microstructural size is not much smaller, or even of the same order as the macro-
scopic length scale, then most of the classical homogenization schemes break down. Literature
[1-4] suggests that the asymptotic homogenization method is capable of pushing the limit to
smaller scale separation, by generating a hierarchy of problems which can be solved sequen-
tially to generate a solution that asymptotically converges to the exact (homogenized) solution.

The present work investigates the scale separation limits of classical homogenization theo-
ries and demonstrates the effectiveness of higher order periodic homogenization for small scale
separation. A qualitative and quantitative assessment of the scale separation limits of the clas-
sical and the higher order periodic homogenization methods is performed on two-dimensional
elastic two-phase composites. The details of the problem are described in Section 2. We study
the limits of classical homogenization and look into the contribution of each higher order term
in rectifying this limitation.

2 PROBLEM DESCRIPTION

An infinite two-dimensional elastic two-phase composite material consisting of stiff circular
inclusions in a soft matrix material, is subjected to anti-plane shear by means of a periodic body
force. This anti-plane shear problem [1] can be described by the following partial differential
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equation:
∂

∂x1

(
G
∂u3
∂x1

)
+

∂

∂x2

(
G
∂u3
∂x2

)
+ F = 0 (1)

where u3 = u(x1, x2) is the resulting out-of-plane displacement,G(x1, x2) is the Shear Modulus
distribution function, defined below, and F (x1, x2) is a body force which we define here as
F = F0 sin

(
2πx1
L

)
sin

(
2πx2
L

)
.

The period of the material’s microstructure is l and that of the body force is L, and the ratio
L/l hence characterises the scale separation. The homogenized properties are defined not for
a specific microstructural configuration with respect to a period of the body force, but for an
ensemble averaged microstructural configuration as described in Section 3.

The microstructure consists of a matrix material having Shear Modulus Gm and a circular
inclusion having radius r and Shear Modulus Gp. Rather than considering a sharp interface, we
define the Shear Modulus function G(x) such that it smoothly varies from Gm to Gp by a cubic
distribution. For a ≤ x ≤ b, it is given by:

G(x) =
(3a− b− 2x)(b− x)2Gm + (a− 3b+ 2x)(a− x)2Gp

(a− b)3
(2)

where a and b represents the interface boundaries such that the thickness of the interface is
given by (b − a). Fig.2 shows the Shear Modulus distribution for a microstructure having the
following parameters: Gm = 1, Gp = 20, r = 0.3, a = 0.25 and b = 0.35. The amplitude of
the body force, F0, is taken as 1.

Figure 2: Shear Modulus distribution within a microstructure of size l = 1

3 METHODOLOGY

On the one hand, reference solutions are created using direct numerical simulation of a family
of microstructural configurations for a range of scale ratios. On the other hand, asymptotic
homogenization is used to obtain homogenized properties for zeroth order and higher-order
effective continua. Predictions made using these homogenized properties are then compared
against the reference solutions. Fig.3 shows a schematic of the methodology.
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Figure 3: Schematic of the problem: Comparison of periodic homogenization solution with reference solution
created by full-scale simulation for various scale ratios

Reference solutions are created using a brute force method, by performing a full-scale nu-
merical simulation. Since the exact location of the microstructure with respect to that the body
force is unknown, each relative position is assumed to have the same probability of occurrence.
The homogenized response is defined not for a specific microstructural configuration with re-
spect to a period of the body force, but by taking an ensemble average for the complete family
of all possible microstructures i.e., by averaging the displacement solutions computed for all
shifts. The result is plotted in Fig.4 in terms of the peak averaged displacement (infinity norm)
versus the ratio L/l for circular inclusions. For scale ratios larger than 10, the curves would
be horizontal as the particle sizes become very small relative to the period of the body force
and hence do not cause any significant influence on the average displacement solution. As the
scale ratio becomes smaller than 10, the relative size of particles becomes high enough to cause
size effects, which is apparent in the plot. The curvature of these curves is dependent on the
geometry of the microstructure and stiffness contrast.

Periodic homogenization is a rigorous method used to extract effective or homogenized prop-
erties from heterogeneous media. For our problem, we first analyze a representative unit cell
and derive the effective Shear Moduli. This is then inserted into the macroscopic model to com-
pute the displacement field of the homogenized material subjected to the antiplane shear load
defined above.

The microscopic scale described by ~y is determined by the microstructure with a character-
istic length l. The macroscopic length ~x described by the wavelength of the applied loading on
the material (or the boundary conditions), has a characteristic length L. The small parameter η
is defined as the ratio of the two length scales. Hence we have η = l/L and ~y = η−1~x.

The equilibrium equation can be written in terms of ~x and ~y:

~∇ · (G(~y) : ~∇u) + ~f(~x) = 0 (3)

Periodic homogenization makes use of an asymptotic expansion of the unknown variable in
terms of the powers of the small parameter η:

u(~x) = u0(~x, ~x/η) + ηu1(~x, ~x/η) + η2u2(~x, ~x/η) +O
(
η3
)

(4)
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Figure 4: Peak average displacement versus scale ratio for circular inclusions with different stiffness contrast

where the functions ui(~x, ~x/η) have to be determined and must be periodic in ~y. This periodic
dependence introduces the fast displacement fluctuations (microfluctuations) at the microscale
η, while the dependence on ~x is slow. For small η, the equation can be regarded as consisting of
a leading term u0(~x, ~x/η), followed by a series of rapidly diminishing correction terms. As η
increases, the contributions from the higher order terms increase and are not negligible anymore.

The essence of this asymptotic method lies in requiring the new equilibrium equation ((3)
after replacing u with (4)) to be satisfied at each order of η separately and for independent ~x and
~y. Thus, we generate a hierarchy of problems which needs to be solved sequentially to compute
the unknown functions ui. One can show that the result must be of the form [2]:

u(~x) = v0(~x)+η(v1(~x)+N1(~y) : ~∇v0)+η2(v2(~x)+N1(~y) : ~∇v1+N2(~y)
...(~∇~∇v0)T )+O

(
η3
)

(5)
where Ni(~y) is called the microfluctuation function of (i − 1)th order, which can be obtained
by solving a unit cell problem for each order of η. Here we solve this problem numerically,
using a finite difference discretization Fig.5 shows some of the microfluctuation functions com-
puted. Note that the order of magnitude of these fluctuation functions decreases for higher order
solutions.

Once the microfluctuation functions are computed, the effective constants of the correspond-
ing order can be calculated. These homogenized constants are then passed on to the macroscale
in order to compute the variables vi.

4 RESULTS

The results obtained using periodic homogenization solution are now compared with the ref-
erence solution obtained using direct numerical simulation. Fig.6 shows the average peak dis-
placement, normalized by that predicted by the classically homogenized solution, as a function
of the scale ratio η−1 = L/l. Shown are the reference solution, the classical homogenization
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Figure 5: Microfluctuation functions of different orders

solution and higher order solutions, for a phase contrast of 20. The zeroth order classical ho-
mogenization solution is independent of the scale ratio and hence is a straight line as shown in
the plot. For scale ratios L/l > 10, the reference solution converges to this constant value, but
at low scale separations it deviates from it significantly. The higher order periodic homogeniza-
tion solutions closely match with the reference solution even for low scale ratios. The second
order solution starts to deviate from the reference solution at L/l ≈ 4.5, while the fourth order
solution can still give a good approximation for even lower scale ratios.

Figure 6: Scale separation plot: Norm of the displacement solution vs. scale separation, for various cases

5 CONCLUSIONS

The result gives a very good insight into the low scale separation regime of an elastic periodic
two-phase composite. Some of the observations from this work are as follows:

• The classical homogenization solution is accurate only for cases where l << L. However,
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quantitatively it can still predict homogenized solution accurately for scale separations
above L/l = 10.

• Higher order periodic homogenization is an accurate method for tackling problems in
linear elasticity for the cases with low scale separation. The approximation in the low
scale separation regime becomes better as more higher-order terms are included.

• We can conclude that higher order periodic homogenization is not constrained by the
conventional separation of scales. It rather has a more flexible law l < L, where if the
material property and geometry are specified, a clear criteria stating the order required for
a certain accuracy can be made.
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Abstract. This paper investigates the mechanical behavior of fiber-reinforced concrete (FRC) 

and focusses on the quantifying the effect of replacing Industrial Steel Fibers (ISFs), com-

monly adopted as spread reinforcement in FRC, with Recycled Steel Fibers (RSFs) recovered 

from waste tires. More specifically, it analyses the bending behavior of FRC beams rein-

forced with a constant volume fraction of steel fibers and variable proportions of ISFs and 

RSFs. First, a numerical model is formulated by assuming that FRC behaves as a multi-phase 

medium, where the nonlinear material behavior of the concrete matrix is simulated by follow-

ing a discrete-crack approach for meso-scale analysis. Then, steel fibers are modeled as short 

cables, randomly distributed and embedded within the concrete matrix. The internal forces in 

the steel fibers are obtained by considering both bond-slip behavior and dowel effect. Com-

parisons between experimental results, obtained by the authors in a previous study, and nu-

merical simulations, performed by means of the proposed numerical model, are discussed: the 

significant predictive capability of the latter confirms the soundness of the mechanical as-

sumptions on which the model is based. Moreover, the possibility of predicting the behavior 

of FRC with Hybrid Recycled/Industrial Fibers paves the way toward the actual application 

of this sustainable material in real applications. Finally, it is worth highlighting that the theo-

retical formulation proposed in this work stems out of the activities foreseen by the 

SUPERCONCRETE Project (H2020-MSCA-RISE-2014 – n. 645704), funded by the European 

Union as part of the H2020 Programme. 
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1 INTRODUCTION 

In recent years the disposal of exhaust tires has emerged as a big issue in waste manage-

ment and the increasing amount of this waste actually represents a serious threat for both en-

vironment preservation and human health [1]. Based on the ‘‘Council Directive 1999/31/EC’’ 

of the European Commission on the Landfill of Waste, as of 2003 post-consumer ‘‘whole 

tires’’ could no longer be landfilled and, since July 2006, such regulations must be applied to 

both ‘‘whole’’ and ‘‘shredded’’ tires [2]. Therefore, there are strong motivations for recycling 

waste tires, which can easily be turned into an eco-friendly source of secondary raw materials. 

Recycling processes of waste tires mainly consist of separating the internal steel rein-

forcement from the rubber covering. Rubber scraps and short steel fibers are obtained via 

these processes and, among other alternative solutions, they can be employed in partial-to-

total replacement of ordinary concrete constituents. Particularly, rubber scraps find an inter-

esting field of application as a partial replacement of ordinary stone aggregates for obtaining 

the so-called rubberized concretes [3][4]. Furthermore, Recycled Steel Fibers (RSFs) can re-

place Industrial Steel Fibers (RSFs) for producing a cementitious composite generally referred 

to as Recycled Steel Fiber Reinforced Concretes (RSFRCs) [5][6]. 

Various experimental studies available in the scientific literature deal with the mechanical 

characterization of FRC in post-cracking range. Several recently issued works have investi-

gated the mechanical performance and the post-cracking response of the most common com-

posite materials, i.e., Steel-FRC [7], Polypropylene FRC [8] or Hybrid-FRC [9]. Furthermore, 

some experimental campaigns on “ecofriendly fiber reinforced concrete composites”, such as 

those made with either recycled steel fibers obtained from waste tires (RSFRC) [10] or natural 

fibers (NFRC) [11] are also available in literature. 

Several theoretical models, intended to simulate the failure behavior and post-cracking re-

sponse of FRC at both material and structural levels, are also available in the literature. They 

range from empirical design relationships [12][13] to more complex meso-mechanical models 

[14][15]. The latter take into account explicitly the interaction among the different phases of 

the composite (i.e., fibers, matrix, coarse aggregates and their interfaces) [16] and, hence, they 

require a sound knowledge of fiber-matrix interaction [17][18].  

This work proposes a meso-scale model aimed at simulating the failure behavior and post-

cracking response of Hybrid Industrial/Recycled Steel Fiber-Reinforced Concretes 

(HyIRSFRCs). More specifically, a zero-thickness interface model for plain concrete is em-

ployed in the framework of a meso-scale discrete-crack approach. This discontinuous model 

assumes the fracture-based model originally proposed by Carol et al. [19]. Moreover, a novel 

and promising approach to account for the fiber effect in concrete composites and mortar has 

been proposed in this paper. Particularly, this new advanced extension deals with the assump-

tion that Industrial Steel Fibers (ISFs) and Recycled Steel Fibers (RSFs) can be considered as 

embedded short beams randomly distributed within the concrete matrix.  

The paper is organized as follows. Section 2 reports the main assumptions of the FRC 

modeling and approaches. After this, Section 3 describes the fracture energy-based plasticity 

formulation for plain mortar/concrete interfaces while Section 4 highlights the fiber bond-slip 

formulation and dowel mechanisms for the embedded beams. Section 5 shows a relevant ap-

plication of the proposed model aimed at simulating the post-cracking response of the 

HyIRSFRC. Finally, some concluding remarks are given in Section 6. 
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2 OUTLINE OF THE MODELING APPROACH 

The present model for FRC is inspired to a discrete-crack approach and considers fibers as 

beam elements “embedded” within the concrete matrix. Hence, it includes three internal for-

mulations as follows:  

i. A fracture energy-based plasticity formulation for plain mortar/concrete joints: the 

constitutive model for iso-parametric interface elements relates normal and tangen-

tial stress components with the corresponding relative displacements; the three-

parameter hyperbolic failure surface by Carol et al. [19] is assumed as maximum 

strength criterion, while the ratio between fracture work and energy controls the 

post-cracking response: Section 3 reports further details on this model; 

ii. Fiber bond-slip developed in the fiber (beam) direction. Pull-out mechanisms of steel 

fibers crossing cracks (these latter represented through opened joints) is formulated 

by means of an elastoplastic model as indicated in Section 4; 

iii. Fiber dowel action based on elastic foundation concepts to obtain the dowel force-

displacement relationship developed in the transversal direction of the considered 

short beam which crosses an active fracture: this model is detailed in Section 5. 

3 FRACTURE ENERGY-BASED INTERFACE PLASTICITY FORMULATION 

This section presents a rate-independent fracture-based model for concrete interfaces: Ta-

ble 1 summarizes its main features, whereas further details are available in the literature [20]. 
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Table 1: Overview of the interface model for plain concrete and mortars. 

In Table 1, C defines the uncoupled normal/tangential elastic stiffness matrix, el
u  and cr

u  

the vectors of the elastic and cracking displacement rate (according to the non-associated flow 

rule), respectively,  ,f t  is the hyperbola defining the yield condition of the model on the 

bases of the three-parameters (Figure 1)   (the tensile strength), c (the cohesion) and   (the 

friction angle) [19].  
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Figure 1: Failure hyperbola by Carol et al. [19], Mohr–Coulomb surface, plastic potential and modified flow rule. 

The cracking displacement rate, ,
t

cr cr cru v   u  (where cru  and crv  represent the normal 

and the tangential components, respectively, while t interprets the transposition vector opera-

tor), is given through a general non-associated flow rule which controls the direction, m, of 

the interface fracture displacements by means of the transformation matrix operator A applied 

to the associated normal flow derivate, n;   is the non-negative plastic multiplier derived by 

means of the Kuhn-Tucker loading/unloading and consistency conditions. 

Furthermore, Table 1 highlights the incremental fracture work, crw , which controls the evo-

lution of the yielding surface in a generic fracture (post-elastic) process. A unified decay func-

tion is considered for each internal parameter, 
ip  (alternatively equals to  , c or tan ), of 

the yield condition: 
0ip  represents the initial value for 

ip , 0p ir p  the residual one and [ ]
ipS   

the scaling function where 
ip  measures the ratio between the current work spent and the 

available fracture energies in mode I and II. 

4 EMBEDDED SHORT BEAMS: PULL-OUT AND DOWEL EFFECTS 

FRC is modeled as a meso-scale medium composed by one homogeneous matrix (aggre-

gates and paste) plus another “phase” represented by the steel fibers. Hence, the fracture pro-

cess is modeled through interface elements, in the framework of a discrete crack approach, 

while the stress transferred between cracks, due to fibers bridging effect, is modelled with 

embedded cable (beam) elements. The spatial position and orientation of fibers are generated 

randomly in a two-dimensional finite element mesh. The number of fibers is calculated as a 

function of volume fraction and geometric characteristics of the analyzed reinforcement. Then, 

the contributions of the steel fibers are considered through two sub-models. Two plasticity-

based models are employed for modelling the fibers bond-slip behavior and dowel mechanism, 

respectively, in the axial and transversal direction of the fiber. 

4.1 Bond-slip  

This section deals with the proposed one-dimensional plasticity model for the stress-strain 

response. The model deals with a resulting bilinear stress-strain (f–N) rule which models the 

fiber bond–slip response (Table 2). It is based on the additive decomposition of the total strain 

rate N  into elastic el

N  and plastic pl

N  components. f  is the total stress rate while Ef repre-
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sents the uniaxial elastic modulus which considers both the uniaxial response of the steel fiber 

and the bond-slip effect of the short steel reinforcement in mortar/concrete substrate; ff  is the 

yield condition, being 
,y f  the initial yield stress and 

fQ the internal softening variable in 

post-elastic regime. The evolution law is defined in terms of the incremental plastic multiplier 

f  and the softening module Hf.  
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Table 2: 1D bond-slip model. 

The complete derivation of this numerical model and its validation against bond-slip exper-

imental tests are proposed in previous works published by the authors [17][21]. 

4.2 Dowel action 

A numerical sub-model for the dowel action has been accounted defining both stiffness 

and strength of the generic fiber embedded in the concrete matrix and subjected to a possible 

transverse force/displacement at the fracture level. The well-known Winkler beam theory is 

used to describe the dowel force-displacement relationship, which transformed in terms of 

dowel stress vs. relative displacement, allows to describing the equivalent shear beam stiff-

ness. Further details of the numerical model for dowel mechanisms can be found in [21].  

5 NUMERICAL SIMULATIONS 

The simulations of 150×150×600 mm
3
 pre-cracked concrete beams tested under four-point 

bending according to Martinelli et al. [10] are performed. Specimens of various mixtures, 

characterized by the same volume fraction of fibers, but different proportions of industrial and 

recycled reinforcements were tested in bending. The specimens presented a vertical notch (of 

approximately 2.0 mm wide) at the bottom (mid-length) of the beam characterized by a depth 

of about 45 mm. The actual beam span length is 450 mm (Figure 2).  

Four FRC mixtures have been analyzed, always using 0.5% of fibers in volume of matrix 

plus a reference concrete without reinforcements, and also combining the aforementioned 

ISFs and RSFs: 

 Plain concrete. 

 RSFRC 0-05: with only ISFs (RSFs = 0%). 

 RSFRC 50-05: with 50% of ISFs replaced by an equal amount of RSFs. 

 RSFRC 100-05: with all RSFs. 

 

2357



Antonio Caggiano, Diego Said Schicchi, Guillermo Etse and Enzo Martinelli 

 

Figure 2: Geometry of the notched beam tested in four-point bending. 

The explicit mesoscopic geometry is determined by means of a random 2D generation of 

both ISFs and RSFs as shown in Figure 3. 

 
(a) RSFRC 0-05: number of ISFs=316, fiber length ISF=33 mm, diameter ISF=0.55 mm. 

 
(b) RSFRC 100-05: number of RSFs=2076, fiber length (mean value) RSF=12 mm, diameter (mean value) 

RSF=0.23 mm [10]. 

 
(c) RSFRC 50-05: number of ISFs=158, of RSFs=1038. 

Figure 3: Two-dimensional finite element geometry: concrete phases and fibers as embedded short beams. 

Figure 4 reports the 2-D geometry of the considered structure and highlights the FE dis-

cretization employed in the analyses. Plane stress hypothesis and displacement-based control 

are assumed. Moreover, 3-node linear elastic plane stress elements have been adopted in the 

FE mesh, whereas all non-linearities are concentrated within zero-thickness interface elements 

defined throughout the adjacent edges of the finite elements in the notch zone. Non-linear 
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fracture-based law was introduced in those interface elements according to the formulation 

outlined in Section 3. Then, the constitutive models for considering the stress transferred be-

tween cracks through embedded beam elements are outlined in Section 4. 

 

 
(a) Adopted FE mesh; 

 
(b) Interface zone at the notch section; 

 
(c) Cracked configuration of the RSFRC 0-05 specimen. 

Figure 4: Adopted finite element mesh, interfaces position and possible cracked configuration of the 4-point 

bending beam. As example there is plotted the results of the RSFRC 0-05 specimen. 

Figures 5 to 8 show the numerical response in terms of vertical load vs. Crack Tip Opening 

Displacements (CTOD) against the corresponding experimental results. It can be observed 

that the proposed model leads to very accurate simulations of the post-cracking response ob-

served in the experimental tests. As expected, the load–CTOD responses of concrete with or 

without fibers emphasize the significant influence of fibers on the both peak strength and 

post-peak response of the FRC specimens tested in bending: the brittle behavior of the con-

crete matrix became significantly tougher when fibers are added as spread reinforcement. 

The numerical simulations, as well as the experimental observations, confirm that the post-

cracking response of FRC specimens with only ISFs is characterized by the highest toughness, 

as a result of the superior bond properties and dowel action of these fibers with respect to 

RSFs. 

The model formulation is also capable to capture the effect of replacing increasing amount 

of ISFs with an equal quantity of RSFs. Both experimental and numerical results highlight as 

the post-cracking behavior of FRC is generally characterized by a more pronounced softening 

range in specimens having a greater quantity of RSFs in substitution of ISFs. It should be not-
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ed that the local bond–slip and dowel laws were determined through inverse identification on 

test results obtained on specimens reinforced with only ISFs and/or RSFs. Numerical predic-

tions of hybrid industrial/recycled steel fiber-reinforced concrete have been obtained by just 

changing the fiber types/contents.  
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Figure 5: Vertical force – CTODm curves of plain concrete. 
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Figure 6: Vertical force – CTODm curves of RSFRC 0-05. 

0

5

10

15

20

0 1 2 3

V
er

ti
ca

l 
lo

a
d

 -
P

 [
k

N
]

Crack-tip opening displacement - CTODm [mm]

Scatter of the results

Experimental results (mean)

Numerical simulation

RSFRC 50-05

 

2360



Antonio Caggiano, Diego Said Schicchi, Guillermo Etse and Enzo Martinelli 

 

Figure 7: Vertical force – CTODm curves of RSFRC 50-05. 
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Figure 9: Vertical force – CTODm curves of RSFRC 100-05. 

6 CONCLUSIONS 

This paper has presented a meso-mechanical model for simulating the fracture response of 

HRSFRCs in bending. It is based on a discontinuous crack finite element approach and as-

sumes dispersed fibers “embedded” within the mesh of the cementitious matrix.   

The numerical results demonstrate the capability of the proposed model in simulating the 

experimental observations derived by four-point bending tests on hybrid recycled/industrial 

steel fiber-reinforced concrete specimens. Particularly, the model is capable to capture the 

significant influence of steel fiber contents and types on both the maximum strength and post-

peak toughness exhibited by the aforementioned specimens. 

Finally, although further experimental comparisons are needed for achieving a full valida-

tion, the proposed model paves the way toward predicting the fracture behavior of HRSFRCs 

as a result of the mechanical properties and geometric distribution of their key constituents. 
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Abstract. In this paper the phenomenological process related to the evolution of the ternary 
and higher system is discussed. The two coupled phenomena related to the difference in diffu-
sion coefficients will be presented by numerical investigations -  mainly the Kirkendall and 
Frenkel effects. Such a difference leads to the: lattice shift, stress generation and relaxation, 
non-equilibrium distribution of vacancies and voiding. The generalized Darken method (bi-
velocity) of the multi-component system is formulated. The approximation method allows for 
determination the evolution of the voids. Thus the relaxation time for the vacancies in terms of 
mean migration length and vacancy diffusion coefficient in case of multicomponent system 
will be formulated. Moreover, the void evolution in Fe-Pd system will be calculated.
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1 INTRODUCTION 
The Navier-Stokes set of equations is a theoretical model for continuum fluid dynamics 

where the local thermodynamic equilibrium holds. However, this equations encounters some 

challenging difficulties for non-continuum flows. This phenomena was widely studied in the 

gas community, where the gas density is usually very low. In recent years, non-continuum 

flows have also attracted much attention with the rapid development in microelectromechani-

cal systems. However, due to the finite Knudsen number effect, the continuum-equilibrium 

assumption may break down and the model will fail to work for these flows [1, 2, 3].  

 In the recent years Brenner proposed new model based on the fluid velocity [4, 5, 6]. 

He introduced one single additional term into each of the momentum and energy equations. 

Generally Brenner assumed that the mass velocity in the hydrodynamics equations should be 

replaced by volume velocity which relates to the flux of volume rather than mass [4, 5, 6].  

     On the other hand, diffusion community knows very well an alternative way of pro-

viding volume conservation. Namely, it is a lattice drift (Kirkendall effect) caused by the va-

cancy flux divergence leading to dislocation climb and subsequently to the construction of 

extraplanes in accumulation region and dismantling atomic planes in depleting region [7, 8, 9]. 

The drift velocity is than generated. This constraint means zero divergence of overall volume 

flux density:  

 
1

0
r

m
i i

i
J

x 


 

    

When the only driving force is chemical potential gradient, ch
i i  , the volume flux is given 

by: 

 *m i
i i i iJ D

x


 


  


.  

 In this paper the intrdiffusion in solid state description will be formulated. The mass, 

heat, volume continuity equation, flux definition and vacancy evolution equation will be pre-

sented. We will focus on the kinetic effects that are related to difference of mobilities, namely 

on the stress generation and relaxation [3,10]. Interdiffusion leads to the accumulation of mat-

ter at the side of slower component of the diffusion couple. Due to the volume constraint, na-

ture just must find some ways to reduce this accumulation to zero. This reduction, will be 

realized here by introduction of: 1) Kirkendall effect; 2) Backstress effect and 3) non-
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equilibrium vacancy distribution. The last paragraph will present the results of the model 

mainly, the voids evolution during interdiffusion process in Fe-Pd system.  

 

2. THE MASS AND HEAT EQUATIONS 

Mass conservation law. Consider multicomponent mixture, where i  denote the i-th 

component density. The evolution of the density is described by the equation: 

  div 0i
i iv

t





 


 (1) 

where i i iJ v  is the overall flux of the i-th component and iv  denote its volume velocity 

(the medium velocity). We do not take into account mass production or consumption in this 

equation.  

Heat balance. Diffusive flux can influence the heat balance. The heat flux can be defined af-

ter Fourier (for isotropic material) as: 

  grad qJ k T   (2) 

where k  denote the thermal conductivity and T  is the temperature. We can define the en-

thalpy of the system according to internal energy density as:  

 
 tr

h u



   (3) 

The differential form of the above equation is: 

    trtr

i
i

m
i iii i

i
v v vv v

DD D uD h D u
Dt Dt Dt Dt Dt

    
   

  (4) 

where 
v

DT
Dt

 denote the Lagrange derivative defined over the velocity v : 

  grad 
v

DT T v T
Dt t


 


, (5) 

Assuming, that the changing enthalpy in time is proportional to its specific heat and tempera-

ture, the following equation can be written: 

 p
v v

Dh DTc
Dt Dt

  (6) 

Finally, by introducing Eqs. (2) - (6) into the energy conservation law and the mechanical 

parts are neglected, than the final heat transport equation can be derived: 
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  div  grad p
v

DTc k T
Dt

   (7) 

 

The fluxes. The overall flux and velocity of the mass are defined by the volume drift and dif-

fusion velocities: 

         where    :m m drift m d drift d drift m d
i i i i i i i ii i

v v v v v v v v              , (8) 

where  i = 1,…, r  and  r denotes the number of components and m
i iN    denote the molar 

fraction.  

The volume drift velocity. During an arbitrary transport process when volume is affected by 

the distribution of every mixture component and the stress field, from the Liouville theorem it 

follows:  

 
 div div

m
mi i

i i ii i
v v

t



 

  
  . (9) 

 We consider here a multicomponent solution in a closed system, where partial 

molar volumes and elastic properties do not depend on composition,  1,...,i rf N N  . Thus, 

the volume can be only affected by the external forces:  

 d d dt v x

 
   . (10) 

where:   is a velocity generated by external forces (elastic deformation). Introducing Euler 

relation ( 1m m
i ii

     ) and Eq. (8), (9) allow to calculate the drift velocity of the mix-

ture: 

 
 div divdrift m d

i i ii
v v v    (11) 

Denoting the Darken velocity, Dv  as:  

 

D m d
i i iv v    (12) 

The final form of the drift velocity can be rewritten in the form: 

 
 div divdrift Dv v v   (13) 

Equation (13) defines the drift velocity of the system. In one dimension the drift velocity can 
be expressed by analytical function as: 

 

drift Dv v v   (14) 
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 In this paper we will consider, additionally four more effects: 1) Kirkendall effect, 

2) Backstress 3) vacancy generation effect and 4) thermal gradient 

The Kirkendall effect  means the movement of lattice from slower diffusant side towards the 

faster diffusant side with some drift velocity, driftv . Thus this effect results in diffusion flux as 

follow: 

 d drift
i i i iJ v v   , (15) 

 The diffusion flux is defined by the Nernst-Planck flux equation [11,12] which in 
general form reads: 

 grad drift
i i i i iJ B v    , (16) 

where i  is the generalized diffusion potential of the i-th component.  

Backstress effect - the diffusion potential is affected by the internal stress effect - stress gra-

dient appearing due to attempt of matter accumulation. Each diffusing atom of both species is 

affected by common stress force:  

  grad gradInt m Int
i i p     (17) 

Non-equilibrium vacancy distribution - the diffusion potential is a difference of component 

chemical and common vacancy potentials, ch V
i i    , and equalization of the diffusion 

fluxes instead of lattice shift, is provided by the non-equilibrium vacancy gradient appearing 

due to attempt of matter accumulation. Role of effective force here is played by the gradient 

of vacancy chemical potential, proportional to the gradient of deviation of vacant sites frac-

tion from its local equilibrium value: 

 lnV V
eq
V

kT 


   (18) 

Temperature distribution - the isothermal heat transmitted by moving the atom in the proc-

ess of jumping a lattice site less the intrinsic enthalpy [13, 14]: 

 *1grad gradT Q T
T

    (19) 

where: *Q  is defined as heat of transport. Finally, the diffusion potential is a sum of compo-

nent chemical and common vacancy and stress potentials, 
ch V Int T

i i i        . Conse-

quently, the gradient of the diffusion potential is defined as follow: 
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    *1 1grad grad grad grad gradeq m Int
i i V V ieq

i V

kTkT p Q T
T

   
 

        (20) 

Internal pressure -  the internal pressure is a result of the difference in the diffusion coeffi-

cients of the components and difference in the lattice in diffusion couple [15]:  

 
   div

3 1 2

Int
dp E v v

t





  
 

, (21) 

where: the overall diffusion velocity is defined as: 

 d m d
i i ii

v v   (22) 

Vacancy exchange. The last equation defining the model is the vacancy exchange. The equa-

tion is defined as: 

 
1

div grad 0
eqr

v v v
i i i

i v

B
t
  

 


 
  

   (23) 

where vN  is the vacancy molar fraction, vj  is the vacancy flux. The eq
vN  and v denote the 

vacancy equilibrium molar fraction and relaxation time, respectively.  

 

3. RESULTS.  

In this section the results of interdiffusion and voids formation will be shown. The voids 

formation will be analyzed in two-dimmensional space. For experimental verification the Fe-

Pd binary system was used. The voids radii will be estimated and the results for different cal-

culation times will be shown. The following set of the equation will be solved: 

  div 0   on      \d Di
i i i Vv v

t


 


    


 - mass conservation 

 
1

div grad 0      on   \
eqr

v v v
i i i V

i v

B
t
  

 


 
    

   - vacancy exchange 

 0      on   i V
Vt t

  
  

 
  

where:  1grad grad grad eq
i i V Veq

i V

kTkT   
 

    . This set of the equation will be supple-

mented with boundary conditions: 

 0   on   d
i iv    - diffusion flux on the boundary 

The subset V  denote the position of the voids. The voids are initially introduced onto the 

2368



Bartek Wierzba 

calculation mesh. Thus, only the growth will be simulated. In general, the voids growth on the 

faster diffusion couple side. In Fe-Pb system the voids growth on the iron reach side of the 

diffusion couple. We assume that in Fe-Pd system the mean migration length for vacancy was 
810VL m . The diffusion coefficient was calculated from Boltzmann-Matano analysis (from 

known experimental results of diffusion in Fe-Pd system at 1273K for 150h [16]), i.e. at the 

concentration point 0.75FeN   the diffusion coefficients was estimated as:  151.17 10FeD    

and 169.27 10PdD    2 1m s . The results for different calculation times are shown on figures 

1-2. 

 

 
Figure 1. The simualtion results of the a) - c) Fe concentration and b) - d) voids formation 

(vacancies evolution) in Fe-Pd system after annealing at 1273K for 200h 
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Figure 2. The simualtion results of the a) - c) Fe concentration and b) - d) voids formation 

(vacancies evolution) in Fe-Pd system after annealing at 1273K for 1000h 

 

4. CONCLUSIONS. 

Present paper shows the method which allow for calculation of the physical models of in-

terdiffusion. The drift velocity was calculated in case of presence of the vacancy, backstress 

and chemical force fields. Moreover, it was shown, that the interdiffusion process can be in-

fluenced by the vacancy and heat fields. The model was checked by simulating voids growth 

during diffusion couple experiments. It was presented, that the voids are formed at the faster 

diffusion side of the diffusion couple. Moreover the radii of the void changes parabolically 

with time. In the future the simulation should take into account, that the voids are moving dur-

ing the diffusion process. 
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Abstract. Dynamic fracture phenomena are studied employing low cost computational tools

based on Finite Elements with Embedded strong discontinuities (E-FEM). Fracture nucleation

and propagation are accounted for through the injection of discontinuous strain and displace-

ment modes inside the finite elements. The Crack Path Field technique is employed to compute

the trace of the strong discontinuity during fracture propagation.

Unstable crack propagation and crack branching are observed upon increasing loading

rates. The variation in terms of crack pattern and energy dissipation is studied and a good cor-

relation is found between the maximum experimental crack speed and maximum dissipation at

the onset of branching. Comparable results are obtained against simulations employing supra-

elemental techniques, such as phase-field and gradient damage models, considering coarser

discretizations which can differ by two orders of magnitude.
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1 INTRODUCTION

Dynamic fracture processes are challenging phenomena to be studied experimentally. Ex-

pensive equipment needs to be employed in order to accurately capture crack growth in a small

time frame and dynamic loading conditions are not always straightforward to reproduce in a

laboratory.

For this reason, numerical techniques such as Finite element (FE) methods are regarded as

valuable alternatives for solving general dynamic fracture problems. However, they show some

limitations mainly related with the objectivity, computational cost and the overall ability to pre-

dict experimental tests [36]. Different alternatives have been adopted to model crack nucleation

and propagation in a dynamic setting. For instance works involving fracture in dynamic prob-

lems have been addressed by Falk et al. [7], Pandolfi et al. [26], Song and Belytschko [35] and

Linder and Armero [16], where cracks are inserted between FE (inter-elemental) and inside the

FE support (intra-elemental). Other techniques tackle the strain localization phenomena by con-

sidering supra-elemental bands such as phase-field modeling [2, 11, 19] and gradient damage

models [15]. Such techniques led to impressive 2D and 3D results but at the cost of extremely

fine FE discretizations which can be regarded prohibitive in a dynamic context where a large

amount of time steps need to be resolved in order to capture crack growth with a sufficient time

resolution. Softening visco-elastic visco-plastic damage continuum model has been employed

for dynamic fracture of concrete up to intermediate loading rates in [27, 28]. At high loading

rates, where fragmentation and spalling take place, erosion or element deletion models pro-

posed by Camacho and Ortiz [3], Li et al. [14] have proven to be competitive methods. Other

alternative numerical methodologies have been addressed with some success, e.g. peridynamics

[10, 32], discrete methodologies such as lattice models [13] and mesh-free methodologies [1],

to mention a few.

One of the main objectives of such numerical approaches is to help understanding dynamic

fracture phenomena mainly driven by inertial forces which play a dominant role over possible

viscous behaviors at high loading rates, e.g. crack curving and branching phenomena detected

experimentally when a critical crack tip velocity is exceeded [9, 29–31]. In this scenario, com-

putationally affordable intra-element techniques need to be ready to account for complex frac-

ture patterns in which the dominant crack paths may involve branching and sudden changes of

the crack propagation direction.

The present contribution introduces and assesses a finite element method for modeling crack

propagation problems with the presence of a dominant crack in brittle or quasi-brittle materi-

als. Problems involving fragmentation or spalling are left outside the scope of this work. Our

approach is based on the Embedded Finite Element technology (cf. [4, 23]) which has already

been utilized for the study of fracture in quasi-brittle materials and successfully applied to the

study of tensile crack growth in gravity dams (cf. [5, 6]). The specific formulation developed

by Oliver et al. [24] and assessed for quasi-static multiscale fracture problems has been adopted

and tailored for dynamic fracture propagation problems. One of the main advantages of the

present approach is that cracks, represented by strong discontinuities embedded into the finite

elements, may propagate through the mesh in arbitrary directions reproducing complex fail-

ure patterns and, therefore, significantly coarser meshes can be employed compared to other

supra-elemental techniques such as phase-field or gradient models.
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Figure 1: IVBP at solid B with evolving crack. The disjoint domains of B generated by S are denoted B+ and B−.

2 MODEL DESCRIPTION

The governing equations of the dynamic fracture Initial Boundary Value Problem (IBVP) at

time t ∈ [0,T ] of the solid B (cf. Figure 1) can be stated as: find u, εεε and σσσ , satisfying:

∇∇∇ ·σσσ +b = ρü ; ∀x ∈ B\S ; t ∈ [0,T ] ; Momentum equation (1)

εεε = ∇∇∇
s
u ; ∀x ∈ B\S ; t ∈ [0,T ] ; Compatibility equation (2)

σσσ = ΣΣΣ(εεε,r) ; ∀x ∈ B ; t ∈ [0,T ] ; Constitutive equation (3)

u = u∗(x, t) ; ∀x ∈ ∂Bu ; t ∈ [0,T ] ; Displ. boundary conditions (4)

σσσ ·n = t∗(x, t) ; ∀x ∈ ∂Bt ; t ∈ [0,T ] ; Traction boundary conditions(5)

u(x,0) = 0 ; ∀x ∈ B ; Initial displ. condition (6)

u̇(x,0) = u̇0(x) ; ∀x ∈ B ; Initial velocity condition (7)

σσσ
+ ·n = σσσ S ·n = σσσ

− ·n ; ∀xS ∈ S ; t ∈ [τ,T ] ; Traction continuity across S (8)

where u, εεε and σσσ correspond to the displacement, strain and stress fields and b, ρ and ΣΣΣ denote

the volumetric forces, the density and the constitutive relation, respectively. The instant when

the discontinuity surface S is introduced at xS is denoted by τ and σσσS , σσσ+, σσσ− and n stand for

the stress at an interface point of S, the stresses at each side of this interface and the normal to

the discontinuity S.

According to the the Continuum Strong Discontinuity Approach (CSDA) introduced in [21]

and [22], the stresses σσσS are determined through the constitutive model ΣΣΣ selected for the bulk

material accounting for regularization issues.

The strong form of the fracture propagation problem stated in (1) to (8) is recast in a varia-

tional format following the methodology presented in [33] and by Oliver et al. [22] where both

displacement and strain fields are defined as the addition of a smooth and an enhanced part rep-

resenting the corresponding singularity in the kinematics. The equivalent variational statement

reads:
∫

B

σσσ : ∇∇∇
s
ηηηdB+

∫

B

(b−ρü) ·ηηη dB+

∫

∂Bt

t∗ ·ηηη dΓ = 0 ; ∀ ηηη ∈ V̂u, (9)

where u and ηηη stand for the displacements and displacement variations belonging to the spaces

of kinematically admissible displacements Vu and displacement variations V̂u, respectively.
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2.1 Finite element discretization with different kinematic descriptions

The finite element technology employed in this study is designed to account for different

kinematic descriptions which are found optimal to reproduce different stages of fracture nucle-

ation and propagation. Strain localization is considered at the surface S (cf. Figure 1) which is

k−regularized in the finite element model, i.e S is represented by a band of finite thickness k

across which the displacements are assumed to be continuous.

Quadrilateral finite elements are employed in all considered discretizations and the resulting

mesh is basically divided in two disjoint domains: Bstd(t) and Binj(t) (B = Bstd(t)∪Binj(t))
accounting for the standard and injected enhanced kinematics, respectively. These vary with

time throughout the evolution of the fracture process as depicted in Figure 2. Domains with

injected kinematics Binj(t) are, in turn, composed by the union of the disjoint domains Bwd, i.e.

with weak discontinuity kinematics, and Bsd, i.e. with strong discontinuity kinematics satisfying

Binj(t) = Bwd(t)∪Bsd(t). Therefore, three types of domains with different kinematics can be

identified in the partitions of B:

1. The domain Bstd corresponds to the union of those finite elements with standard kinemat-

ics, i.e. continuous displacements. The finite element formulation employed in Bstd is

also termed irreducible formulation since displacements are the only components of the

solution field. Bilinear polynomials are used to interpolate the displacement field through-

out the quadrilateral elements. The standard kinematics is employed in all FE (belonging

to Bstd) that are found far away from the main fracture process and, for this reason, no

localization phenomena is detected. Due to the standard character of its implementation

no further details concerning the formulation of standard kinematics FE are given in this

manuscript.

2. The domain Bwd corresponds to the union of those finite elements in Binj where a weak

displacement discontinuity is considered in the kinematics. Such kinematic enrichment is

also referred to as constant stress-discontinuous strain mode (CS-DSM) in Section 2.1.1

where further formulation details are provided. The weak discontinuity kinematics is

employed at regions susceptible of undergoing strain-localization phenomena, i.e. where

strains exceed a certain critical threshold. These domains are typically found at a vicinity

of the crack tip or in those locations where stress concentration may lead to the nucleation

of fracture phenomena. The enhanced deformation of the elements belonging to Bwd,

amenable to carry a non-directional discontinuity, renders a flexible element which is

particularly useful to determine the correct propagation of the crack and to accommodate

the strain states at crack branching regions.

3. The domain Bsd corresponds to the union of those finite elements in Binj in which a strong

displacement discontinuity is considered in the kinematics. Such kinematic enrichment

is also referred to as discontinuous displacement mode (DDM) in Section 2.1.2 where

further formulation details are provided. The strong discontinuity kinematics is employed

throughout the trace of the crack and the elements belonging to Bsd must exceed a certain

strain threshold and, additionally, fulfill a number of conditions, detailed in Section 2.1.2.

The domain Binj is, therefore, modeled with finite elements equipped with strain injections,

including CS-DSM and DDM modes introduced in [18, 24]. Strain injections are included in

finite elements through the concept of assumed enhanced strains [34] considering a three-field

Petrov-Galerkin mixed formulation by assuming that displacements u and strains εεε in (9) are
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t1 t2 t3

Intra-elemental strain injection during fracture propagation

Bwd

Bstd: Standard kinematics

Bwd: Weak discontinuity (CS-DSM)

Bsd: Strong discontinuity (DDM)

Bsd(t2)

B = Bstd(t)∪Binj(t)

Binj(t) = Bwd(t)∪Bsd(t)

Bstd(t1) Bstd(t2) Bstd(t3)

Binj(t1) = Bwd(t1)
Bsd(t3)

Figure 2: Subdomain categories of the discrete body along different times (t1, t2 and t3) of the analysis.

independent fields. In both CS-DSM and DDM modes the strain field is partitioned in two

terms: εεε = ξξξ +γγγ denoting a compatible (and smooth) strain field ξξξ and an enhanced strain field

γγγ which tackles possible singularities in the failure propagation kinematics.

The resulting Embedded Finite Element method (E-FEM) has been already presented in [23]

and [24] and assessed for the case of quasi-static failure propagation. In the following sub-

sections a brief description of its formulation is given but the reader is referred to the works

in [18, 23, 24] for complete implementation details.

2.1.1 Weak discontinuity injection in Bwd. Constant Stress-Discontinuous Strain Mode

(CS-DSM)

The weak discontinuity kinematics is injected when a user defined strain threshold is ex-

ceeded (cf. [18]). Such critical strain threshold is determined based on a strain-like internal

variable of the damage model, r, which records the maximum historical value of the equivalent

strain, τε , accounting for the positive strain counterpart, i.e. only tensile stress states contribute

to the strain norm. For complete details on the k-regularized damage model employed in this

study the reader is referred to the works in [8, 18, 20].

Considering the strain field decomposition into a compatible and enhanced strain, the result-

ing variational three-field problem can be stated as: Find u ∈ Vwd
u and εεε = ξξξ + γγγ with ξξξ ∈ Vwd

ε

and γγγ ∈ Vwd
γ , satisfying:

∫

B

σσσ(εεε) : ∇∇∇ηηη dB−

∫

B

(b−ρü) ·ηηη dB−

∫

∂Bt

t∗ ·ηηη dΓ

︸ ︷︷ ︸

Wext
η (ηηη,b,ü,t∗)

= 0; ∀ηηη ∈ V̂wd
u , (10)

∫

Be

φ
e
ξ̂ξξ

e
:
(

φ
e
ξξξ

e
−

ne
node∑

i=1

(∇∇∇s
Ne

i ⊗de
i )
)

dB = 0; ∀ξ̂ξξ
e
∈ V̂wd

ε , (11)

∫

Be

γ̂γγ
e

: (χ
(he,ke)
S σσσ) dB =

∫

Se

γ̂γγ
e

: [[σσσ ]] dB = 0; ∀γ̂γγ
e ∈ V̂wd

γ , (12)

2376



Oriol Lloberas-Valls, Alfredo E. Huespe, J. Oliver and Ivo F. Dias

where Vwd
�

and V̂wd
�

denote the trial and test function spaces, respectively. The subindices u, ε

and γ refer to the spaces of displacements u, strains εεε and enhanced strain fields γγγ , respectively

(cf. [18] for a detailed definition of these function spaces). Displacements u and displacement

variations ηηη are element-wise interpolated using standard bilinear shape functions while the

compatible and enhanced strain components are interpolated using the spatially constant func-

tion φ and the dipole function χ , detailed in [18, 24]. The term denoted Wext
η in (10), refers to

the virtual work due to the external and inertial forces.

As described in [18] the non-directional character of the strain enhancement renders the CS-

DSM element an excellent candidate to be employed at regions undergoing complex fracture

phenomena such as crack branching and intersection. It is designed to sense strain localization

phenomena and, therefore, is seen particularly useful to anticipate a strong discontinuity at the

crack tip region in a certain well-captured propagation direction.

2.1.2 Strong discontinuity injection in Bsd. Discontinuous Displacement Mode (DDM)

Upon increasing strain localization in a particular direction, the strong discontinuity kine-

matics is injected after the the injection of the weak discontinuity. The element to be enriched

with the strong discontinuity kinematics belongs to Binj for which the strain threshold referred

in Section 2.1.1 must have been exceeded. Additionally, all elements in Bsd must fulfill the

following conditions (cf. [18] for a more detailed explanation):

1. The constitutive tangent satisfies the bifurcation condition, i.e. the determinant of the

corresponding acoustic tensor must vanish.

2. The local dissipation per unit of surface exceeds a user-defined fraction of the material

fracture energy Gf

3. The trace of one strong discontinuity S (cf. Section 2.2) intersects the element.

When the above mentioned conditions are accomplished, the strong discontinuity kinematics

can be injected with confidence propagating the crack following a correct direction and avoiding

possible stress locking effects arising from any kinematic incompatibilities.

Considering the strain field decomposition into a compatible and enhanced strain field, as

proposed in the assumed enhanced strains methodology, the mixed variational problem in Bsd

can be written as: find u ∈ Vsd
u and εεεsd = ξξξ sd + γγγsd with ξξξ sd ∈ Vsd

ε and γγγ sd ∈ Vsd
γ , satisfying:

∫

B

σσσ(εεε) : ∇∇∇
s
ηηη dB−Wext

η (ηηη ,b, ü, t∗) = 0; ∀ηηη ∈ V̂sd
u , (13)

∫

Be

χ
+
S (x) ([[û]]e ⊗s n : σσσ) dB =

∫

Se

[[û]]e · [[σσσ ·n]] dΓ = 0; ∀[[û]]e ∈ R
ndim , (14)

∫

Be

φ
e
ξ̂ξξ

e

sd :
(

φ
e
ξξξ

e
sd −

[

∇∇∇
s
Ne

i ⊗de
i )−∇∇∇ϕ

e ⊗s [[u]]e
])

dB = 0; ∀ξ̂ξξ
e
∈ S

ndim×ndim , (15)

where Vsd
�

and V̂sd
�

denote the trial and test function spaces, respectively. The subindices u, ε

and γ refer to the spaces of displacements u, strains εεε and enhanced strain fields γγγ , respectively

(The reader is referred to the work in [18] for a detailed definition of these function spaces).
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Displacements variations ηηη are element-wise interpolated using standard bilinear shape func-

tions while the displacements u are interpolated as an addition of a standard interpolation of

the smooth term and a term accounting for the displacement jump [[u]] through the Heaviside

step function and an element auxiliary function described in [18, 24]. The compatible strain

and compatible strain variations are interpolated using the spatially constant function φ . The

enhanced strains are element-wise interpolated employing the dirac delta shifted to S and the

enhanced strain variations are computed through the generalized dipole-like function χ
+
S de-

tailed in [18, 24].

2.2 Crack Path Field tracking algorithm

The trace of the strong discontinuity is computed through the crack path field (CPF) tech-

nique introduced by Oliver et al. [23]. Essentially, a directional maximum of a conveniently

chosen localizing field r (cf. [18, 23, 24]) is calculated defining the so-called crack path set Γ,

i. e. predicting the trace of the strong discontinuity S.

The direction in which the maximum of r is identified is taken according to the vector field

ê(x, t) =
∇∇∇ũ(x, t)

||∇∇∇ũ||
(16)

where ũ denotes a scalar value of the displacement field u (cf. [18]). The orientation of the

strong discontinuity n is directly taken from the vector ê. The directional maximum of r, iden-

tifying the crack path set Γ, is computed through the zero-level set of the so called crack path

field µ(x, t), defined as:

µ(x, t) =
∂ r̃

∂e
= ∇∇∇r̃ · ê, (17)

where r̃ is a sufficiently smooth field of r. The zero-level set of µ defines the crack path set Γ as

Γ(t) := {x
∣
∣µ(x, t) =

∂ r̃

∂e
= 0}. (18)

Note that S is contained in the crack path set Γ (cf. Figure 3) and is identified as the portion

of Γ belonging to Bsd. Once the intersections between S and the finite element boundaries are

known, the auxiliary function ϕe can be constructed.

The spirit of the CPF technique is to facilitate the computation of the trace of the strong dis-

continuity specially in those cases in which crack propagation may be biased by mesh alignment

or structured discretizations (cf. [23]).

2.3 Implicit time integration

The enhanced degrees of freedom (ξ̄ξξ
e

and γ̄γγ
e in (10)–(11), or ξ̄ξξ

e
and [[u]]e in (13)–(15)) are

condensed out at the element level and, therefore, the unknowns in the discrete model consist

on the vector of smooth displacements u and accelerations ü. Consequently, the elements with

enhanced kinematics do not lead to an increase of the standard degrees of freedom. Since the

enhanced degrees of freedom do not have an associated mass, their condensation is performed

as done in quasi-static problems.

The resulting global system of equations in terms of u for each time step can be written in a

matrix form as:

Mü(t)+Fint(u(t))−Fext(t) = 0, (19)
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n

S ⊂ Γ(µ = 0)

(c)(b)

(a)
S

Γ

ũ

O(1/k) Bstd

r

Bsd(t)
Bwd(t)

Bwd(t)

Bsd(t)

Γ

Figure 3: Crack Path Field (CPF) strategy for the crack tracking algorithm. Γ denotes the crack path set. (a)

Localized field r around a strong discontinuity band. (b) Associated scalar displacement field ũ. (c) Γ (zero-level

set of the crack path field function µ̃) and the trace of the strong discontinuity S.

where M and Fext represent the mass matrix and external force vector, without the inertial

forces, respectively. The mass matrix is computed in a standard way, i.e. lumping the contri-

butions to a diagonal matrix, and is only associated to the degrees of freedom of the smooth

displacement field. The internal force vector and Fint results from the evaluation of the first

term, on the l.h.s. of (9), (10) or (13), corresponding to Bstd, Bwd and Bsd, respectively.

A standard implicit time integration (Newmark) scheme is employed to find the solution of

(19) at time step t + 1. Considering the solution ut+1 the system of equations in (19) can be

expressed as

R(ut+1) = 0. (20)

Due to the evolution of crack phenomena, the integration domains vary with time, as well as

the spatial integration rules and the residual force vector has to be evaluated in an incremental

way as follows:

R(ut+1) = R(ut)+∆R
(

∆ut+1,Bt
std,B

t
wd,B

t
sd

)

. (21)

The integration rules for the evaluation of the residual force vector, R, are specific for each

domain Bt+1
std , Bt+1

wd and Bt+1
sd . An alternative approach is utilized in our implementation which

consists in redefining the stresses, which take place in the internal force expressions such that

one quadrature rule suffices for evaluating R(ut+1) in the complete domain B (cf. Oliver et al.

[23, 24] for details of the effective stress definition and their updating scheme).

3 Representative simulations

The following examples illustrate the performance of the crack path field and strain injection

techniques in dynamic simulations with different loading rates and material brittleness. Plane

strain conditions are assumed in all two-dimensional examples.

3.1 Dynamic simulations of quasi-brittle fracture at different loading rates

Dynamic fracture simulations of a compact tension (CT) test are performed considering a

quasi-brittle material such as concrete (cf. Figure 4). The influence of the loading regime

is studied by varying the pressure rates applied at the loading walls of the CT specimen. The

damage model described in [17, 24] is employed with a linear softening law and an only tension

2379



Oriol Lloberas-Valls, Alfredo E. Huespe, J. Oliver and Ivo F. Dias

2
5
0

m
m

200 mm

p

t

ṗ
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Figure 4: Geometry and boundary conditions for the dynamic CT test.

σu [N/mm2] E [N/mm2] ν Gf [N/mm] ρ
[
Kg/m3

]

3.5 30.0×103 0.18 0.09 2400

Table 1: Material parameters for the dynamic compact tension (CT) test.

failure criterion. A constant time discretization is considered with ∆t = 10−6 s and the material

parameters are shown in Table 1.

In order to prevent damage nucleation at the vicinity of the wall where the pressure load is

applied, the upper part of the specimen (cf. Figure 4) is kept elastic. The Rayleigh wave speed

vR for a concrete material is considered approximately equal to 2100 m/s (cf. [25]).

Upon increasing loading rate, the failure pattern changes from a vertical mode-I crack to

mixed mode with multiple cracks, i.e. the fracture surface increases (cf. Figure 5). This ten-

dency is also observed in Ožbolt et al. [25] where a similar test is studied. The injection of weak

and strong discontinuities in combination with the Crack Path Field (CPF) tracking algorithm

automatically captures branching phenomena without the need for a special strong discontinu-

ity kinematics at the branched element as proposed in [16]. In the proposed methodology, the

crack path sets cannot intersect itself and, therefore, the elements at the branching region are

injected with the CS-DSM which has no assumed direction of localization.

The total energy dissipation and the dissipation plots are shown for different loading rates ṗ

ranging 1.077×103 to 2.154×104 N/mm2/s in Figure 6. Such dissipated energy WD at time t

is calculated as:

WD(t) =

∫ t

0

Pext(t) dt −Ψ(t)−K(t), (22)

where Pext(t) denote the external mechanical power, performed by the external loads excluding

the inertial forces, Ψ(t) the total internal energy and K(t) the kinetic energy, at time t. Addi-
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Crack path set Γ

Standard CS-DSM DDM

Injection patterns

Low loading rate Medium loading rate High loading rate

Figure 5: Injection patterns upon increasing loading rate at the dynamic compact tension test.
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ṗ = 21538N/mm2/s
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Figure 6: Time evolution of the total dissipated energy (left) and dissipation (right) for different loading rates. The

black circles indicate the first observed branching episode. A thickness of 1mm is considered for the energy plots.

tionally, the dissipation D(t) can be computed as the derivative with respect to time of WD(t)
since

WD(t) =

∫ χ=t

0

D(χ) dχ . (23)

The total dissipated energy and crack surface increase upon increasing loading and the cor-

responding dissipation presents a higher peak value (cf. Figure 6). The branching episodes are

indicated in the plots with black circles at each of the curves. It is observed that all dissipa-

tions measured during branching events cluster in a region between 1.35×105 and 1.62×105

N ·mm/s. These limits Db can be estimated as

Db = vbGfk, (24)

where vb refers to the crack velocity at the onset of branching reported in experiments, i.e.

between 500 and 600 m/s for concrete material [25], Gf stands for the material fracture energy

and k denotes the considered bandwidth of the localization zone in the DDM (cf. [18, 23]).

The expression in (24) implicitly sets a maximum dissipation for a single crack considering

that the energy is instantaneously dissipated. In this view, all registered dissipations greater than

the estimated upper limit in (24) necessarily involve more than one crack. In all results shown

in Figure 6 the dissipations registered upon the onset of branching fit reasonably well between

the above mentioned limits computed with the experimental maximum crack velocities 500 and

600 m/s.

For this reason, the expression in (24) can be seen as a methodology to infer the crack

velocity at the onset of branching knowing the total dissipation assuming that the energy is

instantaneously released during crack propagation. Considering the upper and lower registered

dissipation limits at the onset of branching, the corresponding limiting velocities are 501.82

and 545.58 m/s according to (24). This alternative approach is based on the global dissipation

values field D which is remarkably smoother and reliably evaluated than the crack tip velocity

field.

In [11], crack branching is detected when a critical crack surface rate is reached which is

analogous to the dissipation criteria. However, the advantage of monitoring the rate of dissi-

pated energy is that it can be performed by accounting for a global energy balance instead of
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Figure 7: Geometry and boundary conditions for the Kalthoff experiment.

σu [N/mm2] E [N/mm2] ν Gf [N/mm] ρ
[
Kg/m3

]

844.0 190.0×103 0.3 22.17 8000

Table 2: Material parameters and wave velocities for the Kalthoff experiment.

locally studying crack surface growth. In other words, the total energy dissipation is computed

as the difference between the external loads energy minus the deformation and kinetic energies.

In this way, no additional model-dependent criteria are needed to locate the crack tip position.

3.2 Towards simulations of brittle failure involving complex fracture phenomena

The strain injection and crack path field techniques are employed to reproduce the Kalthoff

experiment [12] (cf. Figure 7) consisting of an edged-cracked plate impacted by a projectile. It

is reported experimentally that, at an impact velocity v0 = 16.5 m/s, a mode I crack propagates

from the notch towards the superior and inferior specimen edges at an angle of proximately 70

degrees.

An applied velocity at the prescribed contour ΓD mimics the boundary condition resulting

from the impact. The test is imposed on a metallic plate with material parameters summarized

in Table 2. Both unstructured and structured meshes have been studied with approximately

15000 elements and a time step discretization ∆t = 10−7 s is adopted.

Injection patterns for both meshes shown in Figure 8 reveal that both results are very much

comparable and in agreement with the experimental results which report crack propagation an-
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gles close to 70 degrees. The patterns are remarkably symmetric as expected from the imposed

boundary conditions and are found in agreement with those provided by different numerical

techniques, e.g. phase-field [11] and gradient damage models [15] but at the expense of a mesh

discretization which is around two orders of magnitude finer (cf. Figure 9).

4 Conclusions

A FE formulation is presented which is capable of tackling fracture dynamics problems

through the injection of weak and strong displacement discontinuities. Since the kinematic

enhancement simulating the fracture is performed inside the element (intra-elemental) and not

represented by bandwidth of several elements (supra-elemental), the necessary FE discretization

can be adopted significantly coarser than strategies such as phase field or gradient damage

models.

The crack path field global tracking technique in combination with the strong discontinuity

injection procedure automatically account for complex fracture phenomena encountered upon

increasing loading rates such as branching. Crack branching regions are injected with the non-

directional CS-DSM element while the rest of the trace of discontinuity is modeled with the

strong discontinuity injection.

Assuming that the fracture energy is instantly released, the maximum dissipation for one

propagating crack can be estimated as the product of the fracture energy, the maximum crack tip

velocity and the crack band width. In this view, the crack branching velocities can be estimated

by monitoring the dissipation at the onset of branching Db and have been found to be in good

agreement with crack tip velocities at the onset of branching reported experimentally.

The simulation of the Kalthoff experiment with both structured and unstructured meshes

provides results in agreement with other supra-elemental numerical schemes but employing a

finite element discretization which can be up to two orders of magnitude coarser.
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Crack path set Γ

Unstructured mesh Structured mesh

70◦

70◦

Standard CS-DSM DDM

Figure 8: Injection patterns for the unstructured and structured meshes.
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Figure 9: Equivalent mesh discretizations for the Kalthoff experiment employing different numerical techniques.
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Abstract. Development of hybrid finite element/eXtended finite element numerical solution 

combined with the digital material representation (DMR) approach to simulate brittle/ductile 

fracture is the overall subject of the realized research. This particular work is divided into three 

main parts. In the first, proposed procedures for development of DMR model of investigated 

two phase steel are described. Then, details on the procedure of creation of representative 

digital material representation model to simulate interrelations between ductile and brittle 

fractures occurring within particular phases are presented. Finally, based on evaluated model 

parameters examples of its application to numerical simulation of failure in DP steels are 

presented.  

The main outcome from this work is the hybrid FEM/XFEM model, which can be easily 

applied to various deformation processes. The approach fulfils industrial demand to create a 

computer aided design of processes were fracture is an issue. Presented model is designed for 

practical research and industrial applications. 
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1 INTRODUCTION 

Modelling fracture in dual phase (DP) steels is a complex task because of the composite 

character of the investigated microstructure. There are two phases with significantly different 

mechanical properties: soft ferrite as a matrix and hard constituent phase as inclusions. Recently 

modelling of fracture initiation and propagation based on the digital material representation 

(DMR) approach is becoming popular and different models, which take into account mainly 

ductile fracture with various fracture criteria in DP steels are being developed [1, 2].  

That is why, the main aim of the approach proposed by the Authors is to create a robust 

model of both brittle and ductile failure in DP steels based on modern numerical approaches 

that take microstructure explicitly into account during simulation of deformation.  

Authors developed a combined model of ductile and brittle fracture that occur in ferrite and 

martensite, respectively. Ductile fracture is modelled by the Ductile Fracture criterion 

implemented within classical Finite Element (FE) model, while brittle one is predicted by more 

sophisticated eXtended Finite Element Method (XFEM). Proper data transfer protocols 

between these two methods were proposed to create a hybrid numerical model.  

2 DIGITAL MATERIAL REPRESENTATION 

The concept of digital material representation was suggested approx. a decade ago and is 

dynamically evolving [3, 4, 5, 6]. The main objective of the DMR is to create digital 

representation of microstructure with its morphological features (i.e. grains, grain orientations, 

inclusions, cracks, different phases etc.) represented explicitly. Generation of material 

microstructure with specific geometrical features and properties is one of the most important 

algorithmic parts of systems based on the DMR. Such DMR is further used in numerical 

simulations of material processing. Recently a lot of research is put on the development of 

methods responsible for creation of the 2D and 3D representations of analysed microstructures.  

To obtain an accurate description of the 2D microstructure an image processing methods are 

usually applied. As an input data for this analysis SEM/EBSD results can be used. In this case 

not only information on microstructure geometry is obtained but also information on initial 

crystallographic orientation is provided. This approach was successfully used in [7, 8]. 

Unfortunately the approach is time consuming and expensive because each numerical 

simulation based on DMR requires a SEM/EBSD analysis. That is why image processing is 

also applied to the optical microscopy images that are more affordable. However, in this case 

only information regarding grain morphology is obtained see e.g. [9]. Details of such procedure 

applied to the DP steel can be found in [10]. The approach is generally composed of the three 

main stages responsible for image filtering (denoising), phases distinction and phases analysis. 

These subsequently applied methods aim to detect phases, phase boundaries, and, finally, to 

prepare the material microstructure in the DMR form for further numerical simulations (Figure 

1). 

  

 
Figure 1: a) Real microstructure b) binary representation c) digital material representation with finite element 

discretization of dual phase steel [6]. 
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However, the crucial aspect that has to be addressed, prior the numerical simulation, is 

evaluation of representativeness aspects of such digital models.  

3 SELECTION OF THE REPRESENTATIVE VOLUME ELEMENT OF DUAL 

PHASE STEELS 

In the literature [11, 12] there are two different approaches to the digital material representation. 

The DMR model can be considered as:  

- the Representative Volume Element (RVE) – and in this sense it is a model of the material 

that can be used to determine the corresponding effective properties for the homogenized 

macroscopic model,  

- the Unit Cell (UC) – in this sense it is a part of the RVE that enables obtaining results for 

particular part of the material. Thus, the Unit Cell is not representative for the whole 

numerical model 

Consequently, before numerical investigation based on the RVE DMR approach a specific 

minimum size of the DMR model that can be considered as the RVE should be established. 

Research on this subject is presented within the chapter. However, aspects related with the mesh 

sensitivity have to be investigated first to eliminate numerical errors affecting final solution. 

3.1 Mesh sensitivity analysis 

The finite element method is mesh sensitive and obtained results depend to some extend on 

quality of the finite element mesh used for calculation. This is especially important for DMR 

models as local solutions are of particular interest. Thus, seven DMR models of the same 

microstructure (100 × 100𝜇𝑚) with different levels of the discretization were analysed to 

evaluate this issue. For all models the same sets of material properties for the martensite and 

ferrite phases, respectively, were used. Periodic boundary conditions were applied to maintain 

continuity of the computational domain. Number of finite elements used for discretization was 

set from 54 446 to 461 160. Four node bilinear plane strain quadrilateral reduced integration, 

hourglass control quad finite elements (CPE4R) were applied during discretization. DMR 

models were incorporated into the commercial ABAQUS application and calculated using the 

implicit solver. Selected microstructures used for mesh sensitivity analysis are presented in 
Figure 2. 
 

a) b)  
Figure 2: Microstructures discretized from a) 54 446 to b) 461 160 finite elements. 

 

For low quality mesh, geometrical features of the martensitic phase are not replicated 

properly. All models were subjected to tensile test with displacement equal 20%. Examples of 

obtained results are presented in Figure 3. The figure confirms that mesh density has influence 

on obtained results. When mesh density is higher than 122 000 elements no visible differences 

in material behavior between models are visible. After the threshold value, obtained flow stress 

data converge to the same curve. So it can be stated that 224 000 finite elements per 100 𝜇𝑚2 

have to be used during the calculation to minimize the effect of mesh on quality of obtained 

results. Thus, this minimal value of FE elements/𝜇𝑚2 is used in subsequent calculations related 
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to evaluation of minimal size of the DMR model that can be considered as representative for 

the entire macro sample.  

 

 
Figure 3: Homogenized strain–stress curves for 7 investigated microstructures. 

3.2 Influence of DMR model size  

To evaluate the minimal size of the DMR model that can be considered as RVE, four digital 

microstructure models were developed with the sizes: 50 × 50, 100 × 100, 200 × 200 and 

300 × 300𝜇𝑚. Authors decided to extract three smaller models from the largest microstructure 

in order to receive the same martensite volume fraction but different geometrical sizes as seen 

in Figure 4.  

 

 
Figure 4: Digital material representation models with the same amount of martensite and different sizes:  

50 × 50, 100 × 100, 200 × 200 and 300 × 300 𝜇𝑚. 

 

Digital models were incorporated into the finite element software. Periodic boundary conditions 

were applied and digital microstructures were deformed approx. 30 − 40% of engineering 

strain. Number of finite elements used for discretization was set above the evaluated threshold 

value and varied between 190 000 to 335 000 nodes depending on microstructure complexity. 

Four node bilinear plane strain quadrilateral reduce integration, hourglass control quad finite 

elements (CPE4R) were used for the discretization purposes. 

Because representative macroscopic response of the DMR models is under investigation, 

particular attention is put on homogenized flow curves obtained during deformation. Obtained 

homogenized stress–strain curves are shown in Figure 5.  
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Figure 5: Homogenized stress–strain curves for investigated DMR models. 

 

As seen in Figure 5 all microstructures provide quite similar material response to the applied 

deformation. Only the smallest microstructure 50 × 50 𝜇𝑚 did not converge to the rest of the 

results due to the large local deformations in some regions – finite elements reached large 

degradation, which ended the simulation with solver error. Remaining models in a global sense 

behave consistently despite the investigated size. Additionally, to evaluate local material 

response strain distributions across the microstructure were analysed as seen in Figure 6.  

 

 

Figure 6: Equivalent strain distribution received in all DMR’s after 30% of deformation. 

 

As seen in Figure 6, maximum strain have similar values in all investigated microstructures. 

This information is crucial when the problem of cracks initiation in material is under 

consideration. Thus, it can be concluded that for the calculation accuracy microstructure larger 

than 100 × 100𝜇𝑚 should be used in further calculations.   

These recommended DMR model parameters are then used during the numerical simulation 

realized with the developed model.  

 

4 BRITTLE-DUCTILE FRACTURE MODEL 

As mentioned, modelling of brittle-ductile fractures based on presented DMR approach requires 

combination of two numerical methods. In present work brittle martensite fracture was resolved 

with XFEM method implemented in the ABAQUS package. The most important model 

parameters are: martensite fracture initiation criterion based on the critical stress parameter 𝜎𝑐 

and fracture propagation criterion based on critical energy condition (𝐸𝑐). Model parameters 
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were taken from literature investigation presented in [13] and were 1370 𝑀𝑃𝑎, and 17.39 
𝐽

𝑚2, 

respectively.  

Ferrite phase fracture during large plastic deformation fails by ductile failure mechanisms. 

Thus, a ductile failure criterion where the equivalent plastic strain at the onset of damage, 𝜀𝑖𝐷
𝑝

 

is a function of stress triaxiality and strain rate [14] was used:  

𝜀𝑖𝐷
𝑝  (𝜂, 𝜀�̇�

𝑝) =
𝜀𝑖

+ 𝑠𝑖𝑛ℎ[𝑘0(𝜂− + 𝜂)] + 𝜀𝑖
−𝑠𝑖𝑛ℎ [𝑘0(𝜂 − 𝜂+)]

𝑠𝑖𝑛ℎ [𝑘0(𝜂− + 𝜂+)]
 (1) 

where: 𝜀𝑖
+ and 𝜀𝑖

− – equivalent plastic strain for equibiaxial tensile and equibiaxial compressive 

deformation respectively, 𝜂 – stress triaxiality (a ratio of the equivalent mean stress 𝜎𝑚 to the 

Misses equivalent stress 𝜎𝑖), 𝑘0 – parameter obtained experimentally. These parameters depend 

on the material, strain rate and temperature of the process. Finally, failure occurs when state 

variable wD reaches 1: 

𝑤𝐷  = ∫
𝑑𝜀𝑖𝐷

𝑝

𝜀𝑖𝐷
𝑝 (𝜂, 𝜀�̇�

𝑝)
= 1 (2) 

The fracture initiation parameter for ferrite failure was adopted from literature [15]. 

Data transfer between the two models was realized with the developed python script. 

Example of results obtained from numerical simulation of deformation, under tensile stress 

state, based on developed model is shown in Figure 7. 

 

 
Figure 7: Brittle-ductile fractures propagating across martensite and ferrite.  

 

5 CONCLUSIONS  

 DMR model allow to take into account microstructural inhomogeneities, which have 

large influence on damage behaviour in DP steel.  

 The representativeness of the DP DMR models is not strongly related to the size of the 

model, but mainly depends on proper replication of martensite volume fraction. 

 Minimum number of finite elements used for the discretization of the DP DMR models 

should be approximately 224 000 FE elements peer 100 𝜇𝑚2 to minimize mesh 

sensitivity effect during calculations. 

 The use of the proposed method for modelling fracture in DP steels provides the 

possibility to take into account all relevant mechanisms of fracture: brittle fracture in 
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martensite phases, decohesion between martensite-ferrite phases and ductile failure in 

ferrite. 
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Abstract. Our work presents a three-scale model for temperature-dependent visco-elastic effects ac-
companied by curing, which are important phenomena in a resin transfer molding (RTM) process.
The effective bulk quantities in dependence on the degree of cure are obtained by homogenization
for a representative unit cell (micro-RVE) on the heterogeneous microscale. To this end, an analytic
solution is derived by extension of the well known composite spheres model. Voigt and Reuss bounds
resulting from the assumption of a homogeneous matrix are compared to the effective quantities. Dur-
ing curing and subsequent mechanical loading, the periodic mesostructure defined by a visco-elastic
polymeric matrix and linear-thermo-elastic carbon fibres is taken into account as a representative
unit cell (meso-RVE) subjected to thermo-mechanical loading on the mesoscale. Homogenization of
the mesoscale by volume averaging is applied to obtain the effective properties for the fully cured
composite on the macroscale, e.g. the macroscopic anisotropic thermal expansion coefficient. In the
examples we simulate the curing process as well as mechanical loading of the cured part with the
finite- element-method.
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1 INTRODUCTION

In these days, applications for polymeric materials are found in carbon- and glass fibre-reinforced
composite materials, epoxy laminates and (nano-) particle-reinforced polymer structures, cf. RUIZ

and TROCHU [1] as well as LANGE [2]. An important production process of fibre-reinforced poly-
meric (FRP) materials is resin transfer molding (RTM). It is mainly characterized by curing, where
the matrix in the initial uncured state, a mixture of resin and curing agent, exhibits a viscous liq-
uid behavior until gelation. The process is highly temperature dependent and influences strongly the
mechanical, thermal and chemical properties.

Due to increasing demand, over the last years considerable effort was made to develop three-
dimensional constitutive models that account for a time- or degree of cure dependence, respectively,
of the mechanical properties. Several suggestions for simulation of polymer curing on the basis of a
physically and chemically sound approach have been presented by ADOLF and co-workers, see e.g.
[3]. Furthermore, both geometrically linear [4, 5, 6] and nonlinear [7, 3, 8] constitutive models have
been proposed by ADOLF et al. and HOSSAIN et al., where the latter suggest a thermodynamically
consistent framework for the simulation of curing polymers independent of the choice of the free en-
ergy density. In this way any phenomenological or micromechanical approach can be utilized. The
influence of the fibre/matrix RVE size for a similar model is investigated in HEINRICH et al. [9].

In LION and HÖFER [8] a phenomenological thermo-visco-elastic curing model for finite strain de-
formations is proposed. The formulation is based on process dependent viscosities as in the previous
works of HAUPT and LION [10, 11] within a thermodynamic framework. It accounts for thermally
and chemically induced volume changes using a ternary multiplicative split of the deformation gradi-
ent into mechanical, thermal and chemical parts. Furthermore, a coordinate of reaction is introduced
representing the degree of cure, and which is taken as in internal variable into the Helmholtz free
energy. A advanced application of the finite element method for curing processes is presented in
KLINGE et al. [12], in order to consider the aspect of microheterogeneity of the curing process by use
of a multiscale finite element method.

MAHNKEN and DAMMANN [13] present a three-scale framework for fibre-reinforced polymer cur-
ing. It employs a meso-RVE consisting of the fibre and the matrix part and a micro-RVE for the latter
consisting of the three components resin, curing agent and solidified material. Microscopic modeling
and a comparative study render different meso bulk material properties including bounds (for the as-
sumption of a homogeneous mixture for the matrix components) and effective material constants (for
the assumption of a heterogeneous arrangement for the matrix components). Based on the preliminar-
ies in [13], in MAHNKEN and DAMMANN [14] a periodic mesostructure is adapted. It is defined by
a visco-elastic polymeric matrix and linear-thermo-elastic carbon fibres as a representative unit cell
(meso-RVE) subjected to thermo-mechanical loading on the mesoscale. Basic relations in a thermo-
dynamic framework which is specialized to the scenario of a mechanical-thermal-chemical process
for polymeric materials are presented. To this end, the effective mesoscopic properties from [13] are
applied to the prototype model in [15] resulting in the thermodynamically consistent model in [14].

In this work, we briefly summarize the three-scale framework for FRP curing as well as the meso
bulk properties for the matrix according to the homogeneous and heterogeneous matrix approaches
from [13]. We also outline the meso-model as a result from [14] in combination with the meso to
macro transition by volume averaging. Moreover, we investigate the thermo-chemical curing process
and subsequent mechanical loading in order to get the effective bulk properties for the fully cured
composite on the macroscale.

The main aspects and the organization of this paper are summarized as follows: Section 2 in-
troduces the preliminaries for two reaction mechanisms for thermosetting polymers and presents a
three-scale framework for fibre reinforced polymer curing. Furthermore, we introduce the meso-RVE
consisting of a matrix and a fibre part. Three components of the polymeric matrix are defined and
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thus, mass phase fractions are introduced. Based on these preliminaries, two conceptions are distin-
guished in Section 3. Firstly, an equally distributed mixture on the microscale is assumed, secondly,
an arrangement of a heterogeneous microstructure is taken into account. In Section 4 basic relations
for the mesoscale are introduced. The constitutive relations of the prototype model including the ho-
mogeneous as well as the heterogeneous ansatz for the matrix properties are summarized followed
by a comment on the fibre model as a special case. Preliminaries for the computational homogeniza-
tion scheme which is used for the meso to macro transition are introduced in Section 5. Section 6
presents two numerical examples. In the first example, we illustrate the mechanical-thermo-chemical
coupling for a meso-RVE in a three-dimensional finite-element simulation in Subsection 6.1. Some
features on the coupling of temperature, curing and visco-elasticity of the proposed model are illus-
trated for a mesoscopic problem and its homogenized macroscopic response occurring in a curing
process. We compare the meso-micro relations for the homogeneous matrix which yield (upper)
Voigt and (lower) Reuss bounds with those derived for the heterogeneous matrix which yield effec-
tive parameters. Based on the curing process in Subsection 6.1, in the second example in Subsection
6.2 we determine the effective macroscopic anisotropic stiffness tensor and the effective macroscopic
anisotropic thermal expansion coefficient for the fully cured fibre reinforced polymer.

Notations

Square brackets [•] are used throughout the paper to denote ’function of’ in order to distinguish
from mathematical groupings with parenthesis (•).

2 PRELIMINARIES FOR THE CURING OF THERMOSETTING POLYMERS

2.1 Polymerization mechanisms

Epoxy resin systems are included in the group of thermosetting polymers (thermosets). Starting
with the initial uncured state the matrix (a mixture of resin and curing agent) undergoes a polymeriza-
tion process during curing. As introduced by FLORY [16] two polymerization reaction mechanisms
are distinguished: 1. by free-radicals or ions (chain-growth polymerization) and 2. by functional
groups (step-growth polymerization).

Considering the scheme of chain-growth polymerization shown in Figure 1.a starting with an ini-
tiator the unsaturated monomer molecules add onto the active site of a growing polymer chain one

a) b)

c)

Figure 1: Polymerization in thermosets: a) schematic illustration of chain- and b) step-growth polymerization b) generic
representation of a step-growth polymerization adapted to [17] i) uncured state, ii) two monomers react (monomer as
predominant species), iii) state with larger chain length including dimer and trimer, iv) state where branching started.
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at a time. Different steps operate at different stages of the mechanism (i.e. initiation, propagation,
termination, and chain transfer). Following COWIE and ARRIGHI [17], the characteristics of step-
growth polymerization are the growth throughout the matrix, whereas no initiator is necessary and
the reaction between any two functional groups of monomers is stepwise. Thus, at multiple locations
and at the same time similar steps are repeated throughout the reaction process as illustrated in Figure
1.b. In particular initiation, propagation and termination reactions are essentially identical in rate and
mechanism as shown Figure 1.c. As described in STILLE [18], the chain length increases steadily and
random growth takes place as the monomer reacts with both monomer or polymer species with equal
ease until a high molecular weight polymer is obtained.

Taking into account both reactions mechanism is the decisive point for two conceptions for the
matrix (the homogeneous matrix and the heterogeneous matrix) we distinguish later on. Especially
for the step-growth polymerization we assume an idealization: For the locations from where on ran-
dom growth starts we assume a probabilistic distribution. The random growth is then represented
by multiple growing spherical inclusions with its origins at those multiple locations from where on
the molecular functional groups of monomers start to react, i.e. the phase of cross-linked monomers
in Figure 1.c at one of the multiple locations in Figure 1.b. This region is surrounded by a phase
including mainly monomers.

2.2 A three-scale framework for fibre reinforced polymer curing

Based on the polymerization mechanisms described in the previous subsection Figure 2.a gives
an overview of the three-scale framework. Π̄ ⊂ R3 denotes the homogeneous macrostructure. It is
associated to the periodic mesosstructure Π ⊂ R3 of a layered fibre reinforced polymer consisting of
the matrix part and the fibre part Π = ΠM ∪ ΠF , respectively, each regarded as homogeneous solid
constituents. The mesoscopic representative volume element (meso-RVE) Ω is associated to Π with
the decomposition Ω = ΩM ∪ ΩF . We denote by xJ ⊂ ΠJ the position vector of a material point
P J ∈ ΠJ for which either J = M or J = F holds at time t in the space-time-domain ΠJ× ]−∞, T [.
Here T is the total time of interest. The microstructure π ⊂ R3 is related to the matrix part ΠM

a) b)

c)

Figure 2: a) Three-scale model showing a homogeneous macroscopic configuration Π̄, a periodic mesoscopic configura-
tion Π consisting of homogeneous parts ΠF and ΠM , a corresponding meso-RVE Ω and a microscopic configuration as
a multiphase system with phases πca, πr and πsol and a corresponding micro-RVE ω. b) Micro-RVE as a a two phase
composite sphere over time: top) initial uncured, middle) partially cured and bottom) fully cured state.
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at every point PM at time t. π = πca ∪ πr ∪ πsol consists of the phases πj , j = ca, r, sol (curing
agent, resin and solidified material), respectively. The representative volume element (micro-RVE) ω
is associated to the structure π with a decomposition of the micro-RVE in terms of three components
ω = ωca∪ωr∪ωsol, or for simplification in terms of monomer and fully cured material ω = ωm∪ωsol.
An illustration of such a two-phase system during curing over the time t is given in Figure 2.b.

In the sequel, for notational benefits, we omit the index J , as meso-micro relations are derived only
for the behavior of ΠM . Thus, a quantity •M related to the matrix reads •.

2.3 Mass fractions

The matrix Π consists of three phases πca, πr and πsol. Following [19], with the time-dependent
variables dmr[t], dmca[t] and dmsol[t] for the masses of resin, curing agent and solidified material,
respectively, the conservation of mass during the curing reaction requires that the masses of all con-
stituents sum up to the total mass of the mixture dm0. Using this relation, the mass phase fractions of
resin, curing agent and solid, ζr, ζca, ζsol in Table 1, are introduced such that the sum of all fractions
is one.

3 MESOSCOPIC PROPERTIES

Following [13], in order to obtain mesoscopic material properties two different conceptions are
presented:

• Homogeneous matrix: An equally distributed mixture on the microscale π is assumed (meso-
model hom) for the three constituents which yields bounds for the meso bulk properties.

• Heterogeneous matrix: An arrangement of a heterogeneous microstructure π as shown in Figure
2.a (meso-model het) is taken into account. The microstructure is represented by the two-
phase composite sphere as micro-RVE in Figure 2.b with radii a and b which are related to its
constituents ωm and ωsol, respectively.

As a simplification, we assume linear thermo-chemo-elasticity for the microscale π and conse-
quently introduce the heat- and curing-dilatation coefficients αj and βj as well as the shear- and
compression moduli Gj and Kj for the phases ζj , j = m, sol. The material parameters are summed
up in Table 1, where in addition the degree of cure z is simultaneously defined for the

• Homogeneous matrix: In dependence on the mass phase fractions for the monomer and the
solid ζm[t] = ζr[t] + ζca[t], ζsol[t].

• Heterogeneous matrix: In dependence on the radii a, b in accordance to the volumes ωm and
ωsol in Figure 2.b.

The justification for this differing formulations is that in [13] for each constituent m, sol the authors
introduce volume phase fractions as well as mass phase fractions (cf. Table 1) and shown that they
almost equal.

The equally distributed mixture yields upper (Voigt) and lower (Reuss) bounds, consequently in
total three meso-models homV, homR and het which lead to different evolution of the material
properties in dependence on the degree of cure z for the mesoscale Π are distinguished in Table 1.
The resulting meso-micro relations are summarized for the

• Homogeneous matrix: This meso-model denoted as hom is divided into two sub-models, the

– Reuss model denoted as homRwhich yields lower bounds for the meso bulk properties. In
particular, we state the bulk compression modulusKR in Table 1, Eq. (5) and the bulk heat-
dilatation coefficient αR in Table 1, Eq. (6) in dependence on the degree of cure as well as
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the shrinking-dilatation coefficient β(est) in Table 1, Eq. (2) which is not dependent on
curing. The properties are in agreement with ad hoc assumptions from the literature, i.e.
the bulk curing-dilatation coefficient corresponds to the derivations by [1], [15] and [20],
whereas the bulk compression modulus and the bulk heat-dilatation coefficient coincide
with the well known lower Reuss bounds. Thus, we combine these formulations for the
volumetric quantities to a model which we denote as the Reuss model.

– Voigt model denoted as homV which yields upper bounds for the meso bulk properties,
in particular the bulk compression modulus KV in Table 1, Eq. (3) and the bulk heat-
dilatation coefficient αV in Table 1, Eq. (4). This sub-model shares the bulk curing-
dilatation coefficient in Table 1, Eq. (2) with the Reuss model, as it is constant during
curing.

Note, that the sub-models are distinct in view of volumetric quantities, but both share the as-
sumptions for the shear modulus in Table 1, Eq. (1). G(Adolf) coincides basically with the
relation given in [21] and applied in [22], [15]. The motivation for the ansatz is that below the
gel point zgel, the liquid resin of the matrix is allowing no more than hydrostatic pressure.

• Heterogeneous matrix: This meso-model denoted as het is used to obtain effective meso bulk
properties from an analytical solution contrary to bounds for the mixture. In this way, the
composite spheres model CHRISTENSEN [23], originally providing only an exact solution for
the effective bulk compression modulus of a heterogeneous medium, is extended to thermal
and chemical effects. Thus, the approach in [13] provides the effective bulk heat- and effective
curing-dilatation coefficients α and β which are given in Table 1, Eq. (9) and Eq. (10) in
addition to the effective bulk compression modulus K in Table 1, Eq. (8). For determination
of both, α and β, the quantities Lth and Lcur are required. They are given in Appendix A, Eq.
(A.1) and Eq. (A.2), respectively. We remark, that α and K resulting from the derivations in
[13] are in agreement with that in [24] and [23], respectively. Moreover, we assume that the
shear modulus is identical to the derivation in [23], [25], [26], [27] as it is not a volumetric
quantity which might be affected by the purely volumetric modifications proposed in [13] (even
the bulk compression modulus K as volumetric quantity is independent of the modifications
in terms of heat- or curing-dilatation). For determination of the shear modulus G2(Christ) in
Table 1, Eq. (8) the coefficients A, B, C are given in Appendix B, Eq. (A.3) to (A.6).

Remark 1

Due to the upper case in Table 1, Eq. (1), the heterogeneous and homogeneous matrix models
already differ in view of the shear modulus for the uncured state z[0] = 0:

1. hom: G[0 ≤ z < zgel] = 0 =⇒ G[z = 0] = 0,

2. het: Gm ≤ G[0 ≤ z ≤ 1] ≤ Gsol =⇒ G[z = 0] = Gm.
(1)

4 MESOSCOPIC MODELING

Based on the preliminaries of Section 3 the following exposition is directed to mesoscopic model-
ing, where we outline the approach in [14], where a general thermodynamic framework is specialized
to the scenario of a mechanical-thermal-chemical process for polymeric materials.

4.1 Basic relations for the meso-RVE

The displacement gradient∇u is introduced at each material point P on the mesoscale Π in Figure
2.a. This defines the strain tensor of the geometric linear theory ε which is additively decomposed
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•Mass phase fractions 1. ζm[t] = ζr[t] + ζca[t] =
dmr[t]

dm0

+
dmca[t]

dm0

, 2. ζsol[t] =
dmsol[t]

dm0

• Degree of cure 1. ζm = 1− a3

b3
2. ζsol = 1− ζm =

a3

b3
= z 3.

∑2
j=1 ζ

j = 1,

4. ζj ≥ 0, j = m, sol 5. ζ
0

= [ζm[0] = 1, ζsol[0] = 0]T

• Homogeneous matrix (hom)

1. Shear modulus G(Adolf) =


0 z < zgel,

Gsol

(
z2 − z2

gel

1− z2
gel

)8/3

, z ≥ zgel

2. Curing-dilatation coefficient β(est) = −βm + βsol

Voigt model (homV )

3. Compression modulus KV = Km(1− z) +Ksolz

4. Heat-dilatation coefficient αV =
(1− z)Emαm + zEsolαsol

(1− z)Em + zEsol

Reuss model (homR)

5. Compression modulus KR =
1

1

Km
(1− z) +

1

Ksol
z

6. Heat-dilatation coefficient αR = αm(1− z) + αsolz

• Heterogeneous matrix (het)

7. Shear modulus G2(Christ) = −
Gm

(
B−

√
B2 − 4AC

)
2A

8. Compression modulus K = Km +
z(Ksol −Km)

1 +
(1− z)(Ksol −Km)

Km +
4Gm

3

9. Heat-dilatation coefficient α =
Lthp̂+

3Km

4Gm
Lthp̂− 3Kmαm

4Gm

10. Curing-dilatation coefficient β =
Lcurp̂+

3Km

4Gm
Lcurp̂− 3Kmβm

z4Gm

•Material parameters κhard = [Ksol, Km, Gsol, Gm, zgel, β
m, βsol, αm, αsol]

Table 1: Summary and comparison of mesoscopic effective properties and bounds from [13]

into elastic, thermal and chemical parts, εel, εth, εcur, in Table 2, Eq. (3.1). The volumetric εvol and
deviatoric parts εdev of the strain tensor ε are defined in in Table 2, Eq. (1). For later use, we apply the
elastic strain tensor εel in Table 2, Eq. (3.1) and define the elastic volumetric strain eel in Table 2, Eq.
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1. Volumetric and deviatoric strains εvol = 1
3 tr[ε]1, εdev = ε− εvol

2. Thermal and shrinking strains εth =

∫ t

s=−∞
α[s]

dθ

ds
ds1, α[s] =

{
het
homV, homR

εcur =

∫ t

s=−∞
β[s]

dz

ds
ds1, β[s] =

{
het
hom

3. (Relative) elastic strain 1. εel[s] = ε[s]− εth[s]− εcur[s], 2. eel[s] = trεel[s],

3. εt[s] = ε[s]− ε[t], 4. et[s] = eel[s]− eel[t]

4. Volumetric stress σvol =

∫ t

s=−∞
K[s, t]

d

ds
eel[s] 1 ds, K0[s, t] =

{
het
homV, homR

5. Deviatoric stress σdev =

∫ t

s=−∞
2G[s, t]

d

ds
εdev[s]ds

6. Shear modulus G[s, t] = G0[s] +Gvisco[s, t], G0[s, t] =

{
het
hom

7. Curing rate ż = kA exp

(
−EA

Rθ

)
za(1− z)n

8. Material parameters κkint = [kA, EA, R, a, n,HT ]

κhard = [Gm, Gsol, βm, βsol, Km, Ksol, αm, αsol]

Table 2: Constitutive relations for thermo-visco-elasticity and curing for the matrix from [14]

(3.2), which both account for thermal-mechanical and chemical-mechanical coupling. Furthermore,
we define the relative strain tensor εt[s] and the relative elastic volumetric strain et in Table 2, Eq.
(3.3,4).

4.2 A prototype model for the matrix

The effective mesoscopic properties and bounds summarized in Section 3 (meso-models hom and
het) are now applied to the prototype model in [15] to model the matrix as visco-elastic with a cou-
pling to curing. The resulting constitutive relations for the thermal-mechanical-chemical coupled
process accounting also for curing are summarized in Table 2, Eq. (1) to Eq. (8), where as in Section
3 two different meso-models are distinguished:

• Homogeneous matrix: According to this assumption the Voigt (upper) and Reuss (lower) bounds
for meso bulk material properties are applied. Thus, the sub-models which are summarized in
Table 1 homV (Eq. (1)-(4)) and homR (Eq. (1)-(2) and Eq. (5)-Eq. (6)) are employed.

• Heterogeneous matrix: According to this assumption the effective meso bulk properties denoted
as model het in Table 1 (Eq. (7) -(10)) are employed.

4.2.1 Cure evolution

Following [19], the evolution of the degree of cure is expressed as a function of degree of cure
itself in Table 2, Eq. (7), and drives the mass phase fractions ζm[s], ζsol[s] in Table 1. It exhibits the
property ż ≥ 0, where kA, EA, R are respectively the Arrhenius constant, the activation energy and
the universal gas constant. Furthermore, a, n are power constants.
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4.2.2 Stresses

The stress tensor σ is obtained by use of a special choice of the Helmholtz free energy which
includes the chemically stored energy with respect to curing in [14]. Here, the decomposition σ =
σvol + σdev, is applied, where σvol is the volumetric stress tensor and σdev is the deviatoric stress
tensor which are stated in Table 2, Eq. (4) and (5), respectively, and which are be focused in the
following two paragraphs.

Firstly, we consider the volumetric part of the stress tensor. Resulting from the decomposition in
Table 2, Eq. (3) the stress tensor σvol in Table 2, Eq. (4) is written in terms of the time derivative of
the elastic volumetric strain eel
d

ds
eel[s] =

d

ds
trε[s]− d

ds
trεth[s]− d

ds
trεcur[s] =

d

ds
trε[s]− d

ds
(3α[s]∆θ[s])− d

ds
(3β[s]z[s]), (5)

where ∆θ[s] is the temperature change. Although eel[s] takes the same form for both meso-models,
however, a difference for the thermal and the curing strains εth and εcur occurs due to the choice of
the meso bulk properties α and β:

• Homogeneous matrix: According to Table 2, Eq. (2), the weighted meso bulk curing-dilatation
coefficient β for meso-model hom is given in Table 1, Eq. (2). Furthermore, the weighted meso
bulk heat-dilatation coefficient α for meso-models homV or homR is stated in Table 1, Eq. (4)
or Eq. (6), respectively. Due to the use of the quantities from above in the second and third term
of the last part in Eq. (5) their time derivatives are required for σvol. For details on them see
[14].

• Heterogeneous matrix: According to Table 2, Eq. (2), α and β in the third part of Eq. (5) are
the effective meso bulk properties used in meso-model het of Table 1, Eq. (9) and Eq. (10),
respectively, which are also used to define the thermal and the curing strains εth and εcur. The
time derivatives of the second and third term for the last part of Eq. (5) are required for the
determination of σvol and given in [14].

Moreover, the tensor σvol in Table 2, Eq. (4), is written in terms of the actual compression modulus
K which is formulated in terms of the equilibrium compression modulus K0 and also dependent on
one of the underlying assumptions on the microscale. We assume a dependence on the degree of cure
for the equilibrium bulk compression modulus K0:

• Homogeneous matrix: As a consequence of the weighted meso bulk properties for homV and
homR in Table 1, Eq. (3) or Eq. (5) are applied, respectively.

• Heterogeneous matrix: As a consequence of the effective meso bulk property for het in Table
1, Eq. (8) is applied.

Secondly, we consider the deviatoric stress tensor σdev in Table 2, Eq. (5). The shear modulus G
for the tensor σdev in Table 2, Eq. (5), is formulated as a Prony series in Table 2, Eq. (6), where Gvisco

accounts for relaxation in dependence on the degree of cure (cf. [28], [22]) and G0 is the equilibrium
shear modulus. We formulate the latter in dependence on one of the underlying assumptions on the
microscale and also dependent on the degree of cure:

• Homogeneous matrix: G0 in Table 2, (6) is defined in Table 1, Eq. (1). For details see [21],
[22].

• Heterogeneous matrix: Table 1, Eq. (7), is used for determination of G0 in Table 2, Eq. (6) as
an effective meso bulk property. For details see [13].

Finally, required material parameters are collected in the vectors κkint and κhard, in Table 2, Eq. (8).
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Remark 2

The degree of cure z occurs in the denominator of the effective bulk curing-dilatation coefficient β
in Table 1, Eq. (10). Taking into account the initial state of the degree of cure z[0] = 0 dividing by z
leads to a singularity of the term. However, if one considers β not on its own account but with regard
to the curing strains εcur in Table 2, Eq. (2), it becomes clear that the degree of cure z cancels out:

εcur[z] = βz1 =
Lcurp̂+

3Km

4Gm
Lcurp̂− 3Kmβm

z4Gm
z1 =

((
3 +

9Km

4Gm

)
p̂

4Gm
Lcur −

9Kmβm

4Gm

)
1. (6)

4.3 Fibre modeling

For notational benefits, from on this subsection we provide the index J = M,F in order to under-
line that the quantities stated in the following Section include the behavior of the total fibre-matrix-
composite. The fibre •F in Figure 2.a is considered as a thermo-linear-elastic solid. Consequently it
can be modeled as a simplification with the equations for the matrix •M in Table 2.

5 MESO TO MACRO TRANSITION

The following exposition is directed to the derivation of macroscopic effective properties. For the
time being we are interested only in macroscopic effective properties for the thermo-linear-elastic
fully cured composite. To this end, we denote the instant when the matrix reaches the fully cured
state as tz=1 = min(t[z = 1, ż = 0) and assume from that instant onwards that the macroscopic strain
tensor of the geometric linear theory ε̄ is additively decomposed into elastic and thermal parts:

ε̄ = sym {∇ū} = ε̄el + ε̄th, for t > tz=1, (7)

where ū is the displacement vector defined at any point P̄ of the macrocontinuum Π̄ in Figure 2.a.
Thus, neglecting inelastic effects, we employ the following constitutive equations for the strains in
Eq. (7)

1. ε̄el = Ceff−1
σ̄, 2. ε̄th = Aeff∆θ̄, (8)

with the temperature change ∆θ̄ that takes place uniformly throughout the meso-RVE Ω (which yields
θ̄ = θJ , J = F,M ). Related matrices in Voigt notation of the macroscopic effective elasticity tensor
C

eff and the macroscopic effective heat-dilatation tensor Aeff in Eq. (8) are defined as

1. Ceff = [σ̂1, ..., σ̂n, ..., σ̂6], where 2. σ̂n = [σ̂1n, ..., σ̂mn, ..., σ̂6n]T , for m,n = 1, ..., 6,
3. Aeff = [A1, ..., Al, ..., A6]T , for l = 1, ..., 6.

(9)

The tensors Ceff , Aeff both will be determined by application of a computational homogenization
scheme, where the mesostructure variables are related to the homogenized macrocontinuum Π̄ by use
of the Volume Averaging Theorem, as formulated in [30]. Based on the decomposition Ω = ΩM ∪ΩF

in Subsection 2.2 we redefine the overall strains ε̄(t) and stresses σ̄(t) at point P̄ in dependence on
the mesoscopic strains ε and stresses σ = σvol +σdev (for the meso-RVE Ω = ΩM ∪ΩF ) in Table 2,
Eq. (3.1) and Eq. (4-5), respectively:

1. ε̄[t] =
∑

J

1

|ΩJ |

∫
ΩJ

εJ [t]dV J , 2. σ̄[t] =
∑
J

1

|ΩJ |

∫
ΩJ

σJ [t]dV J , for J = M, F. (10)

The main idea is the determination of Ceff and Aeff due to prescribed thermal and deformation
loadings applied to the unit cell Ω for t > tz=1, respectively. In the following, we distinguish between
prescribed purely thermal loading for the determination ofAeff and prescribed isothermal mechanical
loading, i.e. prescribed strains ε̂, for the determination of Ceff , where we adapt the approach in [31].
For the determination of Ceff we restrict ourselves to periodic displacement and anti-periodic stress
BCs which assure the kinematic compatibility of two neighboring unit cells/meso-RVEs.
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6 REPRESENTATIVE EXAMPLES

In this section two numerical examples are presented. In the first example, we illustrate the
mechanical-thermo-chemical coupling for a meso-RVE in a three-dimensional finite-element simu-
lation in Subsection 6.1. Here, we apply the material parameters from a parameter identification for a
differential scanning calorimetry test (DSC) of an epoxy resin at two temperature rates in [14]. Some
features on the coupling of temperature, curing and visco-elasticity of the proposed model in Table
2 are illustrated for a mesoscopic problem and its homogenized macroscopic response occurring in
a curing process. On this basis, in the second example in Subsection 6.2 we determine the effec-
tive macroscopic anisotropic thermal expansion coefficient and the effective macroscopic anisotropic
stiffness tensor for the fully cured fibre reinforced polymer.

6.1 Thermal-mechanical loading during curing of a meso-RVE

In this example, based on the comparative study in [13] for the effective properties and bounds
given in Table 1 for homV , homV , het, some features on the coupling of temperature, curing and
visco-elasticity of the proposed model in Table 2 are illustrated for a mesoscopic problem and its ho-
mogenized macroscopic response occurring in a curing process. As a simplification for the geometry
of a real CFRP (carbon fibre reinforced composite) is shown in Figure 3.a. Here, stiff carbon fibres
(blue) embedded in a soft epoxy resin matrix (yellow) are used to model a three dimensional RVE on
the mesoscale with a fibre-volume-fraction of 19.6 %. The constitutive response of the stiff fibres is
assumed as linear thermo-elastic, cf. Subsection 4.3, while the matrix material is assumed as visco-
elastic, hence the meso-models in Table 2 accounting for a homogeneous (hom) and a heterogeneous
matrix (het) are applied. Material parameters for the fibres κcarb in Table 3 are taken from [9], while
the remaining ones for the matrix are taken from Table 4. The thermal loading program which is han-
dled as a homogeneously distributed temperature field on the mesoscale is divided into four phases,
see θ in Figure 3.b. They are in accordance with the curing process of fibre reinforced composites.

• Phase 1, called HEAT phase: The temperature is increased with constant rate for 0 ≤ t ≤ 200 s
from the initial value θ = 25 ◦C to a final value of θ = 180 ◦C.

• Phase 2, called CURE phase: The temperature θ = 180 ◦C is kept fixed for 200 ≤ t ≤ 1800 s.

• Phase 3, called COOL phase: The temperature is decreased from temperature θ = 180 ◦C at
constant rate to room temperature θ̄ = 25 ◦C for 1800 ≤ t ≤ 2000 s.

• Phase 4, called HOLD phase: The temperature θ = 25 ◦C is kept fixed until 1015 s.

The displacement boundary conditions of the RVE are statically determined such that free expansion
or contraction, respectively, due to thermal loading is possible.

κcarb : K [MPa] G [MPa] α [1/K]
209091.0 107812.0 5.6·10−6

Table 3: Values for carbon fibre material parameters (exerpt)

κhard : Km [MPa] Ksol [-] Gm [MPa] Gsol [-] βm [-] βsol [-] αm [1/K] αsol [1/K]
150.0 3000.0 120.0 1200.0 0.0 -0.04 1.5 ·10−1 7.5·10−5

Table 4: Values for matrix material parameters (exerpt) in Tables 1 and 2
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The thermal-mechanical-chemical coupled problem is solved with the finite element code ”Abaqus/
Standard” [32] by aid of a ”UMAT” subroutine for the meso-models in Table 2. The whole domain
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Figure 3: Thermal-mechanical loading during curing of a meso-RVE: a) Geometry with FE-mesh: carbon-fibers (blue) in
resin-matrix (yellow) and location of point A considered in the following: b) thermal loading and degree of cure within
four phases versus time, c) compression and shear moduli, d) heat- and curing-dilatation coefficients, e) elastic and f)
thermal as well as curing volumetric strains versus the degree of cure shown in b).
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Figure 4: Thermal-mechanical loading during curing of a meso-RVE: a) macroscopic strain vs. time, b) and strain-
conturplots resulting from loading program in Figure 3.b for three meso-models for the matrix homV , homR and het
after phase HOLD

shown in Figure 3.a is discretized using eight node linear hexahedral elements with reduced integra-
tion and hourglass control (C3D8R, [32]). Following [33], post processing on the ”odb-file” is done
using a ”PYTHON” script to obtain homogenized quantities on the macro-scale.

Mesoscopic behavior of the matrix at point A

In Figure 3 we summarize some relevant quantities at Point A (in the matrix part) of Figure 3.a
resulting from the mechanical-thermal-chemical coupling including the influence of curing and tem-
perature on some material parameters. Figure 3.b shows the degree of cure z at point A versus time.
We observe that after the phase CURE the material is fully cured (z = 1) which means that the time
point tz=1 is passed or at least reached. According to the meso-models for homV , homR and het the
equilibrium shear and bulk moduli Table 2, Eq.(4) and Eq.(6), versus the degree of cure are illustrated
in Figure 3.c. Note, that in reality the epoxy behaves like a viscous liquid until gelation at zgel occurs.
It is only from that instant onwards that a finite shear modulus is detected. The heat- and curing-
dilatation coefficient Table 2, Eq.(2), for the meso-models homV , homR and het versus the degree
of cure are illustrated in Figure 3.d. As kinematic quantities the volumetric elastic strain trεel, the
volumetric thermal strain trεth and the volumetric curing strain trεcur are shown for the meso-models
homV , homR and het versus the degree of cure in Figure 3.e and Figure 3.f.

We observe that the effective meso bulk properties (compression modulus, heat-dilatation coeffi-
cient) resulting from meso-model het lie, on the one hand, within the bounds given by meso-models
homV and homR and, on the other, within the physically meaningful bounds given by the values
for matrix material parameters in Table 4. However, there are two exceptions, the shear modulus
for meso-model hom and the curing-dilatation coefficient for meso-model het. The former lies not
within the bounds, given by the microscopic material parameters, due to the nature of its definition
in Table 1, Eq. (1) (see also Remark 1), the latter shows satisfying results for the shrinkage in Figure
3.d (see also Remark 2) which is in the same physically meaningful region as the shrinkage resulting
from meso-model hom and not in contrast to the experimental results in [20].

We conclude, that in the HEAT and CURE phases curing becomes a dominating nonlinear effect,
which in combination with the cure-dependent quantities, i.e. the compression and bulk moduli as
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well as the dilatation coefficients, renders the strains as nonlinear. The elastic, thermal and curing
strains in Figure 3.f do not retain their initial zero value at the fully cured state tz=1. This is due to
the change of the material properties in Figure 3.c and Figure 3.d. The final, deformed state of the
cured RVE is obtained after the HOLD phase. Figure 4.b shows contour plots of the strain component
εy for each of the meso-models homV , homR and het. We observe that for each meso-model a
different eigenstrain state remains. Meso-model homV has the lowest amount of eigenstrain in the
matrix, moderate eigenstrains are observed in the matrix where meso-model homR is used and very
inhomogeneous eigenstrains occur in the matrix accompanied with meso-model het.

Macroscopic behavior of the meso-RVE

Applying Eq. (10.1), homogenization leads to results on the less resolved macroscale. In Figure
4.a the components ε̄x,y,z(homV ), ε̄x,y,z(homR), ε̄x,y,z(het) of the macroscopic strain resulting from
each meso-model are shown whereas the shear components remain zero at all and therefore are left
out. In particular, shrinking due to the degree of cure is observed in phases HEAT and CURE. The
macroscopic strains represent an orthotropic behavior due to the geometry of the meso-RVE. After
the COOL phase there are remaining macroscopic (eigen-)strains. The amount is dependent on the
chosen meso-model homV , homR or het.

6.2 Effective properties of a meso-RVE after curing

For the meso-RVE from Section 6.1 a state with (meso- and macroscopic) eigenstrains after the
phase HOLD (cf. Figure 3) at t = 1015 > tz=1 remains which differs for each of the meso-models
homV , homR and het. Thus, we define the macroscopic strain state for each meso-model using
Eq. (10.1): ε̄HOLD(k) = ε̄(k, t = 1015), for k = homV, homR, het. In the following, based on
the loading program of Subsection 6.1, the effective properties for the fully cured meso-RVE are
determined in a two-part example. In particular we determine the macroscopic thermal expansion
tensor following an approach in [34] and the elastic stiffness tensor for t > tz=1 following an approach
in [31]. Therefore, the meso-RVE is subjected to two cases of second loadings, the purely thermal
and the purely mechanical loading.

Macroscopic anisotropic thermal expansion tensor

The the meso-RVE with statically determined displacement boundary conditions is subjected to
purely thermal second loading in this first part of the two-part example. For

• Phase 5, called THERM2 phase: The temperature is increased with constant rate in a time
period of 10−6 s from θ = 25 ◦C to a final value of θ = 26 ◦C (temperature unit loading,
θ = θ̄ =⇒ ∆θ̄ = 1, as shown in Figure 5.a).

Insertion of Eq. (8) into Eq. (7) with the conditions of purely thermal loading of phase THERM2 in
combination with the statically determined BCs yields:

ε̄− ε̄HOLD = ε̄th = Aeff∆θ̄. (11)

Next, we define the macroscopic strain state after the loading THERM2 by use of Eq. (10.1) as
ε̄THERM2(k), for k = homV, homR, het. Exchanging the left term of Eq. (11) by ε̄THERM2(k) gives
the coefficients for the anisotropic thermal expansion tensor in Eq. (9): ε̄THERM2(k) = Aeff (k), for k =
homV, homR, het. The effective thermal expansion tensor in matrix representation Aeff (k) for the
meso-models k is shown in Table 5. We conclude that Aeff (k) is almost independent of the eigen-
strains resulting from models k = homV, homR, het. Additionally, we remark, that the assumption
of linear thermo-elasticity on the macroscale (which leads to Eq.(7)) is justified for small temperature
changes and time increments, i.e. phase THERM2.
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Meso-model A1 [1/K] A2 [1/K] A3 [1/K] A4 [1/K] A5 [1/K] A6 [1/K]

Aeff (homV ) 1.178 · 10−5 1.640 · 10−5 1.179 · 10−5 4.636 · 10−10 7.064 · 10−10 1.023 · 10−9

Aeff (homR) 1.174 · 10−5 1.649 · 10−5 1.191 · 10−5 1.209 · 10−9 1.936 · 10−9 1.916 · 10−9

Aeff (het) 1.173 · 10−5 1.646 · 10−5 1.181 · 10−5 8.559 · 10−10 2.424 · 10−9 4.567 · 10−9

Table 5: Effective properties of a meso-RVE after curing: Macroscopic effective thermal expansion matrices Aeff (k) of
Eq. (9) for k = homV , homR, het) resulting from second loading in phase THERM2 as shown in Figure 5.a

Macroscopic anisotropic elastic stiffness tensor

The meso-RVE with periodic displacement boundary conditions is subjected to purely mechanical
second loading in this second part of the two-part example. For

• Phase 5, called MECH phase: The macroscopic strain is prescribed at constant rate in a time
period of 10−6 s with six different prescribed macroscopic strains in Voigt notation ε̂x =
[10−3, 0, 0, 0, 0, 0]T ,..., ε̂yz = [0, 0, 0, 0, 0, 10−3]T (mechanical loading shown in Figure 5.b).

Insertion of Eq. (8) into Eq. (7) with the conditions of purely mechanical loading of phase MECH
yields

ε̄− ε̄HOLD = ε̄el = Ceff−1
σ̄. (12)

Additionally, from Eq. (10.1) in combination with the prescribed macroscopic strains (cf. Section 5)
one gets

ε̄− ε̄HOLD = ε̂n, for n = x, ..., yz. (13)

Rearrangement of Eq. (12) and insertion Eq. (13) as well as taking into account the definition for
Ceff in Eq. (9.1) results into the following matrix representation in Voigt notation

Ceff ε̂n = [σ̂1, ..., σ̂n, ..., σ̂6]ε̂n = σ̄(ε̂n), for n = x, ..., yz, (14)
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Figure 5: Effective properties of a meso-RVE after curing: Determination due to: a) thermal (THERM2) and b) mechanical
(MECH) loading of the meso-RVE
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Meso-model σ̂1 [MPa] σ̂2 [MPa] σ̂3 [MPa] σ̂4 [MPa] σ̂5 [MPa] σ̂6 [MPa]

Ceff (homV ) 6.082 · 104 1.124 · 103 9.076 · 102 4.105e− 02 6.104 · 10−5 −1.221 · 10−4

1.124 · 103 9.893 · 103 1.124 · 103 −1.328 · 10−2 1.709 · 10−3 1.495 · 10−3

9.076 · 102 1.124 · 103 6.082 · 104 4.883 · 10−4 9.155 · 10−5 1.831 · 10−4

4.134 · 10−2 −1.491 · 10−2 2.507 · 10−4 4.385 · 103 −1.026 · 10−3 2.915 · 10−6

1.229 · 10−4 2.771 · 10−6 2.041 · 10−5 −9.907 · 10−4 4.647 · 103 2.239 · 10−4

−3.363 · 10−5 −5.244 · 10−4 −4.238 · 10−4 2.185 · 10−6 2.756 · 10−4 4.385 · 103

Ceff (homR) 6.082 · 104 1.124 · 103 9.076 · 102 4.192 · 10−2 9.308 · 10−4 7.477 · 10−4

1.124 · 103 9.893 · 103 1.124 · 103 −1.494 · 10−2 1.526 · 10−4 −1.688 · 10−4

9.076 · 102 1.124 · 103 6.082 · 104 3.052 · 10−4 4.120 · 10−4 0.000 · 100

4.134 · 10−2 −1.495 · 10−2 2.522 · 10−4 4.385 · 103 −9.682 · 10−4 2.279 · 10−6

1.231 · 10−4 1.397 · 10−6 2.007 · 10−5 −1.004 · 10−3 4.647 · 103 2.642 · 10−4

−3.489 · 10−5 −3.963 · 10−4 −4.342 · 10−4 2.204 · 10−6 3.073 · 10−4 4.385 · 103

Ceff (het) 6.082 · 104 1.124 · 103 9.075 · 102 4.021 · 10−2 −3.204 · 10−4 −1.068 · 10−4

1.124 · 103 9.893 · 103 1.124 · 103 −1.314 · 10−2 1.434 · 10−3 1.114 · 10−3

9.076 · 102 1.124 · 103 6.082 · 104 1.053 · 10−3 5.493 · 10−4 3.815 · 10−4

4.135 · 10−2 −1.491 · 10−2 2.513 · 10−4 4.385 · 103 −1.039 · 10−3 2.297 · 10−6

1.231 · 10−4 1.829 · 10−6 2.034 · 10−5 −1.021 · 10−3 4.647 · 103 2.418 · 10−4

−3.515 · 10−5 −4.418 · 10−4 −4.605 · 10−4 2.498 · 10−6 2.809 · 10−4 4.385 · 103

Table 6: Effective properties of a meso-RVE after curing: Macroscopic effective stiffness matrices Ceff of Eq. (9) for
k = homV , homR, het) resulting from second loading in phase MECH as shown in Figure 5.b

where σ̄(ε̂n) are the stresses in Eq. (10.2) in Voigt notation resulting from the prescribed macroscopic
strains in Voigt notation ε̂n. For example for n = x one gets

Ceff ε̂x = Ceff [1, 0, 0, 0, 0, 0]T · 10−3 = σ̂1 · 10−3 = [σ̂11, ..., σ̂61]T · 10−3 = σ̄(ε̂x). (15)

Taking into account the right-hand side of Eq. (15) we conclude that the n-th column of Ceff , denoted
as σ̂n, can be obtained due to the six prescribed macroscopic strains ε̂n in phase MECH, where
n = 1, ...6. Consequently, proceeding in the same manner as in Eq. (15) for each of the meso-
models k = homV, homR, het gives the effective stiffness tensor in matrix representation Ceff (k)
which is shown in Table 6. We conclude that Ceff is almost independent of the eigenstrains resulting
from models k = homV, homR, het. Moreover, we remark, that the assumption of linear thermo-
elasticity on the macroscale (which leads to Eq. (7)) is justified for small strain and time increments,
i.e. phase MECH.

7 CONCLUSIONS

In this paper, we applied a three-scale framework for fibre-reinforced polymer curing from [13].
The three-scale framework employs a meso-RVE consisting of the fibre and the matrix part and a
micro-RVE for the latter consisting of the three components resin, curing agent and solidified material.
The meso bulk properties in dependence on mass phase fractions resulting from the micro-RVE are
taken from [13]. Thus, Voigt and Reuss bounds as well as effective properties are determined for
the assumptions of a homogeneous and a heterogeneous matrix, respectively. In [14] those properties
are incorporated into a mesoscopic constitutive model for temperature-dependent visco-elastic effects
accompanied by curing which is summarized in this work. Thus, the incorporation of the meso
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bulk properties, in particular the meso bulk compression and shear moduli as well as the heat- and
shrinking-dilatation coefficients for the homogeneous as well as for the heterogeneous matrix, into a
visco-elastic model with a coupling to curing [15] is outlined.

The simulation of the curing process for the meso-RVE subjected to mechanical-thermal-chemical
loading demonstrates the capability of the model to simulate this process. The effect of anisotropic
material behavior due to the incorporation of fibres into the polymeric matrix is constituted on the
macroscale. Both, on the mesoscale, as well as on the macroscale the distinction between the homo-
geneous and the heterogeneous matrix assumption for the determination of the effective mesoscopic
material properties influences the remaining eigenstrains.

Concerning further extensions, the meso bulk properties should also consider visco-elastic effective
properties and a generalization for the n-layered composite spheres model in [27] could be taken into
account. Taking the simulation of large-scale engineering finite-element structures into account, the
meso to macro transition should be taken into account during the total curing process and parameter
identification should be accomplished to obtain material properties or the visco-elastic model.
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Appendix

In accordance with [13] for Table 1, equations (9), (10) and (8), respectively, we use the definitions

Lth =
4Gm

(
3αm KsolKm + 4 z αsolKsolGm − 4 z αmKmGm + 4αm KmGm

)
p̂ (4 z KsolGm − 4 z KmGm + 4 KmGm + 3 KsolKm)

, (A.1)

Lcur =
4Gm

(
3 βm KsolKm + 4 z βsolKsolGm − 4 z βmKmGm + 4 βm KmGm

)
p̂ (4 z KsolGm − 4 z KmGm + 4 KmGm + 3 KsolKm)

, (A.2)

and
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C = η2 z
5
3

(
252Gsol

Gm
− 252

)
− η2 η3 (5 νm + 7)− z 7

3 (4 η1 η3 + 2 η2

(
63Gsol
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(
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(A.5)

where

1. η1 = 105 νsol − 105 νm −
(
Gsol

Gm
− 1

) (
5 νsol + 7

)
(10 νm − 7) ,

2. η2 =

(
Gsol

Gm
− 1

) (
5 νsol + 7

)
− 35 νsol + 35,

3. η3 = 15−
(
Gsol

Gm
− 1

)
(10 νm − 8)− 15 νm.

(A.6)
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Abstract. The most commonly used engineering tool for numerical analysis of variety of the 
heterogeneous materials is the Finite Element Method (FEM). However, this paper focuses on 
the alternative approach based upon the Meshless Finite Difference Method (MFDM). The 
purpose of the work is to present the some features, as well as the selected results of the 
numerical homogenization problem in terms of the Meshless FDM.  

The MFDM solution approach and its higher order extensions, e.g. the Multipont meshless 
method, may be used at both – the macro and the micro levels in the two-scale analysis of  
heterogeneous materials. The Multipoint MFDM concept is based on raising the order of 
approximation of the unknown function by introducing additional degrees of freedom in the 
stencil nodes, taking into account e.g. the right hand side of the considered differential 
equation. It improves the FD solution without increasing the number of nodes in the mesh and 
may also be used for a posteriori error estimation of the results. 

At the macro level of two-scale modeling, the heterogeneous material with the inclusions 
spaced periodically was assumed. The values of effective material constants were determined 
by the homogeneous equivalents calculated at the micro level for a single representative 
volume element (RVE). The various types of the inclusion locations in the RVE were tested. 
The scope of numerical analysis also includes the examination of the influence of some 
factors on solution quality based on the MFDM and the higher order Multipoint MFDM 
approaches.  

All results obtained so far are encouraging. However, it is only the early stage of the research. 
Further research is planned. 
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1 INTRODUCTION 

Most of the innovative materials, such as composite and structural ones, as well as 
numerous natural materials have heterogeneous structure. Therefore, prediction of the 
mechanical properties of those materials is the important part of many fields of engineering, 
among them the mechanical and civil ones. Various homogenization approaches have been 
developed last years [2, 3, 4, 10, 13] to obtain the overall properties of heterogeneous 
materials and to simplify the analysis of engineering problems. 

One of the popular multiscale technique provides overall behavior of the heterogeneous 
materials from known properties of their constituents e.g. fiber or inclusion and matrix 
through an analysis of a periodic single representative volume element (RVE) at the micro 
level. At the macro level, on the other hand, the heterogeneous structure of the composite 
material is replaced by a homogeneous equivalent obtained from RVE.  

 
Figure 1: The homogenization approach 

There are several methods used for the analysis of heterogeneous materials. The Finite 
Element Method (FEM) is the most commonly used engineering tool to analyze multiscale 
problem at both, the macro and the micro levels.  

However, this paper focuses on the alternative approach based upon the Meshless Finite 
Difference Method (MFDM) [6, 12]. The purpose of the work is to present the formulation, as 
well as the some features and selected results of the numerical homogenization problem in 
terms of the Meshless FDM and its higher order modification – the Multipoint MFDM. 

2 MESHLESS FDM AND MULTIPOINT MFDM APPROACHES 

The meshless FDM solution approach [9, 12] and its higher order extensions [6, 11], e.g. 
the Multipont meshless method [5, 6], may be used at the macro and the micro levels in the 
two-scale analysis of  heterogeneous materials [8, 11]. When compared with the finite 
element approach, the meshless methods may deal with the unstructured, totally irregular 
cloud of nodes rather than on elements. In the meshless FDM the local function 
approximation is built in terms of nodes only. In general, the location and density of nodes 
depend on the geometry and the physics of the given problem. Consequently, the MFDM 
allows to avoid the difficulties encountered in the traditional FE technique, such as time-
consuming process of generation of the mesh of complex geometries, remeshing, and mesh 
distortions in large deformation problems. 
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The basic Meshless (Generalized) FDM scheme [12] consists of the several steps, which 
are listed below: 

• selection of the appropriate boundary value problem formulation: local (strong), global 
(weak, e.g. variational) , or global-local (e.g. MLPG [1, 7]); 

• domain discretization:  
- nodes generation (e.g. by applying the Liszka’s type generator [9] based on the nodes 

density control),  
- domain partition by Voronoi tessellation and Delaunay triangulation, 
- domain topology determination (neighbourhoods); 

• optimal stencil (MFD star) selection and generation; 

• local approximation by moving weighted least squares (MWLS) method; 

• generation of the difference formulas; 

• discretization of the boundary conditions; 

• generation and solution of the MFD simultaneous equations; 

• postprocessing of the results. 

The basic MFDM approach has been extended recently to the higher order Multipoint 
Meshless FDM [5, 6, 7].  

The Multipoint MFDM concept is based on raising the order of approximation of the 
unknown function by introducing additional degrees of freedom in the stencil nodes, taking 
into account e.g. the right hand side of the considered differential equation (so-called the 
specific approach), or nodal derivatives (the general approach). In this way, in the multipoint 
MFD operators, the combination of values of searched function is equal to the combination of 
values of additional d.o.f. at all stencil nodes. It improves the FD solution quality without 
increasing the number of nodes in the mesh. 

Let us consider the boundary value problem given in the domain Ω for the  n-th order PDE 
in local (strong) formulation: u f=L  with b.c.  u gG = ,  where  L, G  are differential 
operators; or in equivalent global (weak) one formulated e.g. as a variational principle: 

( , ) ( ),b u v l v v V= ∀ ∈ , where b –  is a bilinear functional dependent on the test function 
v and solution  u,  V – is the space of test functions,  l –  is a linear form dependent on  v.  

In the MFDM solution approach, the standard difference operator based on MFD star may 
be presented in the following form 

 i i i i ij j i
j

u Lu Lu f c u f≈ ⇒ = =∑L . (1) 

In the multipoint formulation, the MFDM difference operator Lu is obtained by using the 
Taylor series expansion of unknown function u including the higher order derivatives, and 
using additional degrees of freedom at nodes [6]. Instead of the function value at the central 
node only, one may apply e.g. a combination of the right-hand side values of the considered 
equation (specific case, eq.(2) ), or nodal derivatives (general case [5], eq. (3) ) at any node of 
MFD star.  

 i i i i ij j ij j
j j

u Lu Lu Mf c u f≈ ⇒ = =∑ ∑αL  (2) 

 ( )k
ij j ij j

j j

c u uα=∑ ∑  (3) 
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The following denotations have been assumed here: j – number of a node in a selected 
stencil,  Mfi  – a combination of additional d.o.f. In general, L may be either referred to the left 
side of differential eqs or to the integrand in the global formulation of b.v. problem, and to the 
boundary conditions.  

The main feature of the multipoint MFDM general case is the relation between the 
additional d.o.f. (k-th derivative values) and the basic ones (searched function u values) in the 
whole domain Ω.  The required number of such relations for N-dimensional problem can be 
reduced to N, calculated only the first derivative relations. The higher order derivatives may 
be developed next using the formulae composition approach. In this way, the general 
formulation may be used for all types of b.v. problems including the nonlinear one. 

3 APPLICATION OF THE MFDM AND ITS EXTENSION TO 
HOMOGENIZATION  

A heterogeneous elastic material with the inclusions spaced periodically was assumed. The 
length l of the micro scale is assumed to much smaller than the characteristic length L of the 
macro domain. The macro scale constitutive behaviour is determined by analysis of an RVE 
subjected to three types (in 2D) of boundary conditions [2, 13]. These numerical tests enable 
computation of all entries of the homogenized tensor of material properties.  

3.1 Formulation at the macro scale 
 

The macro scale problem of the plane stress analysis consists of finding the displacement 
field u0, as well as the stress σσσσ 0 and the strain εεεε 0.  

The b.v. problem at the macro level is defined as follows: 

 ( )

0

0 0

0 0

div in
in

sym

boundary conditions









= − Ω
= Ω
= ∇

+

σ f
σ C

u

εεεε
εεεε

, (4) 

where C denotes the matrix of elastic effective material parameters, f – is the field of body 
forces. 

3.2 Formulation at the micro scale 

The plane stress analysis is carried out at the micro scale defined over RVE. The boundary 
value problem on the RVE level may be defined as follows. 

The equilibrium state equation is assumed 

 indiv 0 Ω=σ . (5)  

The symmetric stress σσσσ  is related to the strain εεεε  by the Hook’s low 

 in Ω=σ cεεεε  (6) 

where c(x,y) denotes the tensor of elastic material parameters and ( )sym= ∇εεεε u  is the strain.  

The Dirichlet boundary conditions  

 0 on u= ∂Ωu u  (7) 
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were assumed for the displacement u to model tension in two directions as well as shearing of 
the RVE. 

Effective material properties are determined by using volume average of the stress <σσσσ> 
and the strain <εεεε> 

 =σ C εεεε , (8) 

which provide nine equations with nine unknowns. 

3.3 Numerical homogenization based on the MFDM approach 

The numerical analysis has been based on the discretization of macro and micro structures 
in terms of the meshless FDM. To define the overall properties of the heterogeneous materials 
a variational-based approach has been assumed. The MFDM discretization may be based on 
any irregular clouds of nodes without any imposed structure, like in the FEM, or regularity 
rule, like in the standard FDM. The cloud of approximation nodes for the RVE may be 
generated either independently on the inclusions distribution or may be adjusted to them. 

The next principles in the application of the MFDM and its higher order extensions to the 
numerical homogenization are assumed [7]: 

• In case of FEM, both the trial  u  and the test  v  functions are approximated by means of 
the same basis functions (Bubnov-Galerkin approach). In case of MFDM, two different 
bases (Petrov-Galerkin approach) may be applied; 

• The approximation of unknown function u and its derivatives is provided by the 
appropriate meshless FD (1) or multipoint MFD (3) operators;  

• In case of the weak formulation the numerical integration is additionally required in the 
MFDM approach. It is performed by the Gauss qudrature on subdomains such as the 
Delaunay triangles (integration between nodes) or Voronoi polygons (integration around 
nodes); 

• The values of the test function v and its derivatives at Gauss point Pk are calculated by 
MWLS approximation based on the MFD star, or interpolation based on integration 
subdomain 

    ( )( )k j k j
j

v P b v≈∑ ,       ( )
k

x
x j k jP

j

v b v≈∑ ,      ( )
k

y
y j k jP

j

v b v≈∑ .        (9) 

The simultaneous equations are generated directly from the variational principle by 
aggregation (from each integration cell), and taking into account MFD or multipoint MFD 
operators [8]. After obtaining the nodal values of the displacement ux  and uy, the effective 
values of the material parameters C may be evaluated by solving eq.(8).  

4 SOME NUMERICAL RESULTS 

The 2D linear elasticity problem for two-phase composite material is considered in order to 
verify the numerical homogenisation by meshless FDM and multipoint MFDM solution 
approaches. The micro scale model is set up based on the RVE technique.  

For the first simple benchmark test of MFD star configuration influence, the RVE with two 
equal part is assumed (Fig. 2). The elastic modules and Poisson’s ratios for the left 
rectangular part are assumed as E1 = 1·105 MPa,  ν1 = 0.1  and  respectively for the right part: 
E2 = 3·105 MPa,  ν2 = 0.3.  
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a)      b) 

Figure 2: The MFD star (stencil) configuration in RVE (test 1) 

In the case, when the MFD star (stencil) configuration does not correspond to the 
distribution of the different material part (nodes of the stencil belong to the both type of 
material, Fig.2b ), some oscillations near the boundary of inclusion are observed (Fig. 3a,b). 
The number of Gauss points in the e.g. Delaunay triangles, and stencil size may have an 
influence on the amplitude of the oscillations. However, when  the MFD star is adjusted to the 
inclusions distribution (Fig. 2a) – the exact solution has been obtained (Fig. 3c). 

a) b)  

c)   

Figure 3: The strain εεεε xx obtained by meshless FDM for test 1 in the case:  
a) stencil does not correspond to the inclusion, 4 Gauss point integration; b) stencil does not correspond to the 

inclusion, 1 Gauss point integration; a) stencil is adjusted to the inclusion 
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For the second test, the structure with uniformly distributed circular inclusions with the 
same radii is assumed. Therefore, heterogeneous material could be represented by one of the 
RVE models as presented in Fig. 4a. Due to symmetric RVE models, the quarter of the RVE 
may be considered only. The scheme of such e.g. RVE3 with appropriative boundary 
conditions is presented in Fig. 4b.  

 
a)     b) 

Figure 4: Distribution of the inclusions on macro (a) and micro (b) scales 

In all cases, the regular uniform meshes are applied in the MFDM solution approach. 
Numerical results of effective material constants obtained for all types of RVE model are 
close enough (Fig. 5).  

   
a)    b)    c) 

Figure 5: MFDM results of strain εεεε xx obtained for RVE1, RVE2, and RVE3 

The numerical analysis may be returns to the macro scale after determination of the 
effective material constants (beside the elastic modulus and Poisson’s ratio, the value of the 
Kirchhoff parameter G may be evaluated also). These effective values homogenize the 
original heterogeneous material. Consequently, meshless FDM or higher order multipoint 
solution approach may be applied, e.g. for the de Saint-Venant torsional problem of the 
heterogeneous prismatic bar with the rectangular cross-section assumed as the next 
benchmark test. The local formulation in the form of the Poisson’s equation with the essential 
boundary conditions was applied first  

 
2 in2 ,

on0,

G Ω∇ Φ = −
 ∂ΩΦ =

θ
, (10) 

followed by variational form, where Φ – is the Prandtl stress function,  Gθ – torsional 
stiffness, Ω – domain of the bar cross-section. 
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The comparison of the MFDM and higher order multipoint MFDM convergence rates is 

presented in Fig. 6. 

   

1.4 1.2 1 0.8 0.6
5

4

3

MFDM; 
Multipoint MFDM, 3 approx.order

log(h)

lo
g(

e)

.

 
a)          b) 

Figure 6: Twisting of square cross-section prismatic bar: a) Prandtl stress function and  
b) its solution convergence rate for series of regular meshes. The exact error for  
the standard meshless FDM, and multipoint MFDM 3-rd approximation order 

5 FINAL REMARKS 

Formulation and some features of the meshless FDM and its higher order extension – the 
multipoint meshless FDM for the numerical homogenization problem of heterogeneous 
materials  with periodic structure was presented. The research has been focused on the two-
scale analysis based on the single representative volumetric element RVE. The stencil 
configuration influence was investigated. Several tests confirmed, that adjusting of the MFD 
star to the inclusion distribution may have an influence on the solution in terms of the 
meshless FDM. The effective values of the tensor of elastic material parameters were 
determined for the three RVE types. Results for different  RVE types were compared with 
each other at the micro level. The analysis of the convergence results of the MFDM and 
multipoint MFDM at the macro level confirmed the better quality of the solution obtained by 
using the higher order extension of the meshless FDM. 

Although obtained so far results are encouraging, it is only the early stage of the research. 
Therefore, further research is planned. 
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Abstract. A multi-ply unit cell model for predicting the tensile response of a ±45 angle-ply 

laminate based on the finite element method is presented. Two different interfiber failure 

mechanisms leading to matrix cracking are reproduced in the simulations by using appropri-

ate constitutive equations. The effect of fiber-to-fiber interaction within the ply is incorpo-

rated in the model by applying a hexagonal array of fibers. The predictions from this model 

are compared with experimental data available in the literature, and are found to be in good 

agreement. . 
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1 INTRODUCTION 

Recently, researchers have shown an increased interest in studying the deformation and 

failure of composite laminates by using multi-ply unit cell models [1-8]. In the present paper, 

the mesoscale approach based on a rhombohedral unit cell proposed by Zhang et al. [6] is ex-

tended. This approach is based on an assumption that the structure of the whole laminate can 

be idealized at the ply scale as a periodic array of repeated unit cells. Some new issues, like 

fiber/matrix interface debonding, development of plastic strain in the matrix and hexagonal 

fiber packing are introduced in the mesoscale model of a ±45 angle-ply laminate. The objec-

tive of this paper is to show that an analysis of local stresses in the mesoscale model is capa-

ble of identifying the failure mechanism and predicting the tensile behavior of a ±45 angle-ply 

laminate. 

2 MESOSCALE FINITE ELEMENT MODEL 

As shown in Fig.1, two coordinate systems are used to analyze angle-ply laminates. The 

first one is a orthogonal coordinate system (x1–x2–x3), which is used to determine the direc-

tion of loading. The second one is a skew coordinate system (x1
s
–x2

s
–x3

s
), which is used to 

define the unit cell geometry. This coordinate system is set up such that the x1
s
 and x2

s
 axes lie 

in the plane of the laminate along the fiber directions and the x3
s
 axis is perpendicular to it. It 

should be noted that the fiber orientation angle  is measured with respect to the x1 axis of the 

orthogonal coordinate system. A unit cell of an angle-ply laminate consists of three rhombo-

hedrons which represent three successive plies with various fiber orientations. The structure 

of an ± angle–ply laminate can be viewed at the ply scale in the skew coordinate system 

(x1
s
–x2

s
–x3

s
) as a periodical array of plies containing a periodic subarray of fibers. Thus, a unit 

cell of an angle-ply laminate is built with unit cells of plies. In this study, the fibers are dis-

tributed uniformly throughout the ply in the form of a hexagonal array.  

 

 

Figure. 1: Geometry of a rhombohedral unit cell. 

 

In this paper, 3-D multi-ply mesoscale models of a ±45
o
 angle-ply laminate subjected to 

tension along the x2 direction are examined. The material properties of fibers and matrix (Ta-

ble 1) correspond to those reported in the World Wide Failure Exercise [9] for Silenka E-glass 

1200tex fibers and MY750/HY917 epoxy matrix. The dimensions of rhombohedral unit cells 

were chosen so as to accommodate the radius of fiber rf = 8 µm, and to respect the fiber vol-

ume content Vf = 60%. The full rhombohedrons were meshed with three–dimensional eight–

node elements (SOLID185) and solved by using Ansys finite element code [10]. 
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Silenka E-glass fiber  MY750/HY917/DY063 epoxy matrix 

Ef f Xf  Em m k  Ym Sm 

[GPa]  [MPa]  [GPa]  [MPa]  [MPa] [MPa] 

74 0.2 2150  4.5 0.35 43.35 0.1 100 87 
 

fiber/matrix interface 

kn kt Gn
c Gt

c n
c t

c 

[GPa/m] [GPa/m] [J/m2] [J/m2] [MPa] [MPa] 

0.1x109 0.1x109 15 30 15 30 
 

Table 1: Mechanical properties of the lamina constituents. 

 

2.1 Numerical homogenization 

Periodic deformation of the rhombohedral unit cell is controlled by macroscopic strains by 

using the following boundary conditions [11] 
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where i = 1, 2, 3, and 2a1, 2a2, 2a3 are the dimensions of the unit cell in the skew coordinate 

system,    
  are the components of the applied strain in the skew coordinate system. In order to 

apply the periodic boundary conditions to the finite element model, the displacements in the 

skew coordinate system u1
s
, u2

s
, u3

s
 must be rewritten in terms of the displacements in the or-

thogonal coordinate system u1, u2, u3 by using the following relationships [11] 
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}.  (2) 

The components of macroscopic stress corresponding to the applied strain can be calculated 

from 

 ̅   
 

 
∫     

    (3) 

where V is the volume of the rhombohedral unit cell. 

2.2 Constitutive equations of matrix and interface 

The epoxy matrix is modeled within the framework of the finite deformations as a elasto–

plastic solid which hardens isotropically. The deformation of polymeric materials is highly 

sensitive to the hydrostatic pressure and plastic flow of these materials can exhibit plastic di-

latancy. To address this requirement, the Drucker–Prager plasticity model [12], which incor-

porates the linear dependence on the hydrostatic stress, is used. In terms of the first invariant 

of stress I1 and the second invariant of the deviatoric part of stress J2, the yield function is 

given as 

f = (µ I1 / 3)+ sqrt(J2) – k , (4) 

where µ is the pressure sensitivity factor, k is the flow stress of the material under pure shear. 

Experiments showed that the pressure–sensitivity factor µ ranges from 0.10 to 0.25 for poly-

mers [13, 14]. The Drucker–Prager plasticity model with µ = 0.1 and k = 43.30 MPa was used 
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to study of the matrix cracking damage mechanism. An associative flow rule is used to com-

pute the direction of plastic flow [10].  

 
(a) 

 

(b) 

 

Figure 2: Calibration of the mesoscale model: (a) identification of the matrix plasticity model (experimental data 

from [9]), (b) identification of the fiber/matrix interface model (experimental data from [9]). 

 

Experimental investigations of failure in transversely-loaded fiber-reinforced polymers 

have revealed that another damage mechanism is debonding occurring at the fiber/matrix in-

terface [15,16]. For the fiber/matrix interface failure, a cohesive zone model is employed, in 

which the constitutive equations of the interface relate the normal n and tangential t cohe-

sive tractions to the normal un and tangential ut displacement jumps and a scalar damage vari-

able d, through [17] 

       (   )        (   ), (5) 
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where kn , kt are initial contact stiffnesses in the normal and tangential direction, respectively. 

The variable d represents the loss of stiffness and it is a function of both displacement jumps. 

The variable d takes values from 0 to 1. Relationships (5) demonstrate linear elastic loading 

region followed by linear softening region. When d = 0, the cohesive elements are closed and 

the tractions increase linearly up to their maximum values n
c
, t

c
 in the normal and tangential 

direction, respectively. When 0 < d < 1, these elements begin to open and the tractions de-

crease linearly. When d = 1, the tractions are zero and the cohesive elements are completely 

broken. To define the completion of fracture in the cohesive zone model, a linear energy crite-

rion is used [17] 

(Gn / Gn
c
) + (Gt / Gt

c
) = 1, (6) 

 
(a) 

 

(b) 

 

Figure 3: Contour plots of the effective plastic strain in the ±45
o
 angle-ply laminate at the critical stage of defor-

mation from the mesoscale model with (a) imperfect and (b) perfect fiber/matrix interface conditions. 

 

where Gn, Gt denote energy release rates for mode I fracture and mode II fracture, respective-

ly and Gn
c
 and Gt

c
 correspond to the interfacial fracture energies. After debonding is complet-
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ed, the interface surface interaction is governed by standard contact constraints for normal and 

tangential directions. A cohesive layer consisted of contact elements with eight nodes 

(CONTA174, TARGE170) was introduced between the fibers and the matrix to reproduce the 

fiber–matrix debonding. The glass fibers are assumed to be linear elastic. 

2.3 Calibration of the Drucker–Prager plasticity model 

In this paper, the hardening curve of epoxy matrix is extracted from a hexagonal unit cell 

subjected to in–plane shear loading. The non–linearity of epoxy matrix is identified such that 

prediction obtained from the hexagonal unit cell matches the measured in–plane shear re-

sponse of E-glass/MY750 epoxy unidirectional lamina reported in [9]. Fig.2a shows a com-

parison of the measured shear response and that from the hexagonal unit cell model. 

Agreement with experimental data is quite good. 

 

 

Figure 4: Angular distributions of the first principal stress and the effective plastic strain at the fiber/matrix inter-

face at three successive stages of deformation from the mesoscale model with imperfect fiber/matrix interface. 

 

2.4 Calibration of the interface model 

In order to ascertain the cohesive properties for the interface under study, an analysis of 

debonding under transverse tension was carried out for various interfacial cohesive strengths 

and fracture energies. It was assumed that the ratio of the tensile interfacial strength to the 

shear interfacial strength, n
c
 / t

c
 and the ratio of the opening component to the sliding com-

ponent of the interfacial fracture energy, Gn
c
 / Gt

c
 are 0.5. The macroscopic tensile stress–

strain curves calculated for four different levels of interfacial strength (n
c
 / t

c
 = 10/20, 15/30, 

20/40 and ) and two different levels of interfacial fracture energy (Gn
c
 / Gt

c
 = 0.5/1, 50/100) 

are shown in Fig.2b. It can be observed from this figure that an increase in the interfacial 

strength produces an increase in the transverse tensile strength of composite, and in turn, a 

decrease in the interfacial fracture energy leads to a larger decrease in macroscopic stress at 

the post critical stage. The strength of the interface under study was calibrated such that the 

peak of the transverse stress-strain curve obtained from the hexagonal unit cell matches the 

measured transverse tensile strength of the composite reported in [9]. Due to lack of experi-

mental data on the softening behavior of the entire composite at the macroscale, the interfacial 

fracture energy was assumed to be of the same order of magnitude as that measured in single-
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fiber tests reported in [18]. Finally, the interface with n
c
 =15MPa, t

c
 = 30MPa, Gn

c
 = 15J/m

2
 

and Gt
c
 = 30J/m

2
 was chosen for the rest of the study. 

 

 

Figure 5: Angular distributions of the maximum shear stress and the effective plastic strain at the fiber/matrix 

interface at three successive stages of deformation from the mesoscale model with perfect fiber/matrix interface. 

 

3 FAILURE MECHANISMS 

Each ply in an angle-ply laminate subjected to tension is loaded by a combination of nor-

mal and shear stresses. The value of these stresses depends on the ply orientation angle . 

Both shear and tensile loading modes can induce initiation and growth of cracks in the matrix 

along the fiber direction. For the sake of simplicity, an interaction between the two fracture 

modes is omitted in the present paper. In order to identify the failure mechanism of angle-ply 

laminates under tensile loading, an analysis of the local stresses in the unit cell models for dif-

ferent ply orientations is performed by the finite element method. For this purpose, it is as-

sumed that the initiation of cracks in the matrix occurs if the maximum shear stress in the 

matrix or the first principal stress in the matrix goes beyond the corresponding ultimate 

strengths of the matrix 

max ≥ Sm,   or   σ1 ≥ Ym.  (7) 

Tension tests carried out on microscopic specimens indicate that the tensile strength of epoxy 

polymer Ym is much higher than that obtained with standard macroscopic specimens. The use 

of microscopic data is essential for the current analysis. According to works by Fiedler et al., 

[19], Hobbiebrunken et al. [20], the tensile strength of the epoxy polymer obtained from mi-

croscopic tests can exceed 100 MPa, while macroscopic tests yield the value of 80 MPa. To 

the author's knowledge, there are no micro-shear tests for epoxy polymers. The shear strength 

of the epoxy polymer Sm obtained from macroscopic tests is 70 MPa [19, 20]. However, it is 

reasonable to assume that the true shear strength of the epoxy matrix is also higher. The shear 

strength of the epoxy matrix back-calculated from tension tests of the ±55 angle-ply laminate 

is 87 MPa [8]. 
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4 RESULTS 

Depending on the type of the fiber/matrix interface, two various mesoscale models of the 

±45 angle-ply laminate were considered, namely models with the perfect and imperfect fi-

ber/matrix interface conditions. Fig.3 shows distributions of the equivalent plastic strain in 

these models for critical loads. In the case of the imperfect interface, the critical load corre-

sponds to a limit beyond which the fiber/matrix interface cracks are fully opened (y
c
 = 0.01). 

In turn, in the case of the perfect interface, it corresponds to a limit beyond which the shear 

strength of the matrix is attained (y
c
 = 0.1185). The most intense plastic deformation in the 

matrix is localized in shear bands which develop along planes containing the fiber direction. 

Thus, both models predict that cracking of the matrix takes place along the fiber direction 

within the shear bands.  

 
(a) 

 

(b) 

 

Figure 6: Comparison of the stress-strain curves of the ±45
o
 angle-ply laminate obtained from different fi-

ber/matrix interface conditions with experimental data: (a) tensile tests from [21] carried out on laminated tubes, 

(b) tensile tests from [22] carried out on laminated coupons. 
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In order to check the reliability of the opening mode of fracture, an analysis of the first 

principal stress σ1 and the equivalent plastic strain pl in the matrix is performed by using the 

mesoscale model with the imperfect fiber/matrix interface. The distributions of these quanti-

ties at the fiber/matrix interface are presented in Fig.4 at three successive stages of defor-

mation corresponding to the beginning of inelastic behavior, the limit load and the softening 

regime. The polar angle at the fiber/matrix interface  is measured from the normal to the in-

terlaminar interface. It is interesting to note that the tensile stress in the matrix decreases at the 

softening regime and it is below the tensile strength (Ym = 100 MPa). In contrast to the tensile 

stress, the plastic strain in the matrix increases constantly with increasing applied strain. This 

means that the condition for crack growth in the matrix under the opening mode of fracture 

cannot be satisfied.  

In order to validate the shearing mode of fracture, an analysis of the maximum shear stress 

max and the equivalent plastic strain pl in the matrix is performed by using the mesoscale 

model with the perfect fiber/matrix interface. The distributions of these quantities at the fi-

ber/matrix interface are presented in Fig.5 at three successive stages of deformation. It can be 

observed in Fig.5 that both the shear stress max and the plastic strain pl in the matrix increase 

with increasing applied strain. Thus, the shear stress in the matrix may go beyond the shear 

strength of the epoxy matrix (Sm = 87 MPa). It is also interesting to note that the mesoscale 

model with the perfect fiber/matrix interface exhibits a very ductile behavior. At the critical 

stage of deformation, the plastic strain in the matrix exceeds 140% . 

Predictions of the stress-strain behavior for the perfect and imperfect fiber/matrix interface 

conditions are shown in Figs.6a and 6b. Two different experimental curves reported in the 

literature [21-22] for the ±45 angle-ply laminate are included for quick reference in these fig-

ures. The two experimental curves of the ±45 angle-ply laminate show a very non-linear be-

havior prior to ultimate failure. This behavior is manifested by a hardening region at high 

strains. The observed increasing stiffness can be attributed to a rotation of fibers due to shear 

stress. As the ply shear stress increases, the matrix is plasticized and the orientation of the fi-

bers became more aligned with the loading axis, which leads to an increase in load carried by 

fibers. The fibers are capable of carrying more load only if the displacement compatibility be-

tween matrix and fibers exists. Thus, the experimental curves of the ±45 angle-ply laminate 

obtained from both tests suggest that fiber-matrix debonding has a negligible influence on the 

deformation of this laminate under tensile loading. It can be observed in Fig.6a that the stress-

strain curve obtained from the mesoscale model with the perfect fiber/matrix interface match 

quite well with experimental data. In turn, the experimental curve of the ±45 angle-ply lami-

nate obtained from tests on laminated coupons exhibits a maximum and a plateau before a 

hardening region. It can be observed in Fig.6b that the maximum of the stress-strain curve ob-

tained from the mesoscale model with the imperfect fiber/matrix interface overlaps with the 

maximum from the tests. Thus, this model may be used to predict the beginning of the plateau 

occurring during tensile tests carried out on laminated coupons.  

5 CONCLUSIONS 

The efficiency of two types of mesoscale models without and with fiber/matrix debonding 

for simulating the deformation and failure mechanisms in a ±45 angle-ply laminate under ten-

sile loading was evaluated. The results from both models suggest that failure of the laminate 

is dominated by the matrix shearing. The first type was found to reproduce well the tensile 

response of the laminate obtained from laminated tubes, and in turn, the second type was able 

to predict the beginning of the plateau occurring during tensile tests carried out on laminated 

coupons. 
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Abstract. An axisymmetric micro-domain subjected to the ultrashort laser pulse is considered. 
To describe the process of heat conduction occurring in the analyzed domain, the two-
temperature hyperbolic model together with the isothermal solid-liquid and liquid-vapor 
phase changes is applied. This model, consisting of four equations describing  the electrons 
and lattice temperatures and also the electrons and lattice heat fluxes, is transformed to the 
model consisting of only two equations describing the electrons and lattice temperatures. De-
rived equations together with the appropriate boundary and initial conditions, are solved us-
ing the finite difference method supplemented by additional numerical procedures which 
allow to take into account the phase changes. In the final part of the paper the results of com-
putations are shown and the conclusions are formulated. 
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1 INTRODUCTION 

Analysis of thermal processes occurring in the micro-domains subjected to an ultrashort 
laser pulse is of vital importance in microtechnology applications [1]. It should be noted that 
taking into account the extreme temperature gradients, extremely short duration of the process 
and the domain dimensions expressed in nanometers, the macroscopic heat conduction equation 
basing on the Fourier law cannot be applied [2-5]. So, to analyze the process, various 
alternative mathematical models can be used, for example the two-temperature hyperbolic 
model [6-10]. At high power of laser the phase transitions can occur this means melting and 
evaporation. In this paper the axisymmetric two-temperature hyperbolic model together with 
the isothermal solid–liquid and liquid-vapor phase changes is discussed. This model, 
presented in the chapter 2, consists of four equations describing the electrons and lattice 
temperatures and also the electrons and lattice heat fluxes. In chapter 3, using appropriate 
mathematical transformations, the model consisting of two equations describing only the 
electrons and lattice temperatures is proposed. Chapter 4 contains the description of numerical 
algorithm based on the finite difference method, while in the chapter 5 the results of 
computations are shown. In the final part of the paper the conclusions are formulated. 

2 GOVERNING EQUATIONS 

Axisymmetric two-temperature model describing the temporal and spatial evolution of the 
lattice and electrons temperatures in the irradiated metal together with the isothermal solid–
liquid and liquid-vapor phase changes is of the form [6-8] 
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where Te (r, z, t), Tl (r, z, t), qe (r, z, t), ql (r, z, t) are the temperatures and heat fluxes of the 
electrons and lattice, respectively, Ce (Te ), Cl are the volumetric specific heats, G(Te, Tl) is the 
electron-phonon coupling factor which characterizes the energy exchange between electrons 
and phonons, Q(r, z, t) is the source function associated with the irradiation, while Qm(r, z, t) 
and Qev(r, z, t) are the source functions associated with the melting and evaporation, respec-
tively. 
In a place of classical Fourier law the following formulas are introduced 
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where λe (Te , Tl), λl are the thermal conductivities of the electrons and lattice, respectively, 
τe is the relaxation time of free electrons in metals (the mean time for electrons to change their 
states), τl is the relaxation time in phonon collisions and (∙) denotes the gradient. 
The laser irradiation is described by a source term introduced in equation (1) [11, 12] 
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where I0 is the laser intensity, tp is the characteristic time of laser pulse, δ is the optical pene-
tration depth, R is the reflectivity of the irradiated surface and rD is the laser beam radius. 

The internal heat sources resulting from the phase changes (melting and evaporation) take 
a form [13-15] 
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where Lm is the volumetric heat of fusion, Lev is the volumetric heat of evaporation, Sm and Sev 
are the volumetric molten and gaseous state fractions in the surroundings of the point consid-
ered. Both Sm and Sev are equal to zero at the beginning of heating process and increase 
from 0 to 1 when the local temperature achieves the melting Tm and boiling Tev temperatures, 
respectively. 
The above presented mathematical model is supplemented by the boundary conditions (no-
flux conditions), it means 
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where n is the outward unit normal vector. 
The initial temperature distribution is also known 
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where T0 is constant. 
For high laser intensity the following dependencies are used [6, 8, 16] 

 
 

 

2

2
2 2 2 2

2

2 2
2

, / π

/ π
/ π / π , / π 3 / π

2 / π
( )

/ 2
3 / π , 3 / π

3 / π

3 / 2,

e e F

B F
F e F F e F

F
e e

B
B e F F e F

F F

B e F

AT T T

N k AT
AT T T T T T

T
C T

N k
N k T T T T T

T T

N k T T

 


     
     




 (9) 

and 

 
     

     

5/42 2

1/22 2

/ 0.16 / 0.44 /
λ ( , ) χ

/ 0.092 / η /

e F e F e F

e e l

e F e F l F

T T T T T T
T T

T T T T T T

       
    
   

 (10) 

while 
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where TF is the Fermi temperature, N is the density of electrons, kB is the Boltzmann constant, 
A = π2 N kB / (2 TF), χ, η, Ae, Bl are the constants and Grt is the coupling factor at room tem-
perature. Other parameters: λl, Cl, τe, τl are assumed to be constant. 
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3 MATHEMATICAL MANIPULATIONS 

In this chapter, another form of the two-temperature model will be presented. Introducing 
(3) into (1) and (4) into (2), respectively, one has 
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Assuming that τe and τl are the constant values, the equations (12), (13) can be written in the 
form 
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From equations (1), (2) results that 
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Introducing (16) into (14) and (17) into (15), respectively, the equations (14), (15) have 
a form 
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and 
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therefore 
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Finally 
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Summarizing, the equations (23) and (24) supplemented by boundary conditions (7) and ini-
tial condition (8) create an equivalent two-temperature model described in the chapter 2. It 
should be noted that in this model the second time derivatives appear and therefore the addi-
tional initial condition should be introduced 
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The phase transitions are modeled using the authorial version of the algorithm called ‘a tempera-
ture recovery method’ [17]. When the local temperature at the node (i, j) achieves the value of 
melting point Tm then the source function Qm (ri , zj , t) starts, at the same time, because the 
melting process proceeds at the constant temperature the derivatives of lattice temperature 
with respect to time (equation (24)) are equal to 0. So, one has (c.f. equation (24)) 
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it means 
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The similar equation describes the evaporation process 
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4 METHOD OF SOLUTION 

To solve the problem formulated in the chapter 3, the finite difference method is used 
[18, 19]. The geometrical mesh with dimensions nn is introduced and the temperatures for 
time t f = f Δt (f ≥ 2, Δt is the constant time step) at the node (i, j) are denoted as 
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The following approximation of equation (23) is proposed 
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where 
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are the thermal resistances between adjacent nodes [18, 19] and 

        1 , , 2 , , 3 40.5 / , 0.5 / , 1/i j i j i j i jr h h r r h h r h           (32) 

are the shape functions of differential mesh for the axially-symmetrical task. 
After mathematical manipulations one has 
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In a similar way the equation (24) can be approximated and for the temperatures below the 
melting point one obtains 
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In turn, the finite difference approximation of equation (27) is of the form 
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and next 
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In a similar way one obtains (c.f. equation (28)) 
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(37) 

5 RESULTS OF COMPUTATIONS 

Numerical simulation of a thermal process taking place in the cylindrical domain with di-
mensions Z = 100·10−9 [m] and R = 100·10−9 [m] subjected to the short-pulse laser heating 
has been done. The initial temperature is equal to Tp = 300 K. Thermophysical parameters of 
material are equal to (gold): thermal conductivity of lattice λl  = 315 W/(mK), volumetric spe-
cific heat of lattice Cl  = 2.5 MJ/(m3 K), electrons relaxation time τe  = 0.04 ps, phonons relaxa-
tion time  τl  = 0.8 ps [20], reflectivity  R = 0.93, optical penetration depth δ = 15.3 nm. The 
Fermi temperature is equal to TF = 64 200 K  and  the  density  of electrons is equal to N = 
5.910 28 1/m (c.f. equation (9)) [6]. The  constants in equations (10), (11) are the following: χ = 
353 W/(mK), η = 0.16, Ae = 1.2107 1/(K2 s), Bl =1.231011 1/(Ks)  and Grt =2.210 16 W/(m3K) 
[6]. The melting point is equal to Tm = 1336 K, the boiling point: Te = 3127 K, the volumetric 
heat of fusion: Lm = 1.23103 MJ/m3 and the volumetric heat of evaporation: Lev = 3.277104 
MJ/m3. 

The laser beam radius is equal to rD =R/8. The calculations were performed for five values of 
the laser intensity:  I0 =2∙105 J/m2, I0 =4∙105 J/m2,  I0 =6∙105 J/m2 , I0 =8∙105 J/m2 and I0 =106 
J/m2 under the assumption that the characteristic time of laser pulse is equal to tp =100 ps (c.f. 
formula (5)). The problem is solved using the finite difference method. Number of nodes is 
equal to 50×50=2500 (h=2 nm) and time step is equal to 0.0005 ps.  

 In Figures 1 and 2 the heating curves at the point (2nm, 2nm) are shown. As can be seen, for  
the lowest laser intensity only the heating process is observed, while for the higher laser intensi-
ty  the melting process appears (‘stop’ corresponding to the melting process). In the case of the 
largest laser intensity (Figure 2) the isothermal liquid-vapour phase change starts. Figures 3 and 
4 illustrate the courses of electrons and lattice temperatures at the same point. 

 
Figure 1: Lattice temperature history at the point (2 nm, 2nm). 
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Figure 2: Lattice temperature history at the point (2 nm, 2nm). 

 
Figure 3: Temperature history at the point (2nm, 2nm) for I0 = 6∙105 J/m2. 

 
Figure 4: Temperature history at point (2nm, 2nm) for I0 = 106 J/m2. 
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In Figure 5 the electrons and phonons temperature distribution after 150 ps for laser inten-
sity I0 =8∙105 J/m2 is shown.  

 
Figure 5: Temperature distribution after 150 ps, A) electrons, B) lattice. 

6 FINAL REMARKS 

The thermal processes occurring in the axisymmetric micro-domain subjected to the ultra-
short laser pulse are analyzed. The problem is described by two equations for electrons and 
lattice temperatures supplemented by appropriate boundary and initial conditions. At the stage 
of numerical computations the finite difference method together with the procedures modeling 
the phase transitions is used. 

 In the future,  the algorithm will be supplemented by a procedure modeling the ablation 
process. 
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Abstract. The development of crack models capable of simulating the discrete nature of frac-
ture is of interest to many different areas of research. For example, the structural analysis 
innovative designs now made possible by new ultra-high performance concrete mixtures 
would certainly benefit from such improved predictive capabilities. Currently, there are nu-
merous numerical approaches available in the literature, for instance based on nodal or ele-
ment enrichment techniques, or even on remeshing strategies. Typically, the validation of 
such approaches was achieved using benchmark tests that contained few cracks and where 
the overall displacements were compared until failure. Having this into account, this paper 
describes a detailed validation of a discrete crack model based on embedded discontinuities 
for predicting the behaviour of lightweight aggregate concrete. The model itself includes the 
rigid body movements associated with the opening of cracks and relies on a robust non-
iterative algorithm to overcome convergence difficulties typically found with numerous cracks 
and material non-linearities. Validation was achieved using experimental data from tests per-
formed on lightweight concrete beams (LWAC) under flexural load, where displacements, 
curvatures and cracks width were properly monitored. This data include, not only overall 
displacements, but also the complex crack patterns produced during the tests. The model was 
shown to predict well the overall crack patterns and openings, and was used to perform ex-
trapolations on crack widths for different reinforcement ratios. 
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1 INTRODUCTION 
There are many situations where the accurate prediction of the fractured behaviour of a 

structure requires models with the capability of simulating discrete cracks. This is true when-
ever the interaction between cracks and other structural features – e.g. reinforcement or 
strengthening materials – is critical to identify premature failures and to characterise the struc-
tural behaviour under serviceability conditions. Currently, there are many different approach-
es available in the literature, which can simulate material separation. Most approaches are 
based on nodal [1-4] or element enrichment techniques [5-11], or even on remeshing strate-
gies [12-14]. These approaches were typically validated using benchmark tests with few 
cracks and by comparing overall displacements. Starting from this observation, this paper de-
scribes a validation study concerning a discrete crack model for embedding discontinuities 
and that can be efficiently used for predicting the behaviour of lightweight aggregate concrete 
(LWAC). The reason underlying the choice of LWAC is related to the fact of this cementi-
tious material being relatively new in the field of civil engineering and currently facing many 
new applications. As example, it can be mentioned the strengthening of existing structures 
and the new structures being built with reduced overall gravity load, which impacts directly 
the design of the structural members and, indirectly, because of the decreased magnitude of 
seismic actions [15-17].  

Until recently, most research in the field of LWAC was focused on the material behaviour 
from an experimental perspective [18-22], lacking numerical models that can be efficiently 
used for predicting the structural behaviour. Simultaneously, existing standards still need 
proper validation, in which case a robust numerical model will be needed to support further 
studies. Developed within this context, the model presented in this paper assumes the opening 
of the cracks to occur as if it were a rigid body movement and relies on a robust non-iterative 
algorithm to overcome potential convergence difficulties found in the presence of numerous 
cracks and material non-linearities. In the following sections, the model is described in detail 
and validated using experimental data from tests performed on light-weight concrete beams 
under flexural loads, focusing the overall displacements and the complex crack patterns pro-
duced during the tests.  

2 DISCRETE CRACK APPROACH 

2.1 Variational framework 

The variational principle for a body Ω  containing a surface of discontinuity,  Γd , splitting 

it into two subdomains, Ω−  and Ω+ , and subjected to quasi-static body forces  b  and stresses 

 t  distributed over the external boundary,  Γ t , is given by [23]: 

 
     

(∇sδu)
Ω\Γd
∫ :σ (ε)dΩ+ δ

Γd
∫ u ⋅ t

+dΓ = δ
Ω\Γd
∫ u ⋅bdΩ+ δ

Γt
∫ u ⋅ tdΓ , (0) 

where σ  is the stress tensor and  t+  is the stress at the crack, 
  u   is the opening of the crack, 

and  u  is the total displacement field.  
The total displacement can be considered to be the sum of two contributions, the regular 

displacement field,   û , and the enhanced displacement field,   u , according to which:  

 
    
δu =δû+HΓd

δ u , (0) 

where 
 
HΓd

 is the standard Heaviside function, with value ‘1’ on Ω+  (and ‘0’ otherwise).  
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For small displacements:  

 
    
∇sδu =∇sδû+HΓd

∇sδ u( )+δΓd
u ⊗ n+( )

s
, (0) 

where 
 
HΓd

 is the Dirac’s delta function along the surface of discontinuity and  n+  the vector 

orthogonal to the discontinuity and pointing inwards Ω+ .  
If the opening of the discontinuity is transmitted as if it were a rigid body motion, then 
   ∇

sδ u = 0 . By replacing Eqs. (2) and (3) in Eq. (1), and by taking   δ u = 0  and then   δû = 0 , the 
following governing equations is derived: 

 

     

(∇sδ û)
Ω\Γd
∫ :σ (ε̂)dΩ = δ

Ω\Γd
∫ û ⋅bdΩ+ δ

Γt
∫ û ⋅ tdΓ

δ
Γd
∫ u ⋅ t

+dΓ = δ
Ω+∫ u ⋅bdΩ+ δ

Γ
t+
∫ u ⋅ tdΓ

. (0) 

2.2 Discretisation 
Assuming that the body is discretised into a set of finite elements, the displacement field 

within each element containing a crack is interpolated by: 

 

     

ue = Ne â+HΓd

e Mw
ek we( )  in Ωe \Γd

e

u 
e
=Mw

e we = Nw
e we  at Γd

e
, (0) 

where   N
e

 
is a matrix with the shape functions of the element,   â

 
 are the nodal degrees of 

freedom associated with    û
e ,   w

e

 
are the degrees of freedom for the opening of the crack at 

both extremities,   Nw
e  contains linear interpolation functions and matrix   Mw

e

 
is defined as: 

 

   

Mw
e =

1−
(x2 − x2

i )sinα e

ld
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(x2 − x2
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ld
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ld
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ld
e

(x1 − x1
i )sinα e

ld
e

1−
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i )cosα e

ld
e

−
(x1 − x1

i )sinα e

ld
e

(x1 − x1
i )cosα e

ld
e

#

$

%
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%

&

'

(
(
(
(
(

, (0) 

where   (x1,x2 )  are the coordinates of any point inside the element,   (x1
i ,x2

i )  are the coordinates 

of the first tip of the discontinuity,  ld
e  and  α e  are, respectively, the length and angle of the 

discontinuity.   Mw
ek  is obtained by calculating Eq. (6) at each regular node of the finite ele-

ment and stacking the result into rows. 
Following standard finite element procedures, the previous equations can be used to discretise 
Eq. (4) into the following system:  

 

   

Kââ
e −Kaw

e

−Kaw
e K ww

e +K d
e +K p

e

"

#

$
$

%

&

'
'

dae

dwe

(
)
*

+*

,
-
*

.*
=

df̂ e

dfw
e − HΓd

e Mw
ek( )

T
df̂ e

(

)
*

+
*

,

-
*

.
*

, (0) 

where    Kââ
e  is the stiffness of a regular finite element,   K d

e  is the stiffness of the discontinuity, 

   
Kaw

e = Kââ
e HΓd

e Mw
ek ,   K wa

e = Kaw
eT , and 

   
K ww

e = HΓd

e Mw
ek( )T

Kââ
e HΓd

e Mw
ek . Finally,   K p

e  assures appropri-

ate shear jump transmission along the discontinuity (more details in [11, 24]).   
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2.3 Crack propagation and solution procedure 
The Rankine criterion is used to identify the onset of cracking, with new cracks being in-

troduced through the centre of the cracked element. In the case of crack propagation, the new 
crack segment is inserted from the crack tip after evaluating the stress field using a procedure 
that smooths the stress within an average support length of two or three times the typical ele-
ment size (see [3]). The discontinuity always crosses the entire finite element, with the new 
degrees of freedom being treated as global unknowns.  

The overall system of equations is solved using the Non-Iterative Energy Based Method 
(NIEM) [25]. According to this method, an incremental analysis is performed until reaching 
critical bifurcation points. In this situation, a transition to a total approach is performed such 
that damage is enforced according to information retrieved during the analysis. An energy cri-
terion follows the path leading to the highest dissipation of energy. A comprehensive discus-
sion about this algorithm is found in [25, 26]. 

3 EXPERIMENTAL TESTS 

The structural scheme adopted for the experimental tests is shown in Figure 1. A total of 
four beams were grouped into two sets – designated by 1T and 3T – according to the longitu-
dinal tensile reinforcement ratios, respectively 1.12% and 2.96%. These ratios were selected 
to mobilise two limit failure responses: one more ductile and corresponding to an under-
reinforced failure mode, and the other more brittle and corresponding to an over-reinforced 
failure mode (see Figure 2).  

	   	  
(a)	   (b)	  

Figure 1: (a) Loading and measurement apparatus; (b) structural scheme (dimensions in ‘mm’). 

	   	  
(a)	   (b)	  

Figure 2: Failure mode of specimens: (a) 1T; and (b) 3T. 

The steel reinforcement adopted for each beam is shown in the following table.  
 

Specimen	   As	  
(cm2)	  

Effective	  
depth	  
(cm)	  

A’s	  
(cm2)	  

Asw/s	  	  
(cm2/m)	  

near	  supports	   middle	  span	  

1T	   3.14	  	   23.4	   0.57	  	  
0.47	   

0.47	   1.34	  

3T	   8.04	   22.6	   0.57	  	  
0.47	   

0.47	   1.34	  

Table 1: Steel reinforcement for each tested beam. 
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All beams were produced using LWAC with an average density of 1870 kg/m3, compres-
sive and tensile strengths of 57 MPa and 4 MPa, respectively, and a Young’s modulus of 
25.5 GPa [27, 28]. The longitudinal and transverse reinforcement consisted of hot rolled and 
ribbed S500NR-SD class bars, with an average yield stress of 545 and an average tensile 
strength of 645 MPa [29]. Each beam was instrumented using traditional measurement devic-
es to monitor load and the vertical displacements at the three points shown in Figure 1(a). The 
crack openings were measured for one beam during the test [30-32]. 

Figure 3 shows the load vs. displacement curves for all tested specimens and a representa-
tion of all stages monitored. In this chart, the displacements were measured at the mid-span. 
As a general remark, four phases can be identified in the overall structural response of the 
beams. The first or initial phase corresponds to the uncracked stage and is characterised by the 
highest value in terms of flexural stiffness. This phase finishes at the onset of cracking and the 
second phase then progresses until the steel reinforcement starts to yield. After this, the third 
phase is characterised by a significant reduction of flexural stiffness, which ends at the point 
of maximum load. The fourth and last phase depends on the ductility of the specimen and is 
the post-peak softening response. This last stage can be quite insignificant in the case of the 
beams with the highest longitudinal reinforcement ratio.   

 

Figure 3: Load vs. mid-span displacement curves and monitored stages. 

4 NUMERICAL MODELLING AND VALIDATION 
The beams described in the previous section were simulated under plane stress conditions. 

The concrete was modelled using bilinear elements, whereas linear truss elements were used 
for steel reinforcements (see Figure 4). In what regards constitutive models, the reinforce-
ments were connected to the concrete elements using interface elements equipped with the 
Model Code 2010 bond model [33]. The concrete elements were assumed to be linear elastic 
and perfectly plastic under compression, whereas the discrete crack approach model described 
in Section 2 was used for the elements where the tensile strength of the material was reached. 
All embedded cracks followed a mode-I traction separation law with exponential softening 
and fracture energy equal to 0.10 N/mm.  

The numerical model is explored and validated in this section in its ability to simulate 
crack opening and patterns, and the overall behaviour, namely displacements and curvatures.  

 
Figure 4: Finite element mesh. 
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4.1 Displacements and curvatures 
The load vs. displacement curves obtained with all numerical models are shown in Fig-

ure 5. Comparison between numerical and experimental data shows that the numerical model 
can predict the overall behaviour for the first three phases. Regarding the post-peak branch, 
however, there is an inherent inability to predict any of the softening found in the beams with 
the highest reinforcement ratio. This limitation can be explained by the plastic constitutive 
model used for concrete crushing, which cannot simulate the real behaviour beyond that. As 
expected, the transverse steel reinforcement ratio has nearly no impact on both experimental 
and numerical results (see Table 1 and Figure 5) since no shear cracks developed. 

	   	  
(a)	   (b)	  

Figure 5: Load vs. vertical mid-span displacement for the: (a) lowest; and (b) highest transverse steel reinforce-
ment ratios. 

Table 2 summarises the main features and measures extracted for the models with highest 
transverse reinforcement ratio. Comparison between numerical and experimental results, 
shows the good agreement not only in overall displacements, but also in what regards crack-
ing and yielding loads, maximum load, as well as in the curvature at mid-span (see also Fig-
ure 6). 
 

	   Specimen	  1T	   Specimen	  3T	  
	   Exp.	   Num.	   Exp.	   Num.	  
Cracking	  load	  (kN)	   12.0	   13.7	   15.7	   15.3	  
Yielding	  load	  (kN)	   68.0	   66.1	   157.9	   155.3	  
Max.	  load	  Fmax	  (kN)	   73.4	   75.3	   166.6	   160.6	  

Mid-‐span	  
vertical	  
disp.	  (mm)	  

0.6	  Fmax	   8.4	   8.0	   12.2	   12.2	  

0.7	  Fmax	   10.2	   10.6	   14.0	   14.2	  

0.8	  Fmax	   11.8	   11.7	   16.9	   16.3	  

Curvature	  	  
(x10-‐3m-‐1)	  

0.6	  Fmax	   9.4	   8.4	   12.4	   14.4	  

0.7	  Fmax	   11.2	   13.4	   14.3	   16.2	  

0.8	  Fmax	   12.8	   14.6	   17.2	   19.0	  

Table 2: Summary of the most relevant measures retrieved from numerical and experimental data. 

4.2 Crack propagation  

This section focuses in particular the surface crack pattern and crack openings. In terms of 
overall pattern, Figure 7 shows a comparison between numerical and experimental data for 
the lowest longitudinal reinforcement ratio. This specimen was selected for illustration pur-
poses since it is the one showing the most visible cracks (in terms of its number and exten-
sion). To support this analysis, the region of interest is represented inside a dashed box in 
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Figure 7 (a), which can be directly compared with the monitored area shown in Figure 7 (b). 
Although real crack patterns can be quite random, the main features are well captured by the 
numerical model. For example, the model predicts well both spacing and number of active 
cracks. This is certainly related with the interaction between longitudinal reinforcement and 
cracks, as well as the relative slip between reinforcements and concrete. It should also be 
highlighted that the numerical model also predicts the horizontal cracks associated with con-
crete crushing (see Figure 7).  

 

 

Figure 6: Comparison between displacements and curvatures. 

 

	   	  
(a)	   (b)	  

Figure 7: (a) Failure mode and crack pattern for beam 1T: (a) numerical; and (b) experimental results. 

Figure 8 shows the sum of the opening of all the cracks located inside the monitored area 
at the level of the longitudinal reinforcement, for both types of beams and for the different 
stages identified in Figure 3. As a general remark, it can be mentioned that the crack openings 
are in good agreement with the experimental results, regardless of the amount of steel rein-
forcement and the failure mechanisms being quite different between models. As expected, the 
crack openings for the beam with higher longitudinal reinforcement ratio are significantly 
smaller (see also Figure 2). 

5 EXTRAPOLATIONS BASED ON THE NUMERICAL MODEL 

This section presents a study on the role of the longitudinal reinforcement ratio for LWAC 
beams. Models 1T and 3T are now re-analysed with models 0.5T, 2T and 5T, respectively 
having a reinforcement ratios of 0.58%, 2.06% and 4.63%. Models 0.5T and 5T are close to 
the minimum and maximum tensile reinforcement ratios allowed by the Eurocode 2 [34]. The 
objective is to assess the design code in what regards crack openings for LWAC under flexur-
al loads. Figure 9(a) shows the load vs. vertical displacements for all numerical models and 
the impact different longitudinal reinforcement ratios have on the overall response.    
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Figure 8: Comparison between experimental and numerical crack openings for both beams with the highest 
transverse reinforcement ratio. 

The characteristic crack width can be defined as the crack opening corresponding to the  
95% percentile value of the distribution. Since the numerical model has a discrete representa-
tion of cracks, a statistical model can be directly applied to quantify the characteristic opening 
at the level of the tensile reinforcements [35]. Figure 9(b) shows the characteristic opening 
obtained with the numerical models and the estimate from Eurocode 2 [34], the latter below 
the expected values for all the range of tested reinforcements. Although further studies are 
still needed, this could mean that the Eurocode 2 [3434] is not conservative for predicting 
characteristic crack openings in LWAC beams under flexural loads. 

 

	   	  
(a)	   (b)	  

Figure 9: (a) Load vs. vertical mid-span displacement for all models; (b) Comparison between characteristic 
crack widths for 0.6 Fmax. 

6 CONCLUSIONS  

This study validated a numerical model based on the embedment of strong discontinuities 
for the simulation of LWAC beams. The model relies on the assumption that the opening of 
the cracks occurs as if it were a rigid body motion, which simplifies the derived equations and 
implementation procedure. The model was shown to compare well with experimental data of 
LWAC beams. The numerical results are in good agreement, not only concerning displace-
ments and curvatures, but also regarding the cracking and yielding loads, and maximum load. 
In addition, the crack pattern obtained from the simulations captures the main features ob-
served in the laboratory, including the number and spacing of active cracks, as well as the 
overall opening of the cracks. This highlights the capability of the model to properly simulate 
the fracture and its interaction with the steel reinforcement, and the slip between reinforce-
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ments and concrete. It was also shown that for the tested range of reinforcements, Eurocode 2 
might underestimate the characteristic crack openings for LWAC beams under flexure. This 
conclusion, however, will need further studies.  
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Abstract. Carbonation and chloride ingress are considered to be the most severe mechanisms 
for steel corrosion in reinforced concrete structures. Here, the service life is traditionally di-
vided into two main phases; the initial and the propagation ones. The initial phase was ex-
plored recently and the results show high influence of cracks on accelerating of carbonation 
and chloride ingress in concrete structures. Our model focuses now on the propagation peri-
od and predicts xcorr for radial corrosion depth, including cracking and spalling of concrete 
cover. The presented models were implemented in ATENA software and demonstrate their 
application on a prestressed box-girder bridge. The simulation shows reinforcement corro-
sion due to carbonation and chloride ingress, and its impact on a bridge behavior during ULS 
analysis.
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1 INTRODUCTION 

Reinforcement corrosion due to carbonation and chloride ingress are the most damaging 
mechanisms in reinforced concrete structures. The service life tl of reinforced concrete struc-
tures is generally divided into two time phases; the initiation (induction) period ti and the 
propagation period tp. The initiation period for damaging mechanisms was described and vali-
dated in the previous paper [1] and preliminary results show strong influence of cracks to 
transport properties and acceleration of damaging mechanisms. For traditional cement-based 
materials, cracks 0.3 mm decrease induction time approximately 6 times for carbonation and 
approximately 9 times for chloride ingress of sea water. Preventing macrocracks and design-
ing proper concrete is essential for durable concrete [1]. 

Our model focuses on the propagation period tp where corrosion of reinforcing steel takes 
place. During this period, reinforcement decreases and accompanied with growing corrosion 
products. Corrosion of reinforcement is described according to the general diagram in Fig-
ure 1. A uniform corrosion (the most widespread form of corrosion) is characteristic for car-
bonation and a pitting corrosion (creation of small pits) for chlorides [2]. The cracking of 
concrete cover during propagation period tp,cr corresponds to the depth of corrosion xcorr,cr and 
spalling of concrete cover tp,sp corresponds to the depth of penetration xcorr,sp [3]. 

 

 
 

 

2 MODELS FOR PROPAGATION PHASE 

2.1 Carbonation during propagation phase 

The corrosion rate for the carbonation depends on the corrosion current density icorr 
[µA/cm2], which ranges between 0.1-10 (passive corrosion-high corrosion) and depends on 
the quality and the relative humidity of the concrete [5]. This model predicts amount of cor-
roded steel during the whole propagation period tp. The corrosion rate is based on Faraday’s 
law [4], determined as follows: 

 ( )corr corr ( ) 0.0116  x t i t=ɺ  (1) 
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Figure 1: Initiation and propagation phase [3] 
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where corrxɺ is the average corrosion rate in the radial direction [µm/year], icorr is corrosion cur-

rent density [µA/cm2] and t is calculated time after the end of induction period [years]. 
By integration of Eq. (1), it is obtained the corroded depth for 1D propagation: 

 ( )corr corr corr( ) 0.0116  d
ini

t

t

x t i t R t= ∫  (2) 

where xcorr is the total amount of corroded steel in radial direction [mm] and Rcorr is parameter, 
depends on the type of corrosion [-]. For uniform corrosion (carbonation) Rcorr = 1, for pitting 
corrosion (chlorides) Rcorr = <2; 4> according to [9] or Rcorr = <4; 5.5> according to [10]. 

Effective bar diameter for both types of corrosion is obtained from: 

 ( ) 2 ( ) ini corrd t d x tψ= −  (3) 

where d(t) is evolution of bar diameter in time t, d ini is initial bar diameter [mm], ψ is uncer-
tainty factor of the model [-], mean value ψ = 1 and xcorr is the total amount of corroded steel 
according to (2). 

2.2 Chloride ingress during propagation phase 

The corrosion rate for chlorides is more complicated because it is affected by concentration 
of chlorides in the concrete. Calculation of corrosion current density was formulated by Liu 
and Weyer’s model [6]: 

 ( ) 0.2153006
0.926 exp 7.98 0.7771ln 1.69 0.000116 2.24corr t Ci C R t

T
− = ⋅ + − − +  

 (4) 

where icorr is corrosion current density [µA/cm2], Ct is total chloride content [kg/m3 of con-
crete] on reinforcement which is determined from 1D nonstationary transport, T is tempera-
ture at the depth of reinforcement [K] and Rc is ohmic resistance of the cover concrete [Ω] [7] 
and t is time after initiation [years]: 

 ( )[ ]tC CR 69.11ln549.003.8exp +−=  (5) 

The average corrosion rate in radial direction is determined further when plugging (6),(7) 
to (1). The total amount of corroded steel in radial direction stems from (2) and the effective 
bar diameter from (3). 

2.3 Cracking of concrete cover 

Cracking of concrete cover for both carbonation and chlorides can be estimated from Du-
raCrete model which provides realistic results [3]. The critical penetration depth of corroded 
steel xcorr,cr is formulated as: 

 cht
ini

crcorr fa
d

C
aax ,321, ++=  (8) 

where parameter a1 is equal 7.44e-5 [m], parameter a2 is equal 7.30e-6 [m], a3 is 
[-1.74e-5 m/MPa], C is cover thickness of concrete [m], dini initial bar diameter [m], ft,ch is 
characteristic splitting tensile strength of concrete [MPa]. 
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2.4 Spalling of concrete cover 

The critical penetration depth of corroded steel xcorr,sp for both carbonation and chlorides is 
calculated from [3] as: 

 0
, , 

d

corr sp corr cr

w w
x x

b

−= +  (9) 

where parameter b depends on the position of the bar (for top reinforcement 8.6 µm/µm and 
bottom 10.4 µm/ µm), wd is critical crack width for spalling (characteristic value 1 mm), w0 is 
width of initial crack (known from previous ATENA computation) and xcorr,cr depth of cor-
roded steel at the time of cracking [m]. 

After spalling of concrete cover, corrosion of reinforcement takes place in direct contact 
with the environment. To determine the rate of corrosion of reinforcement after spalling, Ta-
ble 1 gives rates of reinforcement corrosion [8]. 

 
 
Corrosivity zone (ISO 9223) Typical environ-

ment 
Corrosion rate for first year 

(µm/y) 
Category Description Mild steel Zinc 
C1 Very low Dry indoors ≤1,3 ≤0,1 
C2 Low Arid/Urban inland >1,3 a ≤25 >0,1 a ≤0,7 
C3 Medium Coastal and indus-

trial 
>25 a ≤50 >0,7 a ≤2,1 

C4 High Calm sea-shore >50 a ≤80 >2,1 a ≤4,2 
C5 Very High Surf sea-shore >80 a ≤200 >4,2 a ≤8,4 
CX Extreme Ocean/Off-shore >200 a ≤700 >8,4 a ≤25 
 

Table 1: Corrosion rates of steel under atmospheric exposition 
 
 
 

3 ANALYSIS OF A PRESTRESSED CONCRETE BRIDGE 

The present model can be used for a wide range of structures from civil engineering. This 
is documented on an assessment of a prestressed box-girder concrete bridge of Mr. Pavel 
Wonka over the river Elbe in Pardubice, Czech Republic. It is beyond the scope of this paper 
to present detailed results from this analysis and hence, only the most important global results 
and results related to the presented durability analysis of the bridge are given. More details are 
available in [12], including material parameters, description of the bridge geometry and pre-
stressing tendons etc. 

The bridge was designed and erected between 1956 and 1959. The structure is depicted in 
Figure 2. The bridge consists of three arches, having spans 50 + 70 + 50 m. Average depth of 
cross sections is up to 3.5 m. 
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Figure 2: Dimensions of the bridge: drawing of cross section near the pillars, (top picture), mid-span cross sec-

tion, (middle picture), and side (longitudinal) view of the bridge, (bottom picture) [11] 
 

The structure was analyzed by program ATENA with implemented durability models [11]. 
The bridge is modeled by 4512 layered shell elements. The structure near supports and some 
other details are modeled by hexahedral and wedge solid elements. The pre-stressed tendons 
are realized by 3022 external cable truss elements, while the conventional reinforcement is 
introduced by embedded reinforcement within shell elements. A special material model for 
concrete and tendons has been employed with more details in [12]. 

The analysis of the bridge consists of three parts. The first analysis replicates in-situ load 
tests and measurements. The bridge was loaded by its self-weight and by tens of loaded trucks 
simulating a traffic load. It was used to calibrate the model of the bridge. 
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In the second part, numerical model was used to investigate service load state (SLS) and 
ultimate load state (ULS) of the bridge. Applied steps of the analysis and the associated loads 
were as follows: 

1. Self-weight of the load-bearing structure and pre-stressing, (steps 1...10) 
2. Weight of the top layers of the bridge, i.e. road etc., (steps 11...15) 
3. Extra 35% of the load in the item 2, (steps 16...20) 
4. 150% of the traffic load of the bridges according to ULS ČSN EN 1991-2, (steps 

21...27) 
5. Additional extra load according to the item 4. incremented up to failure of the 

bridge, (steps 28...78) 
Deformation of the bridge at the 10th step and crack development at one end of the bridge 

is depicted in Figure 3 and Figure 4. 

 
Figure 3: Deformation of the bridge at step 10, i.e. after self-weight and pre-stressing, (enlarged 500x) 

 

 
Figure 4: Crack development at the abutment of the bridge 

 
Deformation of the bridge near its failure is shown further in Figure 5. It occurred at about 

130% of the design load of the bridge, (i.e. steps 1...27 during loads 1-4). Load displacement 
diagram of the ULS analysis for centre of the central arch of the bridge is shown in 

Figure 6, including prestress transfer. 
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Figure 5: Deformation near failure of the bridge 
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Figure 6: Load-displacement diagram of the ULS analysis - center of the central arch. 
 

The third part of the analysis is devoted for durability study. According to direct concrete 
testing in 2003, concrete of the box-girder was classified as C35/45. An estimated composi-
tion yields CEM 42.5 350 kg/m3 and water content 175 kg/m3. 

Concrete box-girder was loaded on its surface by carbonation and chlorides as described 
below. This analysis restarted from the step 27, (i.e. from the level of design load) and car-
bonation and chlorides load was applied for another 150 years simultaneously. The chlorides 
and carbonation loads used the following parameters: 

• Carbonation: Cp = 350 kg/m3, SCM = 0, W = 175 kg/m3, CO2 = 0.00036, RH = 0.60. 
Progressive period a1 = 7.44e-5 m, a2 = 7.30e-6 m, a3 = -1.74e-5 m/MPa, ft,ch = 
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3.5 MPa, dini = 0.001 m, pitting corrosion Rcorr =1, corrosion rate after spalling 30 
µm/year. 

 
• Chlorides: Dref = 1.19e-7 m2/day (mean value would be Dref = 7.72e-13∙86400 = 

6.67e-08 m2/day), tDref = 3650 days, mcoeff = 0.37, tmcoeff = 10950 days, Cs = 0.103, 
Clcrit = 0.0185. Progressive period a1 = 7.44e-5 m, a2 = 7.30e-6 m, 
a3  = -1.74e-5 m/MPa, ft,ch = 3.5 MPa, wd = 0.001 m, pitting corrosion Rcorr = 3, cor-
rosion rate after spalling 30 µm/year. 
 

Chloride ingress assumed concentration of sea water on the surface; this resembles situation 
when salt brine water had leaked through insulation and the Cl concentration rose up substan-
tially. According to Duracrete [3], spray zone from de-icing salts identified a slightly lower 
concentration Cs = 0.0776. Also, 90% confidence was considered for diffusivity Dref, which is 
about twice higher than the mean value for this concrete strength class. 

Figure 7 brings plot of maximum vertical displacement of the bridge vs. age of the struc-
ture. Note that the significant increase of the deflection at later times is due to tendons corro-
sion only as creep is neglected in computation and the force load is kept constant. 
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Figure 7 Maximum deflection of the bridge due to tendons corrosion 
 

 
Figure 8 shows that carbonation depth is 58 mm for 150 years on uncracked concrete. In-

duction period for chlorides is much shorter, approximately 15 years with uncracked concrete 
cover 55 mm. 

As far as steel corrosion is concerned, Figure 9 depicts calculated reduction coefficient for 
a pre-stressing tendon with concrete cover 55 mm. Reduction coefficient 1 means no corro-
sion, while value 0 signalizes total loss. For the first 12 years, the reinforcement does not cor-
rode at all. Corrosion due to chlorides starts at 12 years. Corrosion due to carbonation begins 
after 110 years. At the age of 100 years about 60% of the reinforcement has corroded and at 
150 years there is only about 35% of the original reinforcement. As expected, the effect of 
chlorides is much more devastating than that of carbonation. This is also documented by Fig-
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ure 10, which shows total reinforcement reduction factor for the pre-stressing tendons at age 
of 150 years.  

Age, [year]

0 20 40 60 80 100 120 140

C
l C

on
ce

nt
ra

tio
n,

 [-
]

0.00

0.02

0.04

0.06

0.08

0.10

D
ep

th
, [

m
m

]

0

10

20

30

40

50

60

Cl Concentration
Carbonation Depth

 
 

Figure 8: Characteristic carbonation depth for uncracked concrete. Chloride concentration for uncracked con-
crete at 55 mm from exposed surface 
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Figure 9 Computed reduction coefficient for a tendon, concrete cover 55 mm with the influence of cracks 
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Figure 10: Total reduction coefficients for tendons at 150 years 

 

4 CONCLUSIONS  

The implemented durability model for reinforcement corrosion due to carbonation and 
chloride ingress focused on the propagation period where corrosion of reinforcement and 
spalling take place. 

• The presented models provide induction time and reduction of tendons during the propa-
gation period. The collapse of the bridge can be predicted when combined with ULS 
analysis. 

• Results for a prestressed box-girder bridge indicate that tendon corrosion would start at 
12 years if high external chloride concentration is assumed. At 100 years, about 60% of 
tendons’ cross section remains and at 150 years this drops to only 30%. 

• Durability analysis could be an integral part of bridge assessment, using slightly extend-
ed model. It allows prediction of negative effects of external environmental conditions on 
the structure and exploring deterioration. 
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Abstract. Nuclear materials are subjected to demanding environments, encountering high 

temperature gradients and fast neutron fluxes that gradually damage its structure and there-

fore change the material properties. Some components of a nuclear reactor determine its life-

time, such as the graphite core and steel pressure vessel for fission reactors. In case of fusion 

reactors the tungsten divertor is expected to be replaced several times during its lifespan. All 

these materials contain defects and spatial material variability that may contribute to the 

failure of the component. The Stochastic Finite Element Method or a Random Finite Element 

Method was chosen in this research to model the spatial material variability in nuclear 

graphite and other key components of nuclear reactors. This research describes how a direct 

Monte Carlo Simulation approach was adapted to simulate the calibration of a random field 

and the modelling of these defects for nuclear graphite. It is also suggested that this method-

ology can be applied to fusion reactor modelling. 
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1 INTRODUCTION 

The Stochastic Finite Element Method (SFEM) or Random Finite Element Method (RFEM) 

is an extension of the FEM that considers the uncertainty of a system that arises through var-

iations in initial conditions, forces, materials or geometry. These uncertainties can be taken 

into account by representing them through several mathematical tools i.e. random fields [1] or 

random media techniques [2]. The most common tool to represent a random variable with the 

SFEM is random fields, which can be described as a series of indexed random variables that 

describe a stochastic system [1]. A random field can potentially represent the stochastic nature 

of a system by including a) stochastic forces, b) spatial variability of material properties, or a 

c) randomly generated geometry (Figure 1). Several branches of the SFEM can be used to in-

clude, represent and solve a stochastic model; for a more in detail description of the SFEM the 

reader is referred to reference [3].  

Figure 1. Stochastic variables that can be represented with random fields a) Stochastic 

forces, b) Spatial material variability, c) Random geometries 

Random processes or uncertainties are present up to some degree in most systems. In nu-

clear reactors several stochastic variables arise from the defects of materials and the environ-

ment created by nuclear chain reactions. Figure 2 shows the types of chain reactions occurring 

in fission and fusion reactors.  

Figure 2. Types of chain reactions in fission and fusion reactors a) Fission reaction of ura-

nium-235 (adapted from [4]), b) Fusion reaction of deuterium and tritium (adapted from [5]) 
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The products of fusion and fission chain reactions are fast neutrons, the high energy of 

these particles produce a progressive damage to the components at the vicinity of these reac-

tions. Furthermore, nuclear reactions can produce a transmutation of an element and generate 

heat. In this study we propose a methodology to study the effect of these environmental varia-

bles combined with the spatial material variability. The first case study proposes a methodol-

ogy to predict the influence of spatial variability in nuclear graphite for British nuclear 

reactors. The second case study implements a random field generator of porosity to reproduce 

similar defects to the ones found in the tungsten components of a fusion reactor.  

2 SFEM FOR FISSION NUCLEAR REACTORS MATERIALS 

A Random Finite Element Method with a direct Monte Carlo Simulation scheme is pro-

posed to study the UK’s graphite moderated reactors called Advanced Gas-cooled Reactors 

(AGRs). The core of these reactors is formed by thousands of graphite bricks that serve as a 

moderator, a structural support and also provide a repository for fuel rods and other instru-

ments. A summary of the most important parts of an AGR and its core components is shown 

in Figure 3.  

Figure 3. Parts of an AGR a) Cross section of an AGR (adapted from [6]), b) Cross section 

of an AGR core (adapted from [7]), c) AGR core layout (adapted from [8]), d) AGR brick as-

sembly and fuel rod 
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The graphite bricks are subjected to several ageing processes that alter the material proper-

ties, produce dimensional changes induced by irradiation and temperature gradients and re-

duce the weight of the components. As a consequence the geometry of the graphite bricks 

could change. This, in turn, would cause a stress concentration, which may lead to cracking. 

The total strains (Δε
Total

) that a graphite brick suffers come from a combination of 4 factors 

that are: elastic strains (Δε
e
), creep strains (Δε

c
), dimensional strains (Δε

dc
) and thermal strains 

(Δε
th

). All these strains are represented in Equation 1. 

 

                                                Total e c dc th                                                    (1) 

 

Irradiation creep strains are another product of the neutron irradiation, it is considered to 

relieve high stresses caused by dimensional changes that are produced by irradiation and 

thermal strains. The deformation of the core and graphite components can potentially impede 

the normal cooling of the reactor and the loading and unloading of fuel rods. Furthermore, 

graphite components cannot be replaced in AGRs, this makes them a critical component of 

AGR lifetime. The complex interactions that damage the graphite core lead to uncertainties in 

graphite core lifetime predictions and inspections cannot fully determine the actual condition 

of the components. In order to provide a different approach, the SFEM was adapted to incor-

porate spatial variability of material properties to the modeling of the thermomechanical re-

sponse of graphite components.  

 

The hypothesis of this research is that spatial variability in the coefficient of thermal ex-

pansion and Young’s modulus can have a significant effect on the mechanical performance of 

nuclear graphite during its in-service lifetime. In order to test this hypothesis, the open source 

software ParaFEM [9] is being extended to interface with third party software libraries that 

can generate spatially variable 3D random fields for any material property.  

2.1 Methodology  

A deterministic and a stochastic approach were used to compare the influence of spatial 

material variability of material properties. For this comparison a profile of temperature change 

was applied to the deterministic and stochastic approach. Boundary conditions, temperature 

profiles are discussed in the next subsections. 

 

In case of the stochastic approach several realizations of random fields were created and 

then incorporated into a thermoelastic finite element code using a Monte Carlo scheme. At the 

last step the influence of spatial variability of the material properties on the response variables 

e.g. strains and stress distributions in nuclear graphite were estimated. To recreate the spatial 

material variability the local average subdivision method was used. This random field genera-

tor requires the mean values, standard deviation and correlation length as inputs. An in detail 

explanation of the local average subdivision method can be found in reference [10]. The reali-

sations produced with this random field generator were used as an input in the finite element 

software ParaFEM. For the deterministic approach only one simulation was created with an 

average of the material properties listed in Subsection 2.2. Both methodologies are summa-

rised in Figure 4.  
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Figure 4. Methodologies for the deterministic and stochastic approach 

2.2 Material properties 

The material properties chosen for these realisations were obtained from [11] (Table 1); the 

material properties correspond to the average values for isotropic graphite. The standard devi-

ation for the coefficient of thermal expansion was estimated by the authors. The correlation 

length was also defined by the authors due to the lack of calculations for this parameter. The 

correlation length is an important parameter required to describe the fluctuation of material 

properties in a random field. This value is a given length where the values of the random 

fields are correlated, beyond this distance the correlation between two data points tend to zero. 

Material properties for  

virgin isotropic graphite 
Mean values Standard deviation 

Mean coefficient of 

thermal expansion  

4.35 × 10
-6

(mm/mm°C) [11] 

4.35 × 10
-7

(mm/mm°C) 

Poisson’s ratio  0.2 [11] 

Dynamic Young’s  

Modulus  
10 GPa [11] 

Correlation length 

in all directions 
100 mm 

Table 1: Material properties for all the analysis. 

A relationship between Young’s modulus and Coefficient of Thermal Expansion (CTE) 

was used. This relationship is given by equation (2)    

E(random)=α(random)/constant (2) 
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where E is Young’s Modulus, α is the CTE and a constant. Therefore each Young’s modulus 

value for an element would be calculated from the CTE random field value using equation (2). 

2.3 Boundary conditions and field variables 

The boundary conditions used for this research were a modified version of the 3-2-1 rule. 

The objectives of these boundary conditions are to allow the free thermal expansion, to mini-

mize the stress concentrations around the fixed nodes and to remove any rigid body motions. 

Figure 5 shows the chosen boundary conditions selected for all the simulations.  

 

Figure 5. Boundary conditions used for this study 

A similar temperature change profile as the ones found in AGR brick was applied to pro-

duce thermal expansion. Figure 6 shows this temperature change profile applied to the simula-

tions.   

 

 

Figure 6. Temperature change profile for all the simulations 

2.4 Results and discussion 

The results of the deterministic and the stochastic approaches are compared in Figure 7. As 

can be seen on Figure 7 the deterministic approach produces stresses orders of magnitude less 

than by stochastic modelling. In the model where the stochastic spatial material variability 

was considered the stresses can reach a magnitude of 4.5 MPa. It is important to note that 

these stress concentrations would not lead to the cracking of graphite bricks. However, the 

combination of material spatial variability with thermal expansion, irradiation induced dimen-

sional change and creep strains can increase these stress concentrations that might lead to the 

cracking of a brick.  
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Figure 7. Von Misses stress comparison between the deterministic and stochastic approach 

2.5 Conclusions 

Spatial material variability is not usually considered for the modelling of nuclear graphite 

components. Variability of mechanical properties may be one of the factors that lead to the 

early cracking of nuclear components. The results show how material spatial variability in-

creases the magnitude of Von Mises stress. Furthermore, stress concentrations are found in 

regions where they are not expected.  

The current simulations only use only the estimations to recreate the input parameters for 

the correlation length. A new study focuses on calibrating the random fields from density and 

Young’s modulus measurements made in a billet (Figure 8). These measurements will serve 

to obtain the average, standard deviation and correlation length for future simulations.  

Figure 8. Density and dynamic Young’s modulus measured in a graphite billet 
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Further improvements to the simulation of graphite modelling are to include a multiscale 

model by combining cellular automata modelling and the Finite Element Method (FEM) [12]. 

The aforementioned cellular automata methodology requires information of the crystal orien-

tation of the material; this data has been obtained for nuclear graphite [13]. A random field 

generator can be modified to use these to implement the cellular automata methodology.  

3 SFEM FOR FUSION NUCLEAR REACTORS MATERIALS 

Materials in a fusion nuclear reactor need to endure extreme conditions. High thermal 

loads, high neutron fluxes and plasma erosion produce changes and damage in the materials 

that surround the reactions [14]. Two different designs lead the research to create future fu-

sion reactors: magnetic confinement and inertial confinement. The magnetic confinement ap-

proach is currently considered to be the most technologically developed concept of the two. 

Numerous relatively small tokomaks already exist, but it is known that due to scaling laws 

that energy output increases at a greater rate than the energy input as plasma volume increases. 

For this reason, a much larger tokomak is being built in Cadarache in France called ITER [15]. 

Figure 9 shows the design and interior cross section of a tokamak. The objective of this reac-

tor is to demonstrate the scientific feasibility of sustaining fusion reactions at electricity gen-

erating scales and producing an output ten times that of the energy required to initiate the 

process [16].  

 

 

Figure 9. Tokamak system, a) Schematic of a Tokamak design (adapted from [17]), b) To-

kamak interior and its cross-section (adapted from [18]) 

Vacuum plasma-sprayed tungsten (VPS-W) is a candidate for coating the walls of future 

fusion components [19]. The VPS-W is a complex material that contains a random porous 

structure; this porosity strongly influences the thermomechanical behavior of this material 

[20]. A previous study by Zivelonghi [21] combines synchrotron tomography and Image-

Based FEM to model the thermomechanical response of VPS-W. Image-Based FEM uses 

stacks of 2D slices of a material to recreate 3D models of the intricate structures. Image-

Based FEM have also been implemented to study other fusion materials such as carbon fiber 

composites [22]. However, Image-Based FEM is limited to the size, resolution and capacity 
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of the tomography equipment, thus large samples with highly detailed porous structure cannot 

be model through this technique. The information of small geometrical models can be used to 

calibrate a random field that mimics the porous structure found in VPS-W. These random 

fields can be incorporated to a SFEM model to calculate the response of larger components 

covered with VPS-W.  

 

The next subsections describe the random field generator capable of recreating porous 

structures and some preliminary results.  

3.1 Porosity random field generator 

A random field generator proposed by Paiboon et al. [23] is capable of producing random 

fields that represent porosity in materials. This random field generator allows the user to con-

trol the volume fraction of porosity and pore size by controlling the correlation length and 

percentage of porosity. Examples of some realisations are shown in Figure 10.  

 

Figure 10. Realisations of porous materials 

This random field generator is a modified version of the Local Average Subdivision meth-

od [10]. In this random field the intact material is assigned with a given material property val-

ue and the porous material property value are 100 times smaller than the value for intact 

material.  

 

Several types of software are available to create 3D models from computer tomography da-

ta. The geometrical information of the pore can be manipulated and used to obtain the average 

size of the pore structure. Once the mean size of the pores has been found, it can be used as an 

input file for the aforementioned random field generator. The final step would be to assign the 

random field material property values to model the thermomechanical properties of larger 

components.  

 

To test the influence of porosity in tungsten some preliminary results were obtained by cal-

culating the effective material properties of one realisation. 
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3.2 Material properties 

The material properties used for the intact material in the simulations are given in Table 2.  

 

 

Material properties for  

virgin isotropic graphite 
Values 

Poisson’s ratio  0.28  

Young’s Modulus  411 GPa  

Correlation length 

in all directions 
0.1 mm 

Target porosity for 

porous simulation 
0.8% 

Table 2: Material properties for intact tungsten material. 

3.3 Boundary conditions and field variables 

The finite element mesh is formed by a cubic block of materials of 1000 mm side with 

100×100×100 8 node cubic elements. The chosen boundary conditions are known as “tied 

freedom”, with these boundary conditions the cube is forced to be deformed in an ideal cube, 

Figure 27 shows the geometry and boundary conditions. From this deformation the calcula-

tion of the elastic properties can be easily calculated from the elastic theory. The boundary 

conditions are: the base of the cube can move in x and y direction, the back left can move in 

the y-z plane, the right face in only allowed to movie in the z-x plane. The freedoms of the top 

face are tied in the z direction, the front left face freedoms are restrained in the in the y direc-

tion, finally the x freedoms are tied in the right front face. A vertical force is applied at the top 

of the cube with a value of Q = L x L. 

 

 

Figure 11. Compression test of a porous material to determine the influence of porosity in 

graphite  
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In order to obtain the effective properties of graphite the values for the deformations in 

each direction δx, δy and δz are retrieved from each simulation and substituted in the following 

equations: 

 

z

Q
E

L
     

                                                               x
x

z





                                                                   (3) 

                                                                y

y

z





  

 

where E is the effective elastic Young’s modulus, Q is the loading force at the top of the cube 

and νx and νy are the effective Poisson’s ratios in x and y direction. 

3.4 Results and discussion  

The results of the effective material properties of the deterministic and the stochastic simu-

lations are summarised in Figure 12.  

 

 

Figure 12. Results a) A deterministic simulation with intact material, b) Intact material and 

porous structure of the simulation    

These tests show how porosity can affect the effective mechanical properties of VPS-W. 

The effective Young’s modulus and Poisson’s ratio remain fairly unaffected by this porous 

volume fraction. However, the extreme thermal loads and neutron dose would cause a more 

significant change on the mechanical behaviour of VPS-W. Other volume fractions will be 

used in future research to test different scenarios.  

3.5 Conclusions 

A random field to simulate the porous structure of VPS-W is presented in this study. A 

methodology to understand the effective Young’s modulus and Poisson’s ratio is proposed. 
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The software ParaFEM will be modified to analyse the thermomechanical response of differ-

ent volume fractions of porosity in VPS-W using this random field generator.  

4 GENERAL CONCLUSIONS  

 This paper has found that the SFEM has the potential of simulating spatial material vari-

ability for nuclear materials. The simulated material properties for graphite, for example, 

Young’s modulus and strength can be calibrated to experimentally measured values. This 

finding provides confidence for future work concerning the prediction of graphite behav-

iour over its lifetime in particular, the effect of microcracking of the bulk material. A cri-

terion for crack initiation has to be developed and further work is required to test the 

accuracy of this method 

 A random field for porous materials has been proposed to analyse the thermomechanical 

response of large components covered with VPS-W. The SFEM would enable to measure 

the thermomechanical response of whole parts of a fusion reactor. Moreover, preliminary 

results to obtain the effective material properties of VPS-W are provided.  
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Abstract. The macroscopic mechanical and physical properties of heterogeneous materials can
be efficiently determined using either analytical or numerical homogenization techniques where
the identification of a representative volume element (RVE) is required over which a fine-scale
boundary value problem is solved. In this work, an efficient computational scheme is proposed
for the determination of mesoscale random fields for the apparent properties and of the RVE
size of particle-reinforced composites based on computer-simulated images of their microstruc-
ture. A variable number of microstructure models are directly constructed by segmentation of
the composite material image into windows of certain size. The proposed numerical procedure
takes into account the particle volume fraction variation through digital image processing of
the microstructure models. The proposed approach couples the extended finite element method
(XFEM) with Monte Carlo simulation in order to analyze the microstructure models and obtain
statistical information (probability distribution, correlation structure) for the apparent proper-
ties of the composite in each window size. The XFEM analysis of the microstructure models
also leads to upper and lower bounds for their constitutive behavior by solving Dirichlet and
Neumann boundary value problems. The RVE is attained within a prescribed tolerance by
examining the convergence of these two bounds with respect to the mesoscale size and useful
conclusions are derived about the effect of matrix/inclusion stiffness ratio as well as of inclusion
volume fraction on the apparent properties and on the RVE size.
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1 INTRODUCTION

The key issue in homogenization methods is the linking of micromechanical characteristics
with the random variation of material properties at the macroscale [1, 2, 3, 4]. This link can be
established using the Hill-Mandel macro-homogeneity condition [5] among other asymptotic or
heterogeneous multiscale methods [6, 7]. In all these methods, the identification of a represen-
tative volume element (RVE) of the heterogeneous material is required over which a fine-scale
boundary value problem is solved. Then effective material properties can be calculated using
the link between the fine and coarse scale equations.

While the concept of unit cell is valid whenever periodicity of microstructure is present,
in the case of spatial randomness (e.g. random position, shape, size of inclusions), the iden-
tification of RVE must be based on computational convergence schemes with respect to spe-
cific apparent properties. The typical procedure consists in setting multiple realizations of
the microstructure followed by finite element simulation and statistical analysis of the results
[8, 9, 10, 11, 12, 13, 14]. In the context of stochastic finite element analysis of composite struc-
tures, the RVE size determines the minimum element size that should be used for discretization
at the macroscale [15, 16, 17].

Since the volume fraction is one of the primary microstructural features in homogenization
problems, the constant volume fraction assumption can lead to inexact effective properties. In
this work, a novel computational scheme is proposed for the determination of RVE size for
particle-reinforced composites based on computer-simulated images of their microstructure. A
variable number of microstructure models are directly constructed from the composite material
image using the moving window technique. In this way, the scatter of inclusions for each
sample model is not achieved in an arbitrary manner but is an exact geometrical representation
of the corresponding window segment of the composite. Moreover, the volume fraction of
inclusions is computed through digital image processing of the microstructure models. The
proposed numerical procedure takes into account the local volume fraction variation and thus
the obtained RVE can lead to more accurate homogenized properties.

This paper couples the extended finite element method (XFEM) with Monte Carlo simulation
(MCS) in order to analyze the microstructure models and obtain statistical information for the
constitutive properties of the samples in each window size. The number of MCS depends on
the moving window technique and is increasing for small window sizes. The implementation
of XFEM is particularly suitable for this type of problems since there is no need to generate
conforming finite element (FE) meshes at each MCS [18, 19, 20]. The weak discontinuity in
the solution due to material interfaces is captured using nodal enrichment functions within the
framework of the partition of unity method to augment the FE approximations over a structured
mesh [21]. The XFEM analysis of the microstructure models is then used to compute upper
and lower bounds for their constitutive behavior by solving multiple boundary value problems
under kinematic and static uniform boundary conditions [22]. The RVE is attained within a
prescribed tolerance by examining the convergence of these two bounds with respect to the
mesoscale size. Mesoscale random fields describing the spatial variation of the components of
the apparent elasticity tensor are also determined.
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Figure 1: Computer-simulated images of composite materials containing circular inclusions with a) vf=40% (image
1) and b) vf=20% (image 2).

2 COMPUTATION OF LOCAL VOLUME FRACTION VARIATION

The variability of local volume fraction (vf) in computer-simulated composites is studied in
this section exploiting image analysis techniques available in MATLAB software. Specifically,
images of two composites containing an initial amount (vf) of 40% and 20% of inclusions,
respectively, are processed (see Fig. 1). Both images have dimensionsLimage×Limage (Limage =
640µm) and an approximate analysis of 5800×5800 pixels. The represented composites contain
4096 and 2048 non-overlapping randomly scattered inclusions, respectively. Each inclusion
has circular shape with constant area 40 µm2 which is equivalent to a constant diameter d '
7.14 µm.

The computation of the local volume fraction variation is based on the moving window
technique. In this method, an initial window of area L × L is set at a starting point O of the
image and then, by moving this window over the image by a vector ~ξp = ξxp ~ex + ξyp ~ey a set of
windows of the same size can be extracted (see Fig. 2). In this paper, the moving distance step
∆ξ is assumed to be the same along both directions. This means that ξxp = i∆ξ and ξyp = j∆ξ,
with i, j the number of steps along the x and y directions, respectively. The total number of
windows nw belonging to each set depends on the image size Limage, the investigated window
size L and the selected moving distance step ∆ξ as follows:

nw =

(
Limage − L

∆ξ
+ 1

)2

(1)

By choosing ∆ξ = L with L an integer divisor of Limage the whole image is segmented into
nw = (Limage/L)2 non-overlapping windows (mesoscale models). Specifically 10 sets con-
taining nw=4, 16, 25, 64, 100, 256, 400, 1024, 1600, 4096 windows have been generated by
choosing ∆ξ = L= 320, 160, 128, 80, 64, 40, 32, 20, 16, 10 µm, respectively.

The vf of inclusions is computed in each window by using image analysis tools. The his-
tograms of the vf corresponding to each set of windows are shown in Fig. 3 for the two images
of Fig. 1. As the dispersion of the inclusions within the composite materials is not uniform, it
is obvious that there are regions rich or poor in inclusions. This is clearly illustrated in the his-
tograms where a very large variability of vf is observed for the sets containing windows of small
size. Thus in the context of homogenization methods, choosing a RVE size for composite ma-
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Figure 2: Illustration of the moving window technique.

Figure 3: Histograms of vf for various window sizes L for a) image 1, b) image 2.

terials with spatial randomness without considering local vf variability, can lead to unrealistic
estimations of their mechanical behavior [23].

3 COMPUTATIONAL PROCEDURE FOR RVE DETERMINATION

According to [24] the homogenization process is based on the fundamental assumption of
statistical homogeneity of the heterogeneous medium. This means that all statistical properties
of the state variables are the same at any material point and thus a RVE can be identified. While
in case of composites with periodic or nearly periodic geometry the RVE is explicitly defined, in
case of spatial randomness, the existence of RVE has to be sought using computational methods.
In this paper, identification of RVE is performed using a computational procedure based on
Hill’s definition [5] which postulates separation of scales in the form:

d� L� Lmacro (2)

In the above inequality, the microscale parameter d denotes a characteristic size of the fillers,
e.g. their diameter in case of circular inclusions, the mesoscale parameter L denotes the size of
the RVE and the macroscale parameter Lmacro denotes the characteristic length over which the
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macroscopic loading varies in space, or in the case of complete scale separation, the size of the
macroscopic homogeneous medium.

In the proposed computational procedure, the RVE will be defined with respect to the non-
dimensional parameter δ = L/d with δ ∈ [1,∞]. Note that in the absence of spatial periodicity
in composite materials the RVE is exactly obtained only in the limit δ → ∞. However, the
RVE can be attained at a finite mesoscale size δ when a particular apparent property derived
from statistical volume elements (SVEs) is almost approaching to a constant effective property.
At this mesoscale size, the estimation of the particular effective property is not changing with
increasing the number of realizations.

In this paper, the RVE is identified in terms of the convergence of the components of the
spatially averaged apparent elasticity tensor, which are calculated on mesoscale models of in-
creasing size by applying both kinematic and static uniform boundary conditions. In each inves-
tigated mesoscale size δ, variability of vf is taken into account in the computational procedure
by processing microstructure models directly extracted from images of the particular composite
material (section 2). The RVE obtained from this computational approach is expected to lead
to more realistic homogenization results. In the numerical examples of section 4, it will be
shown that the convergence rate of the mesoscale models to the RVE is mainly depending on
the matrix/inclusion stiffness ratio and volume fraction of the composite material.

3.1 Problem formulation

Let us denote a mesoscale realization of a composite material as Bδ (θ) and its boundary
surface as ∂Bδ (θ) , θ ∈ Θ where Θ is the sample space (see Fig. 4). The governing equilibrium
equation for the elastostatic problem of the medium is

divσ (θ,Y ) + b = 0 in Bδ (θ) (3)

where b are the body forces acting on the medium and Y denotes the coordinate system on the
mesoscale model Bδ (θ) with the stress and strain fields connected by Hooke’s elasticity tensor
C (θ,Y )

σ (θ,Y ) = C (θ,Y ) : ε (θ,Y ) (4)

These fields can be expressed as a superposition of means (σ̄ and ε̄) and of zero-mean fluctua-
tions (σ′ and ε′) as follows:

σ (θ,Y ) = σ̄ + σ′ (θ,Y ) , ε (θ,Y ) = ε̄+ ε′ (θ,Y ) (5)

The means of stress and strain tensors at some point X of the macro-continuum are computed
as volume averages over Bδ (θ) in the form [5]:

σ̄(X) =
1

Vδ

∫
Bδ(θ)

σ (θ,Y ) dVδ, ε̄(X) =
1

Vδ

∫
Bδ(θ)

ε (θ,Y ) dVδ (6)

Also the volume average of the strain energy can be calculated as:

Ū =
1

2Vδ

∫
Bδ(θ)

σ (θ,Y ) : ε (θ,Y ) dVδ =
1

2
σ : ε =

1

2
σ̄ : ε̄+

1

2
σ′ : ε′ (7)
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Figure 4: Discretization of a mesoscale model of a spatially random composite material.

Note that for an unbounded space domain (δ →∞) the fluctuation terms in (7) become negli-
gible

(
σ′ : ε′ = 0

)
and thus the following equation holds:

σ : ε = σ̄ : ε̄ (8)

which is known as Hill’s condition. However, at a finite mesoscale, Hill’s condition is valid
provided that the following constraint is satisfied [25]:∫

∂Bδ

(t− σ̄ · n) · (u− ε̄ · Y ) dS = 0 (9)

The constraint equation (9) is a priori satisfied by the following types of boundary conditions:

1. Uniform strains (kinematic, essential or Dirichlet):

u (Y ) = ε̄ · Y , ∀ Y ∈ ∂Bδ (10)

2. Uniform stresses (static, natural or Neumann):

t (Y ) = σ̄ · n , ∀ Y ∈ ∂Bδ (11)

3. Uniform orthogonal-mixed:

(t (Y )− σ̄ · n) · (u (Y )− ε̄ · Y ) , ∀ Y ∈ ∂Bδ (12)

4. Periodic:

u
(
Y +
)
− u

(
Y −
)

= ε̄ ·
(
Y + − Y −

)
and t

(
Y +
)

+ t
(
Y −
)

= 0 ,

∀ Y + ∈ ∂B+
δ and ∀ Y − ∈ ∂B−δ with ∂Bδ = ∂B+

δ ∪ ∂B
−
δ

(13)

2489



Dimitrios Savvas and George Stefanou

3.2 Computation of apparent properties on mesoscale

Miehe and Koch [22] proposed a computational procedure to define apparent properties (ho-
mogenized stresses and overall tangent moduli) of microstructures undergoing small strains.
They have shown that apparent properties can be defined in terms of discrete forces and stiff-
ness properties on the boundary of discretized microstructures. Using these deformation-driven
algorithms, the apparent stiffness or compliance tensor of a mesoscale model of size δ can be
calculated by solving a uniform strain or a uniform stress boundary value problem, respectively.
The extended finite element method (XFEM) is used to model the microstructural problems. In
the context of XFEM, weak discontinuities (material interfaces) can be captured by a discontin-
uous approximation of the displacement function uh (Y ) as follows [26]:

uh (Y ) =
∑
i∈I

Ni (Y )ui +
∑
j∈J

Nj (Y )

(
n0∑
k=1

ψk (Y )αjk

)
(14)

where N are the shape functions of the elements used, I is the set of all nodes in the mesh, J is
the set of nodes (denoted as red circles in Fig. 4) that are enriched with the enrichment functions
ψk, ui are the classical dofs, αjk are the enriched dofs corresponding to node j whose support
is cut by the kth inclusion. To improve the accuracy and convergence of XFEM solution the
following enrichment function is used [18]:

ψk (Y ) =
∑
i∈I

Ni (Y )
∣∣φki ∣∣−

∣∣∣∣∣∑
i∈I

Ni (Y )φki

∣∣∣∣∣ (15)

with φki the nodal values of the level set function corresponding to the kth circular inclusion.
The adopted computational procedure is outlined below for the two cases of uniform boundary
conditions. More details can be found in [27].

3.2.1 Uniform strains

A prescribed uniform strain tensor ε̄ = [ε̄11 ε̄22 2ε̄12]
T is applied on the boundary ∂Bδ

of a discretized mesoscale model, as that of Fig. 4 through displacement boundary conditions
(Dirichlet) in the form:

ub = DT
b ε̄ (16)

where Db is a geometric matrix which depends on the coordinates of the boundary node b and
is defined as:

Db =
1

2

2Y1 0
0 2Y2
Y2 Y1

 with (Y1, Y2) ∈ Y (17)

The static problem is denoted by: [
Kii Kib

Kbi Kbb

] [
Ui
Ub

]
=

[
Fi
Fb

]
(18)

where the subscripts i and b denote internal and boundary nodes, respectively. Then the apparent
stiffness tensor CD

δ (θ) of the mesoscale model of size δ under Dirichlet boundary conditions
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can be calculated in terms of the condensed stiffness matrix K̃bb = Kbb − KbiK
−1
ii Kib in the

form:

CD
δ (θ) =

1

Vδ
DK̃bbDT (19)

with D = [D1 D2 ... DM ], M the total number of boundary nodes.

3.2.2 Uniform stresses

A prescribed uniform stress tensor σ̄ = [σ̄11 σ̄22 2σ̄12]
T is applied on the boundary surface

∂Bδ of a discretized mesoscale model, as that of Fig. 4 through traction boundary conditions
(Neumann) as follows:

Fb = STb σ̄ (20)

where Sb is a matrix depending on the components of the discrete area vector ab which is given
in terms of the nodal coordinates of the neighboring boundary nodes b − 1, b and b + 1 in the
form:

ab =
1

2
[Yb+1 − Yb−1]× en (21)

These nodes are oriented so that the cross product with the Cartesian, out-of-plane, base vector
en yields ab as an outward normal vector at the boundary node b. Thus the matrix Sb is defined
as:

Sb =

ab1 0
0 ab2

ab2 ab1

 (22)

Then the apparent compliance tensor SNδ (θ) of the mesoscale model of size δ under Neumann
boundary conditions can be calculated in terms of the condensed stiffness matrix K̃bb in the
form:

SNδ (θ) =
1

Vδ
SK̃−1bb S

T (23)

where S = [S1 S2 ... SM ] with M the total number of boundary nodes. For this type of bound-
ary conditions the apparent stiffness tensor is obtained by inverting the compliance tensor of
Eq. (23):

CN
δ (θ) =

[
SNδ (θ)

]−1
(24)

Dirichlet and Neumann boundary conditions provide upper and lower bounds of the strain en-
ergy which converge to each other as the mesoscale size δ is increasing. Thus the following
relation holds [28]:

1

2

[
ε̄ : CN

δ (θ) : ε̄
]
<

1

2

[
ε̄ : CD

δ (θ) : ε̄
]

for δ finite

1

2

[
ε̄ : CN

∞ (θ) : ε̄
]

=
1

2

[
ε̄ : CD

∞ (θ) : ε̄
]

for δ →∞

 (25)
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In case of uniaxial strains ε̄ =
(

[1 0 0]T or [0 1 0]T
)

or simple shear ε̄ = [0 0 1]T the
following notation can be used:

CN
δ (θ) ≤ CD

δ (θ) (26)

4 RESULTS AND DISCUSSION

In this section, the spatial average (mean) of the apparent moduli is calculated at each size δ
from nw mesoscale models extracted by using the window technique on the composite images
of section 2. Thus the following formula for the mean is used:

Cδ (θ) =
1

nw

nw∑
p=1

Cδ

(
~ξp, θ

)
(27)

with ~ξp the position vector of the p-th mesoscale window model on the image (see Fig. 2). Fol-
lowing the notation of Eq. (26) the bounds CN

δ (θ) and CD
δ (θ) are calculated for the axial and

shear components of the apparent elasticity tensor. Note that, while the constituent materials of
the composite are considered isotropic, the computational method of section 3.2 results in an
anisotropic apparent elasticity tensor due to spatial randomness. Composites containing either
stiff or compliant inclusions are investigated which are obtained by keeping the Young’s mod-
ulus of the matrix constant at Em = 1 GPa and varying the Young’s modulus of the inclusions
Ein. The Poisson ratio is assumed to be the same for the two phases, νm = νin = 0.3. All
components of the apparent elasticity tensor computed in this section are in GPa.

4.1 Effect of volume fraction and stiffness ratio on RVE size

The convergence of CN
δ (θ) and CD

δ (θ) with respect to the non-dimensional parameter δ is
illustrated in Fig. 5 for the composite materials of images 1 and 2 (see Fig. 1). The results refer
to the average axial stiffness Cii/2 (i = 1, 2) and shear stiffness C33 ≡ G components of the
mean elasticity tensor. As mentioned before in section 2, image 1 corresponds to a composite
with initial vf=40%, whereas image 2 corresponds to a composite with initial vf=20%. Note
that both composites contain circular inclusions of constant size (d ' 7.14 µm). The effect of
volume fraction on the mechanical properties of the composite is also illustrated in Fig. 5. It can
be observed that the convergence rate of the two numerical bounds with respect to δ is slower
as vf increases. This means that, in order to perform homogenization in composites with high
volume fraction, a much larger RVE has to be used.

The results of a parametric study with respect to matrix/inclusion stiffness ratio are shown
in Figs. 6 and 7 for the composite of image 1. The cases of stiff (Ein/Em=10, 100, 1000) and
compliant (Ein/Em=0.1, 0.01, 0.001) inclusions have been tested. As the Young’s modulus of
the inclusions increases, the computed apparent properties of the composite increase as well.
The effect of stiffness ratio on the convergence rate of the apparent properties is also illustrated
in these figures. This effect is better illustrated in Fig. 8 where the discrepancy (tolerance)
eδ between the numerical bounds is plotted against the non-dimensional parameter δ for both
composites examined (images 1 and 2). The discrepancy is calculated as:

eδ =

∣∣∣∣∣CD
ij − CN

ij

CD
ij

∣∣∣∣∣
δ

(28)
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Figure 5: Comparison of numerical bounds of apparent properties for the composites of images 1 and 2 containing
stiff inclusions (Ein/Em = 10).

where CD
ij and CN

ij are the components of the spatially averaged apparent elasticity tensor ob-
tained by applying Dirichlet and Neumann boundary conditions, respectively.

4.2 Determination of mesoscale random fields

In this section, random fields for the volume fraction and the apparent elasticity tensor of
the composite of image 1 (see section 2) are obtained in mesoscale sizes δ from the simulation
of a large number of SVE models extracted using the moving window technique. In order to
obtain accurate statistical properties, the moving distance step of the method has been chosen as
∆ξ = 0.25L, with L the moving window size. Specifically, random fields for δ =5.605, 11.210
and 22.420 have been derived by simulating nw =3721, 841 and 169 SVEs, respectively (see
Eq. (1) in section 2 for nw). All the presented results refer to kinematic uniform boundary
conditions.

Figs. 9 and 10 depict the computed random fields along with the respective empirical distri-
butions and 2-D spatial correlations of the average axial and shear components of the apparent
elasticity tensor, for the three mesoscale sizes δ examined. Note that the spatial correlations ρBA
have been calculated for every lag (ξx, ξy) according to the following formula:

ρBA (ξx, ξy) =
1

nw − 1

√
nw∑
i=0

√
nw∑
j=0

(
A (xi, yj)− Ā

σA

)(
B (xi + ξx, yj + ξy)− B̄

σB

)

−
√
nw∆ξ ≤ ξx ≤

√
nw∆ξ , −

√
nw∆ξ ≤ ξy ≤

√
nw∆ξ

(29)

with ρBA denoting auto-correlations when quantity A ≡ B, otherwise cross-correlations are de-
fined. Ā, B̄ are the spatial average values while σA, σB are the standard deviations of quantities
A, B, respectively. The mesoscale random fields of the components of the apparent elasticity
tensor in Figs. 9 and 10 have been derived for stiffness ratio Ein/Em = 10. A general ob-
servation for all mesoscale random fields is that their empirical PDFs become narrower as the
mesoscale size δ increases. In other words, the random field tends to a random variable and thus
the SVE tends to the RVE as δ increases. The auto-correlations for lag (ξx = 0, ξy = 0) are 1
and tend to zero for lag values |ξx| > L and |ξy| > L.

The 1-D cross correlations ρ0.5(C11+C22)
νf and ρC33

νf are depicted in Figs. 11 and 12, respectively,
for lag values along x (ξx, ξy = 0) and y (ξx = 0, ξy) for stiffness ratioEin/Em =10 and 1000.
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Figure 6: Convergence of numerical bounds on the average axial stiffness (Cii/2) with respect to mesoscale
size δ for stiffness ratio a) Ein/Em = 10, b) Ein/Em = 100, c) Ein/Em = 1000, d) Ein/Em = 0.1, e)
Ein/Em = 0.01, f) Ein/Em = 0.001.

Figure 7: Convergence of numerical bounds on the shear stiffness (C33) with respect to mesoscale size δ for
stiffness ratio a) Ein/Em = 10, b) Ein/Em = 100, c) Ein/Em = 1000, d) Ein/Em = 0.1, e) Ein/Em = 0.01,
f) Ein/Em = 0.001.
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Figure 8: Discrepancy between upper and lower bounds with respect to mesoscale size δ for the composites of
image 1 (a-b) and image 2 (c-d) and various cases of stiffness ratio.

Figure 9: Mesoscale random fields for average axial stiffness (Ein/Em = 10).
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Figure 10: Mesoscale random fields for shear stiffness (Ein/Em = 10).

All cross-correlations are between -1 and +1 and tend to zero for |ξx| > L or |ξy| > L. This
can be attributed to the fact that the probability of SVE models sharing common inclusions
decreases as the length of the vector ~ξp (see Fig. 2) increases. A decrease on the values of
cross-correlations with the increase of stiffness ratio is also observed, as in [29], especially for
|ξx| ≤ L and |ξy| ≤ L for all sizes δ. This could be an explanation of the fact that the RVE size
can not be defined within a reasonable tolerance for the case of high stiffness ratio (see results of
section 4.1). More information about the statistical characteristics of mesoscale random fields
is provided in [27].

5 CONCLUSIONS

In this paper, a novel computational procedure based on XFEM and MCS has been proposed
for the determination of mesoscale random fields for the apparent properties and of the RVE
size of spatially random composites. The proposed approach takes into account the local vol-
ume fraction variation by processing computer-simulated images of composites with randomly
dispersed inclusions. A variable number of microstructure models were derived directly from
the images using the moving window technique. The XFEM analysis of the microstructure
models was used to compute upper and lower bounds on the apparent material properties by
solving multiple boundary value problems under kinematic and static uniform boundary con-
ditions. The RVE was attained within a prescribed tolerance by examining the convergence of
these two bounds with respect to the mesoscale size. The effect of matrix/inclusion stiffness
ratio as well as of the volume fraction of inclusions on the RVE size was highlighted. The
proposed computational procedure can provide with a more realistic RVE because it incorpo-
rates the local volume fraction variation present in real composites and can be extended to any
filler-reinforced composite as it is based on image analysis of computer-simulated microstruc-
tures. Finally, the obtained results can be used in the framework of homogenization methods
and stochastic finite element analysis of composite structures.

13
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Figure 11: Cross correlations at (ξx, ξy = 0) and (ξx = 0, ξy) for Ein/Em = 10 and Ein/Em = 1000.

Figure 12: Cross correlations at (ξx, ξy = 0) and (ξx = 0, ξy) for Ein/Em = 10 and Ein/Em = 1000.
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[3] D. Charmpis, G. Schuëller, and M. Pellissetti, “The need for linking micromechanics of
materials with stochastic finite elements: A challenge for materials science,” Computa-
tional Materials Science, vol. 41, no. 1, pp. 27–37, 2007.

[4] A. Clément, C. Soize, and J. Yvonnet, “Uncertainty quantification in computational
stochastic multiscale analysis of nonlinear elastic materials,” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 254, pp. 61–82, 2013.

[5] R. Hill, “Elastic properties of reinforced solids: some theoretical principles,” Journal of
the Mechanics and Physics of Solids, vol. 11, no. 5, pp. 357–372, 1963.

[6] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic struc-
tures, vol. 374. American Mathematical Soc., 2011.

[7] W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden, “Heterogeneous multiscale
methods: a review,” Commun. Comput. Phys, vol. 2, no. 3, pp. 367–450, 2007.

[8] T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, “Determination of the size
of the representative volume element for random composites: statistical and numerical
approach,” International Journal of solids and structures, vol. 40, no. 13, pp. 3647–3679,
2003.

[9] M. Ostoja-Starzewski, “Material spatial randomness: From statistical to representative
volume element,” Probabilistic engineering mechanics, vol. 21, no. 2, pp. 112–132, 2006.

[10] X. F. Xu and X. Chen, “Stochastic homogenization of random elastic multi-phase com-
posites and size quantification of representative volume element,” Mechanics of Materials,
vol. 41, no. 2, pp. 174–186, 2009.

[11] M. Silani, H. Talebi, S. Ziaei-Rad, P. Kerfriden, S. P. Bordas, and T. Rabczuk, “Stochastic
modelling of clay/epoxy nanocomposites,” Composite Structures, vol. 118, pp. 241–249,
2014.

2498



Dimitrios Savvas and George Stefanou

[12] J. Ma, J. Zhang, L. Li, P. Wriggers, and S. Sahraee, “Random homogenization analysis
for heterogeneous materials with full randomness and correlation in microstructure based
on finite element method and monte-carlo method,” Computational Mechanics, vol. 54,
no. 6, pp. 1395–1414, 2014.

[13] J. Zeman and M. Sejnoha, “From random microstructures to representative volume ele-
ments,” Modelling and Simulation in Materials Science and Engineering, vol. 15, no. 4,
pp. 325–335, 2007.

[14] J. Wimmer, B. Stier, J.-W. Simon, and S. Reese, “Computational homogenisation from a
3d finite element model of asphalt concrete–linear elastic computations,” Finite Elements
in Analysis and Design, vol. 110, pp. 43–57, 2016.

[15] M. Ostoja-Starzewski and X. Wang, “Stochastic finite elements as a bridge between ran-
dom material microstructure and global response,” Computer Methods in Applied Me-
chanics and Engineering, vol. 168, no. 1, pp. 35–49, 1999.

[16] V. Lucas, J.-C. Golinval, S. Paquay, V.-D. Nguyen, L. Noels, and L. Wu, “A stochastic
computational multiscale approach; application to mems resonators,” Computer Methods
in Applied Mechanics and Engineering, vol. 294, pp. 141–167, 2015.

[17] G. Stefanou, D. Savvas, and M. Papadrakakis, “Stochastic finite element analysis of
composite structures based on material microstructure,” Composite Structures, vol. 132,
pp. 384–392, 2015.
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Abstract. Autogenous shrinkage is the volume deformation of a closed, isothermal, 

cementitious material system not subjected to external forces. How to accurately predict the 

autogenous shrinkage in hardening cement-based materials is an important issue in concrete 

technology because autogenous shrinkage increases cracking risk and reduces the durability 

and service life of reinforced concrete structures. Many models simulated the autogenous 

shrinkage of cement-based materials based on some mechanisms such as capillary pressure 

and disjoining pressure. These models are normally empirical and cannot reveal the 

deformation behavior of cement-based materials under the internal load of the driving force 

of autogenous shrinkage in microscale. As a consequence, the reliability of these models are 

questionable. 

This paper proposes a numerical model to simulate the autogenous shrinkage of hardening 

cement paste. A cement hydration and microstructure model HYMOSTRUC3D is used to 

simulate the microstructure of cement paste. A pore morphology based method is applied to 

describe the water and empty capillary pores distribution in the microstructure. Capillary 

pressure in the microstructure of cement paste is calculated from relative humidity measured 

by experiment based on Kelvin equation. A discrete algorithm is proposed to divide the 

hydration time into several static times. At each static time, a lattice finite element fracture 

method is used to simulate the deformation of simulated microstructure of cement paste under 

capillary pressure imposing. The autogenous shrinkage of hardening cement paste is equal to 

the sum of deformation of cement paste at each static time. The autogenous shrinkage of 

Portland cement paste with water to cement ratio of 0.3 is predicted. The simulation results 

are in a good agreement with experiments.  
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1 INTRODUCTION 

Autogenous shrinkage of cement-based materials (cement pastes, mortars and concretes, 

etc.) is defined as “the bulk deformation of a closed, isothermal, cementitious material system 

not subjected to external forces” [1]. Internal factors including the chemical shrinkage due to 

the cement hydration, the change of internal relative humidity caused by the consumption of 

water, and the pore structure of concrete are believed to result in autogenous shrinkage [2]. 

Autogenous shrinkage is harmful for concrete structures because it increases cracking risk 

and potentially reduces service life of concrete structures. Due to widespread usage of 

superplasticizers and high amount of supplementary cementitious materials (e.g. silica fume), 

modern concretes are characterized of low water to binder ratio (W/B) and fine pore structure, 

which significantly increases autogenous shrinkage [1-3].  

Self-desiccation is considered as the main reason for autogenous shrinkage [1,2]. The 

products of cement hydration occupies less volume than the reactants during cement 

hydration. The volume difference between products and reactants is defined as chemical 

shrinkage [2]. Under sealed-conditions, chemical shrinkage causes “empty spaces” in the pore 

structure of cement-based materials, because the eternal water is not available to fill the 

volume difference due to cement hydration [3]. These “empty spaces” is then filled with 

vapour evaporated from water. After that, surface tension forms in the interface of gas phase 

(vapour) and liquid phase (water). Due to the effect of surface tension, meniscus forms [2,3]. 

Relative humidity (RH) in the vapour decreases at the same time due to meniscus formation. 

Thus this process is called self-desiccation. It is believed that self-desiccation rises internal 

tensile stresses in pore solution, which is considered as the driving force of autogenous 

shrinkage [2,3]. 

Intensive studies have investigated how does self-desiccation rise internal tensile stresses. 

Three fundamental mechanisms were proposed: surface tension mechanism, capillary 

pressure mechanism, and disjoining pressure mechanism [4-9]. Based on these mechanisms, 

some numerical models [4,7,8] were established to predict autogenous shrinkage. For 

example, Lura et al. [4] modelled the deformation of cement paste by a semi-macroscopic 

equation: 

 









S
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KK
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  (1) 

where S is saturation fraction (-), σcap is the capillary pressure in the pore fluid (MPa), K is 

bulk modulus of the whole porous body (MPa) and KS is bulk modulus of the solid material 

(MPa).  

Hua et al. also proposed the models for predicting autogenous shrinkage at macroscopic 

scale [7] and the scale of hydrating grains [8]. Capillary pressure was considered as the 

driving force of autogenous shrinkage in both scales. At macroscopic scale, an empirical 

equation was adopted to calculate deformation [7], while at the scale of hydrating grains an 

finite element approach was applied to simulate the shrinkage of a hydrating grain [8].  

Although these models can predict the macroscopic linear or volume deformation of 

cement-based materials, however, they cannot illustrate neither the impose process of internal 

tensile stresses on the solid skeleton of cement paste nor the corresponding deformation of 

solid skeleton in microscale. Solid skeleton is defined as the solid phase of cement paste that 

provides the mechanical strength of cement paste. 

This paper aims to propose a numerical model to simulate the autogenous shrinkage of 

cement paste in microscale. In this model, both the impose process of internal tensile stress 

and the deformation of solid skeleton in microscale are simulated. Internal capillary pressure 
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is considered as the driving force of autogenous shrinkage. The numerical cement hydration 

and microstructure model , HYMOSTRUC3D [10-12] is used to simulate the microstructure 

of cement paste. The pore morphology-based method [13] is employed to distribute the water 

and empty capillary pore in the pore space. A discrete algorithm is proposed to divided the 

hydration time into several static times. At each static time, the lattice finite element fracture 

method [14] is adapted to predict the deformation of solid skeleton of cement paste under the 

load of internal capillary pressure. The autogenous shrinkage of hardening cement paste is 

equal to the sum of the deformation of cement paste at each static time.  

 

2 MODELLING APPROACH 

Internal capillary pressure is considered as the driving force of autogenous shrinkage in 

this simulation. The outline of the simulation process is shown in Figure 1. The simulation 

process can be divided into three stages. In stage 1, HYMOSTRUC3D [10-12] is used to 

obtain the degree of hydration and the microstructure of cement paste. In stage 2, the water 

and empty capillary pores distribution in the simulated pore structure of cement paste is 

modelled. In stage 3, the lattice finite element fracture method is applied to simulate the 

deformation of skeleton phase of cement paste under the impose of capillary pressure 

calculated from measured RH. 

 

  

Figure 1 Simulation process of autogenous shrinkage of cement paste 

 

2.1 Hydration and microstructure of Portland cement 

HYMOSTRUC3D is a numerical model that can simulate the hydration and microstructure 

of Portland cement paste [10-12]. The numerical microstructure outputted by 

HYMOSTRUC3D contains several phases of Portland cement paste, including capillary pores, 

unhydrated cement, inner C-S-H, outer C-S-H, and calcium hydroxide (CH). For example, 

Figure 2 shows the simulated microstructure of Portland cement paste with a water to cement 

ratio (W/C) of 0.3 at the age of 7 days. The main input parameters of HYMOSTRUC3D 

include mineral composition of cement, particle size distribution of cement, W/C, and model 

parameters like penetration rate (K0) and transition thickness (δtr) of cement. More 

information about the input parameters and model parameters of HYMOSTRUC3D can be 

referred to [10-12].  
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In this simulation, the mineral composition of Portland cement is: C3S (62.0%), C2S 

(10.5%), C3A (7.3%), C4AF (10.2%) [12]. The particle size distribution of Portland cement is 

shown in Figure 3 [12]. The W/C of cement paste is 0.3. As indicated in Table 1, the model 

parameters K0 and δtr are calculated from the mineral composition of Portland cement based 

on the method described by Tuan [15].  

Table 1 Two model parameters K0 and δtr of different cement minerals [15] 

Phase K0 (μm/hour) δtr (μm) 

C3S 0.0635+0.0195×(1-%C3S) 2.1199+1.4707×(1-%C3S) 

C2S 0.0033+0.0020×(1-%C2S) 2.0730+1.1528×(1-%C2S) 

C3A 1.2118-1.1714×(1-%C3A) 2.3280+1.2758×(1-%C3A) 

C4AF 0.02 1.19 

 

 

Figure 2 Simulated microstructure of Portland cement paste by extended HYMOSTRUC3D (100×100×100 

μm
3
, W/C=0.3, 1 day) 

 

 

Figure 3 Particle size distribution of Portland cement 

2.2 Water and empty capillary pores distribution 

Because the products of cement hydration occupies less volume than the reactants of 

cement hydration (cement and water) some space that is not filled with water in the pore 

structure will be formed. The water free pace is defined as empty capillary pores. In this study 

we assume the pore space of cement paste contains two phases: water and empty capillary 

pores. The capillary pressure only exists in the liquid phase after the distribution of water and 

empty capillary pores is obtained. Therefore, the simulation of water and empty capillary 

pores is an necessary step for the simulation of the impose process of capillary pressure on the 

solid skeleton. 

Water and empty capillary pores distribution can be simulated by pore-morphology based 

method established by Hilpert and Miller [13]. This method is commonly used to determine 
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the capillary pressure-saturation curves for different porous media [13,16]. In this study the 

input parameters of pore-morphology based method are the volume of empty capillary pores 

and the pore structure of cement paste. The volume of empty capillary pores equals to: 

 pastecement shrinkage Chemicalporescapillary Empty  V/VV   (2) 

where VEmpty capillary pores is the volume of empty capillary pore (ml/ml). VChemical shrinkage is the 

volume of chemical shrinkage (ml/g). It can be simulated by HYMOSTRUC3D. Vcement paste is 

the volume of cement paste (ml/g).  
The pore structure of cement paste is obtained by HYMOTRUC3D. 

 

 
Figure 4 Schematic diagram of modelling self-desiccation process in cement paste based on pore-

morphology based method (In 2D). Grey is solid, blue is water, and white is empty capillary pore. Note: 

Sphere is used to replace disk in the algorithm for 3D. The size of voxel in the 3D simulation is 1 μm. 

(1) Figure out the distance map of pore space.   

(2) All the voxels that belong to disk (R=5 μm) are labelled as empty capillary pore. 

(3) In the next step, all the voxels that belong to disk (R=3.2 μm) are labelled as empty capillary pore. 

After this step, the radii of disk changes to 3 μm. The “drying” process continues until the volume of empty 

voxels is equal to that of the empty capillary pores. 

 

The schematic diagram for simulating the distribution water and empty capillary pores is 

shown in Figure 4. The algorithm contains the following steps: 

(1) The simulated microstructure is digitalized into small voxels with identical size. These 

voxels represent solid and pore space (Figure 4). 

(2) Then the distance map of pore space is figured out. In the distance map, each voxel in 

pore space has a distance value. This distance value is defined as the shortest distance 

between the centre of this pore voxel to the solid phase [17]. Figure 4a shows the schematic 

diagram of a distance map. Besides, all the pore voxels are labelled as water in this step 

(Figure 4a).  

(3) A test disk (in 2D) or sphere (in 3D) is defined to determine which pore voxels should 

be empty. The radii of test disk or sphere is initially equal to the largest distance value in the 

distance map. For each pore voxel with largest distance value, a test disk or sphere is set up, 

and the centre of test disk or sphere is fixed at the centre of this pore voxel. After that, all the 

pore voxels in the range of test disks or spheres are labelled as empty capillary pores. For the 

example in Figure 4b, because only two pore voxels with largest pore distance exist, two test 

disks with radii of 5 μm are given. The centres of the test disks are fixed at the centres of the 

pore voxels with the distance value of 5 μm, respectively. Then, all the pore voxels in the 

range of test disks are labelled as empty capillary pores.  
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(4) In the next step, the radii of test disk or sphere changes to be second largest distance 

value. Similarly, for each pore voxels with this distance value, a test disk or sphere is set up, 

and the centre of test disk or sphere is fixed at the centre of this pore voxel. Then, all the pore 

voxels in the range of test disks or spheres are labelled as empty capillary pores. For the 

example shown in Figure 4c, there are two test disks with the radii of 4.2 μm, because the 

number of the voxels with the radii of 4.2 μm is two. The centres of the test disks are fixed at 

the centres of the pore voxels with the distance value of 4.2 μm, respectively. All voxels in 

the range of test disks are labelled as empty capillary pores.  

The iteration process described in (3) and (4) continues until the volume of total empty 

voxels are equal to that of empty capillary pores.  
 

2.3 Autogenous shrinkage of cement paste 

In stage 3 of Figure 1, a discrete algorithm is proposed to divide the hydration time into 

several static times. At each static time, a lattice finite element fracture analysis method is 

applied to simulate the impose process of capillary pressure on the solid skeleton of cement 

paste. The deformation of cement paste in microscale is then obtained. The autogenous 

shrinkage of hardening cement paste is equal to the sum of the deformation of cement paste at 

each static time. The model process are described as follow.  

 

(1) Lattice finite element fracture analysis method 

Lattice model has been used to simulate the fracture process of cement-based materials for 

decades [14]. Based on lattice model, Qian et al. [14] proposed a 3D lattice finite element 

fracture analysis to simulate the fracture process of cement paste. A GLAK (Generalized 

Lattice Analysis Kernel) package was developed to simulate the deformation of lattice mesh 

and the fracture process [14]. The main input files of GLAK package include lattice mesh and 

impose load. In this simulation the GLAK package is applied to simulate the impose of 

internal capillary pressure on the solid skeleton of cement paste and the corresponding 

deformation. The lattice mesh for GLAK package is generated from the microstructure of 

cement paste simulated by HYMOSTRUC3D. The internal capillary pressure, which is 

calculated from RH based on Kelvin equation, is considered as the impose load.  

 

(2) Lattice mesh construction 

The lattice mesh for GLAK package contains two fundamental parameters: lattice nodes 

and lattice beams [14]. Based on the method described in [14], this paper generates lattice 

mesh from the microstructure of cement paste simulated by HYMOSTRUC3D. The simulated 

microstructure of cement paste (Figure 5a and b) are classed as three phases (Figure 5c): solid 

phase (cement, inner product and outer product and CH indicated as grey), liquid phase (water 

indicated as blue), and vapor phase (empty capillary pore indicated as white). The lattice 

nodes are then randomly generated in each solid voxel. After that, beams are generated by 

connecting neighbor nodes (Figure 5d). The resolution of lattice mesh is 2 μm. 

Table 2: Mechanical properties of different phases in microstructure (modified from [14]) 

Node type Young’s modulus (GPa) Shear modulus (GPa) 

Cement 135 52 

Inner product 30 12 

Outer product 22 8.9 

CH 30 12 
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The mechanical properties of beams are obtained according to the method described by 

Qian et al. [14]. Since each beam in the lattice mesh connects two nodes, the mechanical 

properties of each beam is assumed to be the average of that of two nodes.  

 

 
Figure 5 Schematic diagram of the construction of lattice mesh 

 

(3) Impose of capillary pressure 

During self-desiccation process, meniscus forms on the interfaces of water and vapour 

along with the formation of empty capillary pores. Due to meniscus formation, capillary 

pressure arises in the liquid and becomes an negative force that imposes on the solid skeleton.  

In this simulation, the capillary pressure is assumed to be the same in any place of liquid. 

The capillary pressure can be calculated from RH [4]: 

 
m

m

V

RTlnRH

r

2γ
Δp


  (3) 

where Δp is capillary pressure, γ is surface tension, r is radii of pore, RHm is modified RH 

based on the method described in [4]. RH can be experimentally tested [4]. R is the universal 

gas constant, T is temperature, Vm is the molar volume of the water. 

The modified RH can be calculated by [4]: 

 
s

m
RH

RH
RH   (4) 

Because the salt concentration in the pore solution of cement paste normally changes with 

cement hydration, RHS should be a function of hydration time. In this simulation, RHS is 

simplified as a constant (98.2%) based on the report [4].  

The capillary force imposed on the node is calculated by: 

 SΔpFcapillary   (5) 

where S is the area of the node. It depends on the resolution of lattice mesh.  

The direction of capillary force on each node is figured out according to the rule: only the 

nodes that contact with liquid phase are imposed capillary force. For instance, the direction of 

capillary force on each node in Figure 5d is indicated in Figure 6. 
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Figure 6 Impose of capillary pressure on lattice  

 

(4) Discrete algorithm for calculating autogenous shrinkage of hardening cement paste 

The above steps can calculate the deformation of cement paste at a static time. However, 

because both the microstructure of hardening cement paste and the capillary pressure in the 

pore solution change with the hydration time, the autogenous shrinkage of hardening cement 

paste is not static. We propose a discrete algorithm to calculate dynamic process of the 

autogenous shrinkage of hardening cement paste.  

The schematic diagram of discrete algorithm for calculating autogenous shrinkage of 

hardening cement paste is shown in Figure 7. We assume at time i, the imposed force is Fi and 

the length of specimen is Li after imposing. In the next time, new hydration products are 

generated in the microstructure, and the volume of solid phase increases due to cement 

hydration. Thus, the lattice mesh of microstructure at this time contains more nodes and 

beams than that at the last time. The increased nodes and beams are defined as new nodes and 

new beams (Figure 7b). The imposed force becomes to Fi+1. The extra force is defined as 

ΔFi+1, being equal to Fi+1-Fi. After loading this extra force, an extra strain (Δεi+1) is formed. 

Then, the length of specimen (Li+1) at time i+1 after loading extra force is equal to: 

 i1i1i L)Δε(1L    (6) 

 

 
(a) After loading Fi at time i. (b) Before loading ΔFi+1 at time i+1. (c) After loading ΔFi+1 at time i+1 

Figure 7 Schematic diagram of discrete algorithm for calculating autogenous shrinkage of hardening 

cement paste 

 

The autogenous shrinkage of cement paste at time n is calculated by: 

 011-nnn )LΔε-(1)Δε(1)Δε(1L   (7) 

where L0 is the length of specimen at time zero. 

The volume shrinkage of specimen is calculated by: 

 
3

0nShrinkage )/LL(11V   (8) 

2508



Numerical simulation of the autogenous shrinkage of hardening cement paste 

In the discrete algorithm, the hydration time (from time zero to final testing time) is divided 

into several static times. The interval between two static times is not identical. Since cement 

commonly hydrates more quickly at early age than at later age, the interval is short at early 

age, and becomes long with increasing age. In this simulation, the period from time zero (5 

hours after mixing) up to 7 days is divided into 37 static times (Figure 8). 

 
Figure 8 Time steps in the discrete algorithm 

 

3 SIMULATION RESULTS AND DISCUSSION 

3.1 Hydration and microstructure 

The simulated degree of hydration of Portland cement paste with W/C of 0.3 is shown in 

Figure 9. The value is in a good agreement with experiment obtained by non-evaporable water 

method [12].  

 
Figure 9 Simulated and experimental measured degree of hydration of cement paste 

 

The simulated microstructures of Portland cement paste are show in Figure 10. The solid 

skeletons of cement paste are obtained.  
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Figure 10 Simulated microstructures of cement pastes up to 7 days  (100×100×100 μm
3
) 

 

3.2 Water and empty capillary pores distribution 

The simulated water and empty capillary pores distribution is shown in Figure 11. It is 

clear that the empty capillary pores are firstly formed in “big” pore space.  

 

 

Figure 11 Simulated water and empty capillary pores distribution of cement pastes up to 7 days  

(100×100×100 μm
3
) 

 

3.3 Autogenous shrinkage of hardening cement paste 

The RH used in the simulation is obtained by the experimental study from Lu and van 

Breugel [18]. The results are shown in Figure 12a. After modification by using Eq. 4, RH is 

increased (red line in Figure 12a). The capillary pressure is calculated based on Kelvin 

equation (Eq.3) and shown in Figure 12b.  
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(a) RH                            (b) Capillary pressure 

Figure 12 Relative humidity (measured and modified by Eq. 4) and capillary pressure used in the 

simulation 
 

The deformation of solid skeleton due to capillary pore is indicated in Figure 13. It 

illustrates that the solid skeleton shrinks due to the effect of capillary pressure (Figure 13b). 

The simulation results indicate that the surface of solid skeleton after shrinking is not smooth. 

This is because the beams have different mechanical properties. The mechanical properties of 

blue beams are higher than that of red beams, because blue beams consist of inner product and 

unhydrated cement, while red beams consist of outer product. In consequence, the 

deformation is not homogenous.  

 

             
(a) Before imposing capillary pressure      (b) After imposing capillary pressure 

Figure 13 Simulated deformation of solid skeleton due to capillary pressure effect. (100×100×100 μm
3
, 

1 day) Note: the deformation is magnified for the purpose of visualization. Red beams are imposed load, 

and blue beam are not imposed load.  

 

The simulated volume deformation of cement paste is compared with experimental data 

measured by Lu and van Breugel [18]. Lu and van Breugel used corrugated tube method to 

determine the autogenous shrinkage of Portland cement with a W/C of 0.3. Final setting time 

was adopted as time zero. The results of autogenous shrinkage of cement paste are shown in 

Figure 14. It is observed that the simulation result fits the experiment curve well.  

 

 
Figure 14 Autogenous shrinkage of cement paste 
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4 CONCLUSIONS 

This paper proposes a numerical model to predict the autogenous shrinkage of hardening 

Portland cement paste. Capillary pressure is considered as the driving force for autogenous 

shrinkage. A discrete algorithm is proposed to calculate the autogenous shrinkage of 

hardening cement paste. In the discrete algorithm, the hydration time from 5 hours to 7 days is 

divided into 37 static times. For each static time, the lattice finite element fracture analysis 

method is employed to simulate the impose of increased capillary pressure on solid skeleton 

of cement paste. The dynamic autogenous shrinkage is equal to the sum of the deformation of 

cement paste at each step. The simulated autogenous shrinkage of hardening Portland cement 

paste (W/C=0.3) is in a good agreement with that measured from experiment.  
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Abstract. Isogeometric analysis (IGA) is a relatively new class of computational
methods primarily aimed at integrating finite element analysis with Computer Aided
Design (CAD). IGA adopts Non - Uniform Rational B Spline (NURBS) functions as
the basis functions to represent geometry and approximate the unknown field variable.
The standard Galerkin based isogeometric approach has been extensively explored by
researchers during the past decade and is being continued. Apart from the standard
Galerkin based isogeometric approach, several other numerical schemes exist within
the framework of isogeometric methods. Isogeometric collocation method is one such
relatively new numerical procedure. Isogeometric collocation methods discretize the
governing PDEs in strong form. In this study, the potential of isogeometric collocation
methods for the static analysis of laminated composite plates using Reissner - Mindlin
plate theory is explored. Results of benchmark problems on bending of rectangular
laminated composite plates subjected to sinusoidal and uniform loading are presented.
The results obtained from the proposed isogeometric collocation method for the analysis
of laminated composite plates have been assessed by comparing them with the solutions
available in literature.
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1 INTRODUCTION

Isogeometric analysis (IGA) is a relatively new class of numerical methods proposed
by Hughes et al. [1] in 2005 mainly aimed at integrating Computer Aided Design (CAD)
and finite element analysis. IGA simplifies the complex procedure of mesh generation
and mesh refinement thereby lowering the huge computational cost incurred during the
analysis of large systems. IGA achieves this smooth flow of information by adopting the
same NURBS functions employed to represent geometry by CAD models to approxi-
mate the unknown field variable in an isoparametric fashion. NURBS functions possess
high continuity properties which lends IGA a significant edge over traditional finite el-
ement methods during discretization of higher order partial differential equations.

Over the last decade, IGA has been successfully applied on wide ranging topics
such as solid and structural mechanics [2–10], fluid mechanics [11–17], phase field
modeling [18], fluid structure interaction [19–21] etc. One of the important issue related
to the efficient implementation of IGA was the development of an efficient integration
rule for the Galerkin based IGA. The typical Gauss quadrature rules adopted for element
wise integration in Galerkin based finite element methods is sub-optimal for Galerkin-
IGA since it does not take into account the higher inter element continuity of NURBS
functions.

One of the recent developments in the field of IGA is the emergence of Isogeometric
collocation methods (IGA collocation) proposed by Auricchio et al. [22]. Isogeometric
collocation method discretizes the governing differential equations in strong form while
retaining the inherent IGA feature of adopting NURBS functions in an isoparametric
sense. A comparison study between IGA collocation, Galerkin-IGA and finite element
method by Schillinger et al. [23] revealed accuracy of the method achieved at a low cost
of computation. The advantages offered by IGA collocation method are more evident
when higher order approximations are employed.

Studies on IGA collocation have been performed on solid mechanics [24], phase
field modeling [25], contact [26]. IGA collocation method has been successfully ap-
plied to Euler - Bernoulli beams and Kirchhoff plates [27]. It is worthy to mention
that the high continuity properties possessed by NURBS functions enabled the applica-
tion of IGA collocation method on Euler-Bernoulli beam and Kirchhoff plate theories
which are governed by fourth order differential equations. Studies on performance of
IGA collocation on shear deformable beams, rods and plates [28–30] has also been
conducted. Kiendl et al. [30] showed that mixed formulation within the framework of
IGA collocation is successful in alleviating shear locking observed during lower order
approximations for plate bending.

In this paper, we propose IGA collocation method for the analysis of laminated com-
posite plates described by Reissner - Mindlin plate theory. Standard formulation with
lateral displacement and two rotations are the three unknown field variables within the
framework of IGA collocation. Performance of IGA collocation is assessed by solv-
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ing benchmark problems and comparing the results obtained with the ones existing in
literature.

2 REISSNER MINDLIN PLATE THEORY FOR LAMINATED COMPOSITE
PLATES

A laminated composite plate of total thickness t composed of N orthotropic layers is
considered. The undeformed midplane of the plate is taken as the reference plane Ω0.
The kinematic assumptions underlying the Reissner - Mindlin theory are made, namely,
cross sections remain straight during deformation but may not remain normal to the
reference plane. The displacement field according to Reissner Mindlin plate theory is

u (x, y, z) = u0 (x, y) + zφx (x, y)

v (x, y, z) = v0 (x, y) + zφy (x, y)

w (x, y, z) = w0 (x, y) (1)

where u0,v0, w0 are the displacement components for the midplane in x, y and z
directions respectively. The rotations in y-z plane and x-z plane are denoted as φx
and φy respectively. The strains associated with the displacement field mentioned in
equation (1) are

εxx =
∂u0

∂x
+ z

∂φx
x

γxy =

(
∂u0

∂y
+
∂v0

∂x

)
+ z

(
∂φx
∂y

+
∂φy
∂x

)
εyy =

∂v0

∂y
+ z

∂φy
∂y

γyz =
∂w0

∂y
+ φy

γxz =
∂w0

∂x
+ φx εzz = 0

The stresses at the kth layer in local coordinates are given by the following constitu-
tive relationship. 

σxx
σyy
τxy
τxz
τyz



k

=


Q11 Q12 0 0 0
Q21 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44


k

εxx
εyy
γxy
γxz
γyz



k

(2)

where

Q11 =
E1

1− ν12ν21
Q12 =

E2ν12

1− ν12ν21
Q22 =

E2

1− ν12ν21
(3)

Q66 = G12 Q55 = G13 Q44 = G23
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where E1 and E2 are the elastic modulus in directions 1 and 2 respectively. G12, G13

and G23 are the shear modulus in x-y, x-z and y-z planes respectively. ν12 and ν21 are
the two Poisson ratios for orthotropic materials. The material constants in equation (2)
v in local coordinates can be expressed in the global coordinates by the following set of
relations

Q
′

11 = Q11cos
4θ + 2 (Q12 + 2Q66) sin

2θcos2θ +Q22sin
4θ

Q
′

12 = (Q11 +Q22 − 4Q66) sin
2θcos2θ +Q12

(
sin4θ + cos4θ

)
Q

′

22 = Q11sin
4θ + 2 (Q12 + 2Q66) sin

2θcos2θ +Q22cos
4θ

Q
′

16 = (Q11 −Q12 − 2Q66) sinθcos
3θ + (Q12 −Q22 + 2Q66) sin

3θcosθ

Q26 = (Q11 −Q12 − 2Q66) sin
3θcosθ + (Q12 −Q22 + 2Q66) sinθcos

3θ

Q
′

66 = (Q11 +Q22 − 2Q12 − 2Q66) sin
2θcos2θ +Q66

(
sin4θ + cos4θ

)
Q

′

44 = Q44cos
2θ +Q55sin

2θ

Q
′

45 = (Q55 −Q44) cosθsinθ

Q
′

55 = Q44sin
2θ +Q55cos

2θ (4)

Here, θ is the inclination between the local co-ordinate system at the kth layer and
the global co-ordinate axes.

2.1 Equations of equilibrium

The equations of equilibrium expressed in terms of the bending moments Mxx, Myy,
the twisting moments Mxy, shear forces Qx, Qy and the in - plane forces Nxx, Nyy and
Nxy are given below

Nxx,x +Nxy,y = 0 (5a)
Nxy,x +Nyy,y = 0 (5b)
Qx,x +Qy,y = −f (5c)

Mxx,x +Mxyy −Qx = 0 (5d)
Myy,y +Myx,x −Qy = 0 (5e)

The stress resultants in equations (5a) are related to displacement variables by the
following relations
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NxxNyy
Nxy

 =

A11 A12 A16

A12 A22 A26

A16 A26 A66




∂u0

∂x
∂v0

∂y
∂u0

∂y
+
∂v0

∂x


+

B11 B12 B16

B12 B22 B26

B16 B26 B66




∂φx
∂x
∂φy
∂y

∂φx
∂y

+
∂φy
∂x


(6a)

Mxx

Myy

Mxy

 =

B11 B12 B16

B12 B22 B26

B16 B26 B66




∂u0

∂x
∂v0

∂y
∂u0

∂y
+
∂v0

∂x


+

D11 D12 D16

D12 D22 D26

D16 D26 D66




∂φx
∂x
∂φy
∂y

∂φx
∂y

+
∂φy
∂x


(6b)

{
Qy
Qx

}
= K

[
A44 A45

A45 A55

]
∂w0

∂y
+ φy

∂w0

∂x
+ φx

 (6c)

The Aij , Bij and the Dij present in the above set of equations (6) are termed as
extensional stiffness, bending stiffness and bending - extensional stiffness respectively
and are defined as following

(Aij , Bij , Dij) =

∫ t/2

−t/2
Q

′

ij

(
1, z, z2

)
dz (7)

Substituting the stress resultant - displacement variable relationships mentioned in
equation (6) into (5a), we obtain the equilibrium equations in terms of displacement
variables u0,v0, w0, φx and φy as shown below
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A11
∂2u0

∂x2
+ 2A16

∂2u0

∂x∂y
+A66

∂2u0

∂y2
+A12

∂2v0

∂x∂y
+A16

∂2v0

∂x2
+A26

∂2v0

∂y2
+A66

∂2v0

∂x∂y
+

B11
∂2φx

∂x2
+ 2B16

∂2φx

∂x∂y
+B66

∂2φx

∂y2
+B12

∂2φhy

∂x∂y
+B16

∂2φhy

∂x2
+B26

∂2φhy

∂y2
+B66

∂2φhy

∂x∂y
= 0 (8a)

A16
∂2u0

∂x2
+A66

∂2u0

∂x∂y
+A12

∂2u0

∂x∂y
+A26

∂2u0

∂y2
+A26

∂2v0

∂x∂y
+A66

∂2v0

∂x2
+A22

∂2v0

∂y2
+

A26
∂2v0

∂x∂y
+B16

∂2φx

∂x2
+B66

∂2φx

∂x∂y
+B12

∂2φx

∂y∂x
+B26

∂2φx

∂y2
+B26

∂2φhy

∂x∂y
+B66

∂2φhy

∂x2
+

B22

∂2φhy

∂y2
+B26

∂2φhy

∂x∂y
= 0 (8b)

KA55
∂φx

∂x
+KA45

∂φx

∂y
+KA45

∂φhy

∂x
+KA44

∂φhy

∂y
+KA55

∂2w0

∂x2
+ 2KA45

∂2w0

∂x∂y

+KA44
∂2w0

∂y2
+ f = 0 (8c)

B11
∂2u0

∂x2
+ 2B16

∂2u0

∂x∂y
+B66

∂2u0

∂y2
+B12

∂2v0

∂x∂y
+B16

∂2v0

∂x2
+B26

∂2v0

∂y2
+B66

∂2v0

∂x∂y
+

D11
∂2φx

∂x2
+ 2D16

∂2φx

∂x∂y
+D66

∂2φx

∂y2
+D12

∂2φhy

∂x∂y
+D16

∂2φhy

∂x2
+D26

∂2φhy

∂y2
+D66

∂2φhy

∂x∂y
−

KA55

(
∂w0

∂x
+ φx

)
−KA45

(
∂w0

∂y
+ φy

)
= 0 (8d)

B16
∂2u0

∂x2
+B66

∂2u0

∂x∂y
+B12

∂2u0

∂x∂y
+B26

∂2u0

∂y2
+B26

∂2v0

∂x∂y
+B66

∂2v0

∂x2
+B22

∂2v0

∂y2
+

B26
∂2v0

∂x∂y
+D16

∂2φx

∂x2
+D66

∂2φx

∂x∂y
+D12

∂2φx

∂y∂x
+D26

∂2φx

∂y2
+D26

∂2φhy

∂x∂y
+D66

∂2φhy

∂x2
+

D22

∂2φhy

∂y2
+D26

∂2φhy

∂x∂y
−KA45

(
∂w0

∂x
+ φx

)
−KA44

(
∂w0

∂y
+ φy

)
= 0 (8e)

The above equilibrium equations eq. (8) are valid in the interior of the domain. The
equilibrium equations at the Neumann boundary are given by:

[
n2
x n2

y 2nxny
−nxny nxny n2

x − n2
y

]NxxNyy
Nxy

 =

{
N̂nn
N̂ns

}
(9a)

[
n2
x n2

y 2nxny
−nxny nxny n2

x − n2
y

]Mxx

Myy

Mxy

 =

{
M̂nn

M̂ns

}
(9b)

[
nx ny

]{Qx
Qy

}
=
{
Q̂n

}
(9c)

where N̂nn & N̂ns are the in - plane axial forces specified at the Neumann boundary.
Similary, M̂nn & M̂ns are the bending moments and, Q̂n are the shear forces specified
at Neumann boundary.

Using the stress resultant - displacement relationship in eq. (6), we obtain eqs. (9) in
terms of displacement variables as given below:
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N̂nn =
(
n2
xA11 + n2

yA12 + 2nxnyA16

) ∂u0

∂x
+
(
n2
xA16 + n2

yA26 + 2nxnyA66

) ∂u0

∂y
+

(
n2
xA16 + n2

yA26 + 2nxnyA66

) ∂v0

∂x
+
(
n2
xA12 + n2

yA22 + 2nxnyA26

) ∂v0

∂y
+

(
n2
xB11 + n2

yB12 + 2nxnyB16

) ∂φx
∂x

+
(
n2
xB16 + n2

yB26 + 2nxnyB66

) ∂φx
∂y

+

(
n2
xB16 + n2

yB26 + 2nxnyB66

) ∂φy
∂x

+
(
n2
xB12 + n2

yB22 + 2nxnyB26

) ∂φy
∂y

(10a)

N̂ns =
(
−nxnyA11 + nxnyA12 +

(
n2
x − n2

y

)
A16

) ∂u0

∂x
+
(
−nxnyA16 + nxnyA26 +

(
n2
x − n2

y

)
A66

) ∂u0

∂y

+
(
−nxnyA16 + nxnyA26 +

(
n2
x − n2

y

)
A66

) ∂v0

∂x
+
(
−nxnyA12 + nxnyA22 +

(
n2
x − n2

y

)
A26

) ∂v0

∂y

+
(
−nxnyb11 + nxnyB12 +

(
n2
x − n2

y

)
B16

) ∂φx
∂x

+
(
−nxnyB16 + nxnyB22 +

(
n2
x − n2

y

)
B66

) ∂φx
∂y

+
(
−nxnyB16 + nxnyB26 +

(
n2
x − n2

y

)
B66

) ∂φy
∂x

+
(
−nxnyB12 + nxnyB22 +

(
n2
x − n2

y

)
B26

) ∂φy
∂y

(10b)

Q̂n = K

[
A45

∂w0

∂y
nx +A55

∂w0

∂x
nx +A44

∂w0

∂y
ny +A45

∂w0

∂x
ny

]
+K [A55φxnx +A45φxny ]

+K [A45φynx +A44nyφy ] (10c)

M̂nn =
(
n2
xB11 + n2

yB12 + 2nxnyB16

) ∂u0

∂x
+
(
n2
xB16 + n2

yB26 + 2nxnyB66

) ∂u0

∂y
+

(
n2
xB16 + n2

yB26 + 2nxnyB66

) ∂v0

∂x
+
(
n2
xB12 + n2

yB22 + 2nxnyB26

) ∂v0

∂y
+

(
n2
xD11 + n2

yD12 + 2nxnyd16

) ∂φx
∂x

+
(
n2
xB16 + n2

yB26 + 2nxnyB66

) ∂φx
∂y

+

(
n2
xB16 + n2

yB26 + 2nxnyB66

) ∂φy
∂x

+
(
n2
xB12 + n2

yB22 + 2nxnyB26

) ∂φy
∂y

(10d)

M̂ns =
(
−nxnyB11 + nxnyB12 +

(
n2
x − n2

y

)
B16

) ∂u0

∂x
+
(
−nxnyB16 + nxnyB26 +

(
n2
x − n2

y

)
B66

) ∂u0

∂y

+
(
−nxnyB16 + nxnyB26 +

(
n2
x − n2

y

)
B66

) ∂v0

∂x
+
(
−nxnyB12 + nxnyB22 +

(
n2
x − n2

y

)
B26

) ∂v0

∂y

+
(
−nxnyD11 + nxnyD12 +

(
n2
x − n2

y

)
D16

) ∂φx
∂x

+
(
−nxnyD16 + nxnyD22 +

(
n2
x − n2

y

)
D66

) ∂φx
∂y

+
(
−nxnyD16 + nxnyD26 +

(
n2
x − n2

y

)
D66

) ∂φy
∂x

+
(
−nxnyD12 + nxnyD22 +

(
n2
x − n2

y

)
D26

) ∂φy
∂y

(10e)

3 Numerical formulation

In order to solve the equations presented in the previous section using Isogeometric
collocation method, the unknown field variables are expressed as a linear combination
of Non - Uniform Rational B - Splines (NURBS).

3.1 B - Splines and NURBS

B-spline functions are polynomials, say of degree p, are defined piecewise on the
parametric space. The parametric space is given by a knot vector. A knot vector Ξ, is a
set of non - decreasing coordinates ξi in the parametric space, Ξ = {ξ1, ξ2, ξ3, ....., ξn+p+1}
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, where n is the number of basis functions. The space between two consecutive knots
in the parametric space is defined as a knot span. Knot values can be repeated at a par-
ticular location in the parametric space and are called as multiple knots. The B-splines
are Cp−1 continuous at a particular knot and Cp−k continuous at multiple knot locations
with multiplicity k.

The ith B-spline basis function of degree p for a given knot vector Ξ is defined recur-
sively as shown below

Ni,0 (ξ) =

{
1, ξi ≤ ξ < ξi+1

0, otherwise
(11a)

Ni,p =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (11b)

B-Splines in two dimensions are obtained by taking the tensor product of their uni-
variate counterparts as shown below

Bij,pq (ξ.η) = Ni,p (ξ)Mj,q (η) i = 1, ...., n j = 1, ...,m. (12)

where ξ and η are the parametric coordinates in two directions.
A bivariate NURBS function Rij is defined as the weighted bivariate B-Spline Bij

function,

Rij (ξ, η) =
Bij,pq (ξ, η)ωij∑n

k=1

∑m
l=1Bij,pq (ξ, η)ωij

(13)

ωij are weights adopted.
The isogeometric class of numerical methods adopt NURBS functions to discretize

the unknown field variables and geometry. Likewise, isogeometric collocation methods
adopt NURBS to approximate the unknown field variables, namely, u, v, w, φx & φy as
shown below:
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uh0 (ξ, η) =
n∑
i=1

m∑
i=1

Rwij (ξ, η) û
ij (14a)

vh0 (ξ, η) =
n∑
i=1

m∑
i=1

Rwij (ξ, η) v̂
ij (14b)

wh0 (ξ, η) =
n∑
i=1

m∑
i=1

Rwij (ξ, η) ŵ
ij (14c)

φhx (ξ, η) =
n∑
i=1

m∑
i=1

Rwij (ξ, η) φ̂x
ij

(14d)

φhy (ξ, η) =
n∑
i=1

m∑
i=1

Rwij (ξ, η) φ̂y
ij

(14e)

3.2 Collocation using NURBS functions

The discretized strong form of the equilibrium equations are collocated on the images
of greville points in physical space. The greville points are defined in the parametric
space. The greville points ξ̂i defined for a spline space of degree p and knot vector
{ξi, ......, ξi+p+1} are given by

ξ̂i =
ξi+1 + ξi+2 + .....+ ξi+p

p
(15)

In two dimensional problems like plate problems, a greville point is defined by(
ξ̂i, η̂i

)
, which are the greville coordinates in two parametric directions. From eq. (15),

it can be observed that some of the greville points are located within the domain and oth-
ers are located at the boundary. Since the equations of equilibrium are different for the
domain interior and boundary, the equations to be collocated need to be chosen suitably
depending on the location of the greville point.

Using eqs.(14), we discretize the equilibrium equations eqs. (8) defined in the interior
of the domain. The residual of these equations

(
RΩ
u , R

Ω
v , R

Ω
w, R

Ω
φx

&RΩ
φy

)
are presented

as follows:
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RΩ
u = A11

∂2uh0
∂x2

+ 2A16
∂2uh0
∂x∂y

+A66
∂2uh0
∂y2

+A12
∂2vh0
∂x∂y

+A16
∂2vh0
∂x2

+A26
∂2vh0
∂y2

+A66
∂2vh0
∂x∂y

+

B11
∂2φhx
∂x2

+ 2B16
∂2φhx
∂x∂y

+B66
∂2φhx
∂y2

+B12

∂2φhy

∂x∂y
+B16

∂2φhy

∂x2
+B26

∂2φhy

∂y2
+B66

∂2φhy

∂x∂y
(16a)

RΩ
v = A16

∂2uh0
∂x2

+A66
∂2uh0
∂x∂y

+A12
∂2uh0
∂x∂y

+A26
∂2uh0
∂y2

+A26
∂2vh0
∂x∂y

+A66
∂2vh0
∂x2

+A22
∂2vh0
∂y2

+

A26
∂2vh0
∂x∂y

+B16
∂2φhx
∂x2

+B66
∂2φhx
∂x∂y

+B12
∂2φhx
∂y∂x

+B26
∂2φhx
∂y2

+B26

∂2φhy

∂x∂y
+B66

∂2φhy

∂x2
+

B22

∂2φhy

∂y2
+B26

∂2φhy

∂x∂y
(16b)

RΩ
w = KA55

∂φhx
∂x

+KA45
∂φhx
∂y

+KA45

∂φhy

∂x
+KA44

∂φhy

∂y
+KA55

∂2wh0
∂x2

+ 2KA45
∂2wh0
∂x∂y

+KA44
∂2wh0
∂y2

+ f (16c)

RΩ
φx

= B11
∂2uh0
∂x2

+ 2B16
∂2uh0
∂x∂y

+B66
∂2uh0
∂y2

+B12
∂2vh0
∂x∂y

+B16
∂2vh0
∂x2

+B26
∂2vh0
∂y2

+B66
∂2vh0
∂x∂y

+

D11
∂2φhx
∂x2

+ 2D16
∂2φhx
∂x∂y

+D66
∂2φhx
∂y2

+D12

∂2φhy

∂x∂y
+D16

∂2φhy

∂x2
+D26

∂2φhy

∂y2
+D66

∂2φhy

∂x∂y
−

KA55

(
∂wh0
∂x

+ φhx

)
−KA45

(
∂wh0
∂y

+ φhy

)
(16d)

RΩ
φy

= B16
∂2uh0
∂x2

+B66
∂2uh0
∂x∂y

+B12
∂2uh0
∂x∂y

+B26
∂2uh0
∂y2

+B26
∂2vh0
∂x∂y

+B66
∂2vh0
∂x2

+B22
∂2vh0
∂y2

+

B26
∂2vh0
∂x∂y

+D16
∂2φhx
∂x2

+D66
∂2φhx
∂x∂y

+D12
∂2φhx
∂y∂x

+D26
∂2φhx
∂y2

+D26

∂2φhy

∂x∂y
+D66

∂2φhy

∂x2
+

D22

∂2φhy

∂y2
+D26

∂2φhy

∂x∂y
−KA45

(
∂wh0
∂x

+ φhx

)
−KA44

(
∂wh0
∂y

+ φhy

)
(16e)

Similarly, residuals of the equilibrium equations valid at Neumann boundaries RΓ
u ,

RΓ
v , RΓ

w, RΓ
φx

& RΓ
φy

are obtained by substituting eq. (14) into eqs. (10). The order
of polynomial and knot vector are the same for the NURBS functions specified in eqs.
(14). The collocation scheme adopted is

RΩ
u = 0 RΩ

v = 0 RΩ
w = 0 RΩ

φx
= 0 RΩ

φy
= 0 on S

({
ξ̂
}Ω
)

RΓ
u = 0 RΓ

v = 0 RΓ
w = 0 RΓ

φx
= 0 RΓ

φy
= 0 on S

({
ξ̂
}Γ
) (17)

where S
({

ξ̂
}Γ
)

is the mapping of Greville points from the parametric space to

physical space.
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(a) h = a/10 (b) h = a/100

Figure 1: Lateral displacement w∗ versus
√
Nf

4 NUMERICAL RESULTS

4.1 Bending of all round simply supported square cross ply laminated plates

Consider an all round simply supported rectangular laminated plate. The laminate
consists of four plies (0/90/90/0) of equal thickness. Let h be the total thickness of the
plate. The material properties are

E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25,& K = 5/6 (18)

where the origin of the co-ordinate system is taken at a corner of the plate, 0 ≤
x ≤ a & 0 ≤ y ≤ b. The lateral displacement and the stresses evaluated are non -
dimensionalized using the following relationship,

w∗ = w0(
a

2
,
b

2
)
E2h

3

b4q0
, σ∗

xx = σxx(
a

2
,
b

2
,
h

2
)
h2

b2q0

σ∗
yy = σyy(

a

2
,
b

2
,
h

4
)
h2

b2q0
, σ∗

xy = σxy(a, b,−
h

2
)
h2

b2q0

σ∗
xz = σxz(a,

b

2
, k = 1, 3)

h

bq0

(19)

The results obtained are listed in Table 1 and compared with methods existing in
literature. Figure 1 shows the plot of normalized central displacement w∗ versus Nf

(square root of the number of degrees of freedom) for two plate width to thickness ratios
of 10 & 100. Convergence of normalized central displacement w∗ can be observed.

4.2 Bending of all round clamped square sandwich plates

Consider an all round clamped square sandwich plate. The sandwich plate consists
of a central core, embedded with face sheets on top and bottom. The face sheets are
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Table 1: Simply supported [0�90�90�0] square laminated plate under sinusoidal load.

a/h Method w∗ σ∗
xx σ∗

yy σ∗
xy τ ∗xz

100 HSDT [31] 0.4343 0.5507 0.2769 0.0217 0.2948
HSDT [32] 0.4343 0.5387 0.2708 0.0213 0.2897
FSDT [33] 0.4337 0.5382 0.2705 0.0213 0.178

Elasticity ‘ [34] 0.4347 0.539 0.271 0.0214 0.339
HSDT [35] 0.4365 0.5413 0.3359 0.0215 0.4106

Layer-wise [36] 0.4374 0.542 0.2697 0.0216 0.3232
RBF-PS [37] 0.432 0.5387 0.2697 0.0213 0.3154

Wavelets [38] 0.4335 0.5381 0.2704 0.0213 0.339
IGA- galerkin [39] 0.4354 0.5376 0.2702 0.0213 0.1907

Quadratic 0.3339 0.4138 0.2079 0.182 1.5795
Cubic 0.3622 0.4493 0.2255 0.0206 1.0969

Quartic 0.4335 0.5379 0.27 0.0235 0.9867
Quintic 0.4346 0.5392 0.2707 0.0223 0.8195

10 HSDT [31] 0.7149 0.5589 0.3974 0.0273 0.2697
HSDT [32] 0.7147 0.5456 0.3888 0.0268 0.264
FSDT [33] 0.6628 0.4989 0.3615 0.0241 0.1667

Elasticity [34] 0.743 0.559 0.403 0.0276 0.301
HSDT [35] 0.7153 0.5466 0.4383 0.0267 0.3347

Layer-wise [36] 0.7309 0.5496 0.3956 0.0273 0.2888
RBF-PS [37] 0.7204 0.5609 0.3911 0.0273 0.2843

Wavelets [38] 0.6627 0.4989 0.3614 0.0241 0.3181
IGA- galerkin [39] 0.6654 0.4983 0.361 0.0242 0.1669

Quadratic 0.6670 0.5022 0.3623 0.0202 0.1742
Cubic 0.6688 0.5038 0.3636 0.0204 0.1741

Quartic 0.6693 0.5043 0.3639 0.0203 0.1744
Quintic 0.6709 0.5055 0.3648 0.0203 0.1744

20 HSDT [31] 0.5061 0.5523 0.311 0.0233 0.2883
HSDT [32] 0.506 0.5393 0.3043 0.0228 0.2825
FSDT [33] 0.4912 0.5273 0.2957 0.0221 0.1749

Elasticity [34] 0.517 0.543 0.309 0.023 0.328
HSDT [35] 0.507 0.5405 0.3648 0.0228 0.3818

Layer-wise [36] 0.5121 0.5417 0.3056 0.023 0.3248
RBF-PS [37] 0.5078 0.5436 0.3052 0.023 0.3066

Wavelets [38] 0.4912 0.5273 0.2956 0.0221 0.3332
IGA- galerkin [39] 0.4931 0.5268 0.2953 0.0221 0.1755

Quadratic 0.4882 0.5232 0.2923 0.0203 0.1818
Cubic 0.4907 0.5264 0.2942 0.0204 0.1813

Quartic 0.4940 0.5299 0.2962 0.0205 0.1827
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Table 2: All round clamped square sandwich plate under uniform load.

a/h Method w∗ σ∗
xx σ∗

yy σ∗
xy τ ∗xz

100 Reddy J N [40] 0.2785 0.5347 0.0094 0.003 0.24
Quadratic 0.2350 0.4489 0.009 0.0114 0.3225

Cubic 0.2482 0.4749 0.0092 0.0123 0.3098
Quartic 0.2749 0.5264 0.0114 0.0151 0.3368

50 Reddy J N [40] 0.3111 0.5356 0.0108 0.0039 0.2406
Quadratic 0.3044 0.5044 0.0109 0.0139 0.3342

cubic 0.3085 0.5113 0.0112 0.0143 0.3299
Quartic 0.3162 0.5241 0.0120 0.0152 0.3365

10 Reddy J N [40] 1.2654 0.5018 0.0550 0.0120 0.2318
Quadratic 1.3569 0.4153 0.0361 0.0281 0.2893

cubic 1.3591 0.4154 0.0362 0.0284 0.2894
Quartic 1.3619 0.4162 0.0362 0.0285 0.2899

assumed to be orthotropic and the core is assumed to be transversely isotropic. Let h
be the total thickness of the plate. Thickness of the core is 0.8 times the total thickness
while the face sheets are one - tenth the total thickness of the sandwich plate. Material
properties of the core are given below

E1 = 25E2, E2 = 106 G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25,& K = 5/6 (20)

Material properties of the face sheets are provided below

E1 = E2 = 106 G13 = G23 = 0.06 ∗ 106psi, G12 = 0.016 ∗ 106psi, ν12 = 0.2 (21)

The transverse load acting on the rectangular plate is given by q(x, y) = q0, where the
origin of the co-ordinate system is taken at a corner of the plate, 0 ≤ x ≤ a& 0 ≤ y ≤ b.
The lateral displacement and the stresses evaluated are non - dimensionalized using the
following relations.

w∗ = w0(
a

2
,
b

2
)
E2h

3

b4q0
, σ∗

xx = σxx(
a

2
,
b

2
,
h

2
)
h2

b2q0

σ∗
yy = σyy(

a

2
,
b

2
,
h

2
)
h2

b2q0
, σ∗

xy = σxy(a, b,−
h

2
)
h2

b2q0

σ∗
xz = σxz(

a

2
, b, 0)

h

bq0

(22)

The results obtained are listed in Table 2 and compared with solution existing in
literature.
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5 CONCLUSIONS

In this paper, analysis of laminated composite plates has been performed using Iso-
geometric collocation method. The method has been assessed for both laminated plate
and sandwich plates under all round simply supported and all round clamped conditions
respectively. The accuracy obtained by this method is comparable with the methods
existing in literature. Shear locking was observed under the thin plate limit when lower
order approximations were adopted. Mixed formulation may be considered in order to
alleviate shear locking. Further research direction would be to study free vibration anal-
ysis, buckling analysis and extension of present formulation under large deformations.
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Abstract. A method to model stiffened panels with NURBS-based isogeometric analysis is pre-
sented. Stiffeners and panel are modeled as separate patches and coupled by Mortar methods.
The stiffeners and panel meshes can be non-conforming. Therefore modeling of the geometry
is simple even with the NURB’s limitation to structured meshes. The feasibility of the method
is shown for static and modal analyses. The method is validated against results obtained from
standard finite element approaches with conforming meshes for a panel with one stiffener and
a panel with multiple stiffeners. For all cases good accordance to the FEM results is observed
with a difference of less than 1%.
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1 INTRODUCTION

Isogeomeric analysis (IGA) is a method intended to bridge the gap between finite element
analysis and computer aided design (CAD). It uses the methods that are used in CAD to describe
geometries for numerical analysis with the finite element method (FEM). The original formu-
lation from Hughes et. al. [1] uses Non-Uniform Rational B-Splines (NURBS) basis functions
as they are most commonly used in CAD. Lately also T-Splines, a generalization of NURBS,
are used as they enable local h-refinement for IGA. The Idea behind IGA is that standard FEM
approximate geometries with Lagrange polynomials where an exact geometry description is al-
ready available by CAD.
Compared to standard FEM the application of NURBS basis functions has several advantages.
Due to the mathematical properties of NURBS higher polynomial orders p can be applied what
may lead to higher accuracy per degree of freedom and higher convergence rates [2]. Further-
more higher inter-element continuities can achieved. While Lagrange polynomials are limited
to C0 inter-element continuity NURBS can be constructed with up to Cp−1 continuity. This re-
sults in smooth surface representation and enables the usage of governing equations, that need
higher order derivatives. Among other fields of application this property is appealing for anal-
ysis of thin-walled structures as many shell theories include second order derivatives [3].
This potential cannot be fully used as NURBS are limited to structured meshes. Many lightweight
structures are stiffened structures and therefore consists of a base panel with several stiffeners
connected to it which cannot be modeled as one structured mesh. One possibility to model this
kind of structures is to model stiffener and base panel as separate domains and connect them
afterwards. In the simplest case the common border of the two parts are conforming and there-
fore can simply be connected by sharing control points. This may be a possible solution for
classical FEM but if the limitation to structured meshes is taken into account this may lead to
massive mesh distortion in the base plate or the need of splitting the base-plate into many parts.
Therefore coupling methods are needed that enables the coupling of the stiffener’s foot onto
the base plate in an arbitrary position. Mortar methods are frequently used for coupling of
non-conforming edges in IGA [4]. They are also used in contact formulations [5]. Therefore it
is not only possible to couple two boundary edges of NURBS patches but also to couple dis-
placements on a shell surface e.g. example in problems involving contact of shells. Depending
on the structural behavior that should be achieved only transversal or transversal and rotational
displacements can be coupled.
The aim of the paper is to use coupling methods for connecting a stiffener on a base panel with-
out having to adapt the baseplate mesh to the stiffener position or splitting it into sub-regions.
This is desirable because each coupling of subregions with Lagrange multipliers introduce ex-
tra degrees of freedom and breaks the high inter-element continuity locally. At least the here
proposed methods can only enforce a C0 continuity of the displacement field over the coupling
edge. This is not problematic in this context of Mindlin-Reissner which are only requiring C0

continuous transversal and rotational displacements.
This gives not only great flexibility in modeling structures with many stiffeners but also enables
the movement of stiffeners without having to recompute big parts of the system. Therefore the
proposed method is especially interesting for optimization tasks. The feasibility of the method
is demonstrated by comparing IGA results for stiffened panels with results obtained by classic
FEM-models with conforming meshes.
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2 Fundamentals

The examples presented in this paper are based on standard Mindlin-Reissner shell kinematic
as also used in FEM. These type of shell theory represents the geometry as its mid-surface
and a thickness parameter t, describing the thickness of the shell normal to the mid-surface.
It accounts for the mid-surface curvature. Mindlin-Reissner shells often have 6 displacement
variables. Three of them describing the mid-surface displacement in physical space ux, uy, uz
and three describing the rotation of a material fiber that was normal to the mid-surface in the
undeformed state θx, θy, θz as described in [3]. As the three rotation parameters correspond
to the Euler angels, which have the well-known non-uniqueness problem a drilling penalty
method is used. In difference to shell elements used in classical FEM the mid-surface normal,
also denoted as the shell director, is not interpolated from nodal values but directly computed
what is possible due to the higher inter-element continuity. Even there exist more evolved shell
models for IGA as locking-free 5-Parameter Mindlin-Reissner shells in this paper 6-parameter
shell theory is used because the presented examples contain geometries with C0 continuous
locations which are complicated to handle with 5-Parameter shells. It should be noted that there
are also more elaborated 5-parameter theories that can handle such regions (e.g. [7])

2.1 B-Splines and NURBS

This work uses NURBS based geometry description which is based on B-Splines. Follow-
ing the isoparametric approach these are also used for interpolation of displacements. As the
examples shown in this paper are based on shell theory the geometries consist of surfaces and
curves in three dimensional space. B-splines describe geometries in a parametric way. A curve
is therefore defined over one parametric coordinate ξ as the product of geometric control points
Pi and basis functions Ni,p of order p as

C(ξ) =
n∑
i=1

Ni,p(ξ)Pi . (1)

These n basis functions form a basis of the space of all piecewise polynomials of degree p on
an interval defined by a knot vector

Ξ = [ξ1, ξ2, . . . , ξn+p+1], ξi ≤ ξi+1 . (2)

The positions ξi are called knots where each knot may appear several times consecutively. The
knots denote positions in parametric space where two polynomials are connected in a Cp−m

continuous way where m is called multiplicity and denotes how often a knot appears in the knot
vector. Therefore continuity of the B-Spline curve and of the B-Spline basis can be controlled
by the knot vector. The non-zero knot-spans are something close to what is referred to as
elements in classic FEM. Therefore they are often called elements even though there exist some
differences in principle. The basis functions can be computed recursively from the knot vector
with the Cox-de Boor formula [1].
A B-Spline surface is simply constructed by the tensorial product of two B-Spline curves

S(ξ, η) =
∑
i

∑
j

Ni,p(ξ)Mj,q(η)Pij . (3)

Both curves may have different orders p and q. The control points Pij can be understood as a
structured control mesh in the two dimensional case. The Surface spans over a rectangular para-
metric region with the parameters [ξ, η]. Therefore B-Splines and NURBS are limited to struc-
tured control meshes and regions that can be parametrized by a rectangular parameter space.
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The limitation to structured control meshes can be overcome using T-Splines what enables the
possibility of local refinement [8] whereas the limitation to regions that can be parametrized by
a rectangular parameter space cannot.
The NURBS basis functions are computed from the B-Spline basis functions as

Ri,p(ξ) =
Ni,p(ξ)wi∑n
k=1Nk,p(ξ)wk

. (4)

For each geometric control point an additional parameter wi is introduced called the weight of
the control point.
NURBS are a generalization of B-Splines. They share many properties as the inter-element
continuity of basis functions, partition of unity and non-negativity. In contrast to B-splines
they allow the exact representation of conic sections (e.g. circles) and therefore the geometric
continuity can be higher than the continuity of the basis functions. The geometric region that is
described by one set of NURBS basis functions and control points is called a NURBS-patch.

2.2 Multipatch coupling with Lagrange multipliers

The Lagrange multiplier approach introduces boundary conditions as a weak formulation so
that they do not need to be fulfilled implicitly by the base functions. The approach is e.g. a
useful method to couple two sub-domains with incompatible displacement discretization on an
common boundary. It allows the unavoidable deviations between the two displacement fields
minimizing the error resulting from the incompatible displacement fields in means of the energy
norm [6]. To couple the displacements u(1) of sub-domain Ω1 with the displacements u(2) of
sub-domain Ω2 at the common boundary Γλ a new vector field λ is introduced on this boundary.
The coupling conditions are then incorporated into the weak formulation as an additional term
Πλ that is added to the governing equations Π(1) and Π(2) of the two sub-domains

Π = Π(1) + Π(2) + Πλ Πλ =
∫

Γλ

(u(1) − u(2)) · λdΓ (5)

For equations of elasticity λ is the traction field that needs to be applied on the border to couple
the two subregions. Basically there are two different methods of discretizing Πλ. The first one is
to compute λ from the stress field of the subregions and therefore indirectly from the displace-
ment field. This approach is called Nitsche-Method and has the advantage that no additional
degrees of freedom (DOF) are introduced [9]. The drawback of this method is that the formu-
lation heavily depends on the governing differential equations on the subregions. Therefore the
more general method is used in this work where the Lagrange multipliers are interpolated by
basis functions and add new DOF to the system. This leads to a saddle point problem and must
be treated by appropriate solving algorithms. The advantage of this approach is that the govern-
ing equations of the sub-domains do not matter as long as they use the displacements as primary
variables. As basis functions for the Lagrange multipliers the basis functions that interpolate
the displacements on the boundary of one of the adjacent sub-domains are used. This choice is
quite common even there may be more elaborate solutions available. For example dual Mortar
methods, which use orthogonal basis functions to the ones of the coupled regions are subject to
ongoing research as they greatly increase efficiency when solving the resulting system of linear
equations. An open problem is the construction of such a dual-basis for higher order basis func-
tions that do not compromise the overall convergence rate even there are promising approaches
to this problem [5].
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As the boundary edge of a stiffener is coupled to a panel the basis functions of the stiffener
are used for the Lagrange multipliers λ. The stiffeners basis functions are chosen because
the boundary that should be coupled is also a boundary of the parameter space. This makes
the extraction of the basis functions easier. The Integral in eq. 5 is evaluated by a gauss type
quadrature with the evaluation points defined in the parametric space of the stiffener. Here again
the evaluation points lie on the boundary of the stiffeners parameter space and can be evaluated
more easily. The corresponding positions on the panel are located by a projection algorithm
that uses a gradient descent method. This evaluation method of the integral is used as stiffener
and plate are refined uniformly and therefore both have similar element size. For refinements
where this is not the case more complex evaluation methods have to be chosen in order not to
bypass base functions on the more refined edge as described in [10].

3 Investigation of a simple stiffened panel
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Figure 1: Model description of the test problem

To test the method a simple example is investigated where a rectangular stiffener is coupled to
a square panel as shown in fig. 1. The panel is loaded by a pressure in positive z-Direction. The
angle between the stiffener and the panel edge is 30◦ so that the foot of the stiffener is crossing
elements of the panel at different locations. At the coarsest IGA-mesh panel and stiffener are
modeled as one element each of degree p = 1. To investigate performance they are refined
uniformly. The deformation and the von Mises stresses for one refinement step are shown in
fig. 2.
To investigate the overall performance of the method the results are compared to a FEM-model
with conforming meshes of quadratic shell elements. The model uses a structured mesh of
nelem = 20 × 87 = 1740 elements for the stiffener and nelem = 12157 elements for the base
panel with a total of nDOF = 250848 DOF. The error is measured as the relative difference of
the total strain energy ∆e.

∆e =
0.5UFE · FFE − 0.5UIGA · FIGA

0.5UFE · FFE
(6)
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with U being the displacement vector and F the force vector of the discrete models.
To investigate how well the displacement coupling conditions are fulfilled the L2-norm of the
relative differences between the displacements of both subregions at the common boundary Γλ
is used.

||eU ||L2 =
∫

Γλ

|u(1) − u(2)|
0.5(|u(1) + u(2)|)

dΓ (7)

Figure 2: Von Mises stress and displacement in deformed state (warped by factor 70. Stresses clipped at 200).
Panel and stiffener have nelem = 64 each of order p = 7

The results are shown in fig. 3. The difference between the IGA and FEM solution by
means of strain energy is smaller than 1% for the finest IGA-mesh. The results show that the
convergence rate does not improve with higher approximation orders. Degrees of p > 3 do not
improve the results. As seen in the stress plot the stiffener introduces two stress singularities at
the end-points as these are reentrant corners. Furthermore the Lagrange multipliers introduce a
line load to the panel that is modeled as a shell. This line load results in a discontinuity of the σxz
and σyz stress components of the panel. The component σzz = 0 as the shell is based on a plane
stress assumption. Therefore the tractions in z-direction are coupled into the transversal shear
stresses resulting in steep gradients in the discretized model. As seen in fig. 2 this does not lead
to oscillation phenomenas in the stress field even with high order basis functions but impairs
the convergence speed at least locally around the stiffener foot. The displacement coupling
condition can be fulfilled very accurate even in the end-points with the stress singularities.
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Figure 3: Convergence against FEM-solution and relative error of displacement coupling condition in L2-norm
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Figure 4: Geometry for test problem with multiple stiffeners

4 Results for multiple stiffeners

As a second example a panel with multiple stiffeners is investigated. The test geometry is
depicted in fig. 4. It is modeled with 3 Patches. One for the base panel and two for the stiffeners
where one stiffener has a kink. The two stiffeners are connected by Lagrange multipliers in
the same way as the stiffeners and the base panel. The results are again validated against a
FEM-model with conforming meshes by comparing the strain energy. The FE-model consists
of quadratic shell elements with nelem = 1730 elements for the stiffeners and nelem = 12127
elements for the panel with a total of nDOF = 250848 DOF. The base panel is loaded by a
pressure of p = 1 for the static test case. Beside the strain energy of the static case the first 4
eigenfrequencies are compared where a density of ρ = 1 is assumed. The results are given in
fig. 6. Fig. 7 shows the 4th eigenform obtained by the IGA method. All eigenfrequencies can
be obtained with less than 1% difference to the FE-results. In the static and the modal analyses
the higher orders basis functions tend to better accuracy with same number of DOF but again
the convergence speed is limited by the stress singularities.
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Figure 5: Convergence against FEM-solution for test case 2
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Figure 6: Convergence of eigenfrequencies no. 1 and 4 against FEM-solution

Figure 7: Eigenmode no. 4 obtained by IGA-model of order p = 7 and nelem = 64 for panel and short stiffener
and nelem = 128 for long stiffener (a) and obtained by FEM-reference model (b)
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5 Conclusion

A method to model stiffened structures in IGA based on Lagrange multipliers is imple-
mented. With the Lagrange multiplier approach stiffeners and base panel can be modeled
as separate domains and coupled afterwards. Even though NURBS are limited to structured
meshes arbitrary shaped stiffeners can be coupled to a base panel without subdividing it into
multiple parts with the proposed method. It could be shown that the results are of similar ac-
curacy compared to standard FEM approaches with conforming meshes for static and modal
analysis. The displacement coupling conditions can be fulfilled very accurate especially by
higher order base functions. Stress singularities at the end of stiffeners does not lead to stress
oscillations even in cases with high order base functions.
The convergence speed for higher order base functions is limited by the stress discontinuities at
the stiffeners foot. This problem is not introduced by the Lagrange multiplier approach but by
the way of modeling the stiffener and also occurs on conforming meshes. A way to evade the
problem is local refinement what can be accomplished by T-Splines or adaptive IGA methods
as described in [11] where the latter even the order p can be lowered locally. Both approaches
seem promising for future improvements of the method.
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Abstract. Isogeometric Analysis (IGA) [5] is a promising concept that establishes a close link 

between the technologies of CAD (computer aided design) and numerical simulation via finite 

element analysis (FEA). In the IGA framework, the same function spaces, which are used for 

the geometric representation of the computational domain, are used for the approximation of 

the problem unknowns. There are several computational geometry technologies that could 

serve as a basis for IGA with Non-Uniform Rational B-Splines (NURBS) being the most wide-

ly adopted due to their popularity in CAD software. In contrast with FEA where there is a 

very broad spectrum of solution techniques for the fast and efficient solution of the linear or 

linearized systems that occur [1-4], IGA solution schemes are still an open issue. With respect 

to domain decomposition techniques, the Isogeometric Tearing and Interconnecting (IETI) [8] 

method combines the advanced solver design of dual domain decomposition methods with the 

exact geometry representation of IGA, relying on patches for the subdivision of the domain. In 

this work, an innovative solution scheme is presented, showcasing greatly enhanced perfor-

mance when compared to the established and tested solution schemes for IGA and its numeri-

cal performance is exhibited in numerical examples. 

 

1 SOLUTION TECHNIQUES 

Iterative methods to solve a linear system such as Conjugate Gradient (CG) method [1, 2] 

are commonly used with the aid of a preconditioner [3, 4] to ensure fast convergence of the 

method. In our case, we employ a Preconditioned Conjugate Gradient (PCG) method in which 

the preconditioner is not a matrix as commonly thought of in numerical analysis, but a trans-

formation in the wider mathematical sense. In the following sections, we will explain the need 

that led us to the proposal of a transformation, compare two different approaches of the new 

"preconditioner" and explain thoroughly the optimal among the two. 
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1.1 Large – scale problems in IGA 

IGA is a method that was initially proposed by Hughes et al. [5] and envelops both the ge-

ometric information of the structures as well as the analysis mesh and data in one single mod-

el. Since 2005, that first appeared, IGA has gained a wide acceptance by the scientific 

community as it gradually establishes its background and grows rapidly. This raises the need 

of researchers to solve constantly large and more complex problems utilizing this promising 

method. These problems are of the form: 

 Ku f  (1) 

where K is the stiffness matrix, f is the applied force field and u is the displacement field. 

Unfortunately, the major advantage of IGA i.e.: higher Continuity Shape Functions, becomes 

a disadvantage. For example, NURBS Shape Functions span through several Isogeometric 

Elements which inevitably leads to a denser Stiffness Matrix with a greater bandwidth in 

comparison to simple Finite Elements. 

 Since complexity of a solver increases with increasing continuity [6, 7] it is crucial for the 

further evolution of IGA, the development of an algorithm that will provide both high accura-

cy and minimized time complexity compared to the existing techniques. IETI that was pro-

posed in [8], is a powerful method that divides the problem into a multitude of independent 

problems and thus reduces the complexity of a large scale system. The major drawback of this 

approach is that the number of subdomains must be identical to the number of patches present 

to an IGA model. This means that subdivisioning is mesh-dependent which makes both load 

balancing and scalability to suffer in high performance computing environments. On the other 

hand, inducing discontinuities in a model by subdividing it into a number of subdomains, in-

creases the error and discontinuities in second-order characteristics like stress and strain.  

 

1.2 The PCG-IETI method 

In order to circumvent this drawback, a new model with stiffness matrix 
pK  is introduced 

which we will refer to as “patched model” and has the geometry of the original model with 

appropriately induced discontinuities in the form of patches, in order to subdivide the original 

model appropriately. Due to the fact that there are errors introduced due to these discontinui-

ties but the geometry of the problem is identical, the original and subdivided models const i-

tute near-by problems with the stiffness matrix of the original model being equal to 

pK K K  . 

Let’s consider the PCG algorithm, equipped with a preconditioner following the rationale 

of incomplete Cholesky preconditionings which feature an error matrix iE . This matrix is 

usually defined by the computed positions of small elements in the lower triangular matrix 

produced by the incomplete Cholesky factorization procedure, which do not satisfy a speci-

fied magnitude criterion and therefore are discarded [15]. Considering the near-by problem of 

the form  pK K u f  , if matrix iE  is taken as K , the preconditioning matrix becomes 

the initial matrix pA K . The repeated solutions required for the evaluation of the precond-

tioned residual vector 1k kz A r  are performed using IETI and are treated as problems with 

multiple right-hand sides.  

In contrast to models generated using FEA, IGA-generated models with the same geometry 

but different patches have different number of degrees of freedom (dof). This means that the 

residual vector 
kr  cannot be used in order to perform the evaluation of the preconditioned re-
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sidual vector using matrix 
pK . Even if that was possible, this evaluation would produce a 

vector with a different size compared to the vectors produced using matrix K. In order to cir-

cumvent this problem, a transformation between these two IGA meshes is employed. Specifi-

cally, with the aid of double transformation, the residual of the original model is being 

mapped to the patched model space and after the preconditioned residual vector evaluation, 

the solution is being mapped back to the original model space. 

The PCG algorithm, equipped with the latter double-transformation preconditioner 

throughout the entire solution process, constitutes the PCG-IETI method providing both load 

balancing and scalability properties. 

 

(a) Example of a Simple Cantilever split into four patches (patched model). 

 

(b) Example of the same Cantilever modeled as a single patch (original model). 

Figure 1: Cantilever examples. Black continuous lines illustrate the patch border and squares the Control Points 

in each case. Dotted lines depict the Control Net.  

2 MAPPING 

2.1 Shape Functions Mapping 

Since the implementation of PCG-IETI requires a transformation between two different 

meshes, we utilized the intergrid transfer operator R - Restriction operator for the transfer of 

the fine grid information to the coarse one and the prolongation or interpolation Operator I for 

the transverse transfer from the coarse to the fine grid [10]. In our case, we use the full 

weighting Operator R [11] which is derives from interpolation Operator using: 

 TR c I    (2) 

So by defining the interpolation operator I the transformation of the two meshes will be 

completed for application in the iterative solver. For finite elements purposes, a simple linear 

interpolation between the nodal values is adequate for the intergrid transfer, but since the ap-

plication will be in the field of Isogeometric Analysis, the choice was to use a more complex 

interpolation that would provide better results taking into account the increased continuity of 

the Isogeometric method. Our choice is to use NURBS shape functions. The interpolation be-

tween the two control meshes is performed considering the Control Point parametric coordi-

nates when the isoparametric domain in each direction spans in [0, 1]. Given the same 

parametric domain both coarse and fine mesh can transfer information between each other 

with simple interpolation. 
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(a) Approximation of an existing Control Point 

with the aid of NURBS interpolation. We ob-

serve that the point’s value is defined with 

the aid of nine Control Points. 

(b) Approximation of a non-existing Control Point 

with the aid of NURBS interpolation. We ob-

serve that the point’s value is defined with the 

aid of six Control Points. 

Figure 2: Domain of influence using NURBS interpolation. Rhinoceros [9] software was used. 

 

In the next subsections we provide a brief description of Shape Function in Isogeometric 

Analysis. 

2.1.1. B-Splines 

Given a degree p 0   of the shape functions and an ascending sequence 

 1 2 n p 1, ,...,        of n+p+1 real values called Knot Vector, where n is the number of Con-

trol Points the B-Splines can be calculated using the recursive Cox-de Boor algorithm. Note 

that we only use open Knot Value Vectors which implies that the first and last Knot Value has 

multiplicity of p+1 and the internal values multiplicity m lower or equal to p. The recursive 

formulation of B-Splines starts with constant shape functions of degree p=0. 

   i i 1

i,0

1,  if ξ
N

0,        otherwise

   
  


  (3) 

For degree p>0 B-Splines are defined using p-1 degree according to the following formula: 

 

      i p 1i
i,p i,p 1 i 1,p 1

i p i i p 1 i 1

N N N
 

  

   

 
      

   
  (4) 

It must be noted that in the fractions of equation (3), when a denominator equals zero then 

the fraction’s value is considered as zero. 

2.1.2. NURBS 

NURBS are produced using both B-Spline functions and the weights of the Control Points. 

NURBS curves are given by: 
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In a similar way we can define two and three dimensional NURBS Shape Function. 
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  (6) 

 

The resulting univariate, bivariate or trivariate NURBS Shape Function are used for inter-

polation of the new Control Points with known parametric coordinates. Interpolation is used 

for approximation of both displacements and forces of the new Control Net using the follow-

ing: 

 

 x i x,i y i y,i z i z,iu N u             u N u             u N u          (7) 

 

As eq. (6) shows that the approximation of the displacements of e.g. the patched Control Net 

is performed using the displacements and Shape Functions of the unpatched one and vice ver-

sa. In the case of forces, the transpose of the Shape Functions is used. Specifically, for calcu-

lation of the forces of the patched model, the forces of the unpatched are used with the 

transpose of the patched shape functions and vice versa which sums up to: 

 

 T T T

x i x,i y i y,i z i z,if N f             f N f             f N f          (8) 

 

 

2.1.3. Cook Cantilever Example  

In order to illustrate the performance of the NURBS Shape Function transformation, a 

cook cantilever was examined. The transformation had to transfer the information from the 

single-patch cantilever with 11x3 Control Points to a Cantilever subdivided into 9 patches 

with resulting 19x3 Control Points as shown in Fig. 1. By applying the transformation to this 

model we approximate displacements and forces. In Table 1 we can see how the approxima-

tion works by using norms of the resulting values compared to the initial ones. Even thought 

at first the approximated displacements seem close enough based on the total norms, the third 

and norm clearly depicts that an error up to 8% is induced using this technique. 

 

 Unpatched Patched 

 exactnorm U   0.1283 0.1561 

 approximatenorm U    0.1294 0.1571 

Error norm 7.15% 7.94%  

Table 1: Performance of transformation on displacements using Shape Functions. 
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In case of forces, the error as shown in Table 2 dramatically increases. Unfortunately, this 

approach does not only create an error of the value but also changes the loading as clearly il-

lustrated in Fig.3. This causes the algorithm either to converge real slow or in some cases 

even diverge due to the large error created in every intergrid approximation. In case of non-

linear analysis, wrong estimation of both internal and external forces, can result to much 

greater error induced in the solution procedure and thus wrong results. 

 

 

 Unpatched Patched 

 exactnorm F   141.4214 141.4214 

 approximatenorm F    136.9306 136.9306 

 
 

exact approximate

exact

norm F F

norm F


  43.3% 43.3% 

 

Table 2: Performance of transformation on forces using Shape Functions. 

 

 

(a) Loads on a Cantilever before transfor-
mation 

 

(b) Load on the Cantilever after the transfor-
mation 

Figure 3: Changes of the Cantilever Loading due to the transformation. Rhinoceros [9] software was used. 

 

2.2 Isogeometric Refinement Mapping 

The second approach of the mapping was based on Isogeometric Refinement. Since our 

goal is to transfer information between two meshes that are based on the same structure, re-

finement as proposed in [5] can be considered the best tool applicable. It is used to calculate 

coordinates and weights of the new Control Points keeping the geometry unchanged, so it 

seems logical to approximate the data needed using this method. In [12] it is clearly illustrated 

how a structure can be analyzed using multiple separate patches, yet it is very important to 

explain the link with Isogeometric refinement in our case. Following the inverse procedure of 

[12] we want to segment one single patch into multiple individual subdomains for the sake of 

our iterative solver.  
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2.2.1. h-Refinement  

The refinement algorithm that will be used in the aforementioned transformation is h-

refinement or knot insertion. For a known knot value vector Ξ={ξ1, ξ2,…,ξn+p+1} we want to 

introduce new knot values on increase the multiplicity of already known ones. For each one of 

the new inserted knot values the number of control points is increased by one. Their coordi-

nates and weights B  are computed  

 
pB T B    (9) 

Where 

 

  0 j i j 1

ij

1,  if ξ
T

0,        otherwise


    

  


  (10) 

and 

 

 
i q j j q 1 i qq 1 q q

ij ij ij 1

j q j j p 1 j 1

T T T
   



   

    
   
   

  (11) 

 

2.2.2. Multiple patches segmentation 

In Fig.4 we observe the 1D shape functions of a structure model as one patch. It is known 

from[13]that NURBS [13] Shape functions have a continuity of Cp-m over knots, where p is 

the polynomial degree of the function and m is the multiplicity of the knot. Fig. 4 shows 

NURBS of degree p=2 with C1 continuity on knots. Using Knot Insertion algorithm of Isoge-

ometric Refinement we raise the multiplicity of selected knots creating a C0 continuity result-

ing in Fig. 5. 

 

 
Figure 4: 1D NURBS of one single patch. 

 

 

 
Figure 5: 1D NURBS of one single patch with C0 continuity over selected knots. 
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In Fig.6. we observe the domain after the knot value insertion resembles to several inde-

pendent subdomains united as one by merging their C-1 boundary shape function into a new 

C0 one. In addition to the shape function the boundary Control Points between the two sub-

domains coincide. Considering that they have an independent role for each subdomain we re-

sult in Fig.7. where now every patches are independent and when combined with its data can 

be processed as a separate entity like in Fig.8. only take into account the boundary intercon-

nection with other subdomains. 

 

 
Figure 6: 1D NURBS of one single patch with C0 continuity over selected knots. 

 

 

 
Figure 7: 1D NURBS of one single patch with C0 continuity over selected knots. 

 

 
Figure 8: 1D NURBS of four discrete patches 

 

2.2.3. Refinement transformation  

As described above the Control Points of the segmented structure are given by h-

refinement of the single-patched domain. The transformation matrix in this 1D case as de-

scribed in [5, 12, and 13] is: 

    Multipatch MS Singlepatch

( ) ( )

(mxn)(mx3) (nx3)

P T P 
      (12) 

In order to create the inverse transformation, we need to remove the inserted knot values. 

Since they are removable without altering the geometry a matrix is needed that will provide us 

with the inverse transformation. 

    Singlepatch SM Multipatch

( ) ( )

(nxm)(nx3) (mx3)

P T P 
      (13) 

Using eq.11 and since knot values are removable we have: 
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  (14) 

 

So the inverse transformation can be created using the initial one by: 

 

1

T T
SM MS MS MS

(nxm) (nxm) (mxn) (nxm)

(nxn)

T T T T



 
                  

 

  (15) 

This transformation matrix is one dimensional so it can be applied to each set of Control 

Points on axis Ξ. In case, we want to apply a refinement in more than one axes, a new equiva-

lent transformation matrix for each refined axis must be created and consecutively applied in 

order to create the final Control Net. It is important to note that the null difference of the loads 

is a property that derives from knot insertion in IGA and thus it not an approximation but an 

exact transformation. Specifically, for the Shape Functions we know: 

 

   Multipatch MS Singlepatch

( , , ) ( , , )

(mxn)(mx1) (nx1)

P T P


     
      (16) 

The calculation of loads on the multipatch domain is performed by:  
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  (17) 

 

Finally, Fig. 8 shows the influence to the approximation of the new mesh. In case of a new 

Control Point its value is an interpolation of the Control Points closest to the inserted knot 

value and only on the axis knot insertion is performed. On the other hand, when a Control 

Point is not in proximity to an h-refinement its value and position is identical to its previous 

state. Fig.9 and 10 illustrate how NURBS affect the data continuity. For instance, in Fig. 9 

examining the yellow element separation line of axis Ksi, we observe that full continuity al-

lows NURBS to spans smoothly across many elements. On the other hand, when the same 

yellow line is distorted in Fig.10 by raising the multiplicity of the knot value, only one shape 

function now connects different subdomains. In addition, as expected the insertion of a knot 
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value resulted to the insertion of a single shape function in axis Ksi. Distortion of the single 

patch mesh only occurred on the subdomain interface while all other Control Points remained 

intact. In case we had a larger degree of shape functions this change would have also affected 

Control Points close to the knot inserted by changing their coordinates and weights. 

 

 

(a) Approximation of a non-existing Control 

Point with the aid of Refinement Transformation. 

We observe that the point’s value is defined with 

the aid of two Control Points.  

 

(b) Approximation of an existing Control 

Point with the aid of Refinement Transformation. 

We observe that the point’s value is retained to the 

identical Control Point of the previous mesh.   

Figure 8: Domain of influence using Refinement Transformation. 

 

 
Figure 9: Shape functions and continuity of a single patch. 

 

 

 
Figure 10: Shape functions and continuity of multiple patched structure. 
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2.2.4. Cook Cantilever Example 

The same cantilever example of 1.2.3 will be used here in order to compare the results of 

the two approaches. 

 

 Unpatched Patched 

 exactnorm U   0.1283 0.1561 

 approximatenorm U    0.1284 0.1560 

Error norm 0.23% 0.34% 

Table 3: Performance of transformation on displacements using Refinement Transformation Matrix  

 

 Unpatched Patched 

 exactnorm F   141.4214 141.4214 

 approximatenorm F    141.4214 141.4214 

Error norm 0% 0% 

Table 4: Performance of transformation on forces using Refinement Transformation Matrix  

It is clear given the two comparison matrices that the error of the intergrid transformation 

is now minimized. The transformation between the meshes can now act as a preconditioner 

that will not induce error and approximate with increased accuracy the single patch solution. 

As result the refinement transformation considered ideal and it will be implemented and tested 

in three dimensional examples. 
 

3 NUMERICAL EXAMPLES 

Since the comparison of the two proposed transformation methods resulted in advantage of 

the Isogeometric Refinement method, two numerical examples will be provided that will il-

lustrate the performance of the method in real life three dimensional problems. Note that, our 

proposal was tested on the simple cantilever beams that was described above providing satis-

factory results, yet the numerical examples chosen will be of different degrees of freedom 

magnitudes in order to illustrate the wide range of applications for the proposed method. 

3.1 Pipe  

The first application of the PCG-IETI method is a pipe and this method is tested on two 

models with 1k and 10k dof respectively. 
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Figure 11: Patched Pipe with 459 Control Points. 

 

In Figure 11 we can see the patched model counterpart of the pipe model. It is created with 

three dimensional NURBS using NURBS Toolbox [14]. The object is created by 9 Control 

Points per axis ξ that create the circumference of the circle, 3 per axis η that create the radius 

of the annulus and 17 per axis η that give height to the pipe. The degree of NURBS Shape 

functions is considered to be consistent in all parametric directions and equal to 2 for the sake 

of simplicity. The aforementioned Control Points result to (9x3x17)x3=1377 degrees of free-

dom. As depicted in Fig.11, all Control Points at the base are clamped, in order to constrain 

the base displacements. In addition, concentrated loads are applied to Control Points interpo-

latory to the geometry, introducing both a bending and torsional strain to the structure. The 

Pipe is segmented into four equal patches of (9x3x5)x3=405 degrees of freedom for the im-

plementation of the IETI part of the implemented method. This patched Pipe is used to ap-

proximate a single-patched pipe of similar load and boundary conditions. Both geometries are 

depicted in Fig.12. The single patched structure is composed now by 9x3x14 Control Points 

resulting to 1134 degrees of freedom, which are of similar magnitude to the ones of the 

patched structure.  

 

                                                                        
(a)                                                                                                                      (b) 

Figure 12: (a) Pipe designed as a single patch. (b) Pipe designed as four separate patches. 
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In similar fashion, the Pipe structure is analyzed in the case of 10k Dof magnitude. Fig.13 

shows the new geometries as created with NURBS Toolbox both patched and unpatched. 

                                                          
(a)                                                                                                                      (b) 

Figure 13: (a) Pipe designed as a single patch. (b) Pipe designed as ten separate patches. 

 

The new structures are considered now to examine a greater order of magnitude. Specifi-

cally, the single patch Pipe has now 17 Control Points per axis ξ, 3 Control Points per axis η 

and 62 Control Points per axis ζ. This results to (17x3x62)x3=9486 degrees of freedom while 

all other properties, such as degree of Shape Functions, Loads and Boundary Condition are 

retained. The patched structure is now defined by 17x3x71 Control Points resulting to 10863 

degrees of freedom. 

 

 

 Pipe 1K Pipe 10K 

PCG-IETI iterations 10 6 

Total IETI iterations 22 21 

Mean IETI iterations 2,2 3,5 

Table 5: Performance metrics of the PCG-IETI method for the two pipe models. 

In table 5, the performance metrics of the PCG-IETI method are presented, considering an 

error tolerance of 10-5. The total iterations are depicted on the first row where it can be seen 

that the 1K model needs more iterations to converge, compared to the 10K one. This is due to 

the fact that the errors introduced from the patched model are larger for the 1K model, com-

pared to the 10K model. Moreover, a mean of 2.2 and 3.5 IETI iterations where needed for 

each PCG-IETI iteration. The error for each iteration is depicted on Fig. 14 
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Figure 14: Iterations vs. error for the two pipe models. 

 

3.2 Shell  

 

Second example for the proposed methodology is a Shell once more tested in the same or-

ders of magnitude as the Pipe example. 

 

 
Figure 15: 3D Shell designed with NURBS Toolbox. 

 

The unpatched shell structure is created by using 9 Control Points per axis ξ, 14 per axis η 

and 3 per axis ζ, producing 1134 degrees of freedom. As shown in Fig.15, the all the base 

Control Points are clamped to constrain the base displacements. Loads are once again applied 

to interpolatory Control Points of the Shell as blue arrows illustrates. Four patches are again 

used to approximate the exact solution. Both patched and unpatched geometries are shown in 

Fig.16. Each patch consist of (9x5x3)x3=405 degrees of freedom creating a 1377 Dofs struc-

ture. 
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(a)                                                                                                     (b) 

Figure 16: (a) Shell designed as a single patch. (b) Shell designed as four separate patches. 

 

Finally, two Shells are analyzed for the 10k Dof case. The degrees of freedom are now, 

9486 for the single patch and 10863 for the patched one. Ten patches are used now with 1224 

Control Points each for the IETI part of the method. Fig.17 illustrated these two structures and 

their Control Nets. 

 

                                   
(a)                                                                                                     (b) 

Figure 17: (a) Shell designed as a single patch. (b) Shell designed as ten separate patches. 

 

 

 Shell 1K Shell 10K 

PCG-IETI iterations 8 5 

Total IETI iterations 20 20 

Mean IETI iterations 2,2 4 

Table 6: Performance metrics of the PCG-IETI method for the two shell models. 

In table 6, the performance metrics of the PCG-IETI method are presented, considering an 

error tolerance of 10-5. The total iterations are depicted on the first row where it can be seen 

that the 1K model needs more iterations to converge, compared to the 10K one as for the case 

of the pipes. Once again, this is due to the fact that the errors introduced from the patched 

model are larger for the 1K model, compared to the 10K model. Moreover, a mean of 2.2 and 

4 IETI iterations were needed for each PCG-IETI iteration. The error for each iteration is de-

picted on Fig. 18 
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Figure 18: Iterations vs. error for the two pipe models. 
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Abstract. Discontinuous Galerkin (DG) methods are attractive tools to integrate several PDEs
in engineering sciences, due to their high order accuracy and their high scalability in parallel
simulations. The main interest of this work is to derive a constant and stable Discontinuous
Galerkin method for two-way electro-thermal coupling analyses.
A fully coupled nonlinear weak formulation for electro-thermal problems is developed based
on continuum mechanics equations which are discretized using the Discontinuous Galerkin
method. Toward this end, the weak form is written in terms of energetically conjugated fields
gradients and fluxes.
In order to validate the effectiveness of the formulation and illustrate the algorithmic properties,
a numerical test for composite materials is performed.
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1 INTRODUCTION

There has been increased a recent interest in electro-thermal coupling due to its application
in energy conversion [3, 4, 7, 8].
The objective of this paper is to extend the DG method to study steady state and response of
electro-thermal material model taking into account the Peltier and Seebeck effects.
Some of the features of DG methods include the use of structured grid and high order approx-
imation, hp adaptivity as there is no need for continuity requirement across element interfaces,
and the flexibility in terms of mesh design. However, for practitioners, it is important to have
methods available which yield reliable results for a wide variety of problems. By using stabi-
lization techniques and inter element flux definitions, the shortcomings of non-stabilized DG
methods can be overcome.
Recently, DG has been used to solve coupled problems. For instance a primal DG method
with interior penalty (IP) terms has been proposed in [10] to solve coupled reactive transport
in porous media. A DG method has also been used in [9] to solve the thermo-elastic coupling
problems due to temperature and pressure dependent thermal contact resistance.
We have recently extended the DG method to solve electro-thermal coupled problems in terms
of energetically conjugated fields gradients and fluxes [1], which to the authors knowledge, has
not been introduced yet. In [1], the numerical properties of the nonlinear elliptic problem, fol-
lowing the method proposed in [2, 5], have been derived. In particular, the convergence rates
of the error in both the energy and L2-norms have been shown to be optimal with respect to the
mesh size in terms of the polynomial degree approximation k (respectively in order k − 1 and
k).
The new formulation proposed in this paper is able to capture the electro-thermal effects, which
describe the direct conversion of electric potential difference into temperature difference and
vice versa. In addition it is able to effectively capture the electro-thermal behavior of the com-
posite materials. This paper is structured as follows. In Section 2, the electro-thermal govern-
ing equations are discussed. In Section 3, the DG weak form of electro-thermal coupling is
presented. Numerical results in the response of composite materials are shown in Section 4.
Section 5 is dedicated to the concluding remarks.

2 Governing equations

Let us consider a volume Ω and let the boundary of the domain ∂Ω be the union of two
disjoint sets: the Dirichlet boundary, ∂DΩ and Neumann boundary, ∂NΩ.
The first balance equation is the electrical charge conservation equation

∇ · jjje = 0 ∀ xxx ∈ Ω, (1)

where jjje denotes the flow of electrical current density vector, which is defined as

jjje = lll · (−∇V) + αlll · (−∇T). (2)

In this equation α is the Seebeck coefficient, and lll is the electric conductivity .
The second balance equation is the conservation of the energy flux

∇ · jjjy = −∂ty ∀ xxx ∈ Ω. (3)

The right hand side of this equilibrium equation is the time derivative of the internal energy
density y

y = y0 + cv T, (4)
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which consists of the constant y0 independent of the temperature and of the electric potential,
and of the volumetric heat capacity cv multiplied by the absolute temperature T.
Moreover the energy flux jjjy, which is a combination of the inter exchanges between the thermal
and electric energies, is defined as

jjjy = qqq + Vjjje, (5)

where, qqq is the heat flux, defined as

qqq = kkk · (−∇T) + βα jjje = kkk · (−∇T) + αTjjje (6)
= (kkk + α2 Tlll) · (−∇T) + αTlll · (−∇V). (7)

In this equation kkk denotes the thermal conductivity and βα = αT is Peltier coefficient.
First we rewrite the equations (2, 5, 6) under the form

jjj =

(
jjje

jjjy

)
=

(
lll αlll

Vlll + αTlll kkk + αVlll + α2Tlll

)(
−∇V
−∇T

)
. (8)

The conservation laws of this problem can then be formulated as finding V, T ∈ H2(Ω) ×
H2+

(Ω) such that

∇ · jjje = 0 ∀ xxx ∈ Ω, (9)
∇ · jjjy = ∇ · qqq + jjje · ∇V = −∂ty ∀ xxx ∈ Ω, (10)

T = T̄ > 0, V = V̄ ∀ xxx ∈ ∂DΩ, (11)
qqq · nnn = q̄, jjje · nnn = j̄e, jjjy · nnn = j̄y ∀ xxx ∈ ∂NΩ, (12)

where T̄ and V̄ are the prescribed temperature and electric potential respectively, and nnn is the
outward unit normal to the boundary ∂Ω.
It should be noted that H2+

(Ω) is the manifold to which T belongs, which is always positive.
The set of equations (9, 10) can be rewritten under a matrix form using Eq. (8)

div (jjj) =

(
0
−∂ty

)
= iii. (13)

Let us define the vector of the unknown fields MMM(2× 1) =

(
fV

fT

)
, with fV = −V

T and fT = 1
T ,

[1, 3]. Indeed it can be shown that the fluxes jjje, jjjy and the fields gradients ∇(−V
T ), ∇( 1

T) are
conjugated pairs. Therefore the gradients of the fields vector∇MMM(6×1) in terms of (∇fV,∇fT)
is defined by(

∇MMM
)

=

(
∇fV

∇fT

)
=

(
∇(−V

T )
∇( 1

T)

)
=

( −1
T

V
T2

0 −1
T2

)(
∇V
∇T

)
. (14)

Hence, the fluxes defined by Eq. (8) can be expressed in terms of fV, fT, yielding

jjj =

(
lllT VTlll + αT2lll

VTlll + αT2lll T2kkk + 2αT2Vlll + α2T3lll + TV2lll

)(
∇fV

∇fT

)
= ZZZ ∇MMM. (15)

The fluxes vector jjj(6 × 1) is the product of the gradients fields vector ∇MMM, which derive from
the state variables (fV, fT), by a coefficients matrix ZZZ(6 × 6) which is temperature and electric
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potential dependent.
The symmetric coefficients matrix ZZZ(V,T) in Eq. (15), which is positive definite if T > 0, can
be rewritten in terms of (fV, fT) = (−V

T ,
1
T), as T = 1

fT
,V = − fV

fT
:

ZZZ(fV, fT) =

(
1
fT

lll − fV
f2T

lll + α 1
f2T

lll

− fV
f2T

lll + α 1
f2T

lll kkk
f2T
− 2α fV

f3T
lll + α2 1

f3T
lll +

f2V
f3T

lll

)
. (16)

Therefore, the strong form (8, 13) can be expressed as

div(jjj) = iii ∀ xxx ∈ Ω, (17)
MMM = M̄MM ∀ xxx ∈ ∂DΩ,

n̄nn jjj = j̄jj ∀ xxx ∈ ∂NΩ,

where n̄nn =

(
nnn 0
0 nnn

)
, M̄MM =

(
f̄V

f̄T

)
∈ L2(∂DΩ)× L2+

(∂DΩ), meaning that f̄T belongs to the

space which is always positive, and j̄jj =

(
j̄e
j̄y

)
.

3 Weak Discontinuous Galerkin (DG) form for electro-thermal coupled problems

Let us introduce the finite element space Ωh = ∪eΩ
e, associated with the triangulation of the

domain Ω. If subscript I denotes the boundary between two elements, ∂Ωe = ∂NΩe ∪ ∂DΩe ∪
∂IΩ

e, and ∂IΩh = ∪e∂IΩ
e \ ∂Ωh, where ∂IΩh is the intersecting boundary of the finite elements.

The finite discontinuous polynomial approximation MMMh =

(
fVh

fTh

)
∈ Xk of the solution is thus

defined in the space

Xk =
{

MMMh ∈ L2(Ωh)× L2+

(Ωh) |MMMh|Ωe∈Pk(Ωe)×Pk+ (Ωe) ∀Ωe∈Ωh

}
, (18)

where Pk(Ωe) is the space of polynomial functions of order up to k and Pk+
means that the poly-

nomial approximation remains positive. Moreover we can define the kinematically admissible
counterpart:

Xk
c =

{
δMMMh ∈ Xk |δMMMh=IhM̄MM|∂DΩe

}
, (19)

where IhM̄MM is the interpolation of M̄MM on ∂DΩh.
Let us derive the weak form of the governing equations by multiplying the first equation by
a kinematically admissible test function δMMM ∈ Xk

c . Then performing a volume integral and
using the divergence theorem on each element Ωe, lead to state the problem as finding MMMh =(

fVh

fTh

)
∈ Xk such that

−
∑

e

∫
Ωe
∇δMMMT

hjjj(MMMh,∇MMMh) dΩ +
∑

e

∫
∂Ωe

nnnTδMMMT
hjjj(MMMh,∇MMMh) dS = 0 ∀δMMMh ∈ Xk

c. (20)

Let us define suitable face operators which are required for the definition of the proceeding DG.
For two adjacent elements +, −, who share a common face ∂IΩ

s, the averages of MMM, jjje are
given respectively by

〈MMM〉 =
1

2
(MMM+ + MMM−) , 〈jjje〉 =

1

2
(jjj+e + jjj−e ),
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and the jumps are defined respectively as

JMMMK =
1

2
(MMM+ − MMM−) , JjjjeK =

1

2
(jjj+e − jjj−e ).

For simplicity, we introduce the vector MMMnnn =

(
nnn− 0
0 nnn−

)
MMM, where nnn− is the unit normal

vector pointing from element − toward element + and M̄MMhnnn = n̄nnIhM̄MM.
Then the surface integral of Eq. (20) is rewritten using the boundary condition stated in Eq.
(17) and the notation introduced above, leading to∫

∂NΩh

δMMMT
h j̄jj dS +

∫
∂DΩh

M̄MMT
hnnn

jjj(MMMh,∇MMMh) dS−
∫

Ωh

iiiδMMMT
h dΩ =

∫
Ωh

∇δMMMT
h jjj(MMMh,∇MMMh)dΩ (21)

+

∫
∂IΩh

q
δMMMT

hnnn
jjj(MMMh,∇MMMh)

y
dS ∀δMMMh ∈ Xk

c.

Applying the mathematical identity JabK = JaK 〈b〉 + JbK 〈a〉, and neglecting the second term
because only consistency in δMMMT

h needs to be enforced, the interface flux related to Eq. (21)
becomesJδMMMhnnnK 〈jjj(MMMh,∇MMMh)〉.
Due to the discontinuous nature of the approximation functions in the DG finite element, in-
terelement discontinuity is allowed, so the continuity of unknown variables in the DG formula-
tion is enforced weakly by adding symmetrization and stabilization terms at the interior element
boundary ∂IΩh. Using Eq. (15), the stabilized form can be stated as finding MMMh ∈ Xk such that∫

∂NΩh
δMMMT

h j̄jjdΩ +
∫
∂DΩh

M̄MMT
hnnn

jjj(MMMh,∇MMMh)ds =
∫

Ωh
∇δMMMTjjj(MMMh,∇MMMh)dΩ (22)

+
∫
∂IΩh

q
δMMMT

hnnn

y
〈jjj(MMMh,∇MMMh)〉 dS +

∫
∂IΩh

q
MMMT

hnnn

y
〈ZZZ(MMMh)∇δMMMh〉 dS

+
∫
∂IΩh

q
δMMMT

hnnn

y〈 B
hs

ZZZ(MMMh)
〉

JMMMhnnnK dS ∀δMMMh ∈ Xk
c.

In this equation B is the stability parameter, which has to be sufficiently high to guarantee
stability, and hs is the mesh size.
[1].
Then, the IP discontinuous Galerkin method corresponding to problem Eq. (17) is defined as:
find MMMh ∈ Xk such that

a3(MMMh, δMMMh) = b3(δMMMh)−
∫

Ωh

iiiδMMMT
h dΩ + c3(MMMh;M̄MMh) ∀δMMMh ∈ Xk

c, (23)

a3(MMMh, δMMMh) =
∫

Ωh
∇δMMMT

h jjj(MMMh,∇MMMh)dΩ +
∫
∂IΩh

q
δMMMT

hnnn

y
〈jjj(MMMh,∇MMMh)〉 dS (24)

+
∫
∂IΩh

q
MMMT

hnnn

y
〈ZZZ(MMMh)∇δMMMh〉 dS +

∫
∂IΩh

q
δMMMT

hnnn

y〈 B
hs

ZZZ(MMMh)
〉

JMMMhnnnK dS

∀δMMMh ∈ Xk
c,

c3(MMMh;M̄MMh) =

∫
∂DΩh

M̄MMT
hnnn

jjj(MMMh,∇MMMh)ds, and (25)

b3(δMMMh) =

∫
∂NΩh

δMMMT
h j̄jjdΩ. (26)

The demonstration of numerical properties such as the optimal error estimate, stability of the
formulation and uniqueness of the solution for β high enough is reported in [1].
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4 Numerical Results

The studied problem involves the production of heat by supplying electric power. The bound-
ary conditions shown in Fig. 1 are applied on a composite material consisting of a combination
of two materials: matrix (e.g., polymer) which is a non-conductive material and conductive
fillers (e.g., carbon fiber).

Figure 1: Electrothermal composite domain and the boundary conditions.

A finite element mesh consisting of 114 quadratic elements is used, and a stabilization parameter
β = 100 is considered, to solve the DG discretization. The different material parameters used
in this test are listed in Table 1, where all the material properties are assumed to be independent
of temperature including the Seebeck coefficient.

Material lll[S/m] kkk[W/(K ·m)] α[V/K]
Carbon fiber diag(100000) diag(40) 3 ×10−6

Polymer diag(0.1) diag(0.2) 3 ×10−7

Table 1: Composite material phases parameters.

Fig. 2 presents the distributions of the temperature and the of electric potential. When an electric
potential of 10 [V] is applied on one side, the temperature on the other side increases from 298
[K] to 323 [K], We have also noticed that the temperature and electric potential, see Fig. 2(a), as
well as the thermal flux, see Fig. 2(b), are almost constant in the fiber, as its electrical conduc-
tivity is high, and transfer gradually in the polymer matrix which is a non conductive material.
Also a constant electric current density has been obtained with a value of 1.5× 103 [A/m2].
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(a)

(b)

Figure 2: (a) Distribution of the electrical potential and temperature in the electrothermal domain for
composite materials, (b) The distribution of the thermal flux in the electrothermal domain for composite
materials.
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5 CONCLUSIONS

In this work

• A DG method was developed for electro-thermal coupling using energetically conjugated
fluxes and fields.

• The result formulation was then applied to predict behavior of electro-thermal composite,
and was able to compute the temperature and electric potential distributions as well as
their fluxes, as a function of spatial coordinates.

• In the future, this formulation will be used for Electo-thermo-mechanical coupling in
composite materials.

REFERENCES

[1] L. Homsi, C. Geuzaine, L. Noels, A coupled electro-thermal discontinuous Galerkin
method. Journal of Computational Physics , submitted

[2] T. Gudi, A.K. Pani, N. Nataraj, hp-Discontinuous Galerkin methods for strongly nonlinear
elliptic boundary value problems. Numerische Mathematik, 109, 233-268, 2008

[3] L. Liu, A continuum theory of thermoelectric bodies and effective properties of thermo-
electric composites. International Journal of Engineering Science, 55, 35-53, 2015.

[4] J. L. Perez-Aparicio, R.L. Taylor, D. Gavela, Finite element analysis of nonlinear fully
coupled thermoelectric materials. Computational Mechanics, 40, 35-45, 2007.

[5] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM
J.Numer.Anal, 15, 152-161, 1978.

[6] S. Yadav, A. Pani and E. J.Park, Superconvergent discontinuous Galerkin methods for
nonlinear elliptic equations. Mathematics of Computation, 82, 1297-1335, 2013
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Abstract. We present the minimally-invasive exchange of the regular Cartesian grid in the
lattice-Boltzmann solver of ESPResSo by a dynamically-adaptive octree grid. Octree grids are
favoured by computer scientists over other grid types as they are very memory-efficient. In
addition, they represent a natural generalisation of regular Cartesian grids, such that most
discretisation details of a regular grid solver can be maintained. Optimised codes, however,
require a special tree-oriented grid traversal, which typically conflicts with existing simulation
codes using various iterators, some for only parts of the grid, e.g., boundaries. ESPResSo is a
large software package developed for soft-matter simulations involving fluid flow, electrostatic,
and electrokinetic effects, and molecular dynamics. The currently used regular Cartesian grid
hinders the simulation of realistic domain sizes and significant time periods, a problem that can
be solved using grid adaptivity. In a first step, we focus on the lattice-Boltzmann flow solver in
ESPResSo.
p4est is a grid framework, that already provides dynamically adaptive quadtree and oc-

tree grids together with high-level interfaces for flexible grid traversals with direct neighbour
access in all grid components. In this paper, we first describe extensions of p4est that were
necessary to fulfill certain application requirements. The second part of our work consists of
the minimally-invasive changes in ESPResSo preserving the expertise accumulated in the soft-
ware’s implementation over years. Our numerical results demonstrate physical correctness of
the implementation, good parallel scalability and low overhead of the dynamical grid adap-
tivity. These are prerequisites to actually profit from grid adaptivity in terms of being able to
simulate larger domains over longer time periods with limited computational resources. Thus,
the current status forms a solid basis for further steps such as the development of refinement
criteria, the setup of more realistic application scenarios, and a GPU implementation.
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1 INTRODUCTION

Many scientifically and industrially relevant soft matter systems contain hydrodynamic flow
with strong gradients in small subvolumes. Most biomolecules, including DNA and proteins,
are charged when solvated in aqueous solution. Any charged object in electrolytic solution is
surrounded by a so-called double layer – a thin layer, typically on the scale of one to a few
hundred nanometres. This double layer is the only part of the volume that is not net neutral, a
state maintained by the attraction of counterions and the repulsion of coions from the charged
surface. Applying an external electric field causes fluid stress in the double layer and perturbs
the ionic distributions. The fluid flow resulting from this complex coupling of ion and fluid
dynamics is called electroosmotic flow (EOF) in the case of a charged surface at rest, while the
resulting motion of a charged particle is called electrophoresis.

Both EOF and electrophoresis are important in applications such as the separation of bio-
molecules and other charged particles, DNA profiling, and pumping and sample transport in
microfluidic devices, to name just a few.

Simulations of EOF and electrophoresis prove challenging, due to the large discrepancy be-
tween the nanometre scale of the double layer and the system sizes, which often range up to
several hundred microns. Existing numerical schemes that work on unstructured grids like the
finite-element method (FEM) or the finite-volume method (FVM) are great tools to investi-
gate stationary electrophoresis and EOF systems, but the overhead incurred through remeshing
makes these methods infeasible for systems containing mobile particles.

In this paper, we present our approach to moving a large simulation application from a regular
Cartesian mesh to fully adaptive tree-structured Cartesian meshes in a minimally-invasive way.
The application is the molecular and continuum dynamics package ESPResSo [1, 2], where we
particularly focus on the included lattice-Boltzmann solver. For scalable parallel adaptive mesh
refinement, we base our work on the software library p4est [3, 4].

Many large simulation codes use regular Cartesian meshes due to their cheap representation
in memory, the simple data layout, the easy domain partitioning, and the straight-forward dis-
cretisations. However, the missing grid adaptivity in time and space limits the size of the domain
and the simulation time accessible with reasonable computation time on available machines.
Grid adaptivity would allow for coarsening of the mesh in regions of minor importance and
provide the possibility for space-time adaptivity, i.e., to also apply larger time steps in spa-
tially coarser domains. Two major types of adaptive meshes are widely used in simulation
codes. The first type, unstructured meshes, offers a very high flexibility in terms of local mesh
resolution, shape and even type of mesh elements. Thus, even very complex geometries can
be represented accurately. However, unstructured meshes come with high memory require-
ments, and structures and element types completely different from regular Cartesian meshes.
The second type of adaptive meshes consists of tree-structured Cartesian meshes, with octrees
and quadtrees being the most famous examples. These meshes form a natural generalisation of
regularly refined Cartesian meshes. They are constructed by recursively refining mesh elements
into a fixed number of equally sized and equally shaped child elements. They are very efficient,
in particular in terms of memory requirements and memory access patterns, if represented in
a linearised form according to a depth-first traversal of the underlying tree and an ordering of
the children prescribed by a space-filling curve [5, 6, 7]. Depending on the aggressiveness of
the encoding, however, this may impede traversal of the mesh or parts thereof in an arbitrary
order. In contrast, existing application codes on regularly refined Cartesian meshes often rely
on access to parts of the mesh (e.g., boundaries), particular mesh regions, or neighbours of
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mesh elements. Thus, integrating a tree-structured Cartesian mesh with an existing simulation
code based on regular Cartesian meshes in a minimally-invasive way calls for a mesh interface
that allows for the easy implementation of user-defined iterators and direct neighbour access.
The challenge in this lies in finding the optimal trade-off between minimally-invasiveness, and
memory and run-time efficiency.

Our idea for making spatial adaptivity more accessible to researchers from other fields is to
turn the integration of an octree-based Cartesian grid into a three-step process. In a first step
the regular grid of the existing application is replaced with an octree-based one, specialised for
uniform refinement. In this way we are able to reproduce results of the existing implementation
using a regular grid, without having to worry about spatial adaptivity, yet. This step preserves
all of the regular grid’s data-access patterns, up to a permutation of the mesh elements. This
permutation is induced by the octree refinement, which replaces a traditional lexicographic
ordering with one governed by the space-filling curve. Reordering this way benefits data locality
and cache performance of large scale simulations, while the mathematical problem being solved
remains the same. In case of a traversal of subregions of the grid, e.g. for setting boundary
values, we may traverse the whole grid along the space-filling curve and only take action on
the cells that meet a selection criterion, possibly caching the subset indices for later reuse.
Alternatively, we may access the position of an initial cell and traverse the local part of the
mesh by hopping to neighbours, independently of the space-filling curve.

The next step of our three-step process consists of solving numerical issues that arise when
actually making use of the spatial adaptivity. An example for such an issue is the speed of sound
in the lattice-Boltzmann fluid, which depends on the element size and the time step, and is
therefore no longer uniform for a locally refined mesh with a constant time step. A uniform
speed of sound can be recovered by using different time steps for differently refined parts of
the mesh. There are several ways to consistently implement this, e.g., using a finite-volume
approach [8], compact interpolation [9], or volumetric formulation [10].

As the final step, the application should be tuned by adapting both data access patterns and
grid-traversal to make full use of the locality provided by the data storage scheme.

The need to be able to traverse subregions in our grid efficiently in step one introduces two
requirements for the implementation of the grid library. First, we need random access to cells,
and secondly, we need to be able to compute cell positions in our linearised array (as it is given
by the space-filling curve) based on geometric coordinates. We will show that those two criteria
are met by the p4est mesh interface.

In the remainder of the paper, we present the software package ESPResSo together with a
short introduction to the implemented lattice-Boltzmann solver on regular Cartesian meshes
(Sect. 2), give an overview of the adaptive mesh software p4est (Sect. 3), a more detailed de-
scription of our contributions to both software packages establishing the first lattice-Boltzmann
prototype on tree-structured meshes with minimal changes in ESPResSo (Sect. 4), followed by
first results (Sect. 5) and a conclusion (Sect. 6).

2 ESPRESSO AND THE LATTICE-BOLTZMANN METHOD

2.1 ESPResSo

ESPResSo [1, 2], the extensible simulation package for research on soft matter systems, is
a molecular dynamics (MD) program that focuses on coarse grained soft matter applications.
While originally focused on the simulation of charged and uncharged polymers and colloids,
today it implements a wide range of algorithms [11] for electrostatics [12, 13, 14, 15, 16], di-
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electrics [17, 18, 19], magnetostatics [20] and hydrodynamics [11, 21], both for periodic and
non-periodic systems. Applications include, amongst others, engineering problems such as soot
aggregation [22], hydrogels [23], biological membranes [24], DNA like-charge attraction [25]
and translocation [26], and ionic liquids [27]. Aside from the plethora of implemented meth-
ods, the major strength of ESPResSo lies in its ability to flexibly combine different methods
and particle interactions to encompass new applications and systems quickly. ESPResSo is
MPI parallelized and can employ GPU acceleration for hydrodynamics [21] and electrostatics
calculations.

The regular mesh refinement currently used for continuum methods in ESPResSo hinders the
efficient exploitation of different scales in different regions of the simulation volume, such that
the generalisation to adaptively refined meshes is crucial for accurate simulations encompassing
experimentally relevant time scales.

2.2 Lattice-Boltzmann

Lattice-Boltzmann (LB) is a method for solving the Navier-Stokes equations and similar
partial differential equations, which was first proposed in the context of lattice gas automata.
It was later discovered that the lattice-Boltzmann equation can also formally be derived as
a discrete lattice approximation to the continuum Boltzmann equation for fluids, providing a
sound mathematical basis for the method [28]. Further analysis based on the Chapman-Enskog
expansion shows that the LB equation is equivalent to the full Navier-Stokes equations in the
limit of low Mach numbers. Dünweg and Ladd gave a comprehensive analysis of the LB method
and many of its extensions relevant to soft matter simulations in 2009 [29]. A good overview of
the state of the development and its possible applications were given by Succi, Sbragaglia, and
Ubertini in 2010 [30].

The LB equation is a discretisation of the Boltzmann equation. The Boltzmann equation
is defined in the seven-dimensional space with three spatial coordinates, three velocity or mo-
mentum components and time as independent variables and describes the time evolution of the
microscopic particle distribution. The lattice-Boltzmann method discretises the velocity space
with a finite number of discrete velocities ci and finite differences on a cubic grid in the three-
dimensional coordinate space. This results in the lattice-Boltzmann equation (LBE)

fi(r + ci∆t, t+∆t) = fi(r, t) +
∑
k

Lik {f eq
k − fk(r, t)}+Ψi , (1)

where fi denotes the densities of virtual particle populations assuming the velocity ci, and Ψi

models the density change of the population fi due to external forces. The discrete velocities
are chosen such that they transport particles from one lattice node to one of its neighbours in
one time step. Fig. 1 shows the widely used D3Q19 discretisation for the velocities with 19
velocity components associated to the centre of a three-dimensional cubic grid cell. We assume
linear relaxation towards the equilibrium distributions f eq

i , according to the linear operator Lik.
The macroscopic values for the density ρ, momentum p, and stress π can be recovered from

the microscopic particle populations through

ρ =
∑
i

fi, p =
∑
i

fici, π =
∑
i

fici ⊗ ci, (2)

where ⊗ denotes the tensor product. Using those, the lattice equilibrium distribution is given
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Figure 1: One cell from a D3Q19 LB grid, depicting the 19 discrete velocities, connecting the node with itself, its
nearest, and next nearest neighbours. Image adapted from [31].

(a) (b) (c) (d)
Figure 2: Schematic view of the collision and the streaming step. The arrows indicate the discrete velocities ci
in a two-dimensional quadratic grid cell scaled with the respective densities fi. (a) – (c): collision step. Left to
right: pre-collision populations, virtual local equilibrium, post-collision populations. (d): streaming step. Grey
arrows indicate the pre-streaming population in the centre cell, black arrows the same populations transported to
the respective neighbour cells, i.e., after the streaming step.

by a second order expansion of the continuum Maxwell-Boltzmann equilibrium distribution

f eq
i = aiρ

(
1 +

v · ci
c2s

+
(v · ci)2

2c4s
− v2

2c2s

)
, (3)

with prefactors ai and the speed of sound cs depending on the specific lattice geometry.
Algorithmically, performing a time step for the LBE (1) consists of two parts with different

requirements in terms of data access: Whereas the collision is a local operation modelling the
interaction of densities of different velocity within a local cell described by the operator Lik,
the streaming step transports densities into neighbouring cells according to the direction of
the respective velocity ci. Fig. 2 schematically shows the collision step as a purely cell-local
operation on population densities and the equilibrium densities. In addition, it displays the
streaming as a transport of data from one cell to its neighbour cells.

Collision. ESPResSo implicitly implements different versions of the collision operator: The
simplest choice for the collision operator Lik = λδik is the so-called BGK collision operator
(after the inventors Bhatnagar, Gross, and Krook) using only a single relaxation parameter λ
for all populations, which can be chosen such that the fluid assumes the desired shear viscosity.
Other fluid properties such as the bulk viscosity cannot be chosen independently. The full multi-
relaxation time LB method (MRT-LB) results in less limitations. Here one relaxes different
linear combinations mi of the velocity populations fi towards their equilibrium values using
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different relaxation rates λi. These linear combinations correspond to the different macroscopic
quantities. The MRT-LB forms a superset of the simpler collision operators, i.e. by choosing
the λi accordingly, the MRT collision operator can reproduce the simpler BGK and TRT (two
relaxation time) collision operators [32].

Streaming. In terms of streaming, it is important to note that, due to the requirement that
virtual particle populations are transported exactly from one cell midpoint to the midpoint of
the respective neighbour cell, the size of the time step ∆t is proportional to the side length of
the grid cells. This observation plays a major role in adaptively refined grids in Sect. 4.

By identifying nodes on the boundaries of the cubic grid with the corresponding nodes on
the opposite side, one can trivially implement periodic boundary conditions in the streaming
step. Other boundary conditions, such as fixed velocity or fixed pressure are more complex
to implement. For simplicity, we will only discuss no-slip boundary conditions here. Further
information can be found in [33]. One simple way to realise no-slip boundary conditions is by
introducing so-called bounce-back nodes in the grid. Instead of streaming populations along
their respective velocities, they reverse the velocities of the populations and transfer them back
to the originating node. This procedure mimics a fluid flow on the opposite side of the boundary,
which is antisymmetric to the real one. Due to the antisymmetry, the flow velocity on the
boundary needs to vanish.

2.3 Lattice-Boltzmann in ESPResSo

While ESPResSo is primarily a molecular dynamics code, it includes an implementation
of the multi-relaxation time D3Q19 lattice-Boltzmann method (MRT LB) [34], to solve the
fluctuating Navier-Stokes equations. This lattice-Boltzmann fluid can be point-coupled to MD
particles using the method published by Dünweg and Ladd [29]. The LB is MPI parallelized,
which is realised by domain decomposition and halo communication at the node boundaries.

3 PARALLEL ADAPTIVE TREE-STRUCTURED GRIDS AND P4EST

3.1 Parallel Tree-Structured Grids

Tree-structured Cartesian grids are a natural generalisation of regular Cartesian grids that
have two important advantages over unstructured meshes: 1) The shape of the grid elements
is the same as in a regular Cartesian mesh. Thus, the underlying discretisation of a solver
operating on a regular Cartesian mesh can be generalised to this type of adaptive grid by locally
incorporating interpolation and projection on hanging nodes and/or faces [35, 36, 37]. 2) The
grids are strictly structured, which allows for a very cheap representation in memory and for
efficient grid partitioning. The construction principle of a tree-structured grid is the recursive
refinement of grid cells into a fixed number of children of equal size and shape. If the refinement
is performed globally, we get a regular Cartesian mesh, if we refine only locally in certain
marked cells, we get an adaptively refined grid. Figure 3 shows a pair of two-dimensional
quadtree grids (refinement of each quad into four subquads) and their respective cell trees.

In order to provide a unique ordering of grid cells on all levels, discrete iterates of space-
filling-curves are widely used. There are space-filling curves for two-dimensional and for three-
dimensional tree-structured grids [38] (in fact, many generalise to arbitrary dimension) and for
different refinement strategies. Figure 4 shows the iterate of a Peano-curve in a two-dimensional
grid with a recursive refinement of grid cells into nine children, a Hilbert-curve iterate [39] in a
quadtree grid, and the Z-curve or Morton-order [40] in a quadtree grid.

The tree-structure in combination with a space-filling curve iterate allows for a very efficient
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Figure 3: Left: a regularly refined quadtree grid of refinement level two. Right: an adaptively refined quadtree
grid of minimal refinement level one and maximal refinement level three. In both cases, we also display the
corresponding tree structure.

Figure 4: Some exemplary space-filling curve iterates on grids with regular refinement of level two. Left: Peano-
curve; middle: Hilbert-curve; right: Z-curve or Morton-order.

linearised bit-code representation of the whole grid. This representation follows a depth-first
grid traversal with an ordering of children according to the chosen space-filling curve. A ’1’
indicates a refined cell, whereas a ’0’ represents an unrefined cell. Figure 5 shows a two-
dimensional adaptive quadtree mesh ordered according to the Z-curve together with the cell
tree and the linearised representation.

In scientific simulation software, the combination of tree-structured grids and space-filling
curves has been used in several ways, for example augmented by hashing [41], or for partial
differential equation solvers with cache-optimised data administration [42, 5]. Octor [43]
and Dendro [6] are two examples of parallel octree libraries that have been scaled to 62,000
[44] and 32,000 [45] cores, operating on parent-child pointers and a linearised octant storage,
respectively.

3.2 The p4est Software

The p4est software library [3] extends the linearised storage strategy to a forest of inter-
connected octrees [46, 47]. Figure 6 shows a forest of two trees as an example. p4est provides

1 0 0 0 01 0 0 1 0 0 11 0 0 0 00 0 0 0

Figure 5: Example for an adaptively refined quadtree grid with cell-ordering according to the Z-curve, the corre-
sponding cell-tree and the linearised bit-code.
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Figure 6: An example 2D forest of two adaptive quadtrees. It is partitioned into three processors (colour-coded).
Note that the partition boundary does not always coincide with a tree boundary and that the coordinate systems of
the trees can be rotated or mirrored relative to each other. This mesh is 2:1 balanced: Neighbour quadrants differ
in size by at most a factor of two. We use the terms quadrant/octant, leaf, and element as synonyms, since they are
logically equivalent.

a publicly available implementation of parallel algorithms required to create and dynamically
refine, coarsen, and repartition an adaptive mesh. Furthermore, p4est includes an efficient 2:1
balancing algorithm [48]. In our context, 2:1 balancing means that the refinement is graded in
such a way that it has a maximal level difference of one between adjacent grid cells. This fea-
ture limits the number of possible configurations of different-sized neighbours that can occur
with arbitrary adaptation. Some applications are designed not to use this feature [49], while we
exploit it in the lattice-Boltzmann code to maximise the simplicity of discretisation and time
stepping.
p4est manages the dynamic-adaptive connectivity of the mesh elements. It is a C library

using the MPI standard for parallelisation. The “root” or “coarse” mesh is a collection of tree
roots, each identified with its cubical subvolume of the domain, and augmented by the connec-
tivity relation between neighbouring trees. For many applications, it is sufficient to call builtin
functions that create a one-tree unit cube or a rectangular brick of a small number of trees.
The initial refinement of the forest is created by calling the New function with a given coarse
mesh and an initial level to create a uniform distributed mesh. The refinement and coarsening
functions can then be invoked any number of times to locally swap mesh elements with their
children and vice versa.
p4est uses the Morton curve to order the elements in each tree; see Figures 4 (right) and 6.

The code stores just the leaves of the forest by their lower left corner and refinement level and
operates on the mesh by exploiting the mathematical structure implicit in the curve. Refinement
and coarsening are local in the sense that a parent occupies the same segment in a curve as its
four (2D) or eight (3D) child elements. The Partition algorithm exploits this property to shift
the elements between processors without changing their order. Optionally, each element may
be assigned a weight to account for a varying computational load throughout the mesh.

The basic grid traversal component of p4est is the p4est iterate routine [50] that
visits all interfaces of local mesh cells across all co-dimensions. The user may define callback
functions separately for each co-dimension. Effectively, each mesh entity (cell, face, edge, or
corner) is visited exactly once, and the callback function is informed with a list of the mesh cells
adjacent to the visited entity. In this sense, the iterator provides a view of both the primal and
the dual mesh local to a process. Calling p4est iterate is the most general and lightweight
way to expose the mesh connectivity to applications, formulated exclusively in p4est’s en-
coding of mesh entities and their relative orientations.

Existing simulation codes often require direct (random) access to neighbours of cells or cor-
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ners, ideally in constant time. To meet this need, p4est provides the so-called p4est mesh
that we will shortly describe in more detail. In fact, we have chosen it as the central component
for the integration of p4est with ESPResSo.

The p4est mesh data structure consists of several lookup tables that store neighbourhood
information for each grid cell as well as level-wise cell lists. It covers all process-local cells
and the direct off-processor neighbour cells (ghosts). Thus, this module provides a way to
traverse the local partition of the grid independently of the space-filling curve and allows for
the evaluation of arbitrary stencils. However, this flexibility comes at the cost of additional
run-time (it is created by calling p4est iterate internally) and memory (the lookup tables
are allocated), cf. section 5.3. This overhead can be amortised if the mesh structure is queried
repeatedly, since each lookup only requires O(1) time. Information on a neighbouring cell is
encoded in two integers: The first stores the index of the neighbour cell in the global cell list of
the corresponding processor, the second stores the size and relative orientation of the neighbour
cell. The latter is important if the neighbour cell belongs to a different quadtree or octree, which
might have a different orientation. Due to the 2:1 balancing that we invoke, there are only three
different cases: the neighbour of a cell can have the same size or be either twice or half as big.
In the latter case, we store the indices of all smaller neighbours in the respective direction.

In summary, p4est provides a concise set of parallel AMR algorithms that are tailored
to dynamic-adaptive PDE solution, but can also be used more generally whenever an efficient
parallel space partition is required. p4est has been shown to scale to over 458k cores [50],
with applications using it successfully on 1.57M cores [51] and 3.14M cores [52].

4 LBM ON SPATIALLY-ADAPTIVE GRIDS

In this section, we present the exchange of the regular Cartesian grid in ESPResSo by a
dynamically-adaptive tree-structured grid provided by p4est. In Section 4.1, the underly-
ing ideas of the lattice-Boltzmann solver on tree-structured grids are introduced. This includes,
in particular, the realisation of collision and streaming, as well as the adaptive time stepping at
boundaries between different spatial refinement levels of the octree grid. These discretisation
details, together with the velocity discretisation scheme, define the neighbour cells that need
to be made accessible in the p4est mesh. The adaptations to p4est, including the gen-
eration of the p4est mesh for our adaptive lattice-Boltzmann implementation is outlined in
Section 4.2, whereas Section 4.3 sketches the changes in ESPResSo that were required for the
replacement of the original grid implementation by the p4est grid.

4.1 Adaptive Formulation of the LBM

In order to cope with different mesh widths over the computational domain imposed by spa-
tial adaptivity, the classical algorithm of the LBM needs to be extended. We use the collision
operator independent scheme proposed by Rohde, Kandhai, Derksen, and van den Akker in
2006 [53]. The scheme proposes a volumetric formulation of the LBM, i.e., the nodes contain-
ing the populations are associated to the cell centres.

The algorithm consists of several steps that are shown schematically in Fig. 7 for a part of
the mesh consisting of a coarse grid cell and a further refined neighbour cell with four children.
Outward facing arrows indicate streaming, inward facing arrows collision. The steps of the
algorithm result from two basic observations: 1) Due to the proportionality of the time step
to the cell width, we have to perform two time steps in the smaller cells, while performing
only one (twice as large) time step in the coarser cell. We will use the optional feature of
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coarse fine
Mesh width ∆x ∆xc ∆xf = 0.5 ·∆xc

Time step ∆t ∆tc ∆tf = 0.5 ·∆tc
Lattice velocities ci ci,c ci,f = ci,c
Viscosity ν νc νf = νc
Relaxation parameter λ (BGK) λc λf = 2.5 · λc + 0.5
Velocity u uc uf

External acceleration/force g gc gf = 0.5 · gc
Table 1: Conversion of parameters and observables between fine and coarse cells for 2:1 balanced grids according
to [53].

p4est partition to assign different weights to the leaves for load balancing. 2) Streaming
populations from the finer grid cells into the coarse cell and vice versa requires populations
associated to a common grid level. Thus, we have to interpolate populations of the coarse
cell to virtual child cell populations before the streaming step and restrict the results back to the
coarse cell after the second time step of the fine cells. Additionally, some fluid properties differ
between different discretisation widths as shown in Table 1.

Step 1 in Fig. 7 depicts the collision on both coarse and fine cells for the discussed example
situation. After this collision, we provide streaming partners for the finer cells by copying the
coarse cell populations to four (2D) or eight (3D) virtual child cells (step 2). Then a streaming
step can be performed on both the virtual and the original fine grid cells (step 3). Note that in
the virtual fine cells, only populations associated to velocities pointing towards the original fine
grid cells actually have to be streamed. In step 4a, the second collision step in the original fine
cells is executed, followed by the second fine grid streaming step (step 4b). Finally, we transfer
the virtual fine grid populations back to the coarse grid by taking the arithmetic mean, and finish
the coarse grid time step with the streaming of the coarse grid populations whose velocities
point towards other coarse cells. Note that, in a more general case without 2:1 balancing, we
would have to perform more substeps on the fine grid cells before returning to the coarse level.

The generalisation of the presented adaptive lattice-Boltzmann algorithm to three-dimen-
sional 2:1 balanced octree grids is, in principle, straight-forward. If we summarise the require-
ments for the octree mesh stemming from the adaptive LBM, we can state that the p4est mesh
has to provide direct access to the 18 neighbour cells corresponding to the 19 velocity directions
minus the zero velocity in the D3Q19 LBM (compare Fig. 1). In addition, we have to implement
the realisation of the virtual fine grid cells in p4est, a feature that was not available previously.

4.2 Preparing p4est for adaptive lattice-Boltzmann

As mentioned above, two aspects in p4est are crucial for a successful and minimally-
invasive integration of the p4est grid in the lattice-Boltzmann solver in ESPResSo: the provi-
sion of the required neighbour cells in p4est mesh and the implementation of virtual children
of grid cells neighbouring a further refined region. In this section, we describe the generation
of the p4est mesh in more detail and briefly sketch the implementation of virtual refinement.
p4est mesh. The first issue in generating the p4est mesh (during a grid traversal using

p4est iterate) is to identify the neighbours actually required by the LBM among the infor-
mation that can be generated with p4est callback functions for neighbour detection of faces,
edges and corners. The iterator provides a top-view on each element of each co-dimension, i.e.,
two adjacent cells for faces, four for edges, and eight for corners. In an adaptive mesh, the in-
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Figure 7: Collision operator independent extension to the algorithm of the LBM to spatially adaptive Cartesian
grids as proposed by [53]. 1. Collision on coarse and fine grid. 2. Homogeneous redistribution of populations
from coarse to fine grid. 3. Streaming step on virtual fine and fine grid. 4a. Collision step in fine grid. 4b.
Streaming step on virtual fine and fine grid. 5. Homogeneous redistribution of populations from virtual fine to
coarse grid. Note that steps 4a and 4b are only performed once due to the 2:1 balancing constraint.
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Figure 8: Naming scheme of faces, edges, and corners in p4est.

terface may be hanging and may have one side consisting of four small faces instead of one,
or two small edges instead of one. We display two possible situations in Figure 9. We have to
combine this information to end up with the list of the 18 neighbours required in the D3Q19
LBM, which means that we have to eliminate face neighbours from the edge neighbour list and
face and edge neighbours from the corner neighbour list. The Z-curve allows for a very sim-
ple and efficient calculation of the Morton-index of neighbour cells. However, since the grid
is adaptively refined, the Morton index is not the same as the position in the actual cell list.
Therefore, neighbour cells are detected via a recursive divide-and-conquer algorithm operating
on the cell list1. p4est uses a fixed naming scheme for faces, edges and corners of a cell as
displayed in Figure 8. This helps to reduce the costs for the neighbour search by allowing us to
fill the neighbour lookup tables pairwise for neighbour cells within the same tree using a simple
mechanism based on XOR to determine the naming of the respective face, edge or corner in the
considered partner cell.

For the detection of neighbours across boundaries between different octrees, the relative
orientation of the involved octrees has to be taken into account. Figure 9 shows two examples
for such situations. We observe that, in this case, even the number of neighbours of an edge
or corner can take any value. However, for our LBM, only rectangular meshes are envisioned
such that at least this latter issue does not occur. As different trees may have different local
coordinate systems we cannot know beforehand which edge or corner index the diagonally
opposite element will have. The orientation and the index of a neighbouring tree can be retrieved
from the p4est connectivity, which represents the macroscopic structure of the grid, i.e.,
the way that the different octrees are arranged relative to each other. With this, we calculate the
edge or corner indices of neighbours using a transformation.

In order to transform the index of a corner from the perspective of one tree to the perspective
of another across a face, a transformation was proposed in [3] that only needs the face indices
of the common face from both perspectives (fi, fj), the relative orientation (r) of the two octree
faces and the respective face corner ξi. A local Morton order is imposed on the corners of each
face by enumerating all four in ascending order w.r.t. p4est’s naming scheme. Then the face

1p4est works with an optimised binary search that recursively splits the list of the leaf cells covered by a
branch of the octree into eight sublists, one for each child branch, during the top-down depth-first tree traversal in
p4est iterate [50]. This function also identifies neighbours of different sizes created by adaptation.
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•

Figure 9: Exemplary multiple tree scenarios to find edge or corner neighbours for each cell. Each tree is drawn in
a different colour. The element over which neighbours are to be found is marked in red.

corner number ξj viewed from the adjacent octree is given by the permutation

ξj = Pc(Qc(Rc(fi, fj), r), ξi) ≡ ξj(ξi) (4)

with

Rc =


0 1 1 0 0 1
2 0 0 1 1 0
2 0 0 1 1 0
0 2 2 0 0 1
0 2 2 0 0 1
2 0 0 2 2 0

 Qc =

1 2 5 6
0 3 4 7
0 4 3 7

 Pc =



0 1 2 3
0 2 1 3
1 0 3 2
1 3 0 2
2 0 3 1
2 3 0 1
3 1 2 0
3 2 1 0


. (5)

The permutations of the face corners listed in the rows of Pc correspond to the 2 × 4 elements
of the dihedral group of face orientations. The matrices Rc and Qc are designed to choose the
correct one in a non-redundant way (using 0-based indexing).

To extend this logic to edges, we propose a similar transformation. In addition to the already
defined face corners ξi, we define face edges νi in the same way, i.e. by enumerating the edges
spanning a face in ascending (Morton-)order. Then each face edge is enclosed by two face
corners that can be written as rows of

Ξi =


0 2
1 3
0 1
2 3

 . (6)

We can thus infer the edge corners seen from the adjacent tree by the element-wise application
of (4),

Ξj(νi, k) = ξj (Ξi(νi, k)) , k = 0, 1. (7)

Using (6) in reverse, the resulting two face corners can be identified one-to-one with the face
edge’s number seen from the other tree. We can condense this process into the form used earlier
by writing the edge transformation

νj = Pe(Qe(Re(fi, fj), r), νi) ≡ νj(νi) (8)
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with

Re =


0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 1 1 0
0 1 1 0 0 1
0 1 1 0 0 1
1 0 0 1 1 0

 Qe =

(
4 1 2 7
0 6 5 3

)
Pe =



0 1 2 3
0 1 3 2
1 0 2 3
1 0 3 2
2 3 0 1
2 3 1 0
3 2 0 1
3 2 1 0


. (9)

The two permutations (4) and (11) allow excluding face neighbouring cells when creating
edges and corner lookup tables and are sufficient for our D3Q19 LBM.

To complete p4est mesh we additionally have to exclude edge neighbours, when the cor-
ner lookup table is created. We define edge corners µi, analog to face corners ξi and face
edges νi. It has to be noted that in this case the relative orientation is no longer between two
faces but between two edges. Thus, we will distinguish the relative orientation between two
edges from the relative orientation between two faces by denoting the former by s. In case
of two faces only two cases have to be distinguished instead of four, because edges can either
face the same or the opposite direction. Again, this information can be derived from the face
corner transformation. Inspecting (5) and (7), we see that some transformations will lead to two
ascending edge corner numbers and others to descending ones. In the latter case the edge is
flipped when going between the two trees and the edge corners must be permuted.

To determine s for each edge neighbour we consider all three edges that contain the corner
across which we want to find neighbours separately. Beginning with the current cell, we set the
relative orientation s = 0. Then we can iterate over the two faces adjacent to the respective
edge into the next cell. One of the two faces we do not have to consider, because it is the face
across which we entered the cell. The relative orientation of the edge s in the face neighbouring
cell is determined using (10).

snew = (sold + (Ps(Qs(Rs(fi, fj), r), νi))) mod 2 (10)

with

Rs = Re Qs =

(
0 2 1 3
0 1 2 3

)
Ps =


0 0 0 0
0 0 1 1
1 1 0 0
1 1 1 1

 . (11)

To map edge corners from one octree to the other we can apply the transformation

µj = Pec(Qec(r), µi) (12)

with

Qec =
(
0 1

)
Pec =

(
0 1
1 0

)
. (13)

In the implementation, the relative orientation s does not need to be calculated separately for
each edge neighbour. Instead, s is stored inside of p4est connectivity. This redundancy
facilitates creating p4est mesh, because the above transformation can be applied directly.

Summarising, the first permutation from [3] allows removing the face neighbours when set-
ting up the lookup table for corner neighbours, while the third permutation allows to omit edge
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neighbours in that case. The second permutation is used to remove face neighbours when set-
ting up edge neighbour lookup tables.

Virtual refinements. Our adaptive LBM algorithm requires to persistently store the popula-
tions within virtually embedded cells over multiple grid traversals to restrict their results back
to the coarse cell after two smaller time steps on the fine grid. Therefore, we have to store their
data additionally to the data of the original coarse cell. This leads to two obvious options con-
sidering the question which cells we store in the list of octree leaf quadrants. 1) We store the
virtual fine cells as part of the leaf list and create the parent cell as a virtual cell or 2) we store
the coarse cell and create four (2D) or eight (3D) virtual fine cells. We choose the latter solution
and store the virtual cells in Morton order using a modified version of the p4est children
inside p4est mesh, creating them simultaneously with the lookup tables. This algorithm dif-
fers from a standard refinement step only in the sense that the resulting quadrants are not stored
within the list of leaf quadrants and that the parent quadrant is not discarded. This allows in-
tegrating virtual cells into an existing application in a completely transparent way, hiding the
whole process from the application via abstraction in the neighbour lookup. Furthermore, we
can account for the increased load of those cells that contain virtual children by modifying the
weight passed to the partition function [3].

4.3 Minimally-Invasive Integration of p4est with ESPResSo

As a very general change that is not directly related to grid adaptivity, we wrote some addi-
tional callbacks such that the manager node can call the slave nodes to perform the respective
distributed routines of p4est for initialising, traversing or deallocating a grid. This enables
p4est, which is designed as a fully distributed library, to work with ESPResSo, which uses a
manager/worker architecture. In case of a manager/worker architecture the system is controlled
by one or more manager nodes which distribute the work among the worker nodes. Note, that
the number of worker nodes is generally significantly bigger than the number of manager nodes.
In case of a fully distributed architecture all nodes are equal and have to agree on distribution
of the workload. Therefore, a manager/worker scheme avoids solving some (either implicit or
explicit) consensus problems at the cost of a reduced fault tolerance.

Besides that, the actual changes that were made to ESPResSo for integrating p4est were
fairly small. We changed the storage scheme and the grid-traversal from the classical lexico-
graphic ordering to an ordering along the space-filling curve. Cell-local functions, a category
in which in case of the LBM all algorithmic steps belong except from the streaming step, could
be preserved the way they were. We only changed the function headers to make the respective
functions callable as volume callback function using p4est iterate and, for efficiency rea-
sons, changed the data layout from a propagation optimised storage scheme to a collision op-
timised data scheme, cf. [54]. In a collision optimised data layout, all populations of a cell are
grouped locally in memory, i.e., the memory contains N × Q populations. On the other hand,
in a population optimised data layout all cells of a lattice velocity ci are grouped locally such
that Q × N populations are stored. Both data layout schemes are illustrated in Fig. 10. The
reason for switching the data layout is that, in case of dynamic refining and coarsening, we have
to shift data in a collision optimised scheme once to preserve data locality as it is given by the
space-filling curve. In a propagation optimised scheme, we have to shift data Q times, i.e., in
our case 19 times. The remainder of the code was preserved.

For functions requiring access to neighbouring cell data, which in case of the LBM is the
streaming step, we changed the header such that the function is callable as a volume callback
function using p4est iterate. Neighbour data are accessed using the lookup tables as they
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Figure 10: Comparison of different data layout schemes for the LBM. The highlighted black rectangle shows
which data have to be loaded for the collision step in the first cell. The upper half shows the propagation optimised
data layout which requires more cache lines to be read for the collision step. The lower half of the figure shows
the collision optimised data layout. Image adapted from [33].

are provided by p4est mesh instead of performing classical index calculations in the regular
grid’s (i, j, k)-indexing scheme. To hide the complexity of the different tables from the user, we
extended the p4est mesh module by a function returning a list of pointers to the respective
neighbouring quadrants as well as a list of encodings specifying the meta information contained
in the mesh.

Moreover, p4est iterate does only visit local quadrants, specifically it does not visit
ghost quadrants in the parallel domain partitioned version. That means we do not perform a
collision step in the ghost layer but we perform an additional communication step after the
collision step. This is motivated by a more rigorous understanding of ownership of quadrants:
the data of a quadrant is only written by the process that logically owns this quadrant. Following
to this idea and in order to perform correct streaming steps at process boundaries, the streaming
and the bounce back step (at boundaries) have been slightly adapted as shown in Fig. 11. In
case that a neighbouring cell is part of the ghost layer we mirror the streaming step. Instead
of streaming populations from the current cell into the ghost cell, we do the inverse streaming
operation (for the inverse lattice velocity) from the ghost cell into the current cell.

While the complete integration of spatial adaptivity is not yet finished, the mesh is already
prepared for saving virtual quadrants. To achieve full dynamical adaptivity, we will change the
grid traversal to level-wise traversals matching the time-adaptive algorithm outlined in 4.1 and
Fig. 7 instead of traversing the entire grid while explicitly omitting all cells of different levels.

5 RESULTS

To test our integration we performed some tests on a shared memory machine with 72 phys-
ical cores (Intel R© Xeon R© CPU E7-8880 @2.30GHz) and 512 GB RAM. In 5.1, we compare
our new p4est grid using a regular discretisation to the existing regular grid. To mimic spa-
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streaming of
inverse compo-
nent from ghost
cell

regular
streaming

Figure 11: Illustration of the streaming step at neighbouring cells from the ghost layer (grey). Instead of streaming
from the local cell into the ghost cell (red) we perform the inverse streaming step from the ghost cell to the current
cell (blue).

Figure 12: Geometry of the considered Poiseuille flow scenario. Note that the channel is not cylindrical but
extruded to better match with the unit hypercube.

tial adaptivity in terms of realistic run-time, we do not use the information that the actually
used grid is regularly refined and constant over time. Instead, we reconstruct the entries of
p4est ghost and p4est mesh in each time step. In 5.2, we analyse the additional costs of
this choice, i.e., the time it takes to create both structures. The section is concluded by compar-
ing the run-time for traversing the grid using p4est iterate and p4est mesh in 5.3.

5.1 Run-time of LBM on Different Grids

To test our integration, we performed some scalability tests for a simple Poiseuille flow
scenario as it is shown in Fig. 12. Note that the channel was not rotated to a cylindrical shape
but that it has been extruded to the size of the unit cube, thus containing more fluid and fewer
obstacle cells compared to a cylindrical channel.

We compared our p4est based implementation using a regularly refined octree and a col-
lision optimised data layout to the existing regular grid with lexicographic cell-ordering us-
ing a propagation optimised data layout. For simulating the run-time effects of dynamic grid
adaptivity, we did not use the information that we have both a constant layer of ghost cells
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NUPS p4est NUPS regular grid
Proc Level 4 Level 5 Level 6 Level 7 Level 8 Level 4 Level 5 Level 6 Level 7 Level 8

16 1,323.85 2,824.1 3,621.2 4,044.3 4,300.2 2,185.7 9,019.6 11,083.8 13,934.5 13,867.5
32 1,411.93 4,567.6 6,450.7 7,513.4 8,294.2 2,200.96 11,583 21,357.7 23,125 27,104
64 1,422.23 6,261.7 9,461.7 13,600.2 15,498.8 1,895.42 11,279.9 36,880 39,871 46,580

Table 2: Comparison of lattice-Boltzmann run-times using the p4est grid with existing regular grids on various
discretisation levels for an increasing number of MPI processes in NUPS (node updates per second).
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Figure 13: Comparing the run-time for 1, 000 time-steps of the LBM on various discretisation levels using the
existing regular grid and the newly integrated p4est grid for an increasing number of processes (left). On the
right we show the relative factor that our implementation is slower.

and a constant neighbourhood. Instead, we discarded and re-created the information about the
ghost layer in p4est ghost as well as the lookup tables for the neighbouring information in
p4est mesh in each time step. The overhead of dynamical grid adaptivity was bound by a
factor of 4 as shown in Table 2 and Fig. 13. We therefore could prove, that even in a worst case
scenario, where the grid would be allowed to change in every fine time step, the performance
of the adaptive grid does not degrade compared to an optimised regular grid. Note that this is
true in spite of using a data layout that is known to reduce the performance of a regular dis-
cretisation and despite performing additional grid traversals for rebuilding p4est ghost and
p4est mesh. We use the collision optimised data layout, because it will reduce the amount
of data that has to be transferred in case of dynamic spatial adaptivity, cf. 4.3. The impact on
performance for the different data layouts in case of a regular grid is described in [54].

Further optimisations reusing the overhead are to be done in the future. E.g., by restricting
the grid adaptivity to the end of the coarsest time steps, we can omit rebuilding the information
of p4est ghost and p4est mesh during the smaller time steps of the smaller cells.

5.2 Creating p4est ghost and p4est mesh

Building the information of neighbourhood and ghost cells in case of a regular grid can be
done in constant time using simple index calculations. In case of a dynamically-adaptive grid,
this process is more challenging. A comparison between creating the ghost layer and accessing
neighbours in case of regular and octree-based grids is schematically shown in Fig. 14. To
investigate the overhead of the more complicated ghost layer as well as the creation of lookup
tables for the neighbourhood information, we performed run-time and scalability experiments
using our regularly refined grids within p4est for the Poiseuille flow scenario.

We measured the run-time for creating both, p4est mesh and p4est ghost using a
single octree with periodic boundaries for different discretisation levels and a varying number
of processes. Both, ghost information and lookup tables have only been created for faces and
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Figure 14: Differences in the structure and calculation of ghost layers and neighbour in formation in a regular grid
versus a spatially adaptive grid.
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Figure 15: Left: run-times for creating p4est ghost; right: run-times for creating p4est mesh for a regularly
refined grid on various discretisation levels for an increasing number of processes.

edges, i.e., no information about corner neighbours was gathered as this is not required by the
D3Q19 lattice-Boltzmann method. The results are shown in Fig. 15. Note that the volume
to surface ratio is low in the grid of level 4 which limits the scalability for creating the ghost
information.

5.3 Run-Times of Grid Traversals

To compare the computational costs of traversing the grid in the streamlined and optimised
way using p4est iterate and the more flexible p4est mesh we applied some stencil
operations similar to the one used by the D3Q19 LBM. Again, we investigated the run-time
for traversing a regularly discretised p4est based grid with periodic boundary conditions once
while accessing all nearest and next-nearest neighbours. We varied both, discretisation level
and number of processes. The results are shown in Fig. 16. We observe that traversing the
grid using p4est mesh is on average a factor of 2 slower than using p4est iterate. This
represents in a sense the price we pay for the minimal-invasiveness, in particular for being able
to preserve the existing grid traversal logic and the direct neighbour access in ESPResSo. Note
that on discretisation level four there is only a very limited number of quads associated to each
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Figure 16: Comparison of the run-times of a grid traversal. Top left: using the highly optimised p4est iterate;
top right: using the much more flexible p4est mesh; bottom: relative overhead of p4est mesh compared to
p4est iterate. In both cases, we traverse a regularly refined grid using an increasing number of processes.

processing node such that in both cases the run-time was less than a microsecond.

6 CONCLUSION AND OUTLOOK

With the combination of ESPResSo and p4est, we have prepared a powerful implementa-
tion of a lattice-Boltzmann solver on adaptively refined octree grids. We are not the first group
setting up such a solver. However, there are a few major differences to other approaches: [55]
and [56] both implement the lattice-Boltzmann method on top of a highly optimised octree
grid implementation. I.e., the solver itself had to be developed more or less from scratch in
a way that is adapted to the grid structure and its specific memory-optimal traversal in the
Peano framework [57] or waLBerla [58]. Also, [56] provides a solver on statically adaptive
meshes, which allows for much more sophisticated solutions in terms of run-time optimisation
per core and on massively parallel hardware. In contrast, we focus on full dynamical adaptivity
as required by the physical systems simulated with ESPResSo, where regions with high refine-
ment requirements move with particles or molecules immersed in the flow. In addition, the task
was to port the full lattice-Boltzmann functionality in ESPResSo to the new grid type with only
minimal changes to the code.

Our results show that p4est is well-suited for minimally-invasive integration of an octree-
based grid into existing applications. Some changes in the code of the existing application are
necessary, as at least the additional numerical features at boundaries between different refine-
ment levels have to be developed from scratch and i, j, k-loops have to be exchanged by more
general variants. However, most of the core code can be preserved. Even in worst-case tests
where we assumed full dynamical adaptivity in every fine grid time step, we observe good per-
formance and scalability. The flexibility and minimal invasiveness of the p4est mesh comes
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with an acceptable overhead when compared to specialised versions such as [58, 57].
In the future, we intend to tackle complex real world applications using the new solver. Sce-

narios that we expect to clearly benefit from spatial and time adaptivity are, e.g., the translo-
cation of DNA through a nanopore [59] or the filtering of dust particles in charged cabin air
filters [60]. To actually be able to handle these scenarios efficiently, the most important steps to
be taken are: 1) the full implementation of the virtual cell functionalities at refinement bound-
aries; 2) the adaption of the iterations to level-wise iterations accounting for the natural time-
adaptivity of the LBM; 3) the development of a suitable weighting concept for octree cells on
different tree levels, accounting for the different time-step sizes and possible overhead at par-
tition boundaries in the dynamical load-balancing of p4est; 4) the coupling of electrostatics,
electrokinetics, and the molecular dynamics modules of ESPResSo to the lattice-Boltzmann
solver; 5) the further optimisation of the p4est mesh and its generation.
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Abstract. In fictitious domain and extended finite element methods, elements cut by boundaries
or interfaces are frequently present. They pose challenges with respect to the application of
boundary and interface conditions, numerical integration, and the conditioning of the system
of equations. A different path is the automatic decomposition of cut elements into smaller, con-
forming finite elements. Herein, we propose a concept for the automatic decomposition of ele-
ments cut by (curved) NURBS which automatically generates higher-order Lagrange elements
on the two sides of the interfaces. The NURBS data, defining boundaries and interfaces in two
dimensions, is converted into implicit level-set data by evaluating signed distance computations
at all nodes in the background mesh. Based on the findings in [1] this data is then used for the
decomposition into sub-elements. First numerical results are achieved as a proof-of-concept.
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1 INTRODUCTION

Within the scientific community of numerical engineering, recently efforts are made to in-
cooperate exact geometry definitions delivered from designers. The reasons for including the
exact geometry definition are due to the tighter integration of simulation tools within design
software. However, also problems sensitive to the geometry, such as buckling of shells or in
fluid mechanics can benefit.

An effort almost as old as the finite element method itself is the automatic generation of
meshes suitable for simulations. While proven meshing approaches are available for some time
now (see [2] for an historic overview), in practice, generated meshes are often manually re-
worked by the user. This intervention, however, is often a problem because the link to the
original geometry description is lost, which makes automatic mesh re-generation as in refine-
ment or in moving interface problems difficult.

Also classic mesh triangulation is time consuming and yields a high number of nodes if com-
plex boundaries or interfaces have to be discretized with high accuracy. These two problems
are tackled by a number of methods that do not capture boundaries explicitly in terms of ele-
ment edges. This allows the use of a structured background mesh with a wealth of potential
speedups in computation time (e.g. constant Jacobians). The trade-off is that elements from the
background mesh intersected by a boundary or interface require special treatments.

The kind of treatment of cut elements is what the methods differ in. For example, in the
extended Finite Element Method (XFEM) [3], the approximation space is enriched by additional
shape functions tailored to capture discontinuities across interfaces. Thereby cut elements yield
additional degrees of freedom and customized integration schemes are required.

Another class of methods which naturally involve elements cut by interfaces are immersed
boundary methods [4, 5]. The ‘interface’ is then rather the boundary of the domain and, herein,
we do no longer distinguish between interfaces and boundaries. These methods embed the
original domain into a much simpler, usually rectangular, domain spanned by the background
mesh. The methods of this class differ in the treatment of boundary conditions, numerical
integration and conditioning issues in the resulting system of equations.

A different approach to handle these intersected elements is to decompose them into sub-
elements that conform to the boundary or interface and is referred to as the Conformal Decom-
position FEM (CDFEM) in [6]. The advantage of their approach is that new nodes are being
introduced to the mesh alongside the interface, which makes the application of boundary con-
ditions trivial. However it also becomes necessary to modify the mesh and to (at least partially)
give up the advantages of the structured background mesh. So far conformal decomposition has
only been reported using linear elements for reconstruction.

Herein, we are concerned with the extension to higher-order accuracy. The interfaces are
defined by NURBS in the beginning. This information is converted into implicit level-set data
by performing signed-distance computations. Then, based on the approach in [1] elements cut
by the zero-level set are automatically decomposed into sub-elements.

2 TOWARDS A HIGHER-ORDER CONFORMAL DECOMPOSITION METHOD

The aim is to develop a higher-order accurate CDFEM, which uses NURBS for the definition
of interfaces. NURBS are able to represent all surface types common in engineering exactly.

The main part of the paper deals with converting the NURBS into level-set data by evaluating
distances of nodes in the background mesh to the NURBS. Then, the approach in [1] is used to
generate the sub-elements in cut background elements.
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2.1 Level Set Method

For implicit interface descriptions, the level set method [7] is frequently used. In this frame-
work interfaces Γ can be described as the zero-isoline of a scalar function φ(x), i.e.

Γ = {x | φ(x) = 0}, (1)

where x describes arbitrary points in space and φ typically is the shortest distance from x to Γ
multiplied by a sign to denote the side of Γ where x lies. In its discrete form, used for numerical
analysis, values for φ are usually stored at the mesh nodes, that is, for every node in the mesh
the distance to Γ needs to be computed. In between the nodes, level set values are interpolated
based on the shape function of the background mesh.

2.2 Non-Uniform Rational B-Splines

Non-Uniform Rational B-Splines (NURBS) can be seen as B-Splines projected onto a pro-
jective plane. This is what allows them to represent arcs and conic sections exactly. B-Splines
are a generalization of Beziér curves, which again are a linear combination of Bernstein poly-
nomials. A NURBS curve, often also denoted as univariate NURBS is defined in [8] as

C(u) =

∑n
i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

u0 < u < um u ∈ R

where Pi are the control points, wi the associated weights and Ni,p(u) B-Spline basis functions,
which can be defined in their recursive form:

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

Ni,0(u) =

{
1 ui < u < ui+1

0 otherwise

Associated with this is the non-decreasing sequence of U = {u0, . . . , um} called the knot vector
with m = n + p + 1. It is common to repeat u0 and um with a multiplicity of p + 1 to ensure
the endpoints of the curve are interpolatory with the corresponding control points. The linear
connection of the ordered Pi is referred to as the control polygon. Properties of NURBS and
Beziér curves include:

• endpoints are interpolatory, ie C(u0) = P0 and C(um) = Pn

• strong convex hull property: for u ∈ [ui, ui+p) will be inside the convex hull H spanned
by the control points Pi−1 . . .Pi. For Beziér curves this holds for the whole curve.

3 SIGNED MINIMAL DISTANCE TO NURBS CURVES

The signed, minimal distance function defines the shortest Euclidean distance from a test
point pt to a given curve C(u) and can be written as

φ(p) = min(‖C(u)− p‖)) · s (2)

with
s = sign(〈C(u)− pt,nC(u)〉. (3)
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where ‖ · ‖ denotes the Euclidean norm, 〈·, ·〉 the dot product, nC(u) the normal vector of C(u)
and

min(‖C(u)− pt‖) = ‖C(u∗)− pt‖ (4)

with the criterion for the projection point pp = C(u∗) to pt

〈C(u∗)− pt,C,u(u
∗)〉 = 0 ⇐⇒ ‖C(u)− pt‖,u = 0. (5)

Note that for the criteria in (5) a unique solution is not guaranteed. If no solution exists, pp
must be one of the curve’s endpoints (C(u0) or C(um)). This case can be handled quite easily.
In order to find all u∗ that can lead to the solution of (4), tailored root finding algorithms have
been developed by the authors and others.

3.1 Root finding algorithms

3.1.1 Literature review

For arbitrary polynomial orders p, there is no closed form solution to (5). A common ap-
proach is to solve the equation iteratively via a Newton-Raphson iteration scheme as in

u∗k+1 = u∗k ·
‖C(u∗k)− pt‖,u
‖C(u∗k)− pt‖,uu

. (6)

It is well known, that the iteration will only converge for start values close to the actual
solution of (5). Therefore a major task is to find start values Uk = {u∗0} such that ultimately the
shortest distance to the NURBS is found. It is noted that depending on the NURBS, several local
minimal of (5) may exist. Hence, different start values may lead to different converged solutions
of (5). It is, therefore, not a trivial task to define suitable start values. In the CADG community
the following procedure has emerged: Decompose the NURBS into a set of (projective) Beziér
segments, drop segments that can not contain the projection point, refine remaining segments
and repeat with the refinement and dropping procedure until a certain exit criterion is reached.

Refinement: Apart from splitting the Beziér curves, in [9] the Beziér curves are further
divided into simple (i.e. without a self crossing control polygon) and convex curves.

Culling: In order to reduce the number of Beziér curves, in [10] and [11] simplifications
of the Beziér curves’ convex hull property and interpolation property are employed: Segments
with a distance min(‖pt − H‖) > min(‖pt − C({u0, um})‖ can be dropped because they can
not contain the solution.

Stopping criterion: The stopping criterion proposed in [9] checks if the remaining segments
are ‘flat’ enough to be approximated as a straight line. If so, the test point will be projected on
that line to get a start value u∗k. This, however, is not a sufficient criterion to guarantee only one
root of (5) and so far only one sufficient criterion has been reported in [12]. However, it is not
trivial to implement and only covers curves in R2.

3.1.2 Implementation

Herein an algorithm is proposed that is tailored towards the reliable computation of φ(pt) for
a larger number of test points and which can be extended easily to surfaces in R3. The algorithm
is outlined as follows:

1. Evaluate NURBS ‘often enough’ at parameters uj , so that there is not more than one
solution of (5) in between each interval.
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2. Determine dj = d(uj) = ‖C(uj)− pt‖ for each uj

3. Using piecewise linear interpolation of the discrete distance function dj find its roots.
This yields starting points u∗j for the NR-iteration.

4. Using the NR-Iteration scheme (6), improve all u∗j to get all u∗ that fulfill (5).

5. Evaluate distance for all C(u∗) and the endpoints of C(u) and finally,

6. return φ(pt).

The question of ‘how often is often enough’ to capture all roots for (5) extensively using
randomly generated curves and test points has been studied. The solutions were compared
against a brute force algorithm, that iteratively subdivided the NURBS into a polygon until the
projection point was determined up to a defined precision.

Figure 1: On the right hand curve the middle weight
(w1/w0 = 5) is decreasing the uniformity of the
otherwise equally (alongside u) spaced dots.

Figure 2: A curve used to validate our algorithm
and showing shortest distance from gridded test
points.

To arrive at the start values uk for the bisection we subdivide the interval spanned by the knot
vector by a factor ψ = ψp · ψw,i that is different for each interval of the knot vector U . It is
based on a base subdivision

ψp = 2p+ 1 (7)

and a factor
ψw,i =

wi
min({w})

(8)

to account for the ‘distortion effect’ (see Fig. 1) caused by the weights wi. Note that ψw,i only
affects the knot spans in [i, . . . , i+ p− 1].

Although this approach leads to a high number of evaluation points on the NURBS, it pays
off when φ needs to be computed for a high number of test points (i.e. nodes in the mesh).
Because in that case the computationally expensive NURBS evaluations is independent from
pt and hence needs to be done only once for each curve. There is even a further potential
of avoiding NURBS evaluations. If one is only interested in φ (and not for example pp or
derivatives of φ) then the result of the bisection part can be evaluated directly without the need
of a Newton-Raphson iteration. That is because the point found by the bisection is already very
close to the exact solution and the curve’s tangent is (almost) normal to the vector between pt
and pP .
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3.2 Extension to Multiple Curves

Interface descriptions may consist of multiple NURBS. It is therefore mandatory to handle
(2) for more than one NURBS. Let Φi denote the set of {φ(Ci(u),pt)} to a set of multiple
curves, then the the sought solution of the minimal signed distance extends to

φ(Ci(u),pt) = min(|Φi|). (9)

It is important to note that there might exist multiple minima for (9). From a practical point of
view this is not a problem as long as all minima are of the same sign. In sets of curves which
define domains, only for test points that project to endpoints of curves (i.e. in corners made of
multiple curves) the found minima might be of different signs.

α
e1

e
2 C1(u)

C
2 (u)

Ω+

Ω−

pt

Figure 3: Situation for corners with 0 < α 6 90◦

Ce
C
s

pt

e1 = e2

Figure 4: Situation for corners with α = 0. The
denote the tangent and normal vectors of each

curve.

As seen in Fig. 3 in corners there are two zones where the sign computation (3) would return
ambiguous signs for each curve. It is also seen that this zone vanishes for α > 90◦.

The curve to deliver the correct sign can be determined by

ei = 〈pt − pcorner,Ci,u(u)〉 i = 1, 2
s = sign(min(e1, e2)).

(10)

In Fig. 3 it can also be seen, that for α = 0⇐⇒ e1 = e2. In such cases, it is useful to compare
the curvatures of both curves:

s =

{
1 for κC,e > −κC,s
−1 otherwise , (11)

where κC,e and κC,s are the curvatures of the curves whose end-point (respectively, start-point)
define the corner. The curvature is defined so that κ > 0 if the curve bends towards its normal
vector. As long as interface lines do not overlap there exists a unique solution to (11).

4 DECOMPOSITION OF CUT ELEMENTS

Once, the signed distance to the interface has been computed for all nodes, this information
is used to determine which elements are cut and and then to automatically decompose these
elements into conforming sub-elements. The procedure follows ideas presented in the context
of integration in [1].
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The decomposition algorithm can be outlined as follows: Based on a sample grid in a refer-
ence background element, it is determined whether an element is cut or not. Using the element
shape functions, the zero-level set in the reference element is detected and meshed by higher-
order interface elements (blue line in Fig. 4). Based on how these elements cut the reference
background element, topologically different situations result, leading to different sub-cells, see
e.g. the gray and yellow elements in Fig. 4. Higher-order elements are then mapped to these
sub-cells with one higher-order side so that they conform with the interface.

For a successful reconstruction, a few things need to be considered: To achieve a valid
cutting pattern, recursive refinement of the cut elements might be required. To reconstruct the
zero-isoline inside the element, a Newton-Raphson scheme with prescribed search paths is used.
The suitability of the sub-elements for numerical analysis heavily depends on the search paths
used and also on the mappings to the sub-cells.

r
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Figure 5: An example of a cut triangular element decomposed into a triangluar and a quadrilateral sub-element.
Note the interface element (blue) and the additional mapping r(a).

5 NUMERICAL STUDY
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Figure 6: Infinite plate with hole
under uniaxial load
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Figure 7: Coarsest mesh used in
study with triangular elements in
background mesh.
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Figure 8: Coarsest mesh used in
study with quadrilateral elements
in background mesh.

The numerical study validates the conversion from NURBS to level-set data and demon-
strates the applicability of higher order conformal decompositions. The study is carried out on
an infinite plate under uniaxial load (plane strain) as shown in Fig. 6. In order to reduce the
size of the computational domain, exact tractions were prescribed at the boundary. A closed

2597



Jakob W. Steidl and Thomas-Peter Fries

10
-2

10
-1

10
0

h (of background mesh)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

ǫ
σ
,
y
y

p = 2, Tri
p = 2, Quad
p = 3, Tri
p = 3, Quad
p = 4, Tri
p = 4, Quad

Figure 9: Error in stresses σyy on left side of hole
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Figure 10: Error in stresses σxx on top side of hole

form solution for the stresses and displacements within the domain is found in [13]. As mate-
rial parameters, a Young’s modulus of E = 10000 and a Poisson ratio of ν = 0.3 are chosen.
For the hole a ratio of L/a = 2

√
2 is used. The rate of convergence is studied with triangular

and quadrilateral background elements and element orders of p = {2, 3, 4} and with different
element sizes (L/h = n = {4, 10, 16, 32, 44, 64, 100}).

In order to avoid an ill-conditioning of the system matrix, the ratio of element areas was
limited by moving nodes from the background mesh away from the interface if they were too
close.

One measure is the relative error of the stresses on the left and on the top side of the hole

εσii =

∣∣∣∣σhii − σexiiσexii

∣∣∣∣ (12)

where σxx is evaluated at (r = a, θ = 90◦) and σyy at (r = a, θ = 180◦). To get an impression
of the overall approximation quality, the total error

εΩ = ‖uex − uh‖L2 (13)

is also studied.
It can be seen in Figures 9, 10, 11 that the achieved convergence rates are very good, they

are optimal in the L2-norm (13). It is interesting but not surprising that the error for the stresses
at the selected points is less straight. This can most likely be attributed to the different element
shapes around the nodes in question.

6 CONCLUSIONS

In this paper a ‘proof of concept’ for a higher-order accurate CDFEM was outlined. It
promises to combine fully automated efficient meshing with trivial application of boundary
conditions, optimal convergence rates and NURBS-based interface and boundary descriptions.
A foundation for this method is the integration scheme proposed in [1].

Herein, the focus was on an algorithm to compute the signed distance to NURBS. Therefore
a substantial effort is needed to define start values for the Newton-Raphson iteration required to
obtain the minimum distance. In a numerical example, optimal convergence rates suggest that
higher order convergence and conformal decomposition do work together.
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Figure 11: Overall approximation error εΩ Figure 12: Distribution of von Mieses Stress based
on the mesh plotted in the foreground.

The new method is, however, still in an early stage. Further steps are planned towards adap-
tivity and the extension to three dimensions.
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Abstract. Modern 3D Computer-Aided-Design (CAD) systems use mainly two types of geo-
metric models. Classically, objects are defined by a Boundary Representation (B-Rep), where
only the objects surfaces with their corresponding edges and nodes are stored. One disadvan-
tage concerning a numerical simulation is that B-Rep models are not necessarily water-tight.
These ’dirty geometries’ cause major difficulties in computational analysis because even ba-
sic geometric operations such as point-in-membership tests fail, not to mention meshing as
required by classical boundary conforming finite element methods. Alternatively, objects may
be represented by Constructive Solid Geometry (CSG), which is strongly related to Procedural
Modeling (PM). In this context, the model is created using Boolean operations on primitives.
The modeling process is then either stored as a sequence (PM), or as a construction tree (CSG).
In contrast to B-Rep models, CSG models are intrinsically water-tight. To run a finite element
simulation on a water-tight CSG model, two alternatives are possible: (i) it can either be con-
verted to a B-Rep-model to obtain a finite element mesh or (ii) its implicit description can be
used directly by applying an embedded domain approach, like the Finite Cell Method (FCM).
In this contribution, we present a design-through analysis methodology using CSG and FCM.
A crucial point in FCM is a fast and reliable point-in-membership test which can be directly
derived from the CSG model. We present the outline of the modeling approach, the realization
of the point-in-membership test as a sequence of CSG-operations, and discuss advantages and
limitations on complex models of relevance in mechanical engineering.
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1 INTRODUCTION

Computer aided engineering often requires an an iterative process to find an optimal de-
sign. This iterative process consists of a modeling phase followed by a numerical simulation
and an analysis phase. For the second phase, a common choice is the classical finite element
method (FEM) in which the finite elements are conforming with the physical boundaries of the
model. An estimation of the relative time required in a representative design process at Sandia
National Laboratories [1] has shown, that the transition from the geometric model to the simu-
lation model causes more than 80 % of the engineering effort.
Various methodologies have been developed to overcome the difficulties involved in this tran-
sition process. The most prominent method is Isogeometric Analysis (IGA) as proposed by
Hughes et al. [2]. IGA aims at bridging the gap between the CAD model and computa-
tional analysis by using the same shape functions in CAD and FEA. To this end, B-Splines
and NURBS are used. These functions offer several desirable properties such as the possibility
of straightforward refinements in grid size and polynomial degree and the possibility to control
the continuity within a patch. Furthermore, as B-Splines and NURBS are functions of higher
order, they offer the potential to deliver high convergence rates in case of smooth solutions of
the underlying problem.
Geometric models in CAD systems are often described using a boundary representation (B-
Rep) [3]. Here, IGA was first applied to surface bodies, which where made up of several
conforming two-dimensional B-Spline or NURBS patches. More complicated topologies are
usually generated by trimming, which may lead to non-water tight geometric models. Remedies
for this problem range from classic re-parametrization [4] to the use of T-Splines [5]. B-Rep
solids still pose challenges for IGA, since they are defined by a collection of their bounding
surfaces. Hence, the B-Rep does not provide three-dimensional patch to directly discretize the
volume.
However, B-Rep is not the only possible way to represent geometries. Constructive Solid Ge-
ometry (CSG) [6] expresses the underlying construction process by combining simple solid
primitives with Boolean operations. Many modern CAD systems use a hybrid representation
combining B-Rep and constructive solid geometry (CSG) [7]. In this context the B-Rep model
provides the additional information necessary e.g. for visualization purposes. From a design
point of view, CSG offers a more intuitive approach of geometric modeling. Additionally, CSG
can efficiently be used for parametric and feature based design [8] for which a description of the
construction history, dependencies and constraints is mandatory. At first sight, IGA seems to
be more closely related to B-Rep models. However, even before the IGA idea became popular,
Natekar et al. [9] proposed a method to combine spline-based element formulations with two-
dimensional CSG model descriptions. In contrast to the approach presented in the contribution
at hand, heavy use is made of an explicit representation of boundaries and a decomposition into
sub-domains. Recently, Zuo et al. [10] proposed an approach in which each CSG primitive is
treated separately. The resulting sub-domains are then coupled with the Mortar method. This
poses the difficulty that an explicit boundary representation needs to be set up also for inter-
subdomain boundaries to span the Mortar boundary.
In parametric modeling a change of parameters, or constraints has hardly any impact on the CSG
model, but may require a complete reconstruction of the entire corresponding B-Rep model.
Hence, a simulation technique is desirable, which uses the explicit description of volumes by
CSG as much and its B-Rep representation as little as possible. To this end we propose a combi-
nation of CSG and the Finite Cell Method. We denote our approach as ’design-through-analysis’
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as it allows, like IGA, a very close interaction of the (geometric) design process and the (nu-
merical) analysis, where an engineer can immediately investigate consequences of a variation
of the geometric design on the mechanical behavior of a structural object.
The Finite Cell Method (FCM) was first proposed by Parzivan et al. [11]. The FCM is a high-
order fictitious domain method, which embeds an arbitrary complex geometry into an extended
domain which can easily be meshed by a Cartesian grid. The complexity of the geometry is han-
dled only on the integration level. This renders the method very flexible as the only information
FCM needs from the CAD model is a reliable and robust point-in-membership test, i.e. whether
an integration point lies inside or outside of the physical model. This point-in-membership
test is directly provided by the CSG model description. The interplay between CSG and FCM
was already investigated for simple primitives and proved to be a ”very accurate and efficient
method for analyzing trimmed NURBS patch structures” [12]. The goal of the present paper is
to extend the combination of FCM and CSG to more complex geometric models and to solid
construction processes of industrial relevance.
This paper is organized as follows: In Section 2 a short overview on geometric representations
and the Finite Cell Method is given. In Section 3 the relevant methods for the combination
of CSG and FCM are presented. Section 4 provides an example showing the relevance and
potential for practical applications.

2 OVERVIEW

This section describes concepts of geometric modeling and the Finite Cell Method in more
detail.

2.1 Geometric Modeling

Modern three-dimensional CAD systems use mainly two different types of geometry descrip-
tions. One of them is the Boundary Representation (B-Rep), where only the objects’ surfaces
with their corresponding edges and nodes are stored (see figure 1) [13]. Although B-Rep has
several advantages, such as the direct access to the surfaces, it has also some disadvantages
especially with respect to a subsequent numerical simulation. B-Rep models are not necessar-
ily water-tight. Therefore, for these invalid solids, even basic topological operations such as a
point-in-membership test fail.

Surfaces Edges Nodes

Figure 1: Boundary Representation

Alternatively a 3D object is often described as a procedural model. Procedural modeling is
strongly related to Constructive Solid Geometry (CSG). In CSG a 3D object is created out of a
set of primitives, such as cubes, cylinders, cones, spheres, etc. These primitives are combined
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with the three Boolean operations: union, intersection and difference. The resulting CSG object
is stored implicitly as a CSG tree (see figure 2 ).

\

∩ ∪

∪

Figure 2: CSG Tree with the three Boolean operations: union ∪, intersection ∩, difference \ on
primitives

Procedural modeling extents CSG modeling with additional operations and primitives. Extra
operations, such as chamfer, fillet, drilling a hole, draft, etc. are in fact just a sequence of
the original three Boolean operations, which are summarized for convenience (see figure 3).
A further extension allows the use of additional primitives such as sweeps, lofts or revolved
objects (see figure 4).

\

\

Figure 3: Extended operations can be expressed by the classical Boolean operations: union,
intersection, difference. The example shows filleting an edge.
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Extrusion Sweep Loft

Figure 4: Extended Primitives: Extrusion, Sweep, Loft

One big advantage of the procedural CSG model over the B-Rep model regarding a numerical
simulation is the inherent water-tightness of the implicit model.

2.2 Finite Cell Method

With a valid geometric description, as provided by the CSG-procedural model, it is possible
to obtain a mesh on which a numerical simulation can be performed. However, mesh generators
rely on a explicit (watertight) surface description of the entire boundary. This conversion may
be error prone and must be conducted after each change of model. Alternatively, we aim at
directly using the implicit description of the volume during the simulation process.
The Finite Cell Method is perfectly suited for this purpose, since it does not need to deal with
complex geometries on the mesh level. The relevant geometric information is requested on
the integration level, where for each integration point a point-in-membership test is performed.
Points lying outside of the physical domain are penalized with a small factor [14].

2.2.1 Weak form

Consider a linear-elastic problem on a physical domain Ωphy with the boundary dΩ divided
into Dirichlet and Neumann parts ΓD and ΓN . By applying the principle of virtual work the
weak form of the underlying partial differential equation reads

B(u,v) =

∫
Ωphy

∇v : C : ∇u dΩ (1)

for the inner work and
F(v) =

∫
Ωphy

b · v dΩ +

∫
ΓN

t̂ · v dΓ (2)

for the external work, where u is the displacement, v the test function and C the elasticity
tensor. b and t̂ denote the body load and the prescribed boundary traction applied on the
Neumann boundary, respectively.

2.2.2 Concept of FCM

In FCM the physical domain Ωphy is extended by a fictitious domain Ωfict in such way that
the resulting domain Ω∪ has a simple shape and can thus be meshed easily. (see figure 5).
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Figure 5: Concept of Finite Cell Method, taken from [15]

The weak formulation is modified by defining it over the extended domain Ω∪. Additionally,
the virtual work terms are multiplied by a scalar field α(x): [14]

Be(u,v) =

∫
Ω∪

∇v : αC : ∇u dΩ (3)

Fe(v) =

∫
Ω∪

αb · v dΩ +

∫
ΓN

t̂ · v dΓ (4)

with α defined as:

α =

{
1

10−q
∀x ∈ Ωphy

∀x ∈ Ωfict
(5)

To minimize the influence of the fictitious domain, while not obtaining a singular system, q
is typically set in the range of 5 to 10. The extended computational domain Ω∪ is discretized
by high-order finite elements, called cells. Current implementations use Lagrange polynomi-
als, B-Splines or integrated Legendre polynomials [16]. Further, for an accurate integration
of the bi-linear form, adaptive schemes are employed as presented e.g. in [17]. Recently, the
discretizational framework of the finite cell method has also been extended to hierarchic refine-
ments [18].

2.2.3 Boundary conditions

In FCM the boundaries of the physical domain Ωphy typically do not coincide with the bound-
aries of the cells in the extended domain Ω∪. This requires an enforcement of Neumann and
Dirichlet boundary conditions in a weak sense.
Inhomogeneous Neumann conditions can be applied by integrating the prescribed traction forces
t̂ along the boundary ΓN (see equation (2)). Here, an explicit description of the boundary must
be available. However, as the continuity requirements for this integration are much lower than
for finite element meshes, the surface description may even be non-water-tight.
Dirichlet boundary conditions can be enforced weakly using methods like the penalty method [14],
Nitsche’s method [19], Discontinuous Galerkin methods [20] or Lagrange multipliers [21]. An
explicit surface description must be available. The continuity requirements of that surface de-
pend on the chosen method.

3 METHODS

3.1 Point-in-membership test

The FCM performs a point-in-membership test on the integration level i.e. at each Gaussian
point. The only information which is needed from the geometric model is a reliable and fast
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statement, if a point lies inside the physical domain Ωphy or inside the fictitious domain Ωfict.
Classically this test is done on a B-Rep model casting a ray from the concerned point into an
arbitrary direction. All intersections with the boundary are then counted. The point lies inside
the domain, if the number of intersections is odd, and outside otherwise. This classic test has the
drawback that it fails for non-water tight B-Rep models and its computational effort rises with
the complexity of the surface description, i.e. a model consisting of many non-planar surfaces
or highly resolved surface triangularizations.
By contrast, a point-in-membership test can be performed much faster on a CSG tree. Here, the
root element is queried, which forwards the request to (a selection of) its children. Since the
tree is build from primitives the individual tests are very cheap. Therefore, the complexity is at
its worst proportional to the number of bodies involved which is in general orders of magnitude
lower than the number of surfaces for all practical applications.

3.2 Point-in-membership test on primitives

For classical primitives a simple analytical function is available. Consider a primitive Bi

which is created axis-aligned on the x− y plane and assume that we define each primitive as a
closed body, i.e. the boundary is included in the body. The test whether a point P = {x, y, z}
is inside a primitive reads as follows for a:

• Sphere with center point CShpere and radius r0

P ∈ BSphere iff ||PCSphere||2 ≤ r0, (6)

• for a Cuboid defined by two corner points lying on its diagonal Pstart = [xs, ys, zs] and
Pend = [xe, ye, ze]

P ∈ BCuboid iff x ∈ [xs, xe] ∧ y ∈ [ys, ye] ∧ z ∈ [zs, ze], (7)

• and for a Cylinder defined by its center point CCylinder = {xc, yc, zc ≡ 0}, radius r0, and
height h0

P ∈ BCylinder iff ||P̃CCylinder||2 ≤ r0 ∧ z ∈ [0, h0] (8)

where point P̃ = {x, y, 0} is the projection of point P onto the x− y plane.

There are also fast analytical solutions for other primitives like cones, pyramids, tori and
frustums. However, it is not likely that these primitives are only constructed axis-aligned on
the x − y plane. Therefore, at a suitable position a local orthonormal coordinate system A is
constructed. It is spanning a work plane on which the respective primitive can be constructed.
To perform a point-in-membership test, the point of interest P needs to be mapped from the
Cartesian space E to the local base A

PA = QEA ·PE + v (9)
with v the transposition vector between the center points of the Cartesian and local basis system

v = CA −CE = CA (10)
and

QEA =

A1x A2x A3x

A1y A2y A3y

A1z A2z A3z

 (11)

with Ai being the base vectors of the local basis system A.
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3.3 Point-in-membership test on sweeps

Point-in-membership tests are more involved for ”primitives” generated by sweeps or lofts.
Typically, no analytic solution is available for those primitives. Nevertheless, it is possible to
perform a fast, reliable test also on these bodies. The basic idea is to reduce the dimension of
the problem. For this consider the set-up of a sweep. A sweep consists of a 2D sketch, which is
moved along a sweep path. (see figure 6)

Figure 6: Point-in-membership test on intermediate sketch of a loft

For the simple case that (i) the sweep path is orthogonal to the sketch plane of the starting
sketch and (ii) the local basis system follows the tangent of the path, a point-in-membership
carries out the following steps:

• The closest point C(ξcp) on the sweep path is computed either analytically or, if not
possible, using Newton’s method:

f(ξ) = Ċ(ξ) · (P−C(ξ)) ≡ 0 (12)

ξi+1 = ξi −
f(ξi)

f ′(ξi)
= ξi −

(Ċ(ξi) · (P−C(ξi))

C̈(ξi) · (P−C(ξi)) + |Ċ(ξi)|2
(13)

where C denotes an arbitrary curve description with its first and second derivative (Ċ, C̈)
and P being the point of interest.

• On the closest point an auxiliary plane WP (ξcp) is created. For this purpose, the tangent
vector at C(ξcp) is evaluated and a local base system is created using e.g. the Frenet base
[22], or a base system, where one base vector is always in a plane parallel to an arbitrary
plane.

• The point of interest P is mapped to the local coordinate system of the plane to obtain P̃.
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• A point-in-membership test using a ray-test is performed in 2D with the contour line. In
case of a sweep a ray cast on the initial swept object, i.e. the two-dimensional curve is
carried out.

The fall back to a point-in-membership test in two dimensions poses a draw-back at first
sight. However, a two-dimensional ray test is much simpler and more robust to implement than
a general three-dimensional one. Clearly, a necessary pre-requisite is that the curve is closed to
produce a closed object during the sweep operation. Again, this proves to be much simpler than
assuring closed surfaces in three dimensions.

4 EXAMPLE

The following example was constructed as a procedural model and then transformed to a
CSG tree (see figure 7). It combines several simple primitives and two sweeps along a B-Spline
(p = 2) curve. The (round) base plate was fixed and a predefined deflection û = 1 was applied
onto the left (quadratic) base plate. Homogeneous Neumann boundary conditions were applied
to all other surfaces.

\

\

\

Figure 7: CSG tree of example
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Figure 8: Dimensions of the example

For the simulation in each direction 15 cells with (integrated) Legendre shape functions and
a polynomial degree of p = 4 were chosen. For a precise integration of the stiffness matrix
the cells were partitioned with an octree to a maximum depth of four subdivisions. Only cells
containing parts of the physical domain were considered. This reduces the number of degrees
of freedom by 72 % to 55,296 dofs.

Figure 9 shows the finite cells embedding the structural model and the computed displace-
ments for the example. The von Mises stresses are depicted in figure 10. These stresses provide
a good overall insight into the structural load carrying behavior. Local stresses are not always
fully resolved for example at re-entrant corners. A locally very accurate resolution of these sin-
gularities is possible by application of hierarchical refinements as recently developed in [23].
Further extensions include the development of point-in-membership tests for more complex
CSG models such as lofts.
It is noteworthy that only the CSG model was used in all involved steps, i.e. from the setup of the
model until the computation itself. The only point at which a conversion from the CSG-model
to an explicit B-rep was carried out was for the post-processing step. Here, the marching cubes
algorithm was used to derive a triangulated surface on which the results were post-processed
[24]. However, even this conversion is not mandatory as volumetric post-processing is a possi-
ble option as well.

Figure 9: Displacement
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Figure 10: Stresses

5 CONCLUSION

An integration of the design process and numerical analysis without a complex transition
like meshing is of high relevance for the industry and has been in the focus of several research
groups for the last years. While Isogeometric Analysis provides an excellent method for the
numerical simulation of boundary representation models and shell structures, this paper has
focused on models created with Constructive Solid Geometry. A design-through analysis ap-
proach combining CSG modelling and the Finite Cell Method (FCM) has been presented. FCM
is able to use the implicit model description provided by the CSG model and hence greatly
simplifies the meshing process. It was shown that point-in-membership tests can be carried
out efficiently for complex geometries like sweeps. Further steps include the development of
point-in-membership tests for other primitives like lofts and sweeps with rotated sketches.
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Abstract. A novel approach based upon Discontinuous Galerkin (DG) discretization, applied
to the divergence form of the multicomponent Navier-Stokes equations, is here presented and
used to compute non reactive turbulent axisymmetric gaseous jets. The original key feature
is the use of L2-projection form of the (perfect gas) equation of state. This choice mitigates
problems typically encountered by the front-capturing schemes in computing multicomponent
flow fields, i.e. spurious oscillations across material and contact surfaces where the mixture
composition is changing. The solver makes also use of a shock-capturing technique based
on artificial dissipation selectively added into the equations and tuned in connection with the
magnitude of inviscid residuals of the equations and on suitable coefficients accounting for
the variation of the unknown variables within and across grid elements. A simple limiting
procedure is introduced in order to avoid the occurrence of unphysical gas properties due to
negative and/or greater that one mass fractions values within the domain. The DG code based
on the proposed novel technique for multicomponent flow computation is here employed to study
the mixing mode and the preferential diffusion mechanism of a mixture jet of helium and carbon
dioxide in a surrounding flow of air, both in laminar and turbulent flow regimes. Mass diffusion
is modelled by means of Fick’s first law and use is made of constant Prandtl and Schmidt
numbers in Wilcox’s (2008) k−ω model. Third-order accurate results are presented, discussed
and compared with the available experimental data. They confirm the possible existence in
coaxial jets of different periodic flow structures, greatly affecting mixing rates, and different
species diffusive mass fluxes. The relative importance of both phenomena depends on the flow
regime and its characteristics. The tests carried out give at the same time indications about
the accuracy of the proposed method and its effectiveness in computing complex unsteady flow
fields.
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1 INTRODUCTION

The increased power and enhanced performance of the available computational resources
achieved during these last years allowed a more widespread use of high-order accurate dis-
cretizations for the numerical prediction of complex flow fields of academic and industrial
interest. The discontinuous Galerkin finite element method is one of the most promising nu-
merical method due to the great geometrical flexibility, good scalability for high-performance
computing and inherent high-order accuracy.

In the current work, the development of the DG code MIGALE [1, 2, 3, 4] for the computa-
tion of multicomponent flows, is presented. The solver is considered as one of our preliminary
steps to deal with homogeneous (gas phase) combustion problems by means of a high-order
CFD-DG tool and at present it neglects the modeling of chemical reactions.

The increasing importance of an accurate prediction of combustion processes, especially
for the control of pollutant emissions, is nowadays indeed demanding further development of
high-fidelity solvers, accurate enough to trace the evolution of chemical species down to ppm
scale and, at the same time, robust and reliable enough to be applied to problems of industrial
interest. The DG approach marries the ability to allow discontinuities in a natural way with
its great accuracy granted even on general meshes, both important properties to compute the
wrinkled flame fronts encountered in turbulent combustion, and indeed reactive DG codes have
recently appeared (see e.g. [5, 6]).

The study of coaxial jets, with and without swirl, is of great importance in the assessment
of the burner efficiency and it is an essential requirement to subsequently investigate the burner
behaviour with partially premixed and non-premixed flames. In addition to this, the impact of
coaxial jets fluid dynamics is crucial not only on the performances of rockets and combustion
devices, but also in non-reactive components such as injectors and exhausts of turbofan en-
gines. Studies on the behaviour of coaxial jets date back to the seventies with the pioneering
experimental investigations presented in [7, 8, 9]; recent works [10, 11] confirm the existence
of different flow configurations depending on the velocity and density ratios between inner and
outer jets, as well as on geometrical details of the apparatus. The two main distinctive features
are the “wake-like” and “jet-like” turbulent shear structures that, roughly speaking, develop re-
spectively when the jets velocity ratio is near unity or far away from this value. Typically the
flow field is turbulent and unsteady, with large scale fluctuations generated by Kelvin-Helmoltz
instabilities at the shear interface between the jets, superimposed on the broad-band small scale
turbulent background; thus the accurate simulation of gaseous coaxial jets represents indeed a
challenging task for any multicomponent flow solver. Moreover, the growing interest in the use
of syngas derived both from biomasses and coal, possibly added by methane in order to raise
its enthalpy content (LHV), and/or in methane enrichment by hydrogen (to increase its flame
speed and its lean stability limit) in turbogas burners, draws the attention toward the study of the
effects induced by the faster mixing of one species (e.g. H2), as compared with other species,
on the whole process of combustion. As shown in [12], these effects are quite significant at low
Reynolds numbers.

Numerical investigation on the mixing and diffusion phenomena in a coaxial jet of helium
and carbon dioxide in air, at two different velocity ratios, is herein carried out using the mul-
ticomponent DG MIGALE code. The adopted DG solver is based on the “exact” Riemann
solver [13] and on the BR2 scheme [1] for the computation of the interface convective and dif-
fusive flux vector, respectively. It is well-known that the discretization of multicomponent flow
fields has to cope with numerical oscillations that are not encountered with single component
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flows. Unphysical fluctuations may appear near contact and material interfaces, where the mix-
ture composition changes, even with low-order accurate discretizations, depending on the sort
of approximation adopted, see e.g. [14, 15]. Following the approach presented in [16] to miti-
gate spurious pressure oscillations at contact/material interface, the pressure is computed from
the weak form of the equation of state for ideal gases. This can be viewed as a “regularization”
of pressure that reduces its polynomial order of representation. Numerical oscillations that may
also occur, due to flow field discontinuities, are treated by means of a shock-capturing scheme
that explicitly adds artificial dissipation based on the inviscid residuals of the equations.

Two unsteady test cases have been computed, with jet-to-coflow velocity ratio V ranging
from 5 to 1, and their results compared with experiments carried out at the Politecnico di Mi-
lano [17]. The computations allow a twofold check on the accuracy of the developed code,
capable to investigate both the different mixing modes in coaxial jets and the concurrent mech-
anism of preferential diffusion of mass species.

In Section 2 we first describe the governing system of equations adopted for multicompo-
nent gas mixture and the formulas employed to compute the mixture properties, then the DG
approximation, the artificial dissipation and limiting procedure are presented. Section 3 reports
the computed solutions along with a discussion on the jet structures and the mixing of chemical
species. Final remarks are summarized in Section 4.

2 NUMERICAL METHOD

The numerical discretization presented in this section applies to the conservative form of the
RANS equations. Their system for turbulent non reactive multicomponent flows is obtained
through Favre averaging, neglecting the contributions due to the product of temperature and
species mass fractions fluctuations. The system is written for both planar and axisymmetric 2D
flows as follows

∂

∂t
(ρr) +

∂

∂x
(ρrvx) +

∂

∂r
(ρrvr) = 0, (1)

∂

∂t
(ρrvx) +

∂

∂x

[
r
(
p+ ρv2

x

)]
+

∂

∂r
(ρrvxvr) =

∂

∂x
(rτxx) +

∂

∂r
(rτxr) , (2)

∂

∂t
(ρrvr) +

∂

∂x
(ρrvxvr) +

∂

∂r

[
r
(
p+ ρv2

r

)]
− φp =

∂

∂x
(rτxr) +

∂

∂r
(rτrr) , (3)

∂

∂t
(ρret) +

∂

∂x
(ρrhtvx) +

∂

∂r
(ρrhtvr) = A− rP + β?ρrk̄eω̃r +

∂

∂x
(rhiJi,x) +

∂

∂r
(rhiJi,r)

(4)
∂

∂t
(ρrk) +

∂

∂x
(ρrvxk) +

∂

∂r
(ρrvrk) =

∂

∂x

(
µ̄kr

∂k

∂x

)
+

∂

∂r

(
µ̄kr

∂k

∂r

)
+ rP − β?ρrk̄eω̃r ,

(5)
∂

∂t
(ρrω̃) +

∂

∂x
(ρrvxω̃) +

∂

∂r
(ρrvrω̃) =

∂

∂x

(
µ̄ωr

∂ω̃

∂x

)
+

∂

∂r

(
µ̄ωr

∂ω̃

∂r

)
+
αrω̃

k̄
P − βρreω̃r ,

(6)
∂

∂t
(ρryi) +

∂

∂x
(ρrvxyi) +

∂

∂r
(ρrvryi) =

∂

∂x
(rJi,x) +

∂

∂r
(rJi,r) , i = 1, . . . ,N− 1,

(7)

where ρ, p, v = (vx, vr), et, ht = et + p/ρ, are the density, pressure, velocity, total internal
energy and total enthalpy of the mean motion respectively, while yi is the mass fraction of the
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i-th species. The inclusion of the geometrical factor r allows to use a unique implementation;
r is equal to the radius in the axisymmetric case and equal to one in the planar case, whilst the
coefficient φ in Eq. (3) is equal to one and zero in the former and latter case, respectively.

Equations (1) and (7) express the conservation of the whole mass mixture and of N− 1 mass
species, while Equations (2)–(4) express the momentum and energy conservation. As the total
mass of the mixture is the sum of the mass of all species, the last (N-th) species conservation
equation could be added to (7) in place of Eq. (1). Our choice, which is widely used in academic
and commercial codes, ensures the global mass conservation, unaffected by chemical reactions
and diffusive transport, and implicitly assumes that

yN = 1−
N−1∑
i=1

yi, yi ≥ 0 ∀i = 1, . . . ,N (8)

instead of computing the mixture density as ρ =
∑N

i=1 ρi.
The term A in the energy equation (4) summarizes the divergence of the work of laminar

stresses and the divergence of the “effective” heat flux vector qe
h, defined as

qe
h = −

(
k +

µtcp
Prt

)
∇T. (9)

P is the production term that models the energy exchange between mean and turbulent field
(see [18] for their complete expressions).

The diffusive mass flux of the i-th species Ji of Eqs. (4) and (7) is computed according to
the Fick’s first law

Ji = −ρDe
i,m∇yi, (10)

where De
i,m is the “effective” mass diffusion coefficient of the species i in the mixture obtained

as the sum of molecular and turbulent contributions,

De
i,m = Di,m + µt/(ρSct),

and Sct is the turbulent Schmidt number introduced to model the product of species and ve-
locity fluctuations through the classical gradient diffusion hypothesis. The Di,m coefficient is
computed using a modified form of the Stefan’s formula reported in [19], where yi has been
replaced by Xi (molar fraction of the i-th species) for self-consistency, i.e. at least when all
Dij = D, the formula guarantees that Dim = D, and hence

∑N
i=1 Ji = 0,

Di,m =
1−Xi

N∑
j=1, j 6=i

Xj

Dij

. (11)

The binary diffusion coefficients Dij are approximated as

Di,j = D(i,j)0

(T/T0)n

p/p0

, (12)

where D(i,j)0
is a reference diffusion coefficient at a reference state given by the pressure and

temperature values p0 and T0 ([20]). Due to the constraint on the sum of mass diffusive fluxes,
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JN = −
∑N−1

i=1 Ji, the mass diffusivity coefficient of the last species in the mixture DN,m is
implicitly defined as

DN,m =

N−1∑
i=1

Di,m∇yi

N−1∑
i=1

∇yi

. (13)

Note that, being working with non-reactive flows, the mass diffusion due to temperature gra-
dients (Soret effect), as well as terms related to pressure gradients and body forces, have been
neglected.

The diffusion flux Ji gives rise to an energy flux hiJi which, summed over all the species
present in the mixture, provides the last terms in the RHS of Eq. (4), where the summation
convention over repeated indices is adopted.

The turbulence model employed is the “high-Reynolds” version of Wilcox’s k − ω turbu-
lence model [21, 22]. Notice that the model adopted is not in its standard form and employs
the modifications introduced in [2], i.e., in Equations (4)-(6) the turbulent kinetic energy k is
replaced by a limited value k̄ to avoid the occurrence of negative values; besides the model uses
ω̃ = logω instead of ω. Furthermore, “realizable” ω̃r (i.e. properly limited ω̃) values are used
in the source term of Equation (6) and in the eddy viscosity computation to guarantee physical
turbulent stress values. The standard RANS model employed makes use of the simple assump-
tion of constant turbulent Prandtl number and of unique constant turbulent Schmidt number for
each species. In this work they are fixed at 0.9 and 0.75, respectively.

The dynamic viscosity µ and thermal conductivity λ of the mixture are computed using the
Wilke’s formula [23] and the corrected expression given in [24] respectively, (see [25])

µ =
N∑
i=1

Xiµi

N∑
j=1

Xjφij

, λ =
N∑
i=1

Xiλi
N∑
j=1

Xjφij

(14)

with

φij =

{
1 +

(
µi

µj

)1/2(
Ri

Rj

)1/4
}2

{
8

(
1 +

Rj

Ri

)}1/2
. (15)

The specific heat at constant pressure cp,i, the dynamic viscosity µi and the thermal conductivity
λi of each species i are defined as a function of the temperature through polynomial expansion
up to the desired order of approximation. As in the present application pressure and temperature
are nearly constant, all species thermofluidynamic properties are assumed constant.

In the hypothesis of perfect gas, the constitutive equation of state for the mixture reads p =
ρRT , where R is the mixture gas constant,

∑N
i=1 yiRi. Herein the weak form of the EOS is

considered and p is defined in a weak sense via an integral relation:∫
vp dV =

∫
vρRT dV,
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where v is every function in the chosen functional space, belonging to the Hilbert space of
square integrable functions. The pressure degrees of freedom pj are computed in a straightfor-
ward way as

pj(t) =

∫
vjρRTdV, (16)

due to the selected basis functions v, orthonormal in the physical reference frame.

2.1 Discontinuous Galerkin Discretization

The governing equations (1)–(7) can be written in compact form as

∂u

∂t
+∇ · F (u,∇u) + st (u,∇u) = 0, (17)

where u ∈ Rm is the unknown solution vector of the m conservative variables, F ∈ Rm ⊗ Rd

is the sum of inviscid and viscous flux functions (with d indicating the number of dimensions)
and st ∈ Rm is the turbulent source term vector.

The discretization is defined over a computational mesh made of a set of non-overlapping
elements Th = {K}. We thus consider the system (17) in its weak form over Th and use a dis-
continuous Galerkin scheme based on the following space consisting of polynomial functions,

Vh
def
= [Pk

d(Th)]m, (18)

where
Pk
d(Th)

def
=
{
vh ∈ L2(Ω) | vh|K ∈ Pk

d(K), ∀K ∈ Th
}

being Pk
d(K) the space of polynomials of degree at most k defined on the element K. The DG

discretization requires to compute uh ∈ Vh, such that:∑
K∈Th

∫
K

vivj
dUj

dt
r dx−

∑
K∈Th

∫
K

∂vi
∂xn

Fj,n (uh,∇huh + R([[uh]])) r dx

+
∑
e∈F

∫
e

[[vi]]n F̂j,n

(
u±h , (∇huh + ηere[[uh]])±

)
r dσ

+
∑
K∈Th

∫
K

visj (uh,∇huh + R ([[uh]])) r dx = 0, (19)

for each function vi ∈ Vh, where sj = st,j + sax,j is the sum of turbulent and axisymmetric
source terms. In Eq. (19) F defines the collection of all edges e and the functions R and
re : [L2(e)]d → [Pk

d (Th)]d are the global and local lifting operators∫
Ω

re (v) · τ h dx = −
∫
e

{τ} · v dσ, ∀τ h ∈ [Pk
d(Th)]d, (20)

R (v) =
∑
e∈F

re (v) , (21)

used by the BR2 scheme [1] to define a DG discretization of the viscous part of the governing
equations. The jump [[·]] and average {·} trace operators are defined as usual in the DG context
to conveniently deal with discontinuities at elements interface as

[[uh]]
def
= u+

hn
+ + u−hn

−, {vh}
def
=
v+
h + v−h

2
, (22)
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where the ± superscripts indicate the trace of the numerical solution over a generic edge com-
puted from the two adjacent elements K+ and K−. The coefficient ηe is a stability parameter
depending on the number of elements faces; see [26] for a detailed analysis of the BR2 method.

Suitable numerical flux functions (F̂j in Eq. (19)) are used in place of the physical fluxes
(convective and diffusive) to properly deal with the non-uniqueness of these vectors on the
elements interfaces. The inviscid part of the flux is computed via “exact” Riemann solver [13]
while the diffusive part as the average of the fluxes computed from neighboring elements.

The conservative formulation of the governing equations is used only for the purpose of
fluxes computation, whilst the unknowns are given by the primitive variables vector

q = [ρ, T, vx, vr, k, ω̃, y1, y2, ..., yN−1]T .

The use of the primitive variables is computationally more efficient in the evaluation of the
diffusive fluxes, where the gradient of q is required, since it is already available. Differently
from monocomponent flow simulations, in multi-fluid flow computations we employ the density
ρ in place of the pressure p. In most reactive gas dynamic environments the pressure is in fact
slowly varying or nearly homogeneous, whereas strong density gradients exist near flame fronts
and thermal boundary layers.

The new multicomponent DG solver here presented closely follows the implementation of
the monocomponent DG MIGALE code [1, 2, 3, 4]. A fully implicit discretization is employed
with Jacobian matrices analytically computed to account in exact manner for the dependence
of residuals on the values of variables and gradients, also including the treatment of lifting
operators and boundary conditions.

2.2 Time Integration

The DG space discretization of the governing equations (19) is here written in the form of
the following non-linear ODE system

M
dU

dt
+ R(U) = 0, (23)

where U is the vector of global unknown degrees of freedom, M the global block diagonal
mass matrix and R the residuals vector. The time discretization of Eq. (23) is efficiently per-
formed by means of a linearly implicit Rosenbrock-type Runge-Kutta schemes, following the
implementation presented in [27], that can be written as:

Un+1 = Un +
s∑

j=1

mjWj, (24)

(
I

γ∆t
+ J̃

)n

Wi = −R̃

(
Un +

i−1∑
j=1

aijWj

)
+

i−1∑
j=1

cij
∆t

Wj, i = 1, . . . , s, (25)

where

J =
∂R

∂U
, R̃ = M−1R, J̃ =

∂R̃

∂U
= M−1

(
J− ∂M

∂U
R̃

)
, (26)

and cij , aij , mj , γ are the scheme coefficients. The Eq. (25) is then replaced by the following
efficient implementation that avoids the computation of M−1J̃,(

M

γ∆t
+ J− ∂M

∂U
R̃

)n

Wi = −Mn

[
R̃

(
Wn +

i−1∑
j=1

aijWj

)
−

i−1∑
j=1

cij
∆t

Wj

]
, (27)
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for i = 1, . . . , s. For steady problems the time discretization is performed using the back-
ward Euler scheme with the Jacobian matrix analytically computed to achieve quadratic conver-
gence. For unsteady computations, accurate Runge-Kutta schemes up to fourth-order accuracy
are adopted.

The linear system is finally solved using the restarted GMRES algorithm with 120 Krylov
vectors, 240 iterations and a relative tolerance of 10−6. The code is parallel and employs the
METIS package to handle grid partitioning and the PETSc library [28] for linear algebra.

2.3 Shock-capturing technique

High-order DG methods, like any linear (i.e. independent of the local solution) high-order
method, suffer from numerical oscillations in the vicinity of flow field discontinuities. In mul-
ticomponent flow computations, spurious fluctuations appear near material fronts already with
a first-order approximate conservative scheme. Thus, to obtain a crisp representation of dis-
continuities and preserve the accuracy within smooth flow field regions, it is necessary to adopt
ad-hoc numerical techniques, such as shock capturing schemes suited to control oscillations.

In this work we employ the shock-capturing technique presented in [16], originally inspired
by [29] which is based on the explicit introduction of artificial viscosity into the governing
equations. The following element-wise artificial dissipation contribution is thereby added to the
system (19): ∫

K

ε
(
u±h ,uh

) ∂vi
∂xn

∂uj
∂xn

dx. (28)

The artificial viscosity coefficient ε depends on two residual-based quantities: i) the difference
between the numerical and physical inviscid fluxes and ii) the divergence of the inner convective
fluxes,

ε = Ch2
K

3∑
n=1

(
|Sn|+ |Dn|

q̃∗n

)
Fs, (29)

where C is a user-defined value, hK the characteristic dimension of the element K defined in
2D as

hK =
1√

1

(∆x)2
+

1

(∆r)2

, (30)

where ∆x and ∆r are the dimensions of the quadrilateral enclosing K, scaled in such a way
that their product matches the area of K.

The viscosity is selectively introduced based on the behavior of the variables q̃ = (ρ, T, yM),
i.e. the density, the temperature and the mass fraction yM of the species showing the local
greatest variation, chosen to tune the dissipation. Notice that in Eq. (29), the vector q̃∗ =
(ρ, T, 1) is used instead of q̃ to avoid break-up caused by too small values of yM . The Sn terms
account for changes occurring at elements interface and based on the difference between the
“numerical” and inner convective flux, herein denominated si. The Dn terms account for any
steep gradient in the flow field occurring within the elements and are based on the divergence
of the convective inner flux, denoted by di,

Sn (u±h ,uh) =
M∑
i=1

∂q̃hn(uh)

∂uhi

si(u
±
h ), Dn (uh) =

M∑
i=1

∂q̃hn(uh)

∂uhi

di(uh). (31)
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The artificial viscosity is then multiplied by a factor Fs based on the maximum absolute
value of the temperature, density and mass fraction scaled gradients, depending on polynomial
order k and mesh coarseness parameter hK , given by

Fs =

(
|dq̃j|

hK
k

)k

, (32)

with

|dq̃j| = maxj

(
|∇hq̃j|
q̃∗j

)
, j = 1, 2, 3.

The user-defined coefficient C has been determined through numerical experiments and in the
present work it typically varies between 0.1 and 1.

2.4 Limiting on mixture properties

During computations, out of bounds mass fraction values may appear in the solution flow
field and this may lead to the attainment of unphysical gas properties. Different strategies
have been considered by various authors to deal with oscillations arising in non monotonic
approximation scheme, e.g. [30]. In this work, we do not constraint species degrees of freedom
and thus negative or greater than one mass fraction values may appear. To keep this potential
problem under control, we employed a simple limiting procedure that locally uses modified
mass fraction values, satisfying Eq. (8), for the sole purpose of gas properties computation. The
technique is presented in [16]; it first corrects (if necessary) each of the N species mass fraction
to a minimum value and then divides each one by the sum of the new N mass fraction values.

3 He-CO2 JET IN A CO-FLOW STREAM OF AIR

In this section third-order accurate (P2) computations are discussed and compared with avail-
able experimental data [17].

Experiments were performed at ambient conditions in a configuration typical of non-premixed
coaxial burners, consisting of an inner long pipe (x/D = 37.5) delivering a mixture of he-
lium (11.8% on a mass basis) and carbon dioxide, surrounded by much a shorter air annulus
(x/Dm = 3.9). The closed chamber diameter is 5.6 times the annulus outer diameter, therefore
confinement effects should not be relevant. The post thickness is 3.5 mm. Other geometrical
parameters of the apparatus are listed in Table 1.

jet air inner air outer chamber
Diameter 8 15 36 200
Length 300 80 80 300

Table 1: Test rig dimensions [mm]

The considered test cases are summarized in Table 2, where the Reynolds numbers, based on
bulk velocity, (hydraulic) diameter and kinematic viscosity, are reported alongside with density
(D), velocity (V ) and momentum flux (M ) inner-to-outer ratios.

Notice that in [17], due to a typing error, what is referred to as bulk velocity is actually the
centerline velocity at the exit. The flow regime is incompressible, being the jet freestream Mach
number Majet ' 0.025.

An unstructured grid consisting of 42722 elements of mixed triangular and quadrilateral type
is employed to discretize half geometry. Figure 1(a) shows the computational domain (bottom
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Case Rejet Reair V D M
1 3140 2350 4.82 0.695 16.13
2 3140 9480 1.19 0.695 1.01

Table 2: Test case Reynolds number, velocity, density and momentum flux ratios

part of figure) and a close up of the mixing region (top part) near the merging of jet and co-flow.
Note that the whole length of the tube has been discretized since it is not long enough to obtain
a fully developed pipe flow.

(a) grid (b) time history

Figure 1: Computational mesh (left) and time histories of Case 1 – red and Case 2 –black (right)

The flow field is unsteady in both test cases, so computations were run in time-accurate mode
until a periodic solution was finally set. To check the attainment of periodicity, fluidynamic
quantities were continuously sampled at three points in the initial region of jets interaction
(x/D = 1, 0.5 ≤ r/D ≤ 0.95); an example of density time histories is shown in Figure 1(b).

In Case 1 both the inner and outer channel boundary layer Reynolds numbers are in the
transitional range; even if they are well above the threshold for the development of turbulence in
the subsequent jet free shear layer, flow field features may heavily depend on displacement and
momentum thicknesses at the pipe exit. Therefore, for test Case 1 both laminar and turbulent
computations were performed.

Figure 2 displays the Mach numbers and species mass fractions of the laminar solution at a
generic instant of time, while Figure 3 shows the time-averaged periodic solution. At the jet
exit, the shear layer (Kelvin-Helmholtz) instability generates a continuous detachment of vor-
tices moving toward the axis, all counter-clockwise rotating, i.e. with positive vorticity. When
they encounter their mirror image at the axis of symmetry, a local reinforcement is clearly visi-
ble prior to their slow downstream decay under the influence of viscosity. One single dominant
frequency is present in the time spectrum, corresponding to a Strouhal number

St =
ωD

Vbulk
' 0.49.
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(a) Max (b) May

(c) yHe (d) yair

Figure 2: Case 1, laminar: instantaneous contours

(a) Max (b) yHe

Figure 3: Case 1, laminar: time-averaged contours

In case it were a fully developed (Poiseuille) pipe flow, this would correspond to a Strouhal
number based on momentum thickness of 0.021, at the upper edge of the classical laminar
range (0.01− 0.02).

In order to evaluate the mechanism of preferential diffusion, we compute a local diffusion
parameter ξ defined as follows,

ξ =
XCO2

X0
CO2

− XHe

X0
He

,

where X0
i is the initial mole fraction of the species i. Positive values of this parameter can be

interpreted as a local excess of carbon dioxide as compared with helium; the opposite is true for
negative values.

Figure 4 shows the time-averaged numerical and experimental distributions of ξ and axial
non-dimensional velocity in the coaxial jets near field. As one can see, the laminar solution
overestimates maxima and minima in both ξ and velocity profiles; in particular, trace of the
recirculation bubble due to the finite post thickness is still present at x/D = 0.75, causing a
zone of local backflow. We then turned to turbulent computations, using Wilcox’s 2008 (high-
Re) turbulence model.
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(a) ξ (b) velocity

Figure 4: Case 1, laminar: time-averaged ξ coefficient and axial velocity at x/D = 0.75

Figure 5 displays the Mach numbers, species mass fractions, vorticity and turbulence in-
tensity of the turbulent solution at a generic instant of time, whilst Figure 6 shows the time-
averaged periodic solution. The vorticity is scaled with the pipe radius and the air ambient
sound speed; in the turbulence intensity the turbulent kinetic energy is scaled with the square
inlet air velocity. Unsteady coherent structures are still well evident, even if they are less pro-
nounced and more smeared, owing to the diffusive action of turbulence. In the reported figures
it can be noticed the different jet spreading rate, greater than in the laminar case, as should be
expected. The axial distance travelled by perturbations before reaching the axis of symmetry is
therefore shorter.

Figure 7 is, for the turbulent case, the companion of Figure 4 . The results are now in a much
better agreement with experimental data, confirming how the turbulence plays a key role in the
mass and momentum mixing process. Maybe different results could have been obtained turning
on turbulence in the simulation starting from the jet discharge axial point, but this is left as a
future exercise. Test Case 2 was therefore only run under turbulent assumption.

Figure 8 shows a snapshot of the Mach numbers, species mass fractions, vorticity and tur-
bulence intensity. This pictures are not at all alike their analogous obtained at greater velocity
ratio. Vortices are leaving the air co-flow at the outer diameter as well and, moreover, the region
enclosed between the two coaxial jets is now of the “wake-like” type with vortices of alternating
sign visible close to the exit.

The coherent structures generated at the interface persist much longer downstream and the
eventual setting of a self-similar solution is expected to occur farther away. The most important
parameter governing what kind of configuration is likely to appear in the near field is indeed
the momentum flux ratio M and it is well established that a value of M around unity leads to a
deficit velocity profile, and possibly to an unsteady vortex street, typical of wake flows.

Furthermore, a much more complex flow field is apparent as a natural outcome of the jets
strong mutual interaction. This is also verified in Figure 9, where relevant steady spatial oscilla-
tions are noticeable. It is sensible to infer that removing the symmetry constraint and simulating
the whole coaxial jet may result in a smoother average flow field, since perturbations are not
forced to develop themselves simultaneously.
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(a) Max (b) May

(c) yHe (d) yair

(e) vorticity (f) turbulence intensity

Figure 5: Case 1, turbulent: instantaneous contours

(a) Max (b) yHe

Figure 6: Case 1, turbulent: time-averaged contours

2626



N. Franchina, M. Savini and F. Bassi

(a) ξ (b) velocity

Figure 7: Case 1, turbulent: time-averaged ξ coefficient and axial velocity at x/D = 0.75

(a) Max (b) May

(c) yHe (d) yair

(e) vorticity (f) turbulence intensity

Figure 8: Case 2: instantaneous contours
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(a) Max (b) yHe

(c) May (d) turbulence intensity

Figure 9: Case 2: time averaged contours

(a) ξ (b) velocity

Figure 10: Case 2: time-averaged ξ coefficient and axial velocity at x/D = 0.75

Time-averaged ξ and non-dimensional vx graphs are reported in Figure 10. The computed
radial profile of helium and carbon dioxide mass fraction is satisfactory, keeping in mind the
uncertainties inherent in the measurements (note the lack of symmetry and the nearly absence
of positive values in the experimental data) and the fact that the local ξ rms is of the same order
of its mean value; proof of this last statement can be found in Figure 11. On the other hand,
there is an evident mismatch in the radial velocity profile. It seems due to the overestimation of
the post recirculation zone in the numerical solution, similarly to what already manifest, even if
to a lesser extent, in the Case 1 turbulent computation. The change of flow configuration from
the “jet-like” to the “wake-like” type enlarged the rear separation bubble and shifted radially
outward the point of minimum average velocity at x/D = 0.75.
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Figure 11: Case 2: instantaneous ξ coefficient at x/D = 0.75

4 CONCLUSIONS

A high-order accurate DG scheme suited to multicomponent flow computation has been pre-
sented and applied to investigate the complex mixing and diffusion mechanism occurring in
coaxial jets. Oscillations typically encountered by numerical schemes applied to the conserva-
tive form of the multicomponent gas equations are herein kept under control by means of: i) the
use of the weak form of the equation of state that allows to compute a more regular pressure
field, ii) the addition of a shock-capturing term based upon local inviscid residuals and inter-
face flux jumps, and iii) a limiting technique on mass fraction values, in order to avoid mixture
properties out of admissible bounds.

The DG solver has been used to compute the flow of a mixture of helium and carbon dioxide
discharging in a surrounding co-flow of air at two different Reynolds numbers and inner-to-
outer momentum flux ratios. Laminar and turbulent unsteady computations have been carried
out to assess the capability of the code and to investigate the jet and co-flow mixing process
taking place. The results obtained indicate in all cases the presence of a strongly unsteady flow
field with the development of noteworthy coherent structures. Moreover, even at Re as small as
about 103, the assumption of turbulent flow is necessary to obtain a reasonable agreement with
measurements.

The preferential diffusion of helium with respect to carbon dioxide is evident (and well cap-
tured) only at the smaller Re and higher velocity ratio, when also the computed time-averaged
velocity field in the near region is close to the experimental one. In this case the mixing pro-
cess resembles the one, well known, experienced by a jet emanating in a quiescent ambient,
whereas a complete different picture exists when jet and co-flow possess similar velocity (more
correctly, similar momentum flux). In this latter case one observes a “wake-like” mixing mode,
characterized by a more complex interaction and a much long-lasting presence of vortices.

Finally, it is worth to mention that in the former case (jet) the unsteadiness is focused on
a single time scale and the unsteady vorticity field is positive definite, while in the latter case
(wake) more frequencies are present altogether with an unsteady vorticity field showing both
signs. These and other interesting topics are currently under investigation and will be the subject
of a forthcoming paper.
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Abstract. Transition modelling represents a key ingredient to improve the performances of
modern turbomachinery, affecting losses and the heat-transfer phenomenon. In this paper the
transition model proposed by Walters [3] was considered. It is based on the k-ω formulation
with the addition of a third transport equation (kL equation), which allows predicting the mag-
nitude of low-frequency velocity fluctuations in the pre-transitional boundary layer. The model
was implemented into a parallel high-order accurate Discontinuous Galerkin code, named MI-
GALE, which allows to solve the Reynolds averaged Navier-Stokes (RANS) equations coupled
with the k-ω̃ (ω̃ = log(ω)) turbulence model. The model was applied to two test cases, namely
the flat plate (T3A and T3B configuration) and the T106A turbine cascade. Results obtained
with and without transition model were compared with experimental data.
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1 INTRODUCTION

In the last decade, Computational Fluid Dynamic (CFD) has become a tool commonly
adopted for industrial analysis and design. This wide spread can be partially explained by
the development of reliable and robust turbulence models. However, these turbulence models
are very well suited for high Reynolds number flows, whereas for low Reynolds numbers flows,
where a large part of the boundary layer is laminar or transitional, they can provide wrong re-
sults. Therefore, the transition modeling represents a key ingredient to improve the prediction
capabilities of standard RANS solvers. Different methods have been proposed in the finite vol-
ume context to predict the laminar-turbulent transition [1, 2, 3], but, according to the literature,
there was only an attempt to couple a non-local transition model [17] with a high-order method.
In this paper the local transition model proposed by Walters [3] was considered. The model is
based on the k-ω formulation with the addition of a third transport equation (kL equation), which
allows predicting the magnitude of low-frequency velocity fluctuations in the pre-transitional
boundary layer. The closure of the model is based on a phenomenological (i.e. physics-based)
rather than a purely empirical approach. The model was implemented into a parallel high-order
accurate Discontinuous Galerkin (DG) code, named MIGALE [4, 5], which allows solving the
RANS equations coupled with the k-ω̃ turbulence model. The objective of this work is to as-
sess the capability of high-order DG methods in accurately computing transitional flows on two
benchmark testcases, i.e. the transitional flow around a flat plate (T3A and T3B configurations)
and through the T106A turbine cascade, comparing high-order results with available numerical
and experimental data.

2 GOVERNING EQUATIONS

The complete set of RANS and kL-kT -ω̃ model equations can be written as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 , (1)

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂p

∂xi
+
∂τ̂ji
∂xj

, (2)

∂

∂t
(ρE) +

∂

∂xj
(ρujH) =

∂

∂xj
[uiτ̂ij − q̂j]− ρ(PkT − kT ω̃) , (3)

∂

∂t
(ρkT ) +

∂

∂xj
(ρujkT ) =

∂

∂xj

[(
µ+

ραT
σk

)
∂kT
∂xj

]
+ρ
(
PkT +RBP +RNAT − kT ω̃ −DT

)
, (4)

∂

∂t
(ρkL) +

∂

∂xj
(ρujkL) =

∂

∂xj

[
µ
∂kL
∂xj

]
+ ρ (PkL −RBP −RNAT −DL) , (5)

∂

∂t
(ρω̃) +

∂

∂xj
(ρujω̃) =

∂

∂xj

[(
µ+

ραT
σω

)
∂ω̃

∂xj

]
+ ρ

[(
CωR
fW
− 1

)
ω̃

kT
(RBP +RNAT )

+ Cω1
ω̃

kT
PkT − f2ω̃

2 + PBL

]
+

(
µ+

ραT
σω

)
∂ω̃

∂xk

∂ω̃

∂xk
, (6)
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where ui is the absolute velocity.
The total energy, the total enthalpy, the pressure, the turbulent and total stress tensors, the

heat flux vector, the eddy viscosity and the limited value of laminar and turbulent kinetic energy
are given by

E = ê+ ukuk/2, (7)
H = h+ ukuk/2, (8)
p = (γ − 1)ρ (E − ukuk/2) , (9)

τij = 2µt

[
Sij −

1

3

∂uk
∂xk

δij

]
− 2

3
ρkT δij, (10)

τ̂ij = 2µ

[
Sij −

1

3

∂uk
∂xk

δij

]
+ τij, (11)

q̂j = −
( µ

Pr
+ ραθ

) ∂h

∂xj
, (12)

µt = ρ (νT,s + νT,l) , (13)

kT = max (0, kT ) , kL = max (0, kL) , (14)

where ê is the internal energy, h the enthalpy, γ the ratio of gas specific heats, Pr the molecular
Prandtl number and

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the mean strain-rate tensor.

The turbulence model was implemented using ω̃ = log(ω) instead of ω, limiting the values
of kT and kL. At solid walls the homogeneous Neumann condition for the specific dissipation
rate ∂ω̃/∂n = 0 is prescribed.

Furthermore, due to the no-slip condition, the velocity is set to zero. Since the velocity is
equal to zero, the kinetic energy at the wall must also reduce to zero. Therefore, turbulent and
laminar kinetic energy are set to zero at the wall.

2.1 TRANSITION MODEL

The transition model considered in this work (see Eqs. 4, 5 and 6) is based on the model pro-
posed by Walters [3]. This model includes several damping functions for the different physical
phenomena observed (such as shear sheltering and wall reflection), which require empirically
determined constants. However, the amount of empiricism necessary is still significantly less if
compared to correlation-based intermittency models.

The various terms in the model equations represent advection, production, destruction and
diffusion. The generation of turbulence due to small-scale turbulent fluctuations and the gener-
ation of laminar kinetic energy due to large-scale turbulent fluctuations are modelled as

PkT = νT,sS
2 , (15)

PkL = νT,lS
2 , (16)

where S =
√

2SijSij is the mean strain-rate magnitude, νT,s and νT,l are the small-scale and
large-scale components of the eddy-viscosity, respectively.
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The small-scale eddy-viscosity is defined as

νT,s = fνfINTCµ
√
kT,sλeff , (17)

where kT,s is the effective small-scale turbulence

kT,s = fSSfWkT . (18)

The kinematic wall effect is included through an effective wall-limited turbulence length
scale

λeff = min (Cλd, λT ) ,

and damping function

fW =

(
λeff
λT

) 2
3

,

where

λT =

√
kT
ω

,

and d denotes the wall distance.
The viscous wall effect is incorporated through a viscous damping function

fν = 1− exp

(
−
√
ReT
Aν

)
,

where

ReT =
f 2
WkT
νω

is the effective turbulence Reynolds number.
The shear-sheltering effect is included through the following damping function:

fSS = exp

[
−
(
CSSνΩ

kT

)2
]
, (19)

where Ω =
√

2ΩijΩij is the vorticity magnitude.
In order to satisfy the realizability constraint suggested by Shih et al. [6], the turbulent vis-

cosity coefficient, Cµ, takes the form

Cµ =
1

A0 + AS
(
S
ω

) . (20)

Intermittency effects on the production of turbulence are included through the intermittency
damping function

fINT = min

(
kT

CINTkTOT

)
, (21)

where kTOT = kT + kL is the total fluctuation kinetic energy.
The production of laminar kinetic energy, kL, is assumed to be given by large-scale near

wall turbulence, based on the correlation of pre-transitional fluctuation growth with free-stream
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low-frequency wall-normal turbulent fluctuations [7]. The large-scale turbulence contribution
is defined as

kT,l = kT − kT,s , (22)

whereas the small-scale contribution is defined by Eq. 18. The production term is then given by
Eq. 15, where

νT,l = min

{
fτlCl1

(
Ωλ2

eff

ν

)√
kT,lλeff + βTSCl2ReΩd

2Ω,
kL + kT,l

2S

}
, (23)

where

ReΩ =
d2Ω

ν
,

βTS = 1− exp

(
−max (ReΩ − CTS,crit, 0)2

ATS

)
,

fτ,l = 1− exp

(
−Cτ,l

kT,l
λ2
effΩ

2

)
.

The limit is applied to ensure satisfaction of the realizability constraint for the total Reynolds
stress contribution. The production term is comprised of two parts: the first addresses the
development of Klebanoff modes and the second addresses self-excited (i.e. natural) modes.

The dissipation is divided into an isotropic (kTω) and an anisotropic (DT and DL) part, as in
the low-Reynolds Launder-Sharma k − ε model [8], with

DT = ν
∂
√
kT

∂xi

∂
√
kT

∂xi
, (24)

DL = ν
∂
√
kL

∂xi

∂
√
kL

∂xi
. (25)

The turbulent transport terms in the kT and ω equations include a turbulent effective diffu-
sivity, αT , defined as

αT = fνCµ,std
√
kT,sλeff . (26)

The boundary layer production term, PBL, is added to reproduce properly the behaviour of
the boundary layer wake region, and is defined as:

PBL = Cω3fωαTf
2
W

√
kT
d3

, (27)

where

fω = 1− exp

[
−0.41

(
λeff
λT

)4
]

(28)

is the kinematic damping function.
The remaining terms in the transport equations are related to the laminr-turbulent transition

mechanism in the model. As mentioned above, transition occurs as a transfer of energy from kL
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to kT , with a concurrent reduction in turbulence length scale from the free-stream value to the
value found in an equilibrium turbulent boundary layer.

The transport equation for turbulent kinetic energy, kT , and the transport equation for laminar
kinetic energy, kL, are linked by the terms RBP and RNAT , which represent the break-down
process of the pre-transitional fluctuations. Once a certain threshold is reached (βBP and βNAT ),
these terms become a sink to the kL transport equation and a source to the kT equation. RBP and
RNAT account for the bypass and natural transition mechanism, respectively, and are defined
as:

RBP = CRβBPkLω/fW , (29)
RNAT = CR,NATβNATkLΩ , (30)

where

βBP = 1− exp

(
− φBP
ABP

)
, (31)

φBP = max

[(
kT
νΩ
− CBP,crit

)
, 0

]
, (32)

βNAT = 1− exp

(
− φNAT
ANAT

)
, (33)

φNAT = max

(
ReΩ −

CNAT,crit
fNAT,crit

, 0

)
, (34)

fNAT,crit = 1− exp

(
−CNC

√
kLd

ν

)
, (35)

Transition in both cases is assumed to initiate when the characteristic time-scale for turbu-
lence production is smaller than the viscous diffusion time-scale of the pre-transitional fluctua-
tions.

The turbulent kinematic viscosity used in the momentum equations is the sum of the small-
scale and large-scale contributions defined above

νT = νT,s + νT,l . (36)

When including heat transfer effects, the turbulent thermal diffusivity, αθ, is modelled as

αθ = fW
kT
kTOT

νT,s
Pr

+ (1− fW )Cα,θ
√
kTλeff . (37)

As regards the dissiparion rate transport equation, the first term on the right hand side of
Eq. 6 represents an increase in dissipation rate due to turbulence production. The damping
function of the third term is of the following form

f2 = Cω2f
2
W , (38)

while all the other model constants are reported in Tab. 1.
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Table 1: Summary of model constants

A0 = 4.04 AS = 2.12 Aν = 6.75
ABP = 0.6 ANAT = 200 ATS = 200
CBP,crit = 1.2 CNC = 0.1 CNAT,crit = 1250
CINT = 0.75 CTS,crit = 1000 CR,NAT = 0.02

Cl1 = 3.4× 10−6 Cl2 = 10−10 CR = 0.12
Cα,θ = 0.035 CSS = 1.5 Cτ,l = 4360
Cω1 = 0.44 Cω2 = 0.92 Cω3 = 0.3
CωR = 1.5 Cλ = 2.495 Cµ,std = 0.09
Pr = 0.85 σk = 1 σω = 1.17

3 DG SPACE and TIME DISCRETIZATION

The governing equations can be written in compact form as

∂q

∂t
+ ∇ · Fc(q) + ∇ · Fv(q,∇q) + s(q,∇q) = 0, (39)

where q ∈ Rm denotes the vector of the m primitive variables, s ∈ Rm the source term, d the
space dimension, Fc,Fv ∈ RM ⊗ RN the inviscid and viscous flux functions.

A weak formulation of Eq. (39) is obtained multiplying each scalar law by an arbitrary
smooth test function vj ∈ v, 1 ≤ j ≤ m, and integrating by parts:

∫
Ω

vj
∂qj
∂t

dx−
∫

Ω

∇vj · Fj(q,∇q) dx

+

∫
∂Ω

vjFj(q,∇q) · n dσ +

∫
Ω

vjsj(q,∇q) dx = 0, (40)

where Fj is the sum of the inviscid and viscous flux vectors, Ω the computational domain, ∂Ω
the boundary of Ω, n the unit normal vector to the boundary.

Let Ωh be an approximation of the domain Ω ∈ Rd, Th = {K} a mesh of Ωh, i.e. a collection
of “finite elements” K, Fh = {F} the mesh faces, and let Vh denotes a discontinuous finite
element space spanned by polynomial functions continuous only inside each element K, i.e.

Vh
def
=
[
Pld (Th)

]m
, (41)

where
Pld

def
= {vh ∈ L2(Ωh) : vh|K ∈ Pld,∀K ∈ Th} (42)

is the space of polynomials of degree at most l on the element K. Hierarchical and orthogonal
shape functions are adopted and are obtained using a modified Gram-Schmidt procedure, as-
suming as a starting point a set of monomial functions [12]. The solution q, the test function v
are replaced with finite element approximations qh and vh, belonging to the space Vh. The DG
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formulation of the problem (40) requires to find qh ∈ Vh such that

∑
K∈Th

∫
K

vh,j
∂qh,j
∂t

dx−
∑
K∈Th

∫
K

∇hvh,j · Fj (qh,∇hqh + r([[qh]])) dx

+
∑
F∈Fh

∫
F

[[vh,j]] · f̂j
(
q±h , (∇hqh + ηF rF ([[qh]]))

±) dσ

+
∑
K∈Th

∫
K

vh,jsj (qh,∇hqh + r([[qh]])) dx = 0

vh ∈ Vh, (43)

where r and rF are the global and the local lifting operators, ηF a stability parameter, and f̂ is
the sum of the inviscid and the viscous numerical fluxes.

The numerical flux function f̂ , appearing in the boundary integral of Eq. (43), is introduced
in order to uniquely define the flux at the elements interfaces, to obtain a consistent and con-
servative approximation of Eq. (40), and to prescribe the boundary data. The flux f̂ is the sum
of an inviscid, f̂c, and a viscous, f̂v, part. The former is based on the Godunov flux computed
with an exact Riemann solver. For the latter the BR2 scheme, proposed in [11] and theoretically
analyzed in [9, 10], is employed.

The DG space discretization of Eq. (43) results in the following system of (nonlinear) ODEs
in time

M
dQ

dt
+ R (Q) = 0, (44)

where Q is the global vector of unknown degrees of freedom, M is a global block diagonal
matrix and R (Q) is the vector of ”residuals”.

In the case of steady state computations the semi-discrete problem in Eq. (44) is discretized
in time by means of the classical backward Euler scheme coupled with the pseudo-transient
continuation strategy proposed in [14]. The resulting linear system is solved at each time step
by means of GMRES algorithm. Linear algebra and parallelization are handled through PETSc
library [13].

4 RESULTS

The implementation of the transition model was verified and assessed in the computation
of two test cases, representative of the main transition modes: the compressible turbulent flow
over a flat plate (T3A and T3B configurations of the ERCOFTAC SIG 10) and through the
T106A turbine cascade. The influence of the polynomial degree, and of coarse grids on the
solution accuracy were investigated, comparing results with available experimental data. All
the computations were run in parallel, initializing the P0 solution from the uniform flow at
inflow conditions and the higher-order solutions from the lower-order ones.

4.1 Zero-pressure-gradient flat plate

The transition model is first verified and validated on a zero-pressure-gradient flat plate. The
T3A and T3B test cases of the ERCOFTAC were used, which are characterized by different
values of the velocity and turbulence intensity at the leading edge, as reported in Tab. 2. Inlet
turbulent quantities are chosen in order to match the value of Tu at the plate leading edge and
the correct decay of the turbulence kinetic energy along the plate (see Tab. 3).
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Table 2: Flow conditions of the T3A and T3B test cases

T3A T3B
Upstream Velocity (m/s) 5.4 9.4

Leading edge Tu (%) 3.0 6.0
Pressure Gradient 0 0

Table 3: Inlet turbulent quantities of the T3A and T3B test cases

T3A T3B
Tu1 10%, 8.2%

(µT/µ)1 0.35 114

In order to verify the implementation of the model, a grid sensitivity analysis was performed
for the T3A test case on three meshes with 3600 (coarse), 8800 (medium) and 18000 (fine)
quadrilateral elements. The solution approximations were P1→4 for all the grids, while the
maximum number of DoF was 54000 for the coarse mesh, 132000 for the medium mesh and
270000 for the fine mesh.

Figures 3a-3c show the skin friction coefficient, Cf , distributions on each mesh. In Fig. 3d
a comparison of the predicted Cf distribution on the three meshes for the highest polynomial
order with available experimental data [15], and with a standard k-ω̃ model is presented.

For every mesh, increasing the polynomial order of the solution approximation, all the pre-
dicted Cf curves are almost overlapped, and, starting from P1 approximation, the solution is in
agreement with experimental data. Notice that the P1 solution on the coarse mesh corresponds
only to 10800 DoF.

Also for the T3B test case, a grid sensitivity analysis was performed, using the same meshes
(see Figs. 1 and 2).

Figures 4a-4c show the skin friction coefficient, Cf , distributions on each mesh. In Fig. 4d
a comparison of the predicted Cf distribution on the three meshes for the highest polynomial
order with available experimental data [15], and with a standard k-ω̃ model is presented. Also
in this case the predicted curves are in good agreement with experimental data. The transition
onset is slightly moved up, while the end of the transition is captured correctly.

For both test cases, the Cf distributions obtained with the standard k-ω̃ is also depicted in
Figs. 3d and 4d, showing a completely wrong behaviour, i.e. a fast transition at the beginning
of the plate.

4.2 MTU T106A

In this section the subsonic turbulent flow through the MTU T106A turbine cascade is con-
sidered. This cascade, designed by MTU Aero Engines, has been extensively investigated in
experimental and computational studies [19, 18] and is characterized by a complex transitional
turbulent flow.

An adiabatic wall boundary condition was imposed on blade surface. At the inflow, the total
temperature, total pressure, flow angle α1 = 37.7◦, and turbulence intensity Tu1 = 4% were
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Figure 1: Flat plate - 3600 (coarse) quadrilateral elements mesh with linear edges for the flat
plate test cases.
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Figure 2: Flat plate - zoom in on the transition region for the coarse (a), medium (b), and fine
(c) meshes.
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(d) Comparison

Figure 3: Flat plate T3A - distribution of the skin friction coefficient for the coarse (a), medium
(b), fine (c) meshes, and comparison of the predicted skin friction distributions on the considered
meshes for the highest polynomial order (P4) with a fully turbulent solution and experimental
data (d).
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Figure 4: Flat plate T3B - distribution of the skin friction coefficient for the coarse (a), medium
(b), fine (c) meshes, and comparison of the predicted skin friction distributions on the considered
meshes for the highest polynomial order (P4) with a fully turbulent solution and experimental
data (d)
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Figure 5: T106A, Re2,is = 1.1× 106 - y+ = 5 grid (left) and detail of the grid near the trailing
edge (right)

prescribed. At the outflow, the static pressure was set, resulting in a downstream isentropic
Mach number M2,is = 0.59. The Reynolds number based on the downstream isentropic condi-
tions and on the blade chord is Re2,is = 1.1 × 106. To assess the predicting capability of the
model, the pressure coefficient, Cp, and the skin friction, Cf , distribution along the blade and
the loss coefficient, ζ , were compared with experimental data. The flow field is attached for this
flow condition and the prediction capabilities of the natural and bypass transition modes can be
investigated.

All computations were performed by using a hybrid grid with a height of the first cell adja-
cent to the wall y+ = 5 and 5743 quadratic elements. The grids employed for the simulations
were generated with a 2D high-order version of a fully automated in-house hybrid mesh gen-
erator based on the advancing-Delaunay strategy [16]. The full grid and a detail of the trailing
edge region can be seen in Fig. 5.
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0.45
0.35
0.25
0.15
0.05

Figure 6: T106A, Re2,is = 1.1× 106 - Mach number contours, y+ = 5 grid, P4 approximation

Fig. 6 (left) shows the computed P4 Mach number contours on the y+ = 5 mesh, while in
Fig. 6 (right) the streamlines in the transition region confirms the absence of the flow separation.

Figure 7 shows the Cp distribution along the blade for P1→4 approximation. Starting from
P2 approximation, the curves on pressure and suction sides are in good agreement with the
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Figure 7: T106A, Re2,is = 1.1 × 106 - distribution of the pressure coefficient along the blade
(left), and zoom in on the transition region (right), y+ = 5 grid, P1→4 approximations

x/C

C
f

0 0.2 0.4 0.6 0.8 1-0.01

-0.005

0

0.005

0.01

P1 Transition Model
P2 Transition Model
P3 Transition Model
P4 Transition Model

x/C

C
f

0.6 0.65 0.7 0.75 0.8 0.850

0.002

0.004

0.006

0.008

0.01

P1 Transition Model
P2 Transition Model
P3 Transition Model
P4 Transition Model

Figure 8: T106A, Re2,is = 1.1 × 106 - distribution of the skin friction coefficient along the
blade (left), and zoom in on the transition region (right), y+ = 5 grid, P1→4 approximations

experimental data.
Fig. 8 shows the Cf distribution along the blade for all the polynomial approximations on

the y+ = 5 grid. The transition location moves slightly downstream, increasing the polynomial
degree of the approximation. The P1 curve has rather large oscillations, which suggest that
the spatial approximation need to be increased. Starting from P2 approximation, the transition
location is predicted at approximately 65% of the chord, where a sudden increase of the Cf
value can be observed.

Finally, in Tab. 4 the loss coefficient, ζ , is reported for each polynomial degree. As expected,
it was overestimated by the low-order approximation, while the transition model allowed to
predict almost the correct value starting from the P2 approximation.

5 CONCLUSIONS

The parallel implementation of a local transition model based on the laminar kinetic energy
concept into a high-order accurate DG code was presented. The model was validated on the flat
plate test case (T3A and T3B configurations) and we assessed the capability of the model to
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Table 4: Loss coefficient, ζ , for the T106A test case.

P1 P2 P3 P4 Experimental
Re = 1.1× 106, y+ = 5 0.028 0.0204 0.0203 0.0202 0.02

compute complex transitional turbomachinery flows (MTU T106A turbine cascade). The ben-
eficial effect of the transition model on the solution accuracy was demonstrated by comparing
numerical results for increasing order of accuracy with fully turbulent solution and the available
experimental data. Ongoing work is devoted to improve prediction capabilities of the transition
model, considering also the laminar separation mode.
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Abstract. We look at multigrid methods for unsteady viscous compressible flows. We specif-
ically target smoothers that can be used in parallel and without computation of a Jacobian,
which are particlarly attractive candidates in the context of Discontinuous Galerkin discretiza-
tions. In CFD, a plethora of nonlinear smoothers have been suggested which are hard to ana-
lyze. Our methodology is to use a linear model problem, here the convection diffusion equation,
to be able to classify and compare smoothers better. Specifically, we consider explicit and im-
plicit pseudo time iterations, GMRES as a smoother, SGS and implicit line smoothers. We relate
GMRES to explicit Runge-Kutta smoothers, identify implicit line smoothers as Block Jacobi and
analyze the potential of implicit pseudo time iterations. Finally, we discuss the relation between
methods for steady and unsteady flows. Numerical results show that GMRES is a very attractive
smoother in this context.

2648



Philipp Birken, Jonathan Bull, and Antony Jameson

1 INTRODUCTION

After decades of research, numerical methods for solving steady fluid flows have reached an
appreciable level of maturity. It has been demonstrated that steady Euler flows can be solved
with ‘textbook’ efficiency in three to five multigrid iterations [3]. The added stiffness of the
steady RANS equations means that convergence of the multigrid method is somewhat slower -
between 50 and 100 iterations [11] - but still within acceptable bounds for CFD applications.

For unsteady problems, the expectation would be to significantly reduce this number, but
this is not the case for the available methods [2]. When looking at high order methods, which
will be necessary to do LES simulations in an industrial setting, there is the situation that a fast
multigrid method is quite simply missing. On reason for this is the lack of guiding theory for
nonelliptic equations, which makes designing a multigrid method difficult.

Multigrid consists of two components, the smoother and the coarse grid correction. For
finite volume methods, the coarse grid correction is based on agglomeration of neighboring
cells. As smoothers for compressible flows, a plethora of both linear and nonlinear methods has
been suggested. This ranges from LU-SGS [3], explicit Runge-Kutta methods [13], additive
Runge-Kutta methods [5], implicit line smoothers [12, 8], and more recently point implicit and
SDIRK smoothers [7, 9], GMRES [4], GMRES within a Rosenbrock pseudo time iteration [10]
and many others. In particular, implicit smoothers, that are variants of implicit pseudo time
iteration smoothers, allow for a huge variety of methods.

When thinking of LES simulations with discontinuous Galerkin methods, we have to keep in
mind that the Jacobians will consist of blocks that have a size of a few hundred, instead of just
five as it would be with finite volume methods. Our strategy to obtain a parallel scaling, fast and
low memory multigrid method is therefore to not use a Jacobian, but only function evaluations,
meaning evaluations of the spatial discretization. This can happen in one of two ways: There
is a nonlinear version of a linear iterative method that avoids use of the Jacobian. This is for
example the case for pseudo time iterations where a matrix vector product corresponds to a
function evaluation. The other option is to replace matrix vector products by a Jacobian free
finite difference.

Previous work by one of the authors [1] demonstrated that the smoothers used in the multi-
grid iteration could be optimized for fastest convergence of the unsteady linear advection equa-
tion. Specifically, it was suggested to numerically minimize the spectral radius of the multi-
grid iteration matrix over the pseudo timestep and coefficients of explicit Runge-Kutta (RK)
schemes. Significant improvements were demonstrated in both cases compared to non-optimized
smoothers.

In this paper we aim at getting a better understanding of the differences between these meth-
ods for both the steady and the unsteady case. To this end, we classify these methods, The
findings will be backed up by numerical results based on the convection diffusion equation as a
model problem.

2 GOVERNING EQUATIONS AND DISCRETIZATION

We consider the linear advection diffusion equation

ut + aux − buxx = 0. (1)

with a, b > 0 on the interval x ∈ [0, 2] with periodic boundary conditions.
An equidistant FV discretization for (1) with mesh width ∆x leads to the evolution equation
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for the cell average ui in one cell i:

uit +
a

∆x
(ui − ui−1) +

b

∆x2
(−ui+1 + 2ui − ui−1) = 0.

Using the vector u = (u1, ..., um)T and the matrices

B =



1 −1
−1 1

−1 1
. . . . . .
−1 1


and

C =



2 −1 −1
−1 2 −1

−1 2
. . .

. . . . . . −1
−1 −1 2


we obtain the system of ODEs

ut +
a

∆x
Bu(t) +

b

∆x2
Cu(t) = 0. (2)

In 2D, we have the following equation for the unknown function u(x, y, t):

ut + a · ∇u− b∆u = 0, (3)

where b > 0 and

a = ã

(
sin γ
cos γ

)

with β̃ ∈ R being another parameter and γ the angle of the direction of forced convection.
Regarding boundary conditions, we use periodic ones.

An equidistant FV discretization for (3) with mesh width ∆x = ∆y leads to the evolution
equation for the cell average ui,j in one cell (i, j):

ui,jt +
ã

∆x
((c+ s)ui,j − sui−1,j − cui,j−1)

+
b

∆x2
(−ui+1,j − ui,j+1 + 4ui,j − ui−1,j − ui,j−1) = 0.

Using the vector u = (u1, ..., um)T and the matrices

B =


B̄ −sI

B̄
. . .
. . . −sI

−sI B̄

 ,
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where

B̄ =



c+ s −c
−c c+ s

−c c+ s
. . . . . .

−c c+ s


and

C =


C̄ −I −I
−I C̄ −I

. . . . . . . . .
−I −I C̄

 ,
where

C̄ =



4 −1 −1
−1 4 −1

−1 4
. . .

. . . . . . −1
−1 −1 4

 .

Finally, we obtain the system of ODEs

ut +
ã

∆x
Bu(t) +

b

∆x2
Cu(t) = 0. (4)

We discretize this in time using implicit Euler with time step size ∆t, which is also a building
block for the more general diagonally implicit Runge-Kutta (DIRK) methods. Thus, in each
time step, a linear system has to be solved. Using the notation un ≈ u(tn), this can be written
as

un+1 − un +
ã∆t

∆x
Bun+1 +

b∆t

∆x2
Cun+1 = 0

⇔ un −Aun+1 = 0 (5)

where
A =

(
I +

ν

∆x
B +

µ

∆x2
C
)

(6)

with ν = ã∆t and µ = b∆t. Here, CFL := ã∆t/∆x corresponds to the CFL number in the
implicit Euler method. If we consider nonperiodic boundary conditions, the entry in the upper
right corner of B becomes zero. Otherwise, additional terms appear on the right hand side, but
this does not affect multigrid convergence.

In a steady state, the time dependence vanishes and we obtain the equation system

a

∆x
Bu = 0. (7)

3 LINEAR ITERATIVE METHODS FOR LINEAR EQUATION SYSTEMS

A very important type of iterative method for the linear equation system

Ax = b, A ∈ Rm×m,x,b ∈ Rm (8)

are linear iterative methods which can be written as
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xk+1 = Mxk + N−1b, M,N ∈ Rm×m.

It can be shown that this converges if and only of ρ(M) < 1, which is why M is called the itera-
tion matrix. The second matrix determines the limit in case of convergence. To get convergence
to the solution of the linear equation system 8, it is required that M = I−N−1A.

4 MULTIGRID METHOD

As a solver, an agglomeration multigrid method is used, which corresponds best to finite
volume discretizations. Thus, in the one dimensional case, the restriction and prolongation
correspond to joining and dividing neighboring cells and are given by

R =
1

2


1 1

1 1
. . . . . .

1 1

 and P = 2RT =



1
1

1
1

. . .
1
1


.

Hereby, it is assumed that we have an even number of cells.
The coarse grid matrix is obtained by discretizing the problem on that grid. On the coarsest

level, the smoother is applied instead of the usual direct solver, since this better corresponds to
the Full Approximation Scheme used for the nonlinear equations. We use a V-cycle and pres-
moothing only. Thus we obtain the scheme:

Function MG(xl,bl, l)

• xl = Sν1l (xl,bl) (Presmoothing)

• if (l > 0)

– rl−1 = Rl−1,l(bl −Alxl) (Restriction)

– vl−1 = 0

– Call MG(vl−1, rl−1, l − 1) (Computation of the coarse grid correction)

– xl = xl + Pl,l−1vl−1 (Correction via Prolongation)

• end if

Thus, the iteration matrix of the corresponding two grid scheme is given by

M = (I−Pl,l−1(Nl−1
S )−1Rl−1,lAl)M

l
S (9)

with Ml
S and (Nl

S)−1 being the matrices defining the smoother. In a standard two grid method,
the matrix N−1

S would be A−1
l−1 instead.

2652



Philipp Birken, Jonathan Bull, and Antony Jameson

α1 α2 α3 c
ERK2 0.28 1.1
ERK4 0.04 0.12 0.32 2.0

Table 1: Coefficients for 2- and 4-stage ERK smoothers.

4.1 Smoothers

We consider a smoother to be good if the spectral radius of the iteration matrix is small.
As a design criterion, this results in good smoothers, but it is expensive to use [1]. The main
alternative is the smoothing factor, which is the slowest rate at which the error in one of the
high frequency components is reduced by the smoother. To this end, the eigenvectors of A are
determined and split into low and high frequency components.

4.1.1 Pseudo time iterations

The first class of smoothers we consider are time integration schemes. These approximate
the solution of an initial value problem

ut = f(u), un = u(tn).

To apply them as iterative solvers for a linear equation system, the residual of that is used as the
right hand side f(u). The differential equation resulting from (5) is given in a pseudo or dual
time t∗:

ut∗ = un −Au(t∗), u(t∗0) = un. (10)

One step of a pseudo time iteration thus consists of performing one step of the RK scheme
for the solution of equation (10). The pseudo time step ∆t∗ is a parameter of this class of
smoothers, as are their coefficients. However, instead of ∆t∗, we will use the CFL number in
pseudo time c = a∆t∗/∆x as a parameter. This implies that on coarser grids, larger time steps
will be chosen, leading to faster multigrid methods.

The simplest smoothers of this type are low storage explicit Runge-Kutta methods, which
can be implemented using only three vectors. These are described by

u0 = un

uj = un + αj∆t
∗f(uj−1), j = 1, ..., s− 1

un+1 = un + ∆t∗f(us−1),

For s = 1, we obtain he explicit Euler method, which is nothing but a Richardson smoother:

uk+1 = uk + ∆t∗(un −Auk) = uk + ∆t∗rk. (11)

In the linear case, a general Runge-Kutta method can be represented by its stability function
R(z), which for explicit Runge-Kutta methods is a polynomial Ps(z) of degree s. Thus, the
iteration matrix is for our case given by

M = Ps(−∆tA).

The specific schemes used here are a 2-stage and a 4-stage scheme taken from [1], where the
coefficients for the case of a large outer time step are taken. These can be seen in Table 1.
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i 1 2 3 4 5 c
ARK4 αi 1/3 4/15 5/9 1 - 0.5

βi 1 1/2 0 0 -
ARK 5 αi 1/4 1/6 3/8 1/2 1 0.2

βi 1 0 0.56 0 0.44

Table 2: Coefficients of additive Runge-Kutta smoothers, 4-stage and 5-stage method.

In [6], Jameson, Schmidt and Turkel introduced additive Runge-Kutta methods, where dif-
ferent coefficients are used for the convective and the diffusive parts. This is done to reduce
the number of evaluations of the expensive diffusive terms, but also to increase the degrees of
freedom in choosing a good smoother. Given a splitting in the convective and diffusive part

f(u) = f c(u) + fv(u),

Jameson suggests to implement these schemes in the following equivalent form

u
(0)
l = ul

u
(j)
l = ul − αj∆tl(f c,(j−1) + fv,(j−1)), j = 1, ..., s

un+1
l = u

(s)
l ,

where

f c,(j) = f c(u
(j)
l ), j = 0, ..., s− 1

fv,(0) = fv(u
(0)
l ),

fv,(j) = βjf
v(u

(j)
l ) + (1− βj)fv,(j−1), j = 1, ..., s− 1.

For our model problems, we have f c(u) = b − Bu and fv(u) = −Cu. The iteration matrix
now involves both powers of the single matrices, as well as products, making it very difficult to
analyze. The schemes we consider were designed in [5] and the coefficients are given in Table
2.

The smoothing factor is the maximum of the stability function over the high frequency eigen-
values:

max
λHF

|R(λ)|.

Thus we look for methods with an optimal smoothing factor, found by

min
α,∆t∗

max
λHF

|R(λ)|.

For an ERK scheme, this gives
min
α,∆t∗

max
λHF

|Ps(λ)|. (12)

The vector α contains the coefficients of the time integration method. Here, we will, instead
of the pseudo time step ∆t∗, use the CFL number in pseudo time, c∗, giving

min
α,c∗

max
λHF

|R(λ)|. (13)

In case of an implicit RK method, the stability function is rational, e.g. R(z) = 1/(1 + z)
for the implicit Euler method. However, this implies that the application of the smoother con-
sists of solving the original linear equation system, defying the purpose of an iterative method.
Therefore, the arising system is solved using another iterative method, resulting in new families
of smoothers. We will consider the particular case of the implicit Euler method, combined with
GMRES.
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4.2 GMRES

Given the matrix A and a residual vector r0 = b−Ax0, the space

Kl = span{r0,Ar0, ...,A
l−1r0}

is called the l-th Krylov subspace. Using this, the k-th iteration of GMRES is the solution of
the problem

min
x∈x(0)+Kk

‖b−Ax‖2, (14)

If x ∈ x(0) +Kk, then

x = x(0) +
k−1∑
j=0

γjA
jr0 = x(0) +

k−1∑
j=0

γjA
j(b−Ax0).

Thus, the iteration can be written as

xk =
k−1∑
j=0

γ̄jA
jb +

k∑
j=0

γ̄jA
jx0

for some coefficients γ̄j and the iteration matrix is

MGMRES
k =

k∑
j=0

γ̄jA
j = pk(A).

Thus, the iteration for a GMRES method with fixed k steps is represented by a polynomial
of degree k in A or otherwise put, a rational function is approximated by a polynomial. The
difference to an explicit RK iteration is that the coefficients are not fixed a priori, but depend
on the choice of Krylov subspace, in this case on the residual r0. This means that the smoother
will behave differently for different initial guesses. This also means that it is difficult to analyze
the smoothing factor. At least, from the definition of GMRES, we see that

‖rk‖2 = min
p∈Πk,p(0)=1

‖p(A)r0‖2 ≤ ‖p̄(A)r0‖2,

which is similar to (12). The first difference is that here, the optimization takes into account
all eigenvalues, whereas the previous one looks only at the high frequency ones. Then, the
optimization here is dynamic in the sense that it is done automatically by GMRES for each
linear system seperate, which makes this approach potentially more robust. For the optimized
ERK schemes, it could happen that when operating in off design conditions, the performance
significantly deteriorates.

When considering the use of GMRES within an implicit Runge-Kutta smoother, the follow-
ing property is important. For A = I + αB,

span{r0,Ar0, ...,A
l−1r0} = span{r0,Br0, ...,B

l−1r0}

and thus, for the same vector r0 the Krylov subspaces are identical. Now we look at the follow-
ing two approaches:

1. Use k-step GMRES as smoother
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2. Use a smoother which consists of one implicit Euler step, where the linear system is
solved using k-step GMRES

In the first case, we look at the system

(I + ∆tB)u = un

with residual
r = un − (I + ∆tB)u. (15)

In the second case, the system is

[I + ∆t∗(I + ∆tB)]u = uk + ∆t∗un

with residual

r∗ = uk + ∆t∗un − [I + ∆t∗(I + ∆tB)]u = uk − u + ∆t∗r. (16)

By the property named above, the Krylov subspaces generated will beKk(B, r) andKk(B,uk−
u + ∆t∗r), respectively. On the fine grid, the initial guess for the smoother is uk and thus
r∗0 = uk − u + ∆t∗r = ∆t∗r0 and therefore, the two spaces are identical. However, the resid-
uals (15) and (16) minimized by GMRES are different and therefore, unless the solution is in
that space, a different result will be obtained. However, for a large value of ∆t∗, this difference
will vanish.

On the coarse grid, we have a zero initial guess for the equation (I+∆tB)e = r and therefore
in the first case,

r0 = r− (I + ∆tB)0 = r.

For the second variant we have the equation

[I + ∆t∗(I + ∆tB)]e = uk + ∆t∗un − [I + ∆t∗(I + ∆tB)]uk+1

and thus
r̂0 = uk − uk+1 + ∆t∗r.

Thus, on the coarse grids, the smoothers no longer operate in the same Krylov subspace. Again,
for a large value of ∆t∗, this difference will vanish. Thus, we expect the two smoothers to
behave the same way for a sufficiently large pseudo time step.

4.3 Symmetric Gauss-Seidel

Given a splitting of the matrix A into its strictly lower, diagonal and strictly upper part,
A = L + D + U, the symmetric Gauss-Seidel (SGS) iteration is given by

uk+1 = (I− (D + U)−1D(L + D)−1A)uk + (D + U)−1D(L + D)−1b,

thus the iteration matrix is

MSGS = I− (D + U)−1D(L + D)−1A.

This method is parameter free and thus its smoothing factor depends on the problem only. SGS
is implemented by solving two equation systems with triangular system matrices.
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s-ARK s-ERK GMRES-k SGS ILS
s+ 1 s+1 k + 2 3.5 5

Table 3: Computational effort of multigrid method in terms of function evaluations, respectively MatVecs.

4.4 Implicit line smoothers

For compressible viscous flows, implicit point smoothers and implicit line smoothers (ILS)
are sometimes used. Both are in effect variants of block Jacobi smoothers, meaning that the
following iteration is used

uk+1 = (I−D−1A)uk + D−1b,

where D is a certain block diagonal matrix. For the point implicit smoother, the small blocks
of the size of the number of equations in the PDE system (four for 2D Navier-Stokes or Euler,
5 in 3D). Since the convection diffusion equation is scalar, this reduces to the normal Jacobi
smoother, which is not a good method. Therefore, we only consider implicit line smoothers
here.

These are used typically in boundary layers with lines going a finite length in a direction
normal to the boundary. Then the block is defined from the unknowns in that line and has the
size as the number of equations corresponding to these unknowns. Here, we will use in the 2D
case lines going in x-direction through the the whole domain, meaning that there is exactly one
line for each discrete y value and their length is the number of unknowns in x-direction. We
denote this smoother as ILS.

4.5 Computational effort

The convergence rate of a multigrid method with a specific smoother is important, but it
needs to be evaluated with regards to the computational effort needed. In the nonlinear case,
the cost should be measured by the number of evaluations of the right hand side, involving
computation of numerical fluxes and so on. In the linear case, this corresponds to matrix vector
products (MatVecs). For an s-step ERK or a k-step GMRES smoother, the number of these
is easy to determine, namely s and k + 1. For an ARK method, it should be noted that while
we actually increase computational effort in the linear case, this is not so in the nonlinear case,
where the computation of viscous and inviscid fluxes is essentially independent. Thus, we
consider the ARK smoother to have a computational effort proportional to s MatVecs as well.

With regards to SGS, there is one MatVec, one multiplication with a diagonal and two solves
with tridiagonal equation systems. The latter take together slightly more than on MatVec, which
is why we use 2.5 MatVecs as a measure for SGS. As for ILS, this requires solving a number
of equation systems of smaller dimension. This is hard to predict, which is why we compared
the CPU time for the use of that to one MatVec, arriving at a factor of four. Added to cost of
a smoother in the present context is the cost of the MatVec needed for the computation of the
residual on the fine grid.

4.6 Steady versus unsteady

We now consider the case of a parameter dependent smoother with parameter ω for the
linear equation system Ax = b. This could be a damping parameter or a pseudo time step size,
respectively CFL number in pseudotime. The iteration matrix is then of the form Ms(ωA).
Assume that we have determined an optimal coefficient ω∗ for a steady state problem. For an
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c ImpE GMRES-2
1 0.4903 0.3772
10 0.3798 0.3772
100 0.3774 0.3772
1000 0.3773 0.3772

Table 4: Measured convergence rate of the multigrid method for 1D convection diffusion using 2-step GMRES
directly vs. 2-step GMRES inside implicit Euler smoother, N = 128.

c ImpE GMRES-2
1 0.5835 0.4870
10 0.4937 0.4870
100 0.4876 0.4870
1000 0.4871 0.4870

Table 5: Measured convergence rate of the multigrid method for 2D convection diffusion using 2-step GMRES
directly vs. 2-step GMRES inside implicit Euler smoother, N=128.

unsteady problem, we obtain the system matrix I−∆tA. Under the assumption of a large outer
CFL number, the identity matrix can be neglected and the matrix to consider is ∆tA and the
smoother is of the form MS(ω∆tA). To obtain the optimal coefficient for this case, we thus
have to divide ω∗ by ∆t. This gives us a smoothing factor that is approximately the same as for
the steady state and means that it is sufficient to design the smoother based on the steady state
problem only.

If we instead of the pseudotime consider a CFL number, then from the condition c∗S = c∗U on
the optimal parameter, we obtain

c∗U = c∆t∗U ⇒ ∆t∗U = c∗U/c = ∆t∗S/∆t.

This implies that in the unsteady case, the larger the outer time step, the smaller the pseudo time
step has to be. However, this does not decrease the smoothing factor, as seen above.

5 NUMERICAL RESULTS

5.1 Implicit pseudo time iterations

We first test the difference between using an implicit pseudo time iteration with a certain
smoother compared to using that smoother directly on the example of GMRES with 2 steps.
The first test case is the one dimensional convection diffusion equation with a = 1, b = 0.001,
∆t = 0.5. We now vary the pseudo time CFL number and compare the convergence rates, as
seen in Table 4. The second test case is the two dimensional convection diffusion equation with
convection speed ã = 1 and angle γ = π/4, b = 0.001, ∆t = 0.5. Again, the pseudo time CFL
number c is varied and the results can be seen in table 5.

As can be seen, for about value for c of 1000, there is no essentially no difference between
convergence rates, as predicted by the theory. Furthermore, the convergence rate of the method
with pseudotime iteration is decidedly smaller for small c. Thus, we do not see a benefit in this
class of methods.

5.2 Variants of GMRES

We now test the results of section 4.2. The first test case is the one-dimensional convection
diffusion equation with a = 1, b = 0.001, ∆t = 0.5. As a smoother k-step GMRES is used.
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∆x 1 2 3 4
1/64 0.6643 0.3853 0.2955 0.1801
1/128 0.6979 0.427 0.3345 0.2120
1/256 0.7484 0.4522 0.3645 0.2322

Table 6: Measured convergence rate of the multigrid method for 1D convection diffusion when using k-step
GMRES as a smoother.

∆x 1 2 3 4
1/64 0.8725 0.7879 0.7836 0.7097
1/128 0.8870 0.8084 0.8033 0.7333
1/256 0.9079 0.8200 0.8172 0.7467

Table 7: The k + 2-nd root of the measured convergence rate of the multigrid method for 1D convection diffusion
when using k-step GMRES as a smoother.

In Table 6, the convergence rates observed in practice of the multigrid method can be seen for
different ∆x and different k. As can be seen, increasing the dimension of the Krylov subspace
used, respectively the degree of the polynomial, decreases the convergence rate. Furthermore,
the convergence rate increases with a finer mesh width, but not terribly so.

To get a better picture of the efficiency of the smoother, we now look at the k + 2-nd root of
the convergence rate measured. As can be seen in Table 7, increasing the number of smoothing
steps shows an improving trend. It is also noticeable that an even number of steps perform
slightly better than an odd number.

As a second test case, we use the two-dimensional convection diffusion equation with ã = 1,
γ = π/4, b = 0.001, ∆t = 0.5. As a smoother k-step GMRES is used. In Table 8, the
convergence rates observed in practice of the multigrid method can be seen for different ∆x.
As can be seen, increasing the dimension of the Krylov subspace used, respectively the degree
of the polynomial, decreases the convergence rate. Furthermore, the convergence rate increases
with a finer mesh width, but not terribly so. Again, the k + 2-nd root of the convergence rate
measured is shown in Table 9. Now the root is approximately constant on a particular mesh, but
goes up from k = 3 to k = 4. Thus, 2- and 3-step GMRES perform about the same. Since the
cost per iteration in GMRES increases with due to the increasing number of scalar products, we
consider 2-step GMRES to be the most promising method.

5.3 Comparison of smoothers

Now all the smoothers under consideration are compared. The first test case is the two-
dimensional convection diffusion equation with ã = 1, γ = π/4, b = 0.001, ∆t = 0.5 and a
two-level multigrid cycle. Table 10 lists the convergence rates obtained with all smoothers. We
test the effect of using the smoother vs. a direct solver on the coarsest multigrid level. In Table
11, the m-th root of the convergence rates is listed; the values of m are given in Table 3. Using

∆x 1 2 3 4
1/32 0.5192 0.3853 0.2838 0.2726
1/64 0.5913 0.4506 0.3576 0.3531
1/128 0.6326 0.4870 0.4076 0.3975

Table 8: Measured convergence rate of the multigrid method for 2D convection diffusion when using k-step
GMRES as a smoother.
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∆x 1 2 3 4
1/32 0.8037 0.7879 0.7773 0.8052
1/64 0.8393 0.8193 0.8141 0.8407
1/128 0.8584 0.8354 0.8357 0.8575

Table 9: The k + 2-nd root of the measured convergence rate of the multigrid method for 2D convection diffusion
when using k-step GMRES as a smoother.

direct smoother
Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 0.5330 0.5430 0.5397 0.8034 0.8977 0.9471
ARK5 0.6473 0.6412 0.6266 0.9169 0.9580 0.9787
RK2 0.4312 0.4646 0.4789 0.7049 0.8452 0.9198
RK4 0.3505 0.4130 0.4428 0.4749 0.7129 0.8479
ImpE 0.2654 0.3541 0.4165 0.3539 0.5675 0.7608
GMRES 0.2658 0.3541 0.4158 0.3576 0.5679 0.7583
SGS 0.0875 0.2013 0.3489 0.1019 0.2854 0.5998
ILS 0.7814 0.8334 0.8494 0.7344 0.8496 0.9246

Table 10: The measured convergence rate of the 2-level multigrid method for 2D convection diffusion with γ =
π/4 when using smoother vs. direct solve on coarsest multigrid level.

a smoother is less effective than a direct solver as a coarse-grid method. The best smoother
in terms of computational effort is SGS. Explicit multistep smoothers (RK and ARK) achieve
relatively poor convergence rates. The implicit line smoother achieves the slowest convergence
because the lines are not aligned with the convection direction.

In the next test, the number of multigrid levels is increased to the maximum possible for
each N : i.e. log2(N). Tables 12 and 13 list the convergence rates and their m-th roots. The
choice of smoother/direct solver on the coarsest grid is insignificant. Overall, convergence rates
are improved by the increased number of multigrid levels. As in the two-level test, SGS is the
fastest-converging smoother. However, the m-th root of convergence rate increases with N and
on the finest grid RK2 has comparable values. On still finer grids SGS may not be the clear
winner.

As a final test the convection angle is set to γ = π/2 so that the lines of ILS are aligned
with the flow. The number of multigrid cycles is kept at log2(N). Tables 14 and 15 list the
convergence rates and their m-th roots respectively. Most notable is the ILS convergence rate is
greatly improved at lower N . The other schemes follow the opposite trend, their convergence
rates getting larger at γ = π/2.

6 CONCLUSIONS

We considered different smoothers in an agglomeration multigrid method for a finite volume
discretization of the linear convection diffusion equation. For these, we considered different
smoothers, namely explicit and additive Runge-Kutta methods, GMRES with a fixed number of
steps, SGS and implicit line smoothers. We related GMRES to optimized explicit RK methods
in that GMRES automatically chooses a polynomial that optimizes residual reduction over all
eigenvalues, not just the ones relevant for smoothing. In the case of GMRES, we analyze and
demonstrate by numerical experiments that implicit pseudo time iterations do not offer a benefit
compared to using the inner method directly as a smoother. Implicit line smoothing turns out to
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direct smoother
Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 0.8817 0.8850 0.8840 0.9572 0.9786 0.9892
ARK5 0.9301 0.9286 0.9251 0.9856 0.9929 0.9964
RK2 0.7555 0.7745 0.7824 0.8900 0.9455 0.9725
RK4 0.8109 0.8379 0.8497 0.8616 0.9346 0.9675
ImpE 0.8016 0.8411 0.8642 0.8410 0.9099 0.9555
GMRES 0.8018 0.8411 0.8639 0.8425 0.9100 0.9549
SGS 0.4985 0.6325 0.7402 0.5208 0.6989 0.8641
ILS 0.9519 0.9642 0.9679 0.9401 0.9679 0.9845

Table 11: The m-th root of the measured convergence rate of the 2-level multigrid method for 2D convection
diffusion with γ = π/4 when using smoother vs. direct solve on coarsest multigrid level. Table 3 lists the value of
m for each scheme.

direct smoother
Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 0.5562 0.5918 0.6143 0.5624 0.5907 0.6105
ARK5 0.6780 0.7035 0.7295 0.6876 0.7101 0.7364
RK2 0.4130 0.4275 0.4497 0.4144 0.4332 0.4558
RK4 0.2933 0.3550 0.3868 0.2931 0.3539 0.3867
ImpE 0.2716 0.3527 0.3969 0.2717 0.3527 0.3969
GMRES 0.2726 0.3533 0.3974 0.2726 0.3533 0.3974
SGS 0.0817 0.1938 0.3358 0.0818 0.1938 0.3358
ILS 0.9019 1.1877 1.4010 0.9787 1.2581 1.4712

Table 12: The measured convergence rate of the log2(N)-level multigrid method for 2D convection diffusion with
γ = π/4 when using smoother vs. direct solve on coarsest multigrid level.

direct smoother
Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 0.8893 0.9004 0.9071 0.8913 0.9001 0.9060
ARK5 0.9373 0.9431 0.9488 0.9395 0.9445 0.9503
RK2 0.7447 0.7533 0.7662 0.7455 0.7566 0.7696
RK4 0.7824 0.8129 0.8270 0.7824 0.8124 0.8270
ImpE 0.8048 0.8406 0.8573 0.8048 0.8406 0.8573
GMRES 0.8052 0.8408 0.8574 0.8052 0.8408 0.8574
SGS 0.4889 0.6258 0.7321 0.4890 0.6258 0.7321
ILS 0.9796 1.0350 1.0698 0.9957 1.0470 1.0803

Table 13: Them-th root of the measured convergence rate of the log2(N)-level multigrid method for 2D convection
diffusion with γ = π/4 when using smoother vs. direct solve on coarsest multigrid level.
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direct smoother
Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 0.8964 0.8893 0.8539 0.8966 0.8897 0.8538
ARK5 0.9440 0.9378 0.9158 0.9443 0.9388 0.9179
RK2 0.8506 0.8469 0.7996 0.8506 0.8469 0.7995
RK4 0.7352 0.7427 0.6857 0.7352 0.7427 0.6857
ImpE 0.4314 0.5400 0.5652 0.4314 0.5400 0.5652
GMRES 0.5183 0.5719 0.5634 0.5183 0.5719 0.5634
SGS 0.1156 0.2422 0.4414 0.1156 0.2422 0.4414
ILS 0.1913 0.4768 0.7437 0.1913 0.4768 0.7437

Table 14: The measured convergence rate of the log2(N)-level multigrid method for 2D convection diffusion with
γ = π/2 when using smoother vs. direct solve on coarsest multigrid level.

direct smoother
Scheme 1/32 1/64 1/128 1/32 1/64 1/128
ARK4 0.9784 0.9768 0.9869 0.9784 0.9769 0.9869
ARK5 0.9904 0.9893 0.9855 0.9905 0.9895 0.9858
RK2 0.9475 0.9461 0.9282 0.9475 0.9461 0.9281
RK4 0.9403 0.9422 0.9273 0.9403 0.9422 0.9273
ImpE 0.8693 0.9024 0.9093 0.8693 0.9024 0.9093
GMRES 0.8963 0.9111 0.9088 0.8963 0.9111 0.9088
SGS 0.5398 0.6668 0.7917 0.5398 0.6668 0.7917
ILS 0.7183 0.8623 0.9425 0.7183 0.8623 0.9425

Table 15: Them-th root of the measured convergence rate of the log2(N)-level multigrid method for 2D convection
diffusion with γ = π/2 when using smoother vs. direct solve on coarsest multigrid level.
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be a specific block Jacobi method.
When looking at computational effort measured in terms of matrix vector products, 2-step

GMRES and SGS perform best. Since the latter is not parallel, 2-step GMRES is a very inter-
esting candidate for further study.

REFERENCES

[1] P. BIRKEN, Optimizing Runge-Kutta smoothers for unsteady flow problems, ETNA, 39
(2012), pp. 298–312.

[2] P. BIRKEN, Solving nonlinear systems inside implicit time integration schemes for un-
steady viscous flows, in Recent Developments in the Numerics of Nonlinear Hyperbolic
Conservation Laws, R. Ansorge, H. Bijl, A. Meister, and T. Sonar, eds., Springer, 2013,
pp. 57–71.

[3] D. CAUGHEY AND A. JAMESON, How many steps are required to solve the Euler equa-
tions of steady compressible flow: In search of a fast solution algorithm, AIAA Paper
2001-2673, (2001).

[4] H. C. ELMAN, O. G. ERNST, AND D. P. O’LEARY, A Multigrid Method Enhanced by
Krylov Subspace Iteration for Discrete Helmholtz Equations, SIAM J. Sci. Comput., 23
(2001), pp. 1291–1315.

[5] A. JAMESON, Transonic flow calculations for aircraft, in Numerical Methods in Fluid
Dynamics, F. Brezzi, ed., Lecture Notes in Mathematics, Springer, 1985, pp. 156–242.

[6] A. JAMESON, W. SCHMIDT, AND E. TURKEL, Numerical Solution of the Euler Equations
by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, in AIAA Paper
1981-1259, 1981.

[7] S. LANGER, Investigation and application of point implicit Runge-Kutta methods to invis-
cid flow problems, Int. J. Num. Meth. Fluids, 69 (2012), pp. 332–352.

[8] S. LANGER, Application of a line implicit method to fully coupled system of equations for
turbulent flow problems, Int. J. CFD, 27 (2013), pp. 131–150.

[9] S. LANGER AND D. LI, Application of point implicit Runge-Kutta methods to inviscid
and laminar flow problems using AUSM and AUSM + upwinding, International Journal of
Computational Fluid Dynamics, 25 (2011), pp. 255–269.
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Abstract. In recent years the increasing attention to high-order Finite Volume (FV), Finite El-
ement (FE) and spectral methods and the growth of computing power promote the development
of high-order temporal schemes to perform robust, accurate and efficient unsteady long-time
simulations. In this context, some features of the Discontinuous Galerkin finite element (DG)
methods, e.g. compactness and flexibility, can be advantageous both for explicit and implicit
time integration approaches. Explicit schemes can achieve very high accuracy, but are lim-
ited by time-step restrictions, while implicit schemes, even if memory consuming, can overcome
time-step limitations, thus improving the time integration efficiency. During last decades sev-
eral high order implicit temporal schemes have been developed, and some of them have been
successfully coupled with DG methods. However these schemes can show the order reduction if
applied to very stiff problems or problems with time-dependent boundary conditions. To over-
come these limitations, high-order linearly implicit two-step peer methods have been proposed
and successfully applied to the numerical solution of differential-algebraic equations. The aim
of the present work is to implement high-order two-step peer methods in a DG code and as-
sess their performance for the unsteady solution of the incompressible Navier-Stokes (INS) and
Reynolds Averaged Navier-Stokes equations (RANS) equations.
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1 Introduction

In recent years, due to the increasing computational power and accuracy requirement, Dis-
continuous Galerkin (DG) method has become one of the most promising approaches to high-
fidelity fluid dynamic computations in many technical areas, such as aeronautics, aeroacoustics
and turbomachinery [17, 3, 2]. DG method proved to be very well suited for the Direct Nu-
merical Simulation (DNS) [16, 15, 32] and the Large Eddy Simulation (LES) [31] of turbulent
flows. Recently, the DG method has also been applied by Bassi et al. [3] to hybrid RANS-LES
approaches in an attempt to overcome the poor predictive capabilities of the Reynolds-averaged
Navier-Stokes (RANS) equations with first-moment closures in case of particular flow condi-
tions, e.g., massively separated flows.

These simulations require robust, accurate and efficient long time integration of unsteady
flows, characterized by a wide range of temporal scales. Explicit schemes can achieve a very
high accuracy [18, 19, 22] but are limited by time-step restriction. Otherwise, implicit schemes,
although memory consuming due to the need of the Jacobian matrix, can be A-stable and L-
stable even for high order of accuracy. Most popular implicit schemes are Backward Differ-
entiation Formulae (BDF) [9], which are only A-stable up to the second-order, and their low
accuracy is not well suited to match the spatial accuracy of DG methods. In the attempt to
couple a high-order discretization both in space and time, several temporal schemes have been
used to advance in time the DG space discretized equations [6, 26, 25, 5].

Among these schemes, Rosenbrock-type Runge-Kutta schemes [5] have received particular
attention. In fact, being linearly implicit, they solve only one linear system per stage, showing
a greater computational efficiency if compared to non linear methods [26, 25], which require to
solve several non-linear systems at each time-step. Unfortunately, these Rosenbrock one-step
methods can suffer from order reduction when they are applied to stiff problems. Additional
order conditions can be derived to avoid the order reduction, but methods with higher order of
convergence satisfying these conditions are difficult to find. For this reason, the class of the lin-
early implicit two-step peer methods [20] has been proposed for the numerical solution of time
dependent Differential Algebric (DAE) and Partial Differential (PDE) equations. All solutions
computed by Peer methods within a time-step have the same order of accuracy (this feature
explains the attribute peer), and this is in contrast to one-step methods, where stage values have
lower order than the final solution. Peer methods up to order eight are available in literature,
and are characterized by good stability properties, i.e., optimal zero-stability and L (α)-stability
[27], strong damping properties at infinity without further restrictions, and robustness with re-
spect to stepsize changes. As all multi-step schemes, Peer methods are non self-starting and
thus need a starting procedure in order to obtain required initial solutions. They are also multi-
stage schemes and for each stage they require the solution of one linear system making them
very attractive for practical computations. Since all stage solutions have the same accuracy and
stability properties a continuous output of high-order is available with no extra-cost.

The aim of the present paper is to describe the implementation of high-order linearly implicit
two-step peer methods in the DG MIGALE code for the integration in time of incompressible
Navier-Stokes and RANS equations closed by the k− ω̃ turbulence model [8]. Linearly implicit
two-step peer methods up to sixth order of accuracy are assessed on two incompressible un-
steady test cases: (i) the laminar travelling waves solution on a doubly periodic unit square do-
main and (ii) the turbulent flow around a circular cylinder for a Reynolds numberRe = 5×104.
The travelling waves test case was used to investigate (i) the Peer methods order of accuracy,
(ii) different types of starting procedure and their accuracy and (iii) the computational efficiency
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of the schemes to obtain a given accuracy with the adaptive time-step strategy. Also the circu-
lar cylinder test case has been used to investigate the computational efficiency of Peer methods
with the adaptive time-step strategy. A comparative assessment in terms of accuracy and perfor-
mance with the traditional fourth order/six stages ESDIRK scheme [13] and third order/three
stages (ROS3PL) [23] and fourth order/six stages (RODASP) [30] linearly implicit one-step
Rosenbrock schemes has been done.

The paper is organized as follow: Section 2 describes the DG space discretization method
for the Incompressible Navier-Stokes, RANS and turbulence model equations, while Section 3
introduces the class of the linearly implicit two-step peer methods and the adaptive time-step
strategy. Numerical results are shown in Section 4, and the final Section 5 summarizes the
results and presents the conclusion.

2 DG space discretization

Incompressible Navier-Stokes, RANS and turbulence model equations can be written in
compact form as

∂q̂

∂t
+∇ · Fc(q) +∇ · Fv(q,∇q) + s(q,∇q) = 0, (1)

where q ∈ Rm denotes the vector of the m primitive variables (p, ui, k, ω)T (for i = 1, d),
s ∈ Rm the source term, d the space dimension. Fc,Fv ∈ Rm ⊗ Rd denote the inviscid and
viscous flux functions, while q̂ ∈ Rm is defined as (0, ui, k, ω)T .

To discretize the governing equations in space the system (1) is firstly multiplied by an
arbitrary smooth test function v = {v1, . . . , vm} and then integrated by parts, thus obtaining
its weak form. The solution q and the test function v are then replaced with a finite element
approximation qh and a discrete test function vh both belonging to Vh

def
= [Pkd(Th)]m, where

Pkd(Th)
def
=
{
vh ∈ L2(Ω) | vh|K ∈ Pkd(K), ∀K ∈ Th

}
(2)

is the discrete polynomial space in physical coordinates. Pkd(K) denotes the restriction of the
polynomial functions of d variables and total degree ≤ k to the element K belonging to the
triangulation Th = {K}, consisting of a set of non-overlapping arbitrarily shaped and possibly
curved elements, built on an approximation Ωh of the domain Ω. We also define as Fh the set of
the mesh faces Fh

def
= F ih ∪ F bh, where F bh collects the faces located on the boundary of Ωh. For

any internal face F ∈ F ih there exist two elements K+, K− ∈ Th such that F ∈ ∂K+ ∩ ∂K−,
where ∂ denotes cell boundaries. Moreover, for all F ∈ F bh, nF is the unit outward normal to
Ωh, whereas, for all F ∈ F ih, n−F and n+

F are the unit outward normals pointing to K+ and K−,
respectively. To deal with discontinuous functions over the internal faces F ∈ F ih we introduce
the jump [[·]] and average {·} trace operators, that is

[[vh]]
def
= vh|K+n+

F + vh|K−n
−
F , {vh}

def
=
vh|K+ + vh|K−

2
. (3)

When applied to vector functions these operators act componentwise.
Following the approach presented in [4], for each equation of the system, and without loss

of generality, we choose the set of test and shape functions in any element K coincident with
the set {φ} of NK

dof orthogonal and hierarchical basis functions in that element. Such basis is
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built by means of the modified Gram-Schmidt (MGS) algorithm, starting from a set of mono-
mials defined over each elementary space Pkd(K) in a reference frame relocated in the element
barycenter and aligned with the principal axes of inertia of K.

Each component qh,j , j = 1, . . . ,m, of the numerical solution qh ∈ Vh can be expressed, in
terms of the elements of the global vector Q of unknown degrees of freedom, as qh,j = φlQj,l,
l = 1, . . . , NK

dof , ∀K ∈ Th.
Accounting for these aspects, the DG discretization of the RANS and turbulence model

equations consists in seeking, for j = 1, . . . ,m, the elements of Q such that∑
K∈Th

∫
K

φiφl
dQk,l

dt
dx−

∑
K∈Th

∫
K

∂φi
∂xn

Fj,n (qh,∇hqh + r ([[qh]])) dx

+
∑
F∈Fh

∫
F

[[φi]]n F̂j,n
(
q±h , (∇hqh + ηF rF ([[qh]]))

±) dσ
+
∑
K∈Th

∫
K

φisj (qh,∇hqh + r ([[qh]])) dx = 0, (4)

for i = 1, . . . , NK
dof and where repeated indices imply summation over the ranges k = 1, . . . ,m,

l = 1, . . . , NK
dof and n = 1, . . . , d.

In Eq. (4) F denotes the sum of the convective and viscous flux functions, and F̂ the sum
of their numerical counterparts. For the former the flux computation is based on the exact
solution of the Riemann problem for the artificial compressibility perturbation of the locally 1D
inviscid Euler equations, as suggested in [7, 8], while for the latter the BR2 scheme is employed,
proposed in [9] and theoretically analyzed in [11, 1].

3 Time discretization

The discrete problem corresponding to Eq. (4) can be written as:

M̂
dQ
dt

+ R (Q) = 0, (5)

where Q is the global vector of unknown degrees of freedom, R the residuals vector, and M̂ the
global block diagonal mass matrix. Thanks to the use of orthonormal base functions defined in
physical space, the matrix M̂ is simply the identity matrix with null entries corresponding to the
pressure degrees of freedom due to the lack of pressure time derivatives.

In this work the Eq. (5) is advanced in time in an implicit sense, by using the high-order
linearly implicit two-step peer methods.

3.1 Linearly implicit two-step peer methods

The s-stage linearly implicit two-step peer method computes solution approximations Qn
i ,

i = 1, . . . , s, of the Eq. (5) at times tni = tn + ci∆t
n by means of s linear systems:(

M̂
γ∆tn

+ Jn−1s

)
(Qn

i −Q0
n
i ) = −R0

n
i +

M̂
γ∆tn

(Yi −Q0
n
i ) i = 1, ..., s, (6)

where

Yi =
i−1∑
j=1

aij
γ

(
Qn
j − Yj

)
+

s∑
j=1

uijQn−1
j , (7)
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Q0
n
i =

i−1∑
j=1

a0ij
γ

(
Qn
j − Yj

)
+

s∑
j=1

u0ijQn−1
j , (8)

with

Jn−1s =
∂R(Qn−1

s )

∂Q
, (9)

At each step, an embedded solution can be computed as

Q̂
n

s =
s−1∑
i=1

αiQn
i . (10)

A = {aij}, U = {uij}, A0 =
{
a0ij
}

and U0 =
{
u0ij
}

are s×smatrices of real coefficients and
αi, ci and γ are real parameters. U and U0 depend on the step size ratio σn = ∆tn/∆tn−1 be-
tween current and previous steps in order to ensure accuracy and stability properties for variable
step sizes.

The Jacobian matrix of the DG space discretization Jn−1s is computed only once per step
with the last stage solution Qn−1

s of the previous step. Thanks to the peculiar treatment of the
convective numerical flux, Jn−1s has non null entries for pressure degrees of freedom; it follows
that, despite the singularity of matrix M̂, Eq. (6) can be solved with standard algorithms.

In order to compute step n = 1 of the two-step method described in Eq. (6), initial solutions
Q0
i , i = 1, . . . , s, at times t0i = tst + ci∆t

st must be available, where superscript st denotes the
starting step. The initialization algorithm to compute Q0

i will be described in Sec. 3.3.

3.2 Accuracy and stability properties

Matrices A, U, A0 and U0 and parameters γ and ci uniquely define accuracy and stability
properties of a s-stage Peer method. Consistency and zero stability conditions that ensure order
q = s − 1 for all step size ratio σ > 0 and for all Peer stages are provided in [27, 20]; it
follows that all quantities computed by Eqs. (6), (7) and (8) have the same accuracy and stability
properties. Furthermore, these conditions are derived independently from the Jacobian matrix,
which thus can be computed numerically, e.g. by means of finite differences. As proposed in
Ref. [27], matrices A, U, A0 and U0 are functions of parameters ci and γ, and coefficients ci are
chosen to be stretched Chebychev nodes in the interval [−1, 1]:

ci = −
cos
((
i− 1

2

)
π
s

)
cos
(
π
2s

) , i = 1, . . . , s. (11)

The γ parameter specifies the θ angle of A (θ)- and L (θ)-stability, and, as demonstrated in
[27], can guarantees (if conveniently chosen) an order q = s for a s-stage Peer method. with
constant time-step. Finally, coefficients αi, i = 1, . . . , s − 1, are only function of nodes ci,and
are computed such that the order of the embedded solution is equal to q̂ = s− 2 (see Ref. [20]).

Peer methods implemented have three, four, five and six stages and in this work are referred
as peer3A, peer4A, peer5A and peer6A. They are A-stable and L-stable, i.e. θ = 90, and have
order q = s − 1 and q = s for variable and constant time-step, respectively. The γ values
adopted for each scheme are reported in Tab. 1.
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Table 1: List of γ values and corresponding θ angles of A (θ)-stability and L (θ)-stability for each Peer method
used in this work.

s γ θ
peer3A 3 2.165162598341552E + 00 90
peer4A 4 1.038881828680110E + 00 90
peer5A 5 5.614731292097847E − 01 90
peer6A 6 3.476356828221134E − 01 90

3.3 Starting procedure

Peer methods are multi-step and multi-stage time integration schemes. As all multi-step
schemes, they are not self-starting, that means they need a set of starting solutions Q0

i at times:

t0i = tst + ci∆t
st, i = 1, . . . , s (12)

where
∆tst = t1 − tst, (13)

in order to perform the first step n = 1.
Defining

c− = min
i∈[1,s]

(ci) , t− = tst + c−∆tst (14)

as the minimum value of nodes ci and the smallest time point of the starting procedure, respec-
tively, and imposing that t− is equal to initial time t0, it follows from Eqs. (12) and (13) that:

t0i = t0 +
(
ci − c−

)
∆tst, i = 1, . . . , s, (15)

t1 = t0 +
(
1− c−

)
∆tst, (16)

where ∆tst is the starting procedure time-step here imposed equal to the user-defined initial
time-step of Peer methods,

∆tst = ∆t1, (17)

in order to ensure σ1 = 1.
Starting solutions at corresponding times t0i can be obtained by means of a one-step time

integration scheme, e.g. Rosenbrock or ESDIRK scheme. It is mandatory that the accuracy
of Q0

i is proportional to the accuracy of the Peer method used for the simulation, otherwise
a reduction of the accuracy order is introduced. Basing on the asymptotic behaviour of time
integration errors, this request leads to:

T st
(
∆t′
)q′ ∝ (∆t)q , (18)

where ∆t′ and ∆t are the mean time-steps used by the one-step scheme of order q′ and Peer
method of order q, respectively and T st is the starting procedure period that can be computed
from Eq. (15) as:

T st =
(
c+ − c−

)
∆tst, (19)

with c+ = maxi∈[1,s] (ci). Since ∆t ∝ ∆t1, from Eq. (17) it follows that:

∆t′ = ψ
(
∆t1
) q−1

q′ , (20)
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where the constant value must be defined by the user. For simplicity we consider ψ = 1. After
sorting the starting time points such that:

t0j < t0j+1, j = 1, . . . , s− 1, (21)

with in general t0j 6= t0i , it can be found the number of steps,

N ′j = int

[(
t0j+1 − t0j

)(
∆t′
) ]

+ 1, (22)

needed to integrate in time from t0j to t0j+1 by means of the one-step scheme and, as a conse-
quence, the corresponding fixed time-step:

∆t′j =

(
t0j+1 − t0j

)
N ′j

. (23)

Notice that ∆t′j ≤ ∆t′. Finally, starting from Q0
j , the solution Q0

j+1 can be achieved after N ′j
steps of dimension ∆t′j performed with a one-step temporal scheme.

3.4 Time-step adaptation algorithm

The time-step control is an important feature to increase the efficiency and robustness of a
time integration method. The adaptive technique is based on the local error estimator, which
exploit the lower order embedded solution to approximate the local truncation error of the con-
sidered temporal scheme:

rn+1 =
‖Qn − Q̂n‖2

d
, (24)

where d is the threshold tolerance, defined as:

d = ATOL+RTOL‖Qn‖2. (25)

withATOL andRTOL user-defined absolute and relative tolerances, respectively. In this work
is set ATOL = RTOL = TOL, that leads to:

d = TOL+ TOL‖Qn+1‖2. (26)

Considering relations proposed by Söderlind et al., in [28, 29], the next time-step ∆tn+1 can
be computed as:

∆tn+1 = min ((1 + 2atan [(ρn − 1) /2]) ∆tn,∆tmax) , (27)

where

ρn =

(
∆tn

∆tn−1

)−α2
(

1

rn+1

)β1 ( 1

rn

)β2
, (28)

q̂β1 = q̂β2 = α2 = 1/4, ∆tn is the current time-step, ∆tn−1 the previous time-step, q̂ the order
of the embedded scheme, rn the previous local error estimator and ∆tmax the user-defined
maximum allowable time-step which can be defined as a fraction of the characteristic temporal
scale of the considered flow problem (e.g. the vortex shedding period).
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If rn+1 > δ, the current time-step ∆tn is rejected and the iteration recomputed with ∆tn+1.
δ > 1 is a user-defined safety factor, here set to 1.5.

The time-step adaptation algorithm should operate in a tolerance proportional mode, i.e. a
change of the user defined tolerance TOL by one order of magnitude should correspond to
a change of the solution error by one order of magnitude. Furthermore, the different time
integration schemes should deliver the same accuracy for the same tolerance setting. These
features can be obtained with a proper scaling and calibration of the adaptation algorithm by
using a modified input tolerance TOL′ inside Eq. (26), where:

TOL′ = βTOL
(k−1)/k
0 TOL1/k. (29)

TOL0 is the equivalence point determined during the calibration, β is a constant to have similar
accuracies for the same TOL and different time integration schemes at the end of the simula-
tions and k is the measured order of the curve error − TOL′ of the reference computations
used for the calibration. The calibration was done on the travelling waves test case (see Sec-
tion 4.1), where the analytical solution is known, and on the circular cylinder (see Section 4.2),
computing a reference solution [29].

Finally, the tolerance of the iterative method used for the solution of linear systems (6) is set
as

TOLGMRES = ηTOL′, (30)

where η is a safety factor. The choice of η will be numerically investigated in the Section 4.1.

4 Results

In this section the robustness and the accuracy of the proposed coupling between high-order
DG method and high-order linearly implicit two-step peer schemes are demonstrated by means
of the analysis of two incompressible test cases.

The first test case is the laminar solution of travelling dumped waves on a doubly periodic
unit square domain. In the second test case, the unsteady turbulent flow around a circular cylin-
der is performed forRe = 5×104 based on the circle diameter and on the freestream conditions
[10]. The convergence order of Peer temporal schemes up to six stages, the correctness of the
starting procedure and the influence of the system tolerance TOLSystem have been assessed for
the laminar test case. Afterwards, the efficiency of the proposed DG-Peer coupling was in-
vestigated for a turbulent test case by means of the adaptive time-step strategy and compared
with the traditional one-step temporal schemes, i.e. the fourth order/six stages ESDIRK scheme
[13] and the third order/three stages (ROS3PL) [23] and fourth order/six stages (RODASP) [30]
linearly implicit one-step Rosenbrock schemes.

Computations have been run on a Linux cluster with 12 AMD 6220 CPUs (8 cores per
CPU). Computing times tCPU reported in this work are normalized values with respect to the
TauBenchmark [12] value, tTauBench, obtained on a full node of the cluster used for the CFD
simulation1. The normalized computing time is measured as work units (wu) and is defined as
wu=(tCPUncores)/tTauBench, where tCPU is the wall clock time and ncores the numbers of cores.

1-n 250000 -s 10 define the reference TauBench workload for the hardware benchmark.
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Figure 1: Travelling waves. Computational mesh (left), 2500 quadrilateral elements with linear edges, and velocity
(x-component) contours after a simulation time ∆tsim = T (right), P6 solution approximation

4.1 Travelling waves

The analytical solution of the laminar travelling dumbed waves test case is defined as:

u1 (x, y, t) = 1 + 2cos (2π (x− t)) sin (2π (y − t)) e−8π2νt, (31)

u2 (x, y, t) = 1− 2sin (2π (x− t)) cos (2π (y − t)) e−8π2νt, (32)

p (x, y, t) = − (cos (4π (x− t)) + cos (4π (y − t))) e−16π2νt, (33)

with ν = 1e−2. The domain is the doubly periodic unit square [0.25, 1.25] × [0.5, 1.5]. A P6

solution approximation is used to keep the space discretization error below the time integration
error (see Fig. 1 for the mesh and the velocity contours). The time integration period T is set
equal to one non-dimensional convective time.

The convergence order of Peer schemes has been first verified, considering the following
time-steps: T/40, T/80, T/160, T/320 and T/400 and a system tolerance TOLGMRES =
10−15. All schemes verify the expected convergence order q = s for constant stepsize, as shown
in Tab. 2. The errors of peer6A at smallest time-steps are affected by the machine error, thus
preventing the verification of the convergence order. The initial solution Q0

i is simply defined
by the analytical solution of the problem at times t0i=1,...,s.

In general, the analytical solution is not available and starting values Q0
i=1,...,s must be com-

puted numerically by means of one-step time integration schemes. The starting procedure de-
scribed in Section 3.3 is here tested adopting linearly-implicit Rosenbrock-type Runge-Kutta
schemes ROS3PL [23] (q′ = 3), RODASP [30] (q′ = 4) and RODAS-ROD5 1 [24] (q′ = 5). In
particular, higher order RODASP and RODAS-ROD5 1 schemes are used only for peer5A and
peer6A, respectively, while lower order ROS3PL is applied to all Peer methods.

Tab. 3 shows theL2 norm of the pressure error (‖errp‖2) and the computational time obtained
with numerical starting procedure. It can be seen that the Peer methods order of convergence is
preserved. However, using a low order one-step scheme, i.e. ROS3PL, to initialize a high order
Peer method is not efficient because the time-step needed by the one-step method to preserve
the order of the Peer methods is too small.

The parameter η, used in Eq. (30), has been first chosen for each schemes with the adaptive
time-step strategy, in order to set the system tolerance TOLGMRES as a function of the adaptive
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Table 2: Travelling waves. L2 norm of the pressure (‖errp‖2) and velocity components (‖erru‖2, ‖errv‖2) errors,
and convergence order for Peer schemes with exact initialization, P6 solution approximation

∆t CFL ‖errp‖2 order ‖erru‖2 order ‖errv‖2 order

peer3A

T/40 7.96 1.78E-01 1.57 2.76E-01 1.57 2.76E-01 1.57
T/80 3.98 3.74E-02 2.92 5.82E-02 2.92 5.82E-02 2.92

T/160 1.99 4.84E-03 2.98 7.54E-03 2.98 7.54E-03 2.98
T/320 1.00 6.13E-04 2.99 9.54E-04 2.99 9.54E-04 2.99
T/400 0.80 3.15E-04 - 4.90E-04 - 4.90E-04 -

peer4A

T/40 7.96 8.53E-03 3.74 1.33E-02 3.73 1.33E-02 3.73
T/80 3.98 6.01E-04 3.93 9.36E-04 3.93 9.36E-04 3.93

T/160 1.99 3.88E-05 3.98 6.04E-05 3.98 6.04E-05 3.98
T/320 1.00 2.45E-06 3.99 3.82E-06 3.99 3.82E-06 3.99
T/400 0.80 1.01E-06 - 1.57E-06 - 1.57E-06 -

peer5A

T/40 7.96 2.75E-04 4.89 4.28E-04 4.89 4.28E-04 4.89
T/80 3.98 9.07E-06 4.97 1.41E-05 4.97 1.41E-05 4.97

T/160 1.99 2.87E-07 4.99 4.47E-07 4.99 4.47E-07 4.99
T/320 1.00 9.02E-09 5.00 1.40E-08 5.00 1.40E-08 5.00
T/400 0.80 2.96E-09 - 4.60E-09 - 4.60E-09 -

peer6A

T/40 7.96 7.66E-06 5.98 1.19E-05 5.98 1.19E-05 5.98
T/80 3.98 1.20E-07 6.01 1.86E-07 6.01 1.86E-07 6.01

T/160 1.99 1.87E-09 5.80 2.89E-09 6.03 2.89E-09 6.03
T/320 1.00 1.78E-10 - 4.06E-11 - 4.06E-11 -
T/400 0.80 1.76E-10 - 1.81E-11 - 1.81E-11 -
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Table 3: Travelling waves. L2 norm of the pressure (‖errp‖2) error, convergence order and computational time for
Peer schemes with numerical starting procedure, P6 solution approximation

∆t CFL ‖errp‖2 order ‖erru‖2 order ‖errv‖2 order CPU time [wu]

peer3A (ROS3PL)

T/40 7.96 1.78E-01 1.57 2.76E-01 1.57 2.76E-01 1.57 2.66E+03
T/80 3.98 3.74E-02 2.92 5.82E-02 2.92 5.82E-02 2.92 3.02E+03

T/160 1.99 4.84E-03 2.98 7.54E-03 2.98 7.54E-03 2.98 3.88E+03
T/320 1.00 6.13E-04 2.99 9.54E-04 2.99 9.54E-04 2.99 5.58E+03
T/400 0.80 3.15E-04 - 4.90E-04 - 4.90E-04 - 6.55E+03

peer4A (ROS3PL)

T/40 7.96 8.52E-03 3.74 1.33E-02 3.73 1.33E-02 3.73 1.78E+03
T/80 3.98 6.01E-04 3.93 9.35E-04 3.93 9.35E-04 3.93 2.22E+03

T/160 1.99 3.88E-05 3.98 6.04E-05 3.98 6.04E-05 3.98 3.28E+03
T/320 1.00 2.45E-06 3.99 3.81E-06 3.99 3.81E-06 3.99 6.16E+03
T/400 0.80 1.01E-06 - 1.57E-06 - 1.57E-06 - 7.15E+03

peer5A (RODASP)

T/40 7.96 2.75E-04 4.89 4.29E-04 4.89 4.29E-04 4.89 1.60E+03
T/80 3.98 9.07E-06 4.97 1.41E-05 4.97 1.41E-05 4.97 2.14E+03

T/160 1.99 2.87E-07 4.99 4.47E-07 4.99 4.47E-07 4.99 3.62E+03
T/320 1.00 9.02E-09 5.00 1.40E-08 5.00 1.40E-08 5.00 6.03E+03
T/400 0.80 2.96E-09 - 4.60E-09 - 4.60E-09 - 7.63E+03

peer5A (ROS3PL)

T/40 7.96 2.75E-04 4.89 4.29E-04 4.89 4.29E-04 4.89 1.54E+03
T/80 3.98 9.08E-06 4.97 1.41E-05 4.97 1.41E-05 4.97 2.25E+03

T/160 1.99 2.87E-07 4.99 4.48E-07 4.99 4.48E-07 4.99 3.89E+03
T/320 1.00 9.03E-09 4.99 1.41E-08 5.00 1.41E-08 5.00 7.50E+03
T/400 0.80 2.96E-09 - 4.61E-09 - 4.61E-09 - 7.78E+03

peer6A (ROD5 1)

T/40 7.96 7.66E-06 5.98 1.19E-05 5.98 1.19E-05 5.98 1.66E+03
T/80 3.98 1.20E-07 6.01 1.86E-07 6.01 1.86E-07 6.01 2.24E+03

T/160 1.99 1.87E-09 5.80 2.89E-09 6.03 2.89E-09 6.03 3.81E+03
T/320 1.00 1.78E-10 - 4.06E-11 - 4.06E-11 - 6.16E+03
T/400 0.80 1.79E-10 - 1.81E-11 - 1.81E-11 - 6.75E+03

peer6A (ROS3PL)

T/40 7.96 7.65E-06 5.99 1.19E-05 5.98 1.19E-05 5.98 2.32E+03
T/80 3.98 1.20E-07 6.00 1.86E-07 6.00 1.86E-07 6.00 4.72E+03

T/160 1.99 1.86E-09 5.79 2.89E-09 6.02 2.89E-09 6.02 9.03E+03
T/320 1.00 1.79E-10 - 4.05E-11 - 4.05E-11 - 1.98E+04
T/400 0.80 1.74E-10 - 1.80E-11 - 1.80E-11 - 2.42E+04
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Figure 2: Travelling waves. L2 norm of the pressure error (‖errp‖2) as a function of the adaptive tolerance TOL′

for adaptive Peer schemes, TOLGMRES = 10−15 and P6 solution approximation
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Figure 3: Travelling waves. L2 norm of the pressure error (‖errp‖2) as a function of the user defined tolerance
TOL for adaptive Peer schemes, TOLGMRES = η TOL and P6 solution approximation

tolerance TOL′. The results, summarized in Tab. 4, show the different errors with respect to the
reference solution with TOLGMRES = 10−15. The pressure error starts to change only when
TOLGMRES ≥ 0.1TOL′, that leads to set η = 0.1.

Fig. 2 shows the L2 norm of the pressure error (‖errp‖2) as a function of the adaptive toler-
ance TOL′. Without scaling procedure and for a given tolerance TOL′, the adaptive time-step
strategy provides different errors for different Peer methods. However, the tolerance calibration
defined by Eq. (29) allows to achieve the same error for different Peer schemes, as shown in
Fig. 3. After the calibration each scheme shows comparable errors for the same user defined
tolerance TOL. Tab. 5 summarizes the parameters of the calibration procedure.

Fig. 4 compare the performance of the Peer methods with the one-step traditional methods.
The efficiency of the Peer methods increases with the order of convergence. The performance
of peer6A and peer5A is comparable with RODASP scheme and peer4A with ROS3PL scheme.
Only peer3A achieves a low computational efficiency.

4.2 Turbulent flow around a circular cylinder

The coupling between DG method and Peer schemes has been investigated also computing
the turbulent flow around a circular cylinder for a Reynolds number Re = 5×104, based on the
cylinder diameter and the freestream conditions.

The far-field boundary is at 50 chords from the circle and the first cell height is equivalent to
y+ ∼ 4 (see Fig. 5 for the mesh and Fig. 6 for the pressure and turbulent intensity contours).
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Table 4: Travelling waves. Average time-step ∆tavg and Courant-Friedrichs-Lewy number CFLavg , L2 norm of
the pressure (‖errp‖2) and velocity components (‖erru‖2, ‖errv‖2) errors and the computational time for adaptive
Peer schemes and different system tolerances TOLGMRES , TOL′ = 10−3 and P6 solution approximation

TOLGMRES ∆tavg CFLavg ‖errp‖2 ‖erru‖2 ‖errv‖2 CPU time [wu]

peer3A (ROS3PL)

1.00E-06 3.06E-03 0.97 6.05E-04 9.42E-04 9.42E-04 3.67E+03
1.00E-05 3.06E-03 0.97 6.05E-04 9.42E-04 9.42E-04 3.28E+03
1.00E-04 3.06E-03 0.97 6.00E-04 9.35E-04 9.35E-04 2.47E+03
1.00E-03 3.06E-03 0.97 5.89E-04 9.13E-04 9.14E-04 2.14E+03
1.00E-02 3.06E-03 0.97 5.89E-04 9.13E-04 9.14E-04 2.08E+03
1.00E-01 3.05E-03 0.91 2.69E-03 4.23E-03 4.23E-03 1.76E+03

peer4A (ROS3PL)

1.00E-06 1.37E-02 4.36 9.66E-04 1.50E-03 1.50E-03 1.32E+03
1.00E-05 1.37E-02 4.36 9.66E-04 1.50E-03 1.50E-03 1.10E+03
1.00E-04 1.37E-02 4.36 9.66E-04 1.50E-03 1.50E-03 9.88E+02
1.00E-03 1.37E-02 4.36 9.78E-04 1.52E-03 1.52E-03 8.51E+02
1.00E-02 1.39E-02 4.42 1.24E-03 1.98E-03 1.98E-03 6.52E+02
1.00E-01 5.92E-03 1.88 7.89E-03 8.46E-03 7.41E-03 1.71E+03

peer5A (RODASP)

1.00E-06 3.23E-02 10.28 1.14E-03 1.78E-03 1.78E-03 7.48E+02
1.00E-05 3.23E-02 10.28 1.14E-03 1.78E-03 1.78E-03 6.73E+02
1.00E-04 3.23E-02 10.28 1.14E-03 1.78E-03 1.78E-03 5.69E+02
1.00E-03 3.23E-02 10.28 1.13E-03 1.77E-03 1.77E-03 4.50E+02
1.00E-02 3.23E-02 10.28 1.21E-03 1.62E-03 1.71E-03 3.67E+02

peer6A (ROD5 1)
1.00E-06 5.56E-02 17.70 1.20E-03 1.86E-03 1.86E-03 6.24E+02
1.00E-05 5.56E-02 17.70 1.20E-03 1.86E-03 1.86E-03 5.09E+02
1.00E-04 5.56E-02 17.70 1.20E-03 1.87E-03 1.87E-03 4.49E+02
1.00E-03 5.26E-02 16.77 9.75E-04 1.71E-03 1.94E-03 5.27E+02

Table 5: Travelling waves. Parameters for the calibration procedure

k β TOL0

peer3A 1.49 5.16 10−4

peer4A 1.32 2.14 10−4

peer5A 1.23 1.49 10−4

peer6A 1.17 1.14 10−4
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Figure 4: Travelling waves. L2 norm of the pressure error (‖errp‖2) as a function of the computational time for
adaptive Peer schemes, TOLGMRES = η TOL and P6 solution approximation
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Figure 5: Cylinder. Computational mesh (left) of a circular cylinder, 8753 quadratic elements, and detail of the
boundary layer (right)
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Figure 6: Cylinder. Pressure (left) and turbulence intensity (right) contours, P3 solution approximation

A P3 solution approximation provides a number of DOF, 87530, comparable with the compu-
tations on a fine mesh proposed by Carpenter et. al. on the same test case with a Finite Volume
code [14]. The grid has been generated with a 2D high-order version of a fully automated
in-house hybrid mesh generator based on the Advancing-Delaunay strategy [21].

Time integration error has been computed using the error of the lift coefficient:

errCL
= CL − CL,ref . (34)

The time integration period is set equal to one forth of the vortex shedding period. All compu-
tations start from the same initial flow field and the reference solution and the CL,ref have been
obtained with the RODASP scheme and the following parameters for the adaptive time-step
strategy: TOL′ = 10−9, TOLGMRES = ηTOL′.

The convergence order analysis has not been considered for this test case, due to the not
optimal convergence results shown by Carpenter et. al. [14], which will certainly characterize
also the schemes investigated in this work. Simulations have been carried out only with the
adaptive time-step strategy and for the starting procedure the following one-step time integration
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Figure 7: Cylinder. Evolution of the error estimator of the adaptive time-step strategy, rn+1, (on the left) and of the
time-step, ∆t, (on the right) for adaptive peer3A scheme with TOL′ = 10−4 and TOL′ = 10−5, TOLGMRES =
ηTOL′ and P3 solution approximation

schemes were used: ROS3PL for peer3 and peer4A, RODASP for peer5A and RODAS-ROD5 1
for peer6A.

The error on the lift coefficient, the computational time, the average time-step and the
Courant-Friedrichs-Lewy number for different adaptive tolerances are reported in Tab. 6. Lower
adaptive tolerance values can greatly increase the total number of the time-step and conse-
quently the computational cost of simulations that thus can be beyond the available resources.
For this reason very small adaptive tolerances, i.e. TOL′ = 10−7 and TOL′ = 10−8 for peer3A
and TOL′ = 10−8 for peer4A, have not been considered in this work.

On the other hand, with higher adaptive tolerance values numerical instabilities appear, as
depicted in Fig. 7, which shows the evolutions of the error estimator rn+1 and of the time-step
for peer3A scheme (TOL′ = 10−4 and TOL′ = 10−5). The simulation with TOL′ = 10−5

is more stable, the error estimator slightly fluctuates around δ and there is no rejected time-
step. Instead, the adaptive time-step strategy with TOL′ = 10−4 shows strong variations of the
error estimator, leading to a high number of rejected time-steps, approximately 10%, and, as a
consequence, to a higher computational cost. The origin of these instabilities could be related
to the loss of the linearisation properties, an well known issue that can also affect Rosenbrock
schemes.

As a consequence, optimal adaptive tolerances can be found for each Peer method: TOL′ =
10−4 for peer3A, TOL′ = 10−5 for peer4A and TOL′ = 10−7 for peer5A. Simulations with
Peer6A have not been performed due to excessive computing time required by the small adap-
tive tolerance (TOL′ = 10−8), necessary to avoid numerical instabilities.

A performance comparison between the peer methods and the traditional one-step methods
is shown in Figs. 8 and 9. As seen in the first test case, peer3A scheme must only be taken
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Figure 9: Cylinder. Error of the lift coefficient, errCL
, as a function of the computational time for adaptive Peer

schemes, TOLGMRES = ηTOL′ and P3 solution approximation

into account for very low level of accuracy, i.e. errCL
≥ 10−4. Instead, peer4A scheme with

the optimal values of the adaptive tolerance TOL′ is more efficient than ROS3PL scheme.
Finally, because of numerical instabilities, peer5A scheme can become competitive in terms of
efficiency only for very high accuracy, i.e. errCL

≤ 10−7

As in the previous test case, the tolerance calibration procedure can be used to reduce the
difference in accuracy between time integration schemes. Calibration parameters are reported
in Tab. 7.

5 Conclusions

In this work we have implemented the linearly implicit two-step Peer methods in a high-order
discontinuous Galerkin solver for the numerical solution of incompressible unsteady flows. The
performance, in terms of accuracy and computational efficiency, have been compared on lami-
nar and turbulent test cases with one-step traditional methods.

The assessment showed different behaviours for the considered schemes depending on the
flow regime of the test case, i.e. laminar or turbulent. On the laminar test case the Peer ac-
curacy increases with the order of convergence leading to an efficiency improvement of time
integration other traditional one-step implicit methods for high accuracy requirement. Instead,
for the turbulent test case, even if Peer methods show a very high accuracy, their efficiency is
comparable to Rosenbrock and ESDIRK ones.

Future works will assess Peer methods on other incompressible laminar and turbulent test
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Table 6: Cylinder. Error of the lift coefficient, errCL
, the average time-step ∆tavg , the average Courant-Friedrichs-

Lewy number CFLavg , the number of the rejected time-step [%] and the computational time for adaptive Peer
schemes and different adaptive tolerance TOL′, TOLGMRES = ηTOL′ and P3 solution approximation

TOL′ errCL
∆tavg CFLavg % rejected time-step CPU time [wu]

peer3A

1.00E-04 2.72E-03 2.95E-03 241.68 11.27% 1.73E+05
1.00E-05 1.33E-03 1.19E-03 97.65 0% 1.48E+05
1.00E-06 1.00E-03 3.77E-04 30.91 0% 1.02E+06
1.00E-07 - - - - -
1.00E-08 - - - - -

peer4A

1.00E-04 - - - - -
1.00E-05 3.53E-06 3.12E-03 255.23 28.04% 1.64E+05
1.00E-06 1.05E-07 1.70E-03 139.34 6.29% 1.69E+05
1.00E-07 1.61E-08 7.03E-04 57.58 8.78% 5.67E+05
1.00E-08 - - - - -

peer5A

1.00E-04 - - - - -
1.00E-05 - - - - -
1.00E-06 - - - - -
1.00E-07 1.91E-08 1.09E-03 89.25 14.49% 5.70E+05
1.00E-08 4.00E-09 4.24E-04 34.73 23.07% 2.50E+06

Table 7: Cylinder. Parameters for the calibration procedure

k β TOL0

peer3A 0.22 10−3 10−6

peer4A 1.17 9.55 10−6

peer5A 0.68 5.24 10−7
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cases, to have a deeper understanding of their behaviour and performance, considering also
time dependent boundary conditions, which can be handled by Peer schemes without order
reduction. Furthermore, the coupling between DG method and Peer schemes will be evaluate
also for compressible test cases.
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Abstract. In this paper we present an output-based method for estimating numerical errors
in unsteady simulations. This method applies to both variational and non-variational time
integrators, and we focus on the latter. Key to the method is the solution of a continuous-in-time
adjoint; that is, the unsteady adjoint system is derived from the semi-discrete form of the primal
using a discretization of choice that needs not be the same as the primal. This provides flexibility
in choosing the most appropriate and efficient time integration methods for the primal and
adjoint problems separately. We also present a general approach for reconstructing the solution
within a time interval, which is required for an accurate adjoint solution when using high-order
methods. We then show how the output error estimate can be separated into contributions from
spatial and temporal discretizations using a spatial down-projection of the adjoint. Finally, we
present a space-time mesh adaptation procedure that appropriately targets spatial and temporal
errors by setting equal ratios of marginal error to marginal cost of each refinement option, space
or time. We demonstrate the error estimation and adaptation method for a simple prototypical
problem: unsteady linear advection in one spatial dimension.
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1 INTRODUCTION

In an output-based setting, mesh resolution is automatically dictated by an error estimate of
an output of interest. Much work has been done in this area for steady problems with finite vol-
ume and finite element methods [13, 2, 9, 16, 15, 12, 6, 17]. However, unsteady problems pose
additional challenges and computational costs, namely in the unsteady adjoint solution. Yet
output-based adaptive methods have also been explored for such problems, with various me-
chanics of adaptation, including static-mesh, dynamic-mesh, space-only, and combined space-
time [14, 1, 4, 11, 3, 8, 7, 5, 10].

A variational discretization, such as a finite element method in space and time, puts output
error estimation on a sound theoretical foundation and simplifies the error calculation and local-
ization [6]. In particular, the adjoint solution, which is at the core of output-based methods, can
be solved using a discrete approach in which the adjoint equations are obtained systematically
from the primal discrete system by transposing the operator. This is the approach taken in many
previous works [14, 1, 7, 5, 10]. While the same approach can be applied to non-variational
discretizations, it has pitfalls as the relationship between the resulting discrete adjoint coeffi-
cients and the underlying continuous adjoint solution may not be clear or simple to work with,
especially if employing approximate adjoint solvers that rely on “smoothness” of the adjoint
solution.

On the other hand, non-variational methods are ubiquitous for time integration of unsteady
problems. Multi-step and multi-stage methods dominate such simulations, due to their simplic-
ity and generally lower computational cost compared to variational methods. There is there-
fore a need to extend output-based methods to such discretizations, to increase their utility and
prevalence, and this is the topic of the present work. Some work in this area has already been
done [11, 8], with scheme-specific algorithms for computing or approximating the fine-space
discrete adjoint and linear or spline-based interpolation of solutions between time nodes. In this
work we take a step back and derive a general approach for error estimation, through a continu-
ous-in-time adjoint solution, that accommodates nearly arbitrary time integration methods, even
of high order, and fine-space choices. We also show how to separate the error into contributions
of the spatial and temporal discretization.

In the remainder of this paper we first introduce our discretization in Section 2, which is
variational in space but could be non-variational in time. In Section 3 we derive a continuous-
in-time adjoint solution and show how to use it to estimate temporal errors, and spatial errors
when also using spatial refinement. A key part of the adjoint solution and the error estimate
is a reconstruction of the primal and adjoint solution in time, for which we present a scheme-
independent approach in Section 3.2. Section 3.4 outlines the space-time adaptive procedure,
and Section 4 presents results that demonstrate the methods for an advection problem.

2 DISCRETIZATION

We are interested in the simulation of phenomena governed by partial differential equations
in space and time. We write the PDE in canonical form as

∂u

∂t
+ L(u) = 0, (1)

where u is the state, and L(·) is the continuous spatial residual operator. We discretize this
equation in space and time separately, using a semi-discrete approach, as outlined in this section.
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2.1 Spatial

We employ a discontinuous Galerkin (DG) finite-element method in space. Denote by Th
the set of Nelem elements in a non-overlapping tessellation of the domain Ω. In DG, the state
is approximated by polynomials of order p on each element, with no continuity constraints
imposed on the approximations on adjacent elements. Formally, for a scalar equation, we write
that uh ∈ Vh, where Vh = {u ∈ L2(Ω) : u|Ωe ∈ Pp ∀Ωe ∈ Th} , and Pp denotes polynomials
of order p on an element Ωe. The weak-form of (1) follows from multiplying the PDE by
test functions in the same approximation space, integrating by parts, and coupling elements
via common fluxes. Choosing a basis for the test and trial spaces yields a system of ordinary
differential equations,

R̄(U) ≡M
dU

dt
+ R(U) = 0, (2)

where M is the mass matrix, U ∈ RN is the discrete state vector of basis function coefficients,
R is the discrete spatial residual vector, and R̄ is the strong-form unsteady residual.

2.2 Temporal

We consider general marching schemes for advancing the system of ODEs in (2) in time.
We do not assume a specific form for the time discretization and only require that the method
advances the state one time step, ∆t: from time node n to n + 1, i.e. Un → Un+1. This en-
compasses both variational time integrators, based on a weak-form in time, and non-variational
integrators such as traditional multi-step and multi-stage methods. In this work we show results
for a DG-in-time variational discretization [7] (DG1 and DG2), standard backwards-difference
multi-step methods (BDF1 and BDF2), and diagonally-implicit Runge-Kutta methods (DIRK3
and DIRK4). For example, an nstage DIRK method takes the form

for i = 1 : nstage

Si = −M

∆t
W0 +

i−1∑
j=1

aijR(Wj, tj)

solve:
M

∆t
Wi + aiiR(Wi, ti) + Si = 0

end

where W0 = Un is the state at the start of the time interval, Un+1 = Wnstage is the desired
result, and ti = tn + bi∆t are the stage times. The coefficients aij and bi define the method. For
example, a fourth-order accurate scheme (DIRK4) with nstage = 5 has

aij =


1
4

0 0 0 0
1
2

1
4

0 0 0
17
50

− 1
25

1
4

0 0
371
1360

− 137
2720

15
544

1
4

0
25
24

−49
48

125
16
−85

12
1
4

 , bi =


1
4
3
4
11
20
1
2

1

 .
3 OUTPUT ERROR ESTIMATION

In previous work, the author and collaborators have presented output error estimation for
unsteady problems using the discrete space-time adjoint and a variational discretization in time.
In the present work, to accommodate general time integration methods that do not necessarily
possess a temporal weak form, we rely on a continuous-in-time adjoint, as described in this
section.
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3.1 The continuous-in-time adjoint

Consider a time-integral output of a simulation,

J̄ ≡
∫ T

0

J(U, t) dt, (3)

where J(U, t) is a function of the spatial distribution of the state, via the discrete coefficients U,
and of time 1. The continuous-in-time adjoint Ψ(t) is the sensitivity of J̄ to source perturbations
in the unsteady residual, R̄, (2). To derive the equation for Ψ(t), we define a Lagrangian as

L ≡ J̄ +

∫ T

0

ΨT R̄ dt = J̄ +

∫ T

0

ΨT

(
M
dU

dt
+ R(U)

)
dt. (4)

Integrating the first term in the integral by parts, we have

L = J̄ + [ΨMU]T0 +

∫ T

0

[
−dΨ

T

dt
MU + ΨTR(U)

]
dt. (5)

Now requiring stationarity of the Lagrangian with respect to permissible state variations gives

LU(δU) = J̄U(δU) + [ΨMδU]T0 +

∫ T

0

[
−dΨ

T

dt
MδU + ΨTRU(δU)

]
dt = 0, (6)

where the subscript denotes differentiation with respect to the discrete state vector U. The
middle term drops out since δU = 0 at t = 0, and Ψ = 0 at t = T (J̄ does not depend on the
terminal state). Combining the remaining terms,∫ T

0

[
JU −

dΨT

dt
M + ΨTRU

]
δU dt = 0. (7)

This equation must hold for all δU, which forces the term in the square brackets to zero. Trans-
posing this term produces the continuous-in-time adjoint equation,

−M
dΨ

dt
+ RT

UΨ + JT
U = 0, (8)

with the terminal condition Ψ(T ) = 0. Due to the terminal condition, the adjoint is solved
backwards in time, from t = T to t = 0. In the present work, we do not restrict the choice of
time integration for the adjoint equation to be variational or even the same as the primal. We
note that when applying standard time integrators for marching backwards in time, it is useful
to define τ = T − t and to rewrite (8) in a form similar to the primal,

M
dΨ

dτ
+ RT

UΨ + JT
U︸ ︷︷ ︸

RΨ

= 0, (9)

where RΨ is the adjoint residual.

1More general outputs that involve end-of-time states could also be considered in a straightforward manner.
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3.2 Temporal reconstruction

Solving the adjoint using (9) requires evaluating the adjoint residual, which in general de-
pends on the primal state, at not only time nodes but possibly also on the interval in between
– for example, if using a multi-stage method. These in-between evaluations are not directly
available for general non-variational time integrators. The same situation occurs in error esti-
mation, where both the primal and adjoint are required in between time nodes for integrating
the adjoint-weighted residual. In this section, we describe how to reconstruct the solution in
time, independent of the time scheme used.

The temporal reconstruction is based on the semi-discrete form of the PDE, (2) 2, which we
can re-arrange to solve for the state slope,

dU

dt
= −M−1R(U). (10)

That is, we can obtain the slope in time through a residual evaluation at a known state. Suppose
that we know the states at the endpoints of a time interval, tn and tn+1 – this is what a general
time-marching scheme would give us. A very simple reconstruction would be to just connect
these states linearly, but that would only give us second-order accuracy. We can do much
better if we apply (10) to evaluate the slopes at the endpoints, and using these four pieces of
information reconstruct a cubic solution in time, as shown in Figure 1.

un+1

du

dt

n+1

du

dt

n

un

linear reconstruction

cubic reconstruction

tn

u

tn+1
t

two new slopes for quintic
reconstruction

Figure 1: Illustration of solution reconstruction on a time interval. High-order representations can be constructed
using slope information readily available from residual evaluations.

Furthermore, we can gain additional accuracy by applying (10) yet again, in between the
time nodes, using the reconstructed cubic solution. In particular, for error estimation we will
be computing integrals over the time interval via quadrature. For two quadrature points, we
evaluate the cubic at those two points and apply (10) to obtain the slopes there. With these
additional two pieces of information, we can reconstruct a quintic solution in time (i.e. the
unique quintic in time that matches the two endpoint values, two endpoint slopes, and two in-
between slopes). However, as the original state came from a cubic reconstruction, the order of
accuracy of this quintic will only be one higher than a cubic. To obtain true quintic accuracy,
we simply iterate the process, using the current quintic approximation to re-evaluate the slopes
at the midpoints, which then yields a new quintic. Just one such iteration will yield the expected
convergence rates, but an additional iteration will further lower the errors.

Table 1 shows the results from a numerical test of the reconstruction. The system of inter-
est is a scalar ordinary differential equation, du

dt
= u2. Reconstruction is performed over one

2For reconstructing the adjoint, we would use (9).
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interval, [0,∆t], and the error is defined as E2 = 1
∆t

∫ ∆t

0
(u − uexact)

2 dt. The results show the
optimal fourth-order convergence for the cubic reconstruction, and sixth-order convergence for
the quintic reconstruction with at least one iteration.

Cubic Quintic-0 Quintic-1 Quintic-2
∆t Error Rate Error Rate Error Rate Error Rate
1/4 8.87e-05 – 6.02e-06 – 8.54e-07 – 1.56e-07 –
1/8 7.24e-06 3.62 2.58e-07 4.55 1.93e-08 5.47 3.55e-09 5.46

1/16 5.22e-07 3.79 9.55e-09 4.75 3.68e-10 5.71 6.79e-11 5.71
1/32 3.52e-08 3.89 3.26e-10 4.87 6.38e-12 5.85 1.18e-12 5.85
1/64 2.28e-09 3.94 1.07e-11 4.93 1.03e-13 5.95 1.75e-14 6.07

Table 1: Errors and orders of accuracy of time-step reconstruction of a sample scalar problem, using endpoint
values and slopes only (cubic) and additional interior slopes and n iterations (quintic-n).

3.3 Error estimation

An adjoint solution can be used to estimate the numerical error in the corresponding output
of interest, J̄ , through the adjoint-weighted residual [2, 6]. Let’s first consider only temporal
errors. Denote by UH(t) the approximate primal solution obtained from a chosen time integra-
tion method and time step size. If we had the exact unsteady adjoint solution, Ψ(t), we could
use (4) to estimate the error in J̄ ,

δJ̄ ≡ J̄(UH)− J̄(U) ≈ J̄U(δU) ≈ −
∫ T

0

ΨT R̄(UH) dt, (11)

where δU ≡ UH − U is the state error, and R̄(UH) ≈ R̄U(δU) is the generally nonzero
unsteady residual obtained from the approximate primal. In practice, the exact adjoint is not
available and must be approximated in a fine space, denoted by subscript h, which in our work
will be a higher-order time integration method. Numerical error due to the spatial discretization
can be measured by also making the fine space higher order in space. In the present work this
is accomplished by increasing the spatial order of the DG discretization by one. The final form
of the error estimate is

δJ̄ ≈ −
∫ T

0

ΨT
h R̄h(UH

h ) dt, (12)

where UH
h is the injection of the primal from space H to space h. In the spatial domain, this is

a pure injection to higher order: p→ p+1. In the temporal domain, this involves a sufficiently-
accurate reconstruction over the time interval. For the time integration schemes considered in
this work, we employ a cubic time reconstruction for this injection. The integral in (12) is a
summation of integrals over all time intervals, and within each time interval we perform the
integral using quadrature – typically between 2 and 4 points, depending on the accuracy of
the time integration. For this integral we need to evaluate the adjoint inside the time intervals,
and we use a reconstruction appropriate for the fine-space temporal discretization – typically
quintic.

Finally, we note that the output error estimate in (12) can be separated into spatial and tem-
poral components by selectively refining the fine space only in space or only in time. Specif-
ically, we obtain the temporal error, δJ̄ time, by projecting the fine-space adjoint, Ψh, spatially
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back down to order p and recalculating the error via (12) with the projected adjoint. As non-
variational time integrators do not support a straightforward projection, we do not use a similar
approach for the spatial error. Instead, we simply define δJ̄ space ≡ δJ̄ − δJ̄ time.

3.4 Space-time adaptation

The error estimate in (12) can be localized to contributions of individual time intervals and
spatial elements, which could then be used to drive targeted mesh and time-step refinements.
However, in the present work we confine adaptation to very simple mechanics: we assume
independent but uniform spatial and temporal meshes, and we use the error estimates to guide
adaptation either in space or in time (or a combination of both).

The adaptation relies on models of how the spatial and temporal errors behave with refine-
ment. For this we use a standard a priori model,

δJ̄ space ∝ (∆x)p+1, δJ̄ time ∝ (∆t)r+1, (13)

where ∆x is the spatial mesh size, ∆t is the time step size, and r is the formal order of conver-
gence of the time integration. The adaptation also requires a cost model, which we simply take
as the total number of space-time degrees of freedom,

C ≡ NelemNtnpnr, (14)

where Nt is the number of time intervals, np is the number of spatial degrees of freedom per
element (p+ 1 in 1D), and nr is the number of temporal degrees of freedom, i.e. system solves,
per time step. For example, BDF2 would nave nr = 1, while the DIRK schemes would have
nr = nstage.

In our simple adaptive mechanics, at each adaptive iteration we multiply the number of
spatial elements by f space, and the number of time steps by f time, with a constraint on the total
cost rise, C = C0f

tot. Here, f tot is prescribed by the user, e.g. a factor of 2. Using the cost
formula in (14), the constraint becomes f spacef time = f tot. To determine f space and f time, we
require that the marginal error to cost ratios of each refinement option are equal: λspace = λtime,
where

λspace =
∂(δJ̄ space)

∂f space

[
∂C

∂f space

]−1

, λtime =
∂(δJ̄ time)

∂f time

[
∂C

∂f time

]−1

. (15)

Substituting into the above equations the error and cost models from (13) and (14), and using
the constraint f spacef time = f tot, we obtain the following solution:

f time =

[
r + 1

p+ 1

δJ̄ time

δJ̄ space
(f tot)p+2

]−(r+p+4)

, f space =
f tot

f time
.

This equation appropriately adjusts the spatial and temporal refinement fractions to make equal
the marginal error to cost ratio of the two refinement options. Depending on the ratio of the
spatial and temporal errors, either the spatial or the temporal mesh will be refined more, and in
some cases one of the meshes could be coarsened.

4 RESULTS

In this section we present results demonstrating the accuracy of the output error estimate, the
accuracy of the spatial/temporal error breakdown, and the efficacy of output-based adaptation

2690



Krzysztof J. Fidkowski

for an unsteady advection simulation. The governing equation is

∂u

∂t
+ a

∂u

∂x
= 0, u(x, t = 0) = u0(x), (16)

where a = 1 is the advection speed. The boundary conditions are periodic, and the initial
condition is u0(x) = exp [100(x/L− .5)2], where L = 1 is the domain length. The output of
interest is a weighted function of the state,

J̄ =

∫ T

0

∫ L

0

w(x)u(x, t) dx dt, (17)

where w(x) = exp [100(x/L− .52)2], and the final simulation time is T = 1. Figure 2 shows
the primal and adjoint solutions computed using 10 elements in space and 10 intervals in time,
with p = 2 and DIRK3. The space-time fields without reconstruction are visualized by linearly
interpolating the time node states, and these are visibly “choppy”, masking the true high-order
temporal accuracy. Reconstructing the primal and adjoint solutions using cubic functions over
the time steps produces visible improvements in the space-time solutions in between the time
nodes.

(a) Primal (b) Reconstructed primal

(c) Adjoint (d) Reconstructed adjoint

Figure 2: Primal and adjoint space-time solutions for the advection problem, with and without temporal recon-
struction (cubic), shown for the case of Nelem = 10, Nt = 10, p = 2, DIRK3.
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We first examine the effectivity of the total error estimate and the breakdown into spatial
and temporal contributions. Table 2 lists these errors for various combinations of element and
time step numbers, all for p = 2 and DIRK3 as the coarse space, and p = 3 and DG2 as the
fine space. We see that the total error estimates are very accurate, with a maximum error of
less than 7%. In addition, the spatial and temporal error estimates behave as expected: the
spatial error diminishes when the number of elements increases, and similarly for the temporal
error. The “actual” values of these errors were computed by refining the spatial and temporal
discretizations independently, using concurrent uniform refinement and order increase, and the
estimates agree very well with the actual values.

δJ δJ time δJ space

Nelem Nt Predicted Actual Predicted Actual Predicted Actual
10 10 -5.66e-05 -6.03e-05 -8.89e-05 -1.11e-04 3.23e-05 1.56e-05
10 100 4.96e-05 5.14e-05 9.98e-07 8.70e-07 4.86e-05 5.01e-05

100 10 -7.00e-05 -7.59e-05 -7.00e-05 -7.65e-05 6.62e-09 1.80e-10
100 100 1.30e-06 1.30e-06 1.30e-06 1.30e-06 5.32e-10 5.28e-10

Table 2: Comparison of estimated and predicted output errors, and their breakdown into spatial and temporal
components, for the advection simulation on several space-time meshes.

Next, several different orders and time integration schemes were tested in the context of
space-time output-based refinement. In all cases, the total space-time degrees of freedom (i.e.
the cost) were allowed to grow by a factor of f tot = 2 per adaptive iteration, and 10 adaptive
iterations were taken. The fine space consisted of p + 1 spatial approximation and time inte-
gration of one order higher (e.g. DIRK3 for BDF2). Figure 3 compares the convergence of the
output error for different combinations of orders and time marching schemes. We see that the
most efficient combination for this smooth problem is p = 3 and DIRK4 – as expected, high
order in space and time.

To further examine the performance of the output-based adaptation, we compare the results
for each run to uniform refinement of the starting space-time mesh. Figure 4 shows this com-
parison and includes an additional set of curves: the output error resulting after correction of
the output with the error estimate. These curves converge the fastest, as expected given the
previously observed effectivity of the error estimate. The rate of convergence is generally at
least one higher than the rate of convergence of the output error without correction. Performing
the worst is uniform refinement, where the convergence rate is limited by the dominant errors
in space or in time.

Poor performance of uniform refinement is tied to the starting space-time mesh. For exam-
ple, a suboptimal ratio of elements to time steps will not be addressed by uniform refinement.
Figure 5 illustrates this point by comparing the separate spatial and temporal errors for adaptive
runs and uniform refinement. In the case of p = 2 and BDF2, the temporal errors will dominate
and must be addressed by increased allocation of resources to the temporal discretization (i.e.
the number of time steps). This is what the adaptive refinement accomplishes in just a couple
iterations, and for the remainder of the simulation the spatial and temporal errors roughly bal-
ance (since their marginal cost is identical). In the case of p = 1 and DIRK4, the spatial errors
dominate and should be addressed by relatively more spatial refinement. Again, the adaptive
run accomplishes this, whereas the uniform refinement run is consistently dominated by spatial
errors.
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Figure 3: Convergence of the output error with cost, measured as the total space-time degrees of freedom, using
output-based space-time adaptation.

5 CONCLUSIONS

We have presented a general approach for estimating numerical errors in outputs of unsteady
simulations when using non-variation time integration methods. The two key ingredients are:
(1) a continuous-in-time adjoint solution that simplifies adjoint-consistency considerations and
removes constraints on the choice of the adjoint time integration scheme; and (2) a scheme-
agnostic temporal reconstruction procedure based on primal or adjoint residual evaluations,
which provides a consistent, high-order functional representation of the solution within each
time step. When used in conjunction with a spatial discretization, the method allows for sepa-
rate space and time error estimates via adjoint down-projection. The resulting error estimates
can then drive an space-time adaptive procedure, as demonstrated for a prototypical advection
problem. Remaining work in this area includes investigation of fine-space adjoint approxima-
tions and application to more complex nonlinear simulations, such as those governed by the
compressible Navier-Stokes equations.
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Figure 4: Convergence of the output error with cost, measured as the total space-time degrees of freedom, for
various spatial orders and temporal discretizations. Adaptive refinement (solid blue) is compared to uniform re-
finement (dash-dot black), and to adaptive refinement corrected by the error estimate (dashed red).
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Abstract. In this work a matrix-free modified extended backward differentiation time integra-
tion method has been implemented in a high-order discontinuous Galerkin solver for the un-
steady Navier-Stokes equations. The resulting non-linear systems at each time step are solved
iteratively using a preconditioned inexact Newton/Krylov method. In order to speed-up the so-
lution process a frozen preconditioner formulation and a polynomial extrapolation technique
for computing a better initial guess for the Newton iterations have been considered. Numerical
results for compressible inviscid and viscous test cases show the effectiveness of the proposed
numerical strategies and the performance advantages of the matrix-free method compared to
its matrix-explicit counterpart for this class of implicit multi-stage time schemes. Furthermore,
the influence of some physical (low Mach) and space discretization (stretched grid) aspects is
examined to highlight pros and cons of the proposed time integration algorithm and its poten-
tial in solving non-stiff and stiff systems with respect to the widely used explicit Runge-Kutta
schemes.
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1 INTRODUCTION

Because of the availability of very fast and massively parallel computers, there is a current
trend to use advanced flow models to predict the unsteady turbulent structures directly. In order
of complexity from most to least complex we distinguish Direct Numerical Simulation (DNS)
(no turbulence modeling at all), the Large Eddy Simulation (LES) that is based on a SubGrid
Scale (SGS) model for the non-resolved turbulent scales, the Implicit Large Eddy Simulation
(ILES), where the spatial discretization itself acts like a SGS model, and hybrid RANS-LES
(RANS near the solid body, LES elsewhere). All of these approaches require the coupling of
high space accuracy with high temporal accuracy to convect all resolved turbulent scales at the
right speed with minimal dissipation and dispersion. In this respect, the use of very accurate
time integration schemes in the context of high-order methods gives the possibility of efficient
simulations with high accuracy. Among the high-order methods, the Discontinuous Galerkin
(DG) finite element method turns out to be an ideal candidate for dealing with such complex
flow computations do to its high precision together with a natural amenability to parallelization
(for an overview of the DG method see [1]).

Explicit high-order Runge-Kutta schemes combined with the DG space discretization (RK-
DG methods) [2, 3, 4], are commonly used to address the numerical solution of unsteady flows.
Explicit methods are well suited for problems with similar spatial and temporal scales, but
become inefficient for unsteady flows of low reduced frequency, as well as for stiff problems.
Due to their better stability properties, implicit methods are potentially more effective than
explicit methods in this respect. Several high-order semi-implicit multi-stage (Rosenbrock)
and implicit multi-step multi-stage (MEBDF, TIAS) time integration schemes for DG space
approximations have been recently proposed for both inviscid and laminar flows [5, 6, 7, 8].
Although these schemes allow to overcome the strong restriction to the size of the time step
typical of explicit methods, their use require to compute, store and factorize large Jacobian
matrices. These tasks require vast computational resources both in terms of CPU time and
memory, especially for high-order spatial discretizations and large scale problems.

This problem can be addressed using the matrix-free approach. Different matrix-free meth-
ods for the numerical solution of partial differential equations have been develop in the past
by Gear and Saad [9], Chan and Jackson [10] and Brown and Hindmarsh [11]. Further, Jo-
han [12] and McHugh and Knoll [13, 14] have used these methods to solve compressible and
incompressible flows. More recently, Rasetarinera and Hussani [15] and K. Hillewaert et al.
[16] applied the matrix-free method in the context of the DG solution of the Euler equations.
A similar approach has been adopted by Crivellini and Bassi [17] for the DG discretizion of
the Navier-Stokes and RANS equations. In the above cited DG papers the authors developed
implicit solvers for steady compressible flows. In this work we adopt the matrix-free approach
for unsteady computations solving the DG discretized compressible Navier-Stokes equations
with the high-order accurate MEBDF method. These implicit time integration formulae belong
to the family of predictor-corrector methods. MEBDF schemes involve three non-linear stages:
the first two are predictor stages that use a standard k-step BDF scheme, the last one is a cor-
rector stage that uses an advanced implicit k-step formula of order k + 1. MEBDF are A-stable
for k = 1, .., 3 and stiffly stable for k = 4, .., 8.

The matrix-free approach seems well suited to be coupled with this class of non-linear multi-
stage time schemes [18]. In fact, the additional cost with respect to a matrix-explicit approach
to approximate the matrix-vector product, at each non-linear iteration, is equal to one residual
evaluation, which is much cheaper with respect to the evaluation of the Jacobian matrix required
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by the matrix-explicit approach for this update. This computational advantage is expected to
compensate the further residual evaluations for each linear iteration, required by the matrix-free
approach and not necessary for the matrix-explicit one, as the MEBDF schemes are composed
by three non-linear stages. Furthermore, at large time steps as well as for stiff problems, the
update of the implicit matrix-vector product is determinant for the convergence of the non-linear
Newton iterations at each stage.

The system matrix of high-order accurate DG discretizations is usually ill-conditioned, hence
preconditioning is essential to accelerate the convergence of the linear solver. Here, according
to [17], the preconditioner consists of an incomplete lower-upper (ILU0) factorization of the
analytically computed system matrix. The matrix-free approach allows to approximate the pre-
conditioner without affecting the quadratic convergence of the Newton loops. Furthermore, the
MEBDF stages represent non-linear systems with the same system matrix. Both these features
are central to the performance of the unsteady solver, avoiding the update of the preconditioning
matrix within each time step by applying the same preconditioner to the linear systems of the
predictor-corrector stages. Note that the efficiency of the algorithm will be further enhanced
when the preconditioner can be frozen for succeeding time steps, e.g. non-stiff ODE systems,
small time steps. Another important computational aspect is related to the choice of the initial
guess for the Newton-type solver at each non-linear stage of the MEBDF scheme. In particular,
for the second Newton loop a polynomial extrapolation technique to generate a more accurate
Newton initialization is adopted using a set of previous solutions.

The proposed test cases for inviscid and viscous flows are the vortex transport by uniform
flow and a laminar manufactured solution, both with an analytical solution. The shown results
aim at demonstrating the capability of the proposed matrix-free approach (MF-MEBDF), in
combination with the numerical strategies proposed, to improve the performance of the implicit
solver with respect to its explicit counterpart (ME-MEBDF), highlighting its pros and cons and
its performance in solving stiff and non-stiff systems of equations with respect to the widely
used explicit Runge-Kutta schemes.

In the following of the paper the governing equations are presented in Section 2. Sections
3 and 4 are devoted to space (DG) and time (MEBDF) discretizations, respectively. Numerical
results are presented and discussed in Section 5. Conclusions are finally reported in Section 6.

2 GOVERNING EQUATIONS

The compressible Navier-Stokes equations in conservative form are

∂q

∂t
+∇ · Fc (q) = ∇ · Fv (q,∇q) , (1)

where q is the vector of conservative variables, q = [ρ, ρu, ρv, ρE]T , and Fc (fc,gc) and
Fv (fv,gv) are the inviscid and viscous flux vectors respectively, given by

fc =


ρu

ρu2 + p
ρuv
ρHu

 , gc =


ρv
ρvu

ρv2 + p
ρHv

 ; (2)

fv =


0
τxx
τyx

τxxu+ τyxv − qx

 , gv =


0
τxy
τyy

τxyu+ τyyv − qy

 . (3)
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In these equations ρ is the fluid density, u and v are the x and y velocity components, respec-
tively, p is the pressure and E is the total internal energy for unit mass. The total enthalpy for
unit mass H is given by H = E+ p/ρ. The shear stress tensor components τij and the heat flux
vector components qi of the viscous flux vectors can be calculated as

τxx =

(
2µ
∂u

∂x
+ λ∇ · v

)
, τyy =

(
2µ
∂v

∂y
+ λ∇ · v

)
, (4)

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
, (5)

qx = −κ∂T
∂x

, qy = −κ∂T
∂y

. (6)

In order to close the system of equations, the Navier-Stokes equations must be augmented by
algebraic expressions that relate the internal energy E, the pressure p, the dynamic viscosity µ,
the second viscosity coefficient λ and the conductivity coefficient κ to the thermodynamic state
of the fluid. For an ideal gas, assuming that the fluid satisfies the equation of state of perfect gas,
the pressure is given by p = ρ (γ − 1) [E − (u2 + v2) /2], where γ is the ratio of specific heats
of the fluid, given by γ = Cp/Cv. The dynamic viscosity coefficient µ can be approximated
using the power-law viscosity formula

µ

µ0

=

(
T

T0

)3/4

, (7)

where T0, µ0 are temperature and viscosity at the reference conditions, respectively.

3 DG DISCRETIZATION

To discretize in space Eq. (1), we consider an approximation Ωh of the domain Ω consisting
of a set of non-overlapping elements τh = {K}, denoting by ∂Ωh the boundary of the discrete
approximation and by Γ0

h the set of internal edges. We consider piecewise polynomial functions
on τh with no global continuity requirement. Denoting with Pn (K) the space of polynomial
functions of degree at most n in the element K, the solution and test functions space is defined
by

Vh = {vh ∈
(
L2 (Ωh)

)N+2
: vh ∈ (Pn (K))N+2 ∀K ∈ τh}, (8)

where N is the number of spatial dimensions. To build a set of hierarchical and orthogonal
shape functions for the space (8) the Modified Gram-Schmidt (MGS) procedure [19, 20, 21] is
used, considering the starting set of monomial functions of the same degree n. By using the
BR2 scheme presented in [22, 23] and theoretically analyzed in [24, 25], we obtain the DG
formulation of Eq. (1), given by∫

Ωh

vh ·
∂qh

∂t
dx−

∫
Ωh

∇vh : (Fc (qh)− Fv (qh,∇qh +R (JqhK0))) dx

+

∫
Γ0
h

(
v−h − v+

h

)
·H
(
q+
h ,q

−
h ,n

−) dσ − ∫
Γ0
h

JvhK : {Fv (qh,∇qh + ηeRe (JqhK0))}dσ

+

∫
∂Ωh

(vh ⊗ n) :
(
H
(
q+
h ,q

b
h,n
)
− Fv (qh,∇qh + ηeRe (JqhK0))b

)
dσ = 0.

(9)
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In the above equation ηe is called ”penalty” parameter and its lower bound is established as
the number of neighbours elements of the generic element K to guarantee the stability of the
method. Re (JqhK0) and R (JqhK0) are the local and global lifting operators, respectively, ac-
counting in the gradient of the diffusive fluxes for the jumps in qh occurring at the element
interfaces, defined as

JqhK0 =

{
JqhK on Γ0

h

qh ⊗ n on ∂Ωh

, (10)

JqhK = q+
h ⊗ n+ + q−h ⊗ n−. (11)

The trace operator {(·)} denotes the average between left (·)− and right state (·)+, see Fig.(
1). Finally, H

(
q+
h ,q

−
h ,n

)
and H

(
q+
h ,q

b
h,n
)

are the numerical flux functions at the interior
and boundary faces, respectively, for which any of the numerical flux functions commonly
considered in the finite volume method can be used.

Figure 1: Two elements K+ and K− sharing edge E.

A detailed analysis of the Discontinuous Galerkin method, including mathematical founda-
tions, practical implementation aspects and examples that demonstrate the advantages of this
approach, can be found in the collection of articles edited by Cockburn et al. [1] and in the
book written by Di Pietro et al. [21].

4 TIME INTEGRATION

Numerical integration of the DG space discretization, reported in Eq. (9), results in the
following system of Ordinary Differential Equations (ODEs) in time

M
dQ

dt
+ R (Q) = 0, (12)

where M is the global block mass matrix that, for the conservative variables, reduces to the
identity matrix by using orthonormal shape functions (MGS algorithm), Q is the global vector
of unknown degrees of freedom and R is the vector of residuals. For the sake of simplicity in
what follows we have omitted the mass matrix, being M = I.

4.1 MEBDF method

In this work the system of ODEs of Eq. (12) is advanced in time implicitly by using the
MEBDF method [7, 26, 27, 28], which has been originally proposed for the numerical solution
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of stiff initial value problems in an attempt to derive a class of multi-step integration formulae
characterized by better stability properties and higher-order accuracy than the standard Back-
ward Differentiation Formulae (BDF). The result is a class of k-step formulae of order k + 1
that are A-stable for k = 1, .., 3 and stiffly stable for k = 4, .., 8. The general k-step MEBDF
algorithm consists of successively solving the following three stages to advance the solution in
time:

• Stage 1. Compute the first predictor Q̄n+1 of order k with a k-step BDF:

α̂1Q̄n+1 +
k+1∑
j=2

α̂jQn+2−j + ∆tβ̂kR
(
Q̄n+1

)
= 0; (13)

• Stage 2. Compute the second predictor Q̄n+2 of order k with a k-step BDF:

α̂1Q̄n+2 + α̂2Q̄n+1 +
k+1∑
j=3

α̂jQn+3−j + ∆tβ̂kR
(
Q̄n+2

)
= 0; (14)

• Stage 3. Compute the corrected solution Qn+1 of order k + 1 as:

ᾱ1Qn+1 +
k+1∑
j=2

ᾱjQn+2−j + ∆t
[
β̂kR (Qn+1) +

(
β̄k − β̂k

)
R̄n+1 + β̄k+1R̄n+2

]
= 0,

(15)
where

R̄n+1 = R
(
Q̄n+1

)
and R̄n+2 = R

(
Q̄n+2

)
. (16)

α̂j and β̂j are BDF coefficients, while ᾱj and β̄j are MEBDF coefficients. The values of both
these coefficients are reported in [26]. Note that, the better accuracy and stability properties of
MEBDF with respect to BDF are obtained extending this latter by adding two further stages
and a future point at tn+2. Therefore, the first two stages of the method are standard k-step BDF
schemes, while the last stage uses an advanced implicit k-step formula of order k + 1.

4.2 Implementation issues

All the non-linear stages are solved with a Newton-type method. By reformulating Eqs. (13–
15 in terms of a non-linear residual function F and a constant vector b, a generic stage can be
rewritten in a more compact form as

F (Q) = b, (17)

with

F (Q) = Q + β∆tR (Q) , (18)

b = −
∑
j

αjQj (Predictor stages), (19)

b = −
∑
j

αjQj −∆t
∑
i

βiRi (Corrector stage), (20)
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where Qj is a previous known solution calculated at tj time and Ri the residual evaluation at
the end of each predictor stage. Notice that the overbars on the quantities computed at each
predictor stage have been omitted, and that β, αj and βi are generic stage coefficients.

After applying the Newton scheme to Eq. (17) the following system of equations is obtained:

Wl∆Ql = −F
(
Ql
)

+ b, (21)

with

∆Ql = Ql+1 −Ql, (22)

Wl =
∂F
∂Q

(
Ql
)

= I−∆tβ
∂R

∂Q

(
Ql
)
, (23)

where Wl is the system matrix.
To successfully and efficiently solve the linear system of equations given by (21), the pre-

conditioned GMRES algorithm available in PETSc [29] is used. Applying left-preconditioning
we solved [

Pl
]−1

Wl∆Q = −
[
Pl
]−1 [F (Ql

)
+ b

]
, (24)

where the preconditioning matrix P is chosen to be the effective incomplete lower-upper fac-
torization ILU(0) of the analitically computed system matrix W.

In order to ensure an accurate and efficient iterative solution of the Newton loop at each
stage, the non-linear initialization procedure implemented in the algorithm is as follows:

• the solution of the first stage at the current time step is initialized with the solution of the
second stage calculated at the previous time step;

• the solution of the second stage is initialized with a polynomial extrapolation using a set
of previous solutions;

• the solution of the third stage is initialized with the solution of the first stage.

4.2.1 Matrix-Free formulation

Referring to Eq. (21), we note that the system matrix does not need to be computed and
stored explicitly, but only its action on the vector ∆Ql is required. Therefore, the product of
Wl times the vector ∆Ql has been replaced by the first-order Taylor series expansion

Wl∆Ql '
F
(
Ql + ε∆Ql

)
−F

(
Ql
)

ε
, (25)

where the ε value is computed as proposed by Pernice and Walker [30].
This method requires two residual evaluations per outer Newton iteration and one residual

function evaluation per inner GMRES iteration. Since the residual evaluation is more expensive
than a matrix-vector product, the Matrix-Free (MF) GMRES is less performing than its explicit
counterpart. However, MEBDF consists of three stages and for each non-linear system it may
require a system matrix construction to ensure the convergence of the Newton loop when the
Matrix-Explicit (ME) approach is used. In fact, not updating the implicit matrix at the begin-
ning of each stage or within the Newton loop reduces the convergence rate of the non-linear
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iterations, especially in the case of large time steps, stiff ODEs systems and high-resolution
discretizations. Since only one additional residual evaluation is required by the MF approach
with respect to its explicit counterpart, which is much more cheaper than the implicit matrix
evaluation, it is expected that, in the above cited cases, for this class of multi-stage schemes MF
becomes competitive in cost to the ME approach.

Although the iterative matrix is not built, a preconditioning matrix P is still needed for the
convergence of GMRES. Thus, the proposed MF solver adopts the storage of the analitically
computed system matrix for preconditioning purpose. The MF approach allows to approximate
the preconditioner without affecting the quadratic convergence of the Newton loop. Further-
more, the MEBDF stages are non-linear systems with the same β coefficient of the implicit
matrix (see Eq.(23)). Therefore, for small time steps, non-stiff problems or low-resolution dis-
cretizations, the MF approach is expected to effectively exploit the preconditioner freeze strat-
egy. The freezing strategy considered in this paper consists in computing the preconditioner at
the beginning of stage 1 every n time steps.

4.2.2 Matrix Explicit formulation

In this version of the implicit solver the system matrix is explicitly formed. This matrix
is then used as preconditioner and to avoid the matrix-vector product approximation and the
related residual function evaluation. Thus, the algorithm requires the storage of both the system
matrix W and the preconditioning matrix P. The system matrix is computed at the beginning
of each time step and it is recomputed if the convergence of the Newton method becomes too
slow. In particular, the implicit matrix is re-evaluated when the ratio between the L2 norm of
two successive Newton solution variations is less than 5.

5 RESULTS

Two test cases are presented to assess the temporal accuracy and the performance of the pro-
posed MF-MEBDF scheme for the time-dependent compressible Euler and Navier-Stokes equa-
tions: an inviscid isentropic convecting vortex and a laminar Manufactured Solution, both with
a known analytical solution. Furthermore, to demonstrate the performance advantages of the
MF approach with the preconditioner freeze strategy, it will be compared with its ME counter-
part and with the explicit 5-stage fourth order accurate Strong Stability Preserving Runge-Kutta
scheme (RK4) [31] for non-stiff and stiff systems of equations. In particular, the convection
of the isentropic vortex is investigated for high and low free stream Mach numbers, while the
laminar computations are performed on uniform and stretched cartesian grids.

The simulations have been performed using the 3-step fourth-order accurate MEBDF scheme
(MEBDF4) and the exact Riemann solver of Gottlieb and Groth [32] to approximate the inviscid
numerical fluxes. As concerns the second stage’s initial guess for the Newton-type solver, Eq.
(14), the following fourth-order polynomial approximation is used:

Q̄0
n+2 = 4Q̄n+1 − 6Qn + 4Qn−1 −Qn−2. (26)

Another issue to be addressed using the MEBDF multi-step scheme concerns the unknown
initial solutions needed to start the temporal integration. For both test cases the additional
starting values are obtained evaluating the exact solution at the appropriate time levels. Further-
more, as a result of preliminary computations, it has established that a linear-solver normalized-
residual tolerance of 10−2 allows for efficient computations while the Newton tolerance of one
order of magnitude smaller than the solution error allows to obtain careful estimates of the
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time integration error avoiding unnecessarily restrictive and computationally more expensive
tolerance levels, especially at large time steps.

All the computations are performed in serial using a 2.80 GHz Intel Xeon CPU E5-2680v2
processor with 6.4 Gb of RAM memory.

5.1 Convection of an isentropic vortex

The convection of an inviscid isentropic vortex is a standard test case to evaluate the perfor-
mance of the numerical methods. As the vortex is convected without distortion by the mean
flow, the exact solution is obtained by translating the initial solution at the velocity set by the
freestream, providing a reference for measuring the accuracy of the numerical solution. The
initial conditions are taken from [33, 34].

The setup of the problem is as follows: the computational domain is defined as 0 ≤ x, y ≤ 10
and the boundary conditions are periodic. Temporal convergence studies are conducted, up to
a final time T corresponding to one period of vortex revolution, to assess the accuracy and
the efficiency of the implicit time integration solvers. The simulations are performed on a
50 × 50 uniform cartesian grid with a seventh-order accurate polynomial approximations (P6
elements). The analysis is carried for stiff and non-stiff ODEs systems obtained by considering
the following free stream Mach numbers: M∞ ' 1.4; 0.14; 0.014.

5.1.1 High Mach number: non-stiff problems

The results of the convergence study at the highest Mach number (M∞ ' 1.4) are presented
in Fig. 2 for the MF, freezing the preconditioner, and the ME algorithms. The L2-norm errors
of the density field as a function of the time step are presented on the left while the work-
precision characteristics on the right. The left plot demonstrates that the convergence histories
computed using the two algorithms are indistinguishable. Furthermore, it can be seen that the
design-order of convergence of 4 is achieved over the time interval that has been investigated.
The right plot highlights that MF always outperforms ME. Moreover, it appears that using the
proposed MF algorithm the efficiency, in terms of CPU time, significantly improves as the time
step reduces. The results of both temporal refinement study and efficiency are collected in
Tab. 1. To investigate the performance improvement of MF compared to ME, the CPU ratios
and the optimal updating period of the preconditioner (nopt), that minimizes the overall CPU
time, are also reported in the table. It appears evident the benefit of the preconditioner freeze
strategy, with the CPU ratio that increases with the growing of the nopt parameter as the time
step reduces. For example, to reach an error level of 8.10 · 10−3 the MF algorithm is about 1.34
times faster than the ME algorithm, while for an accuracy level ofO (10−10) this ratio increases
to 10.10.

The influence of the time consuming Jacobian evaluation on the efficiency of the implicit
solver at large (∆t = T/40) and small (∆t = T/160) time steps is described in Tab. 2, where
the performance of MF and ME algorithms are compared at each stage of the time scheme.

As regards the largest time step, at stage 1, when both the algorithms evaluate the Jacobian at
the beginning of the Newton iterations, the performance of the two implicit solvers are roughly
the same except for the number of function evaluations. Notice that the same can be observed
in all stages of both time steps. The reason is in the additional residual evaluations necessary in
the GMRES and Newton methods when the MF approach is used.
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Figure 2: L2-norm errors of the density field as a function of the time step (left) and of the CPU time (right).
Comparison between MF, freezing the preconditioner, and ME algorithms at M∞ ' 1.4 using P6 elements.

MF-MEBDF4 ME-MEBDF4
T/∆t Tol.Newton L2 error(ρ) order nopt CPU(s) CPU(s) CPUs ratio

40 8.10 · 10−4 8.10 · 10−3

2.88
1 2.40 · 103 3.22 · 103 1.34

80 1.10 · 10−4 1.10 · 10−3

3.71
2 2.16 · 103 3.47 · 103 1.61

160 8.38 · 10−6 8.38 · 10−5

3.94
4 2.47 · 103 6.49 · 103 2.63

320 5.47 · 10−7 5.47 · 10−6

3.98
11 3.08 · 103 1.31 · 104 4.25

640 3.46 · 10−8 3.46 · 10−7

3.99
26 4.55 · 103 2.57 · 104 5.65

1280 2.17 · 10−9 2.17 · 10−8

3.96
39 7.39 · 103 5.04 · 104 6.82

2560 1.39 · 10−10 1.39 · 10−9

2.21
83 1.20 · 104 9.92 · 104 8.27

5120 3.00 · 10−11 3.00 · 10−10 115 1.96 · 104 1.98 · 105 10.10

Table 1: Newton tolerance, L2-norm error of the density field, order of convergence and CPU time for differ-
ent numbers of time steps. Comparison between MF, freezing the preconditioner for nopt time steps, and ME
algorithms at M∞ ' 1.4 using P6 elements. In the last column the CPUs ratio between ME and MF is reported.

At stage 2, although no difference exists in the number of non-linear iterations, marked
discrepancies appear in the number of linear iterations and Jacobian evaluations. The reason
of the equal number of non-linear iterations between the two algorithms is due to the updating
of the system matrix in the ME algorithm caused by the lack of/reduced convergence of this
Newton loop. This is because at large time steps the system matrix is rapidly varying from
stage 1 to stage 2. The significant increase in the number of linear iterations of the MF approach,
about 7 times greater than that of its explicit counterpart, is due to a worse preconditioner with
respect to the ME approach. In fact, using MF the preconditioner is never recomputed during a
time step, unlike what happens in the ME algorithm, where the system matrix updating implies
the recomputation of the preconditioner.

At stage 3 ME is less performant, in terms of number of non-linear/linear iterations, than
MF because of the less effectiveness of the system matrix remained frozen from stage 2 and
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not recomputed in this stage. On the contrary, the MF approach take advantages of the updated
matrix-vector product at each Newton iteration and of the preconditioner evaluated at the first
predictor stage, showing better convergence properties with respect to ME.

At ∆t = T/160 the system matrix is slowly varying and it remains more effective even if
frozen. Thus, by using the ME strategy the system matrix remains unchanged for all the time
step without the need to be recomputed. The number of non-linear iterations is roughly the same
for both algorithms in all stages. The significant increase in the number of linear iterations of
MF with respect to ME is due to the effect of the frozen preconditioner. Note in fact that the
number of total Jacobian evaluations for the MF approach is equal to 40 as the preconditioner
is updated every 4 time steps. Furthermore, we can notice that the negative effect of the frozen
preconditioner is more evident for stage 2 where at each time step the solution is predicted two
time steps ahead with respect to the previous known solution at time tn.

This stage analysis demonstrates that the MF implementation of the MEBDF scheme im-
proves the robustness of the implicit solver. Furthermore, it can be argued that MF outperforms
its explicit counterpart since at each time step the ME Jacobian evaluations exceed the cost of
the larger number of GMRES iterations plus the additional cost of the function evaluations of
the MF algorithm.

MF-MEBDF4 ME-MEBDF4
T/∆t Stage non-linear it. linear it. func. eval. Jacob. eval. non-linear it. linear it. func. eval. Jacob. eval.

40
1 77 346 538 38 76 342 76 39
2 114 3537 3803 0 114 495 114 38
3 76 344 534 0 114 518 114 0

160
1 316 942 1732 40 316 632 316 158
2 337 1438 2270 0 316 632 316 0
3 316 933 1723 0 316 632 316 0

Table 2: Total number of non-linear iterations, linear iterations, function evaluations and Jacobian evaluations, at
each stage and for large and small time steps. Comparison between MF, freezing the preconditioner, and ME.

However, in the above results the recomputed system/preconditioner matrix in the ME ap-
proach at ∆t = T/40 and the use of the freezing strategy in the MF approach at ∆t = T/160 do
not allow to clarify the effect of the update of the matrix-vector product at each outer iteration
on the performance of the implicit solver.

Therefore, the stage analysis is now carried-out at ∆t = T/160 by comparing the perfor-
mance of the algorithms updating the system/preconditioner matrix, for the ME approach, and
the preconditioner matrix, for the MF approach, only at the beginning of stage 1. The data
reported in Tab. 3, that refer to one time step iteration, show that at each stage the number of
non-linear/linear iterations are almost the same for both algorithms, whereas the number of MF
function evaluations is about 4− 5 times greater than that of ME. Nevertheless, the CPUs ratio
indicates that the matrix free algorithm is slightly more efficient than its explicit counterpart.
Thus, it can be concluded that the update of the matrix-vector product at each outer iteration
allows to solve more efficiently the non-linear stages, compensating the cost of the additional
function evaluations. We remark that this result mainly depends on the conditioning of the sys-
tem matrix. Further studies are ongoing to investigate this aspect by extending the analysis to
stiff systems and other polynomial degrees and by considering the set of primitive variables.
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MF-MEBDF4 ME-MEBDF4
T/∆t Stage non-linear it. linear it. func. eval. Jacob. eval. non-linear it. linear it. func. eval. Jacob. eval. CPUs ratio

160
1 2 4 9 1 2 4 2 1

1.032 2 5 10 0 2 4 2 0
3 2 4 9 0 2 4 2 0

Table 3: Total number of non-linear iterations, linear iterations, function evaluations and Jacobian evaluations at
each stage for one small time step. Comparison between MF and ME computing the system matrix only at the
beginning of stage 1.

5.1.2 Low Mach numbers: stiff problems

The convection of the isentropic vortex is here investigated for different free stream Mach
numbers to highlight pros and cons of the proposed time integration algorithm and its potential
in solving non-stiff and stiff systems with respect to the explicit Runge-Kutta schemes. It is in
fact well known that RK schemes become inefficient for the solution of stiff-problems, whereas
the MEBDF method is well suited for ill-conditioned ODE systems.

In Tab. 4 the results obtained for high and low free stream Mach numbers by using MF-
MEBDF4 and RK4 schemes are reported. As the vortex is simply convected, for the RK4
scheme a fixed time step size has been considered. To fairly compare the performance between
the two time integration algorithms, at the highest Mach number the maximum cfl number en-
suring that the error differs by less than 5% from the lowest achieveable error value (2.99·10−10)
has been chosen for the explicit computations. For the lower Mach numbers the maximum cfl
value allowed by the restrictive stability conditions has been used. Furthermore, a fine tuning,
up to 2 significant digits, of the cfl number has been performed. For the MF-MEBDF4 scheme
the fixed time step has been chosen such that, for the higher Mach numbers, very similar val-
ues of the error with respect to the ones obtained by the RK4 scheme are achieved (∆% error
= −2.88% and 2.27% for M∞ ' 1.4 and 0.14, respectively). For the lowest Mach number the
error is even lower than that achieved by RK4, with ∆% error= −18.53%.

It is worth noting that the period of revolution of the vortex T varies according to the free
stream velocity as highlighted in Tab. 4, where the number of time steps, T/∆t, and the time
step size, ∆t, are both shown. The last column of Tab. 4, where the ratio between the CPUs
required by RK4 and MF-MEBDF4 is reported, highlights that RK4 largely outperforms MF-
MEBDF4 for M∞ ' 1.4, 0.14 (CPUs ratio = 0.03, 0.10). However, at M∞ ' 0.014 the
proposed time integration algorithm outperforms the explicit scheme with a CPUs ratio equal
to 1.31, despite the lower error value computed.

MF-MEBDF4 RK4
M∞ T/∆t ∆t L2 error(ρ) nopt CPU (s) T/∆t ∆t L2 error(ρ) CPU (s) ∆% error CPUs ratio
1.4 5000 1.69 · 10−3 3.03 · 10−10 100 1.94 · 104 2381 3.55 · 10−3 3.12 · 10−10 6.51 · 102 −2.88% 0.03
0.14 4000 2.11 · 10−2 5.85 · 10−10 50 2.04 · 104 7875 1.07 · 10−2 5.72 · 10−10 2.09 · 103 2.27% 0.10
0.014 640 1.32 4.09 · 10−7 4 1.63 · 104 78741 1.07 · 10−2 5.02 · 10−7 2.14 · 104 −18.53% 1.31

Table 4: Number of time steps, time step value, L2-norm error of the density field and CPU time obtained with
MF-MEBDF4, freezing the preconditioner for nopt time steps, and RK4 by using P6 elements and different M∞
values. In the last two columns the percentage relative difference of the errors the and the CPUs ratio between
RK4 and MF-MEBDF4 are reported.
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5.2 Laminar manufactured solution

For viscous flows, the proposed time integration scheme has been evaluated on the following
Manufactured Solution [35]

ρ (x, y, t) = ρ0

[
sin
(
x2 + y2 + ωt

)
+ 1.5

]
(27)

u (x, y, t) = u0

[
sin
(
x2 + y2 + ωt

)
+ ε
]

(28)
v (x, y, t) = v0

[
cos
(
x2 + y2 + ωt

)
+ ε
]

(29)
et (x, y, t) = et0

[
cos
(
x2 + y2 + ωt

)
+ 1.5

]
(30)

In the above equations x and y are the spatial coordinates of a generic point in the computational
domain. Furthermore, the constants of Eqs. (27–30) are defined as: ρ0 = 1, u0 = 0.1, v0 =
0.001, et0 = 1, ε = 1/2 and ω = 2π.

The computational domain is a square of side one, the boundary conditions are time-dependent
dirichlet boundary conditions and the simulation are performed up to a final time equal to one
period T for progressively finer time step by using P6 elements. The numerical solution, start-
ing from t0 = 0, evolves in time according to the exact solution imposed by adding a source
term to the Navier-Stokes equations. The reader is referred to the Appendix D of [35] for the
vector of source terms.

The results obtained by the proposed time integration scheme are evaluated for different
discretizations of the computational domain by using uniform and stretched cartesian grids. In
particular, the cartesian grid used are: 20× 20; 5× 80; 2× 200. These grids have the same total
number of elements but are characterized by different Aspect Ratio (AR): 1; 16; 100.

5.2.1 Cartesian elements: non-stiff problems

The results obtained by performing a temporal refinement study on the cartesian uniform
grid (AR = 1) by using the MF approach are here presented and compared with the the results
obtained with the ME approach.

In the left plot of Fig. 3 the L2-norm error of the density field as a function of the time step is
presented while in the right plot the work-precision characteristics are shown. As for the inviscid
test case, the convergence histories obtained using the two algorithms are indistinguishable and
achieve the design order convergence of 4. Furthermore, the performance advantages of the
MF approach with respect to the ME approach are remarkable and become increasingly more
significant as the time step reduces. As it can be seen form Tab. 5 , where the above results are
summarized, the MF algorithm is 2.76-7.84 times faster than the ME approach.

Finally, we remark that the analysis carried out to investigate the influence of both the MF
approach and the freeze strategy, on the performance of the implicit solver, is not presented
since the results are similar to those shown for the inviscid test case.
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Figure 3: L2-norm errors of the density field as a function of the time step (left) and of the CPU time (right).
Comparison between MF, freezing the preconditioner, and ME algorithms on the cartesian grid with AR = 1
using P6 elements

MF-MEBDF4 ME-MEBDF4
T/∆t Tol.Newton L2 error(ρ) order nopt CPU(s) CPU(s) CPUs ratio

25 2.51 · 10−4 2.51 · 10−3

3.99
5 8.03 · 101 2.22 · 102 2.76

50 1.58 · 10−5 1.58 · 10−4

4.02
10 1.22 · 102 4.34 · 102 3.56

100 9.71 · 10−7 9.71 · 10−6

4.02
20 1.92 · 102 8.79 · 102 4.58

200 5.99 · 10−8 5.99 · 10−7

4.01
35 3.13 · 102 1.76 · 103 5.62

400 3.72 · 10−9 3.72 · 10−8

4.00
67 5.63 · 102 3.46 · 103 6.15

800 2.32 · 10−10 2.32 · 10−9

4.01
140 9.79 · 102 6.93 · 103 7.08

1600 1.44 · 10−11 1.44 · 10−10 200 1.76 · 103 1.38 · 104 7.84

Table 5: Newton tolerance, L2-norm error of the density field, order of convergence and CPU time for different
numbers of time steps. Comparison between MF, freezing the preconditioner for nopt time steps, and ME algo-
rithms on the grid with AR = 1 using P6 elements. In the last column the CPUs ratio between ME and MF is
reported.

5.3 Stretched elements: stiff problems

The comparison between the performance of MF-MEBDF4 and RK4 algorithms is reported
in Tab. 6. Unlike the inviscid test case, the shape of the solution in this case is varying over
time. Therefore, to fairly compare the performance of the two time integration schemes, the
RK4 time integration uses a variable time step.

For the uniform grid case (AR = 1), according to Subsection 5.1.2, the maximum cfl
number ensuring that the error differs by less than 5% from the lowest achievable error value
(1.44 · 10−10) has been chosen to not penalize the performance of the explicit computation.
For the higher aspect ratios ( AR = 16 and AR = 100) the maximum cfl numbers ensuring
stability have been used. We remark that, also in this case the cfl number has been tuned
up to 2 significant digits. For the computations that refer to the MF-MEBDF4 algorithm the
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largest time step values that ensure almost the same error levels of the corresponding RK4
solutions have been adopted (∆% error = −4.00%, −0.33% and 0.47% for AR = 1, 16 and
100, respectively). The entries of the last column of Tab. 6, where the ratio between the CPUs
required by MF-MEBDF4 and RK4 is reported, show that the RK4 scheme outperforms the
MF-MEBDF4 scheme on the uniform cartesian grid (CPUs ratio = 0.49). However, increasing
the ill-conditioning by increasing the aspect ratio, the severe time step restriction of the explicit
scheme leads to an inefficient time integration, that becomes more expensive as the stiffness
increases. At the intermediate AR level of 16 the MF-MEBDF4 becomes 1.10 times faster than
RK4. Increasing the aspect ratio to 100 the remarkable speed-up of 18.64 is achieved.

MF-MEBDF4 RK4
AR T/∆t L2 error(ρ) nopt CPU (s) T/∆tave L2 error(ρ) CPU (s) ∆% error CPUs ratio
1 1600 1.44 · 10−10 200 1.76 · 103 3273 1.50 · 10−10 8.66 · 102 −4.00% 0.49
16 1600 9.05 · 10−10 58 1.73 · 103 7122 9.08 · 10−10 1.90 · 103 −0.33% 1.10
100 400 4.30 · 10−7 28 5.58 · 102 38532 4.28 · 10−7 1.04 · 104 0.47% 18.64

Table 6: Number of time steps, L2-norm error of the density field and CPU time obtained with MF-MEBDF4,
freezing the preconditioner for nopt time steps, and RK4 by using P6 elements and cartesian grids with different
aspect ratio (AR). In the last two columns the percentage relative difference of the errors and the CPUs ratio
between RK4 and MF-MEBDF4 are reported.

6 CONCLUSIONS

We have presented a matrix-free (MF) preconditioned Newton/GMRES method for the so-
lution of the unsteady compressible Navier-Stokes equations. To ensure high accuracy and
efficiency of the proposed implicit method, the three-stage fourth-order accurate MEBDF time
integration scheme has been coupled with a high-order accurate DG discretization. The MF
solver uses less computer memory than the corresponding matrix-explicit (ME) version since
the system matrix is stored only for preconditioning purpose. Furthermore, MF-MEBDF out-
performs its explicit counterpart for the problems here investigated. In particular, MF-MEBDF
is more robust and faster than ME-MEBDF for large time steps. In these cases, in fact, ME-
MEBDF shows a lack of/reduced convergence and requires the time consuming updating of
the system matrix. At small time steps, when the system matrix is slowly varying and remains
effective for all non-linear stages, MF-MEBDF slightly outperforms ME-MEBDF, although for
the matrix-free computations a larger number of function evaluations with respect to ME are
required. These findings allow to conclude that the MF-MEBDF algorithm benefits from the
inherent update of the matrix-vector product at each Newton iteration. This mainly depends
on the multi-stage structure of the time scheme and on the conditioning of the system matrix.
We remark that a seventh-order accurate DG discretization has been adopted in our computa-
tions, leading to ill-conditioned stage matrices. Thus, a better performance is expected to be
achieved when additional sources of ill-conditioning are considered, such as low speed flows,
RANS equations and stretched grids. The proposed MF algorithm, equipped with a precon-
ditioner freeze strategy, shows a noteworthy computational time reduction with respect to ME
for non-stiff ODE systems, with an increasing CPUs ratio, ranging from 1.34 to 10.10, as the
time step reduces. Furthermore, MF-MEBDF outperforms the five-stage fourth-order accurate
Runge-Kutta scheme in solving stiff systems, with an increasing saving of computational time
as the stiffness increases. For the inviscid vortex transport test-case, the CPUs ratio of 1.31 is
achieved at M ' 0.014. For the laminar test case the speed up ratio significantly improves with
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the grid aspect ratio from 1.10 (AR = 16) to 18.64 (AR = 100).
Further work is ongoing to analyze the performance of the solver for different polynomial

degrees and by considering the set of primitive variables.
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Abstract. In this work, which represents a condensed version of [1], we consider large linear
systems arising from the isogeometric discretization of the Poisson problem on a single-patch
domain. We consider a preconditioning strategy which is based on the solution of a Sylvester-
like equation at each step of an iterative solver. This strategy, which fully exploits the tensor
structure that underlies isogeometric problems, is robust with respect to both mesh size and
spline degree. The application of the preconditioner is performed by a popular direct solver
for the Sylvester equation, whose implementation details are given in the 2D and 3D case, with
particular emphasis on the latter. We show numerical experiments for 3D problems, which
demonstrate the potential of this approach.
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1 Introduction

The present manuscript represents a condensed version of [1]. We are concerned with the
problem of solving large linear systems arising from isogeometric discretizations [2]. An ex-
tension of the classical finite element method, the isogeometric method based on the idea of
using splines or other functions constructed from splines (e.g., non-uniform rational B-splines,
NURBS) both for the parametrization of the computational domain, as it is typically done by
computer aided design software, and for the representation of the unknown solution fields of the
PDE of interest. Unlike standard finite element methods, the isogeometric method makes pos-
sible to use high-regularity functions. The so-called isogeometric k-method, based on splines
of degree p and global Cp−1 regularity, has shown significant advantages in term of higher
accuracy per degree-of-freedom in comparison to C0 finite elements of degree p [3, 4].

The study of the computational efficiency of linear solvers for isogeometric discretizations
has been initiated in the papers [5] and [6], where it has been shown that the algorithms used
with the finite element method suffer of performance degradation when used used in the context
of the isogeometric k-method. Since then, a number of papers have been published that anal-
yse and develop preconditioners for isogeometric linear systems, see e.g. [7, 8, 9, 10]. While
containing important advances, these papers also confirms the difficulty in achieving both ro-
bustness and computational efficiency for the high-degree k-method.

Robust multigrid preconditioners have been proposed in the recent papers [11] and [12]. We
emphasize that, in both works, the authors exploit the tensor-product structure of isogeometric
spaces in order to achieve efficiency in multidimensional problems.

In this paper we also exploit the tensor-product structure of multivariate spline space, on a
different basis. We consider the Bartels-Stewart direct solver, a method that has been developed
for the so-called Sylvester equation, and discuss its application as a preconditioner for isoge-
ometric systems. We describe this method in both 2D and 3D cases. We then focus on 3D
problems, discussing its computational cost and showing numerical experiments which assess
the potential of this approach.

In 3D, application of the Bartels-Stewart solver requires O(N4/3) FLOPs. However, in all
our benchmarks that uses a conjugate gradient (CG) iterative solver, the computational time
spent in the Bartels-Stewart preconditioner application is even lower than the residual com-
putation (multiplication matrix A times a vector). This surprising performance is due to the
fact that the Bartels-Stewart solver requires dense matrix-matrix operations that takes advan-
tages of modern computer architecture. Furthermore, the Bartels-Stewart method is especially
suited to parallelisation which may significantly speed up the execution time, though this is not
considered in our analysis.

We emphasize that the proposed approach is robust, in the sense that the condition number
of the preconditioned system is uniformly bounded with respect to the degree p and mesh size
h when the parametrization is regular. In all cases, it is important to have strategies to further
improve the condition number, and this will be the topic of further researches.

2 The problem

We consider, as a model problem, the Poisson equation with Dirichlet boundary conditions:{
−div(K(x)∇u(x)) = f(x) on Ω ⊆ Rd

u = 0 on ∂Ω
(1)
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where K(x) is a symmetric positive definite matrix for each x ∈ Ω. In isogeometric methods,
Ω is given by a spline or NURBS parametrization. For the sake of simplicity, we consider a
single-patch spline parametrization F which satisfies Ω = F

(
[0, 1]d

)
.

Following the isogeometric approach, we consider the Galerkin discretization of (1) relative
to a space of multivariate B-splines on Ω. We recall that multivariate B-splines in dimension d
(d = 2, 3 are the interesting cases) are defined from univariate B-splines by tensorization. We
assume for simplicity that the spline degree p and the number n of univariate basis functions
which vanish at the boundary is the same in all directions. We are primarily interested in the so
called k-refinement or isogeometric k-method [2], hence we consider Cp−1 continuous splines,
i.e. splines with maximum regularity.

Let N = n3 and let B1, . . . , BN , denote the basis function of the isogeometric space, which
incorporate the homogeneous Dirichlet boundary conditions. Then the Galerkin stiffness matrix
reads

Aij =

∫
Ω

(∇Bi(x))T K(x)∇Bj(x)dx

=

∫
[0,1]d

(
∇B̂i(ξ)

)T
Q(ξ)∇B̂j (ξ) dξ, i, j = 1, . . . , N

(2)

where
Q = det (JF ) J−T

F KJ−1
F (3)

and JF denotes the Jacobian of F .
The support of each basis spline that does not touch ∂Ω intersects the support of (2p + 1)d

basis splines (including itself), while the support of a basis spline intersecting ∂Ω overlaps at
least (p+ 1)d and up to (2p+ 1)d basis splines supports (including itself). Thus, the number of
nonzeros of A is about (2p+ 1)dN .

3 The preconditioner

Consider the matrix

Pij =

∫
[0,1]d

(
∇B̂i

)T
∇B̂j dξ, i, j = 1, . . . , N (4)

Observe that P = A in the special case when K is the identity matrix and F is the identity
function, which means that Ω = [0, 1]d.

By exploiting the tensor product structure of the basis functions, the matrix P can be ex-
pressed as the sum of d Kronecker products. For example, when d = 2 we have

P = K1 ⊗M2 +M1 ⊗K2

where M1,M2 represent the mass, and K1, K2 the stiffness univariate matrices. Such matrices
are all symmetric positive definite and banded with bandwidth p (we say that a matrix B has
bandwidth p if Bij = 0 for |i− j| > p). These matrices have the same order n. Similarly, when
d = 3

P = K1 ⊗M2 ⊗M3 +M1 ⊗K2 ⊗M3 +M1 ⊗M2 ⊗K3.

By comparing (2) and (4), observe that Pij 6= 0 if and only if Aij 6= 0. Thus, despite having
different entries in general, A and P have the same sparsity pattern.
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We propose P , defined in (4), as a preconditioner for the isogeometric matrix A. In other
words, we want to precondition a problem with arbitrary geometry and coefficients with a solver
for the same operator on the parameter domain, with constant coefficients. This is a common
approach, see e.g. [13], [11] and [12].

It is known (see e.g. [1] for a proof) that

κ
(
P−1A

)
≤

sup
Ω
λmax (Q)

inf
Ω
λmin (Q)

(5)

where the matrix Q is given in (3).
As long as the considered problem doesn’t depart much from the model problem on the

square with constant coefficients, the right-hand side of (5) will be small and the preconditioner
is expected to perform well. On the other hand, if the eigenvalues of Q vary widely, due to the
presence of complicated geometry or coefficients, the preconditioner performance decreases. In
these cases, it is useful to have strategies to improve the spectral conditioning of P−1A: this
is a topic that we will address in a forthcoming paper. We emphasize that bound (5) does not
depend neither on the mesh size nor on the spline degree, but only on F and K.

4 The Bartels-Stewart method

If the systemAu = b is solved using the Preconditioned Conjugate Gradient (PCG) method,
at each iteration we need to solve a system of the form

Ps = r (6)

where r is the current residual. The computational effort required for solving this system (ex-
actly or approximately) is of paramount importance in assessing the overall performance of
PCG.

When d = 2, equation (6) can be reformulated as

K1SM2 +M1SK2 = R (7)

where r = vec(R) and s = vec(S), with the vec operator stacking the rows of a matrix X ∈
Rn×n into a single column vector x ∈ Rn2 . Equation (7) takes the name of (generalized)
Sylvester equation. Due to its many applications, the literature dealing with Sylvester equation
(and its variants) is vast, and a number of methods have been proposed for its numerical solution.
We refer to [14] for a recent survey on this subject.

In this paper we consider the Bartels-Stewart method [15], which represents the state-of-
the-art direct solver for (7). In fact, the method considered here departs slightly from the
standard Bartels-Stewart solvers in that it exploits the symmetry of the coefficient matrices
M1,M2, K1, K2, and was first presented in [16]. However, due to its popularity in the context
of the Sylvester equation, we still refer to this approach as the Bartels-Stewart method. We re-
mark that in [1] an iterative approach, namely the Alternating Direction Implicit (ADI) method
is also considered. However, it yields a worst performance, especially for 3D problems, than
the direct method, and hence we do not discuss it here.

We first describe the Bartels-Stewart method in the 2D case, where the system (6) reads

(K1 ⊗M2 +M1 ⊗K2) s = r (8)
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We consider the generalized eigendecomposition of the matrix pencils (K1,M1) and (K2,M2),
namely

K1U1 = M1U1D1 K2U2 = M2U2D2 (9)

where D1 and D2 are diagonal matrices whose entries are the eigenvalues of M−1
1 K1 and

M−1
2 K2, respectively, while U1 and U2 satisfy

UT
1 M1U1 = I, UT

2 M2U2 = I,

which implies in particularU−T
1 U−1

1 = M1 andU−T
2 U−1

2 = M2, and also, from (9), U−T
1 D1U

−1
1 =

K1 and U−T
2 D2U

−1
2 = K2. Therefore we factorize P in (8) as follows:

(U1 ⊗ U2)−T (D1 ⊗ I + I ⊗D2) (U1 ⊗ U2)−1 s = r,

and adopt the following strategy:

Algorithm 1 Bartels-Stewart direct method (symmetric case)
1: Compute the generalized eigendecompositions (9)
2: Compute r̃ = (U1 ⊗ U2)T r
3: Compute s̃ = (D1 ⊗ I + I ⊗D2)−1 r̃
4: Compute s = (U1 ⊗ U2)s̃

This approach can be generalized to the 3D case, where (6) takes the form

(K1 ⊗M2 ⊗M3 +M1 ⊗K2 ⊗M3 +M1 ⊗M2 ⊗K3) s = r (10)

in a straightforward way. We consider the generalized eigendecompositions

K1U1 = M1U1D1, K2U2 = M2U2D2, K3U3 = M3U3D3 (11)

with D1, D2, D3 diagonal matrices and

UT
1 M1U1 = I, UT

2 M2U2 = I, UT
3 M3U3 = I.

Then, (10) can be factorized as

(U1 ⊗ U2 ⊗ U3)−1 (D1 ⊗ I ⊗ I + I ⊗D2 ⊗ I + I ⊗ I ⊗D3) (U1 ⊗ U2 ⊗ U3)−T s = r,

which suggests the following algorithm.

Algorithm 2 3D Bartels-Stewart method (symmetric case)
1: Compute the generalized eigendecompositions (11)
2: Compute r̃ = (U1 ⊗ U2 ⊗ U3)r
3: Compute s̃ = (D1 ⊗ I ⊗ I + I ⊗D2 ⊗ I + I ⊗ I ⊗D3)−1 r̃
4: Compute s = (U1 ⊗ U2 ⊗ U3)T s̃
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4.1 Computational cost for the 3D approach

We discuss in detail the computational cost of the Bartels-Stewart method only in the 3D
case, i.e. Algorithm 2, as this represents the focus of the present manuscript. The exact cost
of the eigendecompositions in line 1 depends on the algorithm employed, however it is safe to
assume that this step costs O(n3) FLOPs. We further mention that when a divide-and-conquer
approach is used [17, Chapter 8], the eigendecomposition can be naturally performed in parallel
computer architectures. Moreover, when Algorithm 2 is applied as a preconditioner for CG, then
this step may be performed only once, since the matrices involved do not change throughout
the CG iteration. Line 3 is just a diagonal scaling, and it also requires O(n3) FLOPs. Lines 2
and 4, as it can be seen by exploiting the properties of Kronecker products [18], are equivalent
to performing a total of 6 products between dense matrices of size n × n and n × n2. Thus,
neglecting lower order terms the overall computational cost of Algorithm 2 is 12n4 FLOPs. We
emphasize that this cost is independent of p.

We point out that the main computational effort of the method consists in a few (dense)
matrix-matrix products, which are level 3 BLAS operations and typically yield high efficiency
thanks to a dedicated implementation on modern computers by optimised usage of the memory
cache hierarchy [17, Chapter 1]. Matrix-matrix products are also naturally suited for paral-
lelisation. Second, in a preconditioned CG iteration the cost for applying the preconditioner
has to be compared with the cost of the residual computation (a matrix-vector product with
A) which can be quantified in approximately 2(2p + 1)3n3 for 3D problems, resulting in a
FLOPs ratio of the preconditioner application to residual computation (matrix-vector product)
of (3n)/(4p3) ≈ n/p3. For example, if N = 2563 and p = 4, the preconditioner requires
only 3 times more FLOPs than the residual computation, while for degree p = 6 the matrix-
vector product is even more costly than the preconditioner itself. However in numerical tests
we will see that, for all cases of practical interest in 3D, the computational time used by the
preconditioner application is far lower that the residual computation itself. This is because the
computational time depends not only on the FLOPs count but also on the memory usage and,
as mentioned above, dense matrix-matrix multiplications greatly benefit of modern computer
architecture.

5 3D numerical experiments

We now numerically show the potential of the Bartels-Stewart method in solving isogeomet-
ric systems. We only show 3D experiments here, and refer to [1] for experiments in the 2D
case.

Algorithm 2 was implemented in MATLAB Version 8.5.0.197613 (R2015a), with the tool-
box GEOPDES [19], on a 12x Intel Xeon i7-5820K, 3.30GHz, 64 GB of RAM. We used the
MATLAB function eig to compute the generalized eigendecomposition (11), and the products
involving Kronecker matrices (lines 2 and 4 of Algorithm 2) were performed using the function
from the free MATLAB toolbox Tensorlab [20]. We recall MATLAB allows implicit parallelism
for some of its operations, e.g. dense matrix multiplication and eig.

We first consider a domain with trivial geometry, namely the unit cube [0, 1]3, and then turn
to more complicated domains. The first is a thick quarter of ring (Figure 1); note this solid has a
trivial geometry on the third direction. The second complicated domain is the solid of revolution
obtained by a 2D quarter of ring (Figure 2). Specifically, we performed a π/2 revolution around
the axis having direction (0, 1, 0) and passing through (−1,−1,−1). We emphasize that here
the geometry is nontrivial along all directions. In the cube case, we set b =randn(n3, 1)
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Figure 1: Thick ring domain

Figure 2: Revolved ring domain

for computational ease, while in the other two cases b is the vector representing the function
f(x, y, z) = 2 (x2 − x) + 2 (y2 − y) + 2 (z2 − z). In all problems we set K as the identity
matrix, since according to (5) the presence of coefficients and of a nontrivial geometry have an
analogous impact on the difficulty of the problem.

We start by considering the problem on the cube domain, which is simply [0, 1]3. As already
said, in this case P = A and we can directly apply the considered method to the system Au =
b. This is not a realistic case but serves as a preliminary check on the proposed theory and
implementation. Results for different values of h and p are shown in Table 1. We can see that
the computational time required by the direct solver is independent of the degree p. In fact, the
timings look impressive and show the great efficiency of this approach. We emphasize that, on
the finer discretization level, problems of more than one billion variables is solved in slightly
more than one minute (regardless of p).

We now consider the problems with nontrivial geometries, where the two methods are used
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3D Direct Solver Time (seconds)
h−1 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
128 0.07 0.06 0.06 0.07 0.08 0.08
256 0.53 0.61 0.64 0.65 0.65 0.56
512 5.58 8.01 6.80 5.83 8.00 5.76

1024 66.79 68.46 67.30 66.38 66.60 63.86

Table 1: Performance of the Bartels-Stewart method, cube domain.

CG + P Iterations / Time (seconds)
h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 26 / 0.21 26 / 0.42 26 / 0.83 26 / 1.63 26 / 2.84
64 27 / 1.46 27 / 3.36 27 / 7.41 27 / 13.44 27 / 22.95

128 28 / 12.74 28 / 30.30 28 / 60.14 * *

CG + IC Iterations / Time (seconds)
h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 21 / 0.36 15 / 1.22 12 / 3.60 10 / 10.22 9 / 27.30
64 37 / 4.65 28 / 13.63 22 / 36.48 18 / 94.42 16 / 242.22

128 73 / 65.91 51 / 168.31 41 / 386.84 * *

Table 2: Thick quarter of ring domain. Performance of CG preconditioned by the Bartels-Stewart method (upper
table) and by Incomplete Cholesky (lower table).

as preconditioners for CG. In both cases, we set 10−8 as tolerance on the relative residual for
CG. To better judge the efficiency of the Bartels-Stewart approach, we compare the results with
those obtained when using a preconditioner based on the Incomplete Cholesky (IC) factorization
(implemented by the MATLAB function ichol). We remark that incomplete factorizations
have been considered as preconditioners for IGA problems in [6], where the authors observed
that this approach is quite robust w.r.t. p.

In Table 2 we report the results for the thick quarter ring while in Table 3 we report the
results for the revolved ring. The symbol “*” denotes the cases in which even assembling the
system matrix A was unfeasible due to memory limitations. We emphasize that the reported
computation time always includes the time needed to setup the preconditioner. Below we report
some comments on the numerical results for these two problems.

CG + P Iterations / Time (seconds)
h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 40 / 0.30 41 / 0.62 41 / 1.25 42 / 2.61 42 / 4.47
64 44 / 2.16 44 / 5.21 45 / 11.15 45 / 21.83 45 / 36.60

128 47 / 21.99 47 / 56.58 47 / 113.42 * *

CG + IC Iterations / Time (seconds)
h−1 p = 2 p = 3 p = 4 p = 5 p = 6

32 24 / 0.40 18 / 1.31 15 / 3.76 12 / 10.36 11 / 27.01
64 47 / 5.53 35 / 15.70 28 / 40.60 24 / 99.76 20 / 249.54

128 94 / 108.53 71 / 241.43 57 / 889.05 * *

Table 3: Revolved quarter of ring domain. Performance of CG preconditioned by the Bartels-Stewart method
(upper table) and by Incomplete Cholesky (lower table).
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h−1 p = 2 p = 3 p = 4 p = 5 p = 6
32 24.43 12.40 6.52 4.15 2.66
64 19.60 9.10 3.78 2.21 1.24

128 15.58 7.00 3.73 * *

Table 4: Percentage of time spent in the application of the 3D Bartels-Stewart preconditioner with respect to the
overall CG time. Revolved ring domain.

• For the Bartels-Stewart preconditioner, the number of CG iterations is practically inde-
pendent on p and slightly increases as the mesh is refined, but stays uniformly bounded
according to (5).

• Interestingly, in the IC approach the number of CG iterations decreases for higher p.
On the other hand, the CPU time still increases due to the greater computational cost
of forming and applying the preconditioner. In particular, the performance of the IC
approach shows a stronger dependence on p than the Bartels-Stewart approach.

• The Bartels-Stewart preconditioner yields better performance, in terms of CPU time, than
the IC preconditioner for all considered values of h and p.

It is fundamental to observe that the computation times reported in Tables 2 and 3 include
the time spent in the residual computation of the outer CG iteration (a sparse matrix-vector
product, costing O(p3n3) FLOPs). Somewhat surprisingly, in the case of the Bartels-Stewart
preconditioner this step actually represents a significant effort in the overall CG performance.
In fact, our numerical experience shows that the 3D direct method is so efficient that its cost is
often negligible w.r.t. to the cost of the residual computation. This effect is clearly shown in
Table 4, where we we report the percentage of time spent in the application of the preconditioner
when compared with the overall time of CG, in the case of the revolved ring domain.

6 Conclusions

In this work we have analysed and tested the use of a fast solver for Sylvester-like equation,
namely the Bartels-Stewart method, as preconditioner for isogeometric discretizations. We con-
sidered here a Poisson problem on a single-patch domain, and we focused on the k-method, i.e.,
splines with maximal smoothness. The considered preconditioner P is robust w.r.t. h and p,
and we have compared two popular methods for its application. We found that the consid-
ered approach is very effective and easily outperform a simple-minded incomplete Cholesky
preconditioner.

Our conclusion is that the Bartels-Stewart method represents a very promising precondition-
ing approach in an iterative solver for isogeometric discretizations. In a forthcoming paper we
will further study the role of the geometry parametrization on the performance of the approach
based on Sylvester equation solvers, and propose possible strategies to improve it.
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Abstract. We present an effective three-dimensional tool for modeling the influence on the
structural behavior of the mechanical behavior of the interface between steel bars and FRP
plates glued to concrete beams. The proposed tool reproduces the pull out of the bars and
the detachment of the FRP plates. Both opening and sliding of the interface between rein-
forcements and beam are accounted for. The tool is based on the regularized extended finite
element method (XFEM) developed by the authors: the discontinuities are regularized and a
mechanically consistent variational formulation is adopted. The considered cases range from
the simulation of pull-out tests of steel rebars, to the simulation of single-lap tests in shear and
three point bending tests in FRP-reinforced concrete beams.

2726



Elena Benvenuti, Nicola Orlando

1 INTRODUCTION

This contribution deals with the modeling of the influence of steel bars and FRP external
reinforcements on the structural behavior of concrete beams. We present an original three-
dimensional effective tool for modeling the detachment of steel and FRP plates from concrete
beams. The proposed extended finite element model is capable of reproducing the pull out of
steel bars and the detachment of the FRP-concrete layer taking into account both opening and
sliding at the interface between the reinforcements and the concrete. The approach adopted in
the present analysis is original, and is based on a recently developed 3D procedure [1] extending
the previous 2D formulation for cohesive-like interfaces [2, 3]. The approach can be regarded
as an original variant of the widely known eXtended Finite Element Method (XFEM) [4]. In
the present XFEM, the discontinuities are regularized, so to introduce an additional internal
length in the description. Moreover, a suitable variational formulation is adopted, based on the
concept of the equivalent strain proposed in [5]. A wide range of loading cases and types of
reinforcement is considered to prove the generality of our approach. In particular, we show
some of the results obtained for the three-dimensional simulation of:

• the pull-out of steel bars embedded in concrete blocks;

• single-lap shear tests where the detachment of FRP plates glued to the concrete blocks
occurs;

• three point bending tests on concrete beams externally-reinforced by FRP-plates.

2 BASIC RELATIONSHIPS OF THE REGULARIZED XFEM

The proposed approach has several advantages that make it suitable for modeling mechanical
problems such as pull-out and delamination. Firstly, the model is enriched with a regularization
length that governs the width of the process zone. This feature avoids the possible dependency
on the mesh-size adopted within the zone where strain localization occurs. For instance, this
drawback occurs when softening constitutive laws are adopted for the concrete. Secondly, a
smooth continuous-discontinuous transition is obtained [6]. Thirdly, the regularized XFEM is
based on a damage law that can correctly reproduce both the opening and the shearing modes
characterizing the debonding of the FRP layer from the concrete. A thorough numerical inves-
tigation on single-lap shear tests has been presented in a recent paper [1].

The basic relationships of the regularized XFEM approach are shown hereinafter. Let the dis-
placement field u be discontinuous across the failure surface defined according the mechanical
problem S ∈ R3 of normal nS . Within a single element of nodal degrees of freedom Ue and Ae

interpolated by the usual FE interpolation functions Ne, the regularized XFEM displacement
ue of element e is [4]

ue = NeUe +HρN
eAe , (1)

where Hρ is a regularized Heaviside function that approximates the Heaviside function for
vanishing regularization length ρ. The vector Ae collects the jump components along x, y and
z for the finite element e. Hρ is assumed a function of the distance from the level set surface.
By compatibility, the strain field is

εe = BeU +HρB
eAe + ‖∇Hρ‖(NeAe ⊗ ne) , (2)

where Be = ∇Ne is the standard FE compatibility matrix.
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FRP and adhesive are modeled as linear elastic materials. At each Gauss point, we intro-
duce the damage variables D and Dc for the concrete and the zone where debonding occurs,
respectively, and compute the associated stresses thorough

σe = (1−D)EBeU +Hρ (1−D)EBeAe , (3a)
σec = (1−Dc)Ec‖∇Hρ‖(NeAe ⊗ ne) . (3b)

In particular, the concrete damage D is governed by an exponential Rankine elasto-damaging

Figure 1: Pull-out: Geometry of the pullout test [7]
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Figure 2: Pull-out: Numerical and experimental load vs slip curves with plain rebars

law until it has reached the critical value Dcr [6]. As soon as D ≥ Dcr, the evolution of D
is dropped, i.e. the concrete can only elastically unload: a regularization zone replaces the
discontinuity. In particular, the damage evolution can be Dc affecting the stress σec is

D = min{Dcr, f(r)} , Dc = max{Dcr, f(r)} , f(r) = 1− r0
rc

exp
(
−2H

rc − r0
r0

)
, (4)
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where rc ≥ r0, with r0 = ft for tensile damage, and r0 = fc for compressive damage.
The stiffness matrix associated with the variational formulation is

Ke
reg =

[
Bet (1−D)EBu BetHρ(1−D)EBe

BetHρEBe BetH2
ρ(1−D)EBe + ‖∇Hρ‖N̄et(1−Dc)EcN̄e

]
. (5)

In Eq. (5), the operator N̄e is such that ∇Hρ ⊗ NeA ≈ ‖∇Hρ‖N̄eAe, and ∇(HρN
e) =

HρB
e+∇Hρ⊗Ne. The adopted variational formulation has been thoroughly described in [5].

3 PULL-OUT

In this section, the regularized XFEM approach is employed to investigate the behavior of
the bond between concrete and steel rebars. For a comparison with experimental results, we
have considered the experimental campaign of Xiao et al. [7], where several pullout tests with
plain and deformed bars were carried out. Fig. 1 shows the pullout test specimens. According
to the experimental test, the load was monotonically increased. The applied load versus the
slip measured at the free end of the steel rebar have been detected. The numerical and the
experimental results are compared in Fig. 2, where the gray zone indicates the experimental
results. The agreement between the results is very satisfying.

4 SINGLE-LAP SHEAR TESTS

Two single-lap-shear tests have been simulated, where an axial pulling force is applied to an
FRP-plate that is glued to a concrete block restrained by a suitable supporting system. Consis-
tently with the experiments, a layer comprehensive of both a concrete layer attached to the FRP
plate is modeled.

For a comparison with the experimental results, the experimental test performed by Chajes
et al. [8] and the tests carried out by Carrara et al. [9] have been simulated. It is remarkable
that, in the former test, the structural response has been recorded up to the maximum load.
On the contrary, in the latter test, the entire load-displacement curves with softening post-peak
branches have been detected. The geometry and the material parameters of the experimental
tests are specified in Tab. (4). The specimens are displayed in Fig. 3. In the geometry adopted
by Chajes et al. [8], the glue layer starts at the front of the specimen, close to the loaded end of
the FRP plate. On the contrary, in the specimen of Carrara et al. [9], the FRP plate is bonded
at a certain distance from the front of the concrete block to avoid the detachment of a concrete
wedge when pulling the FRP sheet. The maximum transferable loads computed are shown for
variable bonding length in Fig. 4 for both the specimens. Fig. 5 shows a comparison between

Chajes et al.[8] Carrara et al. [9]
FRP glue concrete FRP glue concrete

E [MPa] 108380 1585 33640 168500 3517.3 28700
ν 0.248 0.315 0.2 0.248 0.315 0.2

ft[MPa] − − 3.21 − − 2.85
thickness [mm] 1.0 1.0 − 1.3 1.3 −

H [mm] 152.4 152.4 152.4 90 90 90
B [mm] 150 150 150 152.4 152.4 152.4
L [mm] 300 300 300 228.6 228.6 228.6
b [mm] 25.4 25.4 25.4 30 30 30

Table 1: Shear tests: Material and geometry parameters [2]
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(a) (b)

Figure 3: Shear tests: Geometries of the tests of Chajes et al. [8] and Carrara et al. [9]

the numerical displacement contour plot (b) and displacement vectors determined by Czaderski
et al. [10] through Image Correlation System (ICS). As evident, the agreement of the computed
results with the experimental measured is very satisfying. In particular, this comparison puts
into evidence the crucial role played by the bending of the FRP plate during delamination. More
results on these single-lap shear tests can be found in our study [1].

5 FLEXURAL STRENGTHENING: THREE-POINT BENDING TEST

In this section, the flexural strengthening carried out by FRP plates bonded to concrete beams
has been investigated by means of the regularized XFEM approach. To this purpose, the three-
point bending test carried out by Yin et al. [11] was modelled. The geometry of the specimen is
reported in Fig. 6. Noteworthy, a steel fiber reinforced concrete was used with short steel-fibers
30 mm long with a diameter of 0.5 mm. An FRP-plate was glued to the bottom of the beam.
No steel bars were employed. Concrete with compressive strength fcm = 26 MPa, Young’s
modulus Ec = 25 GPa and Poisson ratio ν = 0.2 were employed.

Different volumes of short steel-fibers were mixed with the concrete matrix. In particular,
the experimental results obtained using four volume-fractions of short steel-fibers. As known,
the mechanical properties of the steel-fiber reinforced concrete change with Vf . Among the
available models predicting the improvement of the strength of the concrete with Vf , we adopted
the Job et. al. [12] formula

fspc = 0.63(fcm)0.5 + 0.288(fcm)0.5RI + 0.052RI , (6)

where the strength is a function of the fiber reinforced index (RI = VfLf/φf ), Lf is the length
of fiber, and φf is the diameter of fiber.

In these experiments, the FRP-debonding is due to the concentration of the interfacial shear
stress after the occurrence of diffused flexural cracks in the concrete. In Fig. 7, the experimental
crack pattern [11] obtained by setting ft = 2.89 MPa, and H = 0.008 for Vf = 0%is compared
with that obtained with the present regularized XFEM. In particular, the damage variable in the
concrete has been plotted, with the red color denoting value of the damage variable close to 1.
The evolution of the process of detachment of the FRP plate from the concrete beam is shown
in Fig. 8.

2730



Elena Benvenuti, Nicola Orlando

0 50 100 150 200
0

5

10

15

20

Lb [mm]

L
oa

d
[k

N
]

Figure 4: Shear tests: Numerical and experimental maximum lads versus bonding length Lb for the tests of Carrara
et al. [9] (numerical data: dashed line and rectangle marker, experimental data: triangle marker) and Chajes et
al. [8] (numerical data: continuous line and circle markers [2], experimental data: cross markers).

(a)

(b)

Figure 5: Shear tests: Qualitative comparison between the numerical displacement contour plot (b) and the dis-
placement vectors (a) determined by Czaderski et al. [10] through a Image Correlation System (ICS).
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Figure 6: Three point bending test: Geometry of the test carried out by Yin et al.[11]

(a)

(b)

Figure 7: Three point bending test: Experimental (a) and numerical (b) crack pattern of the test carried out by Yin
et al. [11]

(a) (b)

(c)

Figure 8: Three point bending test: damage evolution up to final delamination
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6 CONCLUSIONS

Accounting for both the shearing and the opening of the interface between the reinforcements
and the concrete, the regularized three-dimensional XFEM approach has been successfully ap-
plied to simulate the debonding of steel rebars and FRP-plates in pull out, shear and bending
tests. The proposed approach is able to catch the main features of the structural behavior. The
agreement with the reference results is highly satisfying. Hence, the proposed approach can be
used together with and in alternative to experimental tests.

REFERENCES

[1] E. Benvenuti, N. Orlando, D. Ferretti, A. Tralli, A new 3D experimentally consistent XFEM
to simulate delamination in FRP-reinforced concrete, 91, 346–360, 2016.

[2] E. Benvenuti, O. Vitarelli, A. Tralli, Delamination of FRP-reinforced concrete by means
of an extended finite element formulation. Composites Part B: Engineering, 43.8, 3258–
3269, 202.

[3] E. Benvenuti, G. Ventura, N. Ponara, A. Tralli, Variationally consistent eXtended FE
model for 3D planar and curved imperfect interfaces. Computer Methods in Applied Me-
chanics and Engineering, 267, 434–457, 2013.

[4] T. Belytschko, R. Gracie, G. Ventura, A review of extended/generalized finite element
methods for material modeling, Modelling and Simulation in Material Science and Engi-
neering, 17.4, 043001, 2009.

[5] E. Benvenuti, XFEM with equivalent eigenstrain for matrix–inclusion interfaces. Compu-
tational Mechanics, 53.5, 893–908, 2014.

[6] E. Benvenuti, A. Tralli, Simulation of finite-width process zone for concrete-like materials,
Computational Mechanics, 50, 479–497, 2012.

[7] J. Xiao, H. Falkne, Bond behaviour between recycled aggregate concrete and steel rebars.
Construction and Building Materials, 21, 395–401, 2007.

[8] MJ. Chajes, WW. Finch Jr, TF. Januszka, TA. Thomson Jr, Bond and force transfer of
composite material plates bonded to concrete, ACI Structural Journal, 93, 209–217, 1996.

[9] P. Carrara, D. Ferretti, F. Freddi, G. Rosati, Shear tests of carbon fiber plates bonded
to concrete with control of snap-back. Engineering Fracture Mechanics, 15, 2663–2678,
2011.

[10] C. Czaderski, K. Soudki, M. Motavalli, Front and Side View Image Correlation Measure-
ments on FRP to Concrete Pull-Off Bond Tests Journal of Composites for Costruction,
47, 1326–1336, 2011.

[11] J. Yin, Z.S. Wu, Structural performances of short steel-fiber reinforced concrete beams
with externally bonded {FRP} sheets. Construction and Building Materials, 17, 463–470,
2007.

[12] T. Job, R. Ananth, Mechanical properties of steel fiber-reinforced concrete. Journal of
materials in civil engineering, 19, 385–392, 2007.

2733



ECCOMAS Congress 2016 

 VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 
Crete Island, Greece, 5–10 June 2016 

EXPERIMENTAL VALIDATION OF COMPOSITE STRUCTURES IN 

EXPLICIT IMPACT ANALYSIS 

Konstantinos T. Fotopoulos
1
, George N. Lampeas

2
 

Laboratory of Technology and Strength of Materials  

Department of Mechanical Engineering and Aeronautics 

University of Patras, 26500 Rion, Greece 
1 
fotopk@mech.upatras.gr 

2 
labeas@mech.upatras.gr 

Keywords: Model Validation, Composite laminate, Low velocity impact, Finite element 

analysis, Delamination, Stacked shell modeling.  

Abstract. The prediction of composite laminate behavior when subjected to low velocity im-

pact loading is a challenging task due to the complexity of the fully three dimensional stress 

state that develops inside the structure. Several methods have been employed in order to ana-

lyze the intralaminar and interlaminar failure modes that evolve during impact. In the present 

work a stacked shell methodology is proposed for the simulation of composite laminates. The 

approach is experimentally validated through the comparison of its results to the respective of 

a low velocity impact on laminated specimens test. The numerical predictions correlate well 

to the experimental results, showing the accuracy of the stacked-shell approach in explicit 

impact analysis of composite structures. 
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1 INTRODUCTION 

Lightweight structural design has become very important in the automotive, marine and 

aircraft engineering fields. The increasing demand for materials that combine low weight with 

high mechanical strength has generated high interest in the analysis of the behavior of compo-

site materials. One of the most significant issues of this analysis is the effect of impact load-

ing on composite laminated structures, especially because of their susceptibility to out-of-

plane failure. Although a wide range of scenarios exist, impact on composites can generally 

be categorized in low and high velocity impact. The former usually includes cases of projec-

tiles with significant mass and volume that are dropped on the structure, while the latter most-

ly comprises instances of small projectiles impacting composites at high speeds. The effects 

of such impact events on a laminate include fiber failure, matrix cracks as well as separation 

of plies (delamination); hence, the outcome consists of a combination of failure modes mak-

ing the analysis of the impact response a demanding task.  

In order to accurately simulate the different phenomena arising during an impact event, 

several predictive methods has been utilized. The main approaches for the numerical simula-

tion of impact induced effects are based on Continuum Damage Mechanics (CDM) and Frac-

ture Mechanics. In CDM material models [1-3] both the plies and the interfaces of a 

composite are modeled using appropriate damage theories. On the other hand, fracture me-

chanics techniques – e.g. the Virtual Crack Closure Technique (VCCT) or the Cohesive Zone 

Method (CZM) – treat in-plane and out-of-plane behavior separately, concentrating individu-

ally on the progression of interlaminar damage [4]. The VCCT [5] has been applied extensive-

ly in the analysis of metals and has been extended to composite materials using the energy 

release rate concepts to directly predict the crack growth. However, the location and size of 

the crack are prerequisites for the application of the method, making it difficult to be em-

ployed in more complex structures. The CZM – based on the works of Dugdale [6] and 

Barenblatt [7] – assumes that a cohesive zone is developed in front of the crack tip, with the 

cohesive surfaces associated with the crack being connected by cohesive laws. This technique 

is capable of predicting separation growth without the assumptions of the VCCT, although it 

presents a certain degree of mesh dependency. 

Considering laminated composites as a conjunction of fiber reinforced plies and matrix in-

terfaces, the analysis of a composite’s behavior can be approached in the Finite Element (FE) 

environment using CDM techniques to address intralaminar failure and Fracture Mechanics 

techniques to simulate interlaminar failure. In this frame, the representation of out-of-plane 

normal and shear deformation through-thickness can be achieved by stacking an appropriate 

number of 2D damage mechanics elements through the laminate thickness, held together by 

cohesive traction. This approach is mentioned in the literature as ‘stacked shell’ or 2.5D ap-

proach. It is based on the CDM approach proposed by Allix and Ladeveze [1], replacing the 

CDM matrix representation with cohesive zone interfaces. The main advantage of this model-

ing technique is the revocation of aspect ratio restrictions concerning the in-plane and through 

thickness element dimensions, presenting obvious advantages in regard to simulation accura-

cy and computational efficiency, compared to traditional modeling techniques. In the studies 

[8-14] of the literature the use of the stacked shell method has been reported for the simula-

tion of composite laminates. 

The aim of the present work is the study of the appropriateness of the stacked shell ap-

proach capabilities in explicit analysis of low velocity impact events, as well as in the predic-

tion of interlaminar damage initiation and growth. The accuracy of the stacked shell modeling 

technique is assessed by an experimental procedure, concerning low velocity impact on com-
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posite laminates. Numerical predictions are compared to published experimental data, derived 

from Ultrasound A-scan, Ultrasound C-scan and Thermography non-destructive tests. 

2 DESCRIPTION OF THE MODELLING APPROACH  

The stress distribution produced by impact on a laminated composite is three-dimensional. 

Complex phenomena that include propagation of compressive, shear and surface stress waves 

occur during the impact event [15]. The simulation of the stress state that develops under the-

se conditions is a challenging task, which requires a modeling strategy which is capable to 

predict the three-dimensional stress state of the laminate. 

The idea behind the stacked shell FE model development is based on the hypothesis that a 

composite laminate can be simulated by a number of discrete sublaminates which are 

kinematically tied by cohesive interfaces simulating the matrix. In this manner, the 

sublaminates are mainly burdened with the axial and bending loads which are developed in 

the laminate, while the cohesive interfaces take into account the out-of-plane normal and 

shear loading effects. In this way the displacement and strain continuity between adjacent 

sublaminates is provided, since forces are transferred from one sublaminate to another 

through the cohesive interfaces. Accordingly, the FE modeling strategy can be divided in: 

a) In-plane damage modeling  

b) Interface modeling 

 

Figure 1: Representation of the stacked shell approach (taken from [14]) 

2.1 In-plane damage modeling 

The low velocity impact induced in-plane damage mainly consists of fiber failure and ma-

trix cracking. The simulation of these failure modes is performed through the use of a CDM 

elastic-plastic material model which is based on the concept of failure surfaces. The longitu-

dinal, transverse and shear strengths are taken for the yield function, resulting to a faceted sur-

face. The failure surfaces for this material model are: 

tt a1  

cc 1  

     tt aY2       (1) 

cc Y2  

cS 132312   
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where σ1t, σ1c, σ2t, σ2c, σ12, σ23, σ13 are the stresses expressed in the material principal axes (1 

for the axial fiber direction, 2 for the transverse matrix direction and 3 for the through-

thickness direction)  Xt , Xc are the longitudinal tensile and compressive strengths, respectively, 

Yt , Yc are the transverse tensile and compressive strengths, respectively and Sc is the in-plane 

shear strength. The parameter a can be used to limit the tensile failure, when the respective 

strengths have been reached. For a = 1 the material model results in a fully elastic-plastic 

model that retains the initially defined strength values for the failure surface. For a = 0, the 

tensile stresses σ1t and σ2t are reduced to zero after strengths Xt, Yt have been reached; subse-

quently, only compressive and shear loads can be carried.  

According to a work performed by Maimi et al [16], in order to ensure the correct calcula-

tion of dissipated energy independently of the element size, the elastic energy of an element 

during damage initiation must be lower than or equal to the fracture energy. Therefore, the 

material strengths used in the material model for each damage law have to be modified, using 

Equation 2. 

*

2

l

GE
X MM

M              (2) 

where X, E are the strengths and moduli of the material respectively, in the direction denoted 

by the subscript M (longitudinal, transverse or shear), l
*
 is the element characteristic length 

and GM is the fracture toughness. The characteristic length of square elements for unknown 

direction of crack propagation can be approximated as proposed by Bazant and Oh [17] by  

)cos(

*



IPA
l                (3) 

where γ is the angle that the mesh lines and the crack direction form and AIP is the area corre-

sponding to an integration point. If the direction of crack propagation is unknown, the average 

of Equation 3 can be used: 

IPAl 12.1*               (4) 

Consequently, the effect of element size to the material model for in-plane damage is min-

imized.    

2.2 Interface modeling – cohesive zone method 

The damage that the interfaces of a laminate undergo during impact events constitutes of 

de-bonding between adjacent plies, i.e. delamination. Modeling of interface failure is realized 

through the implementation of a fracture mechanics based approach, which is a combination 

of a cohesive zone model and a linear elastic adhesive penalty formulation as proposed by 

Borg [18].  

 

Figure 2: Cohesive law - Traction-separation curve 
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Regions between sublaminates are introduced through which damage initiation and growth 

is possible. In particular, the constitutive behavior of the cohesive surfaces is described by a 

bilinear law, as shown in Figure 2. The interface damage initiates when the failure criterion of 

Equation 5 is met. 
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             (5) 

In the above equation σn, σs are the normal and shear stresses respectively and σn,crit, σs,crit 

are the failure stresses that correspond to each component. After the failure initiation point, 

damage between cohesive surfaces is a linear function of the distance between them. When 

the distance δcrit is reached, the cohesive surfaces are released and complete ply separation 

occurs.  

The length of the cohesive zone created at the tip of a crack is the distance from the crack 

tip to the point of maximum cohesive traction. According to Turon et al [19] the constitutive 

parameters for the simulation of delamination can be determined in order to adapt the length 

of the cohesive zone to the element size so that the energy dissipation is correct. This is per-

formed using Equation 6. 

ee

c

crit
lN

EG

32

9
            (6) 

where E is the transverse modulus of elasticity, Gc is the critical energy release rate, Ne is the 

number of elements in the cohesive zone and le is the element length in the crack propagation 

direction. The interface failure stress is then selected as the minimum between the value cal-

culated by Equation 6 and the nominal failure stress. The regularization of the stress by Equa-

tion 6 ensures that the interface model will remain practically unaffected by mesh size 

produced artificial phenomena. 

3 EXPERIMENTAL VALIDATION OF THE IMPACT SIMULATIONS 

The capabilities of the stacked shell approach with respect to the prediction of the behavior 

of composite laminates are assessed through comparison of simulation results to the experi-

mental results of a low velocity impact drop test. 

3.1 Description of the experimental procedure 

The experimental procedure has been performed by Riccio et al [20] according to the Eu-

ropean association of Aerospace Manufacturers standard prEN 6038. The experiment involves 

the impact of a hemispherical impactor on a laminated plate with rectangular geometry, fabri-

cated by the G1157/RTM-6 material system. The plate consists of 8 plies of 0.3 mm thickness 

each, resulting to a [0/90/45/-45]s layup. The dimensions of the flat specimen are 150 mm × 

100 mm × 2.4 mm (Length × Width × thickness). The impactor’s radius is 8 mm, with a mass 

of 3.64 kg. The specimen is supported by a fixture frame with a 125 mm × 75 mm rectangular 

window and is constrained by 4 rigid clamps with 10 mm diameter and 3 mm height. Impact 

on the plate is performed for three energy levels, namely 6 J, 10 J and 13J. Results are ac-

quired by Ultrasound A-scan, Ultrasound C-scan and Thermography non-destructive tests. 
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3.2 FE model development  

The FE model was developed in the explicit code of LS-Dyna, according to the simulation 

approach described in Section 2. It comprises eight sublaminates, each one representing a lay-

er of the laminated plate, as shown in Figure 3. The sublaminates are modeled by fully inte-

grated Reissner-Mindlin shell elements with six degrees of freedom per node, i.e. three 

translations (ux, uy, uz) and three rotations (rotx, roty, rotz). This element type presents a 

Bathe-Dvorkin [21] transverse shear treatment in order to eliminate w-hourglass modes, while 

other hourglass modes are eliminated by selectively reduced integration. In the LS-Dyna envi-

ronment this behavior is included in shell element formulation 16 [22].  

 

Figure 3: Finite element model of the low velocity impact test 

Following a mesh convergence parametric investigation, each sublaminate is discretized by 

a finite element mesh consisting of 2 mm x 2 mm square elements and four integration points 

through-thickness. Equation 2 is used to modify material strengths in order to correspond to 

the element characteristic length, calculated by Equation 4. The G1157/RTM-6 lamina mate-

rial properties as well as the intralaminar damage parameters (Table 1) that are used for the 

simulation of sublaminates are introduced in the ‘Mat 59 Composite Failure’ type of the LS-

Dyna code, which is formulated according to the attributes of the elasto-plastic material mod-

el described in section 2.1. 

G1157/RTM-6 

Material 

Properties 

ρ  

[kg/m
3
] 

Ea  

[GPa] 

Eb=Ec  

[GPa] 

Gab=Gca=Gbc 

[GPa] 
vab=vac=vbc 

1400 130.05 11.55 6.0 0.312 

G1157/RTM-6 

In-plane  

fracture  

energies 

GFftc  

[kJ/m
2
] 

GFfcc 

 [kJ/m
2
] 

GFmtc  

[kJ/m
2
] 

GFmcc  

[kJ/m
2
] 

16.4 5.9 0.5 4.62 

G1157/RTM-6 

Ply Damage 

Parameters 

Longitudinal 

Tensile 

Strength  

[MPa] 

Longitudinal 

Compressive 

Strength 

[MPa] 

Transverse 

Tensile 

Strength 

[MPa] 

Transverse 

Compressive 

Strength  

[MPa] 

 

In-plane 

 Shear Strength 

[MPa] 

1380 827.7 71.8 218.3 90 

Table 1: G1157/RTM-6 Material properties and damage parameters 
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Regarding the FE implementation of interfaces, seven inter-layers were introduced be-

tween sublaminates. A tiebreak contact formulation is selected for the simulation of inter-

laminar behaviour. When the defined critical distance between initially tied nodes is reached, 

the tiebreak contact is released and converted to a typical surface-to-surface contact. Accord-

ing to Dobyns [23], delamination growth occurs because of transverse shear stresses devel-

oped at the area of impact. For this reason, Equation 6 is used to calculate the shear failure 

stress, with element length le equal to 2 mm and the desired number of elements in the cohe-

sive zone Ne is set equal to 5, which was shown to produce accurate results [19]. Subsequently, 

the critical release distance δcrit can be calculated using known values of the shear energy re-

lease rate which is approximated by Equation 7. Finally, the calculated value of the critical 

distance is substituted in Equation 8 that approximates the normal energy release rate in order 

to determine the normal failure stress. The interlaminar damage parameters, shown in Table 2, 

are defined in Option 8 of the ‘Contact automatic one way surface to surface tiebreak’ type, 

which is based on the CZM model presented in section 2.2.    

  critcritsIICG  ,
2

1
            (7) 

critcritnICG  ,
2

1
           (8) 

The impactor, fixture base and clamps are discretized with a relatively coarse mesh using 

three-dimensional solid elements, and their geometry is assumed to remain undeformed dur-

ing the impact event. For this reason they are modeled using ‘Mat 020 Rigid’ of the LS-Dyna 

code. All degrees of freedom of the fixture base and clamps are constrained, while for the rig-

id impactor, only movement in the direction normal to the target surface is allowed. A typical 

penalty based surface to surface contact algorithm is used between the impactor, laminated 

plate and fixture base. To simulate the interaction between rigid clamps and the specimen, a 

penalty-based tied contact is used (‘Contact tied surface to surface offset’), to secure the posi-

tion of the composite plate. The three different energy levels used in the experimental proce-

dure were achieved by altering the initial velocity of the rigid impactor.  

G1157/RTM-6 

Interface  

Energy Release 

Rates 

Normal Energy Release 

Rate 

GIc  

[kJ/m
2
] 

Shear Energy Release Rate 

GIIc  

[kJ/m
2
] 

0.18 0.5 

G1157/RTM-6 

Interface  

Damage  

Parameters 

Normal Failure 

Stress  

σn,crit  

[MPa] 

Shear Failure 

Stress  

σs,crit 

[MPa] 

 

Critical Distance  

δcrit  

[mm] 

8.13 22.59 0.04427 

Table 2: Interface properties and damage parameters 

3.3 Comparison of numerical and experimental results  

The numerical results of the stacked shell finite element model for the case of the laminat-

ed plate subjected to low velocity impact are presented in comparison with the experimental 

results of [20]. The force versus time and force versus displacement curves calculated by the 
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stacked shell simulation for the three different energy levels are presented in Figure 4. It can 

be observed that the maximum load values predicted by the FE model are in good correlation 

to the experimental results, as the deviation is within 1% for the 6 J energy level, within 1.5% 

for the 10 J case, and only for the 13 J energy level deviation is increased to about 15%. 

  
 

  
 

  

Figure 4: Comparison of simulation force-time and force-displacement curves with experimental results for 6 J, 

10 J and 13 J energy levels 

As far as the force versus displacement diagrams are concerned, excellent correlation to the 

experimental data can be observed for the loading phase, for all cases. The maximum dis-

placement prediction is in excellent agreement with the experimental results. The deviation is 

~8% for the 6J case, ~2% for the 10 J case and ~4% for the 13 J case. During the unloading 
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phase, the load capability tends to be underpredicted, a fact that can be attributed to a slight 

overprediction of the damage induced in plies.  

Energy Level 
Dimension 

[mm] 
Thermography 

Ultrasonic  

A-scan 

Ultrasonic  

C-scan 

Stacked Shell  

Approach 

6 J 

Length 14 20 20 25 

Width 7 15 14 18 

10 J 
Length 29 30 33 32 

Width 11 10 17 19 

13 J 
Length 41 40 42 35 

Width 18 22 20 21 

Table 3: FE results for the delamination envelope dimensions compared to the experimental results of [20] 

Stacked shell model predictions for the dimensions of the delamination envelope under the 

impacted area compared to results derived from NDT techniques are shown in Table 3. FE 

results correlate well with the experimental results, although for the lowest energy level, the 

delamination is slightly overestimated. Delamination plots of the seven contact interfaces are 

demonstrated in Figure 5, where the red color indicates delamination. As has also been re-

ported by Abrate [15], it can be observed that at interfaces where adjacent plies have the same 

fiber orientation, almost no separation of plies occurs while, at points where damage is more 

intense delamination areas present an elongated ‘peanut’ shape, with the large dimension of 

the area oriented in the direction of the fibers of the lower ply that participates to the interface.  

 

Figure 5: Delamination failure at interfaces. (a) 6 J, (b) 10 J, (c) 13 J 

4 CONCLUSIONS  

The stacked shell modeling methodology has been investigated in terms of explicit dynam-

ics simulation of low velocity impact on fiber reinforced structures. The capabilities of the 

approach have been examined, with emphasis on the prediction of interlaminar damage. The 

investigation of the method’s accuracy involves comparison with published experimental re-

sults concerning low speed impact on G1157/RTM-6 laminated plates. The stacked shell sim-

ulation results provide good correlation to the experimental results, as far as force and 

displacement predictions are concerned. The method’s predictions of interlaminar failure (de-
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lamination) present good agreement to the NDT derived experimental results. The good de-

lamination prediction capabilities complimented by the method computational efficiency indi-

cate that the stacked shell approach is a highly capable tool for the prediction of composite 

laminate behavior under low velocity impact conditions.  
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Abstract.
The simulation of the mechanical response of shell structures is of great interest in engineer-

ing. Nevertheless, creating simulation software is an error prone task, which needs reliable
tests to identify code faults. The aim of this paper is to propose a code verification procedure
for shell analysis using the method of manufactured solutions.

We apply order of accurecy tests, where the reference solutions are constructed with the
method of manufactured solutions. A set of five verification examples is presented. We have
chosen the first example such that the numerical error arises only because of round-off errors.
The second and the third example consider either a general stress state or a general geometry.
The fourth example considers both a general geometry and a general stress state. We show
convergence orders for a Matlab code which implements high order finite elements for a shell
model based on the Reissner-Mindlin kinematics. Furthermore, the process of manufactured
solution generation is discussed.

2745



Michael Gfrerer, Martin Schanz

1 INTRODUCTION

In order to ensure the reliability of a numerical simulation software, verification and val-
idation (V&V ) are unavoidable tasks [1, 2]. Figure 1 illustrates the relation between these
activities. An observed real world phenomenon can be modeled by mathematical means, lead-

Reality

Mathematical
model

Computational
model

Modeling

Computer implementation

Experimental data

Solution of the
mathematical model

Numerical solution

Measurements

MES, MMSComputation

Validation

Verification

Validation

Figure 1: The role of V&V in numerical simulation, based on [3]

ing to a explicit mathematical model. Since the applicability of the Method of Exact Solutions
(MES) to mathematical models describing real world problems is limited, numerical solutions
are inevitable. The computer implementation of the mathematical model leads to the compu-
tational model. Each of these steps introduces errors, which have to be assessed by V&V .
The process of validation determines how accurate the mathematical model represents the real
(physical) problem. The aim of verification is to show that the numerical method is able to pro-
duce a solution which approximates the exact solution of the mathematical model. Thus, one
is interested in the numerical error, which is defined as the difference between the numerical
solution and the exact solution. The comparison of numerical results with measurement data
is only feasible if the results are not significantly influenced by the numerical error. Therefore,
the process of verification has to precede the validation process. Verification activities can be
split into code verification and solution verification. Code verification represents the process of
demonstrating that the governing equations, as implemented in the code, are solved consistently.
Solution verification is the assessment (estimation) of the numerical error in situations where
no exact solution is known [4]. According to [5], the most rigorous tests for code verification
are the order-of-accuracy tests. For any discretization method, we expect that the discretization
error decreases as the mesh is refined. Within an order-of-accuracy test, the observed rate of
decrease in the discretization error is compared with the theoretical rate. In order to evaluate
the discretization error exact solutions are needed. These exact solutions can be constructed by
the Method of Manufactured Solutions (MMS) [6, 7, 8, 5, 1].

2746



Michael Gfrerer, Martin Schanz

Its central idea is to prescribe a solution and to determine a artificial source term which is
added to the governing equations, such that the modified equations are fulfilled for the pre-
scribed solution. The MMS can be applied to a wide range of problems. It has been applied to
Reynolds-Averaged Navier Stokes solvers [9], nonlinear membrane elements [10] within fluid
structure interaction [11, 12], conjugate heat transfer solvers [13], Cahn–Hilliard equation [14],
and others.

Within shell analysis, the task is to predict the mechanical response of a thin curved structure.
A structure is characterized as thin if one space dimension has a much smaller extension than
the other two. Within this geometric setting, a direct solution of the three dimensional problem
is difficult. Therefore, many different shell models exist (see [15] for an overview).

In shell analysis, it is a common practice to verify the code against benchmark solutions. One
well known set is the shell obstacle course [16], which consists of the Scordelis-Lo problem,
the pinched cylinder with a diaphragm, and the hemispherical shell problem. This problem set
was introduced in order to compare the performance of different finite elements with respect
to locking and accurate representation of rigid body motions. One shortcoming of this test set
when used for code verification is the lack of generality in geometry, since only cylindrical and
spherical geometries are taken into consideration. Another drawback is that there are only ref-
erence displacement values available, which are obtained by numerical simulation. Therefore,
no order-of-accuracy tests are possible.

In the present paper, we investigate code verification of finite element codes for shell analysis
based on the MMS. Thus, an exact solution is available and an order of accuracy test can be
applied. We propose a series of verification examples with increasing complexity. We apply
each test to a Matlab [17] research code, which implements high order finite elements for the
Reissner-Mindlin theory.

2 SHELL ANALYSIS

The starting point of the mathematical modeling of a shell structure can either be a two
dimensional surface (direct approach), or a three dimensional body, both equipped with me-
chanical properties. The direct approach is based on a deformable Cosserat surface, and has
been reviewed in [18]. Its computational aspects have been addressed in a series of papers
[19, 20, 21, 22]. Since the strong form of the governing equations is available, the application
of the MMS poses no difficulties, other than the necessity of being general.

In case of a three dimensional body which occupies the domain Ω in space, one is interested
in solving an elasticity boundary value problem of the form: find the displacement field ũ such
that

div(σσσ) + b = 0 in Ω, (1a)
σσσ = W (E(ũ)), (1b)
u = uD on ΓD, (1c)
t = tN on ΓN (1d)

are fulfilled. The equilibrium equations are given in (1a), where σσσ stands for the stress tensor
and b for the volume load. In (1b) the material lawW assigns a stress tensor to a strain tensor E,
which is a function of the displacement field ũ. The boundary of Ω is denoted by Γ = ΓD∪ΓN .
On the Dirichlet boundary ΓD, the displacement vector has a given value uD, whereas on the
Neumann boundary ΓN , the traction vector t = σσσn has a given value tN . For a detailed pre-
sentation and mathematical foundation of the theory of elasticity, we refer to [23] and [24].
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For a given problem, the modeling steps involve the specification of the domain Ω, the respec-
tive parts of the boundary Γ, the material law and the strain measure. Finite element solution
strategies to (1) can be broadly classified in 3D solid elements, degenerated shell elements, and
shell elements based on a shell theory. Within the 3D solid elements approach, the unmodified
problem (1) is solved. Thus, the application of the MMS is straightforward. Degenerated shell
elements have been introduced in [25] and are based on a continuum discretization of Ω. Further
simplifications of the kinematics are introduced in a second step. A shell theory introduces the
kinematical assumptions on Ω on the continuous level. Although the degeneration concept and
the shell theory approach seem quite different, the formulations are quite similar when based
on the same assumptions [26].

In the present paper, we concentrate on linearized elasticity with the following geometric
setup. We consider a shell as a three dimensional body which can be described by a two dimen-
sional surface and a thickness parameter. We assume that the surface can be parametrized by a
C2 mapping from a parameter space Ū into the physical space

g : Ū ⊂ R2 → Ω̄ ⊂ R3

(θ1, θ2) 7→ g(θ1, θ2).
(2)

This makes it possible to define two covariant base vectors of the surface

Gα =
∂

∂θα
g α = 1, 2, (3)

and the normal vector to the surface

n =
ñ

‖ñ‖
, ñ = G1 ×G2. (4)

The three dimensional body is parametrized by

g : (Ū × T ) ⊂ R3 → Ω ⊂ R3

(θ1, θ2)× θ3 7→ g(θ1, θ2, θ3) = g(θ1, θ2) + θ3 n.
(5)

We assume T = [−t/2, t/2], with constant thickness t. Instead of searching for ũ defined on
Ω, we refer to u defined on Ū × T . Then the components of the linearized strain tensor εεε =
εijG

i ⊗Gj with respect to curvilinear coordinates are given by

εαβ =
1

2

(
µξαGξ ·

∂u(θj)

∂θβ
+ µξβGξ ·

∂u(θj)

∂θα

)
,

εα3 =
1

2

(
µξαGξ ·

∂u(θj)

∂θ3
+ n · ∂u(θj)

∂θα

)
,

ε33 =
∂u(θj)

∂θ3
· n.

(6)

The components of the elasticity tensor C = CijklGi ⊗Gj ⊗Gk ⊗Gl for a linear isotropic
material behavior are

Cαβγϕ = λGαβGγϕ + µ
(
GαγGβϕ + GαϕGβγ

)
,

Cαβ33 = C33αβ = λGαβ,

C3α3β = C3αβ3 = Cα33β = Cα3β3 = µGαβ,

C3αβγ = Cα3βγ = Cαβ3γ = Cαβγ3 = 0,

C333α = C33α3 = C3α33 = Cα333 = 0,

C3333 = λ+ 2µ.

(7)
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In equations (6) and (7), µξα = δξα − θ3G
ξγ

(Gα,γ · n) are the components of the shifter tensor,
G
αβ

are the components of the inverse of the metric tensor Gαβ = Gα ·Gβ , and Gαβ are the
components of the inverse of Gαβ = µγαµ

ϕ
βGγϕ. λ, µ are the Lamé constants. For the sake of

brevity, we used the notation (·),α = ∂(·)
∂θα

.
In the present paper, we consider the classical Reissner-Mindlin model, where the thickness

expansion for the displacement field reads

u(θ1, θ2, θ3) = ui(θ1, θ2)ei + θ3

2∑
α=1

vαGα. (8)

In (8), ui are the displacement components of the mid surface and vα are the rotations. In total,
five parameters are used. Furthermore, as the result of the plane stress assumption, λ has to be
replaced with 2µλ

2µ+λ
.

The finite element formulation is based on the virtual work∫
Ω

ε̂εε : C : εεε dx =

∫
Ω

û · b dx+

∫
Γ

û · t dsx, (9)

where û is the virtual displacement field and ε̂εε = εεε(û). In order to derive finite elements,
the parameter space is meshed with quadrilateral elements. The parameters of the shell model
are discretized with integrated Legendre polynomials of order p. The discretized virtual work
statement (9) results in the linear equation system

K u = f, (10)

where K is the stiffness matrix resulting from the integral on the left side of (9), u the unknown
degrees of freedom and f the load vector resulting from the integrals on the right side of (9).
All integrals are computed using Gauss-Legandre quadrature for in-plane as well as through the
thickness. The system of linear equations (10) is solved with a direct solver.

3 CODE VERIFICATION

In the present paper, we apply code verification based on order-of-accuracy tests and the
MMS to a code for solving the shell formulations given in section 2. The necessary prerequisite
to apply it to a numerical schema is the knowledge of a formal order of convergence and exact
solutions. Thus, an estimate of the type

||uexact − unumerical|| ≤ C hq ||uexact||, (11)

whereC is a constant and h is a characteristic element size, has to be known. Then q is called the
formal order of convergence with respect to the norm || · ||. For two meshes with characteristic
element sizes h1 and h2, the experimental order of convergence (eoc) is defined as

eoc =
log(e1)− log(e2)

log(h1)− log(h2)
, (12)

where
ei = ||uexact − unumericalhi

|| (13)

is the numerical error corresponding to the discretization hi. The code is verified, if the eoc
matches the formal order of convergence within the asymptotic range. For the finite element
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method applied in this paper, we expect q = p + 1 for the error in the L2 norm for smooth
solutions.

In order to evaluate (13), an exact solution has to be available. Within the MMS, such a
solution is prescribed. The source term is determined such that the chosen solution fulfills the
governing equations. In particular, we perform the following steps:

1. Choose the form of the problem domain, i.e. specify the surface parametrization (2)

2. Choose the form of the manufactured solution uM , i.e specify the parameters in (8)

3. Derive the modified governing equations, i.e. compute an artificial source term bM =
−div(C : ε(uM))

4. Solve the discrete form of the modified governing equations on multiple meshes, i.e.
solve (9) with b = bM

5. Evaluate the numerical error (13) and the eoc (12)

6. Apply the order of convergence test

Additionally to [27], we added the first point. The finite element code needs the components bi

of the source term b = biei with respect to the global Cartesian frame. They are given by

bi = −
(
σjl,j + σklΓ j

kj + σjkΓ l
kj

)
J il (14)

with the Christoffel symbols of second kind Γ l
kj = Gk,jG

l and J il = Gl · ei. As noted in
[28], an arbitrary choice of manufactured solution leads easily to a very long computer code
for the source term. We have observed this for general complex curved surfaces too. We use
the computer algebra system MathematicaTM [29] to derive the source terms in an automated
way. Nevertheless, a general verification example assessing all features of the code results in
a source code with more than 106 characters, where simplifications are prohibitively time con-
suming. Therefore, we compute only the derivatives analytically and the algebraic operations
are performed numerically. Instead of exporting a function for bi, we export functions taking
the spatial position as input argument for

• strain tensor εij ,

• derivatives of the strain tensor εij,k,

• covariant base vectors Gi,

• derivatives of the covariant base vectors Gi,j .
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We numerize these quantities and compute

Gij = Gi ·Gj,

[Gij] = [Gij]
−1,

J il = Gl · ei,
Γ l
kj = Gk,j ·GiG

il,

Gij
,k = −Γ j

kl G
li − Γ i

kl G
lj,

σjl = λ
(
GijGklεkl + 2µGikGjlεkl

)
,

σjl,j = λ
(
Gij
,jG

klεkl +GijGkl
,j εkl +GijGklεkl,j

)
+ µ

(
Gik
,jG

jlεkl +GikGjl
,jεkl +GikGjlεkl,j

)
.

(15)

Then the source term is obtained with (14).
Remark: In the present implementation, we keep the exact surface parametrization during

the whole computation. Therefore, we are able to evaluate the error in a continuous norm. In
case of an approximation of the surface, one has to use the discrete norm [12]

e =

√√√√ 1

N

N∑
n=1

(
uexact(xn)− unumerical(xn)

)2

. (16)

Furthermore, the influence of geometry approximation on the formal order of convergence has
to be considered. For a discussion of this ‘variational crime’, we refer to [30].

4 VERIFICATION EXAMPLES

In the following, we provide a set of verification examples with increasing complexity. In
principle, it would be sufficient to consider only the most general case in order to verify the
code, since the special cases are included in the general case [31]. However, in order to have
confirmation exercises, we suggest special cases where only parts of the code should be exer-
cised.

In all examples, we specify a surface parametrization (2) and the displacement parameters for
the shell model (8). In all examples, we use the parameter space (θ1, θ2) ∈ [0, 0.56]× [0, 0.65]
and the thickness t = 0.07. All quantities are defined in the International System of Units (SI)
and their derived expressions. Therefore, we omit units for the input numbers. We use the
material parameters λ = µ = 4000, which corresponds to Young’s modulus E = 1000 and
Poisson’s ratio of ν = 0.25.

In the verification examples, we use two types of displacement fields. Displacement field A
is chosen such that it can be represented exactly with each discretization. Displacement field B
is chosen to be general to assess all features of the code. The displacement fields for the shell
model are given in Table 1.
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Table 1: Prescribed displacement parameters for (8)

displacement field A displacement field B

u1 = θ1 sin(πθ1) cos(πθ2)

u2 = θ2 cos(πθ1) sin(πθ2)

u3 = θ1θ2 sin(πθ1θ2)

v1 = θ1θ2 sin(πθ1θ2)

v2 = θ1θ2 sin(πθ1θ2)

4.1 Example 1: plane geometry, exact representation of solution

The goal of the first example is to determine the influence of round-off errors. To this end,
we have chosen the plane geometry

x = θ1,

y = θ2,

z = 0,

(17)

and displacement field A, which can be exactly represented in the discrete system. The remain-
ing error is due to round-off errors. We have executed the code for ansatz orders up to order
three for single precision, as well as for double precision. In Figure 2, the errors for differ-
ent discretization levels are shown. The error levels are in accordance with single and double
precision.

1 1.5 2 2.5 3 3.5 4
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0

log2(elements per edge)

lo
g

1
0
(E

rr
or

)

p1, single
p2, single
p3, single
p1, double
p2, double
p3, double

Figure 2: Numerical error for example 1

4.2 Example 2: plane geometry, general solution

In the second example, the discretization error at a plane geometry is assessed. We therefore
use (17) with displacement field B. The development of the errors and the eoc for ansatz orders
up to order six are shown in Figure 3. For the ansatz orders one to four the eoc tends to the
respective formal order of convergence. However, for ansatz orders five and six, the eoc does
not agree with the formal order of convergence. In these cases, the numerical error is dominated
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by the error introduced due to round-off and not by the discretization error. This effect is also
visible in the subsequent examples. The results verify the tested capabilities of the code.
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Figure 3: Development of the numerical error and the eoc for example 2

4.3 Example 3: general geometry, exact representation of solution

In the third example, a general geometry with displacement field A is considered. The surface
parametrization reads

x = θ1,

y = θ2,

z = (θ1)2 − (θ2)2.

(18)

The development of the errors and the eoc for ansatz orders up to order six are shown in Figure
4. The numerical error present in the example stems from the numerical integration of the
integrals in (9) and round-off, since displacement field A can be exactly discretized. We have
set the number of quadrature points in both in-plane directions to the ansatz order. However, as
long as the numerical error is dominated by the integration error, the eoc is higher or equal as the
formal order of convergence regarding the discretization of the displacement field. Therefore,
the integration error will not hamper the overall convergence rate. We remark that, with more
quadrature points the eoc can be increased in this example.

1 2 3 4 5
−15

−10

−5

0

log2(elements per edge)

lo
g

1
0
(E

rr
or

)

p1
p2
p3
p4
p5
p6

2 2.5 3 3.5 4 4.5 5

0

2

4

6

8

10

log2(elements per edge)

eo
c

p1
p2
p3
p4
p5
p6

Figure 4: Development of the numerical error and the eoc for example 3
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4.4 Example 4: general geometry, general solution

The fourth example consists of the general surface parametrization

x = θ1 +
(θ2)2

2
,

y = θ2 − (θ1)2,

z = (θ1)2 − (θ2)2,

(19)

and the general displacement field B. Thus, this example assesses all features of the code. The
development of the errors and the eoc for ansatz orders up to order six are shown in Figure 5.
Again, the error corresponding to ansatz orders five and six is limited by the round-off error.
Thus, the eoc drops. For all other ansatz orders the eoc tend to the formal order of convergence.
Thus, the code passes this verification example.
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Figure 5: Development of the numerical error and the eoc for example 4

5 CONCLUSIONS

This paper addresses code verification of a finite element code for shell analysis based on the
MMS. The MMS provides a powerful procedure to construct exact solutions to the governing
equations. Because of the complexity of the resulting source term, we decided to partly numer-
ized its computation. The derivatives are computed analytically and the remaining algebraic
operations are performed on numerized quantities. We successfully apply the verification ex-
amples to a finite element code for Reissner-Mindlin shells. The approach based on automatic
differentiation presented in [28] could further reduce the source term complexity. Nevertheless,
the verification of the manufactured solution itself remains an open question.
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Abstract. This contribution presents a model update procedure and its experimental valida-

tion using the example of a blade integrated disk rotor. This so called blisk is discretized us-

ing the finite element method. It is well known that numerical blisk models based on the ideal 

tuned design show major differences in structural dynamic behavior compared to the real ro-

tor. In this context a modification of the mechanical simulation model should lead to a better 

accordance of numerical results and the real blisk characteristics. The described model up-

date procedure utilizes data of an optical 3D measurement system. Using this data enables to 

identify geometric deviations between the ideal design and its real counterpart. Within the 

update procedure the originally tuned finite element mesh is modified in order to match the 

measured geometry of the real part. This is done by defining several morph regions. The out-

er surface nodes of these morph regions change their position along the surface normal vec-

tor until they meet the defined deviation constraint. Based on eigenvalue calculations 

employing free boundary conditions the sensitivity of structural dynamic behavior is shown 

with respect to small geometric changes. Finally computed eigenvalues and eigenvectors of 

the updated simulation model are compared with vibration measurement data. A laser Dop-

pler vibrometer is used to detect the vibration responses of the impact excited structure. All 

experiments are carried out under technical vacuum conditions in order to minimize ambient 

air damping. In the context of an experimental modal analysis this low damping condition 

helps to identify more natural frequencies of the investigated structure. This leads to a much 

more efficient model validation.  
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1 INTRODUCTION 

One of the main objectives in engineering practice is to predict structural behavior due to 

different load conditions. There are several possibilities reaching this target. One of the most 

popular ways to simulate mechanical systems behavior is to discretize a structure using the 

Finite Element Method (FEM). The transformation of a continuum into finite elements is ac-

companied by several challenges. On the one hand this discretization necessarily leads to dif-

ferences between the CAD geometry of a part and its simulation model. On the other hand the 

manufactured part is affected by errors. That means that there are deviations between the digi-

tally designed CAD model and its real counterpart. Commonly deviations between a simula-

tion model and the real mechanical system cause an inaccurate prediction of structural 

behavior. Therefore several model update strategies are available in order to harmonize nu-

merical prediction with experimental experiences.  

This contribution presents a model update procedure which focuses on small manufactur-

ing driven geometry changes of a rotating aircraft engine part. Object of investigation is a 

blade integrated disk rotor (blisk). Here, the milling process causes small geometric devia-

tions between real part and the designed rotor. These deviations from the ideal design inten-

tion, known as ‘mistuning’, come along with a number of particularities in structural 

dynamics. Thus, mistuning can cause localized mode shapes which lead to a concentration of 

vibration energy in several or even a single blade [1-5]. By this the regular character of the 

mode shapes gets lost. In presence of a dynamic load case these blades are subject to higher 

magnitudes of vibration induced stresses compared to the ideal design. 

Traditionally these mistuning effects are taken into account by a stiffness proportional 

model update approach [6-9]. The central point of this strategy is to modify the Young’s 

modulus or respectively the stiffness matrix of each rotor blade until the finite element model 

is able to predict measured natural frequencies of the real rotor blade. It has been shown by a 

number of researchers that this is a sufficient way to simulate mistuning effects [6-9]. The ad-

vantage of this method is that there is only one model update parameter per blade. Therefore 

this model modification is easy to handle and no extensive computational resources are need-

ed. Unfortunately, comprehensive measurements are necessary to identify the mistuned natu-

ral frequencies of the real system which must be known for model update. Furthermore the 

reliability of this stiffness proportional approach is limited to a comparatively small frequency 

range. This means the model update has to be done separately for each frequency range of in-

terest. 

Especially these disadvantages motivate the community to look for alternative ways of 

model update. A promising approach of the recent past is to consider the geometric deviations 

due to manufacturing within the simulation model. Existing publications dealing with this 

topic clearly indicate the relationship between geometry deviations and simulation model dy-

namics [10-12]. But finally a validation of the methodology turned out to be difficult due to 

the small manufacturing tolerances which have to be modeled. For this reason the present pa-

per discusses an updated model of an industrial test blisk which could be validated for a com-

paratively large frequency range. 

2 IDEALIZED STRUCTURAL DYNAMICS 

To get a first impression of structural dynamics behavior the modal parameters of the ini-

tial rotor design has to be determined. The homogeneous equation of motion reads: 

𝑀�̈�(t) + 𝐷�̇�(t) + 𝐾𝑥(t) = 0.     (1) 
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Herein 𝑀 represents the mass matrix, 𝐷 the structural damping matrix and 𝐾 the stiffness 

matrix of the blade integrated disk. Further on an undamped system is assumed (𝐷 = 0).  The 

assumption results from knowledge of modal structural damping ratios of those structures 

which are considerably lower than 𝜁 = 0.3% [13, 14]. The influence of those structural damp-

ing values is negligibly in case of free blisk vibrations. Consequently the modal parameters 

sought for could be identified by formulating and solving the undamped eigenvalue problem  

(𝑀λ𝑘
2 + 𝐾)𝜑𝑘eλ𝑘t = 0 ,     (3) 

where λ𝑘 is the k-th eigenvalue and 𝜑𝑘 is the k-th eigenvector of the system. To compute 

the needed system matrices 𝑀 and 𝐾 a finite element mesh has to be created. Figure 1 shows 

the finite element mesh for one sector with about 53.500 continuum elements of type C3D10.  

 

 

 

 

Detail 1 

 

Detail 2 

 

Figure 1: Finite element sector mesh of a blade integrated disk rotor (disk mesh not shown) 

Two elements were used in blade thickness direction (Figure 1, Detail 1). The Leading edge 

curve is discretized through 12 nodes and the trailing edge curve through 21 nodes (Figure 1, 

Detail 2). Because all sectors are identical for the tuned design intention the modal parameters 

of the whole rotor were calculated by using a single sector model with cyclic symmetry 

boundary conditions. Figure 2 illustrates the first three computed mode shapes whose dis-

placements are located at the blade section of the rotor.  

 

Blade mode 1 

 

Blade mode 2 

 

Blade mode 3 

Figure 2: Computed blade mode shapes of the tuned simulation model with cyclic symmetry 

boundary conditions 

  

downstream downstream 

L
ea

d
in

g
 e

d
g
e 

L
ea

d
in

g
 e

d
g
e 

T
ra

il
in

g
 e

d
g
e 

T
ra

il
in

g
 e

d
g
e 

2759



T. Maywald, A. Kühhorn and S. Schrape 

 

 

Furthermore the vibration modes of the tuned model are categorized according to three ma-

jor criteria. The cyclic symmetry mode index (CSM), the distribution of strain energy as well 

as the mode shape similarity are considered in order to arrange all resonances up to fnorm =
4.5 in a nodal diameter map shown in Figure 3. The maximum cyclic symmetry mode index, 

that can occur, is limited by the number of blades N. In case of an even number of blades it is 

given by  

CSMmax =
N

2
 , (4) 

for an odd number of blades follows  

CSMmax =
N − 1

2
 . (5) 

Secondly a mode classification according to blade-dominated, disk-dominated or mixed 

mode is done by the assessment of the strain energy distribution as introduced in [15]. A 

strain energy localization of more than 86% within the blade region indicates a blade domi-

nated mode. Accordingly a disk dominated mode is characterized by 75 % strain energy local-

ization inside the disk. The remaining modes are summarized as mixed modes. These limits 

are problem specific values and may vary for different blisk applications. 

 

 

 

Blade mode family 3 

 

 

 

 

 

 

 

Blade mode family 2 

 

 

 

Blade mode family 1 

 

 

Figure 3: Nodal diameter plot  

In a last step groups of classified modes with almost the same blade mode shape are identi-

fied by using the Modal Assurance Criterion (MAC) as explained in [16]. At this point several 

cyclic symmetry modes with similar or nearly the same blade mode shapes (MAC > 0.9) es-

tablish a family of modes. Inside Figure 3 the identified blade mode families are highlighted 

by a rectangle. 
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3 MODEL UPDATE PROCEDURE 

As described in the introduction the manufacturing process always causes deviations be-

tween the ideal design intention and the real part. Considering these differences is of major 

importance in order to compute structural dynamics characteristics as accurate as possible. A 

two step procedure is needed to improve the ideal simulation model of the blade integrated 

disk described in chapter 2.  

First of all the real geometry of the part has to be digitalized. To get the requested high 

resoluted surface information an optical 3D geometry measurement system is used as shown 

in Figure 4.  

 

Figure 4: Non contact geometric measurement system of TU Dresden - Chair of Tur-

bomachinery and Flight Propulsion  

These high resolution measuring cameras are well proven in engineering practice and rep-

resent a state of the art measurement solution for reversed engineering. Precision of such a 

system has been proven to be within 2.5 µm [17]. One major advantage of such a non contact 

solution is the possibility to get a large number of coordinate informations very fast. Further-

more this technology allows capturing coordinates from areas which are difficult to access 

and could not be taken into account using conventional coordinate measurement machines. 

More details, advantages and disadvantages concerning optical coordinate measurements are 

published in [17-19]. The experimental setup which was used to get the results presented in 

the following includes an optical scan head, a robot arm for moving the scan head automati-

cally and a rotatable table that carries the test blisk. 

  

Figure 5: Triangulated surface based on opti-

cal measurements in the tip area of an exem-

plary trailing edge 

Figure 6: Deviation plot for an exemplary 

blade ring section - initial finite element 

mesh versus measured part geometry 
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After digitalizing the blisk the resulting point cloud data were processed to a triangulated 

surface mesh of the blisk shown in Figure 5. Due to experimental setup restrictions it is not 

possible to scan the disk of the part as well. Because of that the following data evaluation fo-

cuses on the blade ring (Figure 6). The deviations between tuned design and the real part are 

quantified by calculating the normal to surface distances for every node of the surface mesh. 

As shown in Figure 6 the deviations remain in lower triple digit micro meter range (triple + 

or triple −). Positive or respectively negative values indicate additional or missing material. 

Large deviations are mainly identified in blade leading, tip and trailing edge region. The green 

color indicates that the mean error of the remaining blade regions is much lower in the single 

digit micrometer range. 

Within the second step of the model update procedure the finite element mesh has to be 

modified in order to match the experimentally identified surface mesh. The mesh modification 

shape is calculated evaluating the deviations for each mesh node of the reference mesh (Fig-

ure 1) along its element normal. The shape illustrated in Figure 7 is used to modify the initial 

finite element mesh (Figure 1) to ensure the best representation of the measured surface (Fig-

ure 5). Each node is shifted along its shape vector. A penetration of the measured surface 

mesh is not permitted in this context. 

  

Figure 7: Mesh modification shape for exem-

plary leading edge 

Figure 8: Deviation plot for a an exemplary 

blade ring section - updated finite element 

mesh versus measured part geometry 

After finishing mesh morphing the updated model has to be compared with the measured 

part geometry. The corresponding deviation plot (Figure 8) shows nearly no visible differ-

ences between updated mesh and measured real part. On average the remaining deviations are 

in range of plus minus one digit micrometer. For this reason model modification is assessed to 

be sufficient. 

4 MODEL VALIDATION METHOD  

The mesh updating procedure presented in Chapter 3 affects both the calculated mass ma-

trix of the investigated structure and the stiffness matrix. Compared to Chapter 2 the original-

ly assumed cyclic symmetry of the blisk is disturbed due to the introduced geometric 

modifications. Commonly there is an influence on the resulting modal parameters evaluated 

by solving the undamped eigenvalue problem as described in Equation 3. These updated 

modal characteristics have to be checked for validity. Commonly modal parameters of the real 

part are identified by an experimental modal analysis and compared to their numerical coun-

terparts. As shown in Figure 3 natural frequencies of a blade integrated disk are appearing 

very close to each other. Therefore the comprehensive natural frequency identification is dif-

0 

+++ 

---- 
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ficult due to modal coupling effects. For this reason a vacuum test stand is used in order to 

minimize ambient air damping. In an experimental modal analysis this low damping condition 

helps to identify more natural frequencies of the investigated structure since modal coupling is 

decreasing. 

4.1 Experimental Setup  

The experimental determination of modal parameters within low pressure condition is car-

ried out inside a vacuum test stand (Figure 9). Vibration excitation is realized with an impact 

mechanism. In addition laser scanning vibrometer measurements are applied to determine one 

frequency response function per blade in the frequency range of the blade modes 1 to 3 (Fig-

ure 3). A foam cuboid is used to support the blisk and ensure nearly free boundary conditions. 

Disturbing acoustical resonances are prevented by facing the inner surface of the chamber 

with nubby foam material.  

 

Figure 9: Vacuum test stand and experimental setup in detail 

After initializing the test setup the ambient air pressure inside the vacuum champer is re-

duced to 100 Pa. Vibration measurements are carried out for all blades of the blisk successive-

ly at the leading edge tip (Figure 10). The location of impact does not change during the 

experiments.  

To illustrate the influence of low pressure conditions on  measured vibration response Fig-

ure 11 compares the normalized measured vibration velocity for an exemplary blade at 100 Pa 

and 100 kPa respectively. Apart from ambient pressure all experimental parameters remain 

unchanged. As already mentioned vacuum condition largly eliminates damping contribution 

of the surrounding fluid and results to a more gently decreasing amplitude response in time 

domain. Measurement data exemplary shown demonstrate that even if the damping contribu-

tion of the surrounding air is low it has major influence on system response. In order to em-

phasize the importance of this low damping condition for modal parameter identification the 
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time signal shown in Figure 11 is converted into frequency domain using a Fast Fourier 

Transformation within the next step. 

 

 

Figure 10: Experimental setup – location of 

response measurement (left) and impact exci-

tation (right) 

Figure 11: Comparison of normalized impact 

response at vacuum (100 Pa) and at ambient 

air pressure (100 kPa) for an exemplary 

blade 

A detailed look at the results of this transformation (Figure 12) clarifies that decreasing 

ambient pressure affects a better separation of resonance peaks in frequency domain. Fur-

thermore a small frequency shift appears due to modified damping values (cf. Equation 2). 

The Phase spectrum illustrated in Figure 13 confirms the impression of better identification 

opportunities at vacuum conditions. 

  

Figure 12: Comparison of normalized velocity 

spectrum at vacuum (100 Pa) and at ambient 

air pressure (100 kPa) for an exemplary blade  

Figure 13: Comparison of phase spectrum at 

vacuum (100 Pa) and at ambient air pressure 

(100 kPa) for an exemplary blade 

In context of a sufficient model validation it is advantageous to identify as much modal pa-

rameters as possible by an experimental modal analysis. The blade integrated disk considered 

here has extremely strong coupled resonance frequencies. Because of that the presented test 

facility helps to realize an effective simulation model validation.  
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4.2 Modal Parameter Identification 

Within the next step model parameters have to be extracted from measurement data re-

ceived by impact measurements described in Chapter 4.1. There are a number of publications 

dealing with modal parameter identification from vibration experiments. Due to strong cou-

pled resonances as mentioned in the chapter before a multi degree of freedom approach 

(MDOF) is necessary for interpreting measurement results. The procedure applied here uses 

an optimization-aided nonlinear least square method in order to fit the frequency response 

function. A detailed description of this method is given in [20].  

Figure 14 shows an exemplary frequency response function fit. Illustrated are the velocity 

and phase spectra resulting from the experiment (black) and fitted with the MDOF approach 

(red) in the frequency range of blade mode 1 (cf. Figure 3). Additionally the residuals are de-

fined by  

Error(f) =
|H1

fit − H1
exp

|

|H1
exp

|
 . (6) 

Herein H1 denotes the complex frequency response function. Amplitude and phase error 

are plotted separately on the top of Figure 14. Close to resonances the fitting error is in low 

one digit percentage range. Thus, a reliably natural frequency, damping value and eigenvector 

identification can be guaranteed. 

  

  

Figure 14: Comparison of measured and fitted forced response function for an exemplary 

blade in the frequency range of blade mode family 1 
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In case of the blade integrated disk rotor which is discussed here the introduced fitting al-

gorithm allows to identify about 250 natural frequencies in the range of blade mode 1 to blade 

mode 3. Moreover 35 eigenvectors are evaluated within this frequency range. More specifi-

cally 21 circumferential system modes of blade mode 1, 6 system modes of blade mode 2 and 

8 system modes of blade mode 3 are available for model validation. Each eigenvector consid-

ers one measurement degree of freedom per blade (cf. Figure 10). The comparably low num-

ber of identified eigenvectors can be explained due to the strong modal coupling of 

neighboring resonances. For these cases a comprehensive evaluation of eigenvectors is much 

more difficult than natural frequency identification.  

  

  

Figure 15: Experimental identified system modes reduced to one degree of freedom 

(4 modes out of 35) 

Figure 15 (a-d) exemplary shows 4 circumferential system modes out of 35 which have 

been identified within the described measurement campaign. Even this first evaluation of ex-

perimental modal analysis impressively demonstrates mistuning effects. Especially modes 

plotted in Figure 15 (b) and (d) are characterized by a strong localization. That means only a 

few blades participate in this system mode. In general terms the presented natural frequencies 

and eigenvectors will be a purposeful data base validating the modified simulation model 

generated in Chapter 3.  

(a) (b) 

(c) (d) 
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4.3 Validation Results 

Key topic of the present paper is to validate geometric modified finite element simulation 

model. This section uses the modal parameters extracted from vibration measurements as de-

scribed in Chapter 4.2 and compares them against their numerical counterparts calculated with 

the finite element model updated in Chapter 3. 

First of all the normalized frequencies of the idealized simulation model, the updated simu-

lation model and the experimental identified frequency values are shown in Figure 16(a). The 

illustration focuses on the frequency range of the first blade mode. Corresponding blade mode 

shape as well as the circumferential system mode classification has been introduced in Chap-

ter 2. For better understanding a detailed nodal diameter plot is added (Figure 16(b)). 

 
 

Figure 16: Normalized frequency values in the frequency range of blade mode 1 (a) and the 

corresponding detailed nodal diameter plot (b) 

First of all Figure 16 (a) shows a good match of calculated and measured natural frequen-

cies in case of using the geometry updated finite element model (cf. Chapter 3). Compared 

with that there are significant deviations in natural frequency prediction comparing the ideal-

ized finite element model (cf. Chapter 2) with experimental data. In order to characterize the 

differences between idealized and updated finite element model towards the experimental 

identified frequencies a mode individual frequency deviation is introduced 

dfi =
fi

exp/upd
− fi

ideal

fi
ideal

 . (7) 

Herein fi
exp

 or fi
upd

 respectively is the current frequency of interest. Both frequencies are 

related to the corresponding natural frequency of the idealized finite element model. The re-

sulting deviation plot is presented in Figure 17. As can be seen the first impression of a suffi-

cient model update is confirmed. Deviation characteristics of updated model and experimental 

data regarding the idealized reference model are nearly the same. In case of blade mode 1 fre-

quency deviations up to 2.5 % are identified comparing the real rotor and the idealized finite 

element model. Same magnitude is predicted by the updated simulation model. Largest differ-

ences between measured and numerically predicted frequency characteristics occur in case of 

mode IDs corresponding to lower cyclic symmetry indices as for example i = 82 or i = 83. 

The comparably large differences are caused by simulation model update input. As described 

in Chapter 3 optical measurement results are only available for the blade ring section. That 

means geometric properties of the disk remain unchanged. This obviously influences structur-

Blade mode family1 

(a) (b) 
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al behavior in case of lower cyclic symmetry indices. Further it has to be mentioned that the 

resonances i = 70 and i = 79 could not be identified by vibration measurements. Because of 

that it is not possible to calculate the corresponding deviation values dfi. 

 
 

Figure 17: Deviations in natural frequencies between experiment, updated FE and idealized 

FE model in the frequency range of blade mode family 1 (a) and the corresponding detailed 

nodal diameter plot (b) 

The model validation should be done for a comparable large frequency range. Thus, an 

identical frequency comparison has been carried out for blade mode 2 and blade mode 3 re-

spectively. In case of blade mode 2 (Figure 18) the impressions of blade mode 1 evaluation 

are largely confirmed. The frequency deviation characteristics are predicted well by the up-

dated simulation model. Only lower cyclic symmetry indices show comparably large differ-

ences. 

 
 

Figure 18: Deviations in natural frequencies between experiment, updated FE and idealized 

FE model in the frequency range of blade mode family 2 (a) and the corresponding detailed 

nodal diameter plot (b) 

Finally a look at the evaluation results in the frequency range of blade mode 3 (Figure 19) 

generally confirms previous statements. In detail increasing differences between real blisk and 

updated simulation model can be observed for resonance IDs higher than i=260. In this con-

text it has to be expected that the occurring differences between measurement results and up-

Blade mode family 1 

FE Ideal 

Blade mode family 2 

FE Ideal 

(a) (b) 

(a) (b) 
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dated model are increasing by an increasing mode shape complexity. At this point a further 

discussion is necessary in order to quantify the influence of geometric errors caused by optical 

measurements. Further it has to be discussed if the finite element mesh is able to represent all 

relevant geometric features as accurate as necessary. A sufficient mesh study of the ideal 

model does not necessarily remain valid in case of local geometric deviations. 

 
 

Figure 19: Deviations in natural frequencies between experiment, updated FE and idealized 

FE model in the frequency range of blade mode family 3 (a) and the corresponding detailed 

nodal diameter plot (b) 

To complete model validation experimentally identified and numerically predicted system 

modes have to be compared using the Modal Assurance Criterion. As introduced in Chapter 

4.2 a system mode is reduced to one degree of freedom per blade. In order to compare numer-

ical and experimental results the numerical based evaluation of the deflection shape is reduced 

to one node per blade. It has been proven that the position tolerance between simulation mod-

el node and real part measurement point has a negligible influence to the resulting circumfer-

ential system mode. In the following the conventional MAC is described by 

MACexp,fe =
(𝜑exp

T 𝜑fe)(𝜑fe
T 𝜑exp)

(𝜑exp
T 𝜑exp)(𝜑fe

T 𝜑fe)
 . (8) 

In this connection 𝜑 is the current eigenvector of interest with one degree of freedom per 

blade. The main diagonal values of the resulting MAC matrix are shown in the bar chart of 

Figure 20 (a). It can be seen that the major number of modes is predicted well by the updated 

simulation model. Only 7 out of 35 modes show diagonal MAC values lower than 0.8. Corre-

lation values for these suboptimal matching circumferential system modes ranging between 

0.5 and 0.8. Figure 20 (d-e) exemplary shows three good matching system modes ID = 76, 

ID = 166 and ID = 224 as well as one suboptimal matching system mode ID = 16. 

In order to rate this result the MAC is calculated a second time with the circumferential 

system modes of the idealized finite element model (cf. Chapter 2). Such a comparison shows 

nearly no correlation between the tuned finite element model and the measured modes of the 

real system. Only 5 out of 35 modes have diagonal MAC values greater than 0.5. Thus the 

efficiency of the model update procedure presented in Chapter 3 is emphasized.  

Blade mode family 3 

FE Ideal 

(a) (b) 
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Figure 20: Modal Assurance Criterion for 35 circumferential system modes (a) and detailed 

comparison of 4 exemplary modes out of 35 (d-e) 

Of course the introduced mode shape validation is not that comprehensive as the compari-

son of natural frequencies. The reasons for that are already discussed in Chapter 4.2. But nev-

ertheless it becomes clear that geometric modifications of blisk simulation models are a 

sufficient way improving the prediction of structural dynamics behavior. 

(a) 

(b) (c) 

(d) (e) 

Mode ID 16 

MAC = 0.62 

Mode ID 76 

MAC = 0.95 

Mode ID 166 

MAC = 0.95 

Mode ID 224 

MAC = 0.98 

2770



T. Maywald, A. Kühhorn and S. Schrape 

5 CONCLUSIONS 

A finite element model of an idealized blade integrated disk has been introduced and its 

natural frequencies and mode shapes have been calculated. Within the next step the finite el-

ement model was updated using optical measurement data. In order to validate the updated 

model an experimental setup was presented which was used to identify modal parameters of 

the real blisk. Vacuum conditions have been proven advantageous in order to get validation 

data. Largely eliminated aerodynamic damping contribution of the surrounding fluid leads to 

a much better separation of resonance peaks and the number of evaluable natural frequencies 

increases dramatically. This finally results in a much more meaningful model validation. 

Comparing the experimental identified model parameters with those of the geometric 

mistuned simulation model leads to the conclusion that geometric modifications of blisk 

simulation models are a sufficient way improving the prediction of structural dynamics be-

havior of these components. In this context the presented industrial test blisk has been suc-

cessfully validated for fundamental blade mode families 1 to 3.  

Nevertheless there are several topics which have to be addressed in future research work. 

From the numerical point of view it is not finally clear which criterion should be used to eval-

uate the suitability of a finite element mesh in order to consider all geometric features of in-

terest. Furthermore it has to be discussed how to deal with unavoidable measurement errors in 

context of an optical surface capturing. In addition the vibration measurement setup has to be 

improved. Here a similarly comprehensive evaluation would be desirable for circumferential 

system modes as natural frequencies. Alternatively equivalent model validation procedures 

could be studied for reducing experimental efforts. 
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Abstract. A systematic optimum design procedure, including an accurate dynamic analysis of 

a full glass panoramic car elevator under real dynamic load conditions are presented in this 

work. The cabin is manufactured entirely of laminated glass (two glass layers and an 

interlayer of polivinyl butiral -PVB), except the roof and the platform. First, modal 

identification and structural model updating methods are applied, leading to develop high 

fidelity finite element model of the glass and its connection subsystems. The identification of 

modal characteristics of the glass is based on acceleration and stress time histories, which 

are obtained through an experimental investigation of its dynamic response, in two different 

states. First, in a support-free state by imposing impulsive loading and second in a fixed-free 

state by imposing random excitation with the use of an electrodynamic shaker. Single and 

multi-objective structural identification methods are used for estimating the parameters 

(material properties) of the FE model, based on minimizing the deviations between the 

experimental and analytical modal characteristics. Next, a “mixed computational-

experimental” analysis method is applied, in order to simulate accurately the dynamic 

behavior of the complete elevator system, in emergency situations like safety gear engagement. 

A series of experimental tests were performed under real operating conditions, using an 

experimental device that was designed exactly for this purpose and aimed at recording the 

acceleration time histories at the connection points of the frame with the safety gears. These 

acceleration time histories are subsequently used as base excitation for the FE model of the 

complete elevator system and the stresses developed under these specific loading conditions 

are evaluated. On the basis of these numerical results, the critical points of the frame are 

selected, as corresponding to larger stresses and an optimum design procedure was applied. 

Finally, in order to test the reliability of the method applied, strain gauges are placed at the 

critical points of the optimum designed system and a series of measurements are carried out, 

in order to experimentally verify the developed stresses. Direct comparison of the numerical 

and experimental data verified the reliability and accuracy of the methodology applied. 

 

2774

mailto:dgiagopoulos@uowm.gr
mailto:aarailopoulos@uowm.gr


Dimitrios Giagopoulos, Iraklis Chatziparasidis 

 

1 INTRODUCTION 

Within an elevator system the car is one of the most significant components because it is 

used to carry goods and most importantly persons. Because of its use the car is subject of 

strict legislations and standards that differ to each Country or State. In the same time the car 

is, usually, the only functional component of the elevator that is visible by the final user. This 

fact alters the car to be also an architectural and decorative element of the building. The latest 

trends in Architecture is to use fully transparent glass building elements [17]. A frameless 

glass panoramic elevator could not only fit to this trend but also extend the aesthetic of the 

building. However, glass is a brittle material and this attribute made the verification of the 

materials load carrying capacity to be mostly based on experimental studies. Some research 

has been done on the field of modeling of the behavior of glass components, using finite 

element methodologies, but these are mainly studying static loads situations aimed at the 

building construction domain [16-18]. In this work we present a method for modeling glass 

components in dynamic situations that may occur during an elevator's function e.g. when the 

safety gear of the elevator is activated during an emergency stop. An efficient modelling 

method is required for the various elevator parts which are in contact with each other. To 

achieve these modelling issues, it is important to develop an accurate Finite Element Analysis 

procedure, in order to simulate the dynamic behaviour of these systems.  

Another main issue addressed by the present work is the need for the development and 

application of new appropriate methodologies for investigating the dynamics of large scale 

mechanical models in a systematic and efficient way. The equations of motion of mechanical 

systems with complex geometry are first set up, applying classical finite element techniques. 

As the order of these models increases, the existing numerical and experimental 

methodologies for a systematic determination of their dynamic response become inefficient to 

apply. Moreover, in order to optimize the FE model of a structure, structural model updating 

methods [7], have been proposed in order to reconcile the numerical (FE) model, with 

experimental data. Structural model parameter estimation based on measured modal data [1-6] 

are often formulated as weighted least-squares estimation problems in which metrics, 

measuring the residuals between measured and model predicted modal characteristics, are 

build up into a single weighted residuals metric formed as a weighted average of the multiple 

individual metrics using weighting factors. Standard gradient-based optimization techniques 

are then used to find the optimal values of the structural parameters that minimize the single 

weighted residuals metric representing an overall measure of fit between measured and model 

predicted modal characteristics. Due to model error and measurement noise, the results of the 

optimization are affected by the values assumed for the weighting factors. 

The work presented here is based on previous work where we demonstrated the advantages 

of applying appropriate numerical and experimental methodologies in order to accurately 

predict the dynamic response and the identification of the critical points in an elevator system 

[2]. Also examined the applicability and effectiveness of the updating methods, coupled with 

robust, accurate and efficient finite element analysis software. 

2 FINITE ELEMENT MODEL UPDATING METHODS 

Let ˆˆ{ , , 1, , }oN
r rD R r m     be the measured modal data from a structure, consisting of 

modal frequencies ˆ
r  and mode shape components ˆ

r  at oN  measured DOFs, where m  is the 

number of observed modes. Consider a parameterized class of linear structural models used to 

model the dynamic behavior of the structure and let NR   be the set of free structural model 

parameters to be identified using the measured modal data. The objective in a modal-based 
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structural identification methodology is to estimate the values of the parameter set   so that 

the modal data 0{ ( ),  ( ) , 1, , }N
r r R r m       predicted by the linear class of models at the 

corresponding 0N  measured DOFs best matches the experimentally obtained modal data in D . 

For this, let 

 2 2

2

ˆ( ) ( )( )
( )    and   ( )

ˆ

ˆ
ˆr r

r r r
r r

r r

 

    
   



 





  (1) 

be the measures of fit or residuals between the measured modal data and the model predicted 

modal data for the r -th modal frequency and mode shape components, respectively, where 
2 T|| ||z z z  is the usual Euclidean norm, and 

2ˆ( ) ( ) / ( )T
r r r r        is a normalization constant 

that guaranties that the measured mode shape ˆ
r  at the measured DOFs is closest to the model 

mode shape ( ) ( )r r     predicted by the particular value of  . 

To proceed with the model updating formulation, the measured modal properties are 

grouped into two groups. The first group contains the modal frequencies while the second 

group includes the mode shape components for all modes. For each group, a norm is 

introduced to measure the residuals of the difference between the measured values of the 

modal properties involved in the group and the corresponding modal values predicted from 

the model class for a particular value of the parameter set . For the first group, the measure 

of fit 1( )J  is selected to represent the difference between the measured and the model 

predicted frequencies for all modes. For the second group, the measure of fit 2( )J  is selected 

to represent the difference between the measured and the model predicted mode shape 

components for all modes. Specifically, the two measures of fit are given by  

 2 2
1 2

1 1

( )   and   ( )( ) ( )
r r

m m

r r

J J      
 

    (2) 

The parameter estimation problem is traditionally solved by minimizing the single objective 

 
1 1 2 2;( ) ( ) ( )J w J Jw w  (3) 

formed by the two objectives ( )iJ , using the weighting factors 0iw  , 1,2i , with 

1 2 1w w . The objective function ;( )wJ  represents an overall measure of fit between the 

measured and the model predicted characteristics. The relative importance of the residual 

errors in the selection of the optimal model is reflected in the choice of the weights. The 

results of the identification depend on the weight values used. The optimal solutions for the 

parameter set   for given w  are denoted by ˆ( )w  [8-10]. 

3 EXPERIMENTAL APPLICATION 

In this section, the emphasis is placed on applying the methodology proposed to an 

elevator with a frameless glass car. The ultimate goal was to develop an accurately Finite 

Element Analysis procedure, in order to simulate the dynamic behaviour of this system. The 

FE model of the structure examined was created using mainly rectangular and triangular shell 

finite elements. Additionally, some other elements like solid (hexahedral) and rigid body 

elements were also used. After development of the overall FE model, the next step was to 

examine the dynamic response of system when safety gear is activated and the elevator stops. 

In order to accurately simulate this procedure, the first step is the identification of the braking 

forces that acting on the system. The next step, is the verification and validation of the 
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developed FE model. More specifically, the emphasis given in the developing of an accurate 

FE model of the glass panels and its supports.  

3.1 Determination of Acceleration Levels Under Real Dynamic Load Conditions 

In order to verify the accuracy of the FE model of the system and also identify the braking 

forces acting on the system, we select, to examine only the elevator chassis including the 

platform of the cabin with full load. On this system, triaxial accelerometers are placed at (6) 

selected positions. These positions along with the measurement directions are presented in 

Figure 1. The two connection points of the frame with the safety gear (A1, A2) are included 

along with four other locations (A3-A6) which are used as reference points. A series of 

experimental trials were performed under real operating conditions (free fall of the elevator 

frame), using an experimental device designed and constructed exactly for this purpose (by 

Kleemann Hellas S.A), aimed at recording the acceleration time histories at the selected six 

points. Also, in Figure 2 presented indicative photos of two measurement locations. 

 

Figure 1: Measurement Locations of Acceleration Time Histories. 

 

Figure 2: Acceleration Measurement Locations at a Connection Point (A1) and at a Reference Point (A4). 

Next, the measured acceleration time histories are used in order to determine the braking 

force that acting on the system. After several experimental trials, the form of the 

corresponding time-varying braking forces, in each progressive safety gear, were calculated. 

Then, these force time histories were imported as base excitation in the finite element model 

of the system. Also, in order to solve this transient response analysis problem in a 

computationally effective way, a reduction in the dimensions of the original system is 

performed, so that the results are accurate in the frequency range 0-500 Hz. The total number 

of degrees of freedom in the reduced model was about 3,500, which is much smaller than the 

number of degrees of freedom in the original model (1,200,000). The reduced model was 

solved numerically in order to calculate the maximum stresses developed for the given 

loading. The identified critical points of the structure include mainly areas of the chassis arms 

on which the platform is based. Figure 3 shows selected results, in which some indicative 
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points of the superstructure with maximum stresses are presented. 

  

Figure 3: - Locations of the Chassis where Maximum Stresses Appear 

3.2 Validation of the Applied Methodology 

In order to test the reliability of the method applied, strain gauges were placed at (5) 

selected critical points of the chassis and a new set of measurements was carried out under 

similar dynamic loading conditions, to experimentally verify the stress levels developed. 

These positions are presented in Figure 4 and include locations on the right side of the chassis 

arms (SG1, SG2 and SG3) and on the left side (SG4 and SG5). 

 

Figure 4: Measurement Locations where Maximum Stress Appears 

For a complete monitoring of the stress state, three bridges with a 120o angle rosette were 

placed at each of the selected points. Some of the experimental and numerical results are 

summarized in Table 1. This table presents the maximum values of the von Mises stress 

obtained in four tests (indicated by PG1-PG4) and for all the points where measurements 

were taken (denoted by SG1-SG5). More specifically, the third from the end column presents 

the maximum values for all tests, for each measurement location, the penultimate column 

presents the corresponding maximum values obtained by the finite element model and the last 

column presents their percentage difference. A comparison of the numerical and experimental 

data presented in Table 1 verifying that the proposed method is reliable. 
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Table 1: Maximum Value of Equivalent Von Mises Stress [MPa] 

3.3  FE Model Verification of a Glass Panel with the Support System 

Next the emphasis given to develop a high fidelity FE model of the glass panels. To 

achieve this, it is necessary to optimize the numerical FE model of a glass panel including the 

bottled support. Basic structural model updating methods have been proposed [7], in order to 

reconcile the numerical (FE) model, with experimental data. Structural model parameter 

estimation based on measured modal data [1-6] are often formulated as weighted least-squares 

estimation problems in which metrics, measuring the residuals between measured and model 

predicted modal characteristics.  

3.3.1.  FE Model  

First, the geometry of the glass panel with the test support device is discretized mainly by 

solid tetrahedral elements. For the development and solution of the finite element model some 

appropriate software was used [20, 21]. The detailed FE Model of the experimental device 

presented in Figure 6. Two typical eignmodes predicted by the nominal finite element model, 

presented in Figure 5. 

  

Figure 5: Finite Element Model of the Glass Panel with 

Support 
Figure 6: Typical Eigenmodes Predicted by the 

Nominal Finite Element Model 
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The FE models of the main frame and the fork parts are updated using the identified modal 

frequencies and mode shapes shown in Tables 1 and 2. The identified mode shapes include 

components at all sensor locations. Additionally, we define as design response the total 

weight of the model, in order to be taken into consideration during the optimization process. 

3.3.2. Experimental Modal Analysis   

After development of the nominal FE model, an experimental modal analysis of the devise 

was performed to quantify its dynamic characteristics. The system was tested in fixed-free 

boundary condition. First, all the necessary elements of the FRF matrix required for 

determining the response of the frame substructure were determined by imposing impulsive 

loading [1, 2, 8, 9]. The measured frequency range was 0-2048 Hz, which includes the 

analytical frequency range of interest, 0-400 Hz. An initial investigation indicated that the 

frame has six natural frequencies in this frequency range. A schematic illustration of the 

measurement geometry of the experimental device is presented in Figure 7. In this figure, 

presented the locations of the tri-axial accelerometers, strain gauges and of the 

electrodynamic shaker.  

For instance, Figure 8 shows the magnitude of two typical elements of the FRF matrix 

before (continuous line) and after (dashed line) application of the Welsh’s smoothing method. 

 

Figure 7: Schematic Illustration of the Experimental Device, Fixed-Free Arrangement with Electrodynamic 

Shaker, Accelerometers and Strain Gauges Locations 

 

Figure 8: Typical Elements of the FRF Matrix 

Based on the measured FR functions, the natural frequencies and the damping ratios of the 

frame substructure were estimated. As an outcome of the above procedure, the first column of 

Table 2 presents the values of the lowest 6 natural frequencies ( )rE  of the system examined, 

while the corresponding damping ratios are included in the fourth column. In the same table, 
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the second column presents the values of the natural frequencies obtained from the analysis of 

the nominal finite element model ( )
FEr N  and the third column compares these frequencies 

with the corresponding frequencies obtained by the experimental data. The errors determined 

between the nominal FE model and the experimental measurements are not insignificant, 

indicating that the FE model updating process is necessary. 

 

Table 1: Modal Frequencies and Modal Damping Ratios 

3.3.3. FE model parameterization and Updating Results   

The parameterization of the FE model of the experimental device are introduced in order to 

demonstrate the applicability of the proposed FE model updating method. The parameterized 

model consisting of six parts which are shown in Figure 9. At each of these parts are used as 

design variables the Young’s modulus and the density. Thus, the final number of the design 

parameters are twelve (12) variables. In Table 2 presented the initial values that have been set 

in each parameter, which are identical to the nominal FE model, with the upper and lower 

limits, which were selected to be used for the optimization process. The last column of the 

table shows the step of design, which is set at 1% of the respective previous value for all 

cases. The finite element model is updated using the lowest six identified modal frequencies 

and mode shapes shown in Table 1. The identified mode shapes include components at all 4 

sensor locations. 

  

Figure 9: Parts of the Parameterized FE Model 
Table 2: Design Variables and Optimization 

Design Limits 
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The results from the FE model updating method are shown in Table 3. In this table presented 

a comparison between identified ( )rE  and ( )
FErO  optimal FE predicted modal frequencies. 

 

Table 3: Comparison Between Identified and Optimal FE Predicted Modal Frequencies 
 

The acceleration time history and the FRF predicted by the optimal FE model (red dashed dot 

line) of the glass panel are compared in Figure 10 with the acceleration time history and the 

FRF computed directly from the measured data (blue continuous line) at one indicative 

measurement locations of the glass panel (A1) in the frequency range [0Hz, 400Hz]. The 

acceleration time history and the FRF of the initial nominal model (black dashed line) is also 

shown in these figures to be inadequate to represent the measured acceleration time history 

and the FRF. Compared to the FRF of the initial nominal model, it is observed that the 

updated optimal model tend to considerably improve the fit between the model predicted and 

the experimentally obtained FRF close to the resonance peaks. 

 

Figure 10: Comparison between measured, nominal and optimal acceleration time histories and FRF in the 

measured location A1  

3.4 Analysis of the FE Model of Full Elevator System - Frameless Full Glass Cabin 

Finally, a detailed finite element model of a full elevator system using a frameless full 

glass car was build. The model was solved numerically in transient response analysis, using 

the method which was presented in previous sections 3.1-3.2, in order to calculate the 

maximum stresses developed [19]. Based on the results of this analysis the elevator chassis 

2782



Dimitrios Giagopoulos, Iraklis Chatziparasidis 

 

and the bottled glass supports was redesigned and optimized, in order to achieving the 

minimum design stresses at the glazing components during dynamic load conditions caused 

by e.g. emergency safety gear engagement. The final FE model with indicative numerical 

results presented in Figure 11.  

 

Figure 11: Frameless Full Glass Car FE model and Transient Analysis Results  

Based on the results of all the above procedure, a full glass frameless panoramic elevator 

(Figure 12) was designed and developed. In order to test the reliability of the method applied, 

strain gauges were placed at (4) selected critical points of the glass panels and a new set of 

measurements was carried out under similar dynamic loading conditions, to experimentally 

verify the stress levels developed. A comparison of the numerical and experimental data 

verifying that the proposed method is quite reliable. 

  

Figure 12: Full Glass Frameless Car with Experimental Verification Test (Patent Pending)   
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4 SUMMARY 

A systematic method was presented for determining the dynamic response and identifying 

the critical points of a full glass panoramic car elevator system when subjected to dynamic 

load conditions. The special feature in this work is that the cabin is manufactured entirely of 

laminated glass, except the roof and the platform. First, modal identification and structural 

model updating methods are applied, leading to develop high fidelity finite element model of 

the glass and its connection subsystems. Next, a “mixed computational-experimental” 

analysis method is applied, in order to simulate accurately the dynamic behavior of the 

complete elevator system, in emergency situations like safety gear engagement. Based on the 

results of the method applied the elevator chassis and the bottled glass supports was 

redesigned, optimized. Finally, a full glass frameless panoramic elevator was designed and 

developed. Comparison of numerical and experimental results indicated that the methodology 

applied gives accurate results and provides a useful tool in predicting the critical stress levels 

developed in the elevator. 
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Abstract. The mechanical behavior of Carbon Fiber Reinforced Polymer (CFRP) plates with 

different boundary conditions (BC) under low velocity impact is investigated experimentally 

using a drop tower test. To achieve different strain rates, the drop tower’s impactor is re-

leased from different heights. Two NDT techniques namely the Infrared Lock-In Thermogra-

phy (IR) and the Ultrasonic Test Method (UT) are applied to detect the damage, i.e. invisible 

delamination patterns in the plates, which are induced by a metallic hemispherical impactor. 

A numerical model is developed to simulate the impact tests using the commercial software 

LS-Dyna. To validate the developed numerical model experimentally, two BCs namely fixed 

and quasi-freely supported are designed. However, numerical modeling of realistic fixed BCs 

(by using steel frames with screws) is difficult to be realized (due to undesirable local clump-

ing effects, which induce initial inhomogeneous stress distributions, etc.) and also designing 

such a test-rig is a time consuming and expensive process. Therefore, another experimental 

test-rig is designed as an alternative to overcome such problems in the validation process of 

the developed numerical model. In the proposed test-rig, plates are directly supported on a 

specific elastomeric pad to represent a quasi-free BC. 

A good agreement between the experimentally detected damage and numerical results is 

observed. The proposed quasi-free BC shows a high potential to be an alternative for the fixed 

BCs in the validation process especially for parametric studies. Meanwhile, comparison be-

tween two different BCs designed in this work leads to the following results: Using quasi-free 

BC results to the reduction in the impact load and consequently smaller shear stress distribu-

tion and bending moment comparing to plates with fixed supports. Such an effect leads to re-

duction in the damage size and slight change in the damage pattern in freely supported plates. 
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1 INTRODUCTION 

Composite panels are attracting increasing attention in a great variety of transportation in-

dustries (such as aerospace, marine, automotive, etc.) due to their high strength/weight ratio. 

Such structures might experience the impact event (low or high velocity) by external objects 

while they are in service. The impact event induces different damages in the composite panels 

such as matrix cracks, fiber breakage and more importantly delamination (inter-laminar crack-

ing), which are called Barely Visible Impact Damage (BVID). Such damages can drastically 

reduce the strength of the laminate. The mechanical behavior of composite structures under 

impact has been well studied over last decades [1-3]. 

Some parts of the studies on this research domain are focused on the experimental observa-

tions combined with measurement techniques (i.e. Ultrasonic C-scan, X-ray Computed To-

mography (CT), etc.) in order to provide a better understanding of the damage mechanism 

happening during the impact event [4-10] 

Alternatively, since testing composites experimentally under impact loadings is an expen-

sive and troublesome task, there have been many efforts within last few years in investigating 

the damage behavior of such structures numerically and analytically. These works mainly 

provide numerical frameworks for inter-laminar and intra-laminar caused due to the impact 

event using stress/strain based criteria (for the onset of the damage) and fracture mechanics 

(for the propagation of the damage) [11-13] or modeling discrete damage by using interface 

cohesive zone models (CZM) [14-16]. 

In spite of the efforts carried out to model the damage mechanism numerically, however, 

experimental testing should be considered to validate developed numerical frameworks. In 

this contribution, as a part of validation process of a developed numerical model, the effect of 

BCs on the damage response of CFRP plates under low velocity impact has been investigated. 

Designing realistic fixed BCs (using steel frames with screws) is an expensive and time con-

suming process especially for parametric studies. Meanwhile, considering different effects 

existing in the fixed BC, such as undesirable local effects which leads to initial inhomogene-

ous stress distributions in the edges of the laminate, in the numerical model is very difficult. 

Therefore, another alternative test-rig (quasi free BC using elastomeric pads) is proposed for 

the validation of the developed numerical model in order to overcome the abovementioned 

problems for the fixed BCs. 

A good agreement between the experimental and numerical results is observed. Consider-

ing the effort needed for the designing the quasi-free BC – which is much less than the fixed 

BC, quasi-free BCs have a good alternative for validation process. Meanwhile, the effect of 

the different BCs under mechanical behavior under low velocity impact ca be summarized as 

follow: The quasi-freely supported plates can dramatically decrease the impact load leading to 

smaller bending moment as well as shear stress distribution and consequently reduction in the 

damage size delamination comparting to the fixed BCs. It is also observed that BC can affect 

the damage pattern slightly especially in the lower impact velocities. 

2 EXPERIMENTAL SETUP 

The low velocity impact event is created by using a drop tower test. The drop tower test 

setup was designed and calibrated already in SLA, RWTH Aachen University and was validat-

ed in previous works [17]. The setup has the capability to release the impactor (with the 

weight range of 0.7 to 2.4 kg) up to 5 meters height on the specimens with maximum dimen-

sion of 1400x600x70 mm³ (Figure 1).  
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Figure 1: Experimental setup: (a) drop tower, (b) impactor support setup, (c) impactor body 

 

In this work, a cylindrical steel impactor body (Figure 1 (c)) is integrated in an aluminum 

driving mechanism being able to be released from different heights on the composite panel to 

achieve strain rates from 480 to 1400 1/s, with respect to the thickness of the plate. The im-

pactor body with the weight of 154 g and diameter of 27 mm has a half-hemispherical head. 

During the impact event, acceleration and vertical distance time histories are recorded using 

an accelerometer integrated in the impactor body and a laser-triangulation displacement sen-

sor fixed to the carrier rail. The impactor driving device can be moved electrically to the de-

sired height by using a cable. The corresponding heights are controlled by a distance sensor. 

To avoid a repeated impact on the plate due to the elastic rebound of the impactor device, a 

ratcheting mechanism is used (Table 1). 

 

Name of the Component Commercial Name Capability 

Piezoelectric Accelerometer ICP Type M350A04 5,000g 

Laser-Triangulation Dis-

placement Sensor 

Micro-Epsilon Type op-

toNCDT LD 1605-50 

Max. range = ±25 mm 

Voltage range = ±10 V 

Cable Pull with Trip Wire 

Distance Sensor 
Micro-Emsilon Type 
WDS-5000-P501-S-U 

Max. 5 m 

Table 1: Measurement system used in the drop tower setup 

 

The properties of the plate are shown in Table 2. 

 
Material Dimension [mm³] Number of layers Stacking sequence 

HTA/6376 250x250x6.24 48 [(90/452/-452/90/02)s(0/45/-45/0)2]s 
Table 2: Properties of the plate  
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Two different BCs, fixed and quasi-free, are designed to support the impacted plate in the 

experimental setup, 5 plates for quasi-free and 5 fixed BC. 

2.1 Fixed BC 

In order to create a fixed BC for the plates, a specific setup is designed. The plate is 

clamped between two rectangular steel frames (steel-S235JR) having the same size of the 

composite panels. In order to ensure constant pressure distribution over the pre-stressed pan-

els’ area, 32xM8 screws with washers are well distributed around the steel frames (Figure 2). 

 

 
 

Figure 2: Preparation of the fixed BC: (a) clamping the laminate between two steel frames, (b) side view, (c) at-

taching the clamped laminate to the wooden part of the drop tower 

This arrangement allows acceptable comparison with the numerical model developed for 

fixed BC. To achieve the constant pressure distribution over the pre-stressed area of the lami-

nate, 70% of the allowable torsional moment for the M8 screws is applied for any screws in a 

gradual increasing manner. Once the laminate is clamped between the steel frames, the whole 

frame is bonded to a wooden plate by using 8xM6 screws. The wooden plate attached to the 

drop tower is used as an interface in order to damp wave transmissions initiated during the 

impact event. 

2.2 Quasi-free BC 

Quasi-free BC on the plates is achieved by the use of the silicon elastomer named Pro-

tectelast®. The behavior of Protectelast under different strain rates was experimentally inves-

tigated in previous study [18]. Having had a high capability of elasticity range, 80 % in 

compression and 640 % in tension, such elastomers can be used as alternative supporting ma-

terial for representing a quasi-free condition. Using such a material in the BC designed for the 

plates leads to less constraints in the plate edges and consequently reduction in the stress and 

strain fields in the laminate edges in comparison to fixed BC. To this end, two rectangular 

Lower Steel Frame 

a 

b c 

CFRP plate 

Upper Steel Frame 

Surface 

to impact 
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aluminum frames with the dimension 305x305x5 mm³ are manufactured to carry the elasto-

mer pads with thickness of 20 mm (Figure 3). 

 

 
 

Figure 3: Preparation of the quasi-free BC: (a) inserting elastomers in the aluminum frames, (b) putting the plate 

on the lower elastomer pads, (c) attaching the clamped laminate to the wooden part of the drop tower 

The surface of the aluminum frames are nicely milled to make sure that elastomer pads 

can be fit inside of the frames. After putting the laminate on the elastomer pad of lower alu-

minum frame, the upper aluminum frame is assembled on the lower one by using four alumi-

num L-shape connectors to keep a constant distance between two frames. This distance allows 

the laminate moves freely between the elastomer pads during the impact event. The final as-

sembly is attached to the wooden plate by using 8xM6 screws. 

3 FINITE ELEMENT MODEL 

The numerical model in this work is developed by using LS-Dyna software. The FE model 

includes the modeling part for the impactor body, the plate and two BCs applied in the exper-

iments. 

3.1 Impactor 

The steel impactor body (0.154 kg) and its aluminum impactor device (0.537 kg) are mod-

eled as half-hemispherical solid body with steel material property. However, the weight of the 

aluminum is considered in the density of the impactor body model. The mesh size at the front 

side of the impactor, which is in contact with the plate, is about 1.6 mm. The desired velocity 

is applied to whole impactor body. For the impact event, a node-to-surface contact is used be-

tween the impactor and first sub-laminate (explained later). Due to the hemispheric shape of 
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the impactor, the impactor is selected as the slave and the sub-laminates of the plate as the 

master. 

3.2 CFRP plate 

The plate is modeled as shell elements using material-enhanced-composite-damage 

(MAT_54) as material card in LS-Dyna. This material card gives the possibility to consider the 

reduction of compressive and tensile strength of the fiber and matrix after intra-laminar failure. 

Meanwhile, this material card provides the softening reduction factor for material strength in 

crash front elements. MAT_54 uses Chang-Chang failure criteria [19]. Material properties 

used for the plate are listed in Table 3. 

 

Description Values Unit 

Density 1620 kg/m³ 

Longitudinal Young’s Modulus 145 GPa 

Transverse Young’s Modulus 10.3 GPa 

Through-Thickness Young’s Modulus 12.1 GPa 

Major Poisson’s Ratio 0.301 -- 

Major Transverse Poisson’s Ratio 0.5 -- 

In-Plane Shear Modulus 5.3 GPa 

Transverse Shear Modulus 5.275 GPa 

Through-Thickness Shear Modulus. 3.95 GPa 

Longitudinal Compressive Strength 1600 MPa 

Longitudinal Tensile Strength 2250 MPa 

Transverse Compressive Strength 290 MPa 

Transverse Tensile Strength 64 MPa 

In-Plane Shear Strength 98 MPa 

Table 3: Material properties for HTA/6376 [22], [23] 

 

Modeling of the Inter-laminar Behavior 
 

As for the modeling of the delamination pattern induced by the impact event, interface lay-

er based on CZM is used. Interface CZM layers are widely being used by researchers due to 

many advantages they offer in comparison with other damage modeling techniques [20]. For 

instance, they are able to predict both the onset and propagation of the damage and they are 

easy to be implemented in most of simulation software. Since modeling the entire thickness of 

the CFRP plate with interface layers is quite time consuming (in this case 47 interface layers 

should be implemented), a special approach is used to model the delamination behavior of this 

plate. It was previously observed that under impact event, likelihood of delamination is higher 

between two plies with different fiber orientation [17]. Based on this approach and in order to 

save the analysis time, we only consider the likelihood of the delamination happening during 

the impact event only in the layers with the highest differences in their fiber orientations (in 

this case 90 degree). In this way, for the plate discussed in this work including 48 plies, 14 

interface CZM layers have been proposed (Figure 4).  
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Figure 4: Arrangement of interface CZM layers for the plate 

Two numerical methods are available for modeling the interface CZM: the cohesive-zone-

element- and the tiebreak-contact-method. In this work tiebreak-contact-method is imple-

mented for modeling the inter-laminar damage, since the cohesive-zone-element-method is 

too time consuming and therefore unsuitable. Tiebreak option 11 is chosen since it allows us-

ing coarser mesh. This contact uses B-K criteria for damage propagation (equation 1). For 

damage initiation, quadratic nominal stress criterion is applied (equation 2). 

 

 𝐺𝐼𝐶 + (𝐺𝐼𝐼𝐶 − 𝐺𝐼𝐶) (
𝐺𝐼𝐼

𝐺𝐼+𝐺𝐼𝐼
)

𝜇

= 𝐺𝐶  (1) 

 

 (
⟨𝜎𝑛⟩

𝑁𝑚𝑎𝑥
)

2

+ (
⟨𝜎𝑠⟩

𝑆𝑚𝑎𝑥
)

2

+ (
⟨𝜎𝑡⟩

𝑇𝑚𝑎𝑥
)

2

= 1 (2) 

 

The mechanical properties for the onset and propagation of the damage for the interface 

CZM layers are shown in Table 4. 

 

Description Symbol Values Unit 

Strain Energy Release Rate for Mode I GIC 260 J/m² 

Strain Energy Release Rate for Mode II GIIC 1002 J/m² 

Normal Failure Stress/Peak for Mode I T 30 MPa 

Shear Failure Stress/Peak for Mode II S 60 MPa 

B.K parameter 𝜇 1.2 -- 

Table 4: Required parameters for the interface cohesive zone behavior of HTA/6376 [22], [23] 

 

Two different quadratic mesh sizes are considered for the plate. A circular hotspot area 
with a finer mesh (1.25 mm) is designed with 1.5 time of the biggest delamination area di-
ameter induced by the highest velocity. Coarser mesh is considered outside of this area (2.5 
mm). The plate consists of 13,792 elements per sub-laminate (total of 206,880 elements for 
the whole plate). Since the minimum number of elements needed for CZM should be three 
elements to capture the process zone happening in the damage propagation [21], a special 
scaling factor is used to calculate the peak tractions (mode I and II) for coarser mesh sizes. 
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More explanation about the element sizes and the corresponding scaling factors was provided 
in a previous work [18]. 

3.3 Boundary Condition (BC) 

The numerical model for both BCs is developed with the same dimensions of the original 

specimens explained in the section 2.1 and 2.2. For more details, a section cut of the model is 

shown in Figure 5. In fixed BC, the upper and lower steel frames are modeled with solid ele-

ments (mesh size of 2.5 mm). The contact between the upper steel frame and the first sub-

laminate as well as the contact between the lower steel frame and the last sub-laminate are 

both considered tied contact. In this way, the constant pressure caused by screws in the spec-

imens is guaranteed. For quasi-free BC, the aluminum frames are modeled by using shell ele-

ments whereas the elastomers are modeled as solid elements (mesh size for both elastomers 

and aluminum frames is 2.5 mm). The mechanical behavior of the elastomer pads under dif-

ferent strain rates were already investigated in a previous study [18]. 

 

 

Figure 5: FE Model developed for (a) fixed and (b) quasi-free BC 

4 RESULTS AND DISCUSSION 

As previously mentioned in section 2, 10 sets of experiments in total are carried out in or-

der to investigate the effect of fixed and quasi-free supported plates under different velocities 

ranging from 3 to 9 m/s. In this section the effect of these two BCs on the impact response of 

the plates under different impact velocities have been discussed numerically and experimen-

tally. 

 

Impact velocity and rebound behavior 

 

Some experimental results of the impact test are listed in Table 5 and a comparison of ve-

locities is made in Figure 6. The velocities VI and VR are estimated by measuring the slope of 

the displacement-time curve of the vertical movement of the impactor (measured by the laser-

triangulation sensor). The residence time tR is the period between the time at which the im-

pactor hits the plate (VI) and the time at which the impactor separates from the plate (VR).  

CFRP Plate 
Impactor 

Upper Al-Frame 

Lower Al-Frame 

a b 
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BC–CFRPx 
Drop height 

h [m] 

Impact ve-

locity VI 

[m/s] 

Residence 

time of the 

impact event 

tR [ms] 

Resultant 

Deflection 

dmax [mm] 

Rebound 

velocity VR 

[m/s] 

Quasi-free–CFRP1 1 4.33 4.865 -3.54 1.86 

Quasi-free–CFRP2 2 6.22 4.870 -4.92 2.79 

Quasi-free–CFRP3 3 7.60 4.745 -6.03 3.12 

Quasi-free–CFRP4 4 8.54 4.660 -6.80 3.37 

Quasi-free–CFRP5 4.61 8.79 4.645 -6.82 3.44 

Fixed–CFRP6 0.5 3.05 <1.755* <-2.57* 2.50 

Fixed–CFRP7 1 4.37 1.755 -2.57 3.71 

Fixed–CFRP8 2 6.17 1.795 -3.48 5.18 

Fixed–CFRP9 3 7.52 1.900 -4.37 5.90 

Fixed–CFRP10 4 8.74 1.890 -5.81 6.61 
Table 5: Results for the impact tests 

 

 
 

Figure 6: Comparison of the impact and rebound velocities for different BCs 

 

As expected, almost all 10 impact velocities are close to the physical law  𝑉 =  √2𝑔ℎ, 

which states that friction effects and other disturbance have a very small influence on the ve-

locity. However, as it is shown in Figure 6 the rebound velocity is highly influenced by the 

type of the BCs. Existence of elastomer in quasi-free BC leads to reduction in the rebound ve-

locity comparing to corresponding plate with the fix support. This reduction mainly induced 

by the compression of the elastomer within the impact event. 

The residence time tR for the fixed BCs is shorter than that of the quasi-free. Meanwhile, 

the resultant deflection dmax is for the fixed BC smaller than for the quasi-free. 

------------------ 
*Could not be measured exactly  
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In Figure 7, the resultant deflection dmax and residence time tR for CFRP9 and CFRP3 is 

shown. Such a response is also observed in the other tests. The fixed BC shows a simple im-

pact-rebound-behavior whereas the quasi-free shows a delayed response with a greater result-

ant deflection, because of the existing of the elastomer. After reaching the maximum value of 

-6.03 mm the quasi-free shows two rebounding behaviors. 

 

 
 

Figure 7: Comparison of the resultant deflection dmax and residence time of the impact event tR for CFRP9 (a) 

(quasi-free) and CFRP9 (b) (fixed) (red line: CFRP plate surface on the impact side) 

 

Impact Force 

 

Comparison of the impact force – FE result – between the impactor and the plate for both 

quasi-free and fixed BC (CFRP5 and 10) is shown in Figure 8. 

 

 
Figure 8: The impact force for fixed and quasi-free BC (VI≅9 m/s)  
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In quasi-freely supported plates, elastomer undergoes sever compression during the impact 

event causing a drop in the contact force comparing to the plates supported with fixed BC (the 

frame is rigid). At the same time at which elastomer causes a drop in the contact force for 

quasi-free BC, contact load for the plate with fixed support shows a disturbance in the load 

response, which clearly indicate the effect of fixed BC and introducing more bending moment 

to the system, which dramatically increases the contact force. At the peak point of the both 

curves, the maximum delamination area is observed in which the damage area remains con-

stant over time. 

 

Damage size 

 

For experimental observations two measurement techniques namely Ultrasonic and active 

Lock-in Thermography technique are used in order to determine the damage induced by the 

impact event in plates. Ultrasonic method is applied on top and through the thickness of the 

impacted plates to spot the damage area. This technique provides us qualitative and distinctive 

images of the damaged area but not quantitatively. This technique only provides the concen-

tration of the damage on the first damaged area, which is detected by the device and the dam-

age on the other layers are not shown in the results. Thermography technique provides us top 

view of the damage accumulation of the impacted plates. This technique is only able to detect 

damages happening up to around 4 mm from the surface of the plate. 

In Figure 9, a comparison for the induced damage between two panels (CFRP5 and 10), 

which are impacted by the same velocity (≅ 9 𝑚/𝑠) but different boundary conditions is 

shown, which includes Ultrasonic, Thermography (phase image) and FE observations. 

 

 
 

Figure 9: Comparison of the delamination: (a) and (d) ultrasonic, (b) and (e) thermography, (c) and (f) numerical 

 

In Ultrasonic observations shown in Figure 9 the color red (the images on the top view) 

represents the damages exists on the first interface layer close to the surface of the plates, yel-

low represents the damages exist in the middle, green represents the damages in the sub lami-

nates close to the bottom of the plates, and blue represent the undamaged area (bottom of the 

plate). 

At the first glance, the comparison between the plates shows that the size of the induced 

damage by the impactor in fixed BC is bigger than the same panel with quasi-free BC. The 

same result is observed for other panels too. It can be attributed to the bigger bending moment 

CFRP10 

CFRP5 

b 

e 

c 

d-1 d-2 

a-2 a-1 

f 

2796



S. Arslan, M.Z. Sadeghi, A. Dafnis, and K.-U. Schroeder 

(and also shear stress distribution) existing in the panels supported with fixed BC comparing 

to quasi-freely supported panels leading to bigger damage in the panels. 

For the CFRP5 (quasi-freely supported) the biggest induced damage is in the middle, the 

same result in the FE model in which interface layer number 7 shows the biggest damage area 

comparing to other interface layers. The damage induced in the middle of the CFRP5 is shown 

in the through the thickness Ultrasonic image (Figure 9 (a-2)). In the CFRP10, the top view of 

the Ultrasonic image shows that damage in the middle of the plate is bigger (yellow color) 

showing a good agreement with the FE results (7th interface layer). The through thickness 

Ultrasonic image (Figure 9 (d-2)) shows that the damage is only on the surface since the sys-

tem is only able to spot the first damaged region (region close to the surface of the plate (red 

color in (d-1) and the rest of the damaged area – in this view – cannot be spotted. Thermogra-

phy observations (Figure 9 (b) and (e)) show a good agreement with the other results. Com-

parison between Figure 9, (b) and (e) clearly shows that the damage due to the impactor under 

fixed BC is bigger that quasi-free BC. 
Distribution of the shear stress for both BCs is shown in Figure 10 showing greater stress 

contour in the fixed BC especially at the edges. 

 

 
 

Figure 10: Shear distribution of the first interface layer: (a) quasi-free, (b) fixed BC 
 

The evolution of the damage area over time for the composite panel for different BCs under 

different impact velocity is shown in Figure 11. 

It can be clearly seen that for a certain velocity, the damage area is always bigger for the 

fixed supported panels. In both boundary conditions, a frustum-conical damage pattern is ob-

served. For the plates impacted under fixed boundary condition this pattern is larger (in both 

upper and lower area of the frustum). However, when it comes to the quasi-free BC, the dif-

ferences between the upper base and lower base of the frustum-conical damage pattern is be-

coming smaller (especially under lower velocities (CFRP1)) and damage pattern is more 

circular like. As it was previously discussed, Lock-in Thermography camera works based on 

the change of the frequency. In this method, the values of the frequency should be changed till 

a visible damage accumulation is achieved. However, this method is only able to detect the 

damage exists up to around 4 mm thickness (from the surface of the plate). Since in this work, 

all the plates have the same thickness of 6.24 mm, detecting the damage accumulation exist-

ing in the lower layers (bigger than 4 mm depth) is very difficult. 

  

a               CFRP5 b             CFRP10 

[Pa] 
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Quasi-free BC Fixed BC 

  

  
 

Figure 11: Delamination area from numerical results (A lf-1=1st and N lf-14=14th interface CZM layer) 

 

A good example is the comparison between CFRP9 and CFRP3, same panel impacted under 

velocity of about 7.6 m/s but with different BCs. Due to the constrained applied in CFRP9, the 

induced impact damage is bigger comparing to the other plate. Figure 12 shows that the suita-

ble image of the damage accumulation can be simply detected in such a panel by changing the 

lock-in frequency. 

In contrast, CFRP3 – which is impacted under quasi-free BC – experiences smaller damag-

es in the layers. In Figure 13, the growth of the area of the delamination versus elapsed time is 

shown. The induced damage in most of the interface layers is very small and there is only in 

the interface layer number 12 in which the damage area is slightly bigger. However, it is diffi-

cult in Lock-in Thermography method to detect such a damage, which is located in a depth of 

about 5 mm from the surface of the plate. Hence the reason, Lock-in Thermography is not 

able to spot a decent damage accumulation in the plate. Figure 14 visibly shows that even 

changing the frequencies does not detect a good damage accumulation.  
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Figure 12: Damage measurement using Lock-in Thermography camera with different lock-in frequencies-CFRP9 

 

 

Figure 13: Delamination area of numerical results (A lf-1=1st and N lf-14=14th interface CZM layer)  
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Figure 14: Damage measurement using Lock-in Thermography camera with different lock-in frequencies-CFRP3 

 

5 CONCLUSIONS 

The mechanical behavior of Carbon Fiber Reinforced Polymer (CFRP) plates (made of 

HTA/6376 with the dimension of 250x250x6.24 mm³) and with different boundary conditions 

(BC) under low velocity impact is investigated experimentally using a drop tower test.  Two 

NDT techniques namely the Infrared Lock-In Thermography (IR) and the Ultra-sonic Test 

Method (UT) are applied to detect the damage induced by a metallic hemispherical impactor. 

A numerical model is developed to simulate the impact tests using the commercial soft-

ware LS-Dyna. In order to validate the developed numerical model experimentally, two 

boundary conditions namely fixed and quasi-freely supported are designed.  A good agree-

ment between the experimental observations using NDT methods and numerical results is 

achieved. The proposed quasi-free BC shows a high potential to be an alternative for the fixed 

BCs in the validation process especially for parametric studies. Meanwhile, comparison be-

tween two different boundary conditions designed in this work leads to the following results: 

Using quasi-free BC reduces the impact load and consequently smaller shear stress distribu-

tion and bending moment comparing to plates with fixed supports. This leads to reduction in 

the damage size and slight change in the damage pattern in freely supported plates. 

 

ACKNOWLEDGEMENT 

 

The authors wish to thank the European Commission Research Directorates financial sup-

port in the framework of Clean-Sky project JTI-CS-2011-03-SFWA-02-019. We also would like 

to give a special thanks to Werkzeugmaschinenlabor (WZL) RWTH Aachen who provided us 

with the Ultrasonic images. 

0.10Hz 0.08Hz 

0.05Hz 0.01Hz 

2800



S. Arslan, M.Z. Sadeghi, A. Dafnis, and K.-U. Schroeder 

REFERENCES 

[1] M.O.W. Richardson, M.J. Wisheart, Review of low-velocity impact properties of 

composite materials, Composites Part A: Applied Science and Manufacturing, Vol-

ume 27, Issue 12, 1996, Pages 1123-1131. 

[2] W.J. Cantwell, J. Morton, The impact resistance of composite materials — a review, 

Composites, Volume 22, Issue 5, 1991, Pages 347-362. 

[3] Agrawal, Sandeep, Kalyan Kumar Singh, and P. K. Sarkar. "Impact damage on fibre-

reinforced polymer matrix composite–a review." Journal of Composite Materials 

(2013): 0021998312472217. 

[4] M.V. Hosur, C.R.L. Murthy, T.S. Ramamurthy, Anita Shet, Estimation of impact-

induced damage in CFRR laminates through ultrasonic imaging, NDT & E Interna-

tional, Volume 31, Issue 5, October 1998, Pages 359-374. 

[5] Catherine Potel, Thierry Chotard, Jean-François de Belleval, Malk Benzeggagh, Char-

acterization of composite materials by ultrasonic methods: modelization and applica-

tion to impact damage, Composites Part B: Engineering, Volume 29, Issue 2, 1998, 

Pages 159-169 

[6] F Aymerich, S Meili, Ultrasonic evaluation of matrix damage in impacted composite 

laminates, Composites Part B: Engineering, Volume 31, Issue 1, January 2000, Pages 

1-6. 

[7] B.S. Ben, B.A. Ben, K.A. Vikram, S.H. Yang, Damage identification in composite 

materials using ultrasonic based Lamb wave method, Measurement, Volume 46, Issue 

2, February 2013, Pages 904-912, ISSN 0263-2241. 

[8] M. Tehrani, A.Y. Boroujeni, T.B. Hartman, T.P. Haugh, S.W. Case, M.S. Al-Haik, 

Mechanical characterization and impact damage assessment of a woven carbon fiber 

reinforced carbon nanotube–epoxy composite, Composites Science and Technology, 

Volume 75, 11 February 2013, Pages 42-48. 

[9] S.A. Grammatikos, E.Z. Kordatos, T.E. Matikas, C. David, A.S. Paipetis, Current in-

jection phase thermography for low-velocity impact damage identification in compo-

site laminates, Materials & Design, Volume 55, March 2014, Pages 429-441. 

[10] E. Abisset, F. Daghia, X.C. Sun, M.R. Wisnom, S.R. Hallett, Interaction of inter- and 

intralaminar damage in scaled quasi-static indentation tests: Part 1 – Experiments, 

Composite Structures, Volume 136, February 2016, Pages 712-726. 

[11] P. Maimí, P.P. Camanho, J.A. Mayugo, C.G. Dávila, A continuum damage model for 

composite laminates: Part II – Computational implementation and validation, Mechan-

ics of Materials, Volume 39, Issue 10, October 2007, Pages 909-919 

[12] M.V. Donadon, L. Iannucci, B.G. Falzon, J.M. Hodgkinson, S.F.M. de Almeida, A 

progressive failure model for composite laminates subjected to low velocity impact 

damage, Computers & Structures, Volume 86, Issues 11–12, June 2008, Pages 1232-

1252 

[13] Y. Shi, T. Swait, C. Soutis, Modelling damage evolution in composite laminates sub-

jected to low velocity impact, Composite Structures, Volume 94, Issue 9, September 

2012, Pages 2902-2913. 

[14] F. Aymerich, F. Dore, P. Priolo, Prediction of impact-induced delamination in cross-

ply composite laminates using cohesive interface elements, Composites Science and 

Technology, Volume 68, Issue 12, September 2008, Pages 2383-2390. 

[15] M.F.S.F de Moura, J.P.M Gonçalves, Modelling the interaction between matrix crack-

ing and delamination in carbon–epoxy laminates under low velocity impact, Compo-

sites Science and Technology, Volume 64, Issues 7–8, June 2004, Pages 1021-1027. 

2801



S. Arslan, M.Z. Sadeghi, A. Dafnis and K.-U. Schroeder 

 

[16] Stephen R. Hallett, Wen-Guang Jiang, Bijoysri Khan, Michael R. Wisnom, Modelling 

the interaction between matrix cracks and delamination damage in scaled quasi-

isotropic specimens, Composites Science and Technology, Volume 68, Issue 1, Janu-

ary 2008, Pages 80-89 

[17] S. Woeste, Impact investigation of dog-bone CFRP specimens, PhD thesis, Institute 

for lightweight design, RWTH Aachen, 2005. 

[18] S. Arslan, A. Dafnis, K.-U. Schroeder, Simulation of Bird Strikes on CFRP Plates as a 

Part of a Validation Process, ICEAF IV, Skiathos, Greece, 2015. 

[19] Chang, Fu-Kuo; and Chang, Kuo-Yen: A Progressive Damage Model for Laminated 

Composites Containing Stress Concentrations. J. Compos. Mater., vol. 21, Sept. 1987, 

pp. 834-855. 

[20] M.R. Wisnom, Modelling discrete failures in composites with interface elements, 

Composites Part A: Applied Science and Manufacturing, Volume 41, Issue 7, July 

2010, Pages 795-805. 

[21] Turon, A., Davila, C.G., Camanho, P.P.; “An Engineering Solution for Using Coarse 

Meshes in the Simulation of Delamination with Cohesive Zone Modeling”, NASA 

Technical Report NASA/TM‐2005‐213547. Langley Research Center, Hampton, Vir-

ginia, March 2005. 

[22] M. Ericsson, Simulating Bird Strike on Aircraft Composite Wing Leading Edge, Mas-

ter Thesis, KTH Engineering Sciences, Stockholm, Sweden, 2012 

[23] K.I. Tserpes, A three-dimensional progressive damage model for bolted joints in com-

posite laminates subjected to tensile loading, Blackwell Science Ltd. Fatigue Fract 

Engng Mater Struct 24, 663–675, 2001 

[24] LS‐Dyna Aerospace Working Group, Modeling Guidelines Document, 2015 

[25] F. Dolce F, Blast Impact Simulation on Composite Military Armours, Department of 

Mechanical Engineering, University of BATH, 2009 

[26] LS-Dyna User’s Manual I and II, 2015 

2802



ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

A NEW SHELL FINITE ELEMENT WITH DRILLING DEGREES OF
FREEDOM AND ITS RELATION TO EXISTING FORMULATIONS

Robert Winkler1, Dimitrios Plakomytis1,2

1Institute of Mechatronics, University of Innsbruck
Technikerstrasse 13, 6020 Innsbruck
e-mail: Robert.Winkler@uibk.ac.at

2 INTALES GmbH
Innsbrucker Strasse 1, 6161 Natters

e-mail: Dimitrios.Plakomytis@uibk.ac.at

Keywords: Shell theory, drill rotation, rotation constraint, Allman shape functions

Abstract. This contribution deals with shell element formulations involving three rotational
degrees of freedom. Its purpose is twofold. Firstly, a review of relevant non-linear shell theories
as well as finite element implementations is given and corresponding defects are addressed.
Secondly, a geometrically linear shell element formulation is presented which is free of any of
these defects. Conventional shell theories involve two rotational degrees of freedom, the drilling
rotation being excluded. Three standard methods of incorporating the drilling degree of freedom
are considered: (a) The application of a proper rotation constraint condition, (b) shell theories
intrinsically involving three rotational degrees of freedom (here called ‘micropolar theories’)
and (c) introducing the drilling degree of freedom at the level of the finite element discretiza-
tion (Allman-type shape functions). Here, reference implementations relying on approaches (a)
to (c) as well as their reasonable combinations are considered. It is demonstrated that each
of these implementations reveals at least one questionable feature: Formulations based on a
micropolar approach involve ad hoc assumptions related to the constitutive law. Formulations
involving a rotation constraint imply the application of a problem-dependent penalty or regu-
larization parameter. Finally, Allman-type shell elements suffer from a lower convergence rate
for bending dominated problems compared to isoparametric ones. The proposed shell element
relies on a conventional (nonpolar) shell theory and applies a drill rotation constraint via a
penalty formulation. A crucial point is the application of properly designed enhanced strain
fields to avoid in-plane locking phenomena. It is demonstrated numerically that the resulting
implementation overperforms existing shell elements. Most importantly, the way of incorporat-
ing the rotation constraint proves to constitute a proper penalty formulation in the sense that for
sufficiently large values of the penalty parameter the results are independent of the latter. More-
over, this threshold is independent of the problem. The relation to existing implementations of
the drill rotation constraint, all of them requiring the application of problem dependent penalty
parameters, is discussed. Concluding, it is explicated how the present formulation derives from
a micropolar approach.
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1 Introduction

From a practical point of view, it is generally agreed that shell finite elements with six de-
grees of freedom (dofs) at each node exhibit substantial advantages compared to those with just
five dofs or even those with a varying number (5/6 dof formulations). From a theoretical or
numerical point of view, some aspects of 6 dof formulations still deserve additional clarifica-
tion. The implementation of the additional dof, i.e. the so called ’drilling’ rotation, is achieved
either by constraining the drilling dof to the in-plane rigid-body rotation (a), applying shell the-
ories intrinsically involving three rotational degrees of freedom (b), or on the level of the finite
element discretization applying so-called Allman-type shape functions (c).

State-of-the-art shell finite element formulations are based on mixed variational principles,
the Hu-Washizu principle, e.g. In contrast to formulations relying on the total potential energy,
these mixed formulations involve incompatible stress and/or strain fields, leading to hybrid, en-
hanced strain, or mixed formulations which are largely free of locking effects. The comparison
of the different approaches if performed at three levels: At the level of the strong formulation
(shell theory), at the level of the weak formulation (variational principle), and at the level of the
finite element discretization.

The remainder of the paper herein is organised as follows. Section 2 elaborates on different
approaches for deriving shell models but more importantly illustrates the main differences of
these approaches. Further, in Section 3 three methods for the incorporation of the drill degree
of freedom for two-dimensional shell models are discussed. The relation of the drill RC for-
mulations with 6 dof shell models is outlined. Then a brief discussion on the corresponding
finite element approximations is provided in Section 4. Further, in Section 5 two alternative
implementations of the drill RC are described. The various implementations are tested through
a multitude of benchmark examples and the results are presented in Section 6. Closing, a dis-
cussion based on the numerical results is provided in Section 7.

2 Shell Theories

One of the first fruitful attempts to derive a consistent theory of thin shells is due to Koiter
[20]. Since then, tremendous efforts have been devoted to this topic. A preliminary conclusion
of this development has been given in the monograph of Libai and Simmonds [21]. During the
past years the number of new contribution has decreased significantly. Recent trends rather deal
with smart shell structures [6], micropolar theories [1], and thermodynamics [13].

One way of deriving various shell mathematical models is through the use of 3D Continuum
mechanics. Here the two most commonly applied categories of shell theories are considered:
The first one can be traced back to Green and Zerna [15] who gave the first general linear
theory of shells applying tensor calculus. Its non-linear counterpart has been derived by Simo
et al. [32], [33] , [34]. The theory employs symmetric membrane and bending strain measures
derived from the Green-Lagrange strain tensor. Recently, this theory has been revisited by
Wagner and Gruttmann [36] to obtain a high-end finite element implementation. Commonly this
approach is attributed as geometrically exact shell theory. An alternative point of departure has
been provided by Reissner [26]. It has been recast by Ibrahimbegovic [17]. Via the application
of a non-symmetric Biot-type strain measures the drilling dof enters the virtual work principle.
Here these type of shell theories are called micropolar. It is emphasized that the micro-rotations
enter at the level of dimensionaly reduced shell theory rather than at the level of 3D continuum
mechanics.

A third type of shell theories is due to Simmonds [28] and has been elaborated by Chro-
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scieliewsky et. al. [9]. Unlike in the other approaches, no kinematic assumptions (such as the
Reissner-Mindlin assumption) are considered. It leads to almost the same expressions as the
aforementioned approach, except for the appearance of drill moments, non-symmetric bending
moments, and—in principle—to a non-local constitutive relation. Since the shell balance equa-
tions are exact consequences of the principle of virtual work, this type of theory is sometimes
called statically exact. All approximations are transferred to the constitutive relation.

2.1 Description of the Shell Geometry and Kinematics

The position vector of any material point of the undeformed shell body B0 is written as

X(θi) = Φ(θα) + θD(θα), (1)

where |D(θα)| = 1 and h− ≤ θ ≤ h+ with h = h+ − h− being the shell thickness. Further,
Φ(θα) denotes the position vector of the shell mid surface and (θi) is a curvilinear co-ordinate
system parametrizing the shell body. Greek indices α, β, . . . always range from 1 to 2. Latin
indices i, j, . . . range from 1 to 3. Einstein’s summation convention is used in the sequel.
Introducing a kinematic assumption according to the well-known Reissner-Mindlin plate theory,
the position vector of the material point in the deformed configuration Bκ is,

x(θi) = φ(θα) + θd(θα), (2)

where |d(θα)| = |D(θα)| = 1 .
The covariant tangent vectors in the reference configuration read,

Gα = X,α = Φ,α + θD,α, G3 = X,3 = D (3)

where (·),α = ∂(·)/∂θα denotes the partial derivative. According to Eq. (2), the basis vectors of
the current configuration are

gα = x,α = φα + θd,α g3 = x,3 = d (4)

The corresponding basis vectors at the reference surface are denoted by Aα = Φ,α and aα =
φ,α, respectively. Further, the contravariant basis vectors Gi, gi, Ai, and ai are defined via
Gi · Gj = δij , Aα · Aβ = δαβ , etc. with δij being the Kronecker delta. The area and volume
element in the undeformed configuration are

dA0 =
√
Adθ1dθ2, dV0 =

√
Gdθ1dθ2dθ, (5)

where
√
A = ‖A1 ×A2‖ and

√
G = ‖G1 ×G2‖. The elements dA and dV for the deformed

configuration are defined analogously. Spatial and surface base vectors are related via Gα =
Zγ
α Aγ , where Zγ

α are the components of the shifter tensor Z = Zγ
α Zγ ⊗Aα = Gα ⊗Aα. Its

determinant Z = |Zγ
α| =

√
G/A is used to relate dA0 and dV0,

dV0 = Z dθ dA0 (6)

Analogously relations hold for the deformed configuration.
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2.2 Shell Kinematics Based on Symmetric Green-Lagrange Strains

In the context of convective coordinates, the Green-Lagrange strain tensor reads

E = EijG
i ⊗Gj, Eij =

1

2
(gij −Gij), (7)

Its components with respect to the basis (Gi) are

Eαβ =
1

2
(gα · gβ −Gα ·Gβ) = εαβ + θκαβ + θ2ραβ

Eα3 =
1

2
(gα · g3 −Gα ·G3) = γα

E33 =
1

2
(g3 · g3 −G3 ·G3) = 0

(8)

where

εαβ =
1

2
(aα · aβ −Aα ·Aβ)

καβ =
1

2
(aα · d,β + aβ · d,α −Aα ·D,β −Aβ ·D,α)

γα =
1

2
(aα · d−Aα ·D),

(9)

are the membrane, bending, and transverse shear strains, respectively. It turns out that the
second order strains ραβ do not enter the virtual work expression. (Note that this in not an
approximation!) With the variation of the Green-Lagrange strain components

δEij =
1

2
(δgi · gj + gi · δgj) (10)

the virtual strain energy for a deformable body reads

δWint =

∫
B0

S : δE dV0 (11)

In terms of convective coordinates, the 2nd Piola-Kirchoff (PK2) stress tensor is given by

S = jσijGi ⊗Gj (12)

where j = dV/dV0 =
√
g/G and σij are the components of the Cauchy stress tensor. Substitut-

ing the kinematic assumption Eq. (4) into Eq. (10) and the latter into Eq. (11) straight-forward
calculations yield

δWint =

∫
[nα · δaα + mα · δd,α + q · δd]

√
a dθ1dθ2 (13)

Therein, the stress resultants

nα =

∫ h+

h−

σjαgjz dθ, mα =

∫ h+

h−

σjαgjθz dθ, q =

∫ h+

h−

σj3gjz dθ (14)
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have been defined. Again, applying Eq. (4), the membrane force vectors, bending moments,
and transverse shear forces can be written as

nα = nβαaβ + qαd, mα = mγαaγ +m3αd, q = q̃αaα + q3d (15)

respectively, where nβα = ñβα + bβγm
γα, qα = q̃α + b3γm

γα, and

ñβα =

∫ h+

h−

σβαz dθ, mγα =

∫ h+

h−

σγαθz dθ, q̃α =

∫ h+

h−

σα3z dθ (16)

Note that the effective membrane force tensor ñβα as well as the bending moment tensor mβα

inherit their symmetry from the Cauchy stress tensor σβα. Concluding, the virtual work of the
internal forces reads

δWint =

∫ [
δεαβñ

αβ + δκαβm
αβ + δγαq̃

α
]√

a dθ1dθ2 (17)

Therein, the transverse normal force q3 and the first order shear force m3α,

q3 =

∫ h+

h−

σ33 z dθ , m3α =

∫ h+

h−

σ3α θ z dθ (18)

have dropped out. The first on due to δE33 = 0 and the second one due to d,α · d = 0.
Confining the consideration to the simplest case, a Saint-Venant-Kirchhoff material law is

applied. Accordingly, the constitutive equations read

ñab = Qabcdεcd, mab =
t3

12
Qabcdκcd, q̃a = t αs µ γa (19)

With Young’s modulus E and Poisson ration ν, the plane-stress elasticity tensor and shear
modulus read

Qabcd =
tE

1− ν2
[
νδabδcd + (1− ν)δacδbd

]
, µ =

E

2 (1 + ν)
(20)

respectively. Finally, αs = 5/6 is the well-known shear correction factor.

2.3 Shell Kinematics Based on the Deformation Gradient

An alternative to the above derivations is due to [29], [26], [17]. Although this theory has
been derived originally in a different way, here it is deduced analogously to the previous section
starting from the variation of the strain energy in terms of the 1st Piola-Kirchhoff (PK1) stress
tensor

P = jσijgi ⊗Gj, (21)

That is,

δWint =

∫
B0
δF : P dV0 (22)

Introducing the traction vectors,

pα = PGα = jσiαgi, p3 = PT3 = jσi3gi (23)
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The PK1 stress tensor can be written as,

P = pα ⊗Gα + p3 ⊗D (24)

Analogously the variation of the deformation gradient reads

δF = δgα ⊗Gα + δd⊗D (25)

According to the Reissner-Mindlin kinematic assumption one can write

gα = φ,α + θ d,α, d = QD (26)

where Q is a rotation tensor. Consequently,

δd = δQQTd = δϑ× d (27)

Further, writing D = Q0e3 with e3 being the global z direction one obtains

d,α = Q,aD + QD,α = Q,αQ
Td + QQ0,αQ

T
0 QTd = (ωα + ω0α)× d (28)

Note that δQQT , Q,αQ
T , and Q0,αQ

T
0 are skew-symmetric tensors. The corresponding axial

vectors are denoted by

ϑ = ad−1
(
δQQT

)
, ωα = ad−1

(
Q,αQ

T
)
, ω0α = ad−1

(
Q0,αQ

T
0

)
(29)

With the above definitions the variation of the natural basis vectors becomes,

δgα = δφ,α + θ(δω̄α × d + ω̄α × δd) (30)

From the permutability of the operations of variation and derivative the following expression
can be derived,

δϑ,α = δω̄α − δϑ× ω̄α = δωα − δϑ× ωα (31)

Putting all together,

δF : P = δgα · pα + δd · p3 = δφ,α · pα + δd · p3 + θ(δϑ,α × d) · pα (32)

The underlined term in Eq. (32) can be reformulated applying the balance of angular momen-
tum, i.e. the symmetry of the σij or, equivalently,

pα × gα + p3 × a3 = 0 (33)

Doing so,
δF : P = (δφ,α − δϑ× φ,α)pα + θδϑ,α · (d× pα) (34)

Finally,

δWint =

∫
[δεαn

α + δκα · (d×mα)]
√
Adθ1dθ2 (35)

where the virtual strains and curvatures vectors,

δεα = δφ,α − δϑ× φ,α, δκα = δϑ,α = δωα − δϑ× ωα (36)
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and the resultant traction vectors,

nα =

∫ h+

h−

pαZ dθ = j0
∫ h+

h−

σiαgiz dθ , (37)

mα =

∫ h+

h−

pαZ θ dθ = j0
∫ h+

h−

σiαgi z θ dθ (38)

have been introduced. Here, j0 =
√
a/A and Z =

√
G/A are the Jacobian determinants of

the reference and undeformed shell reference surface, respectively. With the components of the
stress resultants,

Nβα = j0
∫ h+

h−

σγαzβγ z dθ , Qα = j0
∫ h+

h−

σ3α z dθ , (39)

Mβα = j0
∫ h+

h−

σγαzβγ z θ dθ , M3α = j0
∫ h+

h−

σ3αz θ dθ (40)

one has
nα = Nβαaβ +Qαd , mα = Mβαaβ +M3αd (41)

Defining the components of the virtual strain vectors with respect to the convected basis,

δεα = δεβαa
β + δγαd, δκα = δκβαd× aβ + δκ3αd (42)

the virtual strain energy reads,

δWint =

∫
[δεβαN

βα + δκβαM
βα + δγαQ

α]
√
Adθ1dθ2 (43)

Apparently, M3α and κ3α do not appear in the above expression.

2.4 Shell Kinematics Based on a Non-symmetric Biot-type Strain

It is instructive to consider a backward rotation to the undeformed configuration. Therefore
two Cartesian coordinate systems are introduced; Ti = Q0ei and ti = QTi related to the unde-
formed and deformed configurations respectively. Further a Biot-type stress tensor is defined,

B = QTP = BijTi ⊗Tj (44)

Accordingly the backward rotated resultant traction vectors are used

Na = QTna Ma = QTma (45)

In this text, indices a, b, · · · generally denote Components with respect to a Cartesian basis
and take the values 1 and 2 (to be distinguished from α, β, . . . which denote components with
respect to a curvilinear (natural) basis. The corresponding strain and curvature vectors are,

Ea = QTφ,a −Ta , Ka = QTκa (46)

It can be easily determined that

δEa = QT δεa , δKa = QT δκa (47)
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In view of the above the work of internal forces can be written as,

Wint =

∫
[ δEa ·Na + δKa · (D×Ma) ]

√
Adθ1dθ2 (48)

Introducing the strain and curvature components,

Eba = Tb · Ea = tb · φ,a − δab, E3a = T3 · Ea = t3 · φ,a (49)

Kba = (T3 ×Tb) = (ωa × t3) · tb, K3a = (T3 ×Ka) = t3 · ωa (50)

the strain energy becomes

Wint =

∫
(EbaN

ba +KbaM
ba + E3aQ

a)
√
Adθ1dθ2 (51)

Again, applying the plane-stress stiffness tensor,

Qabcd =
tE

1− ν2
[
νδabδcd + (1− ν)δacδbd

]
(52)

the constitutive relations are postulated according to

N (ab) = QabcdE(cd), N [ab] = tµE[ab] (53)

M (ab) =
t3

12
QabcdK(cd), M [ab] = 0 (54)

Qa = t αs µE3a (55)

As usual, (·)(ab) and (·)[ab] denote symmetrization and anti-symmetrization, respectively.

2.5 Statically exact shell model

The shell theories described so far are ’non-exact’ in the sense that they rely on a kinematic
assumption, namely Eq. (4). It leads to the fact that higher-order moments do not enter the
virtual strain expression. According to an alternative approach due to [26], the stress resultants
are defined as given in Eq. (38). The shell balance equation are then exact consequences of the
three-dimensional balance equations. By postulating the existence of a strain energy

δWint =

∫
[δεαβN

βα + δκβαM
βα + δγαQ

α + δκ3αM
3α]
√
Adθ1dθ2 (56)

and applying the virtual work principle, the work-conjugate virtual strain measures are found
again to be given by Eq. (36) and Eq. (42).

Due to the absence of kinematic restrictions, the M3α enter the strain energy and Mβα is not
necessarily symmetric. Therefore, a modified constitutive law is postulated [10],

N (ab) = QabcdE(cd), N [ab] = tµE[ab], (57)

M (ab) =
t3

12
QabcdK(cd), M [ab] =

t3

12
µE[ab] (58)

Qa = t αs µE3a, M3a =
t3

12
βw µK3a (59)

(60)

or, equivalantly,

Nab = Q̄abcdEcd, Mab =
t3

12
Q̄abcdKcd (61)

Both, αs and βw play the role of shear correction factors.
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3 Methods for defining the drill rotation

In the turn of shell finite element formulations, two types of rotational quantities appear. The
rotation tensor R represents the rigid body rotation according to the translational deformation
field. Based on polar decomposition theorem, F = RU where F is the deformation gradient
and U the right stretch tensor. In addition, it can be advantageous to introduce an a priori
independent rotation tensor field Q. When dealing with non polar materials, the two tensor
fields Q and R are expected to coincide, Q = R. Since U is symmetric the following relation
holds

skew(QTF) = 0 or, equivalently, εijkAT
j QTFAk = 0 (62)

where the deformation gradient of the shell mid surface reads,

F = aα ⊗Aα + d⊗T3 +O(θ) (63)

In Eq. (62), use has been made of the totally antisymmetric tensor εijk. In the sequel three
different approaches to deal with the indeterminacy of the drill rotation are presented. All
of these methods provide a definition for the drill rotation through an appropriately defined
constraint equation. Their differences as well as similarities are discussed.

3.1 The Approach of Fox & Simo [14]

Let the following modified quantities be defined as,

F̃ = ãα ⊗Aα + d⊗T3, Q̃ = exp(ωT̃3) (64)

where T̃3 defines the skew-symmetric matrix and

ãα = F̃Aα = aα − (T3 · aα)T3 (65)

is the projection of aβ onto the plane normal to the vector T3. In view of the above the drill
rotation constraint equation can be written as follows,

εαβAαQ̃
T F̃Aβ = εαβAαQ̃

T ãβ
!

= 0 (66)

where εαβ is the antisymmetric permutation symbol. With

ũ,α = u,α − (T3 · u,α)T3 = uβ|αAβ (67)

one obtains
ãα = Aα + ũ,α = Aβ(δβα + uβ|α) (68)

Substituting Eq. (68) into Eq. (66),

εαβAαQ̃
TAγ(δ

γ
α + uγ|α)

!
= 0 (69)

The product AαQ̃
TAγ defines the components of the rotation tensor Q̃γα which can be written

as,
Q̃γα = Aαγ cosω +

√
A εαγ sinω (70)

Substituting Eq. (70) into Eq. (66) and after some simplifications the drill rotation constraint is
derived to be,

(u1|2 − u2|1) cosω +
√
A(2 + u1|1 + u2|2) sinω

!
= 0 (71)
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A drawback of the above described method is that the left hand side of Eq. (71) depends on the
length of the tangent vectors. In the context of finite element implementation it therefore leads
to an unacceptable mesh dependence. As a remedy, one should use the Cartesian basis vectors
Tα instead of the natural basis vectors Aα. The corresponding drill rotation constraint equation
is then derived from

εabTaQ̃
T F̃Tb = 0 (72)

3.2 The Modification of Rebel [25]

In an attempt to alleviate the problem with the length dependencies of the covariant deriva-
tives, a modification of the above method was proposed by Rebel [25]. Here, the rotation tensor
Q is split into two parts; the first corresponds to out of plane rotation while the second to
in-plane rotation. Thus one can write,

Q = QdΛ, Qd = exp(ωd̃), d = ΛT3 (73)

With the above the rotation constraint equation reads,

εαβAT
αQT F̃Aβ = εαβAT

αΛTQT
d ãβ

!
= 0 , (74)

where
ãβ = aβ − (d · aβ) d (75)

is the projection of aβ onto the plane normal to the director d and the modified deformation
gradient F̃ is defined accordingly. Note that the rotated basis vectors ΛAα lie in the same
plane. In order to avoid the dependency on the length of the deformed basis, as discussed
previously, a normalization is introduced. That is,

εαβ
AT
α

‖AT
α‖

QT ãβ
‖ãβ‖

= 0 (76)

Alternatively, to avoid this artificial normalization procedure it would be beneficial to use the
Cartesian basis vectors Ta instead of Aα. Note that here the drill rotation is defined as the
rotation about the director vector unlike the approach of [14] where the drill rotation is defined
as the rotation around the direction normal to the tangent plane of the mid surface.

3.3 The approach of Wisniewski & Turska [38]

The third and last alternative to treat the drill rotation in the context of shells, is due to
Wiesniwski & Turska [38]. Here the rotation tensor is split into two parts,

Q0 = QtΛ0, Qt = exp(ωt̃3), t3 = Λ0T3 (77)

where Qt corresponds to the drill rotation and Λ0 is the director orienting rotation. With the
above definitions the rotation constraint equation becomes,

εabTT
aQT

0 F0T
T
b = εabTT

aΛT
0 QT

t φ,b = 0 (78)

Since φ,b lies in the pane spanned by the vectors T̆a, one can substitute in the above the follow-
ing expression, φ,b = T̆T

c φ,bT̆c. Then,

εabT̆aQ
T
t T̆T

c φ,bT̆c = εabQacφ,bT̆c = 0 (79)
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Using tα = QacT̆c the above is written,

εab(ta · φ,b) = 0 (80)

The above can be written with respect to the displacement gradients as follows,

(u1,2 − u2,1) cosω + (2 + u1,1 + u2,2) sinω = 0 (81)

3.4 Comparison of RC with Micropolar Approach

All the above described methods attempt to provide a definition for the drill rotation in terms
of a constraint equation. In the following the relation of the above methods with the definition
of the drill rotation obtained from the shell theory in Subsection 2.4 is presented here.

δF : P = (QT δF) : (QTP) = δ(QTF) : QTP− (QTF) : (QTP) (82)

The underlined term vanishes since,

(δQTF) : (QTP) = F : (δQQTP) = tr(δϑ̃PFT ) = 0 (83)

With the help of the above and introducing the Biot-type strain tensor H = QTF Eq. (82) can
be written as follows

δF : P = δH : B = δHs : Bs + δ skew(QTF) : Ba , (84)

where the subscripts s, a denote the symmetric and antisymetric part. The integral of the anti-
symmetric part is calculated to be,∫

δ skew(QTF) : B dV =

∫
[δE[ab]N[ab] + δK[ab]M[ab] + δE3aN3a] dA (85)

=

∫
[tµ(δE[ab]E[ab]) +

t3

12
µδK[ab]K[ab] + tµδE3aE3a] dA , (86)

where
E[ab] = t1 · φ,2 − t2 · φ,1 = (t1 · φ,1 + t2 · φ,2) tanωd (87)

K[ab] = t1 · t3,2 − t2 · t3,1 = (t1 · φ,1 + t2 · φ,2) tanωt (88)

It turns out that this result corresponds to a linear dependence of the drill rotation on the thick-
ness coordinate θ. That is [38],

ω = ωd + θωt, (89)

where ωt is the in-plane twist rotation and ωd is the drill rotation at the reference surface. En-
forcing the rotation constraint equation Eq. (80) according to Section 5, a direct equivalence
with the first term in Eq. (86) can be established.
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4 Finite Element Discretizations

4.1 Linear Flat 4-Node Shell (LFS4) Element

The position vector Φ and director vector D on the flattened shell reference surface at the
initial configuration can be interpolated as follows,

Φh =
4∑
I=1

NIΦI , Dh =
4∑
I=1

NIDI , (90)

where ΦI are the position vectors of the nodes in the global coordinate system and DI = a3I

are the nodal shell directors which are perpendicular to the shell mid surface. Note that the
superscript h denotes the finite element approximation and shall be used throughout this thesis.
The bi-linear shape functions NI are defined by,

NI =
1

4
(1 + ξ1I ξ

1)(1 + ξ2I ξ
2), (91)

where the ξα are the natural coordinates which belong to the bi-unit square domain spanned
by the coordinates of the corner nodes {ξ1I , ξ2I} = {∓1,∓1}. For computational reasons, an
additional orthogonal basis (Ti) is introduced at the element center. The length-measuring co-
ordinates associated with the in-plane basis vectors Ta are denoted with sa, where a = 1, 2. The
derivatives of the interpolated position vector and director vectors with respect to sa coordinates
can be determined as follows,

Φh
,a =

4∑
I=1

NI,aΦI , Dh
,a = 0 (92)

Analogous to Eq. (90), the displacements and rotations can be interpolated using the bi-linear
interpolation functions as,

uh =
4∑
I=1

NIuI , ϑh =
4∑
I=1

NIϑI (93)

where uI = uIkek is the nodal displacement vector and ϑ the rotation vector. In order to avoid
shear locking, the transverse shear components are interpolated according to the concept of
Assumed Natural Strains (ANS) [12].

4.2 Enhancement of the membrane strains

The method of Enhanced Assumed Strains (EAS) was initiated by [35] for the linear case and
by [30], [31] for the non linear case. The theory is based on the idea to add to the compatible
strain field an incompatible enhanced strain field as,

ε = εh + ε̃, (94)

where the compatible strains are calculated by,

εh =
4∑
I=1

BIûI , ûI = [uI ,ϑI ]
T , (95)
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with B being the strain-displacement matrix. In addition, the enhanced strains components are
determined as [35],

ε̃ =
j0
j

J0Mαe, (96)

Here, the membrane strain components εab are organized in a vector format,

ε = [ε11 ε22 2ε12]
T (97)

The 3× 3 matrix J0 transforms the strain components from the skew basis (Aα) at the element
center to the Cartesian basis (Ta) according to

ε̃ab = Ja
α Jb

β ε̃αβ, ⇔ ε̃(T ) = J0 ε̃
(A) (98)

where

J0 =

 (J1
1)2 (J1

2)2 J1
1 J1

2

(J2
1)2 (J2

2)2 J2
1 J2

2

2 J1
1 J2

1 2 J1
2 J2

2 J1
1 J2

2 + J2
1 J1

2

 , Ja
α = Ta ·Aα (99)

The matrix M defines the enhanced strain modes. According to [2],

M(7) =

ξ1 0 0 0 ξ1ξ2 0 0
0 ξ2 0 0 0 ξ1ξ2 0
0 0 ξ1 ξ2 0 0 ξ1ξ2

 (100)

The amplitudes of these 7 modes are stored in the vector αe.
In the case of the micropolar formulation, the strain tensor is nonsymmetric, thus

ε = [ε11 ε22 ε12 ε21]
T (101)

For the transformation, a 4× 4 matrix J4×4
0 instead of the J0 has to be applied,

J
(4×4)
0 =


(J1

1)2 (J1
2)2 J1

1 J1
2 J1

2 J1
1

(J2
1)2 (J2

2)2 J2
1 J2

2 J2
2 J2

1

J1
1 J2

1 J1
2 J2

2 J1
1 J2

2 J1
2 J2

1

J2
1 J1

1 J2
2 J1

2 J2
1 J1

2 J2
2 J1

1

 (102)

The 8 strain modes are defined according to [10],

M(8) =


ξ1 0 0 0 ξ1ξ2 0 0 0
0 ξ2 0 0 0 ξ1ξ2 0 0
0 0 ξ1 0 0 0 ξ1ξ2 0
0 0 0 ξ2 0 0 0 ξ1ξ2

 (103)

4.3 Enhancement of the drill rotation constraint

The implementations based on a splitting of the strain tensor in a symmetric and an antisym-
metric part, ε(ab) and ε[ab], respectively, lead to the method of the enhanced rotation constraint.
Therefore, the strain vector format

ε̃ =
[
ε11 ε22 2ε(12) 2ε[12]

]T (104)
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is adopted. The correspoinding transformation matrix is denoted by J̄
(4×4)
0 . Two different sets

of enhanced strain modes are considered,

M(81) =


ξ1 0 0 0 ξ1ξ2 0 0 0
0 ξ2 0 0 0 ξ1ξ2 0 0
0 0 ξ1 ξ2 0 0 ξ1ξ2 0
0 0 0 0 0 0 0 ξ1ξ2

 (105)

and

M(82) =


ξ1 0 0 0 ξ1ξ2 0 0 0
0 ξ2 0 0 0 ξ1ξ2 0 0
0 0 ξ1 ξ2 0 0 ξ1ξ2 0
0 0 ξ1 −ξ2 0 0 0 ξ1ξ2

 (106)

leading to the implementations termed ‘ERC1’ and ‘ERC2’. Finally, the method which turns out
to perform best applies the enhanced strain modes according to Eq. (103) and a transformation
of the kind 

ε11
ε22

2ε(12)
2ε[12]


(T )

= ¯̄J
(4×4)
0


ε11
ε22
ε12
ε21


(A)

(107)

The corresponding implementation is simply termed ‘ERC’.

4.4 Variational formulation

Basis for the linear finite element formulation is the modified Hu-Washizu variational prin-
ciple ∫ [

tQabcd (εab + ε̃ab) (δεcd + δε̃cd) +
t3

12
Qabcdκabδκcd + αs t µ γaδγa

+ β t µ c δc

]√
Adθ1dθ2 = δWext (108)

where c = E[12] refers to the drill rotation constraint, Section 5, and δWext is the virtual work
of the external forces.

For the micropolar formulation,∫ [
t Q̄abcd (Eab + ε̃ab) (δEcd + δε̃cd) +

t3

12
Q̄abcdKabδKcd

+ αs t µE3aδE3a + βw
t3

12
µK3aδK3a

]√
Adθ1dθ2 = δWext (109)

Finally, for the enhanced rotation constraint∫ [
tQabcd

(
E(ab) + ε̃(ab)

) (
δE(cd) + δε̃(cd)

)
+
t3

12
QabcdK(ab)δK(cd)

+ β t µ
(
E[12] + ε̃[12]

) (
δE[12] + δε̃[12]

)
+ βt

t3

12
µK[12]δK[12]

+ αs t µE3aδE3a + βw
t3

12
µK3aδK3a

]√
Adθ1dθ2 = δWext (110)

2816



Robert Winkler, Dimitrios Plakomytis

4.5 Allman Shape Functions

Within the context of Allman shape function the discretized displacement vector is modified
as follows,

u =
4∑
I=1

NIuI +
8∑

H=5

NH∆uH , (111)

where the hierarchical shape functions NH are defined as follows,

N5 =
1

2
(1− (ξ1)2)(1− ξ2), N7 =

1

2
(1− (ξ1)2)(1 + ξ2) (112)

N6 =
1

2
(1− (ξ2)2)(1 + ξ1), N8 =

1

2
(1− (ξ2)2)(1− ξ2) (113)

The hierarchical displacement vectors, ∆uH , at the mid-points of the element boundaries are
given by,

∆uH = −LJK
8

(ωK − ωJ)nJK , H = 5, 6, 7, 8 (114)

with J = H − 4, K = mod(H, 4) + 1 and LJK is the length of the boundary JK and nJK is
the vector normal to the initial element boundary.

5 Implementation of drill RC equation

The linearisation of the drill RC equation reads,

c = ω +
1

2
(u1,2 − u2,1) = 0 (115)

Eq. (115) can be formulated as an integral (i.e. weak) form and therefore be added in any
variational principle. Using a penalty method the extended functional Π∗ reads,

Π∗(u,σ,Q) = Π(u,σ) + ΠP
RC , (116)

where the penalty functional ΠRC is given as [37],

ΠP
RC =

∫
B

F P
RC(u,Q) dV, F P

RC(u,Q) =
γ

2
c2, (117)

The linearisation of the penalty functional ΠRC yields to the following equations(
K + γ

[
KRC
uu KRC

uϑ

KRC
ϑu KRC

ϑϑ

])[
∆u
∆ϑ

]
= −

{
r + γru
γrϑ

}
, (118)

where ru, rϑ are the residuals. Here, u = [uiI ] = [u11 u
2
1 u

3
1 · · · u14 u24 u34] is the element

displacement vector and ϑ = [ϑiI ] = [ϑ1
1 ϑ

2
1 ϑ

3
1 · · · ϑ1

4 ϑ
2
4 ϑ

3
4] is the rotation vector while

∆u,∆ϑ are the incremental vectors. Note that I, i denote the node number and component
with respect to the global coordinate system ei respectively. When u = 0 and ϑ = 0, it follows
that ru = 0, rϑ = 0 and r = −f . Hence Eq. (118) reduces to,(

K + γ

[
KRC
uu KRC

uϑ

KRC
ϑu KRC

ϑϑ

])[
∆u
∆ϑ

]
=

[
f
0

]
, (119)
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where f is the vector of external loads. Introducing the following notation,

∂(·)
∂u

=

[
∂(·)
∂uiI

]
I,i=1,2,3

,
∂(·)
∂ϑ

=

[
∂(·)
∂ϑiI

]
I,i=1,2,3

(120)

the residuals of Eq. (118) are defined by,

ru =
∂ΠP

RC

∂u
,
∂ΠP

RC

∂uiI
=

∫
B

∂F P
RC

∂uiI
dV, rϑ =

∂ΠP
RC

∂ϑ
,
∂ΠP

RC

∂ϑiI
=

∫
B

∂F P
RC

∂ϑiI
dV (121)

and the stiffness matrices,

KRC
uu =

∂ru
∂u

,
∂ru

∂ujJ
=

∫
B

∂2F P
RC

∂ujJ∂u
i
I

dV, KRC
uϑ =

∂ru
∂ϑ

,
∂ru

∂ϑjJ
=

∫
B

∂2F P
RC

∂ϑjJ∂u
i
I

dV

KRC
ϑu =

∂rϑ
∂u

,
∂rϑ

∂ujJ
=

∫
B

∂2F P
RC

∂ujJ∂ϑ
i
I

dV, KRC
ϑϑ =

∂rϑ
∂ϑ

,
∂rϑ

∂ϑjJ
=

∫
B

∂2F P
RC

∂ϑjJ∂ϑ
i
I

dV

(122)

In the sequel two different methods for the implementation of the dril RC constraint in the
context of four-node shell elements are presented. In the first the area integration is performed
analytically while in the second a two point Gauss quadrature is employed.

5.1 Analytical Integration Based on Taylor Series Expansion

Using Taylor series expansion for Eq. (115) at the element centre (i.e. ξ1 = ξ2 = 0) yields,

c̄(ξ1, ξ2) = c|0 + c,ξ1|0ξ1 + c,ξ2|0ξ2, (123)

where here |0 denotes quantities evaluated at the element center. Displacements and drill rota-
tions are interpolated using the bilinear shape functionsNI(ξ

1, ξ2). For the sake of completeness
these relations are repeated here,

u =
4∑
I=1

NI(ξ
1, ξ2)uI , ϑ =

4∑
I=1

NI(ξ
1, ξ2)ϑI (124)

The derivatives of the displacement components at Eq. (115) are determined as follows

ub,α = J−1αβ
∂ub
∂ξβ

= J−1αβ

4∑
I=1

N,ξβ(tb · ei)uiI , (125)

where uiI are the displacement components i of the node I with respect to the global coordinate
system (ei). Substituting Eq. (124) and Eq. (125) into Eq. (115) with ωI = t3 · ϑI yields,

c(ξ1, ξ2) =
4∑
I=1

NI(t3 · ϑI) +
1

2

(
J−12β

4∑
I=1

N,ξβ(t1 · ei)uiI − J−11β

4∑
I=1

N,ξβ(t2 · ei)uiI

)
(126)
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With the help of Eq. (126), the three terms of Eq. (123) can be determined as follows,

c|0 =
1

4

4∑
I=1

(t3 · ϑI) +
1

8

(
J−12β

4∑
I=1

ξβI (t1 · ei)uiI − J−11β

4∑
I=1

ξβI (t2 · ei)uiI

)

c,ξ1|0 =
1

4

4∑
I=1

ξ1I (t3 · ϑI) +
1

8

(
J−122

4∑
I=1

ξ1I ξ
2
I (t1 · ei)uiI − J−112

4∑
I=1

ξ1I ξ
2
I (t2 · ei)uiI

)

c,ξ2|0 =
1

4

4∑
I=1

ξ2I (t3 · ϑI) +
1

8

(
J−121

4∑
I=1

ξ1I ξ
2
I (t1 · ei)uiI − J−111

4∑
I=1

ξ1I ξ
2
I (t2 · ei)uiI

) (127)

5.1.1 Weak Formulation and Linearisation

Since F P
RC is a polynomial of the natural coordinates ξ1, ξ2 the integral of Eq. (117) can be

determined analytically. That is,

ΠP
RC =

∫ h+

h−

∫
�
F P
RC

√
a dξ1dξ2 dh =

∫ h+

h−

∫
�
c̄2(ξ1, ξ2)

√
a dξ1dξ2 dh ≈ γV Π̃P

RC , (128)

where V is the element volume and

Π̃P
RC = [2c0 + 2/3((c0,ξ1)

2 + (c0,ξ2)
2)] (129)

Note that for the following derivations a constant Jacobian is assumed. The force residual
vectors and the stiffness matrices in Eq. (121) and Eq. (122) respectively can be determined
in a straight forward way. In order to be able to account for warped element geometries a
correction has to be introduced. The correction here is introduced like in [16] where the local
displacements and rotations are related to their global components via,[

ulI
ϑlI

]
=

[
I W̃
0 I

] [
uGI
ϑGI

]
, (130)

where W̃ = skew(rI) is the skew-symmetric matrix is with rI = wIt3 where wI is the dis-
tance to the middle surface of each node. Analogously forces and moments are transformed as
follows, [

f lI
ml

I

]
=

[
I 0

W̃ I

] [
fGI
mG

I

]
(131)

The warped stiffness matrix of the element is given by,

K =

[
I 0

−W̃ I

]
KG

[
I W̃
0 I

]
(132)

5.2 Numerical Integration of Drill RC Equation

For the case where the area integration is performed numerically, the integrands of Eq. (121)
can be determined with the help of Eq. (115) and Eq. (117) in a straight forward way. That is,

∂F P
RC

∂uiI
= γc

[
1

2

(
∂u1,2
∂uiI

− ∂u2,1
∂uiI

)]
,

∂F P
RC

∂ϑiI
= γ c

∂c

∂ϑiI
= γcNI t

i
3 (133)

2819



Robert Winkler, Dimitrios Plakomytis

where the derivatives in Eq. (133)1 read,

∂u1,2
∂uiI

= NI,2 (t1 · ei),
∂u2,1
∂uiI

= NI,1 (t2 · ei) (134)

The integrands of the force residual vectors and the stiffness matrices in Eq. (121) and Eq. (122)
can be determined using a 2-point Gauss quadrature integration scheme. For all the above
computations the elemental coordinate system (ti) at the element center was used. Although
for flat shell elements this is sufficient, for warped geometries the rotation constraint does not
account for the element warpage. This problem can be addressed by creating new coordinate
systems at every integration point. That is,

Φ
h(ip)

,ξ1 =
4∑
I=1

N ip
,ξ1ΦI , Φ

h(ip)

,ξ2 =
4∑
I=1

N ip
I,ξ2ΦI , (135)

where ΦI is the nodal position vector at the reference shell surface and the superscript ip denotes
the integration point. With the above the normal direction is determined as follows,

tip3 =
Φip
,ξ1 ×Φip

,ξ2∥∥∥Φip
,ξ1 ×Φip

,ξ2

∥∥∥ (136)

and the plane normal is identified as,

tip1 = tip3 × t2, tip2 = tip3 × tip1 (137)

As such the vectors ti should be replaced with the vectors tipi which are determined at every
integration point.

6 Numerical Examples

In this section, the performance of the above elements is evaluated based on a set of linear
benchmark examples. Besides the quality of the computed displacements, the corresponding
stresses and their converge rates are examined. A list of the shell elements that will be consid-
ered in the following is given in Table 1. Note that all of the elements below are fully integrated
(i.e. 2 point Gauss scheme) quadrilaterals.

2820



Robert Winkler, Dimitrios Plakomytis

Table 1: Elements

Elements Description
LFS4-RCAI Linear flat with analytically integrated drill RC, (β = 0.01).
LFS4-RCFI Linear flat with numerically integrated drill RC, (β = 0.01).
LFS4-ERC Linear flat with numerically integrated enhanced drill RC,

(βt = βw = 0 and β = 1).
LFS4-MP Linear flat based on non-symmetric Biot strain approach,

(β = βt = 1 and βw = 0.01).
LFS4+Allman Linear flat with Allman shape functions
LFS4-MP+Allman Linear flat based on non-symmetric Biot strain approach with

Allman shape functions, (β = βt = 1 and βw = 0.01).
LFS4-RCAI+Allman Linear flat with analytically integrated drill RC (β = 0.01)

and Allman shape functions
QMHS4 Non-Linear mixed/hybrid with 5/6 Dofs, [18]∗

CQUAD4 MSC/NASTRAN
S4 ABAQUS

* Own Results with element of [18].

6.1 Cook’s Membrane

This problem was proposed by [11] and it is a very popular benchmark example. It involves
a trapezoidal membrane which is clamped on one edge and is subjected to a distributed in-
plane bending load on the other, see Figure 1 where the geometrical and material properties are
defined.

x

P 16

44 44

48

y

A

Figure 1: Cook’s Membrane: E = 1, ν = 1/3, t = 1, P = 1

In this example, a considerable amount of shear deformation is involved and therefore is
excellent for testing the capability of the proposed elements to model membrane dominated
situations. Moreover, when quadrilaterals are used for the discretization, the resulting elements
are skewed and tapered which makes it even more important since the effects of mesh distortion
can also be observed. The results for the vertical displacement and drill rotation at the point A,
are listed in Table 2 and Table 3 respectively.
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Elements 2× 2 4× 4 8× 8 16× 16 32× 32

LFS4-RCAI 21.0936 23.0081 23.6850 23.8821 23.9394
LFS4-RCFI 21.1057 23.0135 23.6866 23.8825 23.9395
LFS4-ERC 20.4303 22.7144 23.5491 23.8207 23.9110
LFS4-MP 20.4300 22.7140 23.5486 23.8202 23.9106
LFS4-MP+Allman 22.1472 23.1203 23.6168 23.8296 23.9101
LFS4+Allman 21.2704 23.0663 23.6652 23.8661 23.9312
LFS4-RCAI+Allman 21.1911 23.0361 23.6485 23.8559 23.9260
QMHS4 21.1161 23.0206 23.6891 23.8833 23.9392
S4 20.7115 22.9701 23.6460 23.8588 23.9301
CQUAD4 21.0470 23.0151 23.6881 23.8827 23.9392

Ref. 23.91 [5], 23.936 [39]

Table 2: Cook’s Membrane: Vertical Displacement at point A.

Elements 2× 2 4× 4 8× 8 16× 16 32× 32

LFS4-RCAI 0.7021 0.7786 0.8431 0.8658 0.8756
LFS4-RCFI 0.7649 0.8254 0.8710 0.8809 0.8838
LFS4-ERC 0.9518 0.7901 0.8464 0.8631 0.8700
LFS4-MP 0.9518 0.7904 0.8502 0.8829 0.8910
LFS4-MP+Allman 0.8662 0.8731 0.8768 0.8860 0.8873
LFS4+Allman 0.8485 0.8906 0.9102 0.9242 0.9268
LFS4-RCAI+Allman 0.8350 0.8842 0.9087 0.9240 0.9197
S4 0.7158 0.7972 0.8504 0.8708 0.8794
CQUAD4 0.7337 0.8102 0.8579 0.8742 0.8805

Table 3: Cook’s Membrane: Drill Rotation at Point A.

The sensitivity of the converged solution with respect to the penalty parameter β is shown in
Figure 2. The performance of the different methods for the incorporation of the enhancement
of strains as described in Section ?? is shown.
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Figure 2: Cook’s Membrane: Sensitivity of computed results with respect to penalty coefficient
β = range(108, 10−8).

It is obvious that the LFS4-ERC implementation, in which the enhanced strains are interpo-
lated according to Eq. (103), has the best performance among all and therefore the implemen-
tations LFS4-ERC1, LFS4-ERC2 -using interpolations Eq. (??), Eq. (??) respectively- will not
be considered further. In Figure 3, the effect of the warping parameter βw is shown.
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Figure 3: Cook’s Membrane: Sensitivity of LFS4-ERC with respect to penalty parameter β for
various warping parameters.

Note that since this is a plane problem the solution shall not depend on the twist parameter
βt which is the case. The convergence of the normal stress resultant n11 for various implemen-
tations is plotted in Figure 4. Note that the mesh sizes analysed for the stresses differ from the
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ones analysed for the displacements. This is due to the fact that stresses are extracted at the
centroid1 and therefore for a meaningful comparison we had to make sure that the centroid of
the element from which the stresses are extracted does not change with the mesh refinement.
For this example the mesh sizes used are, 6× 6, 10× 10, 18× 18, 34× 34, 66× 66, 130× 130.
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Figure 4: Cook’s Membrane: Rate of convergence of stress resultant

The reference value, σref , for the error estimation is obtained using Richardson’s extrapola-
tion, see [7] and also [8] where a remedy for oscillatory converge is presented. The extrapolated
value is computed using the stresses as computed from the last three finer meshes.

6.2 Cantilever Under end Moment

This example involves a straight cantilever beam which is subjected to an in-plane end mo-
ment at one end while the other is fully clamped.

Figure 5: Cantilever under end moment: E = 1200, l = 10, h = t = 1, ν = 0.3, M = 0.1

1Although the stresses are computed at the integrations points, here it was decided to make the stress compar-
ison based on the centroidal values. For the case of four node quadrilaterals, it can be proved that the centroid is
the Barlow point and therefore it is expected to have the highest convergence rate.
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This is a very important example since the ability of the proposed element to carry drill
moments can be tested. In Table 4, the vertical displacement and drill rotation of the tip of the
cantilever are listed.

10× 1

Elements Vertical Rotation
LFS4-RCAI 0.0457 0.0097
LFS4-RCFI 0.0457 0.0097
LFS4-ERC 0.0501 0.0103
LFS4-MP 0.0497 0.0103
LFS4-MP+Allman 0.0497 0.0103
LFS4+Allman 0.0455 0.0351
S4 0.0467 0.0121

Analytical 0.05 0.01

Table 4: Cantilever under tip moment: Vertical displacement and drill rotation at the tip of the
beam.

Note that in the above the results corresponding to LFS4-RCAI, LFS4-RCFI implementa-
tions are obtained with a penalty parameter β = 1. As it is already reported in the literature,
examples where drill moments are involved require a larger penalty parameter. The main advan-
tage of the proposed implementation LFS4-ERC is that higher penalty parameters can be used
without affecting the element performance in other examples. To illustrate this, the sensitivity
of the computed values with respect to the penalty parameter is shown in Figure 6.
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Figure 6: Cantilever under tip moment: Sensitivity of computed results with respect to penalty
coefficient β = range(108, 10−8)

Clearly, the performance of the proposed element is superior to LFS4-RCAI which for larger
penalty parameters becomes unacceptably stiff. Of course for small penalty parameters the drill
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rotation for both formulations is unbounded. The effect of the warping parameter βw on the
computed solutions for the LFS4-ERC is shown in Figure 7.
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Figure 7: Cantilever under tip moment: Sensitivity of LFS4-ERC with respect to penalty pa-
rameter β and warping parameter βw.

6.3 Pinched Hemispherical Shell

The third example involves a hemispherical shell, subjected to two inward and outward point
loads 90◦ apart. Due to the double symmetry, only one quadrant can be modelled and symmetry
boundary conditions can be applied. This example is popular for multiple reasons, firstly it
involves a double curvature structure and secondly the shell undergoes an almost inextensional
bending deformation.

x y

z

18

P=1

P=1

R=10

freeA

(a) Pinched Hemispherical Shell with hole

x y

z

P

P

A

(b) Pinched Hemispherical Shell without hole

Figure 8: Pinched Hemispherical Shells. E = 6.825× 107, ν = 0.3, h = 0.04, P = 1

Two variants of this test exist in the literature. The first was proposed by [23] where a hole
of 18◦ is introduced at the top in order to avoid the use of triangles near the axis of revolution,
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see Figure 8. In this case, the resulted finite elements are planar and therefore the effect of warp
is not present. The computed displacements for the point A are listed in Table 5. Note that the
displacement of both loaded points should be identical for the case of linear static analysis due
to symmetry.

Elements 4× 4 8× 8 16× 16 32× 32

LFS4-RCAI 9.0662 9.2295 9.2943 9.3351
LFS4-RCFI 8.6881 9.2457 9.3067 9.3387
LFS4-ERC 9.1400 9.3010 9.3137 9.3401
LFS4-MP 9.0603 9.2714 9.3043 9.3373
LFS4-MP+Allman 3.7017 8.9415 9.3086 9.3431
LFS4+Allman 3.4786 8.9246 9.3078 9.3427
LFS4-RCAI+Allman 3.4361 8.8675 9.2927 9.3388
QMHS4 9.6631 9.3781 9.3333 9.3454
S4 9.1966 9.2562 9.2997 9.3364
CQUAD4 9.5071 9.4478 9.3661 9.3574

Ref. 9.4 [23], 9.3 [33]

Table 5: Pinched Hemispherical Shell with Hole: Displacement −u1 × 100

In Figure 9a, the sensitivity with respect to the penalty parameter β is plotted. Mooreover, in
Figure 9b, the effect of the warping parameter for the LFS4-ERC implementation is shown.
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Figure 9: Pinched Hemispherical Shell with Hole: Sensitivity of computed results with respect
to penalty coefficient β = range(108, 10−8) and warping parameter βw.

The advantage of the enhanced drill rotation constraint is apparent since even for doubly
curved problems the computed solutions are almost insensitive to the penalty parameter. Un-
like the previous examples, being all plane, here it is instructive to study the effect of the twist
parameter βt for the LFS4-ERC element. In Figure 10 the sensitivity of the computed displace-
ment is plotted.
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Figure 10: Pinched Hemispherical Shell with Hole: Sensitivity of LFS4-ERC with respect to
the twist parameter, βt = range(103, 10−8).

The above figure clearly dictates that the incorporation of the twist parameter impairs the
solution while for βt < 1 the result almost remains constant. The selection of βt = 0 can be
justified. The second variant of the pinched hemispherical problem, see Figure 8b does not
involve a hole but the resulted elements are highly skewed and warped especially for coarse
discretizations. The computed displacements for this case are listed in Table 6.

Elements 4× 4 8× 8 16× 16 32× 32

LFS4-RCAI 8.3951 8.9468 9.1254 9.2049
LFS4-RCFI 7.8903 9.0457 9.1698 9.2177
LFS4-ERC 8.7632 9.1741 9.1889 9.2219
LFS4-MP 8.6820 9.1428 9.1789 9.2188
LFS4-MP+Allman 3.0762 8.6649 9.1755 9.2270
LFS4+Allman 2.8801 8.6630 9.1749 9.2261
LFS4-RCAI+Allman 2.7853 8.4383 9.1101 9.2095
QMHS4 5.2690 9.0300 9.1983 9.2264
S4 4.7672 8.8644 9.1628 9.2193
CQUAD4 9.0688 9.3113 9.2479 9.2425

Ref. 9.24 [33]

Table 6: Pinched Hemispherical Shell without hole: Displacement −u1 × 100

Closing this example, the convergence of the torsional moment for the hemispherical shell
with the hole is shown in Figure 11. For this example the mesh sizes used are, 10× 10, 18× 18,
34× 34, 66× 66 and correspond to the one quadrant of the hemisphere.
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Figure 11: Pinched Hemispherical Shell with Hole: Rate of convergence of resultant torsional
moment.

6.4 Raasch Hook

The Raasch hook or Raasch challenge as it is usually referred to involves a thick curved strip -
essentially a hook like geometry - which is clamped on one edge and is subjected to a distributed
unit tip in-plane shear load on the other, see Figure 12. The hook is composed out of two
cylindrical segments of radius R1, R2 which span an opening angle of 60◦and 150◦respectively.
The geometric as well as the material properties are shown in Figure 12. This example was
first reported by I. Raasch of BMW in 1990 and revealed an erroneous behaviour (i.e. solution
failed to converge with the mesh refinement) of the QUAD4 element of the MSC/NASTRAN
FE code.
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30

R=14
46
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z
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2
0

P

Figure 12: Raasch’s Hook: Initial geometry, E = 3300, ν = 0.35, h = 2, P = 1

In [24], it was found that the problem was caused by the treatment of the shell normals
and resulted in an inability to transfer correctly the twisting moments. This failure introduced
significant transverse shears whose effect was greater with the mesh refinement since the drill
rotation was less and less restrained by the bending stiffness of an adjacent element. In Table 7
and Table 8 the displacements and drill rotations at the point A of the loaded edge are listed
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Elements 9× 1 18× 3 36× 5 72× 10 144× 20

LFS4-RCAI 4.4376 4.6786 4.7987 4.9103 4.9769
LFS4-RCFI 4.4376 4.6786 4.7987 4.9103 4.9769
LFS4-ERC 4.4297 4.6085 4.6904 4.7761 4.8310
LFS4-MP 4.3799 4.5912 4.6731 4.7316 4.7581
LFS4-MP+Allman 4.3799 4.5890 4.6712 4.7313 4.7580
LFS4+Allman 4.4136 4.6917 5.0562 6.2416 10.528
LFS4-RCAI+Allman 4.4048 4.6293 4.7397 4.8599 4.9458
QMHS4 4.5462 4.6668 4.7109 4.7850 4.8368
S4 4.8531 4.8799 4.9541 5.0107 5.0335
CQUAD4 4.592 4.7105 4.7308 4.7252 4.7194

Ref. 4.9352 [19]

Table 7: Raasch Hook: Vertical Displacement at Point A.

Elements 9× 1 18× 3 36× 5 72× 10 144× 20

LFS4-RCAI 0.0235 0.0251 0.0259 0.0266 0.0270
LFS4-RCFI 0.0235 0.0251 0.0259 0.0266 0.0270
LFS4-ERC 0.0236 0.0247 0.0252 0.0256 0.0260
LFS4-MP 0.0231 0.0246 0.0251 0.0254 0.0256
LFS4-MP+Allman 0.0231 0.0246 0.0251 0.0254 0.0255
LFS4+Allman 0.0230 0.0240 0.0227 0.0161 -0.0110
LFS4-RCAI+Allman 0.0231 0.0246 0.0254 0.0261 0.0267
QMHS4 0.0134 0.0198 0.0227 0.0244 0.0253
S4 0.0257 0.0261 0.0265 0.0268 0.0269
CQUAD4 0.0247 0.0252 0.0253 0.0253 0.0253

Table 8: Raasch Hook: Drill Rotation at Point A.

In Figure 13, the sensitivity of the converged solutions with respect to the penalty parameter
is plotted.
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Figure 13: Raasch Hook: Sensitivity of computed results with respect to penalty coefficient
β = range(108, 10−8).
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Again the sensitivity of the computed results with respect to the twist parameter βt is illus-
trated in Figure 14
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Figure 14: Raasch Hook: Sensitivity of LFS4-ERC with respect to the twist parameter βt =
range(103, 10−8).

In Figure 15, the convergence of the stress resultant torsional moment is shown. For the
Raasch Hook the mesh sizes analysed for the stress comparison are, 46× 6, 82× 10, 138× 18
and 248× 34.
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Figure 15: Raasch Hook: Rate of convergence of resultant torsional moment.
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6.5 Pre-Twisted Beam

This test was initially proposed by [23] and it is very valuable since the effect of element
warpage can be assessed. Although each element is approximately 7.5◦ warped, this amount
can have quite significant effects, see [4]. The initial geometry of the beam is twisted by 90◦

with this being a stress free configuration. One edge is clamped while the other is subjected
separately to three different concentrated loads at the tip. Thus the three load-cases are i) a
unit shear load in width direction and ii) a unit shear load in thickness direction and iii) a unit
axial load. Note that for the latter the initial twost of the beam is 180◦. The material as well as
geometrical properties are given in Figure 16.

Pz

Py

Y

Z

X

A

Figure 16: Pre-Twisted Beam Configuration: E = 2.9 × 107, ν = 0.22, L = 12, w = 1.1,
twist=90◦, Py = Pz = 1× 10−6 and thickness h = 0.0032

In [23], the thickness is h = 0.32 however, in [4] a thinner variant (i.e. h = 0.0032) is used
in order to invoke membrane locking phenomena that are more significant for thinner shells. In
the latter, the significance of accounting for the variation of the Jacobian through the thickness,
i.e. account for curvature-displacement coupling, is illustrated. In the absence of these terms,
an error as large as 70% can occur. The following results correspond to the thin case and the
reference solutions are based on beam theory. The computed displacements for all loadcases
are listed in Table 9, Table 10 and Table 11.

Elements 2× 12 4× 24 8× 48

LFS4-RCAI 5.2781 5.2264 5.2421
LFS4-RCFI 5.2027 5.2358 5.2462
LFS4-ERC 5.2801 5.2374 5.2463
LFS4-MP 5.2757 5.2370 5.2460
LFS4-MP+Allman 5.2064 5.2351 5.2463
QMHS4 5.1768 5.2310 5.2462
S4 5.1969 5.2377 5.2482
CQUAD4 5.2674 5.2427 5.2471

Ref. 5.256 [4]

Table 9: Pre-Twisted Beam: Load Case 1, In plane Displacement 100× u2
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Elements 2× 12 4× 24 8× 48

LFS4-RCAI 1.2990 1.2918 1.2925
LFS4-RCFI 1.2955 1.2932 1.2930
LFS4-ERC 1.2990 1.2936 1.2931
LFS4-MP 1.2989 1.2936 1.2931
LFS4-MP+Allman 1.2954 1.2933 1.2931
QMHS4 1.2691 1.2874 1.2917
S4 1.2748 1.2894 1.2922
CQUAD4 1.2791 1.2888 1.2919

Ref 1.294 [4]

Table 10: Pre-Twisted Beam: Load Case 2, Out of plane Displacement 100× u3

Elements 2× 12 4× 24 8× 48

LFS4-RCAI 6.197 4.482 4.479
LFS4-RCFI 4.885 4.812 4.493
LFS4-ERC 8.465 4.848 4.571
LFS4-MP 8.503 4.842 4.570
QMHS4 4.725 4.512 4.404
S4 3.445 4.153 4.290

Table 11: Pre-Twisted Beam: Load Case 3, Axial Displacement 105 × u3

For the last load case the results of the LFS4-MP+Allman element are bad and therefore not
included. In Figure 17, the sensitivity of the displacement with respect to the penalty parameter
β for the first two load cases is plotted.
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Figure 17: Pre-Twisted Beam: Sensitivity of computed results with respect to penalty parameter
β = range(108, 10−8).

In Figure 18, the sensitivity with respect to the twist parameter for the LFS4-ERC is plotted.
Note that only the first two load case are considered.
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Figure 18: Pre-Twisted Beam: Sensitivity of LFS4-ERC with respect to the twist parameter
βt = range(103, 10−8).

Again the selection of a zero twist penalty parameter can be justified. Closing this example
the convergence of the membrane stress resultant SF1 is shown for both load cases in Figure 19a
and Figure 19b. For this examples the mesh sizes used are, 10× 2, 34× 6, 66× 10, 130× 18.
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Figure 19: Pre-Twisted Beam: Rate of convergence of resultant axial force for out-of plane
shear load.

6.6 Pinched Cylinder with End Diaphragm

The fifth example involves a cylindrical shell with rigid diaphragms at both ends and is
subjected to two opposing forces which are applied at the middle. The geometrical as well
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as the material characteristics are shown in Figure 20. Here it is important to note that in the
literature exist alternative geometrical and material properties, compare [27] and [33]. Here the
latter is used. This is a very popular test since it involves inextensional bending deformation,
finite rotations and quite complex stress states. Firstly, it was used by [22] and later by [3] for
testing their MITC elements.
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Figure 20: Pinched Cylinder with end diaphragms. Initial Geometry, E = 3 × 106, R = 300,
L = 300, ν = 0.3, h = 3.

Taking advantage of the symmetry, only one-eighth of the cylinder is modelled. The vertical
displacements of point A for a linear static analysis are listed in Table 12.

Elements 10× 10 20× 20 40× 40

LFS4-RCAI 1.517 1.749 1.820
LFS4-RCE7 1.517 1.749 1.820
LFS4-ERC 1.508 1.749 1.820
LFS4-MP 1.497 1.742 1.818
LFS4-MP+Allman 1.488 1.740 1.817
QMHS4 1.532 1.758 -
S4 1.519 1.750 1.821

Ref. 1.8249 [33]

Table 12: Pinched with end diaphragms: Vertical Displacement at Point A, −u3 × 105

The sensitivity of the computed displacement with respect to the penalty parameter and also
the effect of the warping penalty parameter βw for the LFS4-ERC implementation are shown in
Figure 21.
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Figure 21: Pinched Cylinder with end diaphragms: Sensitivity of computed results with respect
to penalty coefficient β = range(108, 10−8).

The sensitivity with respect to the twist parameter for the LFS4-ERC is plotted in Figure 22.
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Figure 22: Pinched Cylinder with end diaphragms: Sensitivity of LFS4-ERC with respect to
the twist parameter βt = range(103, 10−8).

Closing, the convergence of the resultant bending moment is shown in Figure 23. For this
example the mesh sizes used are, 10× 10, 18× 18, 34× 34, 66× 66.
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Figure 23: Pinched Cylinder with end Diaphragms: Rate of convergence of resultant bending
moment.

6.7 C- Channel Section

The last benchmark example involves a short C-beam which is fully clamped at one end
and is loaded by a vertical force at the other. The direction of the applied load is parallel to
the web of the C-Section. The geometric as well as material properties are given in Figure 24.
This test was proposed in [9] and it is a benchmark test where a drilling degree of freedom is
required. This is due to the fact that at the juncture the rotations associated with flexure will
induce in-plane twisting in the adjacent elements.

x

y

z

P

6

36

2
0.05

A

Figure 24: C-Section Channel Beam. E = 107, ν = 0.333, h = 0.05, P = 1

The computed displacements as well as the drill rotation of point A are listed in Table 13 and
Table 14 respectively.
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Elements 18× 5 36× 10 72× 20 144× 40 288× 80

LFS4-RCAI 1.1492 1.1540 1.1576 1.1604 1.1628
LFS4-RCFI 1.1491 1.1540 1.1576 1.1604 1.1628
LFS4-ERC 1.1477 1.1530 1.1569 1.1599 1.1624
LFS4-MP 1.1476 1.1530 1.1569 1.1599 1.1624
LFS4-MP+Allman 1.1493 1.1544 1.1585 1.1616 1.1638
LFS4+Allman 1.1118 1.1451 1.1565 1.1613 1.1639
QMHS4 1.1496 1.1542 1.1577 1.1605 1.1628
S4 1.1488 1.1538 1.1575 1.1603 1.1627
CQUAD4 1.1450 1.1544 1.1578 1.1605 1.1626

Table 13: C-Section Channel Beam: Vertical Displacement −u1 × 1000

Elements 18× 5 36× 10 72× 20 144× 40 288× 80

LFS4-RCAI 1.0178 1.0359 1.0585 1.0953 1.1508
LFS4-RCE7 1.0210 1.0348 1.0578 1.0951 1.1508
LFS4-ERC 1.0133 1.0333 1.0650 1.0951 1.1508
LFS4-MP 1.0139 1.0343 1.0650 1.1134 1.1872
LFS4-MP+Allman 1.0491 1.0874 1.1624 1.2912 1.4432
LFS4+Allman 0.9831 1.0684 1.1552 1.2814 1.4135
QMHS4 1.0270 1.0366 1.0586 1.0955 1.1513
S4 1.0239 1.0354 1.0577 1.0970 1.1617
CQUAD4 1.0227 1.0373 1.0565 1.0904 1.1423

Table 14: C-Section Channel Beam: Drill Rotation u6 × 104

The meshes used correspond to n×m elements where n is the number of elements in length
direction and m is the total number of elements through the width and height. The sensitivity
of the computed results with respect to the penalty parameter β is shown in Figure 25.

-5 0 5

log10( β)

-1.161

-1.16

-1.159

-1.158

-1.157

-1.156

-1.155

-1.154

D
is

p
la

c
e

m
e

n
t

×10 -3 Displacement Sensitivity

LFS4-ERC

LFS4-RCAI
(1e8, -4.99e-7)

(a) Vertical Displacement

-8 -6 -4 -2 0 2 4 6

log10( β)

1.06

1.07

1.08

1.09

1.1

1.11

1.12

D
ri
ll
 R

o
ta

ti
o

n
 [

ra
d

]

×10 -4 Drill Rotation Sensitivity

LFS4-ERC

LFS4-RCAI

(1e8, 2.8e-8)

(b) Drill Rotation

Figure 25: C-Section: Sensitivity of computed results with respect to penalty parameter β =
range(108, 10−8).

In Figure 26, the behaviour of the LFS4-ERC for various warping parameters is shown.
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Figure 26: C-Section: Sensitivity of LFS4-ERC with respect to penalty parameter β for various
warping parameters.

Lastly, the sensitivity of the computed solutions with respect to the twist parameter is plotted
in Figure 27.
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Figure 27: C-Section: Sensitivity of displacement with respect to the twist coefficient βt =
range(103, 10−8).

7 Conclusions

It has been demonstrated that by introducing a proper incompatible enhancement of the drill
rotation constraint the sensitivity of displacement and stress results on the penalty parameter
γ = β µ, which was present in earlier contributions, can be eliminated. This is valid for a wide
range of β, i.e., roughly, 1 ≤ β ≤ 106.
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Additionally, it has been shown that micropolar shell element formulations involving addi-
tional material parameters, which have to be determined by ad-hoc assumptions, do not yield
better results in terms of accuracy and convergence rate. Moreover, it is demonstrated that the
stiffness related to the nonsymmetric membrane strain plays the role of a penalty parameter
rather than that of a material parameter. None of the numerical examples indicate the necessity
of assuming nonsymmetric bending strains.

The new element formulation allows the application of nodal drill moments. In this con-
text, the first-order shear correction factor βw might deserve further investigation. There are
indications that it is related to a non-local characteristic of the material behaviour.
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Abstract. The DLR-F11 high lift configuration previously considered at the 2nd AIAA High
Lift Prediction workshop (HiLiftPW-2) consists of a wing-body configuration with a three-
element high lift system including slat tracks and flap track fairings. This test case has been
selected a “computational / meshing challenge” in the 4th International Workshop on High-
Order CFD Methods due to its geometrical and computational complexity. In this article, we
demonstrate the applicability of current grid generation technology (CENTAUR) to generate a
quadratic curved mesh for this configuration. Furthermore, we employ a high-order Discontin-
uous Galerkin discretization for the Reynolds-averaged Navier-Stokes (RANS) equations with
the Wilcox-kω turbulence model which is sufficiently stable to be applicable to this test case.
Finally, a 3rd-order Discontinuous Galerkin (DG) flow solution is computed on the quadratic
(3rd-order) computational mesh. The numerical results are compared to experimental data as
well as to computational results published in the HiLiftPW-2.
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1 INTRODUCTION

In recent years there has been significant progress in the development of curved grid genera-
tion as well as of high-order aerodynamic flow solvers, cf. the EU-projects ADIGMA [19] and
its successor IDIHOM [20], for example. Nevertheless, in terms of geometrical and aerody-
namic complexity the capabilities reached were still far from being applicable to ”real-world”
industrial test cases.

Particularly problematic was the generation of computational meshes sufficiently coarse to
be suited to higher order methods and the subsequent curving of these meshes for a higher
order approximation of curved wall boundaries, which is known to be particularly difficult in
the presence of the highly stretched mesh elements typically used in the boundary layer of high
Reynolds number aerodynamic flow simulations. There have been a few efforts to generate
high-order meshes for flow field computations as demonstrated in [7], [22], and [28]. The
majority of these existing methods start with a relatively coarse linear grid and insert the extra
points needed to convert each element to high-order. There have also been methods that start
with a curved, high-order surface mesh. This surface is then marched outwards in order to create
the volume elements. The robustness of both the conversion method and the marching process
is an issue in the vicinity of highly curved convex and concave regions within the geometry. A
primary issue for high-order meshes is to ensure validity of the generated elements [17]. Work
on creating high order elements only in curved regions of the geometry has also been studied
[18].

Also, the high-order flow solvers reached their limits in terms of the stability of the dis-
cretizations and the solvers employed. Much effort concentrated on the development and in-
dustrialization of high-order CFD methods [19, 20] as well as on comparing the methods in
the International Workshops on High-Order CFD Methods [25]. However, the configurations
treated were bound to low to medium complexity. More recently, Discontinuous Galerkin dis-
cretizations were applied to the Common Research Model (CRM) wing-body configuration
[6, 10] and to a simple 3D high lift configuration in [15]. Here, it was particularly important for
the stability of the discretization to use a discretization at the wall boundary which resembles
as closely as possible the discretization on interior faces, and to use an according discretization
of force coefficients to keep adjoint consistency [14].

The DLR-F11 high lift configuration previously considered at the 2nd AIAA High Lift Pre-
diction workshop [1] consists of a wing-body configuration with a three-element high lift sys-
tem including slat tracks and flap track fairings. This test case has been selected a ”computa-
tional / meshing challenge” in the 4th International Workshop on High-Order CFD Methods [16]
due to its geometrical and computational complexity.

In the current work, we give details on how we create a coarse linear mesh for this configu-
ration using the CENTAUR grid generator [5], and describe the algorithms developed to curve
the mesh with piecewise quadratic polynomials for a 3rd-order boundary approximation. Fur-
thermore, we describe the main ingredients of the discretization employed [14, 15] which we
found sufficiently stable to be applicable to a test case of this complexity. Finally, the 3rd-order
DG flow solution computed on the quadratic (3rd-order) computational mesh is compared to
experimental data [1] as well as to numerical results published in the HiLiftPW-2 [1].

2 LINEAR AND QUADRATIC GRID GENERATION

In order to generate curved meshes for high-order CFD simulations, two problems must be
solved. First, a coarse linear mesh must be generated that both sufficiently models the geometry
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(a) (b)

(c) (d) (e)

Figure 1: Sequence of steps used by CENTAUR to construct curved, high-order grids.

and ensures that any subsequent high-order mesh is not too big to use for simulations. Second,
a robust method to curve the linear mesh is required. This method must be able to work for
all types of elements. In particular, the method must be able to handle highly stretched mesh
elements used to model the boundary layer region in high Reynolds number aerodynamic flow
simulations. The method must also be able to handle highly curved surfaces in both convex and
concave regions.

For the purpose of this work, the CENTAUR grid generator [5] is used to create a quadratic
curved 3D hybrid grid. The basic algorithm used to create a curved, high-order mesh is as
follows:

(a) Generate a coarse, linear hybrid grid.

(b) Insert an additional midpoint for every grid edge and quadrilateral face.

(c) Use the CAD information to map each new boundary point onto the underlying CAD
surface.

(d) Adjust the position of the interior points based on the mapped position of the boundary
edge midpoints, in order to prevent self-intersecting grid elements and to ensure grid
validity.

First, a coarse linear 3D hybrid grid is created. CENTAUR allows for the mesh generation
process to be tuned so that fewer elements are created while still preserving the geometry.
For the surface mesh generation, a lower analytic curvature clustering is used along with a
larger maximum element size. Next, prisms or hexahedra generated in the boundary layer are
similarly adjusted to increase the first layer thickness in preparation for the added high-order
points. Then, tetrahedra are used to automatically fill the remainder of the domain matching the
length scales from both the surface mesh and the boundary layer mesh.

Second, the linear mesh is converted into a high-order mesh. As shown in Figure 1(b), new
mid-edge and mid-face points are added to all edges and quadrilateral faces in the linear mesh.
Any new point that is located on a boundary surface is then mapped onto the CAD surface using
the same geometry routines used during mesh generation to place points on the surface. At this
stage, the mesh may be invalid in convex curved regions as seen in Figure 1(c). While in other
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curved regions, the mesh point spacing may be valid but distorted after the mapping process is
completed. To correct both types of problems, the motion of the boundary points is smoothed
into the interior as shown in Figure 1(d).

After this process is completed, the grid quality and validity is evaluated using the volumes of
the complete elements and sub-elements formed using the points added in Step (b). To ensure
good quality, volume ratios of the elements and sub-elements are also used. If any element
violates the quality or validity measures, its points are adjusted to ensure the criteria are met.
This process iterates until the mesh meets the various criteria.

3 DG DISCRETIZATION OF THE RANS AND WILCOX k-ω EQUATIONS

In this section, we give details on the Discontinuous Galerkin discretization similar to that
previously developed in [14] and already applied to a simple 3D high lift configuration in [15].
In particular, we consider the Reynolds-averaged Navier-Stokes (RANS) equations and the
Wilcox k-ω turbulence model equations [26, 27],

∇ · (F c(u)−Fv(u,∇u)) = S(u,∇u) in Ω, (1)

where u = (ρ, ρv1, ρv2, ρv3, ρE, ρk, ρω̃)> is the vector of conservative variables, with ρ, E, k,
and v = (v1, v1, v3)>, denoting the density, specific total energy, turbulence kinetic energy, and
velocity vector, respectively. Similar to Bassi et al. [3] the equations are considered in terms
of the auxiliary variable ω̃ = lnω instead of the specific dissipation rate ω for a more moderate
near-wall behavior of the variable and for guaranteeing positivity of ω. Additionally, we apply
some realizability conditions for the turbulent stresses [3, 11]. For a detailed description of the
convective and viscous fluxes, F c(u) and Fv(u,∇u), and the source terms S(u,∇u) involved
in (1), and of the boundary conditions imposed on the boundary Γ = ∂Ω, we refer to [9, 13]. In
this work, adiabatic no-slip wall boundary conditions, v = 0, n · ∇T = 0, are imposed on the
wall boundary ΓW.

Let the domain Ω be subdivided into a shape-regular mesh Th = {κ} consisting of (possibly
curved) elements κ. Furthermore, let Vp

h be the finite element space consisting of discontinuous
vector-valued polynomial functions of degree p ≥ 0 on Th, then the Discontinuous Galerkin
discretization of (1) employed in this work is given by: Find uh in Vp

h such that∫
Ω

{(−F c(uh) + Fv(uh,∇huh)) : ∇hvh − S(uh,∇huh) · vh} dx

+
∑
κ∈Th

∫
∂κ

(
ĥh − σ̂hn

)
· vh ds+

∑
κ∈Th

∫
∂κ

(ûh − uh)⊗ n :
(
G>(uh)∇vh

)
ds = 0 (2)

for all vh ∈ Vp
h, where n|∂κ denotes the outward unit normal vector to the boundary ∂κ of

element κ. Here, the convective and diffusive numerical flux functions, ĥh and σ̂h, are ap-
proximations to the normal convective flux F c(uh) · n and the viscous flux Fv(uh,∇huh),
respectively. On an interior face ∂κ ∩ ∂κ′ between two neighboring elements κ, κ′ ∈ Th, the
numerical flux functions

ĥh = ĥ(uh,n) = ĥ(u+
h ,u

−
h ,n),

σ̂h = σ̂(uh,∇uh) = σ̂(u+
h ,u

−
h ,∇u

+
h ,∇u

−
h ),

(3)

connect the interior and the exterior traces, u+
h and u−h , and their derivatives,∇u+

h and∇u−h , of
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uh. On a boundary face ∂κ ∩ Γ 6= ∅, the numerical boundary flux functions,

ĥh|Γ = ĥΓ,h = ĥΓ(u+
h ,n),

σ̂h|Γ = σ̂Γ,h = σ̂Γ(u+
h ,∇u

+
h ).

(4)

depend on the interior trace u+
h , directly and/or through the boundary function uΓ(·) given by

uΓ(uh) = (uh,1, 0, 0, 0, uh,5, 0, uh,1ω̃wall)
> on ΓW, (5)

Here, ω̃wall is determined using a projection of the analytic ln(ω) near-wall behavior onto the
polynomial ansatz space in the elements at the wall [23]. Similarly, the vector-valued numerical
flux function ûh in (2) is an approximation to uh and is given by ûh = û(uh) = û(u+

h ,u
−
h )

on interior faces and by ûh|Γ = ûΓ,h = ûΓ(u+
h ) on boundary faces. Finally, G(u) de-

notes the homogeneity tensors defined by fvk (u,∇u) = Gkl(u)∂u/∂xl, k, l = 1, 2, 3, for
Fv(uh,∇huh) = (fv1 , f

v
2 , f

v
3 ). Assuming that the numerical fluxes ĥh and σ̂h are consistent,

then (2) is a consistent discretization of the flow equations (1), cf. [13, 14] for more details.

3.1 Numerical fluxes on interior faces

In the following, we give details on the numerical fluxes used on interior faces. For the con-
vective numerical flux ĥ a Roe flux is chosen based on the diagonalization of the full Jacobian of
the convective flux [24]. Furthermore, an entropy fix is employed similar to that of Harten [8].
Finally, the numerical fluxes for the diffusive terms are those of the BR2 scheme [3],

ûh = {{uh}}, σ̂h = {{G(uh)∇huh}} − δ(uh), (6)

where the penalization term δ(uh) is given by

δ(uh) = CBR2{{G(uh)L
e
0(uh)}}. (7)

Here {{τ}} = 1
2

(τ+ + τ−) denotes the standard mean used in the DG context, and Le0(uh)
denotes the local lifting operator, cf. [3, 14] for more details. Note that the penalization constant
CBR2 must be sufficiently large for stability [4] and is taken as the number of faces of an element.

3.2 Numerical fluxes on wall boundary faces

The discretization on the boundary is chosen as close as possible to the discretization em-
ployed on interior faces. In particular, we use the same numerical flux functions for defining
the numerical boundary fluxes as employed on interior faces, i.e., we consider

ĥΓ(u+
h ,n) = ĥ(u+

h ,u
−
Γ (u+

h ),n), ûΓ,h = {{uh}}Γ, σ̂Γ,h = {{F̃v(uh,∇uh)}}Γ − δ̃Γ(u+
h ), (8)

where the boundary mean value {{·}}Γ of uh is defined by {{uh}}Γ = 1
2

(
u+
h + u−Γ (u+

h )
)
, and

the wall exterior state u−Γ = u−Γ (u+
h ) is obtained by mirroring the interior state u+

h at the wall
boundary state uΓ(u+

h ) (cf. (5)) according to 1
2

(
u+
h + u−Γ (u+

h )
)

= uΓ(u+
h ). Furthermore, for

the BR2 scheme [3] the penalization term δ̃Γ in (8) is given by

δ̃Γ(u+
h ) = CBR2{{G̃(uh)L

e
Γ(uh)}}Γ = CBR2

2

(
G̃(u+

h )LeΓ(u+
h ) + G̃(u−Γ )LeΓ(u−Γ )

)
= CBR2{{G̃(uh)}}Γ L

e
Γ(u+

h ),
(9)
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where LeΓ(u) denotes the local lifting operator on the boundary with LeΓ(u+
h ) = LeΓ(u−Γ ), cf. [13,

14] for more details. Finally, the diffusive flux F̃v in (8) and the corresponding homogeneity
tensor G̃ in (9) is modified on the adiabatic walla boundary ΓW such that no heat flux is added,
corresponding to the adiabatic condition n · ∇T = 0, i. e.,

n · F̃v(u,∇u) = n ·
(
G̃(u)∇u

)
= (0, (τ n)1, (τ n)2, n · (τ v))>on ΓW. (10)

The boundary treatment of fluxes in (8) corresponds to introducing a ghost layer of elements
at the wall boundary and evaluating the discretization on the wall boundary like on interior faces.
Finally, (∇u)−Γ in {{F̃v(uh,∇uh)}}Γ = 1

2
(F̃v(u+

h ,∇u
+
h )+ F̃v(u−Γ , (∇u)−Γ )) is the wall exterior

gradient which might depend on the interior state and gradient but is chosen as (∇u)−Γ = ∇u+
h ,

for simplicity, which results in {{F̃v(uh,∇uh)}}Γ = {{G̃(uh)}}Γ∇u
+
h .

3.3 Evaluation of force coefficients

Let us consider the total drag and lift coefficients, CD and CL,

J(u) =

∫
ΓW

(pn− τ n) ·ψ ds =

∫
ΓW

(p ni − τijnj)ψi ds, (11)

where τ = (µ + µt)
(
∇v + (∇v)> − 2

3
(∇ · v)I

)
presents the stress tensor at the wall in-

cluding the viscous and turbulent viscosities µ and µt. Furthermore, ψ is given by ψd =
1
C∞

(cos(α), 0, sin(α))> or ψl = 1
C∞

(− sin(α), 0, cos(α))> for the drag and lift coefficient, re-
spectively, and α is the angle of attack. Finally, C∞ = q∞A, where q = 1

2
ρ|v|2 denotes the

dynamic pressure and A denotes a reference area and subscripts ∞ indicate freestream quanti-
ties.

Given that the numerical boundary fluxes ĥh|Γ and σ̂h|Γ are consistent, Jh(uh) defined by

Jh(uh) =

∫
ΓW

(
ĥΓ,h − σ̂Γ,hn

)
· ψ̃ ds

=

∫
ΓW

(
ĥ(u+

h ,u
−
Γ (u+

h ),n)− {{G̃(uh)}}Γ∇u
+
h + δ̃Γ(u+

h )
)
· ψ̃ ds.

(12)

with ψ̃ = (0, ψ1, ψ2, ψ3, 0)>, is a consistent discretization of the force coefficient J(u) in (11).
Finally, the discretization of the force coefficients according to (12) is required for a discretiza-
tion of (1) to be adjoint consistent [14].

3.4 Evaluation of cp- and cf -values

Related to the evaluation of integral quantities (the force coefficients) is the evaluation of
local quantities at the wall boundary like surface pressure and skin friction as involved in cp-
and cf-distributions. The local cp- and cf-values at the wall boundary ΓW are given by

cp = cp(u) =
p(u)− p∞

1
2
ρ∞v2

∞
, cf = cf(u,∇u) =

τW (u,∇u)
1
2
ρ∞v2

∞
, (13)

where τW = −(τ n) · t denotes the viscous stress at the wall, and τ = µS is the viscous stress
tensor defined in Section 3.3. Here, we recall that n is the unit outward normal vector to the
boundary Γ of the (fluid dynamics) computational domain Ω; thus the vector n points into the
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airfoil. Furthermore, t denotes the unit tangential vector to Γ parallel to the flow direction off
the wall and directed such that t · v∞ > 0. Similar to evaluating the force coefficients (11)
based on (12), the local cp- and cf-values (13) are evaluated based on (cf. [14])

cp,h = cp,h(uh) =
ĥΓ,h · ñ− p∞

1
2
ρ∞v2

∞
, cf,h = cf,h(uh,∇uh) = −

(
σ̂Γ,hn

)
· t̃

1
2
ρ∞v2

∞
, (14)

with ñ = (0, n1, n2, n3, 0)> for n = (n1, n2, n3)>, and t̃ = (0, t1, t2, t3, 0)> for t = (t1, t2, t3)>.

4 APPLICATION TO THE DLR-F11 HIGH LIFT CONFIGURATION

In the 4th International Workshop on High-Order CFD Methods (HioCFD-4), the DLR-F11
high lift configuration is considered a ”computational/meshing challenge”. This configuration
has already been extensively analyzed for various configuration detail levels in the 2nd AIAA
High Lift Prediction Workshop (HiLiftPW-2). In HioCFD-4, the so-called Config 4 detail level
is considered which includes slat tracks and flap track fairings but no slat pressure tube bundles.
This configuration is considered at Mach numberM = 0.175, Reynolds numberRe = 15.1·106

based on the mean aerodynamic chord (MAC) of 347.09mm, and angle of attack α = 7◦. These
are the flow conditions of one of the high Reynolds number cases of Case 2b in HiLiftPW-2.

4.1 Linear and quadratic mesh generation process

For the DLR-F11 configuration under consideration, first a linear hybrid mesh has been
generated using the CENTAUR grid generator. To reduce the number of surface faces, the
curvature clustering was lowered to 6 compared to a typical value of 12-20. The curvature
clustering represents the number of points used to model a full circle. To further reduce the
number of surface faces, the faces on the wing and high lift surfaces were stretched in the
spanwise direction by a factor of 3 near the leading and trailing edges. To properly model the
boundary layer region, a 20-layer prismatic mesh was used with the initial layer thickness set
to 0.003mm and the stretching set to 1.44. To decrease the number of tetrahedra generated, a
tetrahedral stretching value of 2.15 was used. Sources were also used to locally add additional
elements where needed to model complex geometric regions like the intersection between the
slat and slat tracks.

With 2 365 919 prisms, 42 603 pyramids and 1 116 213 tetrahedra, in total 3 524 735 elements
and 1 427 392 nodes, the linear mesh is rather coarse considering the complexity of the config-
uration. In a second step, also using the CENTAUR grid generator, the wall boundary faces
of this mesh have been curved to create a quadratic, 3rd-order boundary approximation, and
boundary as well as interior elements have been curved in order to avoid crossover of element
faces. The high-order mesh contains the same number of elements and has 11 237 409 nodes.
Figure 2 shows the quadratic mesh for the DLR-F11 configuration including curved surface
faces on the fuselage. Figure 3 shows the surface mesh for both the linear and quadratic meshes
in the region of the outboard flap track fairing. Note the curved surface elements on the trailing
edge of the flap track fairing and its lower surface. Figure 4 shows a cut through both the linear
and the quadratic hybrid meshes around the slat. The quadratic mesh clearly shows the curved
prisms in the boundary layer. Both the first layer elements and elements farther away from the
surface have been curved to ensure a good quality mesh in this region. Finally, Figure 5 shows
a cut through the prism layers around the slat and leading edge of the main wing and their con-
nection to the tetrahedral farfield mesh. Note the relatively smooth surface of the slat and main
wing despite the relatively coarse surface mesh in this region of high curvature.
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Figure 2: Quadratic mesh for the DLR-F11 configuration.

(a) (b)

Figure 3: Outboard flap track fairing surface mesh: (a) the linear mesh, and (b) the quadratic mesh.

(a) (b)

Figure 4: Hybrid mesh cuts in the slat region: (a) the linear mesh, and (b) the quadratic mesh.

Figure 5: Cut throught the prism layers around the slat and the leading edge of the main wing.
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4.2 Flow solution process

The DG solver PADGE [12] employs the discretization of the RANS and Wilcox-kω equa-
tions as described in Section (3). The discrete equations are solved fully implicitly using a lin-
earized Backward-Euler method. The CFL number of this pseudo-time iteration method starts
with a low value and increases as the nonlinear residual decreases. Divergent iteration steps
are (automatically) repeated with half the CFL number or even with a lower factor if required.
As the solution continues to converge the CFL reduction factor is subsequently increased to
unity again. This way, the solver can overcome difficult stages in the solution process like the
transient phase but still benefits from (relatively) high CFL numbers in the final stage of the so-
lution process. The linear systems of the implicit iteration scheme are solved using the GMRES
method and the ILU(0) preconditioner as offered by the PETSc library [2] which runs within
a block-Jacobi iteration in parallel. The Jacobian matrices required in the implicit scheme are
hand-differentiated and complete in the sense that the derivatives of all terms are included and
all equations are fully coupled.

On the mesh generated as described in Sections 2 and 4.1 we first solve the DG discretiza-
tion (2) for the polynomial degree p = 0, and subsequently for p = 1 and p = 2. The solver for
the p = 0 solution starts from freestream values, the solver for each of the p > 0 solutions starts
from the converged p−1 solution. With this p-sequencing the solver for each polynomial degree
has a sufficiently good initial guess to start the solution process with. We choose the number of
quadrature points per elements depending on the polynomial degree. For a polynomial degree
p we use p+ 2 Gaussian quadrature points in each dimension, i. e., (p+ 2)3 per element. Before
the PADGE solver starts solving it checks the regularity of the mesh by evaluating the Jacobian
determinants1 at the quadrature points for the particular polynomial degree. As the degree in-
creases the number of quadrature points per element increases and the coverage of the element
by checking the determinants in quadrature points is increased. Thus, a curved mesh which
might occur “discretely regular” for one specific degree (and thus quadrature formula) might
turn out to be irregular if checked at the quadrature points involved for a higher polynomial
degree.

degree # DoFs/eqn # quadrature # irregular worst # neg.
points/elem. elements Jac./element

0 3 524 735 8 0 0/8
1 14 098 940 27 0 0/27
2 35 247 350 64 14 2/64

Table 1: PADGE’s “discrete regularity” check of the mesh (with 3 524 735 elements) for p = 0, p = 1, and p = 2.

The related data is collected in Table 1 for p = 0, p = 1, and p = 2. For each of the
polynomial degrees it includes the number of degrees of freedoms per equation, the number
of quadrature points per element, the number of irregular elements when checking the Jaco-
bian determinants in the quadrature points, and finally the worst/highest number of quadrature
points per element at which the Jacobian determinant is negative. Here, we see that the mesh is
“discretely regular” when checking in the quadrature points of the discretization of polynomial
degrees p = 0 and p = 1 as in each of the quadrature points involved the Jacobian determinant

1Jacobian determinant: The determinant of the derivative of the mapping function from the reference element
to the element in physical space.
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is positive. Furthermore, we see that for p = 2 there are 14 irregular elements. However, in
these elements the Jacobian determinants are negative in at most 2 out of 64 quadrature points.
Depending on the sensitivity of the discretization to irregular elements this “slightly irregular”
mesh might be acceptable to the flow solver or not.

On this mesh we computed p = 0, p = 1 and p = 2 (i. e., 1st-, 2nd-, and 3rd-order) flow
solutions. For each of the polynomial degrees the (l2-norm of the) nonlinear residual (vector)
is reduced by a factor of 10−10 relative to the freestream residual for that polynomial degree.
Then the flow solution is transferred to (embedded into) the function space of the next higher
polynomial degree, and the solution process is continued. Figure 6 plots the convergence history
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Figure 6: DLR-F11, Config 4: M = 0.175, Re = 15.1 ·106, α = 7◦: Solver convergence of the nonlinear residual
vs. the number of fully implicit iteration steps for the p = 0, p = 1, and p = 2 flow solutions.

of the (l2-norm of the) nonlinear residual (vector) normalized by the freestream residual for
each polynomial degree. The p = 0 solution for which several of the physical and discretization
terms vanish is converged in a very small number (17) of iterations steps. The p = 1 solver
does not start from freestream (corresponding to a normalized residual of one) but from a lower
residual as it uses the p = 0 solution as initial solution. The p = 1 solution requires a relatively
large number (339) of iteration steps. This is a typical effect in p-sequencing on fine meshes
where the p = 1 solver starts with a rather bad p = 0 solution as initial guess. In the convergence
history of the p = 1 solution there are several stages where the convergence rate is reduced to
almost zero. Here, the solver experienced problems and decided to recompute some iteration
steps with a decreased CFL number. Given that in this computation 45 out of the 339 iteration
steps diverged/failed and needed to be recomputed the initial CFL number and the settings of
its subsequent increase seemed to be chosen too high. Even close to the 10−10 convergence
criterion the solver experienced problems which is why the computation had been restarted to
check whether the nonlinear residual would converge below 10−14, and it actually did after 87
further steps 18 of which were recomputed. Overall, the CFL number in the p = 1 solution
process started with 5 and increased to 500 until residual 10−10 and over 40 000 until residual
10−14. Finally, the p = 2 solver took the p = 1 solution as initial guess and converged the
nonlinear residual below the prescribed 10−10 tolerance. Here, only 24 out of 254 nonlinear
iteration steps failed and needed to be recomputed with a decreased CFL number. Here, the
CFL number started at 10 and increased up to 200.
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Figure 7: DLR-F11, Config 4: M = 0.175, Re = 15.1 ·106, α = 7◦: cp-distributions of the 3rd-order DG solution
viewed from above and below the configuration.

(a) (b)

Figure 8: DLR-F11, Config 4: M = 0.175, Re = 15.1 · 106, α = 7◦: (a) cf -distribution and streamlines of the
3rd-order DG solution on the main wing and flap. (b) Pressure tap locations in the experiment (figure from [1]).

The cp-distribution of the resulting p = 2 flow solution is shown in Figure 7. Here, we
recognize the complexity of the flow which passes the slat, the slat tracks, the upper wing or
the lower wing with the flap track fairings, and the flap. Furthermore, Figure 8(a) shows the
cf -distribution and cf -streamlines zoomed in on the flap and parts of the main wing. Here, we
see that the flow stays attached on the main wing as well as on most of the flap. However, close
to the flap track fairings (located below the flap) there are small separation regions on the upper
side of the flap. Furthermore, there is a larger separation region on the flap near its tip.

Figure 8(b) shows the location of the pressure taps in the experimental setup. Slices of the
cp-distribution at the pressure tap locations PS1, 4, 6, and 10 (at the y-positions η = 0.150,
0.449, 0.681, and 0.891, respectively) are shown in Figure 9 compared to the experimental data
at similar flow conditions. Here, we see that the cp-distribution matches very well that of the
experiments, not only on the main wing but also on the flap and the slat.
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(a) (b)

(c) (d)

Figure 9: DLR-F11, Config 4: M = 0.175, Re = 15.1 ·106, α = 7◦: cp-distributions of the 3rd-order DG solution
compared to experimental data (at M = 0.176, Re = 15.1 · 106, α = 7.03938) [1]. cp-slices at pressure tap
locations (a) PS01 at η = 0.150, (b) PS04 at η = 0.449, (c) PS6 at η = 0.681, and (d) PS10 at η = 0.891.

Finally, Table 2 collects the integrated forces. Here we see that the force coefficient values
for the lift, drag and moment coefficients, CL, CD, and CM , are quite close to the experimental
data. Furthermore, they are in a range similar to that obtained in RANS-SA computations during
the HiLiftPW-2, with a slightly larger deviation in the moment but closer to the experiments in
the drag coefficient.

5 CONCLUSIONS AND OUTLOOK

The computational/meshing challenge of the DLR-F11 configuration which is “close to in-
dustrial needs” was considered to improve and challenge current high-order mesh generation
and solver techniques. For this complex geometry, a quadratic curved mesh has been generated
using the CENTAUR grid generator [5]. On this 3rd-order mesh a fully turbulent 3rd-order DG
solution to the RANS and Wilcox-kω turbulence equations has been obtained using the fully im-
plicit DLR-PADGE solver [12]. The numerical results compare very well to experiments, with
particularly well matching cp-distributions, and good approximations were obtained to global
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CL CD CM
Exp. 1.9270 0.1615 -0.5390
TAU? 1.8794 0.1681 -0.5647

-2.5% +4.1% -4.8%
PADGE 1.8781 0.1649 -0.5704

-2.5% +2.1% -5.8%

Table 2: DLR-F11, Config 4: M = 0.175, Re = 15.1 · 106, α = 7◦: Force coefficients of the p = 2 flow solution
compared to HiLiftPW-2 results (? Rudnik, Melber-Wilkending (DLR), RANS-SAO, 2013) and experiments [1].

force coefficients with deviations in the range of previous HiLiftPW-2 results.
This work can be considered as one of possibly many steps towards offering a complete and

automated chain of high-order grid generation and high-order aerodynamic CFD solver tech-
nology. At the beginning of this work curved grids were generated for this complex geometry
which included a large number (> 100) of heavily irregular elements. In contrast to that the
grid on which a 3rd-order solution could finally be computed had only a few (in the range of
10) elements left which were “slightly irregular” only. Given this it is clear that the high-order
grid generation took a significant step forward. Nevertheless, further steps are required in this
direction. First of all, the final goal would be that all elements in a high-order mesh are regular;
in a first step not necessarily “regular” as can be analyzed with a validity check based on Bézier
functions [17], but “discretely regular” in the sense that the Jacobian determinants are positive
at least in each of the quadrature points involved in a (quadrature-based) discretization of a
specific polynomial degree. Secondly, meshes which are generated to be used with high-order
methods, and which will be taken as starting point for local mesh (or hp-)refinement [18, 21]
should be as coarse as possible but clearly still sufficiently fine to capture the geometry. On this
fine line of ostensibly conflicting requirements (coarse but still sufficiently fine) it is particular
important that mesh generation capabilities are stable and deliver high quality elements even in
case of particularly coarse meshes. Finally, curved grid generation should not stop at quadratic
boundary approximation. The difference between using quadratic curved meshes as compared
to using linear (straight-sided) meshes is quite large and can be expected to be larger than
the difference between e. g., a quadratic and a cubic boundary approximation. Nevertheless, a
boundary approximation higher than quadratic – even though introducing additional complexity
in the grid generation process – would increase the quality of the boundary approximation in
case of a fixed mesh size or would allow coarser meshes with a similar boundary approximation
quality.

No doubt, the complexity of the configuration considered stressed the PADGE solver [12]
close to its current limits. Using a discretization on the boundary which resembles the dis-
cretization employed on interior faces as close as possible, and thus introducing a level of
numerical diffusion which is equal/similar throughout the domain until (and including) the
boundary, is – to our experience [15] – an essential ingredient to stabilize flow computations
on geometries of this complexity. With an appropriate discretization of force coefficients the
particular discretization employed on the boundary does not break adjoint consistency [14], in
which case corresponding discrete adjoint solutions can be expected to be smooth. Furthermore,
evaluating local quantities like surface pressure and skin-friction at the wall accordingly, allows
to obtain accurate and smooth cp- and cf -distributions [14] even in our case of using numerical
flux functions at the wall boundary. A fully implicit solver has been used, with solver recovery
techniques enabled which recompute divergent/failed steps with a lower CFL number. Further
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development of the high-order discretization and solvers are still required. While PADGE can
be considered a research code, not particularly trimmed to efficiency or scalability, high-order
DG methods are currently being implemented alongside cell-centered 2nd-order Finite Volume
methods into the new DLR flow solver Flucs dedicated (amongst others) to future industrial use.
Significant effort will be required to make high-order DG methods readily available to industry
for configurations of this complexity, at cruise as well as at high lift conditions.
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Abstract. SPARK-LES is a Large-Eddy Simulation (LES) code currently under development
at the Italian Aerospace Reseacrh Center (CIRA). It solves the fully compressible Navier-
Stokes equations discretized on multi-block, structured grids according to the Finite-Volume
(FV) method, using different high-order schemes. In this work a detailed comparison between
the schemes is presented in the simulation of a Taylor-Green Vortex in order to assess their
accuracy and performances. Temporal behaviour of kinetic energy decay rate and enstrophy is
given at different mesh resolutions, showing a good agreeement with DNS results at finer grids.
Analysis of power spectra confirms the universal energy cascade behavior.
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1 Code description

SPARK-LES is a Large-Eddy Simulation (LES) code currently under development at CIRA
in the framework of the HYPROB Program, funded by the Italian Ministry of Research [1]. The
code shall be an advanced tool with high-fidelity numerical methods and state-of-the-art mod-
elling, and able to reproduce the operation of a liquid-rocket thrust chamber at high pressures.
This feature will support design of critical components of the chamber, like injectors, cooling
channels, etc; and analysis of unsteady phenomena of combustion instabilities.

SPARK-LES solves the fully compressible Navier-Stokes equations discretized on multi-
block, structured grids according to the Finite-Volume (FV) method. Explicit second- and
fourth-order (2E, 4E), as well as fourth- and sixth-order compact (4C, 6C) cartesian-like op-
erators are available for reconstruction of convective fluxes, whereas an explicit second-order
scheme is used for diffusive fluxes [2]. The general interpolation operator can be expressed, for
a generic variable ϕ, as

αϕ̃i−3/2 + ϕ̃i−1/2 + αϕ̃i+1/2 =
NC∑
j=1

γj
(
ϕ̄i−j + ϕ̄i+j−1

)
, (1)

where ϕ̃ and ϕ̄ are the face- and cell-averaged values of ϕ, respectively.
The tridiagonal system arising from Eq. (1) when α ̸= 0 is solved by means of a Thomas

algorithm. In the case of a multi-block domain, an overlap method is adopted [3]: for each
block, an enlarged linear system is solved by overlapping a certain number of neighbour cells
from adjacent blocks (in this study 4 cells are used, which are a good tradeoff between par-
allel communication overhead and scheme accuracy). The boundary points at block-to-block
interfaces are evaluated by a high-order centered approximation formula.

Time-advancement is obtained by means of explicit Runge-Kutta schemes of arbitrary num-
ber of stages. SPARK-LES features an MPI parallel implementation based on the multi-block
partitioning of the computational domain. The MPI calls have been carefully profiled in order
to minimize communication overhead. The code makes full use of Fortran 90 capabilities, in
terms of dynamic allocation, highly modular architecture and massive use of pointers for CPU
efficiency and memory usage optimization.

2 Case summary

The Taylor-Green Vortex problem is defined on a triperiodic cube with sides of 2π, L = 1
and the following initial conditions

ux(x, y, z) = U0 sin(x/L) cos(y/L) cos(z/L), (2)

uy(x, y, z) = −U0 cos(x/L) sin(y/L) cos(z/L), (3)

uz(x, y, z) = 0, (4)

p(x, y, z) = p0 +
ρ0U

2
0

16
[cos(2x/L) + cos(2y/L)] [cos(2z/L) + 2] (5)

As time advances, the initial distribution of vorticity is subject to vortex-stretching, thus gener-
ating small scales and eventually causing the vortices to break into turbulence. Since there is no
forcing to sustain the turbulent motion, a decay is observed after transition. The incompressible
problem is entirely governed by the Reynolds number Re = ρU0L

µ
, equal to 1600. However,
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Figure 1: Kinetic energy dissipation rate as a function of the non-dimensional time t∗ for second-order (left) and
fourth-order (right) explicit schemes.
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since the code solves the compressible flow equations, the other dimensional parameters have
been set to yield a nearly incompressible condition, i.e. M = 0.1. The ideal gas equation of
state is used, along with a constant Prandtl number Pr = 0.71. The domain has been dis-
cretized by a uniform mesh of increasing resolution, 643, 1283 and 2563 cells, divided in 64
equally-sized blocks. The meshes are regular cartesian grids and have been generated by an in-
house tool. In this study, explicit second- and fourth-order and compact fourth- and sixth-order
schemes are used. The coefficients of Eq. (1) are γ1 = 1/2 for the explicit second-order scheme
(α = 0, NC = 1), γ1 = 7/12 and γ2 = −1/12 for the explicit fourth-order scheme (α = 0,
NC = 2), γ1 = 3/4 for the fourth-order compact scheme (α = 1/4, NC = 1), and γ1 = 29/36
and γ2 = 1/36 for the sixth-order compact scheme (α = 1/3, NC = 2). Time-advancement is
performed using a third-order Runge-Kutta scheme with CFL = 0.6. No artificial dissipation or
filters of any type are used. The computations were run on the CIRA cluster FLAME, equipped
with Intel Xeon E5-2680 @2.7 GHz processors. All simulations have been carried over 64 MPI
nodes, assigning one block to each node. Results from TauBench runs gave an average time of
7.344 s.

3 Results

Figures 1 and 2 show the time-evolution of the global kinetic energy dissipation rate

ε =
d

dt

1

ρ0Ω

∫
Ω
ρ
uiui

2
dΩ (6)

for different schemes and for three grid resolutions. The time t∗ is adimensionalized by means
of L and U0. A good grid convergence is observed in all cases. The finest grid is in excellent
agreement with the reference solution. The coarse grid shows an oscillatory behavior probably
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Figure 2: Kinetic energy dissipation rate as a function of the non-dimensional time t∗ for fourth-order (left) and
sixth-order (right) compact schemes.

0 5 10
t*

0.0

0.5

1.0

1.5

ε∗

64
3

128
3

256
3

Ref

.10
-2

0 5 10
t*

0.0

0.5

1.0

1.5

ε∗

64
3

128
3

256
3

Ref

.10
-2

due to inadequate resolution as the flow undergoes creation of smaller scales. The integrated
enstrophy

ζ =
1

ρ0Ω

∫
Ω
ρ
ωiωi

2
dΩ (7)

is also considered: this is as an indirect measure of the dissipation rate, through the relation
εζ = 2 µ

ρ0
ζ . The time-evolution of εζ is shown in Figs. 3 and 4. For the finest resolution, good

agreement is observed also for the enstrophy-based dissipation rate, hence no significant spuri-
ous dissipation is added to the solution and turbulent scales are well resolved by the numerical
scheme. At lower resolutions, the enstrophy-based dissipation rate is lower than the kinetic
energy dissipation rate, suggesting that there are numerical dissipation sources [4].

Contours of the vorticity norm on a subset of the plane x = −πL at t∗ = 8 are shown in
Figures 5 and 6. While the lowest grid resolution captures only the concentration of vorticity,
the main structures of the shear layer are described increasingly well as the mesh is refined. The
result on 2563 cells shows a satisfactory agreement with the reference solution [5]. Although
the presence of spurious secondary structures is still observed, the vorticity contours are well
defined for high order (> 2) schemes, showing adequate resolution.

Kinetic energy spectra are defined as

P (k) =
1

2

(
ũxũ

∗
x + ũyũ

∗
y + ũzũ

∗
z

)
, k =

√
k2
x + k2

y + k2
z (8)

being ũi (i ∈ {x, y, z}) the 3D discrete Fourier transform of the i-th velocity component ui.

ũi(kx, ky, kz) =
1

N3

N−1∑
p=0

N−1∑
q=0

N−1∑
r=0

ui(xp, yq, zr)

· exp (−ikxxp) exp (−ikyyq) exp (−ikzzr) (9)
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Figure 3: Enstrophy-based dissipation rate as a function of the non-dimensional time t∗ for second-order (left) and
fourth-order (right) explicit schemes.
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and the wavenumbers are limited by the condition |k| < πN/L, being N3 the number of cells
in the domain. They give a precise idea of the energy scale behavior. Figures 7 and 8 show that
the spectra are substantially independent of the scheme giving the expected universal behavior
at finer grids. The lowest resolution shows significant pile-up of energy at higher wavenumbers
due to the accumulation of aliasing errors. The pile-up disappears as the number of mesh points
is increased.

Simulation times are reported in Table 1. A decrease of performance is present in parallel
runs due to the communication overhead, increasing with the number of layers used for different
schemes (2E : one layer; 4E : two layers; 4C and 6C : four layers).
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Figure 4: Enstrophy-based dissipation rate as a function of the non-dimensional time t∗ for fourth-order (left) and
sixth-order (right) compact schemes.
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Table 1: TauBench-normalized costs to integrate until t∗ = 10. MPI and serial refer to runs over 64 and single
node. Serial runs have been verified to show about same execution time for all the schemes.

N Scheme Total Work Units
MPI Serial

64 2E 1180

942
64 4E 1420
64 4C 1626
64 6C 1662

128 2E 20945

15125
128 4E 23571
128 4C 25633
128 6C 25978
256 2E 311457

243567
256 4E 352837
256 4C 380245
256 6C 382699
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Figure 5: Contour of dimensionless vorticity norm L
U0

∥ω∥ = 1, 5, 10, 20, 30 in a subset of the periodic face
x
L = −π at time t∗ = 8 on the three grids. Comparison between reference results in [5] (red) and SPARK-LES
results (black) for second-order (left) and fourth-order (right) explicit schemes.
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Figure 6: Contour of dimensionless vorticity norm L
U0

∥ω∥ = 1, 5, 10, 20, 30 in a subset of the periodic face
x
L = −π at time t∗ = 8 on the three grids. Comparison between reference results in [5] (red) and SPARK-LES
results (black) for fourth-order (left) and sixth-order (right) compact schemes.
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Figure 7: Power spectrum E∗(k) for second-order (left) and fourth-order (right) explicit schemes.
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Figure 8: Power spectrum E∗(k) for fourth-order (left) and sixth-order (right) compact schemes.
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Abstract. The paper deals with symmetric structures made of nonlocal elastic materials.
In particular, it refers to a nonlocal elastic strain integral constitutive model. In this context,
in contrast to what happens in local elasticity, the solution obtained by analysing a standard
symmetric portion of the structure leads to incorrect results. This drawback is due to the loss
of nonlocal effects induced on the selected symmetric portion by the removed portion. To re-
cover the mechanical equivalence with the original (entire) structure an enlarged symmetric
model has to be considered together with the application of appropriate boundary conditions,
hereafter discussed with the aid of a numerical example.
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1 INTRODUCTION

Many structural/mechanical problems are characterized by being symmetric in terms of ge-
ometry, material properties and boundary conditions. As well known, the presence of symme-
tries can drastically simplify the solution of such problems, halving or more the computational
effort related to their analysis.

In the context of simple (local) materials the symmetric portions of a structure to be analyzed
and the appropriate boundary conditions that have to be applied along the lines of symmetry
are clearly identified. The solution computed on a reduced symmetric portion, once mirrored,
gives the correct solution for the entire structure. The same cannot be asserted for symmetric
structures made of nonlocal materials for which the constitutive law at a given point involves
weighted averages of a state variable over a certain neighbor of the point [1]. The wideness
of this zone is related to an internal length material scale parameter. For such structures the
removal of one or more symmetric portions implies the loss of the nonlocal effects exerted by
the removed portions on the one selected for the analysis.

The present paper suggests two possible remedies in order to obtain the expected (correct)
solution of a nonlocal symmetric problem by recovering the missing nonlocal effects; precisely:

i) an enlarged symmetric model, whose dimension is related to the internal length material
scale, has to be considered;

ii) appropriate (smeared) boundary conditions have to be applied to the above mentioned
enlarged model.
Although the arguments developed seem to be of general validity in the context of nonlocal
elasticity, in the present paper they are referred to a nonlocal approach of integral type known
as strain-difference-based model [2] and the presented numerical example is solved by means
of a nonlocal finite element method promoted by the authors [3].

2 THE THEORETICAL FRAMEWORK

2.1 The constitutive model

This paper considers the nonlocal integral elasticity model theorized by Polizzotto et al. in
[2]. The quoted model, known as strain-difference-based model, proposes the following stress-
strain constitutive relation:

σ(x) = D(x) : ε(x)− α
∫
V

J (x,x′) : [ε(x′)− ε(x)] dx′ ∀ (x, x′) ∈ V, (1)

in which the stress is conceived as the sum of two contributions, the first is the one of the
classical elasticity, while the second (integral) contribution is of nonlocal nature involving the
nonlocal tensor J (x,x′) and the strain difference field ε(x′) − ε(x). The nonlocal tensor
J (x,x′) is defined as:

J (x,x′) := [γ(x)D(x) + γ(x′)D(x′)] g(x,x′)− q(x,x′) ∀ (x, x′) ∈ V, (2)

with:
γ(x) :=

∫
V

g(x,x′) dV ′; (3)

q(x,x′) :=

∫
V

g(x, z)g(x′, z)D(z) dV z. (4)
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In the above equationsD(x) is the symmetric and positive definite elastic moduli tensor, while
g(x,x′) is a positive scalar attenuation function depending on the internal length material scale,
say `, as well as on the Euclidean distance between points x and x′ in V . The attenuation
function assigns a weight to the nonlocal effects induced at the field point x by a phenomena
acting at the source point x′. This function has a peak at x ≡ x′ and rapidly decreases with
increasing distance, becoming practically null beyond the so-called influence distance, say LR

which is a multiple of `. It is worth noting that the model of Eq.(1) possesses, beside `, a second
material model parameter, α, which controls the proportion of the nonlocal contribution. Both
material parameters ` and α should be experimentally determined.

2.2 The NL-FEM formulation

Let us consider a nonlocal elastic body occupying a volume V whose boundary surface is S.
The body is subjected to body forces b (x) in V and surface tractions t (x) on St. Kinematic
boundary conditions u (x) = ū (x) are also specified on Su = S−St. Moreover, the governing
constitutive relation is the one given by Eq.(1). The pertinent boundary value problem is gov-
erned by the standard equilibrium and compatibility equations together with the stress strain
relation (1). Following Polizzotto et al. [2] and Fuschi et al. [3], it can be shown that the
nonlocal total potential energy functional associated to such nonlocal boundary value problem
can be written as:

Π [u(x)] :=
1

2

∫
V

∇u(x) : D(x) : ∇u(x) dV +

+
α

2

∫
V

∇u(x) : γ2(x)D(x) : ∇u(x) dV +

− α

2

∫
V

∫
V

∇u(x) : J (x,x′) : ∇u(x′) dV ′ dV +

−
∫
V

b(x) · u(x) dV −
∫
St

t(x) · u(x) dS.

(5)

Grounding on Eq.(5) a nonlocal finite element formulation can be obtained from the following
discretized form of functional Π:

Π [dn] =
1

2

Ne∑
n=1

dT
n k

loc
n dn +

α

2

Ne∑
n=1

dT
n k

nonloc
n dn +

− α

2

Ne∑
n=1

Ne∑
m=1

dT
n k

nonloc
nm dm −

Ne∑
n=1

dT
n fn,

(6)

where dn and dm are the nodal displacements vectors of finite elements #n and #m respec-
tively, fn is the equivalent nodal forces vector, kloc

n denotes the local element stiffness matrix,
while knonloc

n and knonloc
nm are the element nonlocal stiffness matrices. Finally, Ne is the number

of finite elements in which V has been subdivided.
With reference to Eq.(6) the following positions hold true:

kloc
n :=

∫
Vn

BT
n (x)D (x)Bn(x) dVn; (7)

knonloc
n :=

∫
Vn

BT
n (x) γ2(x)D (x)Bn(x) dVn; (8)
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knonloc
nm :=

∫
Vn

∫
Vm

BT
n (x)J (x,x′)Bm(x′) dVm dVn; (9)

fn :=

∫
Vn

NT
n (x) b(x) dVn +

∫
St(n)

NT
n (x) t(x) dSn. (10)

In the above expressions Nn(x) and Bn(x) denote the matrices of the n-th element shape
functions and their Cartesian derivatives, respectively.
It is worth noting that matrix knonloc

n accounts for the influence exerted on the n-th element by
the nonlocal diffusive processes over the whole domain and this by the presence of γ2(x); ma-
trix knonloc

nm accounts explicitly for the nonlocal effects exerted by the m-th element on the n-th
one and this by the presence ofBn(x) andBm(x′) related to the elements #n and #m, respec-
tively. knonloc

nm is a set of nonlocal matrices pertaining to element #n, precisely: a self-stiffness
matrix, obtained for m = n, plus all the cross-stiffness matrices given by m = 1, 2, ..., Ne with
m 6= n.
Following the standard rationale of the FEM, Eq.(6) can be rewritten in terms of global DOFs
and by minimization would furnish the solving global linear equation system, (see [3] for more
details).

3 A SYMMETRIC NONLOCAL SQUARE PLATE

As already asserted in the introductory section, the analysis of a symmetric structure made of
a nonlocal elastic material does not lead to a correct solution when a standard symmetric portion
of the structure is considered. This assertion appears now more evident if the implications given
by the constitutive assumption of Eq.(1) are considered. The boundary zone adjacent to the
symmetry line and belonging to the removed symmetric portion affects the mechanical behavior
of its mirror reflection on the portion to be analyzed. The dimension of the quoted boundary
zone is related to the influence distance LR within which all the nonlocal effects are active.
With the aid of the following numerical example the effects on the solution due to nonlocality
will be highlighted, together with the remedies proposed to recover the correct solution.
Let’s consider the nonhomogeneous square plate shown in Fig.1a having side length equal to
5 cm and thickness t equal to 0.5 cm. The plate is made up of a nonlocal elastic material for
which the parameter ` is set equal to 0.1 cm, while the parameter α is set equal to 50. A central
square part of the plate, of sides a = 1 cm, has Young’s modulus E1 = 84 GPa while the
remaining part has Young’s modulus E2 = 260 GPa; a Poisson’s coefficient ν = 0.2 is assumed
for the whole structure. The plate is fixed at the left edge (i.e. at x = 0 cm) and it is subjected
to a uniform prescribed displacement ūx = 0.001 cm at the opposite edge (x = 5 cm). In the
performed analysis a normalized bi-exponential attenuation function is considered in the form:

g(x,x′) :=
1

2π`2t
exp (−|x− x′|/`) . (11)

The structure of Fig.1a is symmetric with respect to geometry, materials and boundary condi-
tions and Fig.1c reports the classical symmetric scheme to be utilized in the analysis of the plate.
However, if the model of Fig.1c is assumed when the considered structure is made of a nonlocal
elastic material, the results obtained from models a) and c) turn out to be more different as much
more are the nonlocal effects.
This is shown by the results given in terms of strain component profiles εx, εy and εxy plotted
at the mid-plate horizontal section, ȳ w 2.5 cm drawn in Figs.2a-c for models b), complete,
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Figure 1.  Nonlocal elastic symmetric square plate under tension with piecewise constant Young modulus. 
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Figure 1: Nonlocal elastic symmetric square plate under tension with piecewise constant Young modulus. Me-
chanical model of: a) whole structure; c) symmetric half structure; e) enlarged symmetric half structure. b), d) and
f ) FE models of structures a), c) and e), respectively.
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)a
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)c

Figure 2: Nonlocal elastic symmetric square plate. Strain components profiles εx, εy , and εxy versus x at y w 2.5.
Solution referred to the entire plate (solid lines), solution referred to the half symmetric portion (dashed lines),
solution referred to the enlarged half symmetric portion (dashed lines with circles).
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and d), reduced. In particular the structure of Fig.1a has been discretized into 400 FEs of equal
dimensions and consequently the model of the half classical symmetric structure is made of 200
FEs.

By inspection of Figure 2 appears evident how the half symmetric model furnishes a solu-
tion that deviates from the expected one. In order to recover the correct nonlocal solution the
symmetric scheme of Fig.1c has to be enlarged, with respect to the symmetry axis, by adding a
symmetrical boundary zone whose wideness is equal to the influence distance LR as sketched in
Fig.1e by the filled area below the symmetry axis. The related FE model of Fig.1f utilizes 320
FEs. To the enlarged model have also to be applied appropriate kinematic boundary conditions
able to mimic the missing nonlocal effects. However, such kinematic conditions are unknown
and the question of their specification is a crucial point. The need of them, to attain the exact
solution, is here proved by making use of the solution in terms of displacements of the original
(entire) structure solved on the scheme of Fig.1a. As in fact, if as nonlocal boundary conditions
are assumed the vertical displacements coming from the solution (in the corresponding zone) of
the original (entire) structure, the enlarged symmetric model gives exactly the expected solution
for the strain profiles εx and εy and a very good approximation of the strain profile εxy, as shown
in Figures 2.

4 CONCLUSIONS

The paper has pointed out some incoherences arising in the study of a symmetric structure
made up of a nonlocal elastic material. In particular, it is highlighted that the physical reason for
such incoherences is due to the fact that the removal of a symmetric portion produces the loss of
the nonlocal effects exerted by that portion. It is shown that, to re-introduce in the solution the
missed nonlocal effects, an enlarged symmetric model, with respect to the standard symmetric
one, has to be employed. Appropriate nonlocal boundary conditions have also to be considered.
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Abstract. Isogeometric Galerkin methods are used to analyse plate and beam bending prob-
lems as well as membrane and bar models based on Mindlin’s strain gradient elasticity theory
for generalized continua. The current strain gradient models include higher-order displace-
ment gradients combined with length scale parameters enriching the strain and kinetic energies
of the classical elasticity and hence resulting in higher-order partial differential equations with
corresponding non-standard boundary conditions. The problems are first formulated within ap-
propriate higher-order Sobolev space settings and then discretized by utilizing Galerkin meth-
ods with isogeometric NURBS basis functions providing appropriate higher-order continuity
properties. Example benchmark problems illustrate the convergence properties of the methods.
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1 INTRODUCTION

Isogeometric Analysis (IGA) was introduced by Hughes et al. [9] roughly ten years ago hav-
ing its primary focus on the integration of industrial design-analysis processes by performing
finite element analysis by B-splines and NURBS utilized in computer aided design. Com-
pared to the classical finite element analysis based on polynomial basis functions, isogeometric
analysis provides some significant benefits originating from higher-order continuities of basis
functions provided by basic isogeometric methods in a natural and straightforward manner, as
Cp−1 continuity for standard NURBS patches of order p. As a related particular implication,
isogeometric Galerkin methods have turned out to be applicable for solving problems governed
by higher-order partial differential equations which require higher-order reqularities for func-
tion spaces of Galerkin methods. In the present work, this capability is utilized for a group of
problems following a strain gradient elasticity theory.

Typically, the aim of the generalized continuum theories as gradient elasticity is to take into
account the effect of the microstructure of the material on its mechanical behaviour. The current
strain gradient models, in particular, include higher-order displacement gradients combined
with one length scale parameter [1, 2] enriching the strain energy of the classical elasticity
theory [3]. Accordingly, these models result in higher-order partial differential equations with
related non-standard boundary conditions [5, 6, 7, 8].

The paper is organized as follows: In Section 2, we introduce our notation by recalling the
variational energies for the three-dimensional theory of gradient elasticity. Section 3 is de-
voted to the governing equations and weak forms of the corresponding dimensionally reduced
bar, beam, membrane and plate problems, whereas in Section 4 isogeometric Galerkin dis-
cretizations are briefly formulated. Finally, in Section 5, we give some examples of numerical
benchmarks illustrating the convergence properties of the methods.

2 GRADIENT ELASTICITY THEORY

Let us denote the classical linear (second order) strain tensor by ε, defined as the symmetric
part of the gradient of the displacement vector u in the form

ε(u) =
1

2

(
∇u+ (∇u)T

)
. (1)

As in the classical elasticity theory, the strain tensor is assumed to be related to its work con-
jugate, the classical (second order) Cauchy stress tensor, through the generalized Hooke’s law

σ = 2µε+ λtr εI, (2)

with the Lame material parameters µ and λ, and I denoting the identity tensor.
In Mindlin’s gradient elasticity theory of Form II [3], the (third-order) micro-deformation

gradient tensor is defined as γ = ∇ε. Its work conjugate, the (third-order) double stress tensor
τ , is defined in the simplest one parameter variant [1, 2] of Mindlin’s theory as τ = g2∇σ,
with g denoting the gradient-elastic modulus describing the length scale of the micro-structure
of the material. The virtual internal work expression over a body B ⊂ R3 then takes the form

δW g
int =

∫
B
σ : ε(δu) dB +

∫
B
g2∇σ ...∇ε(δu) dB. (3)

Applying integration by parts for the second term above gives the so called total stress tensor
[1] in the form σg = (1− g2∆)σ, where g is assumed to be constant.
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For analysing vibrations or time-dependent problems within the current gradient elasticity
theory, an additional gradient parameter introducing a micro-inertia term has been proposed
[3] in order to achieve a physically satisfactory dispersion relation for a large range of wave
numbers [4]. The variation of the kinetic energy is then written in the form

δ

∫
T

W γ
kin dτ = −

∫
T

(∫
B
ρü · δu dB +

∫
B
γ2ρ∇ü : ∇δu dB

)
dτ, (4)

with ρ and T denoting the mass density and a time interval of the time variable τ , respectively,
and finally γ standing for the gradient parameter related to the micro-inertia.

3 GOVERNING EQUATIONS AND WEAK FORMS

In this section, we briefly recall the governing equations and variational formulations for the
bar and beam problems and then for the membrane and plate problems. For simplicity, we focus
on statics, whereas for extensions to dynamics we refer to [5, 6, 8].

3.1 Bars and beams

Let us consider a thin bar or beam structure which occupies a three-dimensional body B =
Ω × A, where Ω = (0, L) ⊂ R denotes the central axis of the structure with L standing for
the length of the structure, and A ⊂ R2, with diam(A) � L, denoting a cross-section of the
structure. For simplicity, the cross-section is assumed to be constant.

With a constant Young’s modulus E, the governing equation of the bar problem reads as [5]

EAu′′(x)− g2EAu′′′′(x) + Af(x) = 0 ∀x ∈ Ω, (5)

with doubly clamped, singly clamped and free boundaries, respectively:

u(x) = u, u′(x) = w ∀x ∈ ΓCd
, (6)

u(x) = u, g2EAu′′(x) = G ∀x ∈ ΓCs , (7)

EAu′(x)− g2EAu′′′(x) = P , g2EAu′′(x) = G ∀x ∈ ΓF. (8)

The weak formulation of the problem reads as follows [5]: For f ∈ L2(Ω), find u ∈ U ⊂ H2(Ω)
such that

a(u, v) = l(v) ∀v ∈ V ⊂ H2(Ω), (9)

where the bilinear form a : U × V → R, a(u, v) = ac(u, v) + a∇(u, v), and the load functional
l : V → R, respectively, are defined by

ac(u, v) =

∫
Ω

EAu′v′ dx, a∇(w, v) =

∫
Ω

g2EAu′′v′′ dx, l(v) =

∫
Ω

Af v dx. (10)

The trial and test function sets are denoted by U and V , respectively. The problem is continuous
and coercive with respect to the H2 norm [5].

With the moment of inertia I , the governing equation of the Euler–Bernoulli beam bending
problem reads as [6]

EIw′′′′(x)− g2EIw′′′′′′(x) = f(x) ∀x ∈ Ω, (11)
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while the boundary conditions can be found in [6]. The weak formulation of the problem reads
as follows [6]: For f ∈ L2(Ω), find w ∈ W ⊂ H3(Ω) such that

a(w, v) = l(v) ∀v ∈ V ⊂ H3(Ω), (12)

where the bilinear form a : W×V → R, a(w, v) = ac(w, v)+a∇(w, v), and the load functional
l : V → R, respectively, are defined as

ac(w, v) =

∫
Ω

EIw′′v′′ dx, a∇(w, v) =

∫
Ω

g2EIw′′′v′′′ dx, l(v) =

∫
Ω

f v dx. (13)

The trial and test function sets are denoted byW and V , respectively. The problem is continuous
and coercive with respect to the H3 norm [6].

3.2 Membranes and plates

Let us consider a thin planar membrane or plate structure which occupies a three-dimensional
body B = Ω× (−t/2, t/2) , where the domain Ω ⊂ R2 denotes the midsurface of the structure
and t � diam(Ω) stands for the thickness of the structure. For simplicity, the thickness is
assumed to be constant.

The governing equation of the (plane stress) membrane problem is written as [5]

(1− g2∆)divσ + f = 0 in Ω, (14)

while the boundary conditions can be found in [5]. The weak formulation of the problem reads
as follows [5]: For f ∈ [L2(Ω)]2, find u ∈ U ⊂ [H2(Ω)]2 such that

a(u,v) = l(v) ∀v ∈ V ⊂ [H2(Ω)]2, (15)

where the bilinear form a : U×V → R, a(u,v) = ac(u,v)+a∇(u,v), and the load functional
l : V → R, respectively, are defined as

ac(u,v) =

∫
Ω

(2µ ε(u) + λtr ε(u)I) : ε(v) dΩ, (16)

a∇(u,v) =

∫
Ω

∇g2(2µ ε(u) + λtr ε(u)I)
...∇ε(v) dΩ, l(v) =

∫
Ω

f · v dΩ. (17)

The trial and test function sets are denoted byU andV , respectively. The problem is continuous
and coercive with respect to the H2 norm [5].

The governing equation of the Kirchhoff plate bending problem is written as

D∆2w − g2D∆3w = f in Ω, (18)

with the bending rigidity defined as

D =
Et3

12(1− ν2)
. (19)

The boundary conditions of the problem can be found in [7].
The weak formulation of the problem reads as follows [7]: For f ∈ L2(Ω), find w ∈ W ⊂

H3(Ω) such that

a(w, v) = l(v) ∀v ∈ V ⊂ H3(Ω), (20)
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where the bilinear form a : W×V → R, a(w, v) = ac(w, v)+a∇(w, v), and the load functional
l : V → R, respectively, are defined as

ac(w, v) =

∫
Ω

Eε(∇w) : ε(∇v) dΩ, (21)

a∇(w, v) =

∫
Ω

g2∇(Eε(∇w))
...∇ε(∇v) dΩ, l(v) =

∫
Ω

f v dΩ. (22)

The symmetric positive definite bending moduli tensor is defined, in the case of constant bend-
ing rigidity, by the relation

Eε = D
(
(1− ν)ε+ ν tr εI

)
. (23)

The trial and test function sets are denoted byW and V , respectively. The problem is continuous
and coercive with respect to the H3 norm [7].

4 CONFORMING ISOGEOMETRIC GALERKIN APPROACH

Within the gradient elasticity theory, the bar and mebrane problems deal with H2 spaces,
whereas for the beam and plate problems H3 is the appropriate Sobolev space. Therefore,
C1 and C2 continuity, respectively, are required for the corresponding conforming Galerkin
approximations. Within the classical elasticity theory, instead, these problems deal with less
regular function spaces, H1 and H2, respectively, requiring C0 and C1 continuity, respectively,
for conformity. Isogeometric methods provide higher-order regularities for the approximation
spaces in a straightforward manner. Furthermore, with continuity and coercivity, conformity
implies Cea’s lemma type convergence results for the methods [5, 6, 8].

Let us next briefly recall the isogeometric tensor product discretizations [9] which can be ap-
plied for solving the problems formulated in the previous section. As an example, we construct
a discrete space for the plane stress problem.

First, we introduce an isoparametric discrete space Sh for the approximation of the displace-
ment field such that uh ∈ [Sh]

2 with

Sh = {Rp,q
i,j ◦ F−1}. (24)

The geometrical mapping between the two-dimensional parametric space [0, 1]× [0, 1] and the
midsurface Ω̄ is defined by F : [0, 1]× [0, 1]→ Ω̄ as

F (ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Bi,j (25)

providing an isogeometric NURBS discretization. Above,Bi,j , i = 1 . . . n, j = 1 . . .m, denote
the control points, while the NURBS basis functions are defined as

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j∑n
î=1

∑m
ĵ=1Nî,p(ξ)Mĵ,q(η)wî,ĵ

. (26)

The B-spline basis functions Ni,p and Mj,q of order p and q, respectively, associated to the open
knot vectors {0 = ξ1, . . . , ξn+p+1 = 1}, {0 = η1, . . . , ηm+q+1 = 1}, respectively, are defined as
follows:

Ni,0(ξ) =

{
1, ξi ≤ ξ < ξi+1,
0, otherwise (27)

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (28)
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The tensor product mesh of the midsurface, with the mesh size h, is denoted by

Th = {F ([ξi, ξi+1]× [ηj, ηj+1])|i ∈ [n+ p], j ∈ [m+ q]}. (29)

By assuming p = q and global regularity Cp−1 over Th, with p ≥ 2, it holds that Sh ⊂ H2(Ω),
which provides a conforming and consistent Galerkin method following the formulation (15)
with Uh = [Sh]

2 ∩U , V h = [Sh]
2 ∩ V .

5 NUMERICAL RESULTS

As simple examples of convergence results for the proposed methods, we study the beam
and plate bending problems with constant material values and smooth distributed loadings. For
numerical results concerning free vibrations, we refer again to [5, 6, 8].

In Figures 1 and 2, for the beam and plate problems, respectively, the convergence of the
relative error in theH3 norm is plotted against the number of degrees of freedom (in logarithmic
scales). It can be seen that for the NURBS order p = 3, 4, 5 the convergence rates follow the
theoretical rates [6, 8] depicted by the dashed slopes.
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Figure 1: Doubly simply supported beam: Convergence of the relative error in the H3 norm for p = 3, 4, 5 with
g = t = L/20.

Figure 2: Doubly simply supported square plate: Convergence of the relative error in the H3 norm for p = 3, 4, 5
with g = t = 0.1.
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Abstract.    This paper demonstrates the capabilities of Adaptive Mesh Refinement Techniques 

(AMR) on 2D hybrid unstructured meshes, for high order finite volume WENO methods. The 

AMR technique developed is a conformal adapting unstructured hybrid quadrilaterals and 

triangles (quads & tris) technique for resolving sharp flow features in accurate manner for 

steady-state and time dependent flow problems. In this method, the mesh can be refined or 

coarsened which depends on an error estimator, making decision at the parent level whilst 

maintaining a conformal mesh, the unstructured hybrid mesh refinement is done hierarchi-

cally. When a numerical method can work on a fixed conformal mesh this can be applied to 

do dynamic mesh adaptation. Two Refinement strategies have been devised both following a 

H-P refinement technique, which can be applied for providing better resolution to strong gra-

dient dominated problems. The AMR algorithm has been tested on cylindrical explosion test 

and forward facing step problems.
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1 INTRODUCTION 

Adaptive mesh refinement (AMR) techniques are well known and vastly used technique for 

the accurate capturing of the solution features in a steady or an unsteady simulation. The adap-

tive refinement enables to capture complex solution features by performing refinement in crit-

ical areas without having to refine the whole mesh. AMR has become a standard practice in 

triangular and tetrahedral meshes for various applications, the unique topological properties of 

these elements allow for local refinement and maintaining good element quality and retaining 

the conformity of the mesh [6]. For a quadrilateral mesh the general approach of refinement 

generates non-conformal elements. This non-conformity may allow local refinement but intro-

duces hanging nodes, which requires special augmentation of the PDE solution to deal with 

these special nodes. Hanging nodes are generally dealt by constraining the solution at these 

nodes to be dependent on the solution at the nodes of the edge it lies on using constraint equa-

tions [4]. 

The adaptive procedures automatically try to refine, coarsen or relocate the mesh or tries to 

adjust the solution basis to achieve a specific accuracy in an optimal way. The computations 

generally begin with a trial solution generated on a coarse mesh which has a lower order basis 

where the error of this solution is assessed. If this fails to satisfy the required accuracy, adjust-

ments are made to obtain the required solution with minimum effort, where we try to reduce 

the discretisation error to its required. Adaptive methods have been studied for nearly twenty 

years now and there are still only a few known optimal strategies and few of the common pro-

cedures studied till date include, the local refining or coarsening of a mesh (h-refinement), re-

locating or moving the nodes in a mesh (r-refinement) and locally varying the polynomial 

degree (p-refinement). 

This paper demonstrates the capabilities of AMR on 2D hybrid unstructured meshes, for 

high order finite volume WENO methods. The AMR technique developed is a conformal adapt-

ing unstructured hybrid (quads & tris) technique for resolving sharp flow features in accurate 

manner for steady-state and time dependent flow problems. In this method, the mesh can be 

refined or coarsened which depends on an error estimator, making decision at the parent level 

whilst maintaining a conformal mesh, the unstructured hybrid mesh refinement is done hierar-

chically. When a numerical method can work on a fixed conformal mesh this can be applied to 

do dynamic mesh adaptation [4]. The adaptation strategy devised follows a H-P refinement 

technique, which can be applied for providing better resolution to strong gradient dominated 

problems. 

2 NEED FOR REFINEMENT 

Most of the physical problems that are considered for numerical simulation have features 

with multiple scales in both space and time, which has been a problem for numerical analysis 

in attempts to resolve more of the scales with evenly spaced grids which require more compu-

tational resources, storage and time to execute, because of this the meshes were pre adapted to 

known features in the solution. This method works well for steady solutions with well-known 

locations of the local features within the solution, but for solution features which are not well 

known, multiple solution or remeshing were needed to get the considerable resolution level 

which required a complex remeshing code. These problems become absurd when unsteady so-

lutions are considered, a small movement in the solution feature may render extensive remesh-

ing of no use. To overcome this, zonal refinement techniques have also been used which also 

fails when unrestrained feature movement exists. For the adaptive mesh techniques to be useful 

for unsteady or steady flows where there is no proper knowledge of the solution, it has to adapt 

dynamically and automatically as the solution evolves. Using a standard mesh generation code 
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in this situation will require stopping the solution periodically, remeshing, interpolating and 

then restarting, to resolve multiple scale unsteady problems a dynamic solution adaptive grid 

technique has to be developed.  

With references to the study made by Joe.F.Thompson[11] on grid generation and adaptive 

techniques, an adaptive mesh refinement technique has to fulfil a few criteria which can be 

termed as the goals of adaptive mesh refinement. According to this study amr has to, 

 Reduce spatial discretisation error.

 Remove grid dependency of the solution to maximum extent.

 Preserve mesh quality as far as possible.

 The results with adaptation have to be quantifiable.

 If solution is time dependent, the adaptation should be dynamic and has to preserve      tem-

poral accuracy.

 Once initial criteria is selected, the adaptive process should continue without any user in-

tervention.

 The adaptive technique should be effective.

 There should be minimal error added to the solution.

3 PREVIOUS WORK 

There has been extensive research on the conformal refinement of triangular meshes for adap-

tive simulations as treatment of these element types are easy [2]. On the contrary for quadrilat-

eral meshes it is common to use non-conformal quad tree type refinement with special treatment 

for the hanging nodes [1]. There have been only a few researchers describing the coarsening 

and refinement of quadrilateral mesh and relatively fewer which can also handle hybrid mesh 

elements and also deal with the dynamic settings. 

The best Paper on conformal quadrilateral refinement written by Schneider’s [8] dis-

cusses the method of refinement based on bisection and trisection of the edges. He implies that 

the trisection of edge strategy simplifies the algorithm, where the information of refinement is 

communicated from elements to nodes and the templates for refinement are defined based on 

the number of marked nodes. The refinement templates are selected to keep the scheme stable, 

where the quality of the elements do not depreciate with increasing refinement levels. In his 

paper, uniformly refined quadrilaterals which are trisected have 9 child cells and the templates 

for the adjacent cells which terminate the refinement have bisected edge. Schneider’s schemes 

are more complicated to implement than the scheme to be presented here, but still is a valid and 

tested scheme for conformal quadrilateral refinement and has also been used by others like 

Zhang and Bajaj [12]. Schneider’s extended his work to hexahedral but says that certain refine-

ment patterns for the faces of hexahedra may not admit a valid decomposition of the parent 

hexahedron. Ito et al. [5] has also used the Schneider’s approach for octree hexahedral refine-

ment templates. 
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Figure 1. Schniders’ subdivision templates showing the trisection and bisection of edges. [8] 

Tchon et al. [10 (Tchon, 2004)] has also worked on quadrilateral refinement strategy 

where they find layers of elements, shrink the layers of elements and reconnect the shrunk layer 

with the surrounding mesh. This strategy assumes a particular structure to the mesh and a few 

specific patterns may ignore the issues of multiple levels of refinement, mesh quality and dy-

namic adaptation which makes this method limited in utility. 

Figure 2. Tchon et al.’s conformal shrink and reconnect method [10] 

Benzley et al. [9] proposed quadrilateral mesh coarsening strategies which are general 

and have an advantage over nested refinement strategies where they can be coarsened beyond 

the original resolution of the mesh. 

2886



Harshavardhana Srinivasan, Panagiotis Tsoutsanis 

In the work presented by Sandhu et al. [7] they use node marking and trisection of edges 

to define templates for refinement, which is quite similar to the work done by Garimella Rao 

[4] where he proposes a technique for multilevel adaptive refinement of quadrilateral meshes 

where the elements are kept conformal all the time. Garimella uses one less defined template 

than Sandhu et al.. With all these methods into consideration, they show only static refinement 

and aspects of dynamic adaptation and solution mapping have not been explored. 

The research that is closest to the presented work is the paper by Michael Dumbser et al. [3] 

which talks about high order ader-weno finite volume scheme with AMR. The higher order 

spatial accuracy is got by using a weno reconstruction and the high order one step time discreti-

sation is obtained through discontinuous galerkin predictor method. The AMR strategy is im-

plemented cell-by-cell with standard tree type algorithm and has also been parallelised. The 

strategies have been tested on nonlinear systems including the Euler equations and with varying 

orders of accuracy to show the results of using AMR. 

Figure 3. Graimella Rao’s subdivision templates demonstrating edge based refinement [4] 

4 AMR ALGORITHM 

The mesh adaptation technique that has been developed is used in conjunction with the high 

order unstructured finite volume solver (ucns) which is capable of obtaining 7th order spatial 

accuracy with weno schemes. The AMR technique implemented is a fully conformal method 

that can work on hybrid meshes, which follows a hierarchical tree based data structure. The 

refinement or coarsening is node based and the decision is always taken at the parent level i.e. 

the data of the initial parent cell is preserved and is always carried over to the number of adap-

tations done during the process which limits the coarsening to be done only up to the initial 

mesh level. The main point of this technique is to preserve the order of accuracy with varying 
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gradients and also at points where the solution is smooth using solution transfer/remapping 

techniques. The other advantage of this method developed here is that the refinement or the 

coarsening process can be done as local as possible and also can be done per cell basis which 

gives the user more control over the process and is very essential and would aid in better paral-

lelisation of the algorithm. 

Figure 4. The two strategies of refinement on quadrilateral and triangular cells, showing different levels of 

refinement. 

Two strategies of refinements have been developed for quadrilaterals and triangles which 

can refine the cells up to 4 levels where the maximum number of children per cell can go up to 

21 cells. The above figure shows the subdivision of cells for both the refinement strategies. The 

subdivision is done based on the nodes and the centre of the cells, where for each level the mid-

point is calculated on the diagonals between the end node and the cell centre. This is done 

repetitively until four levels for the first strategy. The second strategy of subdivision was de-

veloped for enabling better stencil marking for the weno schemes to communicate better with 

the neighbour cells. The subdivision of the cells were kept uniform by following a step by step 

subdivision where the new cells generated can take up an identical or an averaged area or vol-

ume for better solution remapping and transfer. 

For the AMR to be activated it is necessary for the solver to start, to get the initial gradients 

and the solution. The refinement or coarsening is done based on the non dimensionalised gra-

dient levels. With the initial mesh fed to the solver we get the gradients and the solution, the 

criteria and the levels of refinement are pre-defined in a parameter file based on which gradient 

to choose. The AMR can be activated in two ways, for every n iterations of the simulation or 

for every n-th time step of the simulation based on the type of problem being solved. From the 
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initial mesh with the parameters given for refinement the cells are marked, it has to be noted 

that there can be no coarsening happening at the initial level as the algorithm does not support 

coarsening of the mesh beyond the initial mesh. As soon as the cells are marked the neighbours 

of the marked cells as well as the neighbours of the neighbours are marked and only the exclu-

sive neighbour list is populated and is stored for smooth transition of refinement levels which 

makes sure that the adjacent cell is always only one level different than the target cell. The non 

dimensionalised gradients are now used to specify the level of refinement to the marked target 

cells along with their neighbours for a smoother transition. The refinement is done for the 

marked cells and the data of the parent cells are stored with the children flag and the child cell 

numbers, this data is used in the next step of adaptation where the decision is taken at a parent 

level for refinement or coarsening. For the parent cells there is an option of choosing the max-

imum gradients of the child cell or the average gradients of the cells for obtaining more resolu-

tion with adaptation. The solution is remapped on to the cells and it is made sure that the order 

of accuracy is conserved. 

4.1   Solution Remapping & Transfer 

Adaptation methods to reduce the solution errors of solving a PDE is highly dependent on 

the remapping or transfer of quantities from the base mesh to the adapted mesh and while coars-

ening of the mesh. It is important to remap the solution quantities like the integral quantities 

such as mass or energy and pointwise quantities such as diffusivity [13]. The remapping of both 

these quantities have to be done very accurately and more importantly for the integral quantities 

it has to be conservative. Consider the density of a child, it must be transferred such that the 

total mass of the parent is conserved. If a group of elements are to be coarsened the integral 

quantities can be summed up over the children and can be assigned to the parent. With the 

pointwise quantities the children cells can be averaged weighted by their volume. For condi-

tions of refinement, the mass can be distributed equally over the children or a linear reconstruc-

tion of the density can be made over the parent and integrate over the child [13,14]. In the 

proposed algorithm here, the solution transfer  between the refinement levels is treated 

differently where a volume average is take and remapped to the cells and for refinement the 

quantities of the parent are mapped as it is to the children cells. Using a summation of masses 

of the children and passing it to the parent may be a poor choice and might lead to lower order 

of accuracy. 

4.2   Methodology 

The AMR algorithm is employed with MUSCL and WENO type of spatial discretisation schemes 

on hybrid unstructured meshes based on the implementation of [18,19], where they have been ap-

plied to a range of inviscid, laminar, transitional and turbulent flows simulations [14-17,20] demon-

strating the advantages of high-order schemes in conjunction with hybrid unstructured meshes. The 

HLLC Riemann solver is used along with an explicit 3rd-order three stage strong stability preserving 

Runge-Kutta time stepping for advancing the solution in time. 

5 RESULTS & DISSCUSSION 

The developed AMR is tested on two test cases namely the cylinder explosion problem and 

the forward facing step. Both the cases demonstrates the capability of dynamic mesh adapta-

tion through time and changing gradients over single element and hybrid mesh domains. The 

tests are done with three numerical schemes namely muscl second order, weno 3rd order and 

weno 5th order to study the AMR behavior over increasing order of numerical accuracy. 
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5.1    Cylinder Explosion Test Case 

 The two dimensional Euler equation for gas dynamics to solve the considered problem 

is given as, 
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Where the pressure p is related to the conserved quantities through the equation of state, 
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With  =1.4, which is solved on a square domain in the xy-palne. The initial condition has 

a circular discontinuity of radius 0.4 centered at (1, 1). The initial data for the problem is defined 

on a non-dimensional domain of [-1:1] x[-1:1] and has two regions of constant but different 

values of gas parameters, the initial conditions are, 
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 For the cylinder explosion problem in 2D, a set of three meshes namely a quad mesh with 

1600 quadrilaterals, a triangular mesh with 5458 triangle elements and a hybrid mesh with 1711 

and 5250 quads and tris respectively are used as the base mesh. These meshes are run on three 

numerical schemes muscl2, weno3 and weno5 to capture the solution with increasing numerical 

accuracy. The AMR for all the cases have been set to be moderately aggressive, the simulation 

is run for a time of two seconds with adaptation set to happen every 0.09 seconds which ac-

counts for 3 adaptations during the course of the simulation. We expect the results to be sharper 

and where there are sharp gradients and also to conserve the parts where the solution is smooth 

with varying AMR settings. Refinement levels of l2, l3 and l4 were used for all conditions and 

the varying levels of non-dimensionalised density was used as the gradient markers for marking 

the cells for adaptation. 

The solution exhibits a circular shock wave propagating away from the center, a circular 

contact surface travelling in the same direction and a circular rarefaction moving towards the 

origin. As time evolves it can be observed that a complex wave pattern emerges. The circular 

shock wave moves outwards and becomes weaker, the contact surface also follows the shock 

and becomes weaker and at some point in time the contact comes to rest and starts to move 

inwards. The rarefaction moving towards the center reflects and over expands the flow to create 

an inward moving shock wave which implodes to the origin, reflects and moves out colliding 

with the contact surface. 
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Where       

Figure 5. Cylinder explosion with strategy_1 hybrid, quad and tri grid on weno3 scheme, meshes at final 

time step 
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Figure 6.Cylinder explosion with strategy_2 hybrid, quad and tri grid on weno3 scheme, meshes at final 

time step 

2892



Harshavardhana Srinivasan, Panagiotis Tsoutsanis 

Figure 7.Density plots on different grids with higher order schemes 
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Figures 5 & 6 show the visualization of density and the final mesh at the end of the 

simulation, for both the adaptation strategies which demonstrates the capability of the algorithm 

to perform dynamic adaptation with any element type separately and also on hybrid grids. It 

can be observed that the use of strategy 2 refinement methods the solutions are comparatively 

smoother than the refinement of grids with strategy1. 

In figure 7 we have the density plots compared with increasing order of numerical 

schemes which helps us to study the performance of AMR with higher order schemes. These 

results are compared to t an analytical solution to check for the accuracy of the schemes with 

AMR. It can be observed that all the numerical schemes capture the peak with all the grids 

except for quads which tend to over predict with a weno5 numerical scheme on both the strat-

egies. The quad grid with both the strategies and with higher order numerical schemes fail to 

capture the total diffusivity happening in the simulation, but they tend to stay smooth through-

out. On the other hand with the hybrid and triangular grids the diffusivity capturing is better 

and closer to the reference solution but comes with a noise generated due to the weno weights 

of the triangular elements present in the grid. It is important to notice that the solution is less 

susceptible to noise with hybrid and tri grids with the use of the strategy 2 for refinement.     

5.2    Forward Facing Step Test Case 

The forward facing step is a classic test case to study the flow separation and recircula-

tion caused by a sudden contraction in a channel. For this case depending on the ratio of the 

boundary layer thickness at the step to the step of the height there might be one to three recir-

culation regions, one upstream, the other in the downstream and the other just immediately 

above the step, the flow might also separate from the upper sharp corner of the step generating 

a recirculation region behind the step. 

For the case under consideration a domain where length (L) of the domain is equal to 3 

units and the height (H) of the domain is equal to 1 unit, the step is located at (l) 0.2 units from 

the inlet and with a height (hl) of 0.2 units is considered, 
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, , ,where u v p 

The above equation (4) describes the boundary conditions, where the boundaries of the 

geometry are considered to be a wall, friction is created at this wall due to the viscosity and 

momentum of the fluid (air). The inlet is taken as the velocity inlet where the velocity is given 

in the u direction equal to mach 3, the outlet of the channel is considered as the pressure outlet. 

The pressure is taken as 1atm and the density as 1.4 kg/m3 for the problem which is solved 

using the Euler equations as mentioned in equations (1) and (2). 
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Figure 8. Forward facing step, initial mesh, mest at t=2.0secs, final mesh 
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Figure 9. Contours of density, with no-refinement and with refinement 

The domain is made up of triangular mesh which are moderately coarse for this setup. The 

simulation is run with a weno3 numerical scheme and a moderately aggressive AMR setup with 

second, third and fourth levels of refinement for a total simulation time of 4 seconds and AMR 

being activated every 0.9 seconds based on the gradients of density form the simulation, hence 

we would have five levels of adaptation happening in the course of the simulation. Figure 8 

shows the triangular mesh of the case at the initial instance, mesh with adaptation at t=2.0secs 

and the mesh at t=4.0 secs.  

When the flow enters through the left boundary at the velocity of Mach 3 and exits through 

the right pressure outlet boundary. During the first few time steps a strong shock is generated 

due to the step and an expansion wave appears originating from the top corner of the step. The 

shock then moves progressively towards the top wall and gets reflected at the wall, after a few 

tome steps the flow exhibits several shock wave reflections at the top and bottom walls before 

the shock exits the domain. Figure 9 shows the contours of density with a case run with no 

refinement and the case run with the AMR. It can be observed that the AMR helps in capturing 

the propagating shock with a better definition and also helps in preserving solution accuracy at 

places where the gradients are not that steep. This case clearly demonstrates the capability of 

tracking steep gradients by the AMR by accurately capturing the shock being propagated 

through the domain. 
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6 CONCLUSION 

This paper proposed a mesh adaptation procedure for  hybrid unstructured grids that gives 

a conformal mesh with node based refinement which follows a tree based hierarchical data 

structure where the decision on adaptation is always taken at the parent level. The quality of the 

refined mesh is kept comparatively high even with a few irregular elements present in the grid. 

From the test cases considered it can be said that the AMR efficiently performs the refinement 

where required and coarsens where it is not. The advantage of this method developed here is 

that the refinement or the coarsening process can be done as local as possible and also can be 

done per cell basis which gives the user more control over the process and is very essential and 

would aid in better parallelisation of the algorithm. 

Solution transfer or remapping of solution of from child to parent and vice versa has always 

been a concern for conserving the integral and pointwise quantities of the solution, an efficient 

method has been devised with this algorithm where solution averaging based on volume 

weights have been done for remapping solution between the different levels of refinement and 

solution from the parent is remapped as a whole to the child cells, hence conserving the quan-

tities. It was observed that the quadrilateral refinement was quite smooth than the triangle and 

hybrid refinement but failed to capture the diffusivity in the solution. Strategy 2 is a better 

option for refinement as there was less noise observed with triangular and hybrid grids. 

This algorithm in conjunction with the high order solver can be used for solving a variety 

of problems pertaining to capturing of steep gradients and also can perform well with RANS 

cases. The present work will be extended to 3D domain for hexahedral, tetrahedral and prism 

elements and also the AMR algorithm would be parallelized. 
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Abstract. An implementation of a novel low-mach number treatment for high-order
finite-volume schemes using arbitrary hybrid unstructured meshes is presented in this
paper. Low-Mach order modifications for Godunov type finite-volume schemes have
been implemented successfully for structured and unstructured meshes, however the
methods break down for hybrid mesh topologies containing multiple element types. The
modification is applied to the UCNS3D finite-volume framework for compressible flow
configurations, which have been shown as very capable of handling any type of grid
topology. The numerical methods under consideration are the Monotonic Upstream-
Centered Scheme for Conservation Laws (MUSCL) and the Weighted Essentially Non-
Oscillatory (WENO) schemes for two-dimensional mixed-element type unstructured meshes.
In the present study the HLLC Approximate Riemann Solver is used with an explicit
TVD Runge-Kutta 3rd-order method due to its excellent scalability. These schemes (up
to 5th-order) are applied to well established two-dimensional and three-dimensional
test cases. The challenges that occur when applying these methods to low-mach flow
configurations is thoroughly analysed and possible improvements and further test cases
are suggested.
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1 Introduction

Obtaining accurate solutions in an efficient manner for a wide-range of flow prob-
lems where the compressible Navier-Stokes are used is the main goal of the majority of
the numerical methods and schemes developed in this context. The most challenging
part of the development of all the high-resolution numerical schemes used is that they
should be adaptive. Adaptive in the sense of identifying regions of sharp-gradients often
encountered in compressible flows, and preventing or eliminating any spurious oscilla-
tions that can occur and contaminate the solution; but at the same time they should be
adaptive and achieve high-order of accuracy in smooth regions of the flow. However
there is a delicate balance between the two requirements and is dependent upon the spa-
tial discretisation method, the shock-capturing algorithms, the grid types, the Riemann
solvers, the time-stepping algorithms and the quadrature rules used for integration to
name a few.

The first generation numerical methods for unstructured grids exhibited lower accu-
racy and were computationally more demanding than structured grids. However, the nu-
merical methods for unstructured grids have matured and numerous elegant approaches
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and algorithms have been developed in the finite
volume framework for a wide range of applications for Computational Fluid Dynam-
ics(CFD). Other state-of-the-art approaches are also available, such as the Discontinu-
ous Galerkin (DG) [14, 15, 2, 16, 11, 17], and Spectral Finite-Volume (SFV) methods
[18, 19, 20, 12, 21, 22] that have been successfully applied for CFD applications. For
the finite volume framework the first class of high-resolution methods developed for un-
structured grids included the ENO type schemes [23, 24], followed by the WENO type
schemes [25, 26, 27, 28]. In the WENO case, the high-order accuracy was achieved by
non-linearly combining a series of high-order reconstruction polynomials arising from
a series of reconstruction stencils. Recently, a class of WENO type methods [9, 8]
has been successfully extended to hybrid unstructured meshes with various geometri-
cal shapes such as tetrahedrals, hexahedrals, prisms, and pyramids. The schemes can
achieve the very high order of spatial accuracy across interfaces between cells of dif-
ferent types, and at the same time essentially non-oscillatory profiles are produced for
discontinuous solutions. This gives greater flexibility to handle complex geometrical
shapes in an efficient and accurate manner.

For the majority of the finite-volume numerical methods for compressible flows their
dissipation characteristics are proportional to the speed of sound, therefore the low Mach
number features are damped by the numerical scheme as noted by [29]. This is particular
important at regions of the flow where the Mach number is low such as close to the wall
at the boundary layer, and at vortices arising from shear layers.

In the present paper we present a modification to the output of the reconstruction,
or the input of the Riemann solver in order to remove the Mach number dependence,
and improve the resolution at low-Mach regions of the flow. It has to be noted that the
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subject modification is different in nature from a preconditioning step used for changing
the flow variables, since our main motivation is not to relax the restriction in terms of the
time-step size, but rather to increase the resolution at the low-Mach regions. The original
modification proposed by [29] is not directly transferable to any grid-type since different
mesh elements have different dissipation characteristics, therefore a unified modification
is implemented that is suitable for all element types and through the computational
results presented we demonstrate the difference between the original modification, and
the revised one. The nice feature of this modification is that is quite simple to implement
in any compressible code, for any numerical scheme that uses a Riemann solver and the
additional computational expense is negligible.

2 Governing Equations

The compressible inviscid Navier-Stokes equations are solved; writen in compact
form as:

∂U(x, t)

∂t
+∇Fc(U) = 0 (1)

where U is the vector of the conserved mean flow variables; Fc , is the inviscid flux
vector given by:

U = [ρ, ρu, ρv, ρw, ρE]T ,

F x
c =

[
ρu, ρu2 + p, ρuv, ρuw, u(E + p)

]T
F y
c =

[
ρv, ρuv, ρv2 + p, ρvw, v(E + p)

]T
F z
c =

[
ρw, ρuw, ρvw, ρw2 + p, w(E + p)

]T
(2)

In the above equations, ρ is the density; u, v, w are the velocity components in x, y and
z Cartesian directions, respectively. Calorically perfect gas is assumed where the total
energy per unit mass is computed according to the equation of state asE = p/ (γ − 1)+
(1/2)ρ(u2 +v2 +w2), where p is the pressure, the ratio of specific heats is set as γ = 1.4
for air at normal atmoshperic conditions.

3 Numerical Framework

The discretization in a domain Ω is achieved by combining conforming arbitrary
shaped elements of volume |Vi|. Integrating Eq. (1) over a mesh element using the
finite-volume formulation the following ordinary differential equation is obtained

dUi

dt
= − 1

|Vi|

Nf∑
l=1

Nqp∑
α=1

Fn,l
c (U(xα, t))ωα|Al| (3)
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where Ui is the volume averaged conserved variables in a volume element, Nf is the
number of faces per element, Nqp is the number of quadrature points used for approx-
imating the surface integrals. |Al| is the surface area of the corresponding face, and α
corresponds to different Gaussian integration points xα and weights ωα over the face.
The weight and distribution of the quadrature points depend upon the Gaussian rule
order, higher integration rule will result in enhanced intercell flux approximation. The
convective flux tensors are defined as:

Fn,l
c = F x

c nx + F y
c ny + F z

c nz (4)

where nx, ny and nz are the Cartesian components of the normal vector on the intercell
surface. The intercell fluxes are computed based on volume averaged quantities which
are obtained by an interpolation technique. The solution is obtained by a polynomial re-
construction from cell-averaged data. The following sections describe the methodology
adopted for space and time discretization.

3.1 Spatial Discretization

The spatial discretisation is based on the approach of [8, 9], which is suitable for
unstructured meshes with various types of element shapes in 2D and 3D, and it has been
previously used successfully for laminar, transitional and turbulent flows [13, 30, 31, 32,
33]. Therefore, only the key characteristics of this approach are going to be described
in this paper. The main objective of the reconstruction process is to build a high-order
polynomial pi(x, y, z) of arbitrary order r, for each considered element Vi that has the
same average as a general quantity Ui. This can be formulated as

Ui =
1

|Vi|

ˆ
Vi

U(x, y, z) dV =
1

|Vi|

ˆ
Vi

pi(x, y, z) dV. (5)

The reconstruction is carried out in a transformed system of coordinates in order to
minimize scaling effects that appear in stencils consisting of elements of different size
as well as to improve the condition number of the system of equations [13, 8]. The
transformation is achieved by decomposing each element into tetrahedrals.

The reconstruction polynomial at the transformed cell V ′i is expanded over local poly-
nomial basis functions labeled as φk(ξ, η, ζ), which are given by

p(ξ, η, ζ) =
K∑
k=0

akφk(ξ, η, ζ) = U0 +
K∑
k=1

akφk(ξ, η, ζ) (6)

where ξ, η, ζ are the coordinates in the reference system, ak are the degrees of freedom
and the upper index in the summation of expansion K is related to the order of the
polynomial r byK = 1

6
(r+1)(r+2)(r+3)−1 for 3D andK = 1

3
(r+1)(r+2)−1 for
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2D . For computing the degrees of freedom ak, a minimum of K cells is required in the
stencil in addition to the target cell. Using the minimum possible number of cells in the
stencil,M ≡ K, may produce ill-conditioned systems, hence usingM = 2·K improves
the robustness of the method as described in [8, 34]. A linear least-square method is
adopted to enable the system of equations of 6 for the unknown degrees of freedom
ak. The final form of the linear system is solve with the QR decomposition algorithm.
Discontinuous solutions are often encounter in external aerodynamics, thus limiting
functions are essential for maintaning numerical stability and suppress any spurious
oscillations. Two approaches are assessed in this work the MUSCL and the WENO
schemes.

3.1.1 MUSCL

The MUSCL scheme is employed in this work is partially based on the Barth and
Jespersen slope limiter. The design of the scheme requires the minimum and maximum
values in the stencil’s neighborhood, i.e., Umin

i = min(Ui, Ul) and Umax
i = max(Ui, Ul),

where l = 1, ..L; L is the total number neighbors of element i. The gradient of a general
quantity is defined as ∇Ui and is an approximation of the solution gradient inside the
element i. The gradient is computed during the reconstruction process by incorporating
information from the entire central stencil. The scheme can be written as

Uiα = U c
i + φi∇Ui · xα (7)

where U c
i is the value for the general quantity at the element centroid and xα are the

coordinates of the quadrature point. The limiter seeks the minimum value of the slope
limiter for all the quadrature points that satisfy the following conditions

φi = min(φi,m1
, φi,m2

, ...φi,M) (8)

Then, the limiting function is applied, composed by three different states according
to the difference of the reconstructed value at the quadrature points of the considered
element U(i,α) and each of its neighbors Ul, yielding

φi,α =


min

(
1,
Umax
i − Ui,α
Ul − Ui,α

)
, if Ul − Ui,α > 0

min

(
1,
Umin
i − Ui,α
Ul − Ui,α

)
, if Ul − Ui,α < 0

1, if Ul − Ui,α = 0

(9)

3.1.2 WENO

WENO schemes use a non-linear combination of various reconstruction polynomials,
where each polynomial is weighted according to the smoothness of its solution. The
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polynomials are given by

pweno
i =

ms∑
m=1

ωmpm(ξ, η, ζ) (10)

where ms is the total number of WENO stencils. Substituting back to Eq. (6) for
pm(ξ, η, ζ), we obtain the following expression

pm (ξ, η, ζ) =
K∑
m=0

a
(m)
k φk(ξ, η, ζ) (11)

Using the condition that the sum of all weights is unity, yields

pweno
i = U0 +

K∑
k=1

(
ms∑
m=0

ωma
m
k

)
φk(ξ, η, ζ)

≡ U0 +
K∑
k=1

ãkφk(ξ, η, ζ)

(12)

where ãk are the reconstructed degrees of freedom; and the non-linear weight ωm is
defined by [13, 8, 34]:

ωm =
ω̃m

ms∑
m=0

ω̃m

where ω̃m =
λm

(ε+ Im)b
(13)

The smoothness indicator is given by

Im =
∑

1≤|β|≤r

ˆ

Ẽi

(
Dβpm(ξ, η, ζ)

)2
(dξ, dη, dζ) (14)

where β is a multi-index, r is the polynomial’s order, λm is the linear weight, and
D is the derivative operator. The smoothness indicator is a quadratic function of the
degrees of freedom (amk ) and can be expressed as a universal mesh-independent oscilla-
tion indicator matrix as defined in [34]. The WENO reconstruction can be carried out
in terms of conserved or characteristic variables. In this work, the conserved variables
have been employed to assess the low-Mach number reconstruction modification. The
various reconstruction polynomials arise from different sets of stencils that satisfy some
geometrical conditions. The reader is referred to [9, 8] for the definition of geomet-
rical sectors., and references therein, for a detailed explanation of the different set of
geometrical conditions and WENO characteristic reconstruction.
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3.2 Low-Mach Number Modification

Our low-Mach number modification follows the previous work of [29], where the left
and right state of the reconstructed velocities is modified in a linear way with respect to
Mach number, so when the Mach number approaced zero the arithmetic mean of them
is used in the following manner:

u∗L =
(1 + z)uL + (1− z)uR

2

u∗R =
(1 + z)uR + (1− z)uL

2
z = min(1,max(ML,MR))

(15)

The Mach numbers are calculated based on the velocity magnitude of all the velocity
components independent of the normal direction in which the flux is computed. How-
ever we investigate two approaches one where all the component of the reconstructed
velocities are modified as the original implementation [29], and a second one where
only the velocity components normal to the face are modified, based on the findings
of [29] where it was highlighted that the tangential velocities require more numerical
dissipation than the normal components.

3.3 Fluxes Approximation

Having reconstructed the cell-averaged solutions, the intercell fluxes can be eval-
uated. The Riemann problem is solved with the approximate Harten-Lax-van Leer-
Contact (HLLC) solver of Toro [35]. The HLLC solver is also employed for the con-
vective part of the turbulence transport equation. The HLLC flux function is given by

F̂
HLLC


F̂−, if 0 ≤ S−,

F̂ ∗− = F̂− + S−
(
Ŵ ∗− − Ŵ−

)
, if S− ≤ 0 ≤ S∗,

F̂ ∗+ = F̂+ + S+
(
Ŵ ∗+ − Ŵ+

)
, if S∗ ≤ 0 ≤ S+,

F̂+, if 0 ≥ S+,

(16)

where

Ŵ ∗± = ρ±
(
S± − u±

S± − S∗

)


1
S∗

v±

w±

E±

ρ±
(S∗ − u±)

(
S∗ +

p±

ρ±
(
S± − u±

))
ν̃
ρ±


(17)
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Ŵ ∗± is computed either for the considered element “−”, or for its neighbour “+” and
the wave speeds are estimated according to the sign.

3.4 Temporal discretisation

Having constructed the numerical fluxes Fn,j as expressed in the semi-discrete con-
servative formulation, the next step involves the advancement of the solution in time.
The explicit SSP Runge-Kutta 3rd-order method [36] has been employed for the time
integration

Ui
1 = Ui

n + ∆t ·Ri (Ui
n)

Ui
2 = 3

4
Ui

n + 1
4
Ui

1 + ∆t
4
·Ri (U

1)

Ui
n+1 = 1

3
Ui

n + 2
3
Ui

2 + 2∆t
3
·Ri

(
Ui

2
)


(18)

with Ri being the residual.
The time step ∆t is computed as follows

∆t = K min
i

hi
Si · Vi

, (19)

where hi is the radius of the inscribed sphere of each cell i and Vi its corresponding
volume, K ≤ 1/3 is the CFL number for unsplit finite-volume schemes [35], and Si is
the maximum propagation speed in each cell i given by

Si = spx · nx + spy · ny + spz · nz, (20)

where

spx = |u+ a| , , spy = |v + a| , spx = |w + a| ,

with n = (nx, ny, nz) being the outward unit normal vector and a is the speed of sound.

4 Results

This section presents the results obtained for a variety of cases to illustrate the influ-
ence of the low-mach modification compared to the previously implemented version.

4.1 2D Vortex Evolution

The two-dimensional vortex evolution problem is an important case to consider for
convergence and accuracy. This is a well used problem for low-Mach testing and illus-
trating the power of high order methods, [37].
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Figure 1: Density plots using a MUSCL 3rd and WENO 5th order schemes for the the
vortex evolution flow problem on a quadrilatel mesh at t = 2s

We examine a square domain of area Ω = 100, [0,10]x[0,10], with periodic boundary
conditions. The mean flow of the problem is ρ = 1, P = 1, u = 1, v = 1, therefore
there is a diagonal flow through the domain moving to the top right corner. The flow is
pertubated by an isotropic vortex in the u and v fields with a temperature T = P

ρ
and no

pertubation in the entropy S = P
ργ

, i.e. δS = 0. The pertubations are given by

(δu, δv) =
ε

2π
e0.5(1−r2)(5− y, x− 5)

δT = −(γ − 1)ε2

8γπ2
e1−r2

r2 = (x− 5)2 + (y − 5)2

The solution is computed at t = 2s for both low-mach corrections using a 3rd order
MUSCL scheme and a 5th order WENO scheme. These are compared to the initial
solution t = 0s on the same grid of quadrilateral elements with 32x32 elements. From
Fig. 1, it can immediately been seen that the higher order WENO 5 scheme reduces the
noticeable dissipation of the MUSCL scheme, with and without the low-mach correc-
tions. The influence of the low-mach corrections on the 3rd order MUSCL simulations
is higher and a clear difference can be seen in its absence resulting in less dissipation. It
is noted that for this particular test case there is not a large difference between the two
modifications.

2908



N.Simmonds, P.Tsoutsanis, and A.Gaylard

X

Y

3 2 1 0 1 2 3

2

0

2

Cp

1

0.75

0.5

0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

(a) No Modification

X

Y

3 2 1 0 1 2 3

2

0

2

Cp

1

0.75

0.5

0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

(b) Low Mach-number Modification of normal and tangential
velocity components

X

Y

3 2 1 0 1 2 3

2

0

2

Cp

1

0.75

0.5

0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

(c) Low Mach-number Modification of normal velocity com-
ponent

Figure 2: Pressure Coefficient plots using a WENO 3rd order scheme for the flow past
a 2D cylinder at t = 200s
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4.2 2D Low Mach number past a Cylinder

Examined is the steady-inviscid problem of flow past a circular cylinder with radius
R=1. This is cut out of a cylindrical computational domain of radius R=20, with a free-
stream inflow of Mach number M∞ = 0.1, density ρ∞ = 1 and the pressure p∞ = ρ∞

γ
,

where γ = 1.4. The flow is initialised with a flow direction parallel to the x-axis.
The simulations were undertaken on two different mesh topologies, a completely

triangular mesh with a linear piecewise construction for the cylinder and a hybrid mesh
with prism cells near the wall of the cylinder before moving to triangular cells. The
computations were ran until t = 200s when the initial transients would have vanished
and the residuals would have converged.

The numerical simulations on the fully triangular mesh did not suffer the same dis-
sipation that can be found in the hybrid mesh. Presented in Fig. 2 are the hybrid mesh
and pressure coefficient Cp distribution on a medium grid of containing 960 quadrilat-
eral and 3316 triangular elements, computed using a WENO 3 reconstruction scheme. It
can be seen that both the simulation without any treatment and the simulation using the
second treatment suffered dissipation and did not exhibit the symmetry expected from
this case. The presence of the first low-mach modification gives a much more accurate
solution, with a clear symettry about x = 0.

4.3 2D Cylindrical Explosion

The presented case of an explosion in two dimension is outlined by Toro [35] as a
classical Riemann solver problem. Contained within a square domain [0, 2] × [0, 2],
exists a circle of radius r = 0.4 centered at (1,1), whose internal initial conditions vary
from it’s external initial conditions.

(ρ, P ) =

{
(0.125, 0.1) r > 0.4

(1, 1) r ≤ 0.4
, u = v = 0, r2 = x2 + y2

The solution is the result of a circular shock occurring from the Riemann problem
which propagates outwards from the centre, this is followed by a circular contact discon-
tinuity that propagates in the same direction. This is turns leads to a circular rarefaction
travelling in the opposite direction to the aforementioned flow features. Over time the
shock wave and contact discontinuity will become weaker, resulting in the contact dis-
continuity to stop and travel inwards while the rarefaction wave with reflect when it
reaches the centre.

The solution presented in Fig. 3 was obtained after running the solution until t = 0.2.
A reference solution for density was computer by solving the 1D problem on a very fine
grid. The results indicate that the solver is capable of resolving the shock within 2-3
cells on the unstructured grid and 3-4 on the structured grid, without the need for a low-
mach correction. The results using the WENO 5 reconstruction demonstrate that both
low-mach corrections can be implemented without inducing any other numerical errors.
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Figure 3: Density plots using Weno 5 numerical scheme with and without the low-mach
corrections on both structured and unstructured grids.

5 Conclusions

The conclusion drawn from the subject study are listed below:

• A low-Mach number correction to the reconstruction of finite-volume numerical
schemes improves the dissipation characteristics of the schemes

• A direct implementation of the original low-Mach number modification of [29]
can not be used for all types of elements since they have different dissipation
characteristics

• A revised modification is presented since the reconstructed tangential velocity
components require more dissipation than the normal velocity components with
respect to the interface between two cells

• The subject modification is quite robust to be utilised for all Mach number flows
since it is not producing any spurious oscillations at regions of high-Mach number
that can contaminate the solution.

Acknowledgments

The authors would like to thank Jaguar Land Rover for granting permission to publish
this work. The work has been undertaken due to funding from EPSRC Award. Ref.
Number: 13794.

2911



N.Simmonds, P.Tsoutsanis, and A.Gaylard

REFERENCES

[1] M. Dumbser, M. Kaser, V. Titarev, E. Toro, Quadrature-free non-oscillatory finite
volume schemes on unstructured meshes for nonlinear hyperbolic systems, Journal
of Computational Physics 226 (1) (2007) 204–243.

[2] M. Dumbser, D. Balsara, E. Toro, C.-D. Munz, A unified framework for the con-
struction of one-step finite volume and discontinuous galerkin schemes on unstruc-
tured meshes, Journal of Computational Physics 227 (18) (2008) 8209–8253.

[3] A. Haselbacher, A weno reconstruction algorithm for unstructured grids based on
explicit stencil construction, 2005, pp. 3369–3378.

[4] W. Li, Y. Ren, Quadrature-free non-oscillation finite volume scheme for solving
navier-stokes equations on unstructured grids, Vol. 1376, 2011, pp. 639–641.

[5] X. Nogueira, L. Cueto-Felgueroso, I. Colominas, F. Navarrina, M. Casteleiro, A
new shock-capturing technique based on moving least squares for higher-order nu-
merical schemes on unstructured grids, Computer Methods in Applied Mechanics
and Engineering 199 (37-40) (2010) 2544–2558.

[6] C. Ollivier-Gooch, Quasi-eno schemes for unstructured meshes based on unlimited
data-dependent least-squares reconstruction, Journal of Computational Physics
133 (1) (1997) 6–17.

[7] C. O. Gooch, M. V. Altena, A high-order-accurate unstructured mesh finite-volume
scheme for the advection-diffusion equation, Journal of Computational Physics
181 (2) (2002) 729–752.

[8] P. Tsoutsanis, V. Titarev, D. Drikakis, Weno schemes on arbitrary mixed-element
unstructured meshes in three space dimensions, Journal of Computational Physics
230 (4) (2011) 1585–1601.

[9] V. Titarev, P. Tsoutsanis, D. Drikakis, Weno schemes for mixed-element unstruc-
tured meshes, Communications in Computational Physics 8 (3) (2010) 585–609.

[10] W. Wolf, J. Azevedo, High-order eno and weno schemes for unstructured grids,
International Journal for Numerical Methods in Fluids 55 (10) (2007) 917–943.

[11] Z. Xu, Y. Liu, C.-W. Shu, Hierarchical reconstruction for discontinuous galerkin
methods on unstructured grids with a weno-type linear reconstruction and partial
neighboring cells, Journal of Computational Physics 228 (6) (2009) 2194–2212.

[12] Z. Xu, Y. Liu, C.-W. Shu, Hierarchical reconstruction for spectral volume method
on unstructured grids, Journal of Computational Physics 228 (16) (2009) 5787–
5802.

2912



N.Simmonds, P.Tsoutsanis, and A.Gaylard

[13] P. Tsoutsanis, A. Antoniadis, D. Drikakis, Weno schemes on arbitrary unstructured
meshes for laminar, transitional and turbulent flows, Journal of Computational
Physics 256 (2014) 254–276.

[14] B. Cockburn, C.-W. Shu, Runge-kutta discontinuous galerkin methods for
convection-dominated problems, Journal of Scientific Computing 16 (3) (2001)
173–261.

[15] J. Dennis, R. Nair, H. Tufo, M. Levy, T. Voran, Development of a scalable global
discontinuous galerkin atmospheric model, Int. J. Comp. Sci. Eng.

[16] A. Uranga, P.-O. Persson, M. Drela, J. Peraire, Implicit large eddy simulation of
transition to turbulence at low reynolds numbers using a discontinuous galerkin
method, International Journal for Numerical Methods in Engineering 87 (1-5)
(2011) 232–261.

[17] J. Zhu, J. Qiu, C.-W. Shu, M. Dumbser, Runge-kutta discontinuous galerkin
method using weno limiters ii: Unstructured meshes, Journal of Computational
Physics 227 (9) (2008) 4330–4353.

[18] Z. Wang, Spectral (finite) volume method for conservation laws on unstructured
grids. basic formulation, Journal of Computational Physics 178 (1) (2002) 210–
251.

[19] Z. Wang, Y. Liu, Spectral (finite) volume method for conservation laws on unstruc-
tured grids. ii. extension to two-dimensional scalar equation, Journal of Computa-
tional Physics 179 (2) (2002) 665–697.

[20] Z. Wang, L. Zhang, Y. Liu, Spectral (finite) volume method for conservation laws
on unstructured grids iv: Extension to two-dimensional systems, Journal of Com-
putational Physics 194 (2) (2004) 716–741.

[21] Y. Zhou, Z. Wang, Implicit large eddy simulation of transitional flow over a sd7003
wing using high-order spectral difference method, 2010.

[22] C. Breviglieri, A. Maximiliano, E. Basso, J. Azevedo, Improved high-order spec-
tral finite volume method implementation for aerodynamic flows, 2009.

[23] R. Abgrall, On essentially non-oscillatory schemes on unstructured meshes: anal-
ysis and implementation, Journal of Computational Physics 114 (1) (1994) 45–58.

[24] D. Stanescu, W. Habashi, Essentially nonoscillatory euler solutions on unstruc-
tured meshes using extrapolation, AIAA Journal 36 (8) (1998) 1413–1416.

2913



N.Simmonds, P.Tsoutsanis, and A.Gaylard

[25] G. S. Jiang, C. W. Shu, Efficient implementation of weighted eno schemes, Journal
of Computational Physics 126 (1) (1996) 202–228.

[26] J. Shi, C. Hu, C.-W. Shu, A technique of treating negative weights in weno
schemes, Journal of Computational Physics 175 (1) (2002) 108–127.

[27] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory
shock-capturing schemes, Journal of Computational Physics 77 (2) (1988) 439–
471.

[28] O. Friedrich, Weighted essentially non-oscillatory schemes for the interpolation
of mean values on unstructured grids, Journal of Computational Physics 144 (1)
(1998) 194–212.

[29] B. Thornber, A. Mosedale, D. Drikakis, D. Youngs, R. Williams, An improved
reconstruction method for compressible flows with low mach number features,
Journal of Computational Physics 227 (10) (2008) 4873–4894.

[30] P. Tsoutsanis, I. Kokkinakis, L. Konozsy, D. Drikakis, R. Williams, D. Youngs, An
investigation of the accuracy and efficiency of structured and unstructured, com-
pressible and incompressible methods for the vortex pairing problem, Computer
Methods in Applied Mechanics and Engineering 293 (2015) 207–231.

[31] A. F. Antoniadis, P. Tsoutsanis, D. Drikakis, Numerical accuracy in rans com-
putations of high-lift multi-element airfoil and aircraft configurations, in: AIAA
(Ed.), 53rd AIAA Aerospace Sciences Meeting, no. AIAA 2015-0317, Kissim-
mee, Florida, 2015.

[32] D. Drikakis, A. F. Antoniadis, P. Tsoutsanis, I. Kokkinakis, Z. Rana, Azure: An
advanced cfd software suite based on high-resolution and high-order methods,
in: AIAA (Ed.), 53rd AIAA Aerospace Sciences Meeting, no. AIAA 2015-0813,
Kissimmee, Florida, 2015.

[33] A. F. Antoniadis, D. Drikakis, I. Kokkinakis, P. Tsoutsanis, Z. Rana, High-order
methods for hypersonic shock wave turbulent boundary layer interaction flow, in:
AIAA (Ed.), 20th AIAA International Space Planes and Hypersonic Systems and
Technologies Conference, no. AIAA 2015-3524, Glasgow, Scotland, 2015.

[34] M. Dumbser, M. Käser, V. A. Titarev, E. F. Toro, Quadrature-free non-oscillatory
finite volume schemes on unstructured meshes for nonlinear hyperbolic systems,
Journal of Computational Physics 226 (1) (2007) 204–243.

[35] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics - A Prac-
tical Introduction, Berlin: Springer-Verlag, 1997.

2914



N.Simmonds, P.Tsoutsanis, and A.Gaylard

[36] S. Gottlieb, On high order strong stability preserving runge-kutta and multi step
discretizations, Journal of Scientific Computing 25 (112) (2005) 105–128.

[37] C. Hu, C. W. Shu, Weighted essentially non-oscillatory schemes on triangular
meshes, Journal of Computational Physics 150 (1) (1999) 97–127.

2915



ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

APPROPRIATE COMBINATIONS OF CONTROLLER PARAMETERS
FOR UNSTEADY FLOW SIMULATIONS WITH ADAPTIVE TIME STEP

CONTROL
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Abstract. Compressible Navier-Stokes equations, which govern unsteady flow phenomena,
have been numerically integrated with several high order ESDIRK schemes (Explicit first stage,
Stiffly accurate Diagonally Implicit Runge-Kutta). This type of numerical scheme allows for
embedded error estimation and, based on this error estimation, for adaptive time stepping, cf.
[1, 2, 3]. In this paper different controller types have been applied for the automatic adaption
of the time step size to a prescribed accuracy level: I-, PI-, PC- and PID-controller. Depend-
ing on the choice of corresponding controller parameters, the simulation time can be varied
considerably. On the one hand, a conservative choice leads to slow time step adaption, small
step size and long simulation time. On the other hand, an aggressive parameter setting can
lead to quick step size adaption, but also to rejected computations, due to large time step size,
which does not keep the prescribed accuracy. This also may result in long simulation time. Ob-
viously, there must be appropriate combinations of controller parameters, which minimize the
simulation duration. Hence, a systematic study on a large controller parameter space has been
conducted and regions with appropriate combinations have been identified. Both generic and
complex test cases have been investigated. Overall CPU times and number of time steps are
compared among different ESDIRK schemes and controllers. For the generic test case, most
schemes show a narrow space for the choice of suitable controller parameters, but only one
scheme shows good simulation performance without large sensitivities to parameter combina-
tions. For the complex test cases, all schemes and controllers are less sensitive to parameter
combinations. Furthermore, the optimum combination varies strongly with the type of govern-
ing equations.
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1 INTRODUCTION

The time integration of unsteady flow simulations can be conducted by different schemes:
explicit or implicit, multi-stage or multi-step. In the present work, ESDIRK schemes have been
applied, due to their well-balanced combination of favourable features as stability, robustness,
embedded error estimation and time step control, cf. [1], [2]. In particular, the ability to adapt
the time step size automatically to some prescribed error tolerance is of large benefit for the sim-
ulation reliability and efficient use of computational resources. Previous work was focused on
implementation and validation of different ESDIRK schemes of 3rd- and 4th-order of accuracy,
together with a basic time step control, cf. [4], [5].

Now, the investigation of time step control has been considerably enhanced and the schemes
are re-assessed in terms of their computational efficiency. Different time step controllers (I, PI,
PID, PC) have been implemented and their parameters have been systematically varied among
a very large design space, in order to identify the optimum settings. Two essential mechanisms
affect the simulation time. On the one hand, a quick adaption of time step size leads to reduced
run time. On the other hand, the simulation time is considerably prolonged if many iterations
with rejected error estimates are conducted. The reason therefore is an excessively large time
step, usually generated by an overshoot in the automatic time step size controller. In other
words, the controller parameters should provide a quick time step size adaption, but prevent the
overshoots. As will be shown later, both the type of equation system and of test case require a
different controller type with a different combination of corresponding parameters, in order to
achieve quick and reliable simulations.

Besides time step controllers, the accuracy order of the applied scheme (for time integration
and error estimation) significantly affects the simulation duration. On the one hand, a higher
scheme order can lead to larger time steps, hence reducing the runtime. On the other hand, the
computational effort per iteration is larger for higher order schemes, which will increase the
runtime. These effects, in combination with the aforementioned controller parameters, are the
primary influence factors for the simulation duration and will be addressed in the subsequent
sections.

2 FLOW SOLVER

The numerical simulations presented in this work are performed using the compressible
Navier-Stokes solver TRACE [6], [7]. The TRACE code has been developed at DLR’s In-
stitute of Propulsion Technology in Cologne to model and investigate turbomachinery flows.
The governing equations are solved using a multi-block approach for both structured and un-
structured grids embedded in a parallel environment. The finite-volume method is adopted in
generalized coordinates about the cell centers for space discretization. Upwind-biased spatial
differencing in conjunction with Roe’s flux-difference-splitting method is used to evaluate the
inviscid fluxes, with limiters used to obtain smooth solutions in the vicinity of shocks. Viscous
terms are discretized using second-order accurate central differences. Turbulence modeling is
effected by a k − ω two-equation approach with turbomachinery-specific extensions. The dis-
cretization of the spatial operators in the Navier-Stokes equations results in a system of ordinary
differential equations of the following form

dU

dt
= R(t,U(t)) (1)

where U represents the vector of conservative variables and t denotes the physical time.
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3 IMPLICIT RUNGE-KUTTA METHODS

The numerical solution Un+1 of the ordinary differential system 1 at time tn+1 = tn + ∆t
using an s-stage implicit Runge-Kutta scheme is

Un+1 = Un + ∆t
s∑
j=0

bjR(tn + cj∆t,W
i) (2)

with the values of intermediate stages i

Wi = Un + ∆t
s∑
j=0

aijR(tn + cj∆t,U
j) , i = 1, . . . , s. (3)

The values aij , bj and cj are called Butcher coefficients of the scheme, where the values cj
denote the evaluation time of the intermediate stages in the interval tn → tn + ∆t and bj the
contribution of the individual stage to the final solution at the end of the Runge-Kutta step.

3.1 ERROR ESTIMATION

Implicit Runge-Kutta methods allow for error estimation using an embedded method in the
same Butcher tableau with different order of accuracy q = p±1, with q the order of the scheme
advancing the solution and p the order of the error estimation scheme, respectively. The solution
Ûn+1 of the embedded scheme is

Ûn+1 = Un + ∆t
s∑
j=0

b̂jR(tn + cj∆t,W
i), (4)

where the values b̂j are an additional set of solution coefficients appended to the Butcher tableau.
The embedded method depends only on linear combinations of already present stage values Wi

which makes the error estimation computationally cheap. The error estimate of embedded IRK
methods is defined as

∆Un+1 = Un+1 − Ûn+1. (5)

Within this investigation the maximum error ||∆Un+1||∞ = max(|∆Un+1
i |) is used.

3.2 ESDIRK SCHEMES

The solution of an n-dimensional differential equation system using an implicit Runge-Kutta
method with s stages needs the evaluation of n · s non-linear equation sets per time step. There-
fore several simplifications are useful for the successful implementation of these methods.

For diagonally implicit schemes the coefficient matrix aij is characterized by a lower trian-
gular form, each stage of the scheme therefore depends only on previously solved stages and the
system may thus be solved in s successive steps. An additional simplification for this type of
scheme is the use of the same diagonal coefficient γ for each stage. For methods with explicit
first stage (a1j = 0) the stages are at least second-order accurate. The conditions for stiffly
accurate methods are aij = bj, j = 1, . . . , s, which ensures that the solution of the last stage
Us is the solution at the next time step Un+1. A four stage example of the Butcher tableau
for an Explicit first stage, Singly Diagonal Implicit Runge-Kutta (ESDIRK) scheme is given in
Table 1.
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c1 = 0 0 0 0 0
c2 a21 γ 0 0
c3 a31 a32 γ 0
c4 = 1 b1 b2 b3 γ

order of accuracy q b1 b2 b3 γ

order of accuracy p± 1 b̂1 b̂2 b̂3 b̂4

Table 1: Generic Butcher tableau of a four-stage embedded ESDIRK scheme

In this paper stiffly accurate embedded ESDIRK pairs from third-order up to fourth-order
proposed by Alexander [1], Carpenter et. al. [2] and Kvaerno [3] are considered for the nu-
merical solution of the compressible Navier-Stokes equations. The schemes are here denoted
by authors name followed by the order of accuracy of the solution scheme and in brackets the
order of the scheme for error prediction, e.g. Ale 3(2). The formula pairs presented by Kvaerno
differ a little from the generic form given in Table 1, as the last two successive stages are eval-
uated at cs = cs−1 = 1 and used either to advance the solution or to estimate the error. In that
case the additional coefficients b̂ are omitted. The Butcher tableaus of the methods used in the
present work are given in Table 2- Table 4.

4 STEP SIZE CONTROL ALGORITHMS

The local error of the numerical solution is observed by the embedded ESDIRK scheme. To
control the accuracy of the solution by holding the error within the desired tolerance bounds
and to adapt the time step size ∆t standard controller types are used. For embedded formula
pairs with q = p ± 1 time step control can be conducted using I-, PI-, PID- or PC-controllers
[2], [8]. The algorithms to select the time step size for the different controllers are given by

∆tn+1
I = dtfac ∆tn

(
TOL

||∆Un+1||∞

)KI
, (6)

∆tn+1
PI = dtfac ∆tn

(
TOL

||∆Un+1||∞

)KI ( ||∆Un||∞
TOL

)KP
, (7)

∆tn+1
PID = dtfac ∆tn

(
TOL

||∆Un+1||∞

)KI ( ||∆Un||∞
TOL

)KP ( TOL

||∆Un−1||∞

)KD
, (8)

where dtfac < 1 is a safety factor which prevents rejected iterations.
Additionally the (so-called) predictive controller is considered in this investigation, which

was designed by Gustafsson [8] for stiff equation systems. Stiff equations originate, among
others, from separated space and time discretization, which is typical for the discretization of
the Navier-Stokes equations. The predictive control algorithm

∆tn+1
PC = dtfac ∆tn

(
TOL

||∆Un+1||∞

)KI ( ||∆Un||∞
TOL

)KD [ ∆tn

∆tn−1

]
. (9)

The choice of controller parameters KI , KP , KD in the literature depends on the order of ac-
curacy of the time integration scheme q and the order of accuracy of the embedded method p.
Former investigations regarding ESDIRK schemes and their error estimation skills showed that
for different methods the parameter choice depends not only on the order but also on the scheme
itself (and test problem). Therefore the focus of this paper lies on the controller coefficients.
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Figure 1: Analytical solution of E4 problem

Inappropriate parameter settings can lead to several controller failures: too aggressive time
step adaption, alternating time step sizes, very small step sizes, decreasing step sizes with de-
creasing error or increasing step size with increasing error.

5 APPLICATION

5.1 Non-linear stiff ordinary differential equation system

For the basic validation of the ESDIRK error estimation the analytical test problem E4 given
by Enright [9] was used, cf. [5]. The analytical solution for this system of ordinary differential
equations allows an exact comparison with the numerical solution and enables a comparison of
estimated and exact errors. Being non-linear and stiff, this test problem is representative of the
discretized Navier-Stokes equations. The problem is given as follows

y = Uz, y(0) = (0,−2,−1,−1)T with

z′1 = −(β1z1 − β2z2) + 1
2
(z21 − z22)

z′2 = −(β2z1 − β1z2) + z1z2
z′3 = −β3z3 + z23
z′4 = −β4z4 + z24

, U = 1
2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 , β =


10
−10
1000
0.001

 .
Here this test problem is used to investigate the time step control algorithms. The solution

in the time interval t = 0 − 0.2 is shown in Figure 1 with a detailed view on the stiff starting
region of component z3. This time interval is considered throughout the whole study.

Error Estimation: A comparison of the analytical ∆zN and estimated error ∆zS obtained
using N = 100 iterations to resolve the time period is shown in Figure 2. In order to obtain the
error of a single Runge-Kutta step, each new step is initialized with the analytical solution. In
general the various methods all provide a good estimate of the errors. In particular, however, the
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Figure 2: Error estimation ∆zS and analytical error ∆zN of component z1 for different schemes
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Figure 3: I-controller using Ale 3(4) (left) and Car 4(3) (right)

estimation scheme of Ale 3(4) produces the most accurate error trend and error level. In contrast
Car 4(3) tends to underpredict the error. However, the error level is two orders of magnitude
smaller due to the higher order of accuracy of the solution scheme.

To analyze the different controller types a systematic investigation of safety factor ∆tfac
and parameters KI , KP , KD is conducted. The influence of the safety factor was first tested
using the I-Control and to reduce the effort for the following tests in consequence fixed to
dtfac = 0.90. Areas with any kind of controller failure are blanked in the figures concerning
control parameter settings. Remember that this means not necessarily a total failure of the
controller, also inapproriate parameters are blanked, e.g. producing long run times due to small
step sizes.

I-controller: The resulting number of accepted time steps N for the integral element are
given in Figure 3 for Ale 3(4) and Car 4(3), the number of rejected time steps NR and the CPU
time are also shown. Four values in the range of 0.80-0.95 are used to test the impact of dtfac.
The sampling of KI in this test is much finer resolved using 60 points between 0.01 − 0.60.
Preliminary investigations showed that for most ESDIRK schemes the maximum allowable KI

is within this range. Here Ale 3(4) and Car 4(3) are shown exemplarily, which are the time in-
tegration methods with the highest sensitivity to control parameter choice, respectively lowest
sensitivity. Car 4(3) is less sensitive to the parameter choice and performs over a broad param-
eter range very well. For all other methods the parameter range is limited. With increasing
dtfac the number of rejected steps slightly increases for Ale 3(4). On the other hand, together
with the number of accepted steps, nearly the same number of overall iterations results. ∆tfac
prevents for rejected time steps but is not the key factor to reduce overall number of time steps
and therefore runtime.
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Figure 4: CPU time for PI-Control

Figure 5: CPU time for Ale 3(2) using PC-Control (left) and Ale 3(4) using PID-Control (right)

PI-controller: Figure 4 compares the runtime for different ESDIRK schemes using Algo-
rithm 7 for step size adaption. Here a fine sampling mesh with 29 points for KI and 49 points
for KP is applied. The influence of the order of accuracy is clear lower order pairs such at
Ale 3(2) tend to longer run times than methods with higher order e.g. Ale 3(4) or Car 4(3).
Kva 4(3) contradicts this statement and is not well suited to this problem. Using this time step
control algorithm the parameter range for Car 4(3) is nearly as limited as for the other integra-
tion schemes using this controller type. However, comparing I- and PI-Controllers it can be
seen that the more sophisticated PI-Controller is able to produce lower runtimes, e.g. Car 4(3).
This superiority is not that obvious for other methods.

PC-controller: Using the example of Ale 3(2) in Figure 5 (left) the time consumption for
the predictive control algorithm (Equation 9) is shown. The results are scattered strongly within
parameter space, small parameter changes cause large changes in runtime behaviour. Here this
performance is only shown for one ESDIRK method, but it is a general result for all methods
under consideration using this controller type.

PID-controller: The control parameter study for a controller of PID-type was performed
using a sampling of 24 values for KI and 14 values for KP and KD. In Figure 5 (right) results
for Ale 3(4) are shown. With increasing values of KD larger areas with increasing CPU time
occur. An improvement of CPU time in comparison to PI-Control is not observed, however the
risk of inappropriate parameter settings increases.
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Figure 6: Computational domain and density contours at the end position

5.2 Advection of entropy disturbance

To investigate the implementation of adaptive time stepping in the context of the Navier-
Stokes flow solver first a two-dimensional test problem is considered: the advection of an en-
tropy disturbance. The simplicity of this problem facilitates a systematic controller parameter
study in the Navier-Stokes solver. This is realized by initializing the density field as follows

ρ =
[
T∞ − 0.001e(1−r

2)
] 1
γ−1

with r =
√

(x− x0)2 + (y − y0)2 and γ = 1.4 (ratio of specific heats). The freestream values
of axial velocity, pressure and temperature are U∞ = s135.6 m/s, P∞ = 90500 Pa and T∞ =
278.977 K, respectively. The flow is uniform with u = U∞, v = w = 0 and p = P∞. The
two-dimensional computational domain is a simple rectangle meshed with 12800 cells, split
over 8 blocks, extended 40l in x-direction and 20l in y-direction, cf. Figure 6. The simulation
starts at t = 0 with the entropy disturbance centered at (x0, y0) = (10l, 10l) and ends about
(xT , yT ) = (30l, 30l).

To analyze automatic time step adjustment and control mechanisms in the context of the
flow solver a similar parameter study to that of the E4 problem with less sampling points is
conducted. The prescribed tolerance of TOL = 0.002 is very stringent. Preliminary investiga-
tions, in which the tolerance targets were decreased from 0.01 − 0.001, showed that this value
is a threshold, which leads to strongly increased runtimes. Again the safety factor dtfac is only
considered for the I-controller and for all other controllers is fixed to dtfac = 0.96.

I-controller: The resulting CPU time for all ESDIRK methods using the integral element
are given in Figure 7. The number of rejected time steps NR varies between 2 and 8, where
two steps are needed to meet the prescribed tolerance in the first time step. Four values for
dtfac = 0.87 − 0.96 are studied and 10 values of KI = 0.05 − 0.95. The valid parameter
range is similar for all investigated time integration schemes, as well the areas with lowest and
highest time consumption. A low value of dtfac results in increasing CPU time, especially
using Car 4(3) for time integration. In contrast to the results of E4 here the highest value of
KI yields the fastest runtime. Compared to the third-order accurate schemes, Car 4(3) does not
reflect the superiority as shown for E4 problem. This scheme has six-stages while the other
schemes have four or five stages. It becomes apparent that the number of stages influences
the computational overhead of the flow solver. For this simple flow problem the higher order
accuracy is not crucial for time consumption. In particular, with increasing number of rejected
time steps (small dtfac) the runtime increases dramatically.
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Figure 7: CPU time for advection problem using I-controller

Figure 8: CPU time for advection problem using PI-Control

Figure 9: CPU time for advection problem using PC-Control

Figure 10: CPU time for advection problem using PID-Control
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PI-controller: The proportional integral element is tested using 10 values for KI and KP in
the range of 0.05 − 0.95. The valid parameter range for PI-control is similar for all ESDIRK
schemes, Figure 8. Results for Kva 4(3) are similar to Car 4(3) (not shown here). The pro-
portional element, in addition to the integral element, smoothes the resulting runtimes over the
whole parameter range. The fastest simulations are performed using high values of KI and low
values of KP , e.g. Ale 3(4).

PC-controller: In the simulations performed using control algorithm 9 the same parameter
range as for the PI type is considered, cf. Figure 9. Here longer run times are obtained. In
particular, Car 4(3) shows significant higher simulation times in areas with low values of KP .
For this scheme a wide spread of the results with small parameter changes is observed, which
makes it difficult to select a proper parameter combination. Kva 4(3) leads to similar CPU time
to Ale 3(4) (not shown here). Although this controller type was specifically designed for stiff
equation systems it does not seem to provide better results than the standard PI-controller in our
investigations.

PID-controller: In Figure 10 resulting CPU times using Algorithm 8 for adaptive time step-
ping are shown. The parameter KI ranges from 0.25 − 0.95 using 8 samples and 10 samples
for KP , KD in the range of 0.05 − 0.95. With increasing KD valid parameter combinations
decrease. A remarkable feature of Ale 3(4) method is an almost constant CPU time for all pa-
rameter combinations. Furthermore, the region withKD = 0.6 seems to be the preferred choice,
due to largest area of valid combinations. In contrast, the Car 4(3) method shows a consider-
able decrease of simulation time with increasing KD. Here, the region with KD = 0.8 yields
comparable runtime results as Ale 3(4), together with a larger region of valid combinations as
for higher or lower values.

5.3 Flow around a circular cylinder

The basic investigations of controller coefficients and the implementation of embedded ES-
DIRK schemes in conjunction with adaptive time step control in the context of the Navier-
Stokes solver were demonstrated using analytical problems. Now, as a final test case, a more
realistic final problem is considered: the flow around a circular cylinder. As a further increase of
complexity, the viscous effects are now captured by the two-equation k-ω turbulence modell of
Wilcox [10]. The Reynolds number is 140.000, based on the cylinder diameter of 0.010137m.
The free stream values for velocity and temperature are 21.20 m/s and 24◦C. The vortex shed-
ding period is 0.02665 s, which corresponds to a Strouhal number of 0.179.

In contrast to preliminary test cases the computational effort for one simulation of the cylin-
der flow is much higher, therefore the number of control algorithms as well as the number of
coefficients is reduced. Based on the results for the analytical problems, E4 and the advection
of an entropy disturbance, here controllers of PI-type are used. For this flow problem a high
value of ∆tfac = 0.96 is suitable.

As shown in the previous sections, the entropy advection problem, which is governed by
Navier-Stokes equations, yields a region of appropriate controller parameters which is quite
different than the corresponding region of the generic E4 test case, which is governed by an
other differential equation system. Hence, the type of ODE system seems to have a major
influence on the controller parameters. To test this assumption, another Navier-Stokes test
case is investigated in this section. In other words, it is assumed that the same type of ODE
system leads to the same range of suitable controller parameters. Due to the similar range of
suitable KI and KP parameters for all methods in the previous Navier-Stokes test case, only
Ale 3(4) method is investigated in this test case, and the corresponding results are considered
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Figure 11: Cylinder flow using PI-Controller error of pressure ∆pLinf (right) and time step size
∆t for Ale 3(4)

Figure 12: Cylinder flow using PI-controller for Ale 3(4)

as representative for all methods. For this problem a tolerance for the maximum pressure error
of ∆pLinf = 2 Pa is prescribed.

Five simulations with different controller coefficients using Ale 3(2) are presented in Fig-
ure 11. As a beneficial result, it is found that all parameter combinations provide estimated
errors, which are lower than the prescribed value. However, the simulation with small KI and
large KP value provides a significantly smaller estimated error, making the simulation too con-
servative. This in turn leads to a large number of timesteps and a long simulation duration. In
contrast, the combinations with largeKI and smallKP values run much closer to the prescribed
tolerance, reducing the number of time steps by ca. 5 %. This observation is in agreement with
the time step size ∆t results at the right hand side of the figure, where the largest values are
found for the latter parameter combination.

Figure 12 confirms the assumption that the suitable parameters strongly depend on the gov-
erning equations. The region of valid parameter combinations, which simultaneously yields the
shortest simulation duration, coincides very well with the results from the advection problem.
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6 CONCLUSIONS

In this work different control algorithms for time step size control in unsteady flow simula-
tions based on the compressible Navier-Stokes equations using embedded Runge-Kutta schemes
have been investigated. Here a detailed analysis of parameter settings for time step size adap-
tion using I-, PI-, PID- and PC-Control has been performed with the aim of calibrating the
controllers for unsteady flow simulations.

Prior to the implementation in the Navier-Stokes solver a stiff analytical problem is con-
sidered to verify the precision of error prediction and for the basic understanding of different
control algorithms. This test case is used for a detailed study of controller types and parameter
range. In general the quality of error estimation for different ESDIRK schemes is very good.
For example, the embedded ESDIRK method using the highest order scheme for error predic-
tion, Ale 3(4), yields excellent results. However, in some cases, the estimated error is smaller
than the analytical error by almost one order of magnitude.

The implementation of adaptive time step control in the flow solver is examined first with
a simple advection problem, which allows for large controller parameter studies. As second
test case the flow around a cylinder is used, at which only a selected number of controller
coefficients is considered.

Even with the simplest controller type which contains only an integral element adaptive time
stepping can be performed. The more sophisticated PC-Controller recommended by Gustafsson
for stiff equations shows conflicting results, ranging from well suited for a simple advective
flow problem to very poor performance for academic test problem. The PID-controller may
provide region of well behaved combinations, but the resulting CPU time is much longer than
for concurrent controllers. Overall, the PI-controller outperforms all other controllers for all
investigated test cases. Finally, the region of suitable parameter combination depends strongly
on the governing equations, which are to be solved. For the Navier-Stokes solver a high value
of KI and a low value of KD are favourable.
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A BUTCHER TABLEAUS

γ = 0.435866521508

b1 = −18γc3+12γ2c3+3c3+12γ−12γ2−2
12γc3

b2 = 2−3c3+6γc3−6γ
12γ(2γ−c3)

b3 = 6γ2+1−6γ
3c3(c3−2γ)

0 0
2γ γ γ

c3
6γc3−c23−4γ

2

4γ
−c3(c3−2γ)

4γ
γ

1 b1 b2 b3 γ
b1 b2 b3 γ

b̂1 b̂2 b̂3 b̂4

Ale 3(2): c3 = 1
2

+ γ
4

b̂1 = b1 − δb2 − 0.096 + 0.284
b̂2 = b2 + −c30.096+0.284

2γ

b̂3 = b3 + 0.096
b̂4 = γ − 0.284

Ale 3(4): c3 = 18
13
γ2 − 2γ + 14

13

b̂1 = 12γc3−4γ−2c3+1
24γc3

b̂2 = 2c3−1
24γ(2γ−c3)(2γ−1)

b̂3 = 1−4γ
12c3(2γ−c3)(c3−1)

b̂4 = 3+12γc3−4c3−8γ
12(2γ−1)(c3−1)

Table 2: Ale 3(2) and Ale 3(4): Four-stage, 3rd-order ESDIRK method with embedded 2nd- or
4th-order scheme

γ = 0.5728160625

a31 = 144γ5−180γ4+81γ3−15γ2+γ
(12γ2−6γ+1)2

a32 = −36γ4+39γ3−15γ2+2γ
(12γ2−6γ+1)2)

0 0
2γ γ γ

a31 + a32 + γ a31 a32 γ

1 b̂1 b̂2 b̂3 γ
1 b1 b2 b3 b4 γ

b̂1 = −144γ5+396γ4−330γ3+117γ2−18γ+1
12γ2(12γ2−9γ+2)

b̂2 = 72γ4−126γ3+69γ2−15γ+1
12γ2(3γ−1)

b̂3 = (−6γ2+6γ−1)(12γ2−6γ+1)2

12γ2(12γ2−9γ+2)(3γ−1)

b1 = (288γ4−312γ3+120γ2−18γ+1
48γ2(12γ2−9γ+2)

b2 = 24γ2−12γ+1
48γ2(3γ−1)

b3 = −(12γ2−6γ+1)3

48γ2(3γ−1)(12γ2−9γ+2)(6γ2−6γ+1)

b4 = −24γ3+36γ2−12γ+1
24γ2−24γ+4

Table 3: Kva 4(3): Five-stage, 4th-order ESDIRK method with embedded 3rd-order scheme

2928
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0 0
1
2

1
4

1
4

83
250

8611
62500

− 1743
31250

1
4

31
50

5012029
34652500

− 654441
2922500

174375
388108

1
4

17
20

15267082809
155376265600

− 71443401
120774400

730878875
902184768

2285395
8070912

1
4

1 82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4

82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4

4586570599
29645900160

0 178811875
945068544

814220225
1159782912

−−3700637
11593932

61727
225920

Table 4: Ken 4(3): Six-stage, 4th-order ESDIRK method with embedded 3rd-order scheme
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Abstract. Polygonal meshes are especially suited for the discretization of boundary value
problems in adaptive mesh refinement strategies. Such meshes are very flexible and incorporate
hanging nodes naturally. But only a few approaches are available that handle polygonal dis-
cretizations in this context. The BEM-based Finite Element Method (FEM) and a residual based
error estimate are reviewed in the presentation. This a posteriori error estimate is reliable and
efficient on polygonal meshes and can be applied in adaptive FEM strategies. Furthermore,
the BEM-based FEM is applicable on such general meshes and gains its flexibility by implicitly
defined trial functions. They are given as solutions of local Dirichlet problems related to the
global differential operator. These local problems are treated by means of Boundary Element
Methods (BEM) in the realization. In the numerical experiments the test problems of the recent
publication on adaptive Virtual Element Methods by L. Beirão da Veiga and G. Manzini [ESAIM
Math. Model. Numer. Anal., 49(2):577–599, 2015] are considered in an adaptive BEM-based
FEM simulation. The experiments show optimal rates of convergence for uniform and adaptive
mesh refinement, where the latter one yields, in particular, very local mesh adaptation.
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1 Introduction

Polygonal and polyhedral meshes have attracted a lot of interest in the discretization of
boundary value problems during the last few years. Especially in adaptive mesh refinement
strategies such meshes are attractive, since they are very flexible and handle hanging nodes
naturally. New methods have been developed and conventional approaches were mathemati-
cally revised to handle these general meshes. The most prominent representatives for the new
approaches are the Virtual Element Method (VEM) [2] and the Weak Galerkin Method [17].
Strategies like discontinuous Galerkin [7] and the mimetic discretization techniques [3] are also
considered on polygonal and polyhedral meshes. Additionally, there are the so called BEM-
based Finite Element Methods (FEM) which have their roots in the boundary element domain
decomposition approaches [6]. These methods make use of implicitly defined trial functions
that are locally the solution of boundary value problems treated in the numerical realization by
means of Boundary Element Methods (BEM).

The BEM-based FEM has been studied for high order approximations [13, 20], mixed for-
mulations [9], convection-adapted trial functions [10], time dependent problems [21] and on
general polyhedral meshes [14]. Additionally, the BEM-based FEM has shown its flexibility
and applicability on adaptively refined polygonal meshes [18, 22, 23]. Especially adaptivity is
an interesting topic in this context, but, there are only a few references to adaptive strategies
and a posteriori error control on polygonal meshes. A posteriori error estimates for the dis-
continuous Galerkin method are given in [11]. To the best of our knowledge there is only one
publication for the Virtual Element Method [4] and one for the Weak Galerkin Method [5]. The
first mentioned publication deals with a residual a posteriori error estimate for a C1-conforming
approximation space, and the second one is limited to simplicial meshes. For the mimetic dis-
cretization technique there are also only few references which are limited to low order methods,
see the recent work [1].

The aim of this publication is to review the findings for the adaptive BEM-based FEM and to
present computational results obtained by the considered approach for the test problems studied
in [4] for the Virtual Element Method. Beside of the high flexibility of the polygonal meshes,
the numerical experiments show optimal rates of convergence on very locally adapted meshes.
This is possible since no additional refinement in the neighbourhood of marked elements is
necessary to keep the meshes admissible.

In Section 2, we give a model problem and discuss the preliminaries for the BEM-based
FEM. The discretization is reviewed in Section 3, and in Section 4, the reliability as well as
the efficiency of the residual based error estimate on polygonal meshes is stated. Section 5
describes the adaptive BEM-based FEM strategy and presents several numerical experiments.
Finally, we give a conclusion in Section 6.

2 Preliminaries

Let Ω ⊂ R2 be a connected, bounded, polygonal domain with unit outer normal field nΩ.
Furthermore, denote by Γ = ΓD ∪ ΓN the boundary of Ω, where ΓD ∩ ΓN = ∅ and |ΓD| > 0.
We consider the diffusion equation with mixed boundary conditions

−div(a∇u) = f in Ω, u = 0 on ΓD, a∇u · nΩ = gN on ΓN , (1)

where, for simplicity, we restrict ourselves to piecewise constant and scalar valued diffusion
a ∈ L∞(Ω) with 0 < amin ≤ a ≤ amax almost everywhere in Ω. The usual notation for Sobolev
spaces and their norms is used.
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The well known variational formulation of problem (1) reads

Find u ∈ H1
D(Ω) : b(u, v) = (f, v)L2(Ω) + (gN , v)L2(ΓN ) ∀v ∈ H1

D(Ω), (2)

for gN ∈ L2(ΓN) and f ∈ L2(Ω), where

b(u, v) = (a∇u,∇v)L2(Ω)

is bounded and coercive on

H1
D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}.

We decompose the domain Ω into a family of meshesKh containing non-overlapping, polyg-
onal elements K ∈ Kh such that

Ω =
⋃
{x ∈ K

∣∣K ∈ Kh}.
The mesh is called regular if all elements K ∈ Kh are star-shaped with respect to a circle of
radius ρK such that the ratio of the element diameter hK and ρK is uniformly bounded, i.e.
hK/ρK < σK, and if the element diameter can be uniformly bounded by a constant times the
smallest length of its edges, i.e. hK < cKhE forE ∈ E(K). Here, E(K) denotes the set of edges
of K. Furthermore, we denote by Nh and Eh the sets of all nodes and edges in the mesh. Eh is
decomposed into the sets of edges which are in the interior of Ω, on the Dirichlet boundary ΓD
and on the Neumann boundary ΓN , we write Eh = Eh,Ω ∪Eh,D ∪Eh,N . Additionally, we assume
without loss of generality that hK < 1, K ∈ Kh. This is always achievable by scaling the
domain.

Finally, the conforming approximation space V k
h ⊂ H1

D(Ω) of order k with

V k
h = {v ∈ H1

D(Ω) : ∆v|K ∈ Pk−2(K), K ∈ Kh and v|E ∈ Pk(E), E ∈ Eh}

is introduced. Here Pp(·) denotes the space of polynomials of degree smaller or equal p over the
elements and edges, respectively. In the case of the diffusion equation, which is studied here,
the approximation space V k

h for the BEM-based FEM is the same as for the Virtual Element
Method. But, in contrast to the Virtual Element Method, the BEM-based FEM makes use of an
explicit basis of V k

h .

3 BEM-based FEM

The discrete space V k
h is constructed by prescribing its basis functions that are subdivided

into nodal, edge and element basis functions. Each of them is locally (element-wise) the unique
solution of a boundary value problem. We give a brief review of the approach in [20], more
details concerning the implementation can also be found in [13].

For each node we define the function ψz, z ∈ Nh such that

−∆ψz = 0 in K for all K ∈ Kh,

ψz(x) =

{
1 for x = z,

0 for x ∈ Nh \ {z},
ψz is linear on each edge of the mesh.
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For E ∈ Eh, let z0, z1 ∈ Nh with E = z0z1. We set pE,0 = ψz0|E and pE,1 = ψz1|E . Further-
more, let {pE,i : i = 0, . . . , k} be a basis of Pk(E). Then the edge basis functions ψE,i for
i = 2, . . . , k, E ∈ Eh are given by

−∆ψE,i = 0 in K for all K ∈ Kh,

ψE,i =

{
pE,i on E,
0 on Eh \ {E}.

Last but not least, we have to incorporate the non-harmonic functions. Consequently, we define
the element basis functions ψK,i,j for i = 0, . . . , k − 2 and j = 0, . . . , i, K ∈ Kh by

−∆ψK,i,j = pK,i,j in K,
ψK,i,j = 0 else,

where {pK,i,j : i = 0, . . . , k − 2 and j = 0, . . . , i} is a basis of Pk−2(K).
All these functions are well defined. They are given locally as unique solutions of a boundary

value problems and, due to the local Dirichlet boundary data, they are continuous over the whole
domain Ω. It is easily seen that {ψz, ψE,i, ψK,i,j} forms a basis of V k

h , since each function
ψ ∈ V k

h can be expressed locally as solution of the boundary value problem

−∆ψ = pK in K,
ψ = p∂K on ∂K,

(3)

with pK ∈ Pk−2(K) and p∂K ∈ Pkpw(∂K). Here, Pkpw(∂K) = Pkpw,d(∂K) ∩ C0(∂K) and

Pkpw,d(∂K) = {p ∈ L2(∂K) : p|E ∈ Pk(E), E ∈ E(K)}.

The Galerkin approximation of (2) reads

Find uh ∈ V k
h : b(uh, vh) = (f, vh)L2(Ω) + (gN , vh)L2(ΓN ) ∀vh ∈ V k

h . (4)

For ψ ∈ V k
h , v ∈ H1

D(Ω) and a(·) = aK on each K ∈ Kh, it is

b(ψ, v) =
∑
K∈Kh

aK(∇ψ,∇v)L2(K) =
∑
K∈Kh

aK
{

(γK1 ψ, γ
K
0 v)L2(∂K) − (∆ψ, v)L2(K)

}
,

where γK0 v is the usual trace of v on ∂K and γK1 ψ ∈ H−1/2(∂K) is the Neumann trace of ψ on
∂K, which is given for sufficient regular ψ by

γK1 ψ(x) = lim
K3x̃→x

nK(x) · ∇ψ(x̃) for x ∈ ∂K.

Since the Neumann trace is unknown in general, we approximate γK1 ψ by γ̃K1 ψ ∈ Pkpw,d(∂K)
using a Galerkin approximation for a boundary integral equation connecting the Dirichlet and
Neumann trace. If ψ is given by (3) with pK = 0, that is always achievable by homogenization
with a polynomial, the utilized formulation of the Boundary Element Method (BEM) reads:

Find γ̃K1 ψ ∈ Pkpw,d(∂K) :
(
VK γ̃K1 ψ, q

)
L2(∂K)

=
((

1
2
I + KK

)
p∂K , q

)
L2(∂K)

∀q ∈ Pk−1
pw,d(∂K).
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This formulation involves the single layer potential VK : H−1/2(∂K) → H1/2(∂K) and the
double layer potential KK : H1/2(∂K) → H1/2(∂K), which are boundary integral operators.
Thus, the task to find an approximation of the Neumann trace is reduced to a one-dimensional
problem on the boundary ∂K. Furthermore, we have the representation formula

ψ(x) =

∫
∂K

U∗(x, y)γK1 ψ(y) dsy −
∫
∂K

γK1,yU
∗(x, y)γK0 ψ(y) dsy for x ∈ K, (5)

where U∗(x, y) = − 1
2π

ln(|x − y|). More details can be found in the literature on boundary
integral equations and Boundary Element Methods, see, e.g., [12, 15].

Next, an approximation to the variational formulation (4) is given. Let ṽ be a piecewise poly-
nomial and discontinuous approximation of v ∈ H1

D(Ω) over the mesh Kh, which is obtained
by local averaging for example. As proposed in [22], the approximated discrete variational
formulation is defined by

Find uh ∈ V k
h : bh(uh, vh) = (f, ṽh)L2(Ω) + (gN , vh)L2(ΓN ) ∀vh ∈ V k

h , (6)

with

bh(ψ, v) =
∑
K∈Kh

aK

{
(γ̃K1 ψ, γ

K
0 v)L2(∂K) − (∆ψ, ṽ)L2(K)

}
, ψ ∈ V k

h , v ∈ H1
D(Ω),

where γ̃K1 ψ ∈ Pk−1
pw,d(∂K) is the BEM approximation and ṽ is the polynomial approximation

of v over each K. This form of the approximated bilinear form is especially suited for the a-
posteriori error analysis since the second argument of bh(·, ·) is only assumed to be in H1

D(Ω).
For the computational realization one might exploit the additional properties of vh ∈ V k

h to treat
the volume integral (∆ψ, ṽh)L2(K), see [13, 20].

4 Residual based Error Estimate

In this section, the residual based error estimate is reviewed on polygonal meshes and the
reliability as well as the efficiency are stated. This estimate bounds the error of the finite element
computation in the energy norm, which is given by ‖v‖2

b,ω = (a∇v,∇v)L2(ω) over a subset
ω ⊂ Ω. Due to the homogenious Dirichlet boundary data, ‖ · ‖b,Ω is equivalent to ‖ · ‖H1(Ω) on
H1
D(Ω). The discrete jump of the approximation of the conormal derivatives over an internal

edge E ∈ Eh,Ω is defined by

JuhKE,h = aK γ̃K1 uh + aK′ γ̃K
′

1 uh,

where K,K ′ ∈ Kh are the adjacent elements of E with E ∈ E(K) ∩ E(K ′).

Theorem 1 (Reliability). Let Kh be a regular mesh. Furthermore, let u ∈ H1
D(Ω) and uh ∈ V k

h

be the solutions of (2) and (6), respectively. Then, it is

‖u− uh‖b,Ω ≤ c
{
η2
R + δ2

R

}1/2 with η2
R =

∑
K∈Kh

η2
K and δ2

R =
∑
K∈Kh

δ2
K ,

where the error indicators are defined by

η2
K = h2

K‖RK‖2
L2(K) +

∑
E∈E(K)

hE‖RE‖2
L2(E), δ2

K = ‖aKγK1 uh − aK γ̃K1 uh‖2
L2(∂K),
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with the element residual
RK = f + aK∆uh for K ∈ Kh,

and the edge residual

RE =


0 for E ∈ Eh,D,
gN − aK γ̃K1 uh for E ∈ Eh,N with E ∈ E(K),

−1
2
JuhKE,h for E ∈ Eh,Ω.

The constant c > 0 only depends on the regularity parameters σK, cK, the approximation order k
and on the diffusion coefficient a.

The term δK measures the approximation error in the Neumann traces of the basis functions
of V k

h coming from the Boundary Element Method. To state the efficiency, we introduce the
neighbourhood ωK of an element K ∈ Kh. Let ωK be an open subset of Ω such that

ωK =
⋃
{x ∈ K ′ : E(K) ∩ E(K ′) 6= ∅, K ′ ∈ Kh}.

Theorem 2 (Efficiency). Under the assumptions of Theorem 1, the following local bound is
fulfilled

ηK ≤ c

(
‖u− uh‖2

b,ωK
+ h2

K‖f − f̃‖2
L2(ωK) +

∑
E∈E(K)∩Eh,N

hE‖gN − g̃N‖2
L2(E)

+
∑

E∈E(K)

∑
K′⊂ωE

hE‖aK′γK
′

1 uh − aK′ γ̃K
′

1 uh‖2
L2(E)

)1/2

,

where f̃ and g̃N are piecewise polynomial approximations of the data f and gN , respectively.
The constant c > 0 only depends on the regularity parameters σK, cK, the approximation order k
and on the diffusion coefficient a.

The terms involving the data approximation ‖f − f̃‖L2(ωK) and ‖gN − g̃N‖L2(E) are often
called data oscillations. They are usually of higher order. Furthermore, the approximation of
the Neumann traces by the Boundary Element Method appear in the right hand side. This term
is related to δK .

5 Numerical experiments

For the numerical validation and verification, we consider the two test cases given in [4]
for an adaptive Virtual Element Method (VEM). The boundary value problems are given on
bounded polygonal domains Ω as

−∆u = f in Ω, u = gD on ΓD = ∂Ω. (7)

The Dirichlet data gD ∈ C(ΓD) is treated in the usual way by a discrete extension into the
domain Ω to obtain homogeneous data on ΓD. Therefore, problem (7) takes the form (1). In
the following, (7) is approximated on a sequence of uniformly and adaptively refined meshes,
where the initial meshes coincide with the ones in [4]. For the refinement itself we chose a
different procedure than in [4], namely the algorithm from [18].

In the uniform refinement strategy each element of the mesh is split into two new elements
to obtain the next finer mesh. This splitting process is performed as described below. For the
adaptive BEM-based FEM, we proceed in a common strategy, which involves a loop over the
following four steps:
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SOLVE The boundary value problem (1) is approximated by means of the BEM-based FEM
on the current polygonal mesh using the approximation space V k

h .

ESTIMATE The residual based error estimator ηR as well as the indicators ηK discussed in
Section 4 are computed over each element of the discretization Kh.

MARK A minimal subsetMh ⊂ Kh of all elements are marked according to Dörflers strat-
egy [8] such that ( ∑

K∈Mh

η2
K

)1/2

≥ (1− θ) ηR,

where 0 ≤ θ < 1 is a user defined parameter. To obtain a minimal setMh, it is possible
to sort the elements according to their indicators ηK and mark those with the largest
indicators. Instead of that, we implemented the marking algorithm given in [8] to achieve
linear complexity. Furthermore, we choose θ = 0.5 in the numerical experiments.

REFINE Each marked element is refined and we consequently obtain a new mesh for the
next cycle in the loop. For the refinement of an element K, we bisect K through its
barycenter x̄ orthogonal to its characteristic direction that is given as eigenvector to the
largest eigenvalue of the matrix

MCov =

∫
K

(x− x̄)(x− x̄)>dx, x̄ =
1

|K|

∫
K

x dx.

For more details see [18, 19]. Furthermore, we check the regularity of the mesh and refine
additional elements if the condition hK < cKhE for E ∈ E(K) is violated with a user
defined parameter cK.

The adaptive mesh refinement process is kept very local. Only the marked and degener-
ated elements are bisected during the refinement. It is not necessary to resolve hanging nodes
and keep the mesh admissible as for example in the red-blue-green refinement procedure for
triangular meshes, see [16]. This advantage is due to the polygonal meshes with very flexi-
ble elements. The local refinement character can be seen in the following test problems in the
Figures 1 and 3.

To analyse the experiments, we compute the relative error in the energy norm over each
mesh in the convergence process. In contrast to the Virtual Element Method, it is possible
to evaluate the approximation uh inside of the elements by means of the representation for-
mula (5). Therefore, we approximate ‖u − uh‖b,Ω by Gaussian quadrature over a fine aux-
iliary triangulation of the domain that is aligned with the polygonal mesh. The mesh size
hmax = max{hK : K ∈ Kh} does not uniformly tend to zero on adaptively refined meshes.
Thus, the relative errors ‖u−uh‖b,Ω/‖u‖b,Ω are plotted with respect to the number of degrees of
freedom (DoF) in logarithmic scale. Since DoF = O(h−2

max) for a sequence of uniformly refined
meshes, we expect that the error in the energy norm behaves like O(DoF−k/2) for an optimal
method with approximation order k.

5.1 Test case 1: singular solution

Let Ω = ((−1, 1)× (−1, 1)) \ ([0, 1]× [−1, 0]) be a L-shaped domain and f = 0 in (7). The
Dirichlet data gD is chosen such that

u(r cosϕ, r sinϕ) = r2/3 sin
(

2
3
ϕ
)
, x = (r cosϕ, r sinϕ) ∈ R2
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Figure 1: Test 1: initial mesh (left), adaptively refined mesh for k = 1 and ‖u− uh‖b,Ω/‖u‖b,Ω ≈ 0.02 (middle),
zoom of adaptively refined mesh for k = 3 and ‖u− uh‖b,Ω/‖u‖b,Ω ≈ 0.002 (right).

is the exact solution of (7), where (r, ϕ) are polar coordinates. The initial mesh is visualized
in Figure 1 (left). Furthermore, the adaptive refined meshes are given in this figure for the first
order method with V 1

h and a relative error of approximately 0.02 as well as for the third order
method with V 3

h and a relative error of approximately 0.002. In the right most picture a zoom
of the mesh for V 3

h is visualized since the adaptive refinement only affect elements close to the
reentrant corner of the domain, where the singularity of the solution is located. The presented
meshes were achieved after 11 and 16 refinement steps.

In Figure 2, the convergence graphs are given for the first, second and third order method and
for the uniform as well as the adaptive strategy. In all three cases the adaptive BEM-based FEM
yields optimal rates of convergence, namely a slope of −k/2 in the logarithmic plots. Since
u ∈ H5/3(Ω) is not sufficient regular, the convergence on uniform meshes slows down. The
theory predicts a behaviour of the error independent of the approximation order k likeO(h

2/3
max).

This corresponds to O(DoF−1/3), which is recovered in the convergence graphs in Figure 2.
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Figure 2: Test 1: convergence of the relative energy error ‖u − uh‖b,Ω/‖u‖b,Ω with respect to the number of
degrees of freedom for the approximation orders k = 1, 2, 3 on uniformly and adaptively refined meshes.
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Figure 3: Test 2: initial mesh (left), uniformly refined mesh (middle), adaptively refined mesh for k = 1 and
‖u− uh‖b,Ω/‖u‖b,Ω ≈ 0.2 (right).
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Figure 4: Test 2: convergence of the relative energy error ‖u − uh‖b,Ω/‖u‖b,Ω with respect to the number of
degrees of freedom for the approximation orders k = 1, 2, 3 on uniformly and adaptively refined meshes.

5.2 Test case 2: strong internal layer

Let Ω = (0, 1)2, gD = 0 and f be chosen such that

u(x) = 16x1(1− x1)x2(1− x2) arctan(25x1 − 100x2 + 50), x = (x1, x2) ∈ R2

is the exact solution of (7). Since u is arbitrary smooth, we expect optimal rates of convergence
in the case of uniform mesh refinement in an asymptotic regime. Although the solution u is
smooth, it has a strong internal layer along the line x2 = 1/2 + x1/4. The initial mesh is
visualized in Figure 3 (left). Furthermore, the first uniform refined mesh is given in the middle
of Figure 3. Here, one recognizes that each polygonal cell is bisected in the refinement process.
In the right most picture of Figure 3 the adaptively refined mesh for V 1

h and a relative error of
approximately 0.2 is presented. This mesh was achieved after 19 refinement steps. It is seen
that the adaptive strategy refines along the internal layer of the exact solution.

In Figure 4, we give the convergence graphs for the first, second and third order method and
for the uniform as well as the adaptive strategy. In all cases we recover the optimal convergence
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rates which correspond to a slope of −k/2. But, for the uniform refinement, the internal layer
has to be resolved sufficiently before the optimal rates are achieved. Since the adaptive strategy
resolves the layer automatically, the adaptive BEM-based FEM is much more accurate for the
same number of unknowns.

6 Conclusion

The numerical experiments have shown that polygonal meshes are appealing in adaptive
FEM strategies. Their natural incorporation of hanging nodes allows very local mesh adapta-
tions and facilitates the refinement process. The possibility to evaluate the approximation uh
inside of the elements in the BEM-based FEM turned out to be a useful feature. Nevertheless,
the developments in this area are very recent and need further investigations to exploit their full
potential.
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Abstract. Topology optimization is a fertile area of research that is mainly concerned with the
automatic generation of optimal layouts to solve design problems in Engineering. The classical
formulation addresses the problem of finding the best distribution of an isotropic material that
minimizes the work of the external loads at equilibrium, while respecting a constraint on the
assigned amount of volume. This is the so-called minimum compliance formulation that can
be conveniently employed to achieve stiff truss-like layout within a two-dimensional domain.
A classical implementation resorts to the adoption of four node displacement-based finite ele-
ments that are coupled with an elementwise discretization of the (unknown) density field. When
regular meshes made of square elements are used, well-known numerical instabilities arise,
see in particular the so-called checkerboard patterns. On the other hand, when unstructured
meshes are needed to cope with geometry of any shape, additional instabilities can steer the
optimizer towards local minima instead of the expected global one. Unstructured meshes ap-
proximate the strain energy of truss-like members with an accuracy that is strictly related to
the geometrical features of the discretization, thus remarkably affecting the achieved layouts.
In this paper we will consider several benchmarks of truss design and explore the performance
of the recently proposed technique known as the Virtual Element Method (VEM) in driving the
topology optimization procedure. In particular, we will show how the capability of VEM of effi-
ciently approximating elasticity equations on very general polygonal meshes can contribute to
overcome the aforementioned mesh-dependent instabilities exhibited by classical finite element
based discretization techniques.
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1 INTRODUCTION

Topology optimization is a design tool that is extensively exploited in problems related to
Engineering and its industrial applications. The classical formulation searches for the best dis-
tribution of a prescribed amount of isotropic material that minimizes the so–called compliance,
e.g., twice the work of the external loads at equilibrium [7]. This framework is based on the
adoption of a suitable penalization of the mechanical properties of the elastic body depending
on the local values of the density field, see e.g. the well–known SIMP (Solid Isotropic Material
with Penalization) [8]. A classical approach to the solution of a topology optimization problem
resorts to the discretization of the density field to cope with the minimization setting, along with
the adoption of finite element methods to tackle the approximation of the equilibrium equation.
Methods of mathematical programming are adopted to solve the arising minimization prob-
lem, see [24]. In general, low–order displacement–based finite elements are coupled with an
element–wise density discretization, being affected by numerical instabilities as checkerboard
and mesh dependence. The former drawback depends on the choice of the displacement shape
functions with respect to the adopted density approximation, whereas the latter is due to an
inherent ill-posedness of the continuous problem [22]. Checkerboard and mesh dependence are
solved, in general, via ad hoc filtering procedures that preserve the advantages of the above
mentioned discrete approach. However, this approach suffers from drawbacks that are peculiar
to the adopted low–order discretization of the state equation. It is worth mentioning, among
the others, a lack of accuracy in the approximation of the displacement and stress fields and the
arising of undesired locking phenomena when considering incompressible media. Variations of
the basic approach have been investigated to solve the first issue, see among the others [15, 25]
focusing on adaptivity. Robust discretizations to cope with incompressible materials have also
been addressed, see the u-p formulation [23] and mixed finite elements [14]. Moreover, when
unstructured meshes are needed to deal with geometry of any shape, additional instabilities can
steer the optimizer towards local minima, instead of the expected global one, when using the
classical approach. Unstructured meshes approximate the strain energy of optimal truss–like
members with an accuracy that is strictly related to the geometrical features of the approxima-
tion, thus remarkably affecting the achieved layouts.

The aim of this paper is to investigate whether the recently proposed Virtual Element Method
(VEM), cf. [3], can be effectively employed for topology optimization problems. Following the
pioneering work in [17], several benchmarks of truss design will be investigated to explore the
performance the Virtual Element Method when employed to drive the topology optimization al-
gorithm. More precisely, we will demonstrate that the inherited flexibility of VEM to deal with
general polygonal meshes can contribute to overcome the mesh-dependent instabilities featured
by classical discretization techniques.

The Virtual Element Method (see, e.g., [3] for an introduction to the method and [4] for the
details of its practical implementation) is characterized by the capability of dealing with very
general polygonal/polyedral meshes and by the possibility of easily implementing highly reg-
ular discrete spaces. Indeed, by avoiding the explicit construction of the local basis functions,
the VEM can easily handle general polygons/polyhedrons without complex integrations on the
element. In addition, thanks to this added flexibility, it was discovered [12, 6] that virtual ele-
ments can also be used to build global discrete spaces of arbitrary regularity (C1 and more) that
are quite simple in terms of degrees of freedom and coding. So far, VEM has been applied to
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a variety of different problems [11, 1, 5, 9, 10, 16, 18, 20, 21, 2]. However, apart from [17] a
systematic study of the impact of VEM on topology optimization problems is still in its infancy.
The aim of this paper is to contribute in filling this gap.

The outline of the paper is as follows. Section 2.1 recalls the classical topology optimiza-
tion problem, whereas Section 2.2 provides fundamentals of the Virtual Element Method and
introduces the VEM discrete volume–constrained minimum compliance problem. Section 2.3
addresses numerical instabilities, i.e. checkerboard and mesh dependence. Section 3 presents
numerical simulations performed on benchmark examples that are based on the adoption of
structured and unstructured meshes of both polygonal and quadrangular elements. Section 4
provides final remarks and outlines the ongoing research.

2 GOVERNING EQUATIONS

2.1 Continuous problem

Topology optimization for the maximization of the structural stiffness is herein addressed,
according to the well–known minimum compliance formulation. The problem of distributing
a given amount of linear elastic isotropic material is solved, such that the work of the external
load against the corresponding displacement at equilibrium is minimized.

Let Ω ⊂ R2 be an open, bounded domain of R2 with Lipschitz boundary Γ = ∂Ω. Let
ρ ∈ Qad = {ρ ∈ L∞(Ω) : 0 < ρmin ≤ ρ ≤ 1 a.e. in Ω} be a bounded function rep-
resenting the material density in Ω, where ρmin is some positive lower bound that is already
introduced to avoid any singularity in the analysis of the further derived discrete problem. Let
C = C(ρ(x)) be a fourth order elasticity tensor depending on the material density at the point
x ∈ Ω. According to the well–known SIMP model, see e.g. [8], we assume

C(ρ(x)) = ρ(x)pC0 p > 1 ,

where
C0
ijhk =

Eν

(1 + ν)(1− 2ν)
δijδhk +

E

2(1 + ν)
(δihδjk + δikδjh) (1)

is the stiffness tensor for an assigned isotropic medium with Young modulusE and Poisson’s ra-
tio ν, whereas p is a penalization parameter that is usually assumed to be equal to 3, see e.g. [7].

Let ud and ft denote the displacement and traction prescribed on Γd ⊂ Γ and Γt = Γ \ Γd,
respectively. For a given density material distribution ρ, the displacement field u solves the
following state problem

div σ + g = 0 in Ω (2a)
σ = C(ρ)ε(u) (2b)
u = ud on Γd (2c)

σ · n = ft on Γt, (2d)

where ε(u) = 1
2

(∇ u +∇tu) ≡ ∇su. According to a frequent assumption in topology opti-
mization, no body load will be considered in the sequel, meaning that g = 0.
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Let us introduce the semi-linear form a(ρ; ·, ·) : Qad × [H1(Ω)]2 × [H1(Ω)]2 → R

a(ρ;u,v) :=

∫
Ω

C(ρ)ε(u) : ε(v) dx

and the linear functional F(·) : [H1(Ω)]2 → R

F(v) =

∫
Γt

ft · v dx.

We introduce the following spaces

V0 = {u ∈ [H1(Ω)]2 : u = 0 on Γd}
V = {u ∈ [H1(Ω)]2 : u = ud on Γd} .

Then the weak formulation of the problem (2a)-(2d) reads as follows: for a given ρ ∈ Qad find
u ∈ V such that

a(ρ;u,v) = F(v) (3)

for all v ∈ V0.

According to the Clapeyron theorem, the continuous formulation of the topology optimiza-
tion problem for minimum compliance may be therefore written as:

min
ρ∈Qad

C(ρ,u) =

∫
Γt

ft · u dx =

∫
Ω

ρpC0 ε(u) : ε(u) dx

s.t. a(ρ;u,v) = F(v) ∀v ∈ V0

1

V

∫
Ω

ρdx ≤ Vf ,

(4)

being Vf the available amount of material as a fraction of the whole domain V =
∫

Ω
1dx.

Minimizing the compliance C of a structure acted upon by a prescribed set of assigned forces
means minimizing the work of external loads, i.e. looking for a stiff structure.

2.2 Virtual Element discretization

In this section we introduce the Virtual Element discretization of problem (4). From now
on, we will assume that Ω is a polygonal domain in R2. Let Th represent a decomposition
of Ω into general, possibly non-convex, polygonal elements E with diam(E) = hE , where
diam(E) = maxx,y∈E ‖x − y‖. In the following, we will denote by e the straight edges of the
mesh Th and, for all e ∈ ∂E, neE will denote the unit normal vector to e pointing outward to E.
We will use the symbol Pk(ω) to denote the space of polynomials of degree less than or equal
to k living on the set ω ⊆ R2.

Let us first introduce the finite dimensional space of piecewise constant admissible controls

Qad = {ρh ∈ Qad : ρh|E ∈ P0(E) ∀E ∈ Th} .

Clearly, a function ρh ∈ Qad is uniquely determined by its value ρE in each polygon E ∈ Th.
Hence, the dimension of Qad equals the cardinality of Th.

2944



P.F. Antonietti, M. Bruggi, S. Scacchi and M. Verani

Moreover, following [5], it is possible to introduce the low-order discrete VEM spaces
V0,h ⊂ V0 and Vh ⊂ V , a discrete form ah(ρh;uh,vh) approximating a(ρ;u,v) and a dis-
crete functional Fh(vh) approximating F(v) such that the VEM discretization of (3) reads as:
given ρh ∈ Qad find uh ∈ Vh such that

ah(ρh;uh,vh) = Fh(vh) (5)

for any vh ∈ V0,h. In particular, the global VEM spaces V0,h and Vh are obtained by gluing
suitable local discrete VEM spaces, denoted by Vh(E), whose elements are uniquely identified
by the values at the vertices of the polygon E and contain linear polynomials, i.e P1(E) ⊂
Vh(E). It is immediate to verify that the dimension of V0,h (the same happens for Vh) equals
the number of the interior vertices of the partition Th plus those belonging to Γt, having fixed the
values at vertices belonging to Γd to incorporate Dirichlet boundary conditions. The construc-
tion of the global form ah(ρh;uh,vh) hinges upon the construction of local forms aEh (uh,vh) :
Vh(E)× Vh(E)→ R approximating the integrals

∫
E
C0 ε(u) : ε(v) dx so that

ah(ρh;uh,vh) =
∑
E∈Th

ρpEa
E
h (uh,vh) (6)

where we employed the fact that ρh|E ∈ P0(E).
It is important to remark that the the linear system stemming from (5) can be assembled

employing only the values of uh and vh at the vertices of Th (see [5] for more details) and the
values of ρh on each polygon. Using (6) it is immediate to see that, with a slight abuse of
notation in denoting the vector of densities, the algebraic version of (5) reads as

K(ρh) U =
∑
E∈Th

ρpEK
0
EUE = F, (7)

where:

• ρh is the vector of the element densities, whose components are ρE;

• K is the global stiffness matrix depending on ρh;

• K0
E is the element stiffness matrix for the virgin material, i.e. associated to aEh (·, ·);

• U is the generalized displacement vector;

• UE is the element displacement vector;

• F is the load vector.

Employing (5) and (7) the discrete version of the topology optimization problem (4) reads as
follows 

min
ρmin≤ρE≤1

Ch(ρh,uh) := UTKU =
∑
E∈Th

ρpEU
T
eK

0
eUe

s.t. K(x) U = F,

W /W0 ≤ Vf ,

(8)

In the above equation, the objective function is the structural compliance Ch, Eqn. (8)2 enforces
the discrete equilibrium equation discussed in Section 2.1 and Eqn. (8)3 enforces the volume
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constraint. The weight W is computed multiplying the element density ρE by the area of the
polygonal elements of Th, whileW0 stands for the volume of the whole design region. A lower
bound ρmin > 0 is enforced on each density unknown ρE to avoid singularity of Eqn. (8)2.

It must be remarked that the simple forms in Eqns. (7) and (8) are due to the adoption of
piecewise constant discretization adopted for the density field.

2.3 Mesh dependence and checkerboard numerical instabilities

The Method of Moving Asymptotes (MMA) [24], which is an approach of mathematical
programming, is herein adopted to iteratively solve the discrete problem in Eqn. (8). The al-
gorithm searches the unknowns over the element–wise density discretization. It is well–known
that this discrete scheme is affected by numerical instabilities, such as the arising of checker-
board patterns and mesh dependence, see e.g. [7]. Many strategies are available nowadays to
solve both problems [22]. Following [19] and the various applications in stress–based optimal
design, see e.g. [13], a density filter approach is herein adopted, instead of applying the filter
to the objective function and its sensitivities, as done in most of cases. The original design
variables ρE are transformed in a new set of physical unknowns ρ̃E as:

ρ̃E =
1∑

E′∈Th HE,E′

∑
E′∈Th

HE,E′ρE′ , HE,E′ =
∑
E′∈Th

max(0, rmin − dist(E,E ′)). (9)

In the above equation dist(E,E ′) is the distance between the centroids of the elements E and
E ′, whereas rmin > dm is the filter radius, dm being the square root of the area of each polygon
in Th. The assumption rmin = 1, 5dm allows to avoid the arising of undesired checkerboard
patterns. Larger values of rmin provide control on the minimum thickness of any member of the
design.

3 NUMERICAL SIMULATIONS

A set of preliminary numerical simulations are presented in this section, adopting the pro-
posed VEM procedure described above. Both structured and unstructured polygonal grids have
been employed, see e.g. Figure 1 for an example of grids consisting of 501 elements.. A refer-

Figure 1: Examples of structured (left) and unstructured (right) polygonal grids consisting of 501 elements.

ence linear elastic isotropic material with Young modulus E = 1 and Poisson’s ratio ν = 0.3 is
adopted. The volume fraction of available material is Vf = 0.3 for the whole set of simulations.
Moreover, to assess the proposed procedure with respect to well–known benchmark problems
we consider different values of the filtering radius.

For the sake of comparison, in the following we compare our results with the analogous ones
obtained by employing the classical bilinear displacement–based finite elements on Cartesian
meshes, see [7].
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Figure 2: Geometry and boundary conditions for the numerical simulations: Example 1 (left) and Example 2
(right). In each case P = 1 is the intensity of the unitary traction ft applied as a nodal force oriented as indicated
by the arrow.

3.1 Example 1. A rectangular cantilever

A first investigation is performed on the rectangular cantilever depicted in Figure 2(left). The
reference solution is shown in Figure 3(b) and has been obtained with bilinear displacement–
based finite elements on a Cartesian grid consisting of 8192 squares (26 elements lie along
the thickness of the cantilever). The filter radius is rmin = 3.0dm. As expected, a truss–like
structure arises where inclined members carry shear forces, whereas horizontal ones cope with
bending actions. Figure 3(a) shows the optimal design obtained by means of the VEM on a
structured mesh consisting of 7990 polygonal elements (26 elements lie along the thickness of
the cantilever) and employing the same filter radius rmin = 3.0dm. The achieved result is ap-
proximately the same found by the classical approach.

An additional set of simulations is performed adopting 25 elements along the thickness of
the cantilever, but preserving the same filter radius implemented in the previous investigations.
Figure 4(a) shows the optimal design obtained with VEM on a structured mesh consisting of
2006 polygonal elements, whereas Figure 4(b) shows the optimal design achieved through the
bilinear displacement–based approach for a regular mesh of 2048 square elements. Although
the main layout of Figure 3 is recovered in both pictures, the displacement–based design pro-
vides an unexpected variation in the inclination of the thinner braces of the arising truss–like
structure. The low available amount of material (Vf = 0.3) and the rough mesh of square ele-
ments make the optimizer find a 45–degree inclination, which means a local optimum instead
of the expected global one. On the other hand, the VEM succeeds in finding the expected lay-
out even in case of unstructured meshes, see the result shown in Figure 5 obtained on a mesh
consisting of 2048 elements. This simulation employs the same filter radius rmin as above.

Finally, Figure 6 shows a comparison between the VEM approach (a) and the displacement–
based one (b) for regular meshes of 32028 and 32768 elements, respectively (27 elements lie
along the thickness of the cantilever). Despite the adopted smaller filter radius rmin = 1.5dm,
the achieved results are almost identical.

3.2 Example 2. A square cantilever

In the second example we consider the square cantilever depicted in Figure 2(right). Our
VEM-based topology optimization method has been implemented employing unstructured grids
of polygonal elements as those shown in Figure 1

First, an unstructured meshes with 26 elements along the thickness of the cantilever is used.
The overall number of elements is 4096 and the filter radius is rmin = 1.5dm where, as before,
dm is the square root of the average area of the polygonal elements in the unstructured grid.
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(a) (b)

Figure 3: Example 1. Optimal topologies computed on on structured meshes with 26 elements along the thickness
of the cantilever: proposed VEM sed formulation (a), bilinear displacement–based formulation (b).

(a) (b)

Figure 4: Example 1. Optimal topologies computed on structured meshes with 25 elements along the thickness of
the cantilever: proposed VEM formulation (a), bilinear displacement–based formulation (b).

The computed result is shown in Figure 7. As expected, a truss–like structure arises where
the central node receives two major tensile–stressed bars and two minor compressive–stressed
trusses. Figure 8 shows the computed optimal configuration for a stricter prescription on the
filter radius, i.e. rmin = 3.0dm. The minimum member thickness enforced through the updated
filter setup provides a simpler design with two ties and one big strut, in full agreement with
the well–known solution of this benchmark problem, see [7]. Finally, in Figure 9 we show
the optimal design computed when a finer mesh with 27 elements along the thickness of the
cantilever is employed. The overall number of polygonal elements is 16384 and the filter radius
is rmin = 6.0dm, that is approximately the same value used for the result presented in Figure
8. The same result is obtained, suggesting that no mesh dependence affects the proposed VEM
formulation.

4 CONCLUSIONS

A set of preliminary numerical simulations has been presented to investigate the perfor-
mance of the Virtual Element Method in driving a topology optimization algorithm. A classical
volume–constrained minimum compliance problem has been tested, adopting an element–wise
constant discretization for the unknown density field. Both structured and unstructured grids
made of polygonal elements have been employed to solve two benchmark problems. For the
sake of comparison, we have also presented the corresponding results obtained with bilinear
displacement–based finite elements on Cartesian grids. Employing a sufficiently fine mesh, the
same optimal layout is recovered by both methods. However, in case of a coarse mesh and
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Figure 5: Example 1. Optimal topology achieved through the proposed VEM formulation for an unstructured mesh
with 25 elements along the thickness of the cantilever.

(a) (b)

Figure 6: Example 1. Optimal topologies computed on structured meshes with 27 elements along the thickness of
the cantilever: proposed VEM formulation (a), bilinear displacement–based formulation (b).

low fraction of available material, the bilinear displacement–based approach is prone to con-
vergence to a local optimum. Indeed, the orientation of the members is highly affected by the
geometrical features of the underlying mesh of square elements. On the contrary, employing
either structured or unstructured grids polygonal grids with approximately the same number
of elements this issue is overcome and the expected global optimum is obtained (see Example
1). Additional numerical simulations assess that the proposed VEM seems to be fully mesh
independent. Indeed, by using classical filtering techniques, the same layout is obtained inde-
pendently of the number of mesh elements (see Example 2). The ongoing research is mainly
concerned with investigations focusing on employing the VEM for the optimal design of in-
compressible materials thanks to the the full stability properties of the scheme for ν → 0.5.

ACKNOWLEDGEMENTS

Paola F. Antonietti has been partially supported by SIR Project n. RBSI14VT0S “PolyPDEs:
Non-conforming polyhedral finite element methods for the approximation of partial differential
equations” funded by MIUR. Marco Verani has been partially supported by GNCS-INDAM
and by the Italian research grant Prin 2012 n. 2012HBLYE4 “Metodologie innovative nella
modellistica differenziale numerica”.

REFERENCES

[1] P. F. Antonietti, L. Beirão da Veiga, D. Mora, and M. Verani, A stream virtual element

2949



P.F. Antonietti, M. Bruggi, S. Scacchi and M. Verani

Figure 7: Example 2. Optimal topology computed with the proposed VEM formulation on an unstructured mesh
with 26 elements along the thickness of the cantilever and filter radius rmin = 1.5dm ≈ 1.5/26 (left) and rmin =
3.0dm ≈ 1.5/25 (right).

Figure 8: Example 2. Optimal topology computed with the proposed VEM formulation on an unstructured mesh
with 26 elements along the thickness of the cantilever and filter radius rmin = 3.0dm ≈ 1.5/25.

formulation of the Stokes problem on polygonal meshes, SIAM Journal on Numerical
Analysis, 52 (2014), 386–404.

[2] P. F. Antonietti, L. Beirão da Veiga, S. Scacchi, and M. Verani, A C1 virtual element
method for the Cahn-Hilliard equation with polygonal meshes, SIAM Journal on Numer-
ical Analysis, doi:10.1137/15M1008117.

[3] L. Beirao da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, Ba-
sic principles of virtual element methods, Mathematical Models and Methods in Applied
Sciences, 23 (2103), 199–214.

[4] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, The hitchhiker’s guide to
the virtual element method, Mathematical Models and Methods in Applied Sciences, 24
(2014), 1541–1573.

[5] L. Beirao da Veiga, F. Brezzi, and L. D. Marini, Virtual elements for linear elasticity
problems SIAM Journal on Numerical Analysis, 51 (2013), 794–812.

2950



P.F. Antonietti, M. Bruggi, S. Scacchi and M. Verani

Figure 9: Example 2. Optimal topology computed with the proposed VEM formulation on an unstructured mesh
with 27 elements along the thickness of the cantilever and filter radius rmin = 6.0dm ≈ 1.5/25.

[6] L. Beirão da Veiga and G. Manzini, A virtual element method with arbitrary regularity,
IMA Journal of Numerical Analysis, 34 (2014), 759–781.

[7] M.P. Bendsøe, O. Sigmund, Topology optimization theory, methods and applications, New
York, Springer, 2003.

[8] M.P. Bendsøe, Optimal shape design as a material distribution problem, Structural Opti-
mization, 1 (1989), 193–202.

[9] M. F. Benedetto, S. Berrone, S. Pieraccini, and S. Scialò, The virtual element method
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Abstract. We discuss several issues concerning the application of the Virtual Element Method
(VEM) to the flow in fractured media modeled by the Discrete Fracture Network (DFN) model.
Due to the stochastic nature of the computational domains, several geometrical complexities
make the computations very challenging. The geometrical flexibility provided by the Virtual
Element Method can be exploited to mutually couple local problems, either by resorting to a
Mortar approach, or by allowing for the global conformity of the local meshes, while keeping
the computational cost under control. We describe these two approaches in detail and we test
them on a realistic test case, showing the viability of the two approaches.
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1 Introduction

Subsurface fluid flow has applications in a wide range of fields, including e.g. oil/gas recov-
ery, gas storage, pollutant percolation, water resources monitoring. Underground fluid flow in
fractured media is a heterogeneous multi-scale phenomenon that involves complex geological
configurations; a possible approach for modeling the phenomenon is given by Discrete Frac-
ture Networks (DFNs), which are complex sets of polygonal intersecting fractures randomly
generated from known distributions for geometrical features (such as orientation in the three di-
mensional space, position, dimensions) and hydro-geological properties. Geological fractured
media are therefore characterized by a very challenging geometrical complexity, which is one
of the major difficulties to be tackled when performing flow simulations.

In this work we recall some results concerning the application of the Virtual Element Method
[4, 3, 2] to the steady state simulation of the flow in DFNs [1, 22, 27, 30, 24, 32, 23, 15, 16,
17, 18, 19, 9, 10, 8, 13]. In this approach we can exploit the flexibility of VEM in order to
tackle the geometrical complexity. Indeed, a crucial issue in DFN flow simulations is the need
to provide on each fracture a good quality mesh [24, 20, 29, 30] on any randomly generated
configuration. Namely, if classical triangular or quadrilateral meshes on the fractures are re-
quired to be conforming to the traces (fracture intersections), and also conforming each other,
the meshing process for each fracture is not independent of the others, thus yielding in practice
a quite demanding computational effort for the mesh generation process. In some cases, the
meshing process may even result infeasible so that some authors propose to modify the DFN
removing problematic fractures [24].

Here, the VEM will be used within several possible approaches to the problem: in conjunc-
tion with a totally conforming polygonal mesh [10] and with a Mortar approach [8]. Indeed, tak-
ing advantage from the great flexibility of VEM in allowing the use of rather general polygonal
mesh elements, a suitable mesh for representing the solution and imposing matching conditions
between the solutions on different fractures can be easily obtained, starting from an arbitrary
triangular mesh independently built on each fracture, and independent of the trace disposition.
Robustness and efficiency of the approach are of great importance also in the framework of
Uncertainty Quantification analysis applied to DFNs, see [14].

The paper is organized as follows: after introducing some notation about the DFNs in Sec-
tion 2, we describe the more common geometrical complexities present in DFNs flow simu-
lations in Subsection 2.1. The problem considered and the formulation used are described in
Section 3. Section 4 is devoted to discuss the VEM formulation and some issues concerning
its implementation. Subsection 4.3 recalls the elements of a hybrid mortar approach to the
matching conditions, whereas Subsection 4.4 recalls the basic ideas of a globally conforming
approach. Finally, we propose in Section 5 some numerical results obtained with the two ap-
proaches.

2 Discrete Fracture Networks

A DFN is a possible model for a fractured medium in which the surrounding rock matrix can
be assumed to be impervious. In a DFN, fractures in the underground medium are represented
as bi-dimensional open polygons. The intersections between fractures are called traces, and we
assume, for the sake of simplicity, that precisely two fractures meet at each trace. For a DFN Ω,
we will indicate by Fi the generic fracture, with i ∈ I = {1, . . . , N}, while its boundary will
be ∂Ω = ∪i∈I∂Fi. Traces will be denoted by Γm, with m ∈M = {1, . . . ,M}. Without loss of
generality, we assume that the set Ω̄ is connected. Finally, we introduce the following notation:
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Figure 1: DFN with 134 fractures

• ∀i ∈ I, let Mi ⊂ M be the subset of trace indices corresponding to traces lying on Fi;
each subset Mi is assumed to be ordered, and we will denote by Mi(k) the k-th index of
a trace in Mi;

• ∀m ∈ M, let Im = (i, j) be the ordered couple of indices such that Γm = Fi ∩ Fj , with
i < j;

• for each i ∈ I and each m ∈Mi, we fix a unit vector n̂im normal to Γm on Fi.

2.1 Geometrical issues

When dealing with DFN flow simulations, the greatest obstacle is to devise a robust and
efficient meshing process, while enforcing some kind of conformity of the mesh polygons to
the traces. This can be required locally on each fracture, or globally, asking that polygons on
different fractures meeting on the same trace share either one point or a whole side. These con-
straints can make the meshing process infeasible using traditional simplicial elements, because
traces may intersect with very small angles, may have very different lengths or can be very close
to each other without intersections. To illustrate how common are problematic configurations,
let us consider a quite simple, although realistic, DFN containing 134 fractures; the DFN is
displayed in Figure 1. Even though fractures in this DFN are of comparable size (see Figure
2a) the trace lengths span several orders of magnitude (Figure 2b), thus creating problems when
mesh edges are required either to lie entirely on traces or have an intersection with them with
a null measure. Furthermore, in Figure 3a we show the global distribution of angles between
intersecting traces, while Figure 3b shows that a considerable amount of them is very small,
making it very hard to build good quality triangular elements close to the corresponding inter-
sections. Finally, another geometrical issue which is worth to analyze is the presence of very
close and non – intersecting traces. In Figure 4 we see that there is a significant amount of them,
which would yield very small elements, in case a regular triangulation is built.
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Figure 2: Distribution of fracture areas and traces lengths of the DFN in Figure 1.
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Figure 3: Distribution of angles between traces for the DFN in Figure 1.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

0

10
1

10
2

10
3

log
10

(Length)

#
 O

c
c
u

rr
e
n

c
e
s

(a) Full distribution.

−2.5 −2 −1.5 −1 −0.5 0
10

0

10
1

10
2

log
10

(Length)

#
 O

c
c
u

rr
e
n

c
e
s

(b) Occurrences of very small distances.

Figure 4: Distribution of distance between non intersecting traces for the DFN in Figure 1
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3 Problem formulation

Given an open bounded domain ω, let (·, ·)ω and ‖·‖ω denote the L2 (ω) scalar product and
norm, respectively, and (·, ·)α,ω and ‖·‖α,ω denote the Hα (ω) scalar product and norm, respec-
tively. In general, a subscript i will denote the restriction of a function to the fracture Fi.

For any segment σ ⊂ Fi, i ∈ I, we introduce the trace operator γσ : H1 (Fi) → H
1
2 (σ) and

the notation

〈µ, β〉σ :=
H− 1

2 (σ)
〈µ, β〉

H
1
2 (σ)

, ∀µ ∈ H−
1
2 (σ) , β ∈ H

1
2 (σ) ,

to denote the duality product between H−
1
2 (σ) and H

1
2 (σ). Let v ∈ H1 (Fi), in order to simplify

the notation, it is convenient to introduce the vectors γMi
(v), ∀i ∈ I, the k-th element of γMi

(v)
being γΓMi(k)

(v). Furthermore, we introduce the jump across a trace Γm as

JvKΓm
:= γΓm (vi)− γΓm (vj) , if Im = (i, j) ,

and we introduce the symbols JvKM and JvKMi
to denote the vectors of jumps of v across all

traces in the network, and across traces on Fi, respectively. With the same purpose, ∀i ∈ I, we
introduce the notation

〈µ, β〉Mi
:=

∑
m∈Mi

〈µm, βm〉Γm , ∀µ ∈
∏
m∈Mi

H−
1
2 (Γm) , β ∈

∏
m∈Mi

H
1
2 (Γm) .

Finally, for any β, λ ∈
∏

m∈Mi
H

1
2 (Γm) we denote

(β, λ)Mi
:=

∑
m∈Mi

(β, λ)Γm .

We are interested in computing the hydraulic head h = π/(ρg) + z, where π is the fluid
pressure, g the gravitational acceleration, ρ the fluid density and z the elevation. The hydraulic
head, on each fracture Fi, is modeled by means of the Darcy law as follows.

Let Ki denote the transmissivity on Fi, which we assume to be constant, and fi = fi(x)
denote the source term on Fi; notice that both Ki and fi are functions of the local tangential co-
ordinate system. Let ΓD ⊆ ∂Ω be the Dirichlet boundary, and let hD be the Dirichlet boundary
condition defined on ΓD. We define the functional spaces:

Vi :=
{
v ∈ H1 (Fi) : γΓD (v) = 0

}
∀i ∈ I ,

V D
i :=

{
v ∈ H1 (Fi) : γΓD (v) = hDi

}
∀i ∈ I ,

V := {v : vi ∈ Vi ∀i ∈ I} ,
V D :=

{
v : vi ∈ V D

i ∀i ∈ I
}
.

On each fracture Fi, i ∈ I, we want to find hi ∈ V D
i such that, ∀vi ∈ Vi,

ai(hi, vi) := (Ki∇hi,∇vi)Fi = (fi, vi)Fi +
〈
hNi , γ

i
ΓNi

(vi)
〉

ΓNi

+

〈s
∂hi
∂n̂Mi

{

Mi

, γMi
(vi)

〉
Mi

(1)

where
r
∂hi
∂n̂im

z

Γm
is the jump of the co-normal derivative ∂hi

∂n̂im
= Ki∇hi · n̂im along n̂im; fur-

thermore, ΓNi ⊆ ∂Fi is the Neumann boundary on Fi and hNi ∈ H−
1
2

(
ΓNi
)

is the Neumann
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boundary condition. For future reference, we set ΓN = ∪i∈IΓNi ⊂ ∂Ω and define hN such that
hNi is the restriction of hN to Fi. We couple the problems on each fracture by imposing the
continuity of the solution and balance of incoming and outgoing fluxes at each trace: ∀m ∈M,
with Im = (i, j), we have

JhKΓm
= γΓm (hi)− γΓm (hj) = 0,

s
∂hi
∂n̂im

{

Γm

+

s
∂hj

∂n̂jm

{

Γm

= 0. (2)

3.1 Saddle point formulation of the DFN problem

The DFN problem (1)-(2) can be easily re-formulated as a saddle point problem. To this aim,
let us first define, for each trace m ∈ M, and recalling that Im = (i, j), the function sΓm such
that:

sΓm(i) = 1, sΓm(j) = 0,

and, for each fracture, a bilinear form bi : Mi :=
∏

m∈Mi
H−

1
2 (Γm)× Vi → R defined by

bi (v, ψ) :=
∑
m∈Mi

(−1)sΓm (i) 〈ψm, γΓm (vi)
〉

Γm
.

Moreover, let us define

b (v, ψ) :=
∑
i∈I

bi (v, ψ) =
∑
m∈M

〈
ψm, JvKΓm

〉
Γm
.

These bilinear forms are used in the definition of the functional F : V ×M :=
∏

m∈M H−
1
2 (Γm),

given as a sum of contributions from the different fractures:

F(v, µ) :=
∑
i∈I

1

2
(Ki∇vi,∇vi)Fi − (fi, vi)Fi −

〈
hNi , γ

i
ΓNi

(vi)
〉

ΓNi

+
(
∇Ri

(
hDi
)
,∇vi

)
Fi

+ bi (v, µ) + bi
(
Ri

(
hDi
)
, µ
)
,

where Ri is the lifting operator from H
1
2 (Fi) to H1 (Fi), i ∈ I.

The solution (h, λ) ∈ V D ×M such that hi = h0
i + Ri

(
hD
)
, h0

i ∈ Vi, i ∈ I and

F
(
h0, λ

)
= min

v∈V
max
ψ∈M

F (v, ψ) , (3)

is equivalent to the unique solution to the problem: h = h0 + R
(
hD
)
, with h0 ∈ V and λ ∈M

such that, {
a(h0, v) + b (v, λ) = (f, v) +

(
hN , v

)
ΓN
− a(R

(
hD
)
, v) ∀v ∈ V ,

b (h0, ψ) = −b
(
R
(
hD
)
, ψ
)

∀ψ ∈M ,
(4)

that provides the solution to the problem (1)-(2), as it can be proven following classical argu-
ments (see e.g. [31]). Moreover, we have

λm =

s
∂hi
∂n̂im

{

Γm

= −
s
∂hj

∂n̂jm

{

Γm

,

with Im = (i, j).
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4 The discrete DFN problem

First introduced in [4] and extended in [5, 6, 3, 21, 2, 26], the Virtual Element Method
allows the use of quite general non-degenerate and star-shaped polygons to mesh the spatial
domain, even including the possibility of straight angles. In the present framework, we take
advantage from this flexibility to easily build a mesh which, on each fracture, is locally or
globally conforming to the traces. In the following of this section, we review the use of VEM,
focusing on the framework of DFN simuations.

4.1 Construction of the mesh

Let a fracture Fi be fixed. To obtain a locally conforming mesh, we first introduce on Fi a
triangular mesh built independently of trace positions; the triangles are then cut into polygons
by the traces, possibly prolonging the trace segment up to the nearest mesh edge if it happens to
end in the interior of a triangle. Note that in this latter case the trace tip is kept as a node of the
discretization and the trace is not modified, a new node is created at the intersection between
the prolongation of the trace segment and the mesh edge, and therefore two edges are created,
with a 180◦ angle between them. Let Tlc

δi be the resulting local mesh. We refer to Figure 5 for a
possible mesh configuration and to Figure 6a for a locally conforming mesh on a fracture. Let
Tlc
δ = ∪i∈ITlc

δi. We will use the symbols Elc
δi and Vlc

δi to denote the sets of edges and vertices on
fracture Fi, respectively, and define the sets of the mesh edges and vertices of the whole DFN
as Elc

δ = ∪i∈IElc
δi, V

lc
δ = ∪i∈IVlc

δi, respectively. The mesh built in this way can be used to couple
VEM discretizations on each fracture with a Mortar approach, as described in subsection 4.3.

Another possible meshing process, that aims at building a globally conforming mesh T
gc
δ , can

be devised as follows, starting from the above described mesh Tlc
δ . Let us consider an arbitrary

trace Γm, with m ∈ M and Im = (i, j). Then, we add to Tlc
δi the nodes generated by Tlc

δj on
Γm, and viceversa. Some polygons belonging to mesh Tlc

δi (Tlc
δj , respectively) having an edge

lying on Γm, will possibly have such edges split by the new nodes, the new edges forming a
straight angle at their intersection. Again, we refer the reader to Figure 5 for a visualization of
a rather intricate trace configuration and to Figure 6b for a resulting globally conforming mesh
on a fracture. All sets of geometrical objects relative to this globally conforming mesh will have
a superscript “gc” in the following. This spatial discretization will be used in subsection 4.4 to
allow the construction of VEM spaces containing globally continuous functions.

To further illustrate this process, we show in Figure 6 a possible situation in which the num-
ber of nodes on traces in T

gc
δ is larger than the number of nodes in Tlc

δ . In the two subfigures,
traces are drawn in red: as we can see the globally conforming mesh in Figure 6b presents some
nodes that do not correspond to intersections between polygons and traces, but are induced
by polygons on another fracture that generate the same trace. These nodes are not treated as
hanging nodes, but as vertices of a polygon whose edges meeting there form a flat angle. The
locally conforming mesh, instead, uses as nodes only the intersections between local polygons
and traces. Finally, notice that in both cases the trace tip is added as a node.

Remark. All the elements created with the above procedures are convex.

4.2 The VEM setting

Let us now briefly sketch the main ideas at the basis of the use of the VEM in the context of
flow simulations in complex networks of fractures, referring to the specific literature (see e.g.
[4, 6, 2]) for a deeper insight about the method.

Let k ∈ N be a fixed polynomial degree, corresponding to the desired polynomial accuracy
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Figure 5: A detail of the mesh around traces on the DFN in Figure 1
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Figure 6: Details of the vertices of the discretizations on a trace
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for the VEM approximation, and let E be a generic polygonal element of the mesh T?δi for i ∈ I

and ? =′ lc′ or ′gc′, as in subsection 4.1. Let us define on E the discrete functional space

V E
δi :=

{
v ∈ H1 (E) : γe (v) ∈ P k(e) ∀e ⊂ ∂E, ∆v|E ∈ P k−2(E)

}
, (5)

and, on each fracture Fi the space

V ?
δi :=

{
vδ ∈ C0 (Fi) : v ∈ V E

δi ∀E ∈ T?δi
}
.

Then the discrete subspace of V with the VEM is:

V ?
δ := {vδ ∈ V : v ∈ V ?

δi ∀i ∈ I} , (6)

spanned by basis functions φ?` , ` = 1, . . . , N`, being N` its dimension. The following set of
degrees of freedom (DOFs) is introduced to uniquely define a function vδ ∈ V ?

δi [4]:

• the values of vδ at each vertex in V?δ;

and, if k > 1 also

• the values of vδ at k− 1 internal points (e.g. internal Gauss-Lobatto quadrature nodes) on
each edge e ∈ E?δ;

• the moments 1
|E|

∫
E
vhmα where α = (α1, α2) ∈ N2,

mα(x, y) :=

(
x− xE
hE

)α1
(
y − yE
hE

)α2

,

∀E ∈ T?δ and ∀α such that |α | ≤ k − 2,

where (xE, yE) and hE are the barycenter and the diameter of the element E, respectively. The
chosen basis functions for V ?

δ are Lagrangian with respect to this set of DOFs. We remark that
functions φ` are not explicitly known in the interior of each element.

Assuming that the fracture transmissivity Ki is a constant function on each fracture, we
introduce, for each i ∈ I and E ∈ T?δi, the operator Π∇E : V E

δi → P k(E) defined as follows:
(
Ki∇Π∇Eφ,∇p

)
E

= (Ki∇φ,∇p)E ∀p ∈ P k(E) ,∑
V ∈VE

δi
Π∇Eφ(V ) =

∑
V ∈VE

δi
φ(V ) if k = 1,∫

E
Π∇E,kvδ =

∫
E
vδ if k > 1.

that can be computed by means of the above listed degrees of freedom, and the symmetric
bilinear form SE : V E

δi × V E
δi → R, such that kerSE ∩ ker Π∇E = {0} and

c∗ (Ki∇φ,∇φ)E ≤ SE (φ, φ) ≤ c∗ (Ki∇φ,∇φ)E , ∀φ ∈ V E
δi , s.t. Π∇Eφ = 0 (7)

for two positive constants c∗ and c∗, independent of E and of the fracture Fi. The discrete
counterpart of the bilinear form ai : Vi× Vi → R in equation (1) is aδi : V ?

δi× V ?
δi → R, defined

by
aδi (v, w) :=

∑
E∈Tδi

aEδ (v, w) ,
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where aEδ : V ?
δ × V ?

δ → R is such that ∀v, w ∈ V ?
δ ,

aEδ (v, w) :=
(
Ki∇Π∇Ev,∇Π∇Ew

)
E

+ SE
(
v − Π∇Ev, w − Π∇Ew

)
.

Thanks to the definition of SE and to property (7), the coercivity of the discrete bilinear form
can be easily proven and it can be shown that it scales like (Ki∇v,∇v)Fi , i.e.:

∃α∗, α∗ > 0: α∗ (Ki∇v,∇v)Fi ≤ aδi (v, v) ≤ α∗ (Ki∇v,∇v)Fi . (8)

For the computation of the discrete counterpart of the scalar product (f, vδ) at the right-hand-
side of equation (1), when vδ is a function of the VEM space not known in the interior of each
mesh element, we introduce the following discrete scalar product

(fi, vδi)δ,Fi :=
(
fi, Π̃

0
kvδi

)
Fi
∀i ∈ I ,

where the pseudo-projection Π̃0
k : Vδi → Pk is defined, as in [3], by local projections, using

Π∇E,kvδi in place of vδi to compute the moments of order k − 1 and k:

∀E ∈ Tδi,


(

Π̃0
kvδi, p

)
E

= (vδi, p)E ∀p ∈ P k−2(E) ,(
Π̃0
kvδi, p

)
E

=
(
Π∇E,kvδi, p

)
E
∀p ∈ P k(E) \ P k−2(E) .

We finally introduce the following global discrete operators:

aδ (v, w) :=
∑
i∈I

aδi (v, w) ∀v, w ∈ V ?
δ ,

(f, vδ)δ :=
∑
i∈I

(fi, vδi)δ,Fi ∀v ∈ V ?
δ .

Remark. A possible choice for the term SE in the context of the simulation of the flow in DFNs
is proposed in [9] and is given by the scalar product between the vectors containing the degrees
of freedom of the two arguments on the element ([4, 6]). This choice guarantees property (7)
under some basic regularity assumptions on the triangulation.

4.3 The locally conforming approach with Hybrid Mortar Virtual Elements

Let us now consider the locally conforming mesh Tlc
δ defined in subsection 4.1. Following

[8], we will use the mortar method [11, 7, 12] to weakly enforce continuity of the solution
hδ across the traces. Let m ∈ M be a trace index and let i be the fracture index such that
(i, j) = Im, we construct a discretization of Γm induced by the nodes of Tlc

δi, i.e. the nodes
on Γm coincide with the vertices of the elements in Tlc

δi lying on Γm. On this mesh the finite
dimensional space M lc

δm ⊂ L2 (Γm) is defined, and we also set M lc
δ =

∏
m∈MM

lc
δm. In the

present context the space M lc
δm contains piecewise (discontinuous) polynomials of degree kλ

in the interior of the trace and the polynomial functions of degree kλ − 1 on the first and last
intervals of the discretization, [11, 33, 8]. The discrete version of problem (3) within this
framework is: find hδ = h0

δ + Rδ

(
hD
)
, with h0

δ ∈ V lc
δ and λδ ∈M lc

δ such that,
aδ
(
h0
δ , vδ

)
+ b (vδ, λδ) = (f, vδ)δ +

(
hN , vδ

)
ΓN

− aδ
(
Rδ

(
hD
)
, vδ
) ∀vδ ∈ V lc

δ ,

b (h0
δ , ψδ) = −b

(
Rδ

(
hD
)
, ψδ
)

∀ψδ ∈M lc
δ ,

(9)

2962



Matı́as Fernando Benedetto, Stefano Berrone, Andrea Borio, Sandra Pieraccini, and Stefano Scialò

where the bilinear form b (., .) on each trace is evaluated as an L2 (Γm) scalar product.
Well posedness of (9) is proven in [8] under a quite common regularity assumption on the

mesh. As a consequence the following inf-sup condition holds:

inf
ψδ∈M lc

δ

sup
vδ∈V lc

δ

b (vδ, ψδ)

‖vδ‖V lc
δ
‖ψδ‖M lc

δ

≥ β ,

for a constant β > 0 independent of δ. We remark that, in the present context the solution λδm
represents a piecewise polynomial approximation of

r
∂hi
∂n̂im

z

Γm
. If we collect the DOFs for h0

δ

and λδ in the vectors h ∈ RN lc
h and λ ∈ RN lc

λ , respectively, the discrete solution is obtained
solving the following linear system:(

A BT

B 0

)(
h
λ

)
=

(
f
d

)
,

where A ∈ RN lc
h ×N

lc
h is the block-diagonal matrix of the fracture-local stiffness matrices

(Ai)kl = aδi
(
φlc
ki, φ

lc
li

)
.

The matrix B ∈ RN lc
λ ×N

lc
h collects the terms of the form:

Blk := b
(
φlc
k , µ

lc
l

)
∀l ∈ {1, . . . , N lc

λ }, k ∈ {1, . . . , N lc
h },

being φlc
k the k-th basis function of V lc

δ and µlc
l the l-th basis function of M lc

δ . Finally we have

fk :=
(
f, φlc

k

)
δ

+
(
hN , φlc

k

)
ΓN
− aδ

(
Rδ

(
hD
)
, φlc

l

)
∀k ∈ {1, . . . , N lc

h },
dl := −b

(
Rδ

(
hD
)
, µlc

l

)
∀l ∈ {1, . . . , N lc

λ }.

4.4 A globally conforming approach

A second approach, based on a globally conforming discretization of the DFN is proposed in
in [10], where the matching conditions at the traces are strongly enforced by means of Lagrange
multipliers. We set, on each fracture Fi, i ∈ I, and on each trace Γm, m ∈Mi, the discretization
induced by T

gc
δi , excluding the two extreme points (tips) of the trace, and we build, on this mesh

the finite dimensional space

Mgc
δm,i = span

{
µmki, k = 1, . . . , Ngc

Γm

}
,

where Ngc
Γm

is the number of interior nodes on Γm and µmki is a continuous linear operator such
that 〈

µmki, γΓm (vδj)
〉

Γm
= δijvδi(x

m
k ) ∀vδ ∈ V gc

δ , (10)

being δij the Kroneker delta and xmk the k-th node on trace Γm. We then set

Mgc
δm :=

{
µmk : µmk = µmki − µmkj if Im = (i, j) , k = 1, . . . , Ngc

Γm

}
,

and the discrete subspace Mgc
δ ⊂ M is Mgc

δ =
∏

m∈MM
gc
δm. Observe that the continuity

of functions vδ ∈ V ?
δ across al the traces, i.e. the condition JvδKM = 0, is equivalent to an

orthogonality condition of jumps across the traces with respect to the space Mgc
δ

b (vδ, ψδ) = 0 ∀ψδ ∈Mgc
δ ⇐⇒ JvδKM = 0 ,
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being for any m ∈M, if Im = (i, j), ∀k ∈ {1, . . . , Ngc
Γm
},〈

µmk , JvδKΓm

〉
Γm

=
〈
µmki, γΓm (vδi)

〉
Γm
−
〈
µmkj, γΓm (vδj)

〉
Γm

= vδi(x
m
k )− vδj(xmk ).

Setting hδ = h0
δ + Rδ

(
hD
)
, with h0

δ ∈ V
gc
δ and Rδ

(
hD
)

the lifting of the boundary condi-
tions, the discrete solution to (3) (h0

δ , λδ) ∈ V
gc
δ ×M

gc
δ , such that

F
(
h0
δ , λδ

)
= min

vδ∈V gc
δ

max
ψδ∈Mgc

δ

F (vδ, ψδ) ,

is given by the solution of:
aδ
(
h0
δ , vδ

)
+ b (vδ, λδ) = (f, vδ)δ +

〈
hN , γΓN (vδ)

〉
ΓN

+ aδ
(
Rδ

(
hD
)
, vδ
) ∀vδ ∈ V gc

δ ,

b (h0
δ , ψδ) = −b

(
Rδ

(
hD
)
, ψδ
)

∀ψδ ∈Mgc
δ .

This problem is well posed, as it can be easily proven, observing that, given the space

W gc
δ := {vδ ∈ V gc

δ : b (vδ, ψδ) = 0 ∀ψδ ∈Mgc
δ } =

{
vδ ∈ V gc

δ : JvδKΓm
= 0 ∀m ∈M

}
,

vδ 7→
∑

i∈I (Ki∇vδi,∇vδi)Fi is a norm on W gc
δ and then aδ is coercive on W gc

δ thanks to (8),
and to the fact that

∀ψδ ∈Mgc
δ , sup

vδ∈V gc
δ

b (vδ, ψδ)

‖vδ‖V gc
δ

= ‖ψδ‖Mgc
δ
.

The discrete solution in the present framework can be obtained solving the linear system(
A BT

B 0

)(
h
λ

)
=

(
f
d

)
, (11)

where h is the vector collecting all the DOFs for hδ, λ is the vector of Lagrange multipliers,
f is the vector containing the right-hand-side terms, d the vector of nodal values of hD on the
traces. Matrix A is again the block diagonal matrix obtained collecting the stiffness matrices Ai
related to the VEM discrete bilinear forms on the globally conforming mesh of each fracture:

(Ai)kl = aδi (φ
gc
ki , φ

gc
li ) .

Matrix B is related to the bilinear form b (vδ, ψδ) in the following way. Let us observe that

bi (φ
gc
l , µ

m
k ) =

{
(−1)sΓm (i) if xl = xmk ,

0 otherwhise,

where xl are the coordinates of the mesh vertex such that φl(xl) = 1. After introducing a
global numbering for the degrees of freedom on all the traces according to trace numbering, we
introduce, for each trace index m ∈M, the row vector Bm such that (Bm)k = 1 if µmk ∈M

gc
δm,i

and (Bm)k = −1 if µmk ∈M
gc
δm,j with (i, j) = Im. Finally

B :=

B1
...

BM

 .

The solution to (11) is unique, as it can be proven using classical results (see e.g. [28]). Fur-
ther, within this framework it is possible to use preconditioning techniques borrowed from do-
main decomposition method, as for example the one-level FETI preconditioner [25], as shown
in [10].
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(a) Values of the transmissivity on each
fracture (the vertical axis is in log-scale). (b) Plot of the distribution of transmissivity.

Figure 7: The distribution of transmissivity chosen for the numerical test.

5 Numerical results

For numerical results about the convergence behaviour of the described methods we refer the
reader to [10, 8]. Here we focus on the application of the globally conforming method and the
VEM-Mortar approach to a almost realistic DFN.

Let us consider the 134 Fractures DFN already depicted in Figure 1. We impose a non-null
Neumann boundary condition (an incoming flux) on one side of three source fractures, a ho-
mogeneous Dirichlet boundary condition on one side of a sink fracture, and a homogeneous
Neumann boundary condition (no flux) on all other boundaries. The forcing term is the null
function, i.e. we assume there are no internal sources or sinks inside the fractures; this cor-
responds to neglect the effect on the fractures of the surrounding rock matrix. We assume a
constant transmissivity on each fracture, with values randomly distributed between 10−1 and
10, displayed in Figure 7a. As we can see in Figure 7b, there are significant jumps of transmis-
sivity between intersecting fractures. See Figure 8 for the discrete hydraulic head obtained with
the globally conforming method and Figure 10 for a visualization of the solutions obtained by
the two methods using the same base mesh, on two particular fractures.

In practical applications, the most important quantity to be evaluated is the flux through the
traces. This is obtained as a direct solution (the Lagrange multiplier) of the system if the VEM-
Mortar method is used, whereas in the globally conforming case it has to be computed as a
post-processing of the discrete VEM solution, first projecting the latter on the space of polyno-
mials of degree k and then computing the jump of the co-normal derivative of the projection in
correspondence of traces.

The two considered approaches yield very similar results, as we can see in Figure 9, where
we show the discrete fluxes computed with VEM of order 1 and the results for the VEM-Mortar
method are obtained using continuous piecewise linear Lagrange multlipliers. We remark that
the oscillations of the discrete flux coming from the Mortar approach are justified by the fact
that convergence is proved in the H−

1
2 (Γm) norm, ∀m ∈ M, which is a weaker norm than the

L2 (Γm) norm.
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Figure 8: A discrete solution of the problem.
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Figure 9: Comparison of fluxes computed by the two methods on three selected traces. Yellow:
globally conforming VEM. Red: VEM-Mortar.
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Figure 10: Solutions given by the two approaches on two selected fractures
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6 Conclusions

We have shown that the capability of the VEM to handle a large class of polygons enables
to easily construct functional spaces defined on local meshes on each of the fractures that are
locally or globally conforming to traces. This allows for the use of standard domain decompo-
sition approaches, coupling local problems by a Mortar method or, if meshes are globally con-
forming, by resorting to global continuity. Numerical results on the computed discrete fluxes at
traces show that the two approaches are viable and sufficiently relaibale.
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[16] S. Berrone, S. Pieraccini, and S. Scialò. On simulations of discrete fracture network
flows with an optimization-based extended finite element method. SIAM J. Sci. Comput.,
35(2):A908–A935, 2013.
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Abstract. The paper improved S-FEMs formulations with an enriched displacement field, mak-
ing use of modified Allman’s shape functions. This mixed interpolation is the natural context
in performing lower bound strategy for shakedown, limit analysis and elastoplastic analysis.
The model takes advantages from the simplicity and few addressed requirements for good per-
formances in nonlinear analysis. The simple assumption made for the stress field regards the
convenience of using self-equilibrated stress interpolations in Cartesian coordinates. In the
proposed composite elements the stress is discontinuous on the element and across their sides
and the mesh of the elements is coincident with the discretization of the geometry. This stress
interpolation is able to address the discontinuities in the plastic strain and, in such a way, to
define in their description a finer mesh with respect the basic grid.

2971



L. Leonetti, G. Garcea and H. Nguyen-Xuan

1 Introduction

Plastic analysis plays an important role in the evaluation of structural safety of a wide class
of structures. From mechanical point of view the plastic behaviour is characterised by the lo-
calization of the plastic deformations and by continuous displacements. Typically very fine
meshes are required to address the plastic mechanism when standard finite elements are used.
In particular the analysis doesn’t take advantage from the use of high order FEM models. On the
contrary lower-order finite elements shows many drawbacks and locking phenomena in many
context of analysis. The goal is to improve the behaviour of lower-order finite elements due
to its low computational cost when moderately fine meshes are required. In particular, linear
triangular discretization shows a great capability to well describe complicated data and little
sensitivity to the mesh distortion. This aspect is particularly desirable for a finite element pro-
cedure to increase the efficiency of algorithms in terms of computational cost and accuracy in
both displacement and stress components and the robustness of the numerical process with re-
spect to a large spectrum of data. In the attempts to improve the performance of lower-order
finite elements, a key solution was reducing the overly-stiffness of the standard linear triangle
T3 model. A manner of obtaining the desired softening effects is the use of strain smoothing
techniques as in the family of so-called smoothed finite element methods (S-FEMs) [1]. The
essential idea in the S-FEMs was to define a smoothing domain through the mesh discretization
with different patterns i.e. cells, nodes, edges or faces of the background mesh. It is worth
mentioning that NS-FEM is very close or coincident to simplex FEM element proposed in [3],
successfully in shakedown and limit analysis. Technical models, namely plate and beam models
are often formulated by introducing rotational degrees of freedom. Their spatial assemblage and
connection is easy if it is based on three translational and three rotational degrees of freedom per
node as in the case of folded structures or curved shells. To this aim it is convenient to include
in the formulation, even as an enrichment of the shape functions, the so called drilling rotations.
It is worth mentioning that the Allman’s like models [4] appear to be particularly simple and
the choice of assuming a quadratic interpolation function for the side transversal displacement
is effective but, as counterpart, the side interpolation becomes insensitive to the nodal rotation
average and the resultant element can lead to defective rank. Moreover by using Allman’s like
interpolation the choice of referring to relative nodal rotations(i.e. to consider them as addi-
tional rotations superimposed on the linear deformation due to the nodal displacements) leads
to some difficulties in recovering the absolute rotation field. In this respect [5] proposed a modi-
fied Allman’s triangular element and a clear discussion of drilling rotations is done proving that
the drilling degree’s of freedom should be the rotation component of the elasticity. It shows also
that the drilling parameter in the original Allman’s element is not the Cauchy’s continuum rota-
tion (true rotation). It can become the true rotation by introducing a simple constraint that also
eliminates the spurious zero modes. Our work needs only a slight change to the original All-
man’s element keeping the advantages of simplicity, accuracy and compatibilities of Allman’s
element. In this paper improved S-FEMs formulations with an enriched displacement field,
making use of modified Allman’s shape functions, is presented in its assumed stress version.
This mixed interpolation strategy doesn’t cause any difficulties in the linear elastic analysis
and is the natural context in performing lower bound strategy for shakedown, limit analysis
and elastoplastic analysis [6]. In addition, as the introduction of nonlinearities in the model
leads to very complicate nonlinear contributions, an essential and working well element with
few addressed requirement is of great interest. Another advantage of the simple assumption
made for the stress field regards the convenience of using self-equilibrated stress interpolations
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in Cartesian coordinates. With few implementation changes it is possible to derive composite
FEM models [7] with the same interpolation fields. The difference from S-FEMs and composite
FEM is topological. Both are based on a discretization grid but in S-FEMs some mechanical
field stress or strain are assumed continuous trough the portions, and kept discontinuous within
the part of the grid. In this way the mesh of the elements is not coincident with the grid of the
parts. In the proposed composite elements the stress is discontinuous on the element and across
their sides and the mesh of the elements is coincident with the discretization of the geometry.
This stress interpolation is able to address the discontinuities in the plastic strain and, in such a
way, to define in their description a finer mesh with respect the basic grid.

Structures, during their operational life, are subjected to a sequence of variable actions de-
picting, sometimes, a very complex loading scenario [2]

In this context shakedown analysis furnishes, in a direct way, a reliable safety factor against
plastic collapse, loss in functionality due to excessive deformation (ratcheting) or collapse due
to low cycle fatigue (plastic shakedown), and also provides valuable information about the
internal stress redistribution due to the plastic adaptation phenomenon. .

2 On an edge-based assumed stress field

In this section a new triangular mixed edge smoothed finite element (MES-FEM) is formu-
lated. This aims to improve the displacement field by means of an Allman-like interpolation in
order to account for drilling rotations.

2.1 The discretization grid and mesh

Similarly to ES-FEM, we start from a geometrical discretization of the two-dimensional
domain (grid) (see Fig. 1(a)), by means of three node triangles (parts). Each part can be
subdivided into three triangular subparts identified by each edge and the centroid of the part.
On this grid the element is defined by the union of the subparts adjacent to each edge of the grid
(see Figs. 1(b)-1(c)). The union of all the elements defines the mesh. Each part contributes to the
elements corresponding to its sides, so in this paper the mesh (of the elements) is distinguished
from the grid (of the parts).

In Figure 1(a) a part (triangle) of the grid is highlighted and an example of the numbering of
the nodes of the mesh is given while in Fig. 1(b) three elements corresponding to the sides of a
triangle have been indicated and a numbering example of the elements is shown. Finally in Fig.
1(c) an example of the stress parameter numbering is given.

(a) Grid of the parts (b) Mesh of the elements (c) Stress numbering

Figure 1: Grid (geometrical) and mesh (logical) discretization and stress numbering.

A suitable description of the relevant quantities of the discrete model can be obtained by
using a triangular area co-ordinate system (r, s, t), related to the Cartesian ones (x, y) by the
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co-ordinate transformation  r
s
t

 =
1

2A

 a1 b1 c1

a2 b2 c2

a3 b3 c3

 1
x
y

 (1)

where A is the part area and the coefficients of the transformation matrix are defined as

ai = xjyk − xkyj, bi = yj − yk, ci = xk − xj (2)

following the permutation rule i =
−→
123, j =

−→
231, k =

−→
312.

2.2 The displacement interpolation

Within each part the displacement field is described by a continuous interpolation expressed
in terms of parameters {unvn, θn}, n = 1..3 located on its three corners (see Fig.1(a)). Making{

u0 = u1r + u2s+ u3t

v0 = v1r + v2s+ v3t
(3)

the usual shape functions for the linear triangle T3, in the proposed model the displacement
u[r, s, t] ≡ {u, v}T is interpolated using the shapes proposed in [5]

u = u0 +
2

3
(θ1 − θ2)b3rs+

2

3
(θ2 − θ3)b1st+

2

3
(θ3 − θ1)b2tr

v = v0 +
2

3
(θ1 − θ2)c3rs+

2

3
(θ2 − θ3)c1st+

2

3
(θ3 − θ1)c2tr

(4)

that is slightly different from the classical Allman Triangle (AT) due to the choice of the coeffi-
cient 2

3
instead of 1

2
. By imposing the constraint

1

2

(
∂v0

∂x
− ∂u0

∂y

)
− θ1 + θ2 + θ3

3
= 0 (5)

the parameters θi become the nodal (drilling) rotations of the 2D Cauchy continuum 2ωi =(
∂v
∂x
− ∂u

∂y

)
and the rank defectiveness of the Allman-like triangles is sanitized. It is also pos-

sible to show that the solution is not affected by the choice of 1
2

or 2
3

as coefficient for drilling
rotations when the constraint (5) is not imposed. We refer readers to [5] for further details.

With this choice the drilling rotations, which are useful for the connection with flexural
elements, have the physical meaning of the continuum Cauchy problem and allow a coherent
link with the displacement field. The displacement on each part can be expressed in compact
matrix notation as

u[r, s, t] = Φ[r, s, t]ue (6)

where ue = [u1, v1, θ1, u2, v2, θ2, u3, v3, θ3]T is the vector collecting the kinematical part pa-
rameters and Φ is the matrix collecting the quadratic shape functions (4).

Constraint equation (5), constant on the part, becomes, in matrix form

dTe ue = 0 (7)

where

dTe = [d1,d2,d3] with dk =

[
ck
4A

, − bk
4A

,
1

3

]
, k = 1..3.
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2.3 The stress interpolation

The usual formulation of the ES-FEM assumes a constant strain on the element [8]. Here the
finite element model is constructed by assuming independent interpolations to approximate the
displacement and the stress field.

In particular the stress interpolation is assumed constant over the element and then it is piece-
wise constant over the parts (see Figs. 1(b)-1(c)) exactly as in the strain in the ES-FEM. For the
plane stress case, the vector of the stress parameters of the part

βe =
[
σ1
xx, σ

2
xx, σ

3
xx, σ

1
yy, σ

2
yy, σ

3
yyσ

1
xy, σ

2
xy, σ

3
xy

]T (8)

is introduced to ordinate the stress components of the vector σi = [σixx, σ
i
yy, σ

i
xy]

T associated to
each subpart i = 1..3. We express the selection of σi from β as

σi = T i
σβe (9)

It is worth noting that the piecewise constant approximation of the stress components adopted
has some significant advantages. A solution equilibrated for zero volume loads is described
simply, whereas higher order interpolations are typically used in conjunction with equilibrium
conditions which reduce the number of independent parameters. In addition, this choice avoids
any co-ordinate transformation which could introduce noise related to the mesh distortion [9].
The mixed format makes an effective extension of the model to nonlinear analyses simpler. For
application in plastic analysis [10], the method is expected to behave well as the discontinuous
interpolation for the stress field addresses discontinuities in the plastic deformation field and the
plastic admissibility is also imposed in a simple manner.

2.4 The part internal work

The equilibrium/compatibility operator of the part is obtained by the exact integration of the
internal work. In particular, by using the Gauss theorem, the integral can be transferred to the
boundary of each sub-part and, because the stress is self-equilibrated, the domain contributions
are deleted, so obtaining∫

A

σTεdA =
3∑
i=1

∫
Ai

(σi)TεdA =
3∑
i=1

(∫
Γi

nTσTu dΓ

)
= βTeDeue (10)

The discrete equilibrium operator of the part is expressed in the compact form as

DT
e =

 B 0 C
0 C B
By Cx G

 , B =
1

6

 b1 b1 b1 b1

b2 b2 b2 b2

b3 b3 b2 b3

 (11)

where matrices G andBy are defined as

G =
1

81


2(4y2x2 − y3x3)− d1 −8(x1b1 + x2b3 + x3b2)

2(y3x3 − 4x1y1) + d2 2(4y3x3 − x1y1)− d2

−8(x1b2 + x2b1 + x3b3) 2(x1y1 − 4y2x2) + d3

 , di = 3(xjyk+xkyj)−5(aj+ak)

By =
1

81


b1(4b3 − b2) 4b1(b3 − b2) b1(b3 − 4b2) 4b1(b3 − b2)

b2(b1 − 4b3) b2(4b1 − b3) 4b2(b1 − b3) b2(4b1 − b3)

4b3(b2 − b1) b3(b2 − 4b1) b3(4b2 − b1) b3(b2 − 4b1)
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The matrix C has the same structure asB, but contains the coefficients ci in spite of bi (see eq.
(2)). Similarly the matrix Cx is obtained by replacing, in the matrix By, the coefficients bi by
the coefficients −ci.

2.5 Implementation details

To make the preprocessing and assembly phases simple, quick and governed by standard
operations, the discrete operators are defined over the part. In particular it is convenient to use
a standard six node triangular grid of T6 elements (see Fig. 1(a)) for the variable numbering. In
this way the vertex nodes (indicated by bullets) of the T6 element (see Fig. 1(a)) are used for the
kinematical variable numbering while the mid-side nodes (indicated by squares) are used for the
stress parameter numbering, as shown in Figs. 1(b)-1(c). With this approach the preprocessing
phase is really fast, avoiding the search procedure of selecting the parts sharing the common
edge.

The preprocessing phase of smoothed elements is complex, full details are given in [11],
in contrast the strategy proposed here is provided freely by a mesh generator like GMSH [12].
In particular a similar strategy can be used in constructing the so-called cell based smoothed
element (CS-FEM) that can take advantage of preprocessing based on quadratic quadrangular
grids.

2.6 Comparison with other FE models

As shown in [8, 11], ES-FEM behaves well in many contexts of analysis. The reason for this
good behaviour is that the discontinuity of the approximate strain field is reduced significantly,
due to the smoothing effect. In this respect, ES-FEM and Imbricate FEM(EI-FEM) are close
formulations, while the smoothing domain is the same. This can be easily verified by showing
the effect of a single non-zero displacement component at a node for ES-FEM . It can be seen
that the domain associated with the non-zero strains, is the same as that presented in Fig. 9 of
[11] for the edge imbricate FEM and so similar smoothing effects are expected. Also for the
MES-FEM presented in this work, the active stress components triggered by the solution, prop-
agate the effect to the neighbourhood of the elements sharing the active kinematical variable,
so increasing the smoothness of the displacement field. In this case, however, in contrast to
ES-FEM, the smoothing concept is applied/extended to Allman-like kinematics.

The proposed element also has similarities with the compositeMT6/3 element [7, 13, 22], the
main difference being topological. In contrast to MES-FEM, in MT6/3 the grid and the mesh
are coincident and displacement interpolation is that of the quadratic triangle T6. The stress
assumptions look similar for both models as each part is partitioned into three triangular sub-
parts in which the stress is assumed constant. However for the MES-FEM the stress components
are the same for the two sub-parts on a common edge while for the MT6/3 they are different.

Note that the Allman-like interpolation can be seen as a reduction or simplification of the
full quadratic displacement interpolation used for MT6/3. In particular it can be seen as being
derived from the T6 FE by deleting the mid-side node and adding some constraints to maintain a
quadratic interpolation for the displacement component transversal on the edge only, and linear
in the side direction. Similarly to ES-FEM, which improves the T3 interpolation of the part with
the smoothing effect, MES-FEM also enriches the accuracy of the Allman-like interpolation.
In this respect the mid-side node of the quadratic displacement interpolation used in the MT6/3

element plays an inter-element connection role similar to the conflict domain of the ES-FEM
and EI-FEM elements.
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To show the importance of this smoothing effect on the accuracy of the solution, a compos-
ite FE, denoted AM-CM, derived from the MT6/3 by replacing the original displacement shape
functions of the quadratic triangle T6 with those in Eqs.(3)-(4), is derived. In this way the differ-
ence between AM-CM and MES-FEM consists in the discontinuity of the stress fields through
the sides of the triangles (coincidence of the grid and the mesh), i.e AM-CM does not have any
smoothing effects. Notwithstanding the greater number of dofs of the stress interpolation of
AM-CM, the smoothing effect presented in MES-FEM makes an important improvement in the
accuracy as will be shown by the numerical experiments.

3 Plastic collapse analysis

We refer to the analysis of a body subjected to volume forces b and tractions t, both increas-
ing with the same load multiplier λ. The material is assumed to be elastic-perfectly plastic,
therefore the stress field is constrained to satisfy plastic admissibility inequalities which are
independent of the plastic strain. The limit analysis aims to identify the plastic collapse state,
characterized by the collapse multiplier λc and the associated plastic mechanism. A way to
solve this problem is represented by the evolutive analysis which furnishes the entire structural
response through the solution of a sequence of incremental elasto-plastic problems [6]. The
collapse multiplier λc is evaluated as the limit value for the equilibrium path.

The limit analysis theorems offer an alternative way which is directly addressed to com-
pute the lower and upper approximations of the collapse limit multiplier. The approximation
furnished by the statical characterization of the collapse load, giving a safe estimate, is more
attractive from an engineering point of view. In this case the collapse multiplier is individuated
as a solution of the nonlinear mathematical programming problem

maximize λ

subject to QT β̃ − λp = 0

f [β] ≤ 0

(12)

where the equality constraints are represented by the equilibrium equations, described through
the global equilibrium operator QT and the load vector p collecting the body forces and trac-
tions (see eqs. 17 and 19). The plastic admissibility inequalities are expressed through the
vector f , which collects the local restrictions imposed by the assumed yield condition over the
stress state σi of the Nr regions of the domain

fi[σ
i] ≤ 0, i = 1..Nr (13)

Within the numerical methods for the analysis of nonlinear mathematical programming prob-
lems, the Interior Point strategy represents an established approach [14], [15]. Specialized im-
plementations of these algorithms in plastic problems can be found in [16] [17]. This method
also furnishes the solution of the dual problem, namely the Lagrange multipliers of the func-
tional

L = λ+ q̇T (QT β̃ − λp)− µ̇Tf (14)

which are represented by the mechanism vector q̇ and the vector of the plastic multipliers µ̇.
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The dual problem can be written in the form

maximize µ̇Tσy

subject to Q q̇ − µ̇T ∂f
∂β

= 0

1− q̇Tp = 0

µ̇ ≥ 0

(15)

which is derived by imposing the stationarity conditions of the Lagrange functional (14) with
respect β and λ, variables of the primal problem (12), and by using the Euler theorem

fi[σ
i] = (σi)T

∂fi
∂σi
− σyi, i = 1..Nr (16)

to express the yield conditions on each of the stress regions where the yield stress σyi is assigned.
Since our objective is to test the performances of the proposed element, a standard numerical

tool has been chosen to solve the programming problem. In this way the comparison results
are unaffected by our implementation details and tolerances, so the proposed element is tested
in a standard and well consolidated environment without special modifications. In order to
obtain a high level of accuracy, the MOSEK [18] toolbox for MATLAB [19] has been selected.
This algorithm has proved to be highly robust and efficient in independent benchmark tests
and, without any tuning of its default settings, to be able to solve very large problems with
remarkable speed [20].

3.1 The discrete equilibrium equations

We consider a plane body occupying the domain Ω having a boundary Γ subjected to the
body forces b and the traction t. The proncipal virtual work equation becomes

W [σ,u] =

∫
Ω

σTDu dΩ−
∫

Ω

bTu dΩ−
∫

Γ

tTu dΓ (17)

where D is the compatibility operator. When a constraint like (5) needs to be imposed, an
extra Lagrange multiplier could be introduced or the functional could be penalized by adding to
Eq.(17) the following term

Wc =

∫
Ω

λL

(
1

2

(
∂v0

∂x
− ∂u0

∂y

)
− θ1 + θ2 + θ3

3

)
dΩ (18)

The modified functional W introducing the interpolation then becomes

W [β, q] ≡ W [σ,u] +Wc =
∑
e

We[βe,ue]

where the eth part contribution to the functional (18) is defined as

We[βe,ue] = βTeDeue + λLDedue − uTe pe (19)

and De is the compatibility operator defined in Eq.(11), pe is the load vector furnished by the
integration of the external load components weighted with the shape functions of the displace-
ment interpolations and the constraint contribution gives the contribution to the compatibility
operatorDed = deAe.
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By assembling the element contributions in the global matrices through the element inci-
dence operators for displacements ue = T uq and stresses βe = T ββ, where β is the global
stress vector and q is the global displacement vector, the sum of the contributions (19) furnishes
the global matrices

Q =
∑
e

[
T T
βDeT u

DedT u

]
, β̃

T
=
[
βT ,λTL

]
(20)

It is worth noting that matrix, the single step of the elastoplastic analysis [6, 21, 10, 22] can
be seen as the solution of the mathematical problem (12) by adding the compliance matrix F
that is block diagonal at the element (stress) level due to the constant interpolation adopted and
its inverse F−1 can be directly assembled. In this way an inexpensive construction of the tangent
stiffness matrix [6, 10] is obtained.

The proposed assembly rule of the finite element, once the matrices used in defining the
discrete operators in Eqs. (11) are provided, is then very light and follows the standard FE
format. Furthermore the resulting discrete operator has a compact form and could easily be
evaluated.

4 Numerical results

The performances of the proposed mixed finite element models in evaluating the plastic
collapse states have been tested by the numerical experiments reported in the following sub-
sections. The plastic collapse states have been analyzed by using Mises yielding criterion and
taking a unitary yield stress.

Cook membrane

The following results refer to the elastic analysis of the well investigated Cook’s membrane,
reported in Figure 2. The convergence of the numerical solution has been tested by using four
meshes obtained by successive refinements of the coarse mesh (mesh 1), having two elements
for each side.

Figure 2: Cook membrane. Regular and irregular coarse meshes.

Table 1 reports a comparison of the computed values of the plastic collapse multiplier and
the number of iterations spent on each analysis. The reference result [21] was obtained using a
mesh having 1024 elements and 2178 dofs.
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Table 1: Cook membrane. Plane stress limit analysis.

mesh 1 mesh 2 mesh 3 mesh 4
λc λc λc λc

MES − FEM 0.428 0.405 0.399 0.396
AM − CM 0.451 0.426 0.405 0.399
E − S 0.505 0.415 0.401 0.397
ref. [21] 0.3956

Square plate with circular hole

The square plate with a central circular hole, subjected to a constant traction, is often used
as stress concentration test. The meshes are generated by splitting the right side and the top
side into n parts and the remaining sides into 2n parts. The grids mesh 1, mesh 2 and mesh 3
refer to n = 3, 6, 12, respectively. Figure 3 shows the coarse mesh, in the regular and irregular
versions.

Figure 3: Square plate with circular hole. Coarse regular and irregular meshes.

The numerical values of the collapse multipliers, computed in plane stress condition and by
using the Mises criterion, are compared in Table 2 for the three meshes. It is worth noting that
the accurate reference results [21] were computed with 4802 dofs, 2304 elements and 9216 ad-
missibility constraints. The exact collapse value has been computed with the analytical formula

λc t = (1− R

L
)σy (21)

5 Concluding remarks

This paper proposed a mixed edge-based smoothed finite element formulation enriched with
drilling degrees of freedom for the analysis of structural plane problems and a composite FEM
model. The main features of the model are its simplicity and ease of implementation within
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Table 2: Square plate with circular hole. Plane stress limit analysis.

mesh 1 mesh 2 mesh 3
λc λc λc

MES − FEM 0.811 0.804 0.802
AM − CM 0.818 0.808 0.804
E − S 0.812 0.805 0.802
ref. [10] 0.8006
exact 0.8000

existing computational tools. More importantly, the element proves to be accurate and robust
for the plastic analysis of plane problems. The efficiency of the present model comes from the
properties of ES-FEM and from the choice made for the interpolation functions for the in-plane
rotations that seem to match the smoothing effect of the stress field.

The numerical experimentation of the model, which was carried out on a wide range of
problems and data, shows its excellent performance.

The experiments also demonstrate its accuracy in representing the rotational field, consider-
ably improving the results of other models with the same displacement description. In particular
it is shown that the MES-FEM performs better than the composite model.
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Université Paris-Est, Laboratoire Navier (UMR 8205),
CNRS, Ecole des Ponts ParisTech, IFSTTAR, F-77455 Marne la Vallée, France

e-mail: michael.peigney@enpc.fr

Keywords: Plasticity, Shakedown, Temperature-dependent properties, Melan’s theorem

Abstract. For elastic-perfectly plastic structures under prescribed loading histories, the well-
known Melan’s theorem gives a sufficient condition for shakedown to occur, i.e. for the evolution
to become elastic in the large-time limit. The original Melan’s theorem rests on the assumption
that the material properties remain constant in time, independently on the applied loading. This
communication addresses the long standing issue of extending Melan’s theorem to temperature-
dependent (or time-dependent) elastic moduli. The main motivation is to extend the range of
applications of Melan’s theorem to thermomechanical loading histories with large temperature
fluctuations: In such case, the variation of the elastic properties with the temperature cannot be
neglected. Some recent results obtained in perfect plasticity and viscoplasticity are presented
and discussed.
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1 INTRODUCTION

For elastic-perfectly plastic structures under prescribed loading histories, the well-known
Melan’s theorem [1, 2, 3] gives a sufficient condition for shakedown to occur, i.e. for the
evolution to become elastic in the large-time limit. Intuitively, shakedown means that the plastic
strain tends to a limit as time tends to infinity. The Melan’s theorem has the distinctive property
of being path-independent, i.e. independent on any residual stress that may exist initially in the
structure. The shakedown theory has been the object of numerous developments, regarding both
extensions of the original theorem to various nonlinear behaviors [4, 5, 6, 7, 8, 9] and numerical
methods for assessing the shakedown limits in the case of parametrized loading histories [10,
11, 12, 13, 14, 15, 16].

This communication addresses the issue of extending Melan’s theorem to temperature-dependent
(or time-dependent) elastic moduli. The main motivation is to extend the range of applications
of Melan’s theorem to thermomechanical loading histories with large temperature fluctuations:
In such case, the variation of the material properties with the temperature cannot be neglected.
Whereas the case of temperature-dependent yield limits is well understood [17], the case of
temperature-dependent elastic moduli remains a long standing issue and has been the object of
several conjectures [18, 19, 20, 21]. The main difficulty is that the proof used in the original
Melan’s theorem – as well as in most of its knows extensions – crucially relies on some contrac-
tion properties that are lost when the elastic moduli are allowed to vary in time. A shakedown
theorem has recently been proposed for elastic-perfectly plastic materials with time-periodic
elastic properties [22]. The statement and proof of that theorem differ significantly from the
case of constant material properties. A salient result is that time fluctuations of the elastic
moduli need to remain small (in a certain sense) for shakedown to occur in a path-independent
fashion.

In this communication, the theorem of [22] is presented and improved upon. The extension
to elastic-viscoplastic materials is discussed.

2 EVOLUTION EQUATION FOR THE STRESS FIELD

Consider an elastic-plastic material occupying a domain Ω in the reference configuration.
Under the small strains assumption, the strain ε , stress σ and plastic strain ε p at position x and
time t are related by the constitutive equations

ε(x, t) = L(x, t) : σ(x, t)+ εθ (x, t)+ ε p(x, t), (1)

ε̇
p(x, t) = φ

′(σ(x, t),x, t), (2)

where φ is the dissipation potential, assumed to be positive, convex, and null at the origin. In
(1), L is the (symmetric positive definite) elastic moduli tensor and εθ is the thermal strain
tensor. Note the time dependence of L, εθ and φ , which may result from imposed variations of
the temperature. The elastic domain of the material is denoted by C (x, t), i.e. C (x, t) = {σ :
φ(σ ,x, t) = 0}.

Assuming quasi-static evolutions, the stress field σ satisfies the equilibrium equations

divσ + f = 0 in Ω, σ ·n = T on ∂ΩT , (3)

where f (x, t) are body forces and T (x, t) are tractions prescribed on a part ∂ΩT of the boundary
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Michaël Peigney

∂Ω. The strain field ε and displacement field u satisfy

ε =
1
2
(∇u+∇

T u) in Ω, u = v on ∂Ωu = ∂Ω−∂ΩT (4)

where v(x, t) is a given function.
As usual in shakedown analysis, it is convenient to introduce the fictitious elastic response

(uE ,σE), i.e. the response of the system if it were purely elastic, defined by

ε
E = L : σ

E + εθ ,

divσ
E + f = 0 in Ω,σE ·n = T on ∂ΩT ,

ε
E =

1
2
(∇uE +∇

T uE) in Ω, uE = v on ∂Ωu. (5)

The boundary value problem defined by Eqs. (1-4) governs the evolution of the fields
(u,ε,σ). An evolution equation involving only the stress field can be formulated from Eqs.
(1-4), as is now detailed. Let E denote the space of stress fields, chosen as a subspace of sym-
metric second-order tensor fields with square-integrable components. The space E is equipped
with the scalar product 〈σ ,σ ′〉 =

∫
Ω

σ(x) : σ ′(x)dω . The associated norm is denoted by ‖ ‖,
i.e. ‖σ‖=

√
〈σ ,σ〉. For simplicity we assume in the following that E is of finite dimension.

Any stress field σ satisfying (3) can be written as σ = σE + ρ where ρ belongs to the
vectorial space H ⊂ E of self-equilibrated stress fields, defined by

H = {ρ ∈ E : divρ = 0 in Ω, ρ ·n = 0 on ∂ΩT}. (6)

For an arbitrary ρ ′ ∈H, it follows from (1) that∫
Ω

(ρ ′−ρ) :
d(ε− εE)

dt
dω =

∫
Ω

(ρ ′−ρ) :
d
dt
(L : ρ)dω +

∫
Ω

(ρ ′−ρ) : φ
′(σ)dω. (7)

The principle of virtual power shows that the left-hand side of (7) is equal to 0, hence

−
∫

Ω

(ρ ′−ρ) :
d
dt
(L(x, t) : ρ)dω =

∫
Ω

(ρ ′−ρ) : φ
′(σ ,x, t)dω. (8)

Let Φ(ρ, t) : H 7→ R be the convex, positive function defined by

Φ(ρ, t) =
∫

Ω

φ(σE(x, t)+ρ(x),x, t)dω.

Note that Φ(·, t) vanishes on the set K(t) = {ρ ∈H : ρ(x)+σE(x, t) ∈ C (x, t) ∀x ∈ Ω}. For
later reference, note that K(t) =K0(t)∩H where

K0(t) = {ρ ∈ E : ρ(x)+σ
E(x, t) ∈ C (x, t) ∀x ∈Ω}.

We have (at least formally)∫
Ω

(ρ ′−ρ) : φ
′(σ)dω = 〈ρ ′−ρ,Φ′(ρ, t)〉.

Further introducing the linear symmetric operator L(t) : H 7→H defined by

〈ρ,L(t)ρ ′〉=
∫

Ω

ρ(x) : L(x, t) : ρ
′(x, t)dω ∀ρ,ρ ′ ∈H,
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Michaël Peigney

Eq. (8) can be rewritten as

− d
dt
(L(t)ρ) = Φ

′(ρ, t). (9)

Since the elastic moduli tensor L(x, t) is symmetric positive definite, it can easily be verified
that L(t) is self-adjoint and positive definite. Its inverse is denoted by M(t). Starting from a
given initial state ρ(t = 0), the evolution of the stress field in H is governed by the ordinary
differential equation (9). The uniqueness of the stress rate ρ̇ has been proved in [23].

In the case of time-independent elastic moduli, a change of scalar product allows Eq. (9) to
be put in the form

−dρ

dt
= Φ

′(ρ, t). (10)

Properties of Eq. (10) are well understood. In particular, the distance between two solutions
(as measured by the energy norm) is decreasing with time: For two solutions ρ(t) and ρ ′(t) of
(10), we have indeed

1
2

d
dt
‖ρ(t)−ρ

′(t)‖2 = 〈ρ̇− ρ̇
′,ρ−ρ

′〉=−〈Φ′(ρ, t)−Φ
′(ρ ′, t),ρ−ρ

′〉 ≤ 0 (11)

where the convexity of Φ(·, t) has been used. The contraction property (11) plays a crucial role
when studying the asymptotic behaviour of solutions as t→+∞. If L(t) is a radial function of
time, i.e. of the form

L(t) = f (t)L0 (12)

then a change of variables allows Eq. (9) to be cast in the form (10) [22]. In the general case
when L(t) is not radial, then the properties of Eq. (9) differ significantly from those of Eq. (10)
– In particular, the contraction property is lost.

In the following it will be useful to measure ’how much’ L(t) (or M(t)) differs from a radial
function. To that purpose, set

µ(t) = 1/ trM(t) ,M0(t) = µ(t)M(t),

and define

γ(a,b) =
∫ b

a
|||Ṁ0(t)|||dt (13)

where |||·||| is the norm operator in H, i.e. |||M(t)||| = supρ ′∈H,‖ρ ′‖=1 ‖M(t)ρ ′‖. Observe that
γ(a,v) vanishes if L(t) is of the form (12) on the time interval [a,b], and is non negative other-
wise.

Remark: For simplicity, we have assumed so far that the dissipation potential φ is differen-
tiable, which is the case for viscoplasticity. For perfect plasticity, the dissipation potential is
only subdifferentiable: Eqs. (9) and (10) have to be replaced with

− d
dt
(L(t)ρ) = ∂ IK(t)(ρ, t) (14)

and
−dρ

dt
= ∂ IK(t)(ρ, t), (15)

respectively. In Eqs (14-15), IK(t) is the indicator function of the set K(t) and ∂ denotes the
subdifferential operator. Eq. (15) corresponds to the so-called ’sweeping process’ [24].
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3 SHAKEDOWN THEOREM

In the following we study the asymptotic behavior of solutions to (9) as t→ ∞. We consider
the case where L(t), K(t) are periodic in time (with the same period T ) and assume that K0(t)
and L(t) are bounded by some constants denoted respectively by M and C, i.e.

‖ρ ′‖ ≤M , |||L(t)||| ≤C (16)

for all t and ρ ′ ∈ K0(t). As mentioned in the introduction, shakedown corresponds to the
situation where the evolution becomes elastic in the large time limit. Elastic evolutions are
characterized by the fact that φ(σ(x, t),x, t) = 0. Concerning the evolution equation (9) for the
stress field, it follows that the distinctive properties of an elastic solution ρ∗(t) are

d
dt
(L(t)ρ∗(t)) = 0, ρ∗(t) ∈K(t) ∀t ∈ [0,T ]. (17)

Shakedown corresponds to the situation where the residual stress converges towards an elastic
solution as t → ∞. Our main objective is to examine conditions under which every solution of
(9) converges towards an elastic solution in the large time limit. More precisely, the main result
we discuss is the following

Shakedown theorem: If
(i) There exists an elastic solution ρ∗ to Eq. (9) and some r > 0 such that

∀ρ ′ ∈H,∀t ∈ [0,T ], ‖ρ ′−ρ∗(t)‖ ≤ r =⇒ ρ
′ ∈K(t);

(ii) the elastic moduli are such that

γ(0,T )
inf µ

<
r

2CM
;

then shakedown occurs, whatever the initial state is.

That theorem holds for elastic-perfectly plastic materials as well as for Duvaut-Lions elasto-
viscoplastic materials (see Sect. 3.3). Condition (i) means that there exists an elastic solution
that remains in the interior of the elasticity domain K(t): It is a reformulation of the Melan’s
condition found in the classical Melan’s theorem. Condition (ii) sets restriction on the time
variations of the elastic moduli. Setting such a restriction is necessary to obtain global conver-
gence results: One can indeed find counterexamples in which condition (i) is fulfilled and some
solutions of (9) do not become elastic in the large time limit [22].

3.1 Variation of the elastic energy

Let ρ∗(t) be an elastic solution satisfying (i) and let ρ(t) denotes an arbitrary solution of (9).
We consider the positive function f defined as

f (t) =
1
2
〈τ(t),L0(t)τ(t)〉. (18)

where τ(t) = µ(t)(ρ(t)− ρ∗(t)). The function f is referred to as the elastic energy. The
shakedown theorem stated above rests critically on the property

f (a+T )− f (a)≤
(
2Nγ(0,T )− r inf µ

)∫ a+T

a
‖η̇(t)‖dt, (19)
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where
N = sup

a≤t≤a+T
{‖L(t)ρ(t)‖,‖L(t)ρ∗(t)‖}.

Eq. (19) bounds the variation of the elastic energy over a cycle. That bound plays the role of the
contraction property that holds only in the case of time-independent elastic moduli. Observe in
particular from (19) that f (a+T )− f (a)≤ 0 if γ(0,T ) is sufficiently small.

The rest of this Section is devoted to a proof of Eq. (19). The inequality (19) is obtained
by performing minor modifications to a similar result obtained in [22] for perfect plasticity,
hence we only sketch the main steps of the proof and refer to [22] for details. Recalling that
d(L(t)ρ∗(t))/dt = 0 and setting H(t) = −1

2〈τ(t), L̇0(t)τ(t)〉, some straightforward manipula-
tion shows that

ḟ (t) = 〈τ(t), η̇(t)〉+H(t)

where η(t) = L(t)τ(t). Integrating on the time interval [a,a+T ] gives

f (a+T )− f (a) =
∫ a+T

a
〈τ(t), η̇(t)〉dt +

∫ a+T

a
H(t)dt. (20)

In the following, the two integrals in the right-hand side of Eq. (20) are bounded separately. Let
us first consider the integral

∫ a+T
a 〈τ(t), η̇(t)〉dt. Noting from (9) that η̇(t) =−Φ′(ρ(t), t) and

recalling that Φ is convex, positive and vanishes in K(t), we have

0≤Φ(ρ(t), t)≤ 〈η̇(t),ρ ′(t)−ρ(t)〉 for all ρ
′ ∈K(t). (21)

Condition (i) implies that ρ∗(t)− rη̇/‖η̇‖ is in K(t). Hence (21) gives 0 ≤ 〈η̇(t),ρ∗(t)−
r η̇

‖η̇‖ −ρ(t)〉 i.e. 〈η̇(t),ρ(t)−ρ∗(t)〉 ≤ −r‖η̇(t)‖. Therefore we obtain

∫ a+T

a
〈τ(t), η̇(t)〉dt ≤−r(inf µ)

∫ a+T

a
‖η̇‖dt. (22)

Now consider the integral
∫ a+T

a H(t)dt. We have τ(t) = L−1
0 (t)(η(t)− η(a) + s) where

s = L(a)(ρ(a)−ρ∗(a)) is independent on t. Some manipulations (see [22]) show that∫ a+T

a
H(t)dt ≤ 1

2

∫ a+T

a
‖η(t)−η(a)‖·|||Ṁ0(t)||| · ‖η(t)−η(a)+2s‖dt. (23)

Since η(t)−η(a)+2s = L(t)τ(t)+L(a)τ(a)−2L(a)ρ∗(a), we have

‖η(t)−η(a)+2s‖ ≤ 4N. (24)

We also have, for t ∈ [a,a+T ],

‖η(t)−η(a)‖= ‖
∫ t

a
η̇(t ′)dt ′‖ ≤

∫ t

a
‖η̇(t ′)‖dt ′ ≤

∫ a+T

a
‖η̇(t ′)‖dt ′. (25)

Substituting (24-25) in (23) and using the definition (13) of γ(a,b), we obtain∫ a+T

a
H(t)dt ≤ 2Nγ(a,a+T )

∫ a+T

a
‖η̇(t)‖dt. (26)

Replacing (22-26) in (19) and observing by periodicity that γ(a,a+T ) = γ(0,T ), Eq. (19)
is obtained.
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3.2 Case of elastic-perfectly plastic materials

In perfect plasticity, the stress is constrained to remain in the elasticity domain C (x, t), which
by (16) implies that ‖ρ(t)‖ ≤M and ‖ρ∗(t)‖ ≤M for all t. By (16) we thus have ‖L(t)ρ(t)‖ ≤
CM and ‖L(t)ρ∗(t)‖ ≤CM. In (19), the constant N thus satisfies N ≤CM. Applying Eq. (19)
on the time interval [iT,(i+1)T ] gives

f ((i+1)T )− f (iT )≤−m
∫ (i+1)T

iT
‖η̇(t)‖dt

where m = r(inf µ)−2CMγ(0,T ) is non-negative by (ii). Summing over i = 0, · · · , I gives∫ IT

0T
‖η̇(t)‖dt ≤ 1

m
f (0).

Taking the limit I→ ∞ shows that the integral
∫ S

0 ‖η̇(t)‖dt converges as S −→ +∞. It follows
that η(t) also converges towards a limit η∞ as t −→ +∞. Setting ρ∞(t) = M(t)η∞, it can be
checked that ρ(t)−ρ∞(t)−→ 0 as t→ ∞, and that ρ∞(t) is an elastic solution.

Remark: For perfect plasticity, the theorem stated above slightly improves on the result
obtained in [22]. In [22], a condition analog to (ii) was formulated, with the factor 2 in (ii)
replaced by a factor 3.

3.3 Case of elastic-viscoplastic materials

Compared to perfect plasticity, an additional difficulty is that the stress is not restricted to
remain in the elasticity domain: There is no direct bound on ρ(t), hence no direct on the constant
N in (19) . That difficulty, however, can be overcome in the case of a Duvaut-Lions viscoplastic
behavior, i.e. for a dissipation potential of the form

φ(σ ,x, t) =
α

2
|σ −PC (x, t)σ |

2 (27)

where α > 0 is a viscosity parameter (assumed to be independent on (x, t) for simplicity) and
PC (x, t) denotes the projection on the elasticity domain C (x, t). Full details will be published

elsewhere [25], but the main point is that η(t) =L(t)ρ(t) is bounded by a constant N′ for large
time. Moreover, that constant N′ can be chosen as arbitrary close to CM. Using (19) with a
value of N′ such that CM < N′ < (r inf µ)/2γ(0,T ), one can show that η(t) converges as t→∞

and consequently that ρ(t) converges towards an elastic solution (the reasoning is similar to that
presented in Sect. 3.2).

4 EXAMPLE

As an illustrative example, consider the 3-bar truss represented in Fig. 1. We denote by σi,
εi, ε

p
i the uniaxial stress, total strain and plastic strain in bar i. The constitutive relation in each

bar reads as
εi =

σi

Ei(t)
+ ε

p
i + εθ

i , ε̇
p
i = φ

′(σi).

The truss is stress-free, i.e. σ1 +σ2 +σ3 = 0. The loading consists of a thermal strain εθ
2 (t) =

asin(2πt/T ) in bar 2. We assume that E1 = E3 remains independent on time and that E2(t)
vary as E2(t) = E/(1+δ sin2(πt/T )). The elasticity domain is the same for all bars and taken
as [−σy,σy] where the yield limit σy is independent on temperature.
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Figure 1: Three-bar truss with large thermal loading.

For the problem at hand, the vectorial space E of stress fields identifies with R3 and is
equipped with the scalar product 〈σ ,σ ′〉 = ∑

3
i=1 σiσ

′
i . Writing the stress state of the system

as σ = (σ1,σ2,σ3), the fictitious elastic response of the system is

σ
E(t) = E

εθ
2 (t)

3+2δ sin2(πt/T )
(1,−2,1).

It follows that ‖σE(t)‖≤
√

6σθ/3 where σθ =E supt |εθ
2 (t)|. Any σ in K0 verifies ‖σ +σE‖≤√

3σy. Hence the constant M in (16) can be taken as

M =
√

3σy +
√

6σθ/3.

In the present case, the space H of self-equilibrated stress fields is of dimension 2. Calculating
the operator L(t) shows that

C =
3+2δ

3E
,γ(0,T ) =

δ

3+δ
, inf µ =

1
2E

.

Note that (0,0,0) is an elastic solution. As long as σθ/σy ≤ 3/2, it can be verified that (0,0,0)
satisfies condition (i) with a value or r given by

r = (
σy

2
− σθ

3
)
√

6.

In Fig. 2 are represented the values (σθ ,δ ) satisfying conditions (i)-(ii): Shakedown occurs
for any (σθ ,δ ) below the solid line shown in Fig. 2. For δ = 0, we obtain that shakedown
occurs provided that σθ ≤ 3/2σy, in agreement with the classical Melan’s theorem for time-
independent moduli. As can be observed on Fig. 2, the time fluctuations of the elastic moduli
result in a decrease of the shakedown limit on σθ . Those results apply both to elastic-perfectly
plastic materials and to elasto-viscoplastic material of the Duvaut-Lions type.
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Figure 2: Shakedown limit for the three-bar truss.

In Fig. 3 are plotted the incremental evolution of the plastic strain and residual stress in
bar 2, starting from an initial residual stress ρ(0) = (0.46,−0.53,0.07)E. The plots on the left
correspond to a elastic-perfectly plastic behavior, while the plots on the right correspond to a
elastic-viscoplastic behavior. We set δ = 0.1 and εθ (t) = 0.1(σy/E)sin(2πt/T ): Such values
are below the shakedown limit shown in Fig. 2. As expected from the shakedown theorem, we
observe the convergence of the plastic strain towards a stabilized value. In the case of perfect
plasticity, that convergence is reached after the first loading cycle. In contrast,the convergence
is slow in the case of viscoplasticity. Observe that the residual stress does not converge towards
a stabilized value: This is a direct consequence of the time dependence of the elastic moduli.

Figure 3: Residual stress and plastic strain in bar 2: (left) elastic-perfectly plastic material; (right) elastic-
viscoplastic material
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structure anélastique sous chargement cyclique, C.R. Mecanique 330 (2002) 703–708.

[12] V. Carvelli, Z. Cen, Y. Liu, G. Maier, Shakedown analysis of defective pressure vessels by
a kinematic approach, Archive of Applied Mechanics 69 (9-10) (1999) 751–764.

[13] M. Peigney, C. Stolz, Approche par contrôle optimal des structures élastoviscoplastiques
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Michaël Peigney

[19] B. Halphen, S. di Domizio, Evolution des structures élastoplastiques dont les coefficients
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Abstract. Particulate reinforced metal matrix composites (PRMMCs) are characterized by
their stochastic and irregular microstructure. The strength of the material has been noticed to
have a large scatter and great dependence on the underlying composite structure. In order to
understand how size and distribution of the reinforcement particles contribute to the effective
material behaviors, we elaborated in present study a numerical approach which incorporates
homogenization technique, shakedown analysis, and statistical learning. To demonstrate this
approach, a typical PRMMC material, WC - 20 wt.% Co, was taken as example and numerous
representative volume element (RVE) samples of this material were built based on both real
and artificial microscope images. Multiple effective behaviors, including the ultimate strength
and endurance limit, were evaluated on each RVE sample using the direct method. In order
to understand how multiple structural factors jointly affect the overall composite strength, the
predicted strength and other selected features extracted from the samples are submitted to few
statistical models such as logistic regression and artificial neural network (ANN) to establish
predictive models. On the basis of these models we discussed how few structural factors, which
have been identified to have nontrivial impact, contribute to the endurance limit of the selected
PRMMC material.
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1 INTRODUCTION

Particulate reinforced metal matrix composites (PRMMCs) are becoming increasingly pop-
ular for being used as structural materials due to their preferable mechanical properties such as
high strength and good wear resistance. Compared to fiber reinforced composites, mechanical
behaviors of PRMMCs are more isotropic, and the materials are in general less expensive to be
fabricated. As composed of metal matrix and discrete ceramic particles, the microstructure of
the PRMMCs are irregular and highly randomized. Therefore, the mechanical behaviors of the
material, including the strength, have been noticed to have a large scatter and great dependence
on the underlying composite structure. In order to enhance the economic use of the material
and accelerate the development period of new PRMMCs compositions, it is essential to have an
engineering tool for predicting the strength of materials from their microstructural morpholo-
gies and identifying the reasons contributing to the material strength; and this is the objective
of the present paper.
One common practice for determining the macroscopic behaviors of composite materials is
through numerical homogenization. According to this approach, finite element (FE) models of
the composite structure, the so called representative volume element (RVE), should be built;
then by applying loads on it and deriving the effective terms of its responses, the global be-
haviors of the composite can be obtained. Beyond determining the mechanical behaviors such
as elasticity, numerical homogenization has been used also for determining the strength of the
composite materials. To do this, one viable way is to apply the direct method (DM) to RVE
models and converting the obtained results to the macroscopic strengths. Previously, Weichert
et al. [1] have elucidated in their studies the mathematical formulation of this approach based
on the static theorem, while Chen H. and Pontor [2] proposed a formulation serving the same
aim but based on the kinematic theorem. By applying these methods to composites reinforced
by periodically aligned fibers, the in-plane strength of the material have been successfully cal-
culated. The availability of this technique has been extended in our previous studies to random
heterogeneous materials [3]. For random heterogeneous materials such as PRMMCs, one in-
trinsic difficulty is to represent the material by RVE models. To have a model which smears
out the influence raised by the random size and the distribution of the reinforcement particles, it
requires the size of the model to be exceptionally large and this will cause sever computational
difficulty. One feasible remedy to this problem is, instead of using one RVE, employing many
RVEs which are considered to be statistically equivalent. In the light of this idea, an in-house
code was developed for simplify the modeling of RVE samples by automatically converting
SEM images to adaptively meshed RVE models. Taking advantage of this code, we performed
DM on many samples converted from SEM image of a typical PRMMC material, WC - 20 wt.%
Co, and obtained the statistics of their macroscopic ultimate strengths and endurance limits.
As has been addressed, the interests of studying the strength of PRMMCs is not only confined
to determining the strength; indeed, it is also important to have an insight of factors contribut-
ing to the strength. To expose the relationship between the composite structure and the material
strength, one advisable solution is through statistical learning. Statistical learning is a fast
evolving discipline in recent years. Many algorithms arisen from this field have been success-
fully implemented for solving challenging medical and engineering problems. The problems of
statistical learning can be coarsely categorized to supervised and unsupervised. In supervised
learning, the goal is to predict the value of an outcome measure based on a number of input
measures; in unsupervised learning, there is no outcome measure, and the goal is to describe
the associations among a set of input measures. Depending on if the outputs are qualitative or
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quantitative, problems of the supervised learning can be further subdivided to regression and
classification (or pattern recognition). Although problems belonging to unsupervised learning
prevail in engineering practices, most of the studies dedicated to applying statistical learning
to engineering problems focus on the supervised learning. Some achievements made in this
respect can be seen from monograph [4] and review articles [5, 6, 7]. In the scope of compos-
ite structures and their mechanical behaviors, recently the studies where statistical learning is
employed as the main approach increase in both number and the diversity [8, 9]. Among these
studies, the application of learning models to either experimental or simulated data gradually
becomes a new paradigm for results interpretation and knowledge discovery.
In the present study, beside determining the strength of a PRMMC material, WC - 20 wt.%
Co, one additional objective is to understand how multiple structural factors jointly affect the
overall composite endurance limit. To answer this question, we constructed predictive models
based on both logistic regression and back propagation artificial neural network (ANN). Based
on analyzing results of direct method using these models, the relationship between endurance
limit and selected micromechanical measurements will be discussed.

2 SHAKEDOWN OF RVE MODELS

To study the effective behaviors of heterogeneous materials, the material is reflected in two
scales: the microscopic scale is small enough for the heterogeneities to be identified. The
macroscopic scale is large enough for the heterogeneities to be expelled. The two scales are
well-separated and they are described by two coordinate systems: the global coordinate system
x and local coordinate system y. The following relationship holds

y =
x

ε
. (1)

ε is a small scale parameter which determines the size of the RVE.
For a heterogeneous meterial, once submitted to an external loading, its microscopic stress field
σ in y and its macroscopic counterpartΣ satisfy the relationship

Σ =
1

Ω

∫
Ω

σ(y)dV = 〈σ(y)〉 . (2)

Here 〈·〉 stands for the averaging operator, and Ω indicates the RVE domain. Similarly, the
relationship between strain measures satisfies

E =
1

Ω

∫
Ω

ε(y)dV = 〈ε(y)〉 . (3)

The local strain ε can be decomposed into two parts: The average value E and a fluctuating
part ε∗

ε(u) = E + ε∗ . (4)

When all constituents of a RVE are elastic, the overall behavior of the RVE is elastic as well. In
this circumstance,Σ and E are correlated by an effective elastic tensor C

Σ = C : E. (5)

In case that the heterogeneous material to be considered behaves isotropically in the macro
scale, same to the single phase material, C can be uniquely determined from two elastic con-
stants, such as effective Young’s modulus Ē and effective Poission’s ratio ν̄.
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When the composite material is composed of elasto-plastic constituents, its macroscopic ulti-
mate strength ΣU and endurance limit Σ∞, which correspond to plastic and shakedown limit
in the micro scale, can be studied by incorporating homogenization with direct method. As
formulated by Magoariec et al. [10], when the shakedown state is attained in the micro scale,
stress field pertained to the reference elastic body BE , σe, and the time invariant residual stress
field ρ̄ are required to satisfy following conditions

σe :


∇ · σe = 0 in Ω ,
σe = C : (E + ε∗) in Ω ,
σe · n anti-periodic on ∂Ω ,
u∗ periodic on ∂Ω ,
〈ε〉 = E .

(6)

ρ̄ :

{
∇ · ρ̄ = 0 in Ω ,
ρ̄ · n anti-periodic on ∂Ω .

(7)

Here, Ω indicates the RVE domain, ∂Ω the surface, n the outer normal, and u∗ the fluctuation
part of the displacement corresponds to ε∗.
Although shakedown problem in the RVE scale can be studied by either strain or stress ap-
proach [10], in present study we consider exclusively the stress approach. For stress approach
the load prescribed on RVE is the macroscopic stress Σ. Because the material to be studied
is non-periodic, a small specification is made on conditions (6) and (7), where, instead of en-
forcing the node-wise anti-periodicity of the residual stresses and periodicity of the fluctuating
displacement, we apply the statically uniform boundary conditions (SUBC) on the purely elas-
tic reference RVE. As a consequence, the shakedown problem yields ρ̄ · n = 0 on ∂Ω and one
can easily prove that, in the absence of the body force 〈ρ̄〉 = 0, so ρ̄ does not contribute to the
macroscopic stress.
By discretizing the physical fields in (6) and (7) by means of the FE formulations, the appli-
cation of the static theorem to RVEs composed of elastic perfectly plastic materials leads to
following optimization problem:

minimize
ρ̄,α

− α

subject to
NG∑
i=1

Ci ρ̄i = 0 ,

F (ασeik + ρ̄i)− σ2
Y i ≤ 0

∀i ∈ [1, NG] ; k ∈ [1, NV ] .

(8)

Here, α is referred to as the load factor,C the equilibrium matrix, ρ̄i the stress tensor associated
with the ith Gaussian point, σeik the abbreviation of σei (Pk) which means the σe at Gaussian
point i and load vertex k, σY the yield strength, F the yield function, NG the number of Gaus-
sian points, and NV the number of vertices. Solving (8) yields the load capacity of the RVE,
and depending on if k = 1 or k > 1 the calculated strength corresponds to either plastic limit or
endurance limit. In the present study, the load scenario considered is restricted to non-reversed
uniaxial stress, in this case NV = 2 and σeik = 0 for all k = 2.
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3 CLASSIFICATION MODELS

After solving (8) pertained to each RVE and obtaining Σ∞ = α · Σ, the results are fed
to statistical models for gaining a better interpretation. The statistical models considered in
the present study are classification models. There are many advantages for having classification
models: First, classification models are robust; our observations convinced that these models are
insensitive to RVE size and sample size. Next, classification models have great practical values.
Because material designers often face the problem of comparing between different composite
structures, it is beneficial to have simple and inexpensive models for evaluating strength in an
relative sense. However, it is worthy to note, that the purpose for introducing the predictive
statistical model is not to replace the DM calculation. In fact, the study addresses the use of
predictive model as a mean to understand the data; in other words, the interpretability of the
model is accentuated compared to its predictivity.
We consider two classification models: the logistic regression and the ANN, both of them
determine from a large set of observations (X1, Y1), (X2, Y2), . . . (Xm, Ym) by which Ym are
categorical variables, to which class Yi a new observation Xi would belong to at its highest
probability. Although both logistic regression and ANN serve the same goal, in comparison
the former one is convenient to be explained but lacks sufficient flexibility in prediction, while
the latter one renders excellent prediction but is hard to be interpreted. The algorithms of both
models, as well as the strategies adopted to avoid overfitting, are far beyond the scope of the
present paper. More detailed explanations on these issues can be found in [11].

4 FEATURE SELECTION FOR THE STATISTICAL MODELS

A key factor for having a well performed predictive model is that features X are properly
selected. In the present case, the simplest way to select X is to use RVE images directly as
features. Although this approach prevails in the computer science community, it is not adopted
because such feature is physically less interpretable. On selecting features for the statistical
model, the first set of features adopted are Vol.% WC, Ē, ν̄, as well as peak valued equiva-
lent elastic stress in both phases σeWC,max and σeCo,max. Additionally, as shown in Figure 1, we
noticed from few samples that Σ∞ is related to the distribution of the stress and thus features re-
flecting the distribution characteristics of the stress field should be incorporated into the model.
Because total stress σ = ασe + ρ̄ is unknown before solving the shakedown problem, features
were extracted from the elastic stresses field instead.
The features chosen for representing the distribution characteristics of the stress field is highly
stressed volume fraction (Veff ) defined as

V n%σ
eff =

∑NG
i=1 Vi · H(σi, n%σemax)∑NG

i=1 Vi
. (9)

Here Vi is the volume and σi the equivalent stress at Gaussian point i;H the Heaviside function
defined as

H(σi, n%σemax) =

{
1, σi ≥ n%σemax ,
0, Oherwise . (10)

One can see from (9), that V n
eff sums over volumes whose stress exceeds the threshold value

n%σemax, therefore by adjusting the magnitude of n the stressed volume at each level can be
easily accessed. In the present study, V n%σ

eff was evaluated for each phase separately, where
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Figure 1: Endurance limit and highly stressed volume

σemax in (10) refers to σeWC,max or σeCo,max, and calculation renders V n%σ
Co,eff or V n%σ

WC,eff . The
calculation fixed n to multiple values, where n ∈ {10, 20, . . . , 90} and results were collected
into a vector.
In summary, the features selected for the predictive models can be divided into two categories:

- Category 1 (Homogenized material parameter): WC Vol.%, Ē, ν̄

- Category 2 (Results of elastic simulation): σemax, V n%σ
eff

5 RESULTS AND DISCUSSIONS

The numerical study is based on 500 40 µm- 40 µm- 1µm RVE samples. Each sample
is modeled from an individual artificial morphology generated by a simple random sequential
adsorption (RSA) algorithm as shown in Figure 2. The algorithm is developed in Matlab [12]
on the matrix basis. According to this algorithm, the RVE domain is initialized as a zero ma-
trix and the program continuously projects prism shaped geometry into this matrix. After each
projection, zero elements in the matrix are set to one if they belong to the prism domain and
remain zero otherwise. The value of elements will not be reset if they have already been picked
in previous iterations. Parameters controlling the projection, such as prism size, rotation angle,
and center of the projection, are all random numbers. In order to be consistent with real WC-
Co microstructures, the algorithm adopts a configuration that dWC obeys a normal distribution
with mean value 3µm and standard deviation 0.8µm. The position where each particle locates
is independent from the others and therefore there is no predefined clustering.
The models were built in commercial FE solver ABAQUS [13] and meshed by a uniform mesh
configuration: the element type is fixed to linear wedge elements (C3D6); elements covering
non-critical regions were assigned with a global size of 0.8m; while elements near the phase
boundaries are of a finer density with an edge size of 0.2m. Under this configuration, the
number of elements for each RVE sample varies between 15,000-20,000. In all models, both
constituents are considered as elastic-perfect plastic materials with parameters given in Table 5.
Meanwhile, the study is restricted to small deformation and assumes plastic failure as the only
failure mechanism.
RVEs are prescribed by a global uni-axial stress Σ = 10 MPa for calculating σe. After σe has
been calculated, results were output to MATLAB together with geometrical set up to construct
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Figure 2: Inclusion process with fixed grain size

E [GPa] ν [−] σY [MPa]
WC 700 0.24 2000
Co 210 0.30 683

Table 1: Material properties of both phases

optimization problem. Once these optimization problems were built and solved by an interior
point method based solver Gurobi [14], the solutions were further used for building classifi-
cation models. Two classification models used, namely the logistic regression and the ANN,
were realized in the statistics and machine learning toolbox of the MATLAB. In the logistic
regression model, input data are linear, squared, and interaction terms of aforementioned fea-
tures. In the ANN classifier, model parameters are determined based on evidences gained from
both parametric study and comparison of the cross validation errors between different model
settings. In the end, a single hidden layer model consisted of 20 neurons in the hidden layer has
been chosen as the ANN structure.
The criterion adopted in classification models are Σ∞ where the Z score is defined as

Z =
x− x̄
s

. (11)
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Figure 3: Domain of classes for the classification problems

Here x̄ and s indicate the first and second moment of the sample set, respectively. According to
Z score, the entire span of Σ∞ is sub-divided into 4 or 5 classes as follows

4 Classes


Class 1 : ZΣ∞ < −1.0
Class 2 : −1.0 < ZΣ∞ ≤ 0
Class 3 : 0 < ZΣ∞ ≤ 1.0
Class 4 : ZΣ∞ > 1.0

(12)

5 Classes


Class 1 : ZΣ∞ < −1.5
Class 2 : −1.5 < ZΣ∞ ≤ −0.5
Class 3 : −0.5 < ZΣ∞ ≤ 0.5
Class 4 : 0.5 < ZΣ∞ ≤ 1.5
Class 5 : ZΣ∞ > 1.5

(13)

Herein, the five-classes problem, as schematically presented in Figure 3, is only considered
upon the success of the four-classes problem.
In all predictive models the feature x is normalized as follows before submitted to a learning
algorithm

x′i = 2 · xi −min(x)

max(x)−min(x)
− 1 . (14)

This way, the normalized feature x′i ∈ [−1, 1], and the model will not face the numerical diffi-
culty caused by the poor scaling.
To demonstrate the result of classification, we plot the sample point in the position where it
actually locates with the color corresponding to the predicted class. When decision of a classifi-
cation model is correct, then the color of a sample overlaps with its background color (see Figure
3). The wrong classification means the strength of a sample is either over- or underestimated.
The overestimation of the strength is refereed to as false positive (FP), while underestimation as
false negative (FN). Comparatively, FP is riskier than FN. According to the definition (12-13),
the classes are aligned continuously and thus a certain amount of the classification tolerance
should be allowed. In other words, if a sample lies closely enough to the classification bound-
ary, then the wrong classification of the sample to the adjacent class should not be counted in
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the error metrics. To exclude this particular typed error from the error metrics, we set tolerance
to 1/10 · s and employed modified error rate as the measurement of the classification error.
In the course of building statistical models for classifying Σ∞, we noticed that the highly
stressed volume fraction V n%σ

eff plays a critical role. When the features in Category 2 were
omitted, the results of classification is similar to Figure 4 where the overall error rate is 40.5%.
Also, there is hardly any improvement in performance when model parameters were tuned or
an alternative learning algorithm was used. The result in Figure 4 shows that the model without
features in Category 2 fails to classify a sample into a correct strength class.
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Figure 4: Results of an ANN classification model on Σ∞ without features in Category 2

After the features in Category 2 were introduced back to the model, we observed that even
without σemax, the accuracy of an ANN classifier was significantly boosted to more than 90% in
the sense of modified error rate. Furthermore, by complete the features with σemax, the accuracy
was further increased for around 4% percent and the final result is given in Figure 5. For a
better demonstration of the result, we plot samples that have been mistakenly classified with a
deviation greater than the tolerance in Figure 6. One can intuitively see from this figure that
there are only few errors and all of them are quantitative instead of qualitative. In other words,
the confusion occurs only between two neighboring classes. The pattern of classification errors
can be seen clearer from the confusion matrix in Figure 7 where all non-zero elements are in-
side the diagonally bordered band. Based on the confusion matrix, it is justified to conclude
that the classifier demonstrates an excellent performance and the pattern of the data have been
exploited.
The generality of the ANN classifier has been confirmed through applying it to the test data
obtained in another load direction. According to the confusion matrix given in Figure 8, the
degree of over-fitting is insignificant. Because the classifier demonstrates sound performance in
handling the present classification problem, we established a new ANN in an analogous man-
ner for solving the five-classes classification problem. As expected the performance of the new
classifier is satisfactory (see Figure 9), its overall correct rate is 95.8%, and correct rate of the
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Figure 5: Results of an ANN classification model on Σ∞ with features in Category 2

test set is 93.7%. If we set the classification tolerance to 1/5 s, then these two numbers will
increase to 97.0% and 95.9%, respectively.
Although results in Figure 7 were retrieved from an ANN classifier, the accuracy of the classifier
built by logistic regression is in the same order where the overall correct rate is about 94.1%, and
more than 80 percent of the errors are confusions between two neighboring classes. In addition
to that, the over-fitting problem of the logistic regression classifier is insignificant as well. The
success of the logistic regression classifier confirms that characteristics of the endurance limit
can be well prescribed by linear, interaction, and the squared terms of all considered features.
In summary, the strength class of Σ∞ can be accurately predicted from RVE samples by features
considered. Among them, the features in Category 2 play a particularly significant role and can
fundamentally improve the performance of the classifier.

6 CONCLUSIONS

This paper elaborates how to apply shakedown analysis to predict the strength of random
PRMMC materials and using statistical models to interpret the results. The study reveals that
the endurance limit of the PRMMC material, WC- 20 Wt.% Co, is strongly dependent on the
evenness of the effective stress in the binder, and an increased highly stressed volume fraction
will lead to a greater endurance limit. The study confirms the benefit of incorporating direct
method and statistical learning for studying the strength of random heterogeneous materials.
Lastly, one should notice that the failure mechanism considered in the present study is restricted
to the plastic failure, more complex failure scenarios, such as plastic damage of the binder
phase of the brittle fracture of the reinforcement particles, are not considered and should be
investigated in the future.
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Figure 6: Errors of an ANN classification model on Σ∞ with features in Category 2
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Figure 7: Confusion matrix of an ANN classier on Σ∞ with features in Category 2
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Figure 9: Results of an ANN classification model on Σ∞ with features in Category 2 (5 classes)
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Abstract. In this paper we propose a stochastic programming to analyze limit and shakedown of 

plate bending under uncertainty conditions of strength. The Kirchhoff plate theory is used to formulate 

chance constrained problems. Based on the duality theory, the shakedown load multiplier formulated 

by the kinematic theorem is proved actually to be the dual form of the shakedown load multiplier for-

mulated by static theorem. In this investigation a dual chance constrained programming algorithm is 

developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit 

and the shakedown limit.  
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1 INTRODUCTION 

An essential concern in mechanical and civil engineering design is to determine the ulti-

mate load bearing capacity of structures beyond the elastic limit. Structures are considered 

safe if a state is reached after initial plastic deformation, such that the system does neither fail 

due to instantaneous or incremental collapse nor due to alternating plasticity. Using the classi-

cal step-by-step methods for such calculations can be cumbersome and computationally ex-

pensive in many cases. Furthermore, the disadvantage of these methods is that the exact 

knowledge of the loading history is necessary, which is not realistic in many technical appli-

cations. Limit and shakedown analysis are appropriate direct methods to avoid these problems. 

Reliability analysis of the structures takes the uncertainty of the actual load-carrying capacity 

of the structure into consideration since all resistance and loading variables are random in na-

ture [1, 9, 10, 20].  

Chance constrained programing is an approach of stochastic programming to limit and 

shakedown analysis under uncertainty [1, 2]. Under uncertainty the shakedown problem can 

be stated with random objective function or with random constraints. A probability is set with 

which the constraint has to be satisfied. Deterministic limit analysis of plates subjected to 

bending has been studied analytically and numerically. Both the Kirchhoff plate and the 

Mindlin plate models are considered based on the kinematic theorem of limit analysis and the 

finite element method. Based on the duality theory, Tran [3] developed a dual algorithm to 

calculate simultaneously both the upper and lower bounds of the plastic collapse limit and 

shakedown load of plates. In this study, we present a new primal-dual numerical algorithm of 

the shakedown problem under uncertainty in which the material strength is considered as a 

normally distributed random variable. Using chance constrained programming, we obtain de-

terministic equivalent formulations based on upper bound and lower bound theorems and then 

prove that formulations are actually dual to each other. The four-node discrete Kirchhoff 

quadrilateral (DKQ) element is used to analyze the problem. The proposed algorithm shows 

good performance in numerical test examples. 

2 SHAKEDOWN ANALYSIS OF PLATE BENDING 

2.1 Basic relations  

Similar to the elastic theory, the inelastic behavior of thin plates may be analyzed under 

Kirchhoff’s assumption that the normal to the middle plane of the plate remains straight and 

normal to the deformed middle plane. This assumption yields ,
w w

u z v z
x y

 
   

 
, in which 

,x y  are the coordinates in the middle plane of the plate, z  is the distance from the middle 

plane, w  is the deflection, u  and v  are the displacements in the x  and y  directions respec-

tively. By differentiation, the strains are obtained as  

                                      

2

2

2

2

2

2

xx x

yy y

xy xy

wu
z

xx

v w
z z

y y

v u w
z

x y x y

 

 

 

   
  

      
       

          
        

        
    

       

                              (1) 
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The vector 
T

x y xy     χ  is called the vector of curvatures. 

The kinematic relations can be written as follows: 

                                                       2w χ                                                                   (2) 

where χ  is the curvature rate vector and w  is the transversal velocity. 

In this paper, the von Mises yield criterion is considered. Expressing in terms of moments, the 

criterion takes the form  
1/2

2 2 2

0( , , ) 3 0x y xy x x y y xyf m m m m m m m m m      .  

In matrix form the von Mises yield criterion can be written as follows: 

                                          T

0( ) 0f m  m m Pm                                                         (3) 

where 
T

, ,x y xym m m   m  is the vector of bending and twisting moments, 
2

0 / 4ym t  is the 

plastic limit moment per unit length of a plate section, t  is the thickness of the plate, 
y  is the 

yield stress of the material, and 

                                                    

2 1 0
1

1 2 0
2

0 0 6

 
 

 
 
  

P  .                                                          (4) 

 

2.2 Static formulation  

Consider a convex polyhedral load domain  and a special loading path consisting of all 

load vertices ˆ ( 1,..., )kP k m  . Let a point on the problem domain A  (the midplane) be 

identified by a vector variable x  and the fictitious elastic moment vector be E
m . The static 

shakedown theorem states that shakedown occurs if, and only if, there exists a time-

independent self-equilibrium residual moment field ρ  which is statically admisible so that the 

actual moment field E m m ρ  does not anywhere violate the yield condition at any point 

of the structure and for all posible load combinations. Based on this theorem, we can find a 

statically admisible residual moment field in order to obtain a maximum load domain   

that guarantees (3). Therefore, the shakedown load factor    can be obtained by solving the 

following optimization problem: 

                                  2

E

0

max

( ) 0 in
. . :

( )

A
s t

f m

 



 

 


 

ρ x

m ρ

                                                     (5) 

By discretizing the entire problem domain into finite elements and applying the Gauss-

Legendre integration technique, Eqs (5) can be rewritten in the following form: 
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1

0

max

0 in
s.t.:

( ) 1, , 1,

NG
T

i i i

i

E

ik i

w A

f m i NG k m

 













      

 B ρ

m ρ

                                              (6) 

in which iB  is the deformation matrix, iw is integration weight at Gauss point i ; NG  denotes 

the total number of Gauss points of the structure, and m  is the number of load vetices.. 

 

2.3 Kinematic formulation  

An upper bound to the shakedown limit of plate can be obtained using the kinematic 

shakedown theorem which has the following two statements: 

(a) Shakedown will occur for a structure subject to repeated or cyclic loads, if the plastic dis-

sipation power exceeds the work rate of external forces for any admissible plastic strain-

rate cycles and all loading paths 

(b) Shakedown cannot occur, if the plastic dissipation power is less than the work rate of ex-

ternal forces for any one admissible plastic strain-rate cycle or any one loading path. 

We introduce here an admissible cycle of plastic curvature field pχ . At each load vertex, the 

plastic curvature rate may not necessarily be compatible at each instant during the time cycle, 

but the plastic curvature accumulation over the cycle is required to be kinematically 

compatible such that 

                        2

1

m
p p

k

k

w


   χ χ .                                                                (7) 

Based on the above statements and the mathematical programming theory, an upper bound of 

the shakedown load factor can be found by solving the following convex nonlinear program-

ming (the superscript p  is neglected for simplicity): 

                                                      

int

1

2

1

1

min ( )

in

s.t.: 0

ˆ( , ) 1

m

k

k A

m

k

k

m
E T

k k

k A

D dA

w A

w on A

x P dA

 










  


 

 








χ

χ χ

m χ

                        (8) 

where int ( )D χ  is the plastic dissipation power per unit area. According to the von Mises yield 

condition, the plastic dissipation can be expressed in term of the curvature rates of the middle 

surface: int 0( ) T

k kD mχ χ Qχ  

with  
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1

4 2 0
1

2 4 0
3

0 0 1



 
 

 
 
  

Q P                                          (9) 

We denote the nodal variables of the finite element by  
T

/ /w w x w y    q , the discre-

tized formulation by FEM is as follows: 
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1 1

1

1 1

min
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i iikk ik
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χ Qχ

χ B q

χ m

                                    (10) 

3 STOCHASTIC SHAKEDOWN ANALYSIS OF PLATE BENDING BY CHANCE 

CONSTRAINED PROGRAMMING 

3.1 Static Approach to chance constrained programming 

Consider the situation that the strength of material is not given, fixed quantity, but must be 

modelled ( )R R   through random variables on a certain probability space. Hence, the 

shakedown problem (6),(10), respectively, under stochastic uncertainty must be reformulated 

by appropriate deterministic problems which are provided by adopting stochastic optimization 

techniques. A technique used effectively called chance constrained programming is presented 

here. 

For stochastic plastic moment ( )i m  depending on some random  , a stochastic formulation 

can be obtained by assuming that the inequality constraints of (6) are satisfied at least by a 

chance  0.5 ; 1   (or reliability level) at Gauss point i . 

1

0

max

0 in
s.t.:

Prob ( ) ( ) 0 1, , 1,

NG
T

i i i

i

E

ik i i

w A

f m i NG k m

 

  











          

 B ρ

m ρ

                 (11) 

Based on the methodology of chance constrained programming, the stochastic program (11) is 

to be relaxed into an equivalent deterministic optimization problem: 

1

max

0 in
s.t.:

( ) 1, , 1,

NG
T

i i i

i

E

ik i i i i

w A

f i NG k m

 

   











       

 B ρ

m ρ

                                   (12) 
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where ,i i  , 1( )i i    is the mean value, standard deviation and the inverse of the cumu-

lative distribution function of plastic moment at Gauss point i , respectively.  

3.2  Kinematic approach to chance constrained programming 

As mentioned above the deterministic formulation to calculate an upper bound shakedown 

load factor:  

        

0

1 1

1

1 1

min

1,

s.t.:

1

m NG
T

i ik ik

k i
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ik i

k

m NG
T E

i iikk ik

k i

w m
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w

 

 



 




  



 








χ Qχ

χ B q

χ m

                                                                               (13) 

If the yield stress of material is random, then the plastic moment is uncertainty quantity and 

the objective function of (13) is a stochastic variable. Firstly, we must properly define the 

minimum of a random function. This can be done in such a way that one looks for a minimum 

lower bound   objective function under the constraint that the probability of violation of that 

bound is prescribed [4].  

T

0

1 1

1

T

1 1

min

Prob ( )

s.t.: 1,

1

m NG

i ik ik

k i

m

ik i
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i ik ik

k i

w m

i NG

w



  
 



 

  
   

 


  












χ Qχ

χ B q

χ m

                                                               (14) 

The chance constrained program technique also can convert the stochastic program (14) into 

an equivalent deterministic program as follows: 

                

  T

1 1

1
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1 1

min
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χ m

                                                       (15) 

 

4 DUALITY APPROACH TO CHANCE CONSTRAINED PROGRAMMING  

4.1 Dual theorem for chance constrained programming 

Some new notations is intruduced for the sake of simplicity: 
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1/2

ik i ikwk Q χ ,  1/ 2
T

E

ik ik

t Q m ,     
1/ 2ˆ

i i iwB Q B                                     (16) 

where 

 1/ 2 1/ 2 1/ 2 1/ 2,   
T

  Q Q I Q Q Q                                                                            (17) 

By substituting (16) into (15) one obtains a simplified version for upper bound of shakedown 

limit load (primal problem) 

1 1

1

1 1

min ( )

ˆ 1, (a)

s.t. :

1 0 (b)

m NG
T

i i i ik ik

k i

m

ik i

k

NG m
T

ik ik

i k

i NG

   

 



 

 


   



  








k k

k B q 0

k t

                             (18) 

It is seen that in the case of limit analysis there exists a dual form for (18), see, e.g. Heitzer 

and Staat [16] , Andersen et al. [17]. Vu et al. [18], [19] generalized this theory for the case of 

shakedown analysis. An extension of their theory to shakedown analysis of plate is 

investigated in this work through the following theorem: 

Theorem. If there exists a finite solution 
  for the upper bound shakedown limit load 

multiplier (20) then the static formulation (12) is exactly the dual problem of the kinematic 

one (20) such that 

 

 
1

,
1 1

0

min ( ) max
NG

ik T
i i i

i
E
ik i

m NG
T

i i i ik ik

k i w

f

m



    



 


  


  

   




h k q 0
B ρ 0

m ρ

k k                                                 (19) 

4.2 Primal-dual shakedown algorithm  

A difficult happening when dealing with the non-linear constrained optimization problem 

(20) is that the objective function is not everywhere differentiable. In order to allow a direct 

non-linear, smooth optimization problem, a ‘smooth regularization method’ should be used 

for overcoming this barrier. For this purpose, a very small positive number, 2

0  will be added 

to int ( )kD χ . An efficient technique for large-scale optimization problems, which are success-

fully applied in [13] is used. Using penalty method to eliminate the first constraint in (18) lead 

to a penalty function 

 2

0

1 1 1 1

ˆ ˆ( )
2

T
NG M m m

T

i i i ik ik ik i ik i

i k k k

c
P m   

   

     
         

     
   k k k B q k B q                   (20) 

where c  is a penalty parameter such that 1c . The corresponding Lagrangian of (20) is 

                             
1 1

1
NG m

T

ik ik

i k

L P 
 

 
   

 
k t                                                                   (21) 
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We denote  

                            
1

ˆ
m

i ik i

k

c


 
   

 
β k B q                                                                           (22) 

By employing Newton method to solve the KKT conditions of the Lagrangian in (39) and 

after some manipulations, one gets the following system: 

                1 2( d )d      K q Kq f f                                                                      (23)  

in which 
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1 1
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                                                           (24) 

Solving the system (23), we have the incremental vectors of nodal variables q , curvature rate 

ikk  and iβ  as follows : 

 

 

 

1 2
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1 2
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d d d d
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d d d d
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                                                                                (25) 

and 
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1 1

1
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ik ik
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d

d

d

   

 

  
 

 




t k k

t k

                                                          (26) 

The vectors d ,d ,dik iq k β  and d  are actually Newton directions which assure that a suita-

ble step along them will lead to a decrease of the objective function of the primal problem (18)

and to an increase of the objective function of the objective function of the dual problem (12). 

Based on(25), (26) we can update the vectors of , , ik iq k β  and  . 

5 NUMERICAL EXAMPLES 

In this section, the numerical solution of some problems is presented to test the 

performance of the dual shakedown algorithm. Plates subjected to uniform or concentrated 

loads are considered. The 4-node DKQ plate element is applied for structural discretization. 

For all examples the following was assumed: length 10L m , plate thickness 0.1mt  , the 
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mean value of yield stress E( ) 250MPay   and the standard deviation 0.1E( )y  . A 

reliability level 0.9999   is chosen. 

y

x

q

L/2 L/2

L/2

L/2

t

x

z

q

 

 

 

 

                      Figure 1. Square plate and L-shape plate loaded by a uniform pressure 

5.1  Limit analysis of square plate subjected to uniform load 

Firstly, we consider a square plate subjected to uniform pressure q  as shown on Figure 1. In 

this analysis, the plate is modelled by 256 DKQ elements due to symmetry. Table 1 shows the 

comparison of the present numerical results for both cases, simply supported and clamped 

plates.  

Authors Upper/Lower bound (deterministic) 
Upper/Lower bound  

(random strength) 

 Spl. supported Clamped Spl. supported Clamped 

Hodge et al. [14] 26.54/24.86 49.25/42.86 –/– –/– 

Lubliner [17] 27.71/23.81 52.01/– –/– –/– 

Capsoni et al. [15] 25.02/– 45.29/– –/– –/– 

Le et al. [16] 25.01/– 45.29/– –/– –/– 

Present 25.04/25.04 45.06/45.06 15.72/15.72 28.36/28.36 

Table 1. Limit load factor of square plates in comparison with other solutions 
0

2

m

qL

 
 
 

. 

q 

L/2 L/2 

L/2 

L/2 
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Figure 2. Clamped square plate: Convergence of limit load factors. 
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Figure 3. Dependence of load factors on the coefficient of variation 
E


 
 

 
 

. 

5.2      L-shaped plate subjected to uniform load. 

In the second example, we investigate an L-shape plate subjected to uniform pressure q  

(Figure 1) which can be constant or vary within a range max[0 ]q q . In this analysis, the plate 

is modelled by 768 DKQ elements. Figure 4 and figure 5 show the convergence of the upper 

bound and lower bounds for the simply supported case. 
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Figure 4: L-shape Plate: Convergence of limit load factors. 
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Figure 5: L-shape Plate: Convergence of shakedown load factors 

Authors 
Upper/Lower bound 

(deterministic) 

Upper/Lower bound  

(random strength) 

 Limit Shakedown Limit Shakedown 

Le et al. [16] 6.289/– –/– –/– –/– 

Present 6.19/5.85 4.28/4.28 3.89/3.67 2.69/2.69 

Table 2. Limit load factor of plate in comparison with other solutions 
0

2

m

qL
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6 CONCLUSIONS  

 Direct structural reliability design can be achieved by chance constraint programming. 

 In the general case chance constraint programming is a hard problem because proba-

bilities have to be calculated as high dimensional integrals during in the optimization 

algorithm. 

 For normally distributed stochastic variables deterministic equivalents can be formu-

lated (for linear programming). 

 Extension to nonlinear programming is on its way. 

For engineering design: 

 Structural reliability is post design 

 Stochastic programming is (pre) design 

 The load factor decreases “quickly” with increasing coefficient of variation of the 

strength. 

 High structural reliability can be achieved with moderate reduction of the load factor 
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Abstract. High strength steel sheets, widely used in industrial applications, exhibit a signifi-
cant anisotropy of plastic response between their rolling and transverse direction. Hills yield
criterion is the most popular in sheet metal forming FE simulations, because its parameters are
easily determined. In the literature, several other criteria are proposed that can better describe
the anisotropic behavior of specific materials. In limit analysis the material elastic properties
are irrelevant. A formulation, based on the static theorem, requires only the equations of equi-
librium and a respective yield criterion to describe the safety margins of a structure. Limit
analysis implements standard FEM data into mathematical optimization packages to yield the
respective safety factor. Depending on the yield criterion type, a large scale nonlinear math-
ematical programming problem must be solved. Quadratic yield criteria, like Hill, lead to
Second Order Cone Programming problems. Non-quadratic yield criteria, on the other hand,
lead to problems that can be treated only by general non-linear mathematical programming
algorithms. In the present study, a polynomial criterion proposed by Yoshida et al. is used to
construct the limit load locus of high strength steel structures. Results are compared to the von
Mises and Hill criteria.
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1 INTRODUCTION

High strength steel sheets due to their crystallographic structure, chemical properties and
forming process exhibit a significant anisotropy in their mechanical properties between rolling
and transverse direction. Defining the safety margins of structures using such materials is cru-
cial for their design.

Limit analysis allows the direct determination of the load bearing capacity of structures sub-
jected to monotonically increasing loads, requiring only limited input data [1-5]. Standard FEM
data is appropriately combined with optimization techniques to yield the respective safety fac-
tor. For common engineering structures usually a large scale mathematical programming prob-
lem has to be solved. Depending on the selected yield criterion a linear quadratic or general
nonlinear optimization problem arises.

Within the framework of the direct methods of plasticity, anisotropic materials have been
studied using the kinematic theorem [1] (upper bound approach). For example, general anisotropic
structure limit analysis is presented in [6, 7], while in [8] limit analysis of orthotropic compos-
ite laminates is studied using the linear matching method. In [9] yield stresses for the different
directions are incorporated in a single ellipsoidal yield surface used in 2D and 3D problems.

In the present work, limit analysis of anisotropic structures based on the static theorem is
considered. More precisely, we use as basis the mathematical dual of an upper bound problem.
To this goal, several yield criteria from the literature are compared. Together with the popu-
lar quadratic criteria von Mises [10] and Hill [11], a highly flexible ”user-friendly” nonlinear
criterion proposed by Yoshida [12] is used.

The plan of this paper is as follows. First limit analysis is presented as a nonlinear program-
ming problem. Then, the yield criteria used are discussed. Finally, the paper closes with a
numerical example and some concluding remarks.

2 LIMIT ANALYSIS AS A NONLINEAR PROGRAMMING PROBLEM

Let us consider a structure Ω made of an anisotropic elastic-plastic material. Let Ω be dis-
cretized using NE finite elements with NU free degrees of freedom and NG numerical inte-
gration points (Gauss points) for the whole structure. Limit analysis using the static theorem
leads to the following non linear programming problem:

PLA max a (1)
s.t. : Hj sj = a φ(ext)

sj ∈ Fj, for j = 1, . . . , NG

Unknowns are the total elastoplastic stresses sj and the load multiplier (safety factor) a.
φ(ext) is a vector of size NU that contains all the nodal loads applied to the structure. Hj is the
equilibrium matrix depending on the discretization and the boundary conditions. Fj is the local
yield criterion that has to be satisfied at every stress checking point. Depending on the type of
Fj a different optimization problem has to be solved. Quadratic yield criteria lead to second
order cone programming problems, for which several very efficient optimization packages exits
(i.e. MOSEK [13]). Non-linear, non-quadratic yield criteria lead to problems that can be treated
only by general non-linear mathematical programming algorithms as IPOPT [14].

The safety factor depends only on the yield criterion, discretization and boundary conditions.
Elastic properties (i.e. Young’s modulus or elastic stresses) do not affect the solution of the limit
analysis problem PLA. Obviously, anisotropy is taken into account only through appropriate
yield criteria.

3021



Konstantinos D. Nikolaou and Christos D. Bisbos

3 ANISOTROPIC YIELD CRITERIA

Yield criteria are central to the limit analysis problem. In this section the different criteria
used will be shortly described for the plane stress case. The von Mises criterion [10] reads:

σ2
11 + σ2

22 − σ11 σ22 + 3 σ2
12 ≤ σ2

y (2)

σy is the uniaxial tensile yield stress. Hill proposed a number of criteria for the anisotropic
behavior of metals. Hill-48 [11] criterion is the generalization of von Mises and one of the most
popular in elastoplastic analyses of anisotropic structures. For plane stress case:

A1 σ11
2 − A2 σ11 σ22 + A3 σ22

2 + 3 A4 σ12
2 = 1 (3)

where A1,...,4 are the anisotropic parameters. They can be determined using experimental
results like r−values r0, r45 and r90 for the three tension axis directions from rolling direction
of a sheet, as follows:

A1 = 1, A2 =
2r0

1 + r0
, A3 =

r0(1 + r90)

r90(1 + r0)
, A4 =

(r0 + r90)(1 + 2r45)

3r90(1 + r0)
(4)

Hill criterion is always convex, quadratic and can be written as euclidean length constraint.
Another interesting criterion is the ”user-friendly” one, for high strength steels proposed by
Yoshida et al [12]. This criterion is a sixth-order-polynomial with a high flexibility of describing
anisotropic behavior of steel sheets using 16 coefficients. It is always convex and in good
agreement with experimental results. For plane stress it reads:

C1σ
6
xx − 3C2σ

5
xxσyy + 6C3σ

4
xxσ

2
yy − 7C4σ

3
xxσ

3
yy + 6C5σ

2
xxσ

4
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5
yy (5)

+C7σ
6
yy + 9

(
C8σ

4
xx − 2C9σ

3
xxσyy + 3C10σ

2
xxσ

2
yy − 2C11σxxσ

3
yy + C12σ

4
yy

)
σ2
xy

+27
(
C13σ

2
xx − C14σxxσyy + C15σ

2
yy

)
σ4
xy + 27C16σ

6
xy = σ6

y

Parameters C1,...,16 are given as functions of some anisotropic coefficients described in detail
in the Appendix of reference [12]. If the anisotropy parameters for Hill or Yoshida criterion are
set equal to ones, the criteria become equivalent to von Mises.

4 NUMERICAL EXAMPLE

The numerical example concerns the construction of the limit analysis locus for a square plate
with a central hole with d/L = 0.20 (Fig. 1) subjected to loads P1 and P2. This example has
been widely studied in the literature [1-4]. 880 CST elements were used to model the structure;
due to symmetry only one quarter of the plate was examined. Material is high strength steel
HSS590 with yield stress equal to 590MPa. X is considered as the rolling direction.

Three yield criteria are used, namely von Mises, Hill and the one proposed by Yoshida in
their original nonlinear form. Geometrical nonlinearities and damage were not considered in
the present work. Open source optimization package IPOPT [14] was used to solve the arising
nonlinear programming problems.

To construct the locus a series of limit analysis problems have to be solved. Let us consider
the two basic load cases P1 and P2. Parameter θ ∈ [0o, 90o] is used to variate the load pattern.
For θ = 0o only P1 load is applied, while for θ = 90o only P2 is applied.

Vθ = {P : P = P1 cos(θ) + P2 sin(θ), P1 = P2 = 100MPa} (6)
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X

Y

Figure 1: Square plate with central hole and FEM model.

For the von Mises yield criterion the only required parameter is the tensile yield stress. While
for the Hill yield criterion anisotropy parameters A1,...,4 have to be defined.

For our case:
r0 = 0.43, r45 = 1.41, r90 = 0.61

A1 = 1.0000, A2 = 0.6014, A3 = 0.7936, A4 = 1.5181

For the Yoshida yield criterion the 16 anisotropy parameters as described in [12] forHSS590,
are presented in Table 1.

C1 C2 C3 C4 C5 C6 C7 C8

1.0000 0.6014 0.4841 0.3982 0.4375 0.5752 0.7591 1.0350
C9 C10 C11 C12 C13 C14 C15 C16

0.6789 0.6664 0.7540 0.9423 1.1601 1.0615 1.2470 1.7732

Table 1: Yoshida yield criterion anisotropy parameters.

Figure 2 depicts the three different loci constructed for the three yield criteria. Values on the
figure are normalized using the uniaxial tensile yield stress. Significant differences of the safety
factor (not always conservative) exist. Table 2 includes some of the limit analysis results for
different values of parameter θ. Fourth and sixth column depict the difference compared to the
results obtained using von Mises yield criterion.

Angle θ von Mises Hill Diff. (%) Yoshida Diff. (%)
0o 0.813 0.808 -0.54 0.810 -0.33
15o 0.917 0.874 -4.67 0.881 -3.87
30o 1.062 0.982 -7.57 1.005 -5.40
45o 1.272 1.145 -9.99 1.222 -3.92
60o 1.062 1.097 +3.26 1.094 +3.03
75o 0.917 0.986 +7.57 0.942 +2.81
90o 0.813 0.906 +11.61 0.849 +4.53

Table 2: Limit analysis results for different θ.
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Figure 2: Limit analysis locus.

5 CONCLUSIONS

In the present work limit analysis is applied to high strength steel structures, exhibiting strong
plastic anisotropy. Limit analysis requires only the equations of equilibrium and a respective
yield criterion to describe the safety margins of a structure, since the material elastic properties
are irrelevant to the collapse load analysis. So, in limit analysis anisotropy is described using
only an adequate non-linear yield criterion like for example the popular Hill criterion, a general-
ization of von Mises, with parameters that are easily determined. Moreover, a polynomial yield
criterion, with high flexibility of describing the anisotropic behaviour proposed by Yoshida et al
was also used to illustrate the differences in the elastoplastic behaviour of high strength steels.
Significant variations of the safety factor were observed for the numerical example studied,
depending on the yield criterion used.
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Abstract. The method of Dissipative Particle Dynamics is applied to investigate the effect of 
the parameters employed to model the presence of periodic rectangular wall roughness on 
planar nanochannel flow. The parameters considered here include the fluid/wall interactions, 
the range of interaction of fluid particles and wall particles (cut-off radius), the external 
applied force and the coarse-graining parameter (number of atoms per DPD particle). 
Protrusions of upper wall are modeled by periodically spaced rectangular protruding 
elements. The dependence of flow pattern on protrusion length and the amplitude of these 
parameters is investigated. The computed macroscopic quantities of practical interest include 
density, velocity, and pressure fields. Fluid particle localization near the solid wall is affected 
by the conservative force and the cut-off radius. Fluid velocity reduces as the protrusion 
length decreases for constant parameters and reduces as both the conservative force and the 
cutoff radius increases. The pressure is uniform across most of the channel and their pattern 
near and inside the cavities depend on the protrusion shape, the conservative force and cut-
off radius. For the coarse graining parameter, the density and pressure remain almost 
constant in the core of the channel and their pattern near and inside the cavities depends on 
the protrusion shape. 

3026



Kasiteropoulou Dorothea, Karakasidis Theodoros and Liakopoulos Antonios 
 

 

1 INTRODUCTION 
An adequate description of fluid flow over a solid boundary with surface roughness on 

multiple length scales often requires resolution of fine microscopic details on the flow 
structure while retaining peculiarities of a macroscopic picture [1]. Starting from the 
molecular/particle description, which is employed to model a small part of the computational 
domain where the continuum models fail to capture the physics of the system, there are many 
reports on wall structure, wall wettabillity and stiffness, the fluid-wall interface and also the 
combination of these parameters. For example, Davies  et al. [2] investigated the laminar flow 
in a microchannel with superhydrophobic walls exhibiting transverse ribs and found that 
reductions in the friction factor and enhancements in the fluid slip are greater as the cavity-to-
rib length ratio is increased (increasing shear-free fraction) and as the channel hydraulic 
diameter is decreased. Niavarani and Priezjev [3], investigated the combined effect of surface 
roughness and shear rate on slip flow of simple fluids by molecular dynamics simulation and 
found that in the region where the curved boundary faces the mainstream flow, the local slip 
is suppressed due to the increase in pressure. Kamali and Kharazmi [4] studied the surface 
roughness effects on the fluid flow in a nanochannel of simple fluids in hydrophobic and 
hydrophilic walls by molecular dynamic simulation. The simulation results show that the 
roughness and protrusions of the same dimensions induce different local density pattern while 
the overall average might be the same. Asproulis and Drikakis [5] investigated the effects of 
surface roughness on the flow behavior inside micro and nanofluidic devices. They found that 
as the surface attraction energy or the roughness height increase, the density layering near the 
wall is enhanced by higher values or secondary layering phenomena. Kasiteropoulou et al. [6] 
discussed the relation of friction factor, f, with the flow Reynolds number in a dissipative 
particle dynamics study of flow in periodically grooved nanochannels and found that the 
computed value for friction factor increases as the length decreases for the same Reynolds 
number. Sun et al. [7] investigated the effects of surface wettability and topology in the multi-
scale liquid flow in micro/nanochannels.  

Analysis on the flow friction shows that the pressure gradient decreases in a power law 
with increasing channel height. The confinement on the liquid molecules will equivalently 
narrow the channel, where larger pressure gradient is needed to keep the flow conditions from 
changing. The larger the roughness is, the more obvious the influence will be. When the 
channel height becomes larger, both velocity slip and relative slip length will gradually 
converge to 0, which means that different flow boundaries will be unified to be non-slip at 
conventional spatial scale. Priezjev [8] reported the results obtained from Molecular Dynamic 
simulations of the friction at an interface between polymer melts and weakly attractive 
crystalline surfaces. He found that the friction coefficient at small slip velocities exhibits a 
distinct maximum which appears due to shear – induced alignment of semiflexible chain 
segments in contact with solid walls and at large slip velocities, the friction coefficient is 
independent of the chain stiffness.  Later, Chen et al. [9] estimated the velocity slip on curved 
surfaces in a Couette flow studied by molecular dynamics simulation.  They found that the 
slip length as conventionally measured at a flat wall in Couette flow is the same as that for all 
other cases with curved and rotating boundaries, provided the atomic interactions are the same 
and boundary shape is properly taken into account. Priezjev [10] investigated the effect of 
interfacial slip on steady-state and time-periodic flows of monatomic liquids by using non-
equilibrium molecular dynamics simulations.  They found that the velocity profiles in 
oscillatory flows are well described by the Stokes flow solution with the slip length that 
depends on the local shear rate. For both types of flows, the friction coefficient at the liquid–
solid interface correlates well with the structure of the first fluid layer near the solid wall. 
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Sofos et al. [11] studied the wetability and stiffness on diffusion in grooved nanochannel and 
observed a significant anisotropy along the directions parallel and normal to the flow inside 
the grooves. 

On the other hand, at macroscale description slip or wettabillity parameters are not usually 
performed in numerical simulations whereas the surface construction, such as the protruding 
elements mentioned above, seem to concern the scientific community for many years. We 
report here some examples of these investigations. Sahan et al. [12] investigated the two-
dimensional isothermal flow in a periodically grooved channel. They presented low-order 
models successfully which describe the dynamical characteristics of the flow for Re close to 
the design conditions. They found that far from the design conditions, the reduced models 
predict quasi-periodic or period-doubling routes to chaos as Re is increased [13]. Greiner et 
al.  [14] investigated the three-dimensional flow in a channel with symmetric, transverse 
grooves on two opposite walls by using the spectral element technique. They observed the 
transition from steady two- dimensional flow in the three-dimensional mixing through two 
and three dimensional wave structures as the Reynolds number was increased. Chung et al.  
[15] studied the unsteady laminar flow in grooved channel and also in a sharp 180o bend for 
low Reynolds number. This model is used in the cooling of high performance modern 
electronic systems [16].   Adachi & Hasegawa [17] investigated the flow influence of the 
number of grooves in which the flow repeats periodically.  Above these, flows around and 
inside grooves at the larger dimensions can also present some other interesting dynamic flow 
phenomena. In particular, when the flow increases its speed can experience shock waves and 
shock/vortex interactions. Large eddy simulations can be used for understanding such 
phenomena [18, 19] and can also be combined with MD [20, 21] to shed light on scale-up 
effects. 

In the present work we study the flow in a nanochannel of height 4.72nm and seek further 
insight on the effects of wall protrusions and parameters inserted on the system on the flow 
rate based on mesoscopic Dissipative Particle Dynamics simulations. Protrusions are 
introduced by periodically placing rectangular protruding elements on one of the two channel 
walls. Pressure, density and velocity profiles are calculated for different protrusion lengths. 
Protrusion size, fluid-wall interaction, cut-off radius and coarse-graining parameter plays an 
important role on flow properties such as density, velocity and pressure distributions.  

We remind here the reader that in the nanochannel cases the coarse graining parameter is 
equal to 1 (an atom per DPD particle) while in the microchannel cases is 2.5x106. The 
corresponding heights are set equal to 4.72 nm for the nanochannel and 1.1μm for the 
microchannel.  

This paper is set up as follows. Section 2, gives a description of the system and the 
simulation method. In Section 3 the results are shown and analyzed, whereas section 4 
contains concluding remarks.   

2 SIMULATION METHOD  

2.1 Channel Geometry   

We study pressure-driven (or body-force driven) flow between two parallel walls. The lower 
wall is flat whereas the upper wall consists of protrusions modeled by rectangular elements 
(see Fig. 1). We considered protrusions of three length values and one height at the upper wall:  
lr1=0.5ltot, lr2=0.25ltot, lr3=0.125ltot or lr3=0.167ltot for the microchannel case (protrusion 

length) and h=0.10H or h=0.125 h  (protrusion height), where lri and  h represent the length 
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and the height  of the rectangular grooves on the upper wall and ltot, H represent the length of 
the computational domain along the x-direction and it’s height in the y-direction respectively 

and h  represents the distance between the solid walls. Therefore case lr1=0.5ltot corresponds 
to a computational domain with one rectangular groove, lr2 = 0.25ltot corresponds to two 
rectangular grooves, and lr3 = 0.125ltot/ lr3=0.167ltot corresponds to three/four rectangular 
grooves. Baseline dimensions of all computational domains in x-, y- and z-directions are 
3.77nm x 4.72nm x 3.77nm for the nano- and Lx x Ly x Lz  = 1.11 μm x 1.3μm x 1.1 μm  for 
the microchannel (in DPD units the dimensions are Lx x Ly x Lz  = 11.09 rc x 13.87 rc x 
11.09 rc and 11.14 rc 13.00 rc x 11.14 rc respectively). Conversion from DPD units to physical 
units is discussed in detail in Kumar et al. [32].  

 
Fig. 1. Schematics of computational domains (adapted from Kasiteropoulou et al. [35]). 

 

2.2 Mathematical Model and Computational details  

2.2.1. Dissipative Particle Dynamics  
The DPD system consists of N particles. For the i-th particle we denote mass im , position ir  
and velocity iυ , i=1,2,…N. For a single-component DPD liquid the forces exerted on a 
particle i  due to particle j  consists of three terms: 1) the conservative force C

ijF , 2) the 
dissipative force D

ijF  and 3) a random force R
ijF ,  given by, 
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where jiij rrr −= , ijijr r= , 
ij

ij
ij r

r
r =) , jiij υυυ −=  [22] and ijα  is the maximum repulsion 

between particles i and j [23]. The coefficients γ  and σ  determine the amplitude of the 
dissipative and random forces, respectively, while Dω  and Rω  are appropriate weight 
functions [24]. The weight functions Dω  and Rω provide the range of interaction for the 
dissipative and random forces [25]. In Eq. (3), ijξ  is a random variable with Gaussian 
statistics [23]. By enforcing jiij ξξ =  one satisfies the principle of momentum conservation 
[26]. All the forces between particle i and j vanish beyond a cut-off radius cr  [27].  The 
random force coefficient, σ , the system temperature and the simulation timestep is the same 
for all cases studied here and their value was chosen following the methodology proposed by 
Groot and Warren [23].  
 The requirement of canonical distribution sets two conditions linking the random and 
dissipative forces. The first one couples the weight functions through  

 ( ) ( )[ ]2ij
R

ij
D rr ωω =  (4) 

and the second one the strengths of the random and dissipative forces via 

 TkBγσ 22 =  (5) 
where Bk is the Boltzmann constant [27]. The typical choice for the weight functions is 
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where 1=p , for the standard DPD method [28]. 
 The time evolution of velocities and positions of particles are described by the following 
equations [29]   
 dtd ii υr =                                                          (7) 

                                                   ( )dtdtdt
m

d R
i

D
i

C
ii FFFυ ++=

1                                                  (8) 

 
where  ∑

≠

=
ji

C
ij

C
i FF ,  and ∑

≠

=
ji

R
ij

R
i FF . 

 All simulations are conducted using the open source LAMMPS package [30]. We use 
different values for the parameter ija  when we describe fluid–fluid interactions, wall–wall 
interactions and wall–fluid interactions: aww for wall–wall interactions, awf for wall–fluid 
interaction, aff for fluid–fluid interactions. In our simulations we have kept the fluid–fluid 
parameter interaction constant: aff = 25 for Nm=1 and aff = 7.5 for Nm=2.5x106. The value of 
parameter aij has been selected so that the dimensionless compressibility of the simulated 
DPD fluid corresponds to a typical liquid, such as water both in the nanochannel and the 
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microchannel case studied (for the calculation of compressibility see [23]). This value of aij is 
employed in fluid–fluid interactions. We remind the reader that the cross interaction term 
obeys the relation αwf=(αww αff)1/2 (see for example Pivkin and Karniadakis [29]). The type of 
the surface (hydrophilic or hydrophobic) is controlled via the fluid–wall interaction through 
the conservative force parameter aij (Equation (1)), specifically by choosing appropriately the 
ratio of the aij parameters for the fluid–wall interaction versus aij parameters for fluid–fluid 
interactions [31]. The number density of the DPD fluid, fn , is equal to 3 for the nanochannel 
case and 10 for the microchannel while the random and dissipative forces, σ  and γ  
respectively, are set equal to those described in Pivkin and Karniadakis [29]. System 
temperature is kept constant at Τ*=1 (in real units the system temperature is equal to 300K).  
In this work we investigated all the parameters inserted on a DPD system along with grooved 
channels. In the first place we employed aff = 25 and awf = 25 with rc = 1.0 for the cut-off 
radius for particle interactions (equal to 1.0σ for the nanochannel, where σ denotes the 
characteristic length scale of the Lennard-Jones potential (0,3402nm) and not the force 
parameter of Eq.5) and Nm=1 (one atom per DPD particle – nanochannel case) and we 
examined the effect of the magnitude of the externally applied force by assigning four values 
(Fext = 0.01, 0.02, 0.03, 0.04 DPD units). The external driving force is applied on each particle 
along the x-direction to drive the flow. 
In the rest of the simulations Fext = 0.02 DPD units was used. For the case aff = awf = 25 and 
Nm=1 we explored the effect of range of interactions of DPD particles (cut-off distance) rc = 
1.0σ, 1.5σ and 2.0σ. Keeping fixed the cut-off distance rc = 1.0σ and Nm=1 we varied the 
values of wall–fluid interaction awf using three values of the conservative force parameter 
equal to awf = 25, 100, 200. Finally we changed the number of atoms per DPD particle equal 
to 2.5x106 (microchannel case) atoms per particle, along with the particle interactions 
coefficient: aff = awf = aww = 7.5 and rc = 1.0σ. In the last case Fext = 0.02 DPD units was also 
used. By changing the cut-off distance we fix the fluid type. The wall material is controlled 
via the fluid-wall interaction.   
 Periodic boundary conditions are employed along x- and z-directions. Appropriate 
boundary conditions need to be enforced in order to avoid that fluid particles cross the wall, 
since the effective forces are not sufficient to prevent wall penetration and several models 
have been employed and tested to impose various boundary conditions, such as specular, 
Maxwellian and bounce back [29-33]. In general, according to the boundary conditions 
employed we may observe fluctuations, near the solid walls, in the density, velocity or 
temperature which in cases of modeling microscopic systems may be inconsistent with 
continuum models. Such variations are also observed in cases of nanochannels studied with 
Dissipative Particle Dynamics simulations [see for example 6, 31].  
 In the present study we have chosen to employ the bounce back conditions, in which both 
components of the velocity are reversed [33]. Wall particles are bound on sites of a cubic 
lattice and their velocities are set equal to zero. 

 The simulation timestep is Δt =0.01 Tk
mr

B

c
2

 (0.015ps for the nanochannel and 

7.6x10-3μs for the microchannel in physical units). The duration of each simulation is 5x105 
time steps. Pressure, number density, temperature and streaming velocity bin values are 
averaged over the last 2.5x105 time steps of the simulation. 
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2.3 Macroscopic property evaluations 
Local macroscopic property values are calculated in parallelepiped bins. Results presented 

in this work are obtained by dividing the computational domain into 4x80x80, 8x80x80, 
16x80x80 bins along the direction  x, y, z respectively for post processing. To extract average 
profiles (for pressure, density, velocity), mean values over space are computed at each layer 
along the channel for each time step, and these values are then averaged over time.  

 Pressure values are obtained from the trace of the stress tensor 

 
Strp

3
1

−=
  (9) 

where the stress tensor, S,  is calculated using the Irving– Kirkwood theory [34,35]: 
 

  ⎥
⎦

⎤
⎢
⎣

⎡
+−−−= ∑ ∑∑

≠i i ij
ijijiim

V
Frυυυυ

2
1))((1

S  (10) 

where V  is the volume of the computational bin, υ  is the corresponding stream velocity 
and ijF  is the interparticle force on particle i  due to particle j : 

 R
ij

D
ij

C
ijij FFFF ++=  (11) 

 

3 RESULTS AND DISCUSSION  

3.1 Nano-channel results:  number density, flow velocity and pressure   
In this section we present results concerning the variation of fluid number density (particle 

localization), velocity and pressure as a function of variation of fluid/wall interaction, the 
range of particle interactions (variation of cut-off radius) as well as the effect of the driving 
force. 

 
3.1.1. Particle localization 

The average number density profiles as a function of the fluid/wall interaction are 
presented in Fig. 2a for a typical protrusion length.  We observe that as the conservative force 
increases the number density inside the cavities and near the walls become higher and more 
distant from the wall, a behavior which is called layering (for a more detailed description see 
Kasiteropoulou et al. [31]). This behavior is in qualitative agreement with the results of Sofos 
et al. [36] who investigated the surface wettability effects on flow in rough nanochannels and 
found that as the wall hydrophobicity decreases there is a kind of increased fluid atom 
localization. Actually we observe that the wall surface behaves more like a hydrophobic one 
as the conservative force parameter increases. In the lower flat wall the number density is 
higher for all cases studied here than the number density at the upper wall and this could be 
explained by the presence of the wall protrusions.   

Number density profiles as a function of the distance of the particle interactions (cut-off 
distance) are presented in Fig.2b. As we can see the number of peak density inside the cavity 
regions depend on the cut-off distance. In fact, for cut-off distance rc=2.0σ there are two 
number density peaks which are decreased as the cut-off distance decreases. Moreover we 
observe that near the lower and protrusion wall the increased range of interactions results in 
more important layering effect and density variations extending over larger distances. This 
behavior is in general detected in all the protrusion length investigated in this work and this 
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means that the fluid is less homogeneous as the range of interactions increases. 
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Fig. 2. Average number density profiles for lr3=0.125ltot obtained by varying (a) wall–fluid interactions, awf 

(parameters kept constant: the cut-off radius rc = 1.0σ, external driving force Fext = 0.02, aff = 25), (b) the cut-off 
radius, rc (parameters kept constant aff = awf = 25, and Fext = 0.02), (c) the external driving force, Fext  (parameters 

kept constant aff = awf = 25, and rc = 1.0σ). Nm=1.  Dash-dot lines denote solid wall limits and y is in rc units. 

The external driving force seems to have no effect on the fluid particle localization (Fig. 2c) 
for all grooved channels, at least for the force range examined in the present work. Similar 
results are also reported by Young et al. [37] who reported that for a given surface wettability 
the fluid densities are independent of the driving force in a nanochannel flow.  

The influence of the protrusion length for constant conservative force parameter is 
presented in Fig.3. We observe that number density inside the cavities and near the protrusion 
walls are reduced as the protrusion length decreases.   
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Fig. 3 Average number density profiles for a) lr1=0.5ltot, b) lr2=0.25ltot, c) lr3=0.125ltot  obtained by parameters awf 

= 200, aff = 25, rc = 1.0σ and Fext = 0.02. Nm=1. Dash-dot lines denote solid wall limits and y is in rc units. 

3.1.2. Flow velocity   

The average velocity as a function of the conservative force parameter is presented in Fig. 
4a.  We observe that in the main core of the channel the flow velocity increases significantly 
as the fluid/wall interaction also increases and this behavior is also presented in the work of 
Sofos et al [36].  This behavior can be explained by the equations (1) and (8). As the 
conservative force parameter increases the total conservative force also increases (equation 
(1)) and this leads in higher velocity values (according to equation (8)).  
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Fig. 4. Average velocity profiles for lr2=0. 25ltot obtained by varying (a) wall–fluid interactions, awf (parameters 
kept constant: the cut-off radius rc = 1.0σ, external driving force Fext = 0.02, aff = 25), (b) the cut-off radius, rc 
(parameters kept constant aff = awf = 25, and Fext = 0.02), (c) the external driving force, Fext  (parameters kept 

constant aff = awf = 25, and rc = 1.0σ). Nm=1. Dash-dot lines denote solid wall limits and y is in rc units. 

As far as the range of interaction of the fluid and the wall particles (cut-off distance) 
concerned, we observe that the average velocity (Fig. 4b) is decreased as the cut-off radius 
increases.  

The average velocity increases systematically as the external driving force increases (Fig. 
4c). These results are in qualitative agreement with the results of Priezjev [38] where the 
effect of surface roughness on rate-dependent slip in simple fluids has been investigated.  

 
3.1.3. Pressure profiles 

The pressure profiles of all channel cases are presented in Fig.5 as a function of all the 
parameters investigated in this work. For all these parameters the pressure increases both 
inside the cavities and in the core of the channel as the parameters’ value increases. The 
higher values of pressure are detected in the case of the cut-off distance increment (rc=2.0σ) 
and also in the higher conservative force value (awf=200).  In fact the pressure increases as the 
range of interaction increases among fluid as well as the fluid and wall particles. On the other 
hand, the conservative force parameter increases between the fluid and wall particles and this 
leads in higher conservative total force (according to Eq.6 and 10) and though higher pressure 
(according to Eq. 10).  The pressure profile for various external driving force magnitudes is 
presented in Fig. 5c. Both in the core of the channel and inside the cavities the pressure peaks 
are detected in the same location for all external driving force magnitudes. The pressure 
increases systematically as the driving force increases but this behavior is of small interest 
relative to the other parameters described above. 

The variation of protrusion lengths reveals some interesting characteristics. The isobars for 
constant conservative force parameter, equal to awf=25, are presented in Fig. 6.  For case lr1 
(Figure 6(a)), pressure reduces inside the cavities adjacent to the upper wall. However, there 
is a region of high pressure inside the cavities surrounded by two regions of low pressure. We 
believe that such high-pressure regions are observed because of the trapping of the fluid 
particles inside the cavities and the increased localization, as described is Section 3.1.1 (see 
also Figure 2(a)) [6]. This behavior results in smaller interparticle distances and thus higher 
interparticle forces leading to an increase of pressure. Adjacent to the protrusion wall, 
pressure is reduced, especially for smaller protrusion lengths, because particles are not 
localized there. For cases lr2 and lr3 (Figure 6(b) and 6(c)), at the rough wall, inside the 
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cavities, we observe that the shape of high-pressure regions depend on the protrusion length. 
More specifically, as the protrusion length decreases the length of the high pressure region 
increases.  
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Fig. 5. Average pressure profiles for lr3=0. 125ltot obtained by varying (a) wall–fluid interactions, awf (parameters 

kept constant: the cut-off radius rc = 1.0σ, external driving force Fext = 0.02, aff = 25), (b) the cut-off radius, rc 
(parameters kept constant aff = awf = 25, and Fext = 0.02), (c) the external driving force, Fext  (parameters kept 

constant aff = awf = 25, and rc = 1.0σ). Nm=1. Dash-dot lines denote solid wall limits and y is in rc units. 
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Fig. 6 Isobars for a) lr1=0.5ltot, b) lr2=0.25ltot, c) lr3=0.125ltot  obtained by parameters awf = 25, aff = 25, rc = 1.0σ 

and Fext = 0.02. Nm=1. Dash-dot lines denote solid wall limits and y is in rc units. 
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Fig. 7 Isobars for a) lr1=0.5ltot, b) lr2=0.25ltot, c) lr3=0.125ltot obtained by parameters awf = 25, aff = 25, rc = 1.5σ 

and Fext = 0.02. Nm=1. Dash-dot lines denote solid wall limits and y is in rc units. 

The isobars for constant cut-off distance equal to rc=1.5σ are presented in Fig. 7. Again, 
the pressure inside the cavities depends on the protrusion length. Although both inside and in 
the core of the channel the pressure is equal for the three protrusion lengths within statistical 
error, the distribution of the pressure inside the cavities is affected by the length. More 
thoroughly, for protrusion length equal to lr1 the high pressure region length exceeds all the 
protrusion height, whereas this height decreases slightly as the protrusion length decreases 
(see Figs. 7b and 7c for cases lr2 and lr3 respectively). Figure 7 reveal that the protrusion shape 
has small influence in the pressure map for constant cut-off distance.  
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3.2 Micro-channel results:  number density, flow velocity, velocity slip, pressure and 
temperature   
In this section we present results concerning the variation of fluid number density (particle 

localization), velocity and pressure as a function of the coarse-graining parameter by keeping 
constant the external driving force and the ‘dimensionless’ cut-off distance. By changing the 
coarse-graining parameter from value 1.0 to value 2.5x106 we move through the scale of the 
channel and actually we “reach” the microscale dimension in our simulations.  

 
3.2.1. Particle localization 

Number density profiles at the protrusion and the cavity midplanes for the microchannel 
case are presented in Fig. 8. Fluid particle localization is similar for the nanochannel (Fig 2), 
and the microchannel case with peaks located at a distance from the walls (0.87rc and 0.44rc 
for the nanochannel and the microchannel case respectively) for the same external driving 
force (Fext=0.02 DPD units) and the same “dimensionless” cut-off distance (rc=1.0). For the 
nanochannel case, at the protrusion midplanes density is homogeneous and slightly lower than 
its average value in the core of the channel while at the cavity midplanes is slightly higher (for 
the nanochannel case see also Fig.2 from Kasiteropoulou et al. [6]).  
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Fig. 8. Local number density profiles at the protrusion midpoints and the cavity midpoints obtained for 

Nm=2.5x106 and awf = aff = aww = 7.5 (parameters kept constant: the cut-off radius rc = 1.0 and the external 
driving force Fext = 0.02) for cases a) lr1=0.5ltot, b) lr2=0.25ltot, c) lr3=0.167ltot . Dash-dot lines denote solid wall 

limits and y is in rc units. 
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In the microchannel case, at the protrusion midplanes density is almost equal to its average 
value in the core of the channel within statistical errors, while at the cavity midplanes density 
is lower. It should be also noted that in the microchannel case a high density peak is detected 
in the density profile very close to the protrusion surface (y≈4.00rc). Inside the cavities high 
number density regions are detected for both channel scales and suggest the possibility of 
particle trapping in these regions. Particle trapping is confirmed by computing the particle 
residence time and by the analysis of particle trajectories and is discussed in detail in 
Kasiteropoulou et al. [6] (nanochannel) and in Kasiteropoulou et al. [39] (microchannel). 

Regarding the density fluctuations close to the solid walls, we must make some comments 
already discussed in [40]. For the nanoscale simulations using DPD, these oscillations are 
realistic. However, as the DPD particles get larger in size (the case of mesoscale simulations), 
these oscillations close to the wall extend over larger regions than those corresponding to 
physical layering zones as discussed in [41–43]. There are several methods that have been 
developed in order to limit such oscillations [41–43]. Thus, the observed oscillations in the 
mesoscale case have to be seen with some caution. Of course we must mention that if one 
wants to represent in detail the situation close to the wall, it is crucial to implement the above-
mentioned methods. However, in our case, we are interested mostly on the qualitative flow 
behavior as a function of the protrusion shape and the parameters inserted on a DPD system 
and not to a detailed quantitative study. In a future study, it would be of interest to implement 
such methods and compare their results as far as the mesoscale is concerned.  

An example of implementing these methods is discussed in [43]. Li et al.[43] in order to 
capture the correct temperature-dependence of a fluid, developed an energy-conserving 
dissipative particle dynamics (eDPD) model by expressing the weighting terms of the 
dissipative force and the random force as functions of temperature. They found that for non-
isothermal fluid systems, the present model can predict the diffusivity and viscosity consistent 
with available experimental data of liquid water at various temperatures. 

 
3.2.2. Flow velocity  

Average velocity profiles for all protrusion lengths are presented in Fig.9. We observe that 
the average velocity for all grooved channels is smaller than in the channel with flat walls and 
actually it decreases as the protrusion length also decreases. This behavior is also detected in 
the nanochannel case and is described in detail in Kasiteropoulou et al [6]. Moreover, similar 
behavior is observed in many previous works performed with different simulation methods 
[44]. For example, Sofos et al [44] studied the effects of wall roughness on the flow in 
nanochannels by a molecular dynamics simulation and found that as the rectangular wall 
cavities become narrower, velocity values inside the cavities decrease and fluid atoms tend to 
be trapped inside them.  
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Fig. 9. Average velocity profiles obtained for Nm=2.5x106 and awf = aff = aww = 7.5 (parameters kept constant: the 

cut-off radius rc = 1.0 and the external driving force Fext = 0.02) for cases a) lr1=0.5ltot, b) lr2=0.25ltot, c) 
lr3=0.167ltot . Dash-dot lines denote solid wall limits and y is in rc units. 

3.2.3. Isobars 

Pressure behaviour also reveals interesting characteristics (Fig.7, 10). Both in the 
nanochannel case (Fig.7) as well as in the microchannel case (Fig.10), pressure remains 
constant in the central part of the channel and decreases as we move towards to the walls.  

High pressure regions are observed inside the grooves and their magnitude depends on the 
groove shape (Figs. 10a, 10b, 10c). Smaller protrusion lengths lead to pressure reduction and 
shorten (across the y-direction) high pressure regions. For case lr1 (Fig. 10a), the length of the 
high pressure region inside the cavity is about 2% of the protrusion height, while for cases lr2 
(Fig. 10b) and lr3 (Fig. 10c) it is 25% and 50% respectively. Pressure profile towards the 
lower flat wall is not affected by the presence of protrusion elements in the upper wall. 
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Fig. 10. Isobars obtained for Nm=2.5x106 and awf = aff = aww = 7.5 (parameters kept constant: the cut-off radius rc 
= 1.0σ and the external driving force Fext = 0.02) for cases a) lr1=0.5ltot, b) lr2=0.25ltot, c) lr3=0.167ltot . Dash-dot 

lines denote solid wall limits and y is in rc units. 

4 CONCLUDING REMARKS 
In this paper, we have presented DPD simulations of flow in periodically grooved nano- 

and microchannels. The rough wall was designed by placing a number of orthogonal 
protrusions and cavities of equal length in a periodic pattern. Calculations of density, velocity 
and pressure maps or profiles show clearly that the fluid/wall interaction, the range of 
interaction of DPD particles, the external driving force and the coarse-graining parameter 
affect considerably the fluid motion. Number density values in the core of the channel and 
inside the cavities decreases as the conservative force parameter decreases. The cut-off radius 
affects density values near the walls and inside the cavities. The value of the external driving 
force has no significant effect on fluid ordering. 

 Velocity values in the core of the channel and inside the cavities increases as the 
conservative force parameter and the external driving force increases and the cut-off radius 
decreases for all channel cases studied here. 

Pressure is strongly affected by the cut-off radius and the conservative force parameter 
amplitude.  For all parameters, as the parameter increases pressure also increases both in the 
core of the channel and inside the cavities. Inside the cavities high pressure regions are 
detected and their shape and topology depend on the protrusion length. 

Interesting behavior is presented in the microscale channel cases. Fluid particle 
localization is similar for the nanochannel and the microchannel case, as high density peaks 
are detected for both cases inside the cavities and near the solid walls. Differences are 
observed in the core of the channel and in the cavity and protrusion midplanes. In particular, 
in the nanochannel and the protrusion midplane density is slightly lower than its average 
value and at cavity is higher, in addition to the microchannel case where at the protrusion 
midplane it is equal to its average value and at the cavity it is lower. Density peaks inside the 
cavities reveal trapping of fluid inside the rectangular cavities. This particle trapping affects 
macroscopic quantities considered here such as velocity and pressure distribution inside and 
close to the cavities. Velocity reduces systematically and this reduction becomes more 
pronounced as the protrusion length decreases. For the microchannel, the pressure remains 
almost constant in the core of the channel and its pattern near and inside the cavities depend 
on the protrusion shape.  

  Different materials for the wall and fluid particles, several fluid and wall interface 
conditions and different fluid types on nano and microchannels with grooves on the upper 
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wall were investigated. The effect on density, velocity, and pressure distributions were 
outlined. Although significant progress has been made towards the development and research 
of grooved channels investigated with different numerical frameworks, the current state of the 
art does not represent in detail the situation close to the wall in the mesoscale case and 
remains on the qualitative flow behavior under special circumstances. Future research and 
development is required to address methods for the near wall region behavior at the mesoscale 
case and compare their results with other research methods. One has to take into consideration 
the applied research interest of solid grooved surfaces and their involve in micro/nano 
electromechanical systems (known as MEMS/NEMS), the cooling of micro and nano devices, 
the lab-on-chip devices, the drug delivery and the micro and nanofliters. It should be noted 
that modeling of heat transfer processes requires the implementation of an extension of the 
DPD method that incorporates the energy transport equation, known as eDPD [43]. 
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Abstract. The primary objective of this paper is to resolve and provide generic analytical 

formulas concerning the linear pressure distribution of rigid spread rectangular footings and, 

consequently, limit computational costs. All five distinct regions of the eccentricity diagram 

are related to five possible forms of footing deformations and five discrete shapes of compres-

sion zone. For each region, the linear soil pressure distribution in soil-footing interface, the 

neutral axis position, the maximum pressure and the pressure values at the four corners, are 

expressed in closed forms as functions of biaxial eccentricities, mean soil pressure and foot-

ing dimensions. Several special cases are also presented, verifying the correctness and the 

consistency of the developed analytical formulas and revealing the physical meaning of the 

eccentricity diagram. The explicit expressions for responses and resultants enable algorith-

mic implications without iterations, providing high computational efficiency with low compu-

tational cost when forming envelopes for shear forces and bending moment or optimizing the 

design of footing geometry and footing reinforcement, etc. Through developed computer soft-

ware, a provided simple example of a rigid spread footing under variable eccentric loading, 

demonstrates how the theoretical content of this article is used to perform numerical calcula-

tions. The software itself comprises 3D visualization technology to facilitate visual examina-

tion and validation of the results.  
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1 INTRODUCTION 

It is well known that rigid spread rectangular footings resting on elastic soils tend to de-

form in a linearly elastic manner under the action of vertical load and biaxial bending [1, 12]. 

Such loading conditions may occur either due to eccentric vertical loading or high horizontal 

excitation as those used for structural design in high seismic risk areas. Thus, assuming foot-

ing rigidity of adequately high magnitude, it is reasonable to consider a planar settling of foot-

ing base and a linear soil pressure distribution due to constant ratio of pressure to settlement. 

The footing-soil interaction generates compression underneath the entire or part of the 

footing base, depending on the area being in contact with the soil. This area, usually called 

active area or effective area or compression zone [3, 11, 13], should not be less than a certain 

percentage of the entire base area. In fact, when the effective eccentricities, computed by di-

viding bending moments with vertical force, lay outside a certain geometric ellipse called 

secondary core, the active area is smaller than half the base area. As strictly as required by 

regulations and usually recommended by good practice, such cases are not acceptable in foot-

ing design. 

The most important issue concerning rectangular footings is optimal geometric and rein-

forcement design [2, 3, 6, 7, 14]. Initially, a set of suitable values is chosen so that, under ser-

viceability conditions, the maximum pressure exerted at any footing position does not exceed 

the soil bearing capacity. Moreover, constraints set for enveloped bending, shearing and 

punching should not be violated under ultimate loading conditions, while requirements im-

posed by regulations should be fully met. All the above involve an immense amount of inten-

sive calculations through complex iterative processes. Several procedures were developed in 

the past for handling efficiently such footing-soil interaction problems, by using either analyt-

ical [2, 4, 5, 6, 7, 13, 14], numerical [10, 11], graphical [3, 15], or hybrid techniques [8, 9]. 

Although accurate and useful, some of them are rather computationally expensive, while oth-

ers are not so wide-ranging or not easily implementable in designing footings of such specific 

shape, yet participating in a complex structure assembly subject to various loading actions. 

On the other hand, the generic explicit formulas presented in this article increase the efficien-

cy of the required design processes by reducing considerably the computational costs. 

Another advantage of the presented analytical method is that, instead of relating eccentrici-

ties to external loading conditions, they are evaluated by using reaction resultants at the re-

spective support node as derived from the space frame model of the structure. Hence, these 

effective eccentricities express a clear relation of biaxial bending moments to vertical load for 

the specific footing, since they are not directly associated with external loading and influences 

from neighboring columns, footings and connecting beams. 

This paper attempts to enlighten the issues concerning the rigid spread rectangular footings 

by providing easily programmable analytical formulas and, through a developed intelligent 

software and 3D visualization technology, facilitate results inspection, confirm engineering 

intuition, unshed light to foundation settlement and encourage future research in related fields. 

2 THE MATHEMATICAL MODEL 

As we stated previously, a rigid spread rectangular footing is expected to deform in a pla-

nar manner. Therefore, it is reasonable to consider a linear soil pressure distribution under-

neath the base, that is 
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where pmax is the maximum soil pressure on the base and xn, yn are the intercepts of the neutral 

axis determining the active area of the footing (see Figure 1). 

 

Figure 1: Linear soil pressure distribution on a rigid spread rectangular footing. 

The effective eccentricities from the footing center, derived from certain reaction resultants 

at the central support node, i.e. the calculated values of biaxial moments Mx, My and vertical 

force P (see Figure 1), are expressed as 
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The mean soil pressure on a footing with dimensions lx, ly is defined as 
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If, by convention, one uses absolute values for eccentricities and thus presets the maximum 

soil pressure at the lower left footing corner, i.e. po = pmax (see Figure 1). Then equations (3), 

(6) and (7) can be written as 
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yxm dydxyxpllp ),(  (9) 
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There is a direct relation of pressure values at actual footing corners with those computed 

from at rearranged footing corners, with the order strictly depending on the eccentricities 

signs, i.e. 
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Solving the system of equations (9), (10) and (11) and determining the unknown parame-

ters xn, yn and pmax, then the equation (1) depends on the signs of effective eccentricities and, 

therefore, it can be rewritten as 
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and by relocating the origin of the coordinate system at the footing centroid, the linear soil 

pressure distribution can be written in an equivalent to equation (1) expression, that is  
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3 THE ECCENTRICITY DIAGRAM 

As effective eccentricities, evaluated using equations (2), sweep the rectangular footing 

base certain types of deformation occur, thus generating an eccentricity diagram for each 

footing, as presented in Figure 2. This diagram, also obtained by other authors using different 

approaches [13], constitutes a very strong practical tool for determining the form of pressure 

distribution expected under certain loading conditions. In this work, the border lines on the 

eccentricity diagram are provided explicitly while special cases reveal their physical meaning. 

There are five distinct regions in this diagram, namely A-E, corresponding to different 

types of deformation and active areas of unique geometric shapes (see Figure 2). Each region-

al case is subdivided into four subcases, each associated with one primary footing corner of 

maximum soil pressure, as determined by eccentricities signs in equations (12). Notice that 

there is a rhombus domain, usually called main core, having semi-diagonals equal to 1/6 of 

the respective footing lengths and a surrounding elliptic domain, usually called secondary 
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core, bounded by an ellipse with major and minor semi-axes equal to 1/3 of the respective 

footing lengths (dashed line in Figure 2). The first contains the entire regions C, while the 

second comprises regions B and certain parts of regions D and E. The remaining parts of re-

gions D and E and the entire regions A are excluded, since corresponded to active areas 

smaller than half the footing base area. Regulations as well as good practice require that effec-

tive eccentricities should remain inside the secondary core in order to maintain an acceptable 

footing design. 

 

Figure 2: The eccentricity diagram of a rigid spread rectangular footing. 

4 THE ECCENTRICITY REGIONS 

The analytical formulas for all five regions are presented in the subsections below. They 

are produced by integrating the equations (9), (10) and (11) over the active area of the footing 

base corresponding to each regional case. Nevertheless, for saving space and time, the de-

tailed development process of the formulas is not provided here. 

4.1 Region C: Full Compression Zone 

Regions C corresponds to four equal right triangles composing a rhombus shape with semi-

diagonals equal to 1/6 of the respective footing lengths (see Figure 3). This rhombus area, 

usually called main core, represents small eccentricities generated by vertical forces applied at 

points in it and capable of setting the entire footing base under compression. Maximum pres-

sure occurs at the footing corner corresponding to the right triangle enclosing the eccentricity 

point. 
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Figure 3: Full compression zone. 

The intercepts of the neutral axis are given by 
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The maximum soil pressure at the primary corner of the footing base (coordinate system 

origin O) along with the soil pressure at the rest corners, are provided by the equations 
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In this particular case, since the active area is the entire footing base, all footing corners 

should be under compression, i.e. po ≥ 0 & pp ≥ 0 & pq ≥ 0 & pr ≥ 0. Since pr represents the 

minimum compression value, the last of equations (16) yields the rhombus shape boundary 

for regions C shown in Figure 3, i.e. 
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4.2 Region A: Triangular Compression Zone  

Regions A corresponds to four smaller corner rectangles, each having sides equal to 1/4 of 

the respective footing lengths (see Figure 4). They represent excessive eccentricities generat-

ed by vertical forces applied at points inside these corner rectangles, imposing high pressure 

to respective triangular compression zones of the footing base. Maximum pressure occurs at 

the footing corner associated with the corner rectangle enclosing the eccentricity point. 
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Figure 4: Triangular compression zone. 

The neutral axis intercepts are given by 
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The soil pressure values at the footing corners are provided by 
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For triangular compression zone the intercepts should be confined within the neighboring 

sides of the footing base. Hence, equations (18) yield the rectangular shape boundary for re-

gion A (see Figure 4), expressed as the lower and upper bounds in the two inequalities 
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where the upper bounds denote that eccentricities outside the footing base are unbalanced. 

4.3 Region D: Trapezoidal Compression Zone in x-Direction 

Regions D corresponds to four curved trapezoids attached to the x-direction footing sides 

in pairs, each having bases equal to 1/3 and 1/4 of the y-direction footing length respectively, 

altitude 1/4 of the x-direction footing length and a curved side (see Figure 5). They represent 

large eccentricities generated by vertical forces applied at points inside these curved trape-

zoids, imposing pressure to respective trapezoidal zones covering the entire x-direction foot-
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ing side. Maximum pressure occurs at the footing corner corresponding to the curved trape-

zoid enclosing the eccentricity point. 

 

Figure 5: Trapezoidal compression zone covering the entire side in x-direction. 

The neutral axis position, determined by its intercepts and its trace yp on the parallel side 

(see Figure 5), is provided by 

 











































































































n

x
np

x

x

x

x

x

x

x

x

x

x

y

y

yn

x

x

x

x

x

x

xn

x

l
yy

l

e

l

e

l

e

l

e

l

e

l

e
ly

l

e

l

e

l

e
lx

1

,41121211212
2

1

2

1

,1212161

2

2

2

2

2

2

2

2

 (21) 

The soil pressure values at the footing corners are  
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Requiring the x-intercept to lie on the extension of the respective footing side, the bases of 

the trapezoidal region are given as the lower and upper bounds of an inequality, i.e. 
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In fact, the upper bound of the inequality guaranties that the discriminant, appearing under the 

square roots of equations (21) and (22), is always positive definite. 

Confining the y-intercept within the respective footing side, the lateral sides of the trape-

zoidal region are given as the lower and upper bounds of another inequality (see Figure 5) 
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Here, the lower bound of the inequality expresses the curved side of trapezoid while the upper 

bound states that eccentricities outside the footing base are unbalanced. 

4.4 Region E: Trapezoidal Compression Zone in y-Direction  

Regions E corresponds to four curved trapezoids attached to the y-direction footing sides 

in pairs, each having bases equal to 1/3 and 1/4 of the y-direction footing length respectively, 

altitude 1/4 of the y-direction footing length and a curved side (see Figure 6). They represent 

large eccentricities generated by vertical forces applied at points inside these curved trape-

zoids, imposing pressure to respective trapezoidal compression zones covering the entire y-

direction footing side. Maximum pressure occurs at the footing corner corresponding to the 

curved trapezoid enclosing the eccentricity point. 

 

Figure 6: Trapezoidal compression zone covering entire side in y-direction. 

The position of the neutral axis is provided by 
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The soil pressure values at the footing corners are  
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Confining properly the intercepts of neutral axis with respect to footing sides in equations 

(25), the curved trapezoid is determined by the following two inequalities 
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The bounds of the first inequality express the lateral sides of the curved trapezoid while the 

bounds of the second its bases. 

4.5 Region B: Pentagonal Compression Zone 

Regions B corresponds to four diagonally placed curved triangles, each having two curved 

sides and one flat base, as shown in Figure 7. These curved triangles form part of the second-

ary core, inscribed in its elliptic boundary and surrounding the main core (see Figure 2). They 

represent moderate eccentricities generated by vertical forces applied at points inside them, 

imposing pressure to respective pentagonal compression zones while preserving a triangular 

uncompressed zone. Maximum pressure occurs at the footing corner corresponding to the 

curved triangle enclosing the eccentricity point.  

 

Figure 7: Pentagonal compression zone (triangular uncompressed zone). 
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As shown below, in full agreement with other sources [13], in this case the solution cannot 

be expressed in closed form. In fact, the intercepts of the neutral axis are provided by recur-

sive formulas, i.e.  
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One can easily prove, either numerically or algebraically, that the set of equations (27) consti-

tutes a fast converging iterative procedure. Consequently, once the intercept values found they 

are substituted to all consequent equations. 

The traces of the neutral axis on the two opposite footing sides, as shown in Figure 7, are  
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The soil pressure values at the footing corners are  
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Since, on its limits, region B degenerates to regions C, D and E respectively, the boundary 

of the curved triangle is clearly determined by the set of three inequalities 
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The first inequality represents eccentricities outside the main core of rhombus region C, while 

the rest represent eccentricities inside the secondary zone bound by the curved sides of the 

trapezoidal regions D and E respectively (see Figure 2), as derived in the respective chapters. 
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5 SPECIAL CASES  

Several borderline cases are represented here, verifying the correctness and the consistency 

of the developed analytical formulas, reassuring the regional continuity and revealing the 

physical meaning of the eccentricity diagram. 

5.1 One-way Eccentricity in Region C 

Imposing x-direction eccentricity in Region C by setting ey = 0, as shown in Figure 8, 

equations (15) and (16) yield the well-known formulas for soil pressure distribution of single 

slope 
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while inequality (17) diminishes to representing segment ‘kc’, that is 
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Figure 8: Soil pressure distribution for one-way eccentricity in segment 'kc'. 

5.2 One-way Eccentricity in Region C 

Imposing x-direction eccentricity in Region E by setting ey = 0, as shown in Figure 9, 

equations (25) and (26) yield the well-known formulas for soil pressure distribution of single 

slope and limited active area 
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while inequality (27) diminishes to representing segment ‘ce’, that is 
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Figure 9: Soil pressure distribution for one-way eccentricity in segment 'ce'. 

5.3 One-way Eccentricity in Junction of Regions C, E and B 

 

Figure 10: Soil pressure distribution for one-way eccentricity in point 'c'. 

Applying x-direction eccentricity in point ‘c’, as shown in Figure 10, by setting 
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the equations (15) and (16) of region C, (25) and (26) of region E, and (28) and (30) of region 

B, yield identical results  

  nxn ylx ,  (39) 

 0,2 minmax  ppppppp rpmqo
 (40) 

In such a case, the soil pressure distribution of single slope has its neutral axis coincide 

with the footing base side in y-direction, as illustrated in Figure 10. 

5.4 Biaxial Eccentricity in Junction of Regions A, D, E and B  

 

Figure 11: Soil pressure distribution for eccentricity in point 'a'. 

Applying biaxial eccentricity in point ‘a’, as shown in Figure 11, by setting 
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the equations (18) and (19) of region A, (21) and (22) of region D, (25) and (26) of region E, 

and (28) and (30) of region B, yield identical results  

 ynxn lylx  ,  (42) 

 0,6 minmax  ppppppp rqpmo  (43) 

In such a case, the soil pressure distribution has its neutral axis coincide with the respective 

diagonal of the orthogonal base, as illustrated in Figure 11. 
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6 APPLICATION AND DISCUSSION 

A simple example is provided here to demonstrate how the generic analytical formulas of 

this article are used to perform numerical calculations via developed computer software, thus 

offering high computational efficiency by limiting computational costs. The software itself 

comprises a 3D visualization module, facilitating visual examination and validation of the re-

sults. Note that all figures and tables of this example have been produced through this soft-

ware and can be reproduced by rerunning it, practically offering an infinite number of 

variations to the researcher/engineer.  

The structural model concerns a 0.25mx0.25m square column of height 3.00m fixed to a 

1.00mx1.00m rigid spread square footing of depth 0.50m. The material used is concrete 

C30/37 reinforced with steel B500C, with safety factors 1.50 and 1.15 for concrete and steel 

respectively, and applied with covering of 0.03m for the column and 0.065 for the footing.  

The central footing studied for variable eccentric loading required by building codes. Eu-

rocode 1 (EN1991, EC1), Eurocode 2 (EN1992, EC2) and Eurocode 8 (EN1998, EC8) ap-

plied in our case, complemented by Greek National Annexes [16]. Accordingly, 33 

combinations of actions required in total, as presented in Table 1, where G stands for dead 

loads, Q for imposed loads and E for seismic loads to primary directions with accidental ec-

centricities to perpendicular directions.  

 

 A = 1.35G + 1.50Q, I = 1, 2, 3, 4 

iΒ = 1.00G + 0.30Q + 1.00Εx±eccy + 0.30Ey±eccx, iC = 1.00G + 0.30Q + 1.00Ex±eccy - 0.30Ey±eccx, 

iD = 1.00G + 0.30Q + 0.30Ex±eccy + 1.00Ey±eccx, iΕ = 1.00G + 0.30Q - 0.30 Ex±eccy + 1.00Ey±eccx, 

iF = 1.00G + 0.30Q - 1.00Ex±eccy - 0.30Ey±eccx, iG = 1.00G + 0.30Q - 1.00Ex±eccy + 0.30Ey±eccx, 

iΗ = 1.00G + 0.30Q - 0.30Ex±eccy - 1.00Ey±eccx, iΙ = 1.00G + 0.30Q + 0.30 Ex±eccy - 1.00 Ey±eccx, 
 

Table 1: The 33 combinations of actions required. 

 

 

Table 2: Effective eccentricities and resultants for the square central footing for all combinations. 

Since no imposed loads exist (Q=0) and no accidental eccentricities considered in this ex-

ample (eccx=eccy=0), only 9 out of the 33 combinations are different. The effective eccentrici-

ties ex, ey, the mean soil pressure pm, the soil pressure at the corners p1, p2, p3, p4 and the 

maximum shearing forces Vxf, Vyf and bending moments Mxf, Myf, are presented in Table 2. It 

must be underlined that the effective eccentricities have been calculated using equations (2), 

Comb. 
ex 

(m) 

ey 

(m) 

pm 
(kPa) 

p1 

(kPa) 

p2 

(kPa) 

p3 

(kPa) 

p4 

(kPa) 

Vxf 
(kN) 

Vyf 
(kN) 

Mxf 
(kNm) 

Myf 
(kNm) 

A 0.000 0.000 23.2 23.2 23.2 23.2 23.2 8.7 8.7 1.6 1.6 

1,2,3,4B -0.076 -0.003 17.2 7.2 22.5 27.1 11.8 9.1 9.7 1.8 1.8 

1,2,3,4C -0.076 0.003 17.2 11.8 27.1 22.5 7.2 9.1 9.7 1.8 1.8 

1,2,3,4D -0.003 -0.076 17.2 7.2 11.8 27.1 22.5 9.7 9.1 1.8 1.8 

1,2,3,4E 0.003 -0.076 17.2 11.8 7.2 22.5 27.1 9.7 9.1 1.8 1.8 

1,2,3,4F 0.076 0.003 17.2 27.1 11.8 7.2 22.5 9.1 9.7 1.8 1.8 

1,2,3,4G 0.076 -0.003 17.2 22.5 7.2 11.8 27.1 9.1 9.7 1.8 1.8 

1,2,3,4H 0.003 0.076 17.2 27.1 22.5 7.2 11.8 9.7 9.1 1.8 1.8 

1,2,3,4I -0.003 0.076 17.2 22.5 27.1 11.8 7.2 9.7 9.1 1.8 1.8 
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the soil pressure values via the explicit formulas applicable in different eccentricity regions 

along with mapping equations (12), while the rest of the resultants through algebraic integra-

tion of soil pressure distribution provided by equation (14). Notice that all combinations, but 

‘A’, impose effective eccentricities despite the fact the footing itself has no structural eccen-

tricity. This was expected since ‘A’ is the only combination formed exclusively by vertical 

loads while only horizontal loads can generate rotational reactions in central footings. The soil 

pressure distributions for different combinations and their envelope are illustrated in Figure 

12, while the resultants presented in Table 2 and their envelopes are also shown in Figure 13. 

 

Figure 12: Soil pressure distributions for different combinations and envelope. 

 

Figure 13: Resultants for different combinations and envelopes:  

(a) Soil pressure, (b) Shear forces, (c) Bending moments. 

The footing is also studied for variable structural eccentricity with respect to the column. 

The enveloped maxima of bending moments, namely Mxd, Myd, are presented in Figure 14 as 

a function of structural eccentricity in x-direction. They are also called design bending mo-

ments since they are associated with footing design. Notice that only for central footings the 

two bending components are identical. In fact, by increasing structural eccentricity bending is 

affected substantially in the direction of structural eccentricity and slightly in the perpendicu-

lar direction. This reflects directly on the calculated two-way reinforcement Asx, Asy, shown in 
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Figure 15 as a function of structural eccentricity in x-direction, where required reinforcement 

increases substantially in the direction of structural eccentricity. 

 

Figure 14: Design bending moments in relation to structural eccentricity in x-direction. 

 

Figure 15: Calculated two-way reinforcement in relation to structural eccentricity in x-direction. 

 By analyzing the above outcomes, it is clear that there is a substantial amount of calcula-

tions involved in the design of rigid spread footings geometry and reinforcement, even if a 

limited number of combinations is taken into account. Of course, the numbers increase dra-

matically when optimization is attempted via iterative procedures or when one seeks result-

ants for multi footings foundations (see Figure 16). In such cases, the explicit formulas 

revealed in this article are certainly preferable over numerical methods or similar techniques, 

since they undoubtedly limit computational costs. Furthermore, the proposed here analytical 
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method is applicable to either a single footing case or a multi footings and connecting beams 

assembly. Only resultant reactions retrieved from the space frame model are used as input in 

equations (2), and therefore the process is independent from linked neighboring components. 

 

Figure 16: Soil pressure distributions and envelopes for a multi rigid spread rectangular footings foundation. 

7 CONCLUSIONS  

This article adds value in studying rigid spread rectangular footings resting on elastic soils 

by offering: 

1. High computational efficiency through developed explicit formulas for soil pressure 

values in different eccentricity regions. 

2. A generic, robust and effective solution, independent of the foundation layout, by using 

as input the reactions computed at the supports instead of actual loads on the footing. 

3. An eccentricity diagram per footing, as a very practical qualitative tool for predetermin-

ing the form of soil pressure distribution and footing deformation expected. 

4. An integrated virtual reality software, facilitating visual examination and validation of 

the results. 

The innovative and straightforward research approach followed here will assist future re-

searchers by providing a valuable reference through a powerful research software tool. Poten-

tially, it could be extended to accounting for more generic footing geometries and non-linear 

soil pressure distributions. 
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NOTATION 

A  Active area of footing 

P  Vertical force reaction on footing 

Mx, My  Rotational moment reactions on footing in x and y directions 

p(x, y)  Soil pressure distribution 

p1, p2, p3, p4 Soil pressure values on footing corners 

po, pp, pq, pr Soil pressure values on rearranged footing corners 

pmax  Maximum soil pressure value on footing 

pmin  Minimum soil pressure value on footing 

pm  Mean soil pressure value on footing 

lx, ly    Footing dimensions in x and y directions 

ex, ey  Effective eccentricities from footing center in x and y directions 

xc, yc  Coordinates of footing base centroid 

xn, yn  Neutral axis intercepts on x and y axes 

x, y, z  Coordinate system with origin on footing corner 

x
’
, y

’
, z

’
  Coordinate system with origin on footing centroid 

sign( )  Sign of a real number 

Vxf, Vyf  Maximum values of shear forces on footing in x and y directions 

Mxf, Myf Maximum values of bending moments on footing in x and y directions 

Mxd, Myd Design bending moments of footing in x and y directions 

Asx, Asy  Calculated steel reinforcement of footing in x and y directions 
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Abstract. The inclusion of damping in the equations of motion of FEM-based structural mod-

els yields a complex (quadratic) eigenvalue problem. In this paper is presented a variant of a 

general method [4], [5] for real-space modal transformation of damped multi-degree-of-

freedom-systems (MDOFS) with non-modal (non-proportional) symmetric damping matrix. 

The method is based on the conjugated complex right eigenvectors of the system, normalized 

relative to the general mass matrix. After state-space formulation of the equations of motion a 

real modal transformation matrix is built by a combination of two complex transformations, 

which is the main advantage of the presented method. Analytically expressions for the modal 

transformation basis are developed be the aid of computer algebra software (MATLAB).  

Applying the suggested method to the special case of proportionally damped system, an ana-

lytical expression for the constant phase lag of the free vibration modes has been derived. The 

conversion of the developed general real transformation matrix into the modal matrix of the 

undamped problem is analytically proved by taking into account the synchronous free oscilla-

tions in this special case. 

The derived formulas for the modal transformation basis contain the real and the imaginary 

parts of the eigenvectors and the associated eigenvalues.  

A numerical example – vibration of a rotor blade of a wind turbine - demonstrates the per-

formance of the presented modal decomposition method for the general case of non-

proportional damped system. The damping matrix of this example contains structural and 

aerodynamic damping. The initial computation of the complex eigensolution of the FEM 

beam model in the presented example and all subsequent computations are done by the aid of 

the Symbolic Math Toolbox of MATLAB. The suggested procedure can be applied in structur-

al systems containing different damping and energy-loss mechanism in various parts of the 

structure and also in structure-environment interaction problems, where a non-modal damp-

ing matrix is occurring. 
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1 INTRODUCTION 

 

The modal decomposition of the equations of motion of multi-degree-of-freedom-systems 

(MDOFS) is usually applied to systems without damping. The associated eigenvalue problem 

has real eigenvectors and real free frequencies. The inclusion of damping in the equations of 

MDOFS leads to a quadratic eigenvalue problem with complex conjugate pairs of eigenvalues 

and eigenmodes. The modal decomposition of the equations has to be performed in complex 

space. Aiming to avoid the computation in complex arithmetic, a new modal decomposition 

method, presented in details in [2] – [5], is briefly outlined in Sec. 2. This procedure is based 

on a real modal transformation matrix, derived from the complex eigenvalue solution of a 

MDOFS with symmetric non-proportional (non-modal) damping matrix. 

 

In the suggested procedure the complex eigenvectors and eigenvalues of the structural 

model should be computed first. In the presented example in Sec. 4 – vibration of a rotor 

blade of a wind generator - computer algebra software was applied to solve the eigenvalue 

problem. In real life applications of the presented method to high dimensional problems it 

must be available a reliable eigenmode solver for large complex eigenvalue computations. 

There are many literature references for large scaled problems with various solution strategies, 

see [10] – [12]. The author has used an implicitly restarted Arnoldi/Lanczos method [11], [12] 

to solve the complex eigenvalue problem in an application of the method to a fluid-structure-

foundation interaction problem, see in [1],[2].  

 

Another topic of this paper is to show an analytical proof of the statement for the constant 

phase lag/lead of free vibrations in the proportional damping case – see the introduction in 

Sec. 1.2. The analytical proof in an indirect manner is based on the procedure, summarized in 

Sec. 2. A formula for computing of the constant ratio  
𝐼𝑚(𝐗)𝑘

𝑅𝑒(𝐗)𝑘
 has been derived in Sec. 3.1. 

  

In Sec. 4 the proposed modal analysis method, presented in Section 2, has been applied to 

a rotor blade beam structure with 54 DOF. The numerical example demonstrates the perfor-

mance of the method for the general case of non-proportional damping. In this case the damp-

ing matrix of the system contains a stiffness proportional (Rayleigh) damping and 

aerodynamic (non-proportional) damping parts. In the second variant of the solution – with 

proportional damping matrix, the formula for the constant phase of the resonance modes is 

verified numerically. 

1.1 Free vibrations of a viscously damped system 

The equations of motion of a damped MDOFS are 

 

            𝐌�̈� + 𝐃�̇� + 𝐊𝐕 = 𝐩(𝑡)                                                                     (1.1) 

 

where M, D and K are, respectively the (n x n) mass, damping and stiffness matrices, and V, 

V are the (n x 1) displacement and velocity vectors and p(t) is the (n x 1) excitation vector.  

 

In structural mechanics problems we consider the M and K matrices to be real, symmetric 

and positive definite, excluding the presence of rigid body modes.  The D matrix is assumed 

to be symmetric, non-negative, she presents a non-proportional damping.  
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With the assumed free vibration in the form     
tt ee  XVXV  , ,         (1.2) 

the associated quadratic eigenvalue problem is 

 

(𝜆𝑗
2 𝐌 + 𝜆𝑗𝐃 + 𝐊) 𝐗𝑗 = 𝟎  ∀ (𝑗 = 1,⋯ , 𝑛)     (1.3) 

 

In Eq. (1.3) the j
th

 eigenvalue 𝜆𝑗 and the corresponding eigenmode 𝐗𝑗 appear in complex 

conjugate pairs (index j omitted): 

 

𝜆 = 𝜆𝑟 + 𝑖𝜆𝑖  ,          𝜆 = 𝜆𝑟 − 𝑖𝜆𝑖                  (1.4a) 

𝐗 = 𝐗𝑟 + 𝑖𝐗𝑖 ,        𝐗 = 𝐗𝑟 − 𝑖𝐗𝑖                            (1.4b) 

 

The dynamic equilibrium of a viscously damped single oscillator is governed by 

 
𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑣(𝑡) = 𝑞(𝑡) resp.                 (1.5a) 

�̈�(𝑡) + 2𝜂𝜔�̇�(𝑡) + 𝜔2𝑣(𝑡) = 𝑝(𝑡)                 (1.5b) 

 

where    �̈�  is acceleration, 

  �̇�   - velocity, 

  𝜔 = √
𝑘

𝑚
 - free vibration frequency, 

  𝜂 =
𝑐

2𝑚𝜔
 - Lehr’s damping ratio and  𝑝(𝑡) =

𝑞(𝑡)

𝑚
. 

 

The exponential solution   𝑥 𝑒𝜆𝑡   , introduced into the homogenous form of the differential 

equation (1.5b), yields the eigenvalue problem 

𝜆2 + 2𝜂𝜔 𝜆 + 𝜔2 = 0                   (1.6) 

The eigenvalue solution (assuming that  𝜂 ≪ 1, subcritical damping) of Eq. (1.6) is a com-

plex conjugate pair: 

 ir ii

Dir










2

2/1 1                        (1.7) 

1.2 The constant phase lag problem 

Interpreting the eigenvalue pair (1.4a) as the single-oscillator-eigenvalues (1.7), we can 

express the j
th

 free vibration of the MDOFS as linear combination of the two complex conju-

gate eigenpairs (1.4a,b): 

 

𝐕 = 𝐗 𝑒𝜆𝑡 = 𝐗 𝑒(−𝜂𝜔±𝑖𝜔
√1−𝜂2)𝑡 = 

= 𝑒−𝜂𝜔𝑡[(𝐗𝑟 + 𝑖𝐗𝑖)(𝑐𝑜𝑠 𝜔𝐷𝑡 + 𝑖 sin𝜔𝐷𝑡) + (𝐗𝑟 − 𝑖𝐗𝑖)(𝑐𝑜𝑠𝜔𝐷𝑡 − 𝑖 sin𝜔𝐷𝑡)] 
 

= 𝑒−𝜂𝜔𝑡 [
𝟐(𝐗𝑟 𝑐𝑜𝑠 𝜔𝐷𝑡 − 𝐗𝑖 sin𝜔𝐷𝑡) +

𝑖(𝐗𝑖 𝑐𝑜𝑠 𝜔𝐷𝑡 + 𝐗𝑟 sin𝜔𝐷𝑡)  − 𝑖 (𝐗𝑖 𝑐𝑜𝑠 𝜔𝐷𝑡 + 𝐗𝑟 sin𝜔𝐷𝑡)
] 
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= 𝑒−𝜂𝜔𝑡 [ 2𝐗𝑟⏟
𝐅 cos𝜑

𝑐𝑜𝑠 𝜔𝐷𝑡 − 2𝐗𝑖⏟
𝐅 sin𝜑

sin𝜔𝐷𝑡]       (1.8) 

 

The last relation leads to the real form of a damped free oscillation for every k
th

 DOF: 

 

𝑉𝑘 = 𝑒
−𝜂𝜔𝑡[𝐹𝑘 𝑐𝑜𝑠(𝜔𝐷𝑡 + 𝜑𝑘)]        (1.9) 

 

where  𝜑𝑘 = 𝑎𝑟𝑐𝑡𝑎𝑛
(𝑋𝑖)𝑘

(𝑋𝑟)𝑘
 : phase lag/lead for the k

th
 DOF            (1.10) 

 

Since the viscous damping is assumed to be non-proportional, the free vibration solution 

(1.9) represents non-synchronous damped oscillation (i.e. the phase 𝜑𝑘 is different for each 

DOF). In the case of proportionally damped system we have to deal with synchronous free 

oscillation – i.e. the phase 𝜑𝑘 is constant (the same for all DOF), for undamped systems 𝜑𝑘 is 

zero – see [6], [7], p.118.  

The features, showed in Eq.(1.9), (1.10) are well known and used in modal analysis, see 

for example [6]. In the present paper the statement of synchronous free oscillations in the pro-

portional damping case should be proved analytically in Sec. 3.1. 

 

2 MODAL DECOMPOSITION METHOD INCLUDING THE COMPLEX RIGHT 

EIGENVECTORS 

2.1 The single mass oscillator  

The equation of motion of a damped single degree of freedom system (SDOFS) (1.5b) can 

be written in the form 

 

 

 

 

 

 







 t

0

tp

tv

tw

0ω

ω2η

tv

tw

ω0

01

pqkqm












































 2

2

2


                        (2.1a) 

pqkqm              pmqkmq
1

a

1   
                                    (2.1b) 

where the velocity is 

vw                                            (2.2) 

The exponential solution  tt ee  xqxq  , , introduced into the homogenous form of 

the differential equation (2.1), gives the quadratic eigenvalue problem 



0

xkm














































 10

01
2

2

2





0ω

ω2η

ω
    0xkm                               (2.3) 

The two complex conjugate eigenvalues ( 1 , subcritical damped system) are:  
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   ir iiω

ir








222

2/1 1                      (2.4) 

where        22

ir   ,    



 r ,         21  D                     (2.5) 

The two corresponding complex conjugate eigenvectors  𝜑1/2 ,  at first normalized relative 

to the mass matrix 

 
 2,1,

1

1

22








 


 k

i

iω

ir

ir






k

T

k

k
k

xmx

x
                 (2.6) 

are combined into a modal matrix: 

  21                           (2.7) 

Due to normalization Eq. (2.6) the orthogonality relationships can be derived: 








































 

22 0

01

10

01

10

01

0

01

ωω

1TTT
m                         (2.8) 












































 

0

2

0

0

0

0

0

2
2

2

2

1

2

1

2

2

ω

ω

ω

ω 













 1TTT

k             (2.9) 

The inverse of the complex modal matrix   ,  can be expressed analytically using 

computer algebra software: 

 

  






















iQPiZZ

iQPiZZ

21

21

2

1

12

1


                     (2.10) 

 

where 

   22

2

22

1 1111   ZZ               (2.11a) 

 

   21

2

12

2 11 ZZQZZP                 (2.11b) 

 

2.2 The damped multi-degree-of-freedom-system 

The equations of motion (1.1) of damped MDOFS (n DOF) will be written in the state-

space form: 

  





 PQKQM

p

V

W

K

KD

V

W
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GG























































































)(t

 ;    WV               (2.12a) 

PQKQM GG   ,                          (2.12b) 
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where MG and KG are, respectively the (2n x 2n) symmetric generalized mass and the gener-

alized stiffness matrices. The symmetric damping matrix D is non-negative and represents a 

non-proportional damping. 

 

The exponential solution (1.2), substituted into the homogenous form of Eq.(2.12), leads to 

the 2n-dimensional eigenvalue problem 

  0

Χ

Χ

KM GG 





















                     (2.13) 

The solution of Eq. (2.13) is given by n complex conjugate eigenpairs (1.4), now written in 

the form: 

 njii
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j 2,1;;
)(
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)()()(
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      (2.14) 

Each j
th

 eigenvector-pair 
)()( ,

jj
ΧX  is normalized (index (j) omitted) relative to the general 

mass matrix GM : 

ir ΦΦ
X

Φ i
iBA




 ,  

















Χ

Χ
M

Χ

Χ
G


T

iBA                (2.15a)  

ir ΦΦ
Χ

Φ i
iBA




 , 

















Χ

Χ
M

Χ

Χ
G


T

iBA             (2.15b) 

 

Subject to the normalization (2.15) follow the orthogonality relationships –expressed in 

terms of the j
th

 eigenvector-pair (index (j) omitted): 
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               (2.16) 
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               (2.17) 

The (2n x 2n) complex square modal matrix, denoted by GΦ , is made up of the n eigen-

vector-pairs, see Eqn.(2.15):  


















)()()1()1(

)()()()()1()1()1()1(

nn

nnnn

ΦΦΦΦ

ΦΦΦΦ

ΦG



 

             (2.18) 

The orthogonality properties – see Eq. (2.16), (2.17), are used to perform a modal decom-

position of the equations of motion (2.12): 
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             (2.19) 

where  
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 Tnn baba )()()1()1( 







GG ΦAΦ

V

W
               (2.20) 

 

is a coordinate transformation, and    jj ba ,  are new complex variables. 

Introducing real modal coordinates    jj yx ,  for each j
th

 eigenpair, i.e.: 
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 ,                 (2.21) 

 

the differential equations (2.19) can be transformed in pairs into the real form of SDOFS-

equation (index (j) omitted), regarding Eqs.(2.8), (2.9) and using (2.5): 
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           (2.22) 

For each eigenvalue pair )()()( j

i

j

r

j i   the matrix    1
,


  of the corresponding 

SDOFS can be computed by Eqs. (2.4),(2.5),(2.10), (2.11). 

2.3 The real modal transformation basis  

Using both transformations (2.19) and (2.22), the equations of motion (2.12) will be un-

coupled into n real SDOFS block equations as follows: 

 

𝐘T ∙ [𝐌
−𝐊
] ∙ 𝐘

⏟          

[
 
 
 
 
1

−𝜔1
2

⋯
1

−𝜔𝑛
2 ]
 
 
 
 

∙

[
 
 
 
 
�̇�1
�̇�1
⋯
�̇�𝑛
�̇�𝑛]
 
 
 
 

⏟
�̇�

+ 𝐘T ∙ [
𝐃 𝐊
𝐊

] ∙ 𝐘
⏟          

[
 
 
 
 
 
2𝜂1 𝜔1 𝜔1

2

−𝜔1
2 0

⋯
2𝜂𝑛 𝜔𝑛 𝜔𝑛

2

𝜔𝑛
2 0 ]

 
 
 
 
 

∙

[
 
 
 
 
𝑥1
𝑦1
⋯
𝑥𝑛
𝑦𝑛]
 
 
 
 

⏟
𝐗

= 𝐘T ∙ [
𝐩
]⏟    

[
 
 
 
 
𝑔1
ℎ1
⋯
𝑔𝑛
ℎ𝑛]
 
 
 
 

           (2.23) 

The new (2n x 2n) transformation basis Υ is defined by combination of two complex 

transformations (2.19), (2.22): 
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                       (2.24) 

It can be shown that the Υ -matrix in Eq. (2.24) and all „load“-vectors  [𝑔(𝑡) ℎ(𝑡)]𝑇 , see 

Eq.(2.22), are purely real. After component multiplication of the analytically expressed terms 
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of 𝚽𝑮 and of 𝚿−𝟏 all imaginary parts cancel each other, see details in [4]. This is briefly 

sketched below by developing the two columns of Υ , belonging to the j
th

 eigenvector-pair: 
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              (2.25) 

With regard to Eq. (2.5), (2.10), (2.11) the multiplication 
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iiii irir
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212

1            (2.26) 

leads to purely real components of the two columns of the transformation basisΥ : 

 

 

 

 

 

            (2.27a-d) 

 

 

 

 

 

In the same manner we develop the “load”-vector in Eq. (2.22) 

 

[
𝑔(𝑡)

ℎ(𝑡)
] =

1

2√1−𝜂2
[
(−𝑍1 − 𝑖𝑍2) (−𝑍1 + 𝑖𝑍2)
𝑃 − 𝑖𝑄 𝑃 + 𝑖𝑄

] [
(𝜆𝑟 + 𝑖𝜆𝑖)(𝚽𝐫

𝐓 + 𝑖𝚽𝐢
𝐓)

(𝜆𝑟 − 𝑖𝜆𝑖)(𝚽𝐫
𝐓 − 𝑖𝚽𝐢

𝐓)
]  𝐩(𝑡)                 (2.28) 

 

𝑔(𝑡) =
𝜔

√1−𝜂2
 {(𝑍2√1 − 𝜂

2 + 𝑍1𝜂)𝚽𝐫
𝐓 + (𝑍1√1 − 𝜂

2 − 𝑍2 𝜂)𝚽𝐢
𝐓}  𝐩(𝑡)                     (2.29a) 

 

ℎ(𝑡) =
𝜔2

√1−𝜂2
 {𝑍1𝚽𝐫

𝐓 − 𝑍2 𝚽𝐢
𝐓} 𝐩(𝑡)                          (2.29b) 

 

Each j
th

 SDOFS block equation in (2.23) can be easily solved, eliminating the modal coor-

dinate 
)( jx  to obtain the usual form of the SDOFS equation of motion (index (j) omitted):  

)(
1

2
thyx


                              (2.30a) 

)(
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)(2
2

2 ththtgyyy 
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The dynamic response   ty j  can be obtained by step-by-step integration, applied to Eqs. 

(2.30b,a). The final time response of the original n DOFs is calculated by superposition of the 

modal coordinates    jj yx , in accordance to Eq. (2.24).  

 

The major advantage of the suggested method is the developed new modal transformation 

matrix Υ , see (2.24), in real space for damped MDOFS with symmetric non-diagonalisable 

(i.e. non-modal) damping matrix. The method has also the usual modal superposition ad-

vantage - an uncompleted transformation employing only a few modes (k<<n) in the Y -basis 

leads with sufficient numerical accuracy - after the final back coordinate transformation - to 

the dynamic response of all n DOF. 

3 THE PROPORTIONAL DAMPED SYSTEM  

3.1 Modal transformation of the equations of motion 

A simple method to construct a damping matrix 𝐃𝑝, presenting a proportional damping, is 

the Rayleigh damping assumption: 

 

𝐃𝐩 = (𝛼 𝐌 + 𝛽 𝐊)                  (3.1a) 

 

where   𝛼, 𝛽 : unknown weighting parameter, see Eq.(3.7),(3.8a,b) 

The modal damping matrix is a particular case of a more general proportional damping as-

sumption, see [7] p.105, in the form: 

 

𝐃𝐩 = ∑ 𝑎𝑘𝐌
𝑛
𝑘=1 (𝐌−𝟏𝐊)𝑘−1                 (3.1b) 

 

The matrix (3.1b) turns for 𝑛 = 2  to  𝐃𝐩 = 𝑎1𝐌+ 𝑎2𝐊 , which is the Rayleigh approach 

(3.1a).  

The eigenvalue problem 

 

(𝜆𝑗
2 𝐌 + 𝐊) 𝐗𝑗 = 𝟎 ,                     (3.2) 

 

corresponding to the equations of motion of MDOFS without damping 

 

𝐌�̈� + 𝐊𝐕 = 𝐩(𝑡),                    (3.3) 

 

has the solution:  𝜆𝑗 = 𝑖𝜔0𝑗     with the free frequency  𝜔0𝑗  

 𝐗𝑗  , (𝑗 = 1,2 ⋯ , 𝑛) real eigenvectors 

 

The modal matrix 𝐔, belonging to (3.2) 

 

𝐔 = [𝐔1 𝐔2 ⋯ 𝐔𝑛]                  (3.4) 

 

comprises n real, mass normalized eigenvectors 

 

𝐔𝑗 =
 𝐗𝑗

√𝐗𝒋
𝑻 𝐌  𝐗𝑗

         (𝑗 = 1,2,⋯ , 𝑛).                (3.5) 
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The mass normalisation (3.5) leads to the orthogonality relationships 

𝐔𝑻𝐌𝐔 = [

1
1

⋯
1

]                      (3.6a) 

𝐔𝑻𝐊𝐔 =

[
 
 
 
𝜔01
2

𝜔02
2

⋯
𝜔0𝑛
2 ]
 
 
 

= 𝛀                (3.6b) 

 

The Rayleigh damping matrix  𝐃𝐩 can be diagonalized applying (3.6a,b) to (3.1a):  

 

𝐔𝑻𝐃𝐩𝐔 =

[
 
 
 
𝛼 + 𝛽𝜔01

2

⋯
⋯

𝛼 + 𝛽𝜔0𝑛
2 ]
 
 
 
= [

2𝜂1 𝜔01
⋯

⋯
2𝜂𝑛 𝜔0𝑛

]             (3.7) 

 

The general form of the 𝐃𝐩 matrix (3.1b) can also be transformed in diagonal form by use 

of the real modal matrix 𝐔, as shown in [7] p. 105. 

The terms in the main diagonal of the right side of (3.7) are set to be equal to the modal 

damping term 2𝜂𝜔0 of the equation of motion for SDOFS (2.1). The two unknown parameter 

𝛼  and 𝛽  can be calculated by solving a system of two equations  𝛼 + 𝛽𝜔0𝑗
2 = 2𝜂𝑗 𝜔0𝑗   ,

(𝑗 = 1,2) , using the first two lowest free frequencies  𝜔0𝑗 and by arbitrary choose of two ap-

propriate damping ratios 𝜂𝑗 : 

 

𝛼 =
2𝜔01𝜔02(𝜔01𝜂2− 𝜔02𝜂1)

𝜔01
2 −𝜔02

2

𝛽 =
2(𝜔01𝜂1− 𝜔02𝜂2)

𝜔01
2 −𝜔02

2

                     (3.8a,b) 

 

Typically for the viscous damping is evidently the frequency related damping parameters. 

Below the parameter  𝛼 and 𝛽 are set to be known. In the general case (3.1b) the unknown 

coefficients  𝑎𝑘 are to be determined by solving a system of n linear equation, see [7] for de-

tails. 

We consider now the proportionally damped system (1.1) with  𝐃 = 𝐃𝐩. Assuming the so-

lution (1.2), the associated quadratic eigenvalue problem (1.3) gives 

 

𝜆𝑗
2 𝐌 𝚽𝑗 + 𝜆𝑗 (𝛼 𝐌 + 𝛽 𝐊)⏟        

𝐃𝐩

 𝚽𝑗 + 𝐊 𝚽𝑗  = 𝟎                          (3.9) 

The mass normalized eigenvectors 𝚽𝑗 in Eq. (3.9) are generally complex conjugate, see 

Eq. (2.13) – (2.15). But the eigenvalue problem (3.9) possess also “classical” real 

eigenmodes, identical to the eigenmodes 𝐔𝑗 , belonging to the eigenvalue problem without 

damping, see Eq. (3.2) – (3.5).  

Using the 𝐔𝑗 eigenmodes instead of 𝚽𝑗, the eigenvalue problem (3.9) can be transformed, 

with regard to (3.6), (3.7), to 

3074



E. Stanoev 

{𝜆𝑗
2 𝐌 + 𝜆𝑗 (𝛼 + 𝛽ω0𝑗

2  )𝐌⏟          
𝐃𝐩

+ω0𝑗
2 𝐌⏟  
𝐊

} 𝐔𝑗 = 𝟎              (3.11a) 

 

The corresponding complex eigenvalue 𝜆𝑗 is then computed from 

𝜆𝑗
2  + 𝜆𝑗(𝛼 + 𝛽ω0𝑗

2  ) + ω0𝑗
2 = 0 

→   𝜆𝑗1,2 = −
1

2
(𝛼 + 𝛽ω0𝑗

2  )⏟        
2𝜂𝑗𝜔0𝑗 

 ±  √
1

4
(𝛼 + 𝛽ω0𝑗

2  )
2

−ω0𝑗
2  = 

→   𝜆𝑗1,2 = −𝜂𝑗𝜔0𝑗⏟    
𝜆𝑟

 ± 𝑖 𝜔0𝑗√1 − 𝜂𝑗
2

⏟        
𝜆𝑖

                  (3.11b) 

By comparing (3.11b) to (1.7) is evidently, that the free frequency 𝜔, computed according 

to (2.4), (2.5) 

𝜔 = √𝜆𝑟2 + 𝜆𝑖
2 = {(𝜂𝜔)2 + (𝜔√1 − 𝜂2)

2
}

1

2
             (3.11c) 

 

by use of the j
th

 conjugate complex eigenvalues 𝜆𝑗 of the proportional damped system, is iden-

tic to the free frequency 𝜔0𝑗 of the corresponding system without damping. With the eigen-

value 𝜆𝑗 , Eq.(3.11b), the relationship (3.11a) proves that 𝐔𝑗  is a eigenvector of the 

proportional damped system (3.9). 

In the considered case the equations of motion (1.1) can be transformed in modal space – 

Eq. (3.12), with regard to (3.6), (3.7): 

 

𝐔𝑻𝐌𝐔 �̈� + 𝐔𝑻𝐃𝐩𝐔 �̇� + 𝐔
𝑻𝐊𝐔 𝐲 = 𝐔𝑻𝐩(𝑡) ,                         (3.12) 

 

In (3.12) the modal superposition of the original DOF is supposed by use of the “classical” 

modal matrix 𝐔 of the undamped problem, see Eq.(3.4),  : 

 

𝐕 = [𝐔1 𝐔2 ⋯ 𝐔𝑛] ∙ [

𝑦1
𝑦2
⋯
𝑦𝑛

] = 𝐔 ∙ 𝐲                  (3.13) 

 

In order to transform the state space form of the equations of motion (2.12) we construct a 

(2n x2n) transformation matrix 𝐘U by the mass normalized eigenvectors 𝐔𝑗 (3.4), (3.5) in the 

form 

 

𝐘U = [
𝐔1 𝟎
𝟎 𝐔1

𝐔2 𝟎
𝟎 𝐔2

⋯
⋯

𝐔𝑛 𝟎
𝟎 𝐔𝑛

]                   (3.14) 

 

Eq. (2.12) can be transformed into n uncoupled real SDOFS block equations by the aid of  

𝐘U, with regard to Eqs. (3.6), (3.7): 
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𝐘𝑈
T ∙ [𝐌

−𝐊
] ∙ 𝐘U⏟            

[
 
 
 
 
1

−𝜔1
2

⋯
1

−𝜔𝑛
2 ]
 
 
 
 

∙

[
 
 
 
 
�̇�1
�̇�1
⋯
�̇�𝑛
�̇�𝑛]
 
 
 
 

+ 𝐘𝑈
T ∙ [

𝐃𝐩 𝐊

𝐊
] ∙ 𝐘U⏟            

[
 
 
 
 
 
2𝜂1 𝜔1 𝜔1

2

−𝜔1
2 0

⋯
2𝜂𝑛 𝜔𝑛 𝜔𝑛

2

𝜔𝑛
2 0 ]

 
 
 
 
 

∙

[
 
 
 
 
𝑥1
𝑦1
⋯
𝑥𝑛
𝑦𝑛]
 
 
 
 

=  𝐘𝑈
T ∙ [

𝐩
]⏟    

[
 
 
 
 
𝑔1
0
⋯
𝑔𝑛
0 ]
 
 
 
 

          (3.15) 

 

where the modal velocity is 

 

𝑥𝑗 = �̇�𝑗                                          (3.16)

  

Equation (3.15) is another form of the modal decomposition (3.12). Note the difference of 

Eq. (3.16) from Eq.(2.30a) in the general case of non-proportional damping, see further Eq. 

(3.17). 

We compare now the transformed equations (3.15) for the case of proportional damping 

with the general form (2.23) where 𝐃 = 𝐃𝑝. For both of the compared SDOFS block equa-

tions to be identic, it is evidently that each “load” term ℎ𝑗  from (2.23) must be equal to zero, 

see (2.29b): 

 

ℎ =
𝜔2

√1−𝜂2
 {𝑍1𝚽𝐫

𝐓 − 𝑍2 𝚽𝐢
𝐓} 𝐩 = 0                                   (3.17) 

 

All terms in Eq. (3.17) exclusive of p belong to the considered j
th

 eigenmode. Thus, with 

regard to (2.11a),  (2.5) 

 

(𝑍1𝚽𝐫
𝐓 − 𝑍2𝚽𝐢

𝐓) = 𝟎 

  →    
Φ𝑖(𝑘)

Φ𝑟(𝑘)
=
𝑍1

𝑍2
=
√√1−𝜂2+(1−𝜂2)

√√1−𝜂2−(1−𝜂2)

=
𝜂

1−√1−𝜂2
= 𝑐𝑜𝑛𝑠𝑡.                     (3.18) 

 

for all k
th

 DOF of the j
th

 eigenmode pair (𝚽𝐫 ± 𝑖𝚽𝐢) with corresponding eigenvalue  
(𝜆𝑟 ± 𝑖𝜆𝑖). Equation (3.18) proves the statement of a constant phase lag/lead, see Eq. (1.10), 

i.e. in the case of proportionally damped system each free vibration is a synchronous motion 

of all DOF. 

3.2 The transformation matrix 𝐘  

 

The modal equations (3.15) demonstrate, that for the investigated case of proportional 

damping the modal transformation matrix 𝐘U, Eq. (3.14), must be identical to the matrix 𝐘 , 

Eq. (2.23), (2.24), derived for the case 𝐃 = 𝐃𝑝 . By comparing the two columns of  𝐘, see Eq. 

(2.27b,c), to the corresponding zero-columns of  𝐘U, it follows  

 

𝐘𝐲
𝐖 =

1

√1−𝜂2
(𝜔2𝑍1𝚽𝐫 −𝜔

2𝑍2𝚽𝐢) = 𝟎                     (3.19a) 

𝐘𝐱
𝐕 =

1

√1−𝜂2
(−𝑍1𝚽𝐫 + 𝑍2𝚽𝐢) = 𝟎                       (3.19b) 
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→     −𝑍1𝚽𝐫 + 𝑍2𝚽𝐢 = 𝟎                  (3.20) 

 

The relationship (3.20) leads again to  
Φ𝑖(𝑘)

Φ𝑟(𝑘)
=
𝑍1

𝑍2
= 𝑐𝑜𝑛𝑠𝑡.  (Eq.(3.18)) for all k

th
 DOF of 

the considered eigenmode.  

Thus the modal transformation matrix 𝐘, see Eq. (2.25) and (3.14), has in this case the 

form 

 

𝐘 = [
⋯ 𝐘𝐱

(𝑗)𝐖
𝟎 ⋯

⋯ 𝟎 𝐘𝐲
(𝑗)𝐕

⋯
] = [

⋯ 𝐔𝑗 𝟎 ⋯

⋯ 𝟎 𝐔𝑗 ⋯
]               (3.21) 

 

 

4 NUMERICAL EXAMPLE 

4.1 Structural system, stiffness and geometry data 

  

 
 

Fig. 1 Rotor blade beam model subjected to wind loads 

 

The stiffness data of the blade cross sections have been calculated in [14]. The generic aero-

dynamic blade geometry has been derived from real blade data. Below are given for instance 

the stiffness data, referred to the origin of the coordinate system of the cross section, at the 

distance of 2.0 m from the blade root – see Fig. 2: 

 
Center of mass F  (0.124, -0.0119)  [m]  distributed mass  73.835  [kg/m] 

EA    = 947410000.0    [N]  (axial stiffness)  

EAy  = 86101990.0  [Nm]   EAz  = -4408355.0  [Nm] 

EAyy = 48655550.0 [Nm
2
]   EAzz = 16441220.0 [Nm

2
] 

EAyz = 281046.0 [Nm
2
]    GIT  = 6500099.0 [Nm

2
]  (torsional stiffness) 

8
 x

 1
.5

  
m

 
0
.5

 

y 

z 
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1
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m
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The finite element solution is based on the numerical integration of the system of differen-

tial equations for the Bernoulli-beam. The reference axis of the beam model coincides with 

the centre of the circular-section at the root – it is the real rotational axis of the rotor blade. 

Thereby the differential equations and all cross section stiffness data are refered to this axis, 

accounting for the eccentric mass application.  
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Rotor blade sections at 2.0 m – thin wall cross section model 

 

4.2 Wind loads  

  

The wind loads are calculated according to the formula for the aerodynamic lift force per 

unit length of an aerofoil, see [13] p.59: 

 

𝐿 =
1

2
𝜌 ∙  𝑐(𝑟)  ∙ 𝑊2  ∙ 𝐶𝐿          (4.1) 

 

where:  𝑊  : air velocity relative to the aerofoil 

  𝜌  : air density = 1.225 [kg/m
3
] 

        𝑐(𝑟) : chord of the aerofoil 

  𝐶𝐿  : lift coefficient  𝐶𝐿 = 2𝜋 𝛼 = 2𝜋 (
𝜋

180
6.0) = 0.658,   

  the flow angle 𝛼 is assumed to be 6.0 [deg] 

   

The air velocity 𝑊 is the vector sum of the rotational speed Ω (with assumed 60 rpm) and 

the wind speed  𝑢, incident on the aerofoil in accordance with the Betz-theory: 

𝑊 = √(Ω 𝑟)2 + (
2

3
𝑢)

2

       where  Ω = (
60

30
𝜋) in [rad/s]     (4.2) 

 

The wind speed function is assumed to be  

 

𝑢(𝑡) = 16.0 + 8.0 𝑠𝑖𝑛(2𝜋𝑓𝑡),     where    𝑓 = 1 [Hz]     (4.3) 

 

The resulting wind thrust loads per unit length along the x-axis of the rotor blade are given 

below. In the structural model the wind thrust loads are acting as summarized nodal forces. 

 

 

 

 

 

z 

y 
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 r      c                    wind thrust F(t) 

[m]  [m]                     [N/m] 

 

 

 
 

 

 

 

 

 

  

  

 

 

The wind thrust functions F(t) are acting on the rotor blade as shown in Fig. 3 for 10 sec.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3   Wind thrust function at 12.5 m 

 

4.3 Relationships and data for the damping approach  

 

Starting point of the computation are the equations of motion  












































 0

P

V

W

0K

KD

V

W

K0

0M )(t




                  (4.4) 

where   )(tP  is the nodal force vector, representing the wind thrust according to Sec. 4.2. 

 
The system equations (4.4) will be solved applying the proposed modal analysis method in 

Sec. 2  for two cases: non-proportional and proportional damping. 

 

The lowest four free-vibration frequencies and associated periods for the undamped system 

are calculated to 

𝐹(𝑡) = 0.2204 [5.333 𝑠𝑖𝑛(2𝜋𝑓𝑡) + 10.6667]2 + 1359.79 

1

4
𝐹(𝑡) 
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𝑓1 = 2.643  [𝑠
−1] 𝑇1 = 0.378  [𝑠]

𝑓2 = 4.622  [𝑠
−1] 𝑇2 = 0.216  [𝑠]

𝑓3 = 7.942  [𝑠
−1] 𝑇3 = 0.126  [𝑠]

𝑓4 = 16.650  [𝑠
−1] 𝑇4 = 0.060  [𝑠]

               (4.5) 

  

Assuming stiffness proportional damping in accordance with Eq.(3.1), the damping system 

matrix is  

𝐃𝐩 = 𝛽 𝐊                      (4.6) 

With an assumed damping ratio  𝜂 = 0.008, see [13] p.249,  for the first natural period 
1T , 

we obtain with regard to Eq.(3.8a,b) 

 

𝛽 =
2𝜂

𝜔1
=
𝜂 𝑇1

𝜋
= 0.000964[𝑠]             (4.7) 

 

The non-proportional symmetric damping matrix 𝐃𝐧𝐩 is build adding to the 𝐃𝐩-matrix a 

new matrix 𝐃𝐚, which represents the aerodynamic damping. The formulation is based on a 

simple expression for the aerodynamic damping coefficient per unit length 𝑐(𝑟), given in [13], 

p. 247: 

 

𝑐(𝑟) =
1

2
𝜌 ∙  Ω𝑟 ∙ 𝑐(𝑟) ∙

𝑑𝐶𝐿

𝑑𝛼
      [

𝑘𝑔

𝑠

1

𝑚
],      where       

𝑑𝐶𝐿

𝑑𝛼
= 2𝜋    (4.8) 

 

With  Eq. (4.1), (4.2), the corresponding damping coefficients along the x-axis of the rotor 

blade are calculated to 

 
         r      c          𝑐(𝑟)   
       [m]  [m]      [kg/s.m] 

 

 

 

 

 

 

 

 

The coefficients  𝑐(𝑟) , which represent the aerodynamic damping, are active for vibration 

in z-direction of the cross-section coordinate system, see Fig. 2. The associate symmetric 

damping matrix for the Bernoulli-beam element is derived by analogy with the method used 

to derive the finite element mass matrix, see [15]. Finally the symmetric system damping ma-

trix, 𝐃𝐧𝐩, is assembled in a finite-element manner, including structural (proportional) and aer-

odynamic damping:  

 

𝐃𝐧𝐩 = 𝐃𝐩 + 𝐃𝐚                 (4.9) 

 

4.4 Non-proportional damped system 

We use here the matrix 𝐃𝐧𝐩 – Eq.(4.9). The vector of the first ten complex conjugate ei-

genvalue pairs of the matrix 
G

1

G KMA   , see Eq.(2.13), is  
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        (4.10) 

 

 

 

 

 

 

 

 

The number of modes considered in the modal transformation is limited to the first four ei-

genvector pairs – this are in ascending order the #3, 1, 4, 5 of the vector in (4.10). The struc-

tural system has in Fig. 1 has 54 DOF. The corresponding (108x8) modal matrix 𝚽𝐆 with 

mass normalized eigenvectors – Eq.(2.18), is computed to (only the first ten rows are printed) 

 

                   (4.11) 

 

The matrix  𝚿−1 is now calculated in the case of four involved eigenmodes according to Eq. 

(2.24): 

 

𝚿−1 =

[
 
 
 
 
 (𝜑

(1))
−1

(𝜑(2))
−1

(𝜑(3))
−1

(𝜑(4))
−1
]
 
 
 
 
 

=                         
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                   (4.12) 

 

Finally the (108x8) real transformation matrix 𝐘 is computed according to (2.24) – here 

only the first ten rows: 

 

  

 

 

  
𝐘 = 

 

 

 

 

  

                     (4.13) 

After the modal transformation in regard to (2.23) the time-dependent “load” vector (here 

for the time 0…5 sec) is calculated to be, see also Fig. 3,   

 

[
 
 
 
 
𝑔1(𝑡)

ℎ1(𝑡)
⋯
𝑔3(𝑡)

ℎ3(𝑡)]
 
 
 
 

= 𝐘T ∙ [
𝐩
] =         (4.14) 

 

 

The resultant four uncoupled SDOFS block equations from type of Eq. (2.23), prepared in 

the form (2.30a,b), are solved by step-by-step integration:  

[
 
 
 
 
1

−𝜔1
2

⋯
1

−𝜔𝑛
2]
 
 
 
 

∙

[
 
 
 
 
�̇�1
�̇�1
⋯
�̇�𝑛
�̇�𝑛]
 
 
 
 

⏟
�̇�

+

[
 
 
 
 
 
2𝜂1 𝜔1 𝜔1

2

−𝜔1
2 0

⋯
2𝜂𝑛 𝜔𝑛 𝜔𝑛

2

𝜔𝑛
2 0 ]

 
 
 
 
 

∙

[
 
 
 
 
𝑥1
𝑦1
⋯
𝑥𝑛
𝑦𝑛]
 
 
 
 

⏟
𝐗

=

[
 
 
 
 
𝑔1
ℎ1
⋯
𝑔𝑛
ℎ𝑛]
 
 
 
 

, (𝑛 = 4) 

                        (4.15) 
 

where  [𝜔𝑖] = 

 

               [𝜂𝑖] =      (4.16a,b) 
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The effect of the implied additional aerodynamic damping results evidently in the large 

damping ratio 𝜂𝑖 = 0.33269  for the first free vibration. 

The vibration-response has been determined in the time 0…10 s, the time step length for the 

applied Newmark integration method is 0.005 s. 

 

The time response of the modal coordinates  ty j
,  4...,1j , are shown in the following 

figure 4 for the time 0…5 sec:  

 

Fig. 4 Time response of the modal coordinates  ty j
 for the case “non-proportional damping” 

 

By a back transformation according to Eq. (2.24) the total response  tV  is obtained  - see 

Figs. 5a-c: 

 

 

 

 

 

 

 

 

Fig.5a   Total vibration    mtu2
 at the rotor blade tip (y-direction at node #10) 
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Fig.5b   Total vibration    mtu3
 at the rotor blade tip (z-direction at node #10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5c   Total rotation    radt2  at the rotor blade tip (y-axis at node #10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5d   Total torsional rotation    radt1  at the rotor blade tip (x-axis at node #10) 
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The vibration responses, computed by direct step-by-step integration of the equations (4.4), 

are practically identical to those in Fig. 5a-d. 

4.5 Proportional damped system 

 

In this case we use the derived symmetric damping matrix 𝐃𝐩 – Eq.(4.6), (4.7). The first 

ten lowest complex conjugate eigenvalue pairs, resulting from Eq. (2.13), are now: 

 

 

 

 

 

 

        (4.17) 

 

 

 

 

 

 

 

 

The corresponding (108x8) 𝚽𝐆 modal matrix – Eq. (2.18), comprises the first four mass 

normalized complex conjugate eigenvector pairs. In order to verify the derived relationship  

 
Φ𝑖(𝑘)

Φ𝑟(𝑘)
=

𝜂

1−√1−𝜂2
= 𝑐𝑜𝑛𝑠𝑡. , see (3.14), we compute this ratio for all components of the in-

volved  (𝚽𝐫 ± 𝑖𝚽𝐢)
(𝑗) (𝑗 = 1,…4)  eigenvectors (for instance the first ten rows only): 

 

 

=
𝜂𝑗

1−√1−𝜂𝑗
2
    ,     (𝑗 = 1,… 4)            (4.18)      ↔    

 

 

The corresponding damping ratios 𝜂𝑗 , see Eq. (4.21b), are computed in accordance with Eq. 

(2.5). 

The next step is the computation of the matrix 𝚿−1 , Eq. (2.24). The (108x8) real trans-

formation matrix 𝐘, computed in regard with Eq. (2.24), (2.27), has now the form of (3.21):  

 

 

 

 

           (4.19)                 𝐘 = 

 
 

 

In (4.19) are printed again only the first ten rows of 𝐘. 
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The time-dependent “load” vector in the general modal transformed equations (2.23) is 

now (here for the time 0…5 sec) - see also Eq. (3.15) and (4.12):  

 

[
 
 
 
 
𝑔1(𝑡)

ℎ1(𝑡)
⋯
𝑔4(𝑡)

ℎ4(𝑡)]
 
 
 
 

=                       (4.20) 

 

 

Eq. (4.20) implies  𝑥𝑗 = �̇�𝑗, see Eq.(3.15), (3.16), contrary to the general case Eq.(2.30a).  

In the resultant four uncoupled SDOFS block equations, see (4.15), the free frequencies 

and the modal damping ratios are resp. 

[𝜔𝑖] = 

            (4.21a,b) [𝜂𝑖] =

After step-by-step integration of the four modal equations (4.15), the time series of the 

modal coordinates    tytx jj , ,  4...,1j , are obtained – Fig. 6:  

 

Fig. 6   Time response of the modal coordinates  ty j
 for the case “proportional damping” 
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The total responses  tV  are computed by a back transformation according to Eq. (2.24) – see 

Figs. 7a-d: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7a - Total vibration    mtu2
 at the rotor blade tip (y-direction at node #10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7b - Total vibration    mtu3
 at the rotor blade tip (z-direction at node #10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7c - Total torsion    radt1   at the rotor blade tip (x-direction at node #10) 
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Fig 7d - Total rotation    radt2  at the rotor blade tip (y-axis at node #10) 

 

5 CONCLUSIONS  

 A general modal decomposition method of MDOFS with non-proportional damping is 

briefly presented in Sec. 2. The procedure is based on the complex eigenvalue solution of 

a structural model with symmetric non-proportional damping matrix. By use of the right 

complex conjugate eigenvector pairs, normalized relative to the general mass matrix, a 

new real transformation matrix 𝐘, see Eq. (2.24), (2.27), is developed analytically to per-

form a modal decomposition of the equations of motion in real arithmetic. The complex 

conjugate eigenpairs – eigenvalues and the corresponding eigenvectors – are to be com-

puted first, at least for the lowest few modal shapes.  

 The equations of motion are transformed into uncoupled SDOFS block equations. Em-

ploying only a few (k) eigenvector pairs in the 𝐘 -basis (k<<n) is leading – typical for a 

modal transformation procedure – with sufficient numerical accuracy to the total time re-

sponse of all n DOF. The modal equations are numerically integrated and finally trans-

formed back to the original DOF. In more details the method has been described in [3], 

and in [4] has been developed a similar method, based on the right and left eigenvector 

pairs. 

 The application of the suggested method to the special case of proportional damped sys-

tem is considered in details in Sec. 3. Employing a Rayleigh damping matrix, it has been 

shown that the modal transformation from Sec. 2 implies a ratio  
Φ𝑖(𝑘)

Φ𝑟(𝑘)
= 𝑐𝑜𝑛𝑠𝑡. for all k

th
 

DOF of each considered eigenmode  (𝚽𝐫 ± 𝑖𝚽𝐢), i.e. the “constant phase” statement. 

This proves in an indirect manner that the free vibrations in the proportional damping 

case are synchronous. A simple formula for computing of the constant ratio has been also 

derived, expressing it through the associated modal damping ratio 𝜂.  

 In Section 4 a numerical example – vibration of a rotor blade with 54 DOF - demon-

strates the performance of the presented modal method for the two cases – non-

proportional and proportional (Rayleigh) damping. In the first variant the damping matrix 

of the system contains a stiffness-proportional part and a simple approximated aerody-

namic damping part. In the second variant the formula for the constant phase of the reso-

nance modes is verified numerically. 

 Real life applications of the proposed modal analysis method and possible numerical 

complications are discussed more widely in [4], [5]. The present paper studies some 
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known features of proportionally damped systems – the synchronous free vibrations – 

from a viewpoint of a new proposed modal analysis method.  
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Abstract. A force-based formulation for the step-by-step non-linear (elastic-plastic) analysis 

of three-dimensional (3D) structural frames is presented. It uses the redundant force and 

moment components as primary unknowns, and approximates the non-linearity problem in an 

incremental pattern. Using a simple linear transformation, the equilibrium matrices are 

quickly formed via a partial multiplication of a subset of matrices with dimensions (3x3). The 

convex yield function that describes the static admissibility condition of each zero-length 

plastic hinge is approximated with a linear convex polyhedron (manifold), whose hyper plane 

equations are automatically defined with the help of De Bruijn sequences. In this way, a num-

ber of complex force/moment interaction criteria may easily be defined that take into account 

shear and torsion. Discontinuities (e.g. articulations) are also accounted for. Out of the par-

tial derivatives of these yield functions with respect to the stresses, the corresponding plastic 

deformations are computed, with the help of Lagrange multipliers. The formulation may be 

solved using any non-linear optimization algorithm that solves for linear constraints. Results 

are compared to those of the equivalent direct stiffness method and to those of the existing 

literature, proving the efficiency of the proposed formulation. 
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1 INTRODUCTION 

In this paper, an existing step−by−step, force−based method [1] is further extended to the 

analysis of inelastic 3D structural frames. Techniques to define equilibrium matrices for in-

cremental analysis have been already presented in [1], extending what was first presented in 

[2] for the case of optimal plastic design; remedies to these techniques in order to function for 

3D structures were presented in [3]. 

Herein, an alternate linear transformation that requires fewer computer operations is intro-

duced. Furthermore, a fully automated technique for generating any type of linearized yield 

function for up to six interacting stress components is developed, that is based on the assump-

tion of lumped plasticity (plastic hinge approach). By definition, these generalized yield func-

tions are able to also cater for shear and torsion, as well as for discontinuities (e.g 

articulations). The results are compared to those of widely accepted commercial packages and 

to those from the existing literature, proving the efficiency of the proposed formulation. 

2 PROBLEM FORMULATION 

2.1 Basic Equations 

The force method is solely based on equilibrium arguments. For elastic analysis, an excel-

lent review paper has been written by A. Kaveh [4]. The brief presentation that follows below 

incorporates plasticity. 

The stress components of a structure may be represented by a vector “Qs” which is ex-

pressed as a linear combination of a vector “Q0” that contains a part of the stress components 

which is due to external loads and a vector “Q1” containing a part of the stress components 

which is due to internal redundant stresses; a load scaling factor “γ” may also be included: 

1  s 0Q Q Q (1) 

The above equation may be further developed by expressing each of the two linearly inde-

pendent vectors as the product of a matrix “Bi” and a vector “pi”, where i={0,1}. These matri-

ces express the values of the stress components of the structure due to unit valued external 

loads “p0” and unit valued internal redundant stresses “p1”, respectively: 

1 1    s 0 0Q B p B p (2) 

Equation (2) may be satisfied for an infinite number of redundant stress vectors “p1”, but 

the problem is narrowed down to a unique solution with the help of the compatibility condi-

tion, as was first proposed by James Clerk−Maxwell: 

1

T  sB q 0  (3) 

Where in (3), vector “ sq ” contains the generalized deformations of the actual structure at 

its points of reference (nodes), which may be expressed as the summation of their elastic 

“ elq ” and plastic “ plq ” components: 

 s el plq q q  (4) 

The elastic components in (4) are computed with the help of the unassembled flexibility 

matrix “ F ”: 

el sq = F Q (5) 
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The plastic components in (4) may be computed with the help of the axiom of maximiza-

tion of plastic work [5], using the stress derivative of an adequately defined yield function 

“ ( )g sQ ”: 

( )g






s
pl

s

Q
q =

Q
(6) 

Where in (6) “λ” denotes a Lagrange (or plastic) multiplier. This multiplier may be explicitly 

computed within the framework of mathematical programming [6], using a linear comple-

mentarity condition between the potential of the material to absorb stress up to its’ conven-

tional yield point (plastic potential, or “ *Y ”), and the corresponding Lagrange (plastic) 

multiplier “ ”: 

* *0 , 0 , 0T   Y λ = Y λ (7) 

Schematically, the concept of the plastic potential “ *Y ” and its’ corresponding Lagrange 

(plastic) multiplier may be depicted in Figure 1 below: 

Figure 1: Plastic potential and corresponding Lagrange multiplier. 

In algebraic terms, the plastic potential “ *Y ” is a scalar, dimensionless quantity that ex-

presses the numerical difference between the maximum and the actual value of the yield func-

tion, and is by definition nonnegative. 

The displacements along the direction of the external loads may be computed with the help 

of the static−kinematic duality (SKD): 

0

T  su B q (8) 

Historically, the SKD may be seen as another variant of the principle of virtual works 

(PVW), as was first proposed by Archimedes of Syracuse through the principle of leverage 

[7]; it expresses a “balance” between the work of external forces and the work of internal 

stresses that develop in the structure. 

Another interesting remark is that the compatibility condition (3) may be seen as a special 

case of (8), where the displacements along the direction of the redundant components are zero. 

2.2 Three-Dimensional Equilibrium 

By considering the cross product in matrix form for a Cartesian space, the induced mo-

ments “M” at a particular point “f” due to a force vector “F” that is applied at another point 

“s” may be described by the following equation: 

( )g






pl

Q
q =

Q

*

1 1( / )Q Q

*

2 2( / )Q Q

*

1y

*

2y

Q 

q2,pl 

q1,pl 
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0

0

x

R y

z

z y F

z x F

y x F

    
   

       
      

M d F (9) 

Where 

, ,f s f s f sx x x y y y z z z         (10) 

The equilibrium condition in global coordinates between the two points “f” and “s” may 

then be written in matrix form, as follows: 

0

Rf s

    
      

    

IF F

d IM M
(11) 

2.3 Linear Projections from Global to Local Coordinates 

A simple to implement, yet efficient linear transformation from global to local coordinates, 

is the following: 

L R G v T v (12) 

Where  
T

G x y zv v vv  is a vector whose components are defined with respect to a global 

Cartesian coordinate system with basis {x,y,z}, and  1 2 3

T

L v v vv  is the same vector 

with respect to a local Cartesian coordinate system with basis {1,2,3}. The transformation ma-

trix “ RT ” for the general case may then be expressed as follows: 

 cos sin cos sin cos

sin cos sin cos sin

yx z

y y xyx xz z
R

xy xy

y y xyx xz z

xy xy

vv v

L L L

v v Lv vv v

L L L L L L L

v v Lv vv v

L L L L L L L

    

    

 
   
 
 
             
 
 
 
            
  

T    (13) 

Where 2 2 2

x y zL v v v    and 2 2

xy x yL v v  and “α” is a rotation angle around the axis of 

the vector “ Gv ”, or “ Lv ”. This transformation is equivalent to the one presented in [3]. 

For each of the special cases where the global vector “ Gv ” is perpendicular to a Cartesian 

plane {x,y} or {y,z} or {z,x}, the elements of the transformation matrix “ RT ” are efficiently 

defined using proper numerical exception handling workarounds with the help of the Le-

vi−Civita cyclically interchanging index [8]. The rotation of angle “α” around the longitudinal 

axis is then applied separately, with the help of the corresponding (rotation) tensor “R”: 

1 0 0

0 cos sin

0 sin cos

 

 

 
 

   
  
 

R           (14) 
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2.4 Equilibrium Matrices 

The computation of the equilibrium matrices depends on the automated selection of a stati-

cally determinate basis that carries the external loads (matrix “ 0B ”) and of a minimal (or near 

minimal) cycle basis that defines the redundant stresses (matrix “ 1B ”). These automation 

techniques rely on graph theory and algorithms; analytical presentations may be found in [1], 

[2] and [3]. 

From a computational implementation perspective, it is convenient to define the equilibri-

um matrices “ 0B ” and “ 1B ” using a set of pre−solved mathematical formulae that simultane-

ously express equilibrium in 3D space as well as transformation of the stress components 

from the global coordinate system to the local of each member of the structure. By combining 

equations (9) − (14), we have: 

 
3 3

, 0,1
R x

i
R R R

i
 

  


 

T 0
B

T d T
(15) 

An additional (±) sign is to be applied to each row of (15), according to whether the direc-

tion of the local axes of the surface of the corresponding reference section coincide with the 

direction of the local axes of the corresponding member, or not. 

In this way, the stress and the elastic and plastic strain components of each structural 

member for every step of the incremental procedure may be quickly evaluated, using the in-

cremental forms of equations (2), (5) and (6), respectively. 

2.5 Linearized Yield Functions 

For an analysis of a structural frame that takes into account material post−elastic behavior, 

a plastic hinge approach is traditionally followed. From the strength of materials’ point of 

view, the conventional limits between elastic and plastic deformations may be defined using a 

convex hull, which, in the case of the proposed method, is further approximated by a linear 

convex polyhedron (also referred to as “manifold”): 

  *
1

( )
n

i
i

i i

Q
g s c

Q

  


Q (16) 

Where i={1,2,…,n}, “n” is the number of stress components, 

 2 3 2 3

T
N Q Q T M MQ is a vector that contains all potentially interacting 

stress components (see Figure 2 below), and “c” is a dimensionless constant (e.g. c=1). 

Figure 2: Local force and moment components at the end of a linear finite beam/column element. 

Due to the 3-dimensional nature of the problem, a series of stress interaction criteria may 

be defined, e.g. {N,M2,M3} or {T,M2,M3} or {T,Q2,Q3} or {N,Q2,M3} or {N,Q3,M2} or 

{N,Q2,Q3,M2,M3}, etc. Applied implementations of such criteria may be found e.g. in struc-

tural norms. 

For example, the AISC−LRFD [9] proposes a criterion which is a bi-segmented yield func-

tion for bending moment and axial force interaction; schematically, it is presented in Figure 3 

below: 

Q2

22

Q3 

N 

M2

22

M3 

T 
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Figure 3: 3D illustration of the adopted form of the AISC-LRFD bilinear yield function. 

Another example from engineering practice is the failure criterion according to 

DIN−18880, which is a multi−segmented yield function for bending moment, shear, and axial 

force interaction. A definition of this function for planar frames is analytically presented in 

[10]; herein, the corresponding coefficients for implementing this function according to (16) 

are summarized in Table 1 below: 
 

Si N Q M 

Eq. 1 − − 1.00 

Eq. 2 1.00 − 1.00/1.10 

Eq. 3 − 0.45/1.15 1.00/1.15 

Eq. 4 1.10/1.25 0.45/1.25 1.00/1.25 

Eq. 5 − 1.00/0.90 − 

Table 1: Coefficients “si” for the yield functions according to DIN-18800. 

A practical problem that arises from the increase of the number of interacting components 

has to do with the (±) signs in (16), which are used to define the sector of the hyperspace 

wherein each one of the polyhedron’s stress interaction hyper planes is located (positive or 

negative plastic capacity for every stress component); but this may be easily tackled with the 

help of De Bruijn sequences [11]. 

For example, consider the simplest case of two interacting stress components (n=2), where 

sets of two are formed from the alphabet with symbols {+,−} (q=2). Then, we have four pos-

sible sets (q
n
 =2

2
=4) which form one distinct sequence (  

2 12 22! 2 1B


  ), shown in Figure 4: 
 

{+,+},{+,−},{−,+},{−,−} 

Figure 4: De Bruijn sequence for the signs of a yield function with two interacting components. 

Next, consider the case of three interacting components (n=3) where sets of three are 

formed from the alphabet with symbols {+,−} (q=2). Then, we have eight possible sets (q
n
 

=2
3
=8) which form two distinct sequences (  

3 12 32! 2 2B


  ), shown in Figure 5:  
 

{+,+,+},{+,+,−},{+,−,+},{+,−,−} 
 

{−,+,+},{−,+,−},{−,−,+},{−,−,−} 

Figure 5: De Bruijn sequences for the signs of a yield function with three interacting components. 

(N/N*) 

(M2/M2*) 

(M3/M3*) 
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It may be observed in Figure 5 above, that one sequence is a negated permutation of the 

other; in fact, the sequence consists of the sequence shown in Figure 4, embedded in a simple 

(elementary) set (of n=1 and q=2). This means, that, using the sequence of Figure 4 as a basis, 

and in combination with the basic principle of enumeration, all possible sequences may be 

constructed following the same pattern of successive embedding (or concatenation). 

A last example follows below, where five interacting components (n=5) are forming sets of 

five from the alphabet with symbols {+,−} (q=2), yielding a total of thirty two sets (q
n
=2

5
=32)

which form potentially two thousand and forty eight sequences (  
5 12 52! 2 2048B


  ); one 

of these has been formed using the aforementioned successive embedding (concatenation) 

technique, and is schematically presented in Figure 6: 

{+,+,+,+,+},{+,+,+,+,−},{+,+,+,−,+},{+,+,+,−,−} 

{+,+,−,+,+},{+,+,−,+,−},{+,+,−,−,+},{+,+,−,−,−} 

{+,−,+,+,+},{+,−,+,+,−},{+,−,+,−,+},{+,−,+,−,−} 

{+,−,−,+,+},{+,−,−,+,−},{+,−,−,−,+},{+,−,−,−,−} 

{−,+,+,+,+},{−,+,+,+,−},{−,+,+,−,+},{−,+,+,−,−} 

{−,+,−,+,+},{−,+,−,+,−},{−,+,−,−,+},{−,+,−,−,−} 

{−,−,+,+,+},{−,−,+,+,−},{−,−,+,−,+},{−,−,+,−,−} 

{−,−,−,+,+},{−,−,−,+,−},{−,−,−,−,+},{−,−,−,−,−} 

Figure 6: De Bruijn sequences for the signs of a yield function with five interacting components. 

In practice, only one of these 2048 sequences is required in order to properly describe all 

the hyper planes of the polyhedron (manifold), since, by definition, all other sequences are 

only permutations of the sets of five that form the initial sequence. 

Sequences for the case of alphabets with two elements were first proved by Camille Flye 

Sainte−Marie [12], 24 years before Nicolaas Govert de Bruijn was born. 

2.6 Implementation of Discontinuities 

For the case of sections that include discontinuities (e.g. articulations), a disjunction of the 

interacting components of the corresponding plastic hinge may be imposed that allows plasti-

cization only for the active stress component(s). 

For example, consider an articulated beam element with plastic hinges according to the 

AISC−LRFD criterion, defined for {N,M2,M3} interaction. Since the element has articulations 

at both of its’ ends, the {M2} and {M3} components will be always zero, for both positive and 

negative rotations; this leaves only the {N} component as active candidate for plasticization. 

In practice, this means that a separate static admissibility condition for each stress component 

must be defined; thus, we will have a yield function consisting of three separate parts, one for 

each component, with the formulae for {M2} and {M3} being degenerate, in order to describe 

that the corresponding bearing capacity is zero. This disjunct yield function is presented in 

equation (17): 

 
 

 

*

1
1 ( )

2

3

( ) 0 0 0 0 0 1

( ) 0 0 0 0 1 0 0

( ) 0 0 0 0 0 1 0

N
g

g

g


  

   

   

Q Q

Q Q

Q Q

(17) 

Where  2 3 2 3

T
N Q Q T M MQ  is the stress vector of the corresponding criti-

cal section and the (±) sign is used to denote upper and lower bounds. 
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It should be noted that the proposed disjunction technique presented in (17) may be used to 

define all sorts of discontinuities; the corresponding Lagrange multiplier is added to its’ elas-

tic counterpart in order to yield the actual elastic generalized displacement of the correspond-

ing discontinuity. 

2.7 Problem Formulation 

By combining equations (2), (15) and (16), the yield function “ ( )g Q ” may be explicitly 

expressed as a function of the external loads and the redundant stresses. By packing the coef-

ficients of this composite function into an incidence matrix “ N ”, a linear constraint inequality 

may be established: 

   * 1 1 0 0

T T        Y c N B p N B p 0                                   (18) 

By substituting equation (2) into (5), then evaluating (6) with the help of (16), then substi-

tuting both into (4) and then into (3), the first derivative of a Lagrange function is obtained: 

      1 1 1 1 0 0 1

T T T           B F B p B F B p B N λ 0                          (19) 

Equations (18) and (19) together with (7) may be seen as the Karush−Kuhn−Tucker (KKT) 

conditions of the following optimization problem: 

   

   

1 1 1 1 1 1 1 0 0

1 1 0 0

1
.: ( )

2

. .

T T T T

T T

Min f

s t





           

      

p p B F B p p B F B p

N B p c N B p

                    (20) 

In order to efficiently trace all the plasticization events along any given loading path, the 

independent variables and the critical parameters stated in the problem of equation (20) are 

replaced by their corresponding increments: 

   

   

1, 1, 1 1 1, 1, 1 0 0,

1 1, 1 0 0,

1
.: ( )

2

. .

T T T T

k k k k k

T T

k k k k

Min f

s t





             

       

p p B F B p p B F B p

N B p c Q N B p

          (21) 

Where in (21) “k” is the step’s counter. The problem is solved in an incremental pattern using 

any efficient algorithm (e.g. [13], [14]); a detailed description of the adopted numerical strat-

egy may be found in [1]. 

3 EXAMPLES 

In the following context, four indicative examples are presented in order to verify the func-

tionality of the proposed force−based formulation. Where possible, results are quantitatively 

compared with those of a widely accepted commercial program that uses the equivalent direct 

stiffness method; where not, with results according to methods found in the literature. 

3.1 1 Storey, 1 Bay, Eccentric Braced 3D Frame 

A single-storey, single-bay, eccentric-braced frame is used as a first test example to prove 

the efficiency of the proposed formulation. The frame’s height is H=3m, and distances be-

tween columns are Lx=Ly=6m. All columns are placed so that their strong bending axis is par-

allel to the y-axis of the global coordinate system, and are fully fixed at the basis. Beams are 

placed so that they bend along their strong axis due to external forces applied along the z-axis, 

and are subdivided into smaller elements of length L=0.6m each. The braces are placed inside 

the openings which are parallel to the y-z plane, are assumed articulated at both of their ends, 

and are load-free. Schematically, the frame is illustrated in Figure 7: 
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Figure 7: 3D illustrations of the 1−storey 1−bay, eccentric−braced frame (snapshots from SAP2000). 

The frame’s definitions (nodal numbering & coordinates, member connectivity, section as-

signments and interacting stress components) are summarized in Tables 2 and 3: 

Node x y z Node x y z 

1 6.00 6.00 0.00 7 0.00 3.60 3.00 

2 0.00 6.00 0.00 8 0.00 2.40 3.00 

3 0.00 0.00 0.00 9 0.00 0.00 3.00 

4 6.00 0.00 0.00 10 6.00 0.00 3.00 

5 6.00 6.00 3.00 11 6.00 2.40 3.00 

6 0.00 6.00 3.00 12 6.00 3.60 3.00 

Table 2: Nodal coordinates of the 1−storey 1−bay, eccentric−braced frame. 

Member 
Node: 

Start → End 
Section 

Interacting 

Components 
Member 

Node: 

Start → End 
Section 

Interacting 

Components 

1 1 → 5 HEM260 {N,M2,M3} 9 6 → 5 HEM180 {M2,M3} 

2 2 → 6 HEM260 {N,M2,M3} 10 9 → 8 HEB140 {M2,M3} 

3 3 → 9 HEM260 {N,M2,M3} 11 8 → 7 HEB140 {M2,M3} 

4 4 → 10 HEM260 {N,M2,M3} 12 7 → 6 HEB140 {M2,M3} 

5 1 → 12 HEB140 {N,M2,M3} 13 9 → 10 HEM180 {M2,M3} 

6 2 → 7 HEB140 {N,M2,M3} 14 10 → 11 HEB140 {M2,M3} 

7 3 → 8 HEB140 {N,M2,M3} 15 11 → 12 HEB140 {M2,M3} 

8 4 → 11 HEB140 {N,M2,M3} 16 12 → 5 HEB140 {M2,M3} 

Table 3: Connectivity, sections, and interacting components of the 1−storey 1−bay, eccentric−braced frame. 

The material of the structure is S235, with a Young’s Modulus E=2.0E+8kPa, a conven-

tional yield stress of fy=235MPa, and is considered to be elastic-perfectly plastic. 

To simulate material non−linearity, the concentrated plasticity approach is followed. For 

the columns, the bilinear AISC−LRFD criterion is used [9], for {N,M2,M3} interaction. For 

the beams, the coupled bending moment {M2,M3} variant of the same criterion is applied, 

without the participation of the axial forces {N}; in order to be able to compare with 

SAP2000, the effect of torsion {T} on beams was purposefully left out, since no torsion-

bending interaction is supported by the available version of the program [15]. A linear relation 

between {M2} and {M3} was adopted for both interaction criteria. Articulations at the ends of 

the braces were implemented according to equation (17).  
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All beams are subject to a uniform load of 15kN/m. Each beam is divided into smaller 

elements of 0.6m length, and uniform loads are converted into a finite set of equally sized 

point loads of 9kN. Lateral loads are applied to the four top-corner nodes of the frame. 

Two pushover analyses were run, one for each horizontal direction {x,y}. The base shear 

vs. roof displacement curves of the structure are presented in Figures 8 and 9 below, where 

quantitative comparisons with SAP2000 [15] are also included; for SAP2000, default analysis 

parameters were used. 

0

200

400

600

800

1000

1200

0 0.02 0.04 0.06 0.08 0.1 0.12

SAP2000 - X

Force Method - X

Figure 8: Pushover curve of the 1−storey, 1−bay, eccentric−braced frame; X−Direction; Units: {kN,m}. 
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Figure 9: Pushover curve of the 1−storey, 1−bay, eccentric−braced frame; Y−Direction; Units: {kN,m}. 

As it may be seen, results are in good accordance; the ultimate base shear is Vb,x~1067kN 

for the x-direction, and Vb,y~757kN for the y-direction. 
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3.2 6 Storey, 1 Bay, 3D Frame 

A six-storey frame, with one-bay at each horizontal direction, is used as a second test ex-

ample to prove the efficiency of the proposed formulation. Each storey has a height H=3.0m 

and each bay an opening Lx=Ly=6.0m. Beams are subdivided into smaller elements of length 

L=0.6m each; columns are placed so that their strong bending axis is parallel to the y-axis, 

and are fully fixed at the basis. The geometry of the frame is illustrated in Figure 10 below: 

 

  

Figure 10: 3D illustration of the 6−storey frame (snapshot from SAP2000). 

The sections of beams and columns were purposefully selected in order to form a strong 

column−weak beam sway mechanism, and are summarized in Table 4 below: 

 
Members Length Section Material 

Columns 3.0m HEM300 S235 

Beams 6.0m HEM180 S235 

Table 4: Section properties of the six storey frame. 

The material of the structure is S235, with a Young’s Modulus E=2.0E+8kPa, a conven-

tional yield stress of fy=235MPa, and is considered to be elastic-perfectly plastic. 

To simulate material non−linearity, the concentrated plasticity approach is followed, ac-

cording to the exact assumptions that were made for the first example. 

All beams are subject to a uniform vertical load of 15kN/m. Each beam is subdivided into 

ten smaller elements of length L=0.6m each, and the distributed loads are converted into a fi-

nite set of equally sized point loads of value 9kN each. 

A lateral load pattern is applied to the beam−column junction nodes. The load distribution 

is defined as linearly varying with respect to the height of each storey (1
st
 eigenmode, with 

100% participation). 

Two pushover analyses were run, one each horizontal direction (x,y). The base shear vs. 

roof displacement curves of the structure is presented in Figures 11 and 12 below, where a 

quantitative comparisons with SAP2000 [15] are also included; for SAP2000, default analysis 

parameters were used. 
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Figure 11: Pushover curves of the six−storey frame, x−direction; Units: {kN,m}. 
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Figure 12: Pushover curves of the six−storey frame, y−direction; Units: {kN,m}. 
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As it may be seen, the results are in good accordance; the ultimate base shear along the x-

direction is Vb,x~667kN, and along the y-direction is Vb,y~516kN. 

3.3 1 Storey, 1 Bay, Portal 2D Frame 

This example is used to test the functionality of the herein implemented yield function ac-

cording to DIN−18800, via a comparison with AISC−LRFD; to this extend, I-beams are used. 

The frame’s height is H=3.0m and length L=6.0m. The beam’s section is HEB160 and the 

columns’ sections are HEM200. All structural elements are placed so as to bend around their 

strong axis. The beams are subdivided into smaller elements of length L=0.6m each. Columns 

are fully fixed at the basis. Schematically, the portal frame may be seen in Figure 13 below: 
 

 

Figure 13: Geometry of the portal frame and vertical loads (snapshot from SAP2000). 

The material of the structure is S235 with a Young’s Modulus E=2.0E+8kPa, a conven-

tional yield stress of fy=235MPa, and is considered to be elastic-perfectly plastic. 

A uniform vertical load of magnitude 15kN/m is applied to the beam, which is simulated 

by finite point loads of magnitude 9kN each, applied in equal distances of 0.6 m. A horizontal 

force is applied to the top left node. 

Two pushover analyses were performed using the proposed formulation; one using the 

AISC−LRFD yield function and one using the DIN−18800. The results were compared to 

those of SAP2000 [15] and were found in good accordance. All base shear vs. roof displace-

ment curves are plotted in Figure 14 below: 
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Figure 14: Pushover curves of the 2D portal frame; Units: {kN,m}. 
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3.4 A Simple Grillage 

This simple example is used to demonstrate the functionality of the proposed formulation 

for structures where the contribution of torsion is important. Grillages are a typical case; a 

simple grillage found in [16] is used as reference. Schematically, it is presented in Figure 15: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Geometry and loading of the grillage. 

As it may be observed, the geometrical proportions and loading conditions are the same as 

in [16]; herein, elements have a length L=3m and a rectangular tube section with dimensions 

(bxh)=(160x160)mm and thickness t=10mm. 

The material of the structure is S235 with a Young’s Modulus E=2.0E+8kPa, a conven-

tional yield stress of fy=235MPa, and (of course) is considered to be elastic-perfectly plastic. 

Additionally to the assumptions above, the yield locus was linearized so as to be in accord-

ance with the proposed formulation. An analytical derivation of the collapse load according to 

the linear yield function adopted follows below: 

3
3

3,

( , ) 1 0
p p

MT
g T M

T M
                                                   (22) 

The partial derivatives of the yield function with respect to each stress component are: 

3 3,

1 1
,

p p

g g

T T M M

 
 

 
                                               (23) 

Thus, with the help of (23), the ratio of bending (θ) to torsion (γ) plastic rotations will be: 

3

3,

p

p

T M

M T





 
   
 

                                                      (24) 

As also stated in [16], a plastic bending rotation in the proximity of a support node of one 

beam will result in an equal rotation due to torsion in the other beam, in the proximity of the 

connection node between the two elements. Thus, from (24) we infer the following linear 

proportion: 

3

3, p p

M T

M T
                                                              (25) 

According to [16], the equation that gives the collapse load is the following: 

3

1

2
P L M T                                                            (26) 

By combining (25) and (26), and by assuming for simplicity that M3p=Tp, we have: 

z 

x y 

L 
L 
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3,2 p

C

M
P

L


                                                            (26) 

For the selected cross-section and material, M3p=79.4kNm; thus, from (26), PC=52.93kN. 

An analysis using the proposed incremental formulation of (21) was run, and the resulting 

load vs. corresponding displacement curve is presented in Figure 16 below: 

 

0

5

10

15

20

25

30

35

40

45

50

55

60

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

 

Figure 16: Load vs. corresponding displacement curve of the grillage; Units: {kN,m}. 

As it may be seen, the results are in good accordance; the collapse load according to the 

proposed method is PC~53kN. 

 

4 CONCLUDING REMARKS 

 The proposed formulation has good convergence properties and yields good results, even 

for relatively large scale problems. However, an implementation using a solver suitable 

for sparse matrices is required, in order to drastically reduce the CPU time. 

 Non−holonomic plasticity is taken into account following a stepwise holonomic ap-

proach that is natively contained into the problem’s formulation; no particular numerical 

remedies are required. 

 Treatment of the effect of shear and torsion is also natively accommodated; however, it 

should be noted, that, when using the lumped plasticity approach, the warping stresses 

according to Vlasov [17] may be taken efficiently into account only in certain cases with 

the introduction of additional stress components, the bi−moments, which are defined as 

self−equilibrating systems on a section level. 

 P−Δ effects and large displacements [18], material hardening [19] and softening, may 

also be included. 
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Abstract. The paper is dedicated to the classical problem of elasticity theory – to the solution 
of the biharmonic equation in a semi-strip (rectangle) and to some conclusions that follow 
from the analysis of exact solutions of the biharmonic problem. The formulas describing the 
distribution of stresses and displacements in the semi-strip (rectangle) with free longitudinal 
sides and stresses set on the end face, as well as the mathematical apparatus used in this case 
can be found in the works of authors such as [1, 2]. The solutions are represented as the 
expansions in the Fadle–Papkovich functions. The coefficients of the expansions are 
determined as the simple Fourier integrals from the known boundary functions.  

The exact solutions in the rectangle have some unusual properties that do not exist in any 
of the known exact solutions of elasticity theory. For example, they are not unique and, 
therefore, they may describe the residual stresses. Thus, solving the biharmonic problem for 
the rectangle, thus we constructed the theory of residual stresses – one of the fundamental 
problems of elasticity theory. The obtained solutions allow us to understand what it means to 
set boundary conditions on the rectilinear boundary of a domain; because she is already not 
rectilinear after application of the load. What is the angular point of an infinite wedge and 
how it differs from the angular point of the rectangle? Has got the angular point in the 
rectangle the singularity always, if the type of boundary conditions is changed at the angular 
point? And so on. 

Based on the developed mathematical apparatus, it is possible to obtain the exact solutions 
of various mixed boundary value problems in the rectangle. For example, when there is a 
crack in the rectangle, when the part of the boundary of the rectangle is rigidly fixed, and the 
part is free, etc. The developed methods can be transferred to other coordinate systems: to 
polar coordinate system (cambered beam), to oblique (triangle, trapezium). They can be 
generalized to three-dimensional problems (rectangular parallelepiped). 
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Interest in solutions of boundary-value problems of elasticity theory in canonical domains 
with corner points of a boundary, in particular, in a rectangle, did not cease ever, having 
reached a peak years in 1940–1980, primarily thanks to the Soviet school of mathematics and 
mechanics. Several thousands of papers were published throughout these years. The last 
review (2003) V. V. Meleshko contains more than 700 references to the most important 
research in almost 200 years [3]. There are several schools that have been established in these 
years in the Soviet Union and were represented by the greatest mathematicians and mechanics 
of those years: the Leningrad school (P. F. Papkovich, A. I. Lurie, G. A. Grinberg, G. I. 
Dzhanelidze, V. K. Prokopov, B. M. Nuller and others), the Moscow school (M. I. Gusein-
Zade, S. A. Lurie, V. V. Vasiliev, V. I. Maly, E. M. Zveryaev and many others), the Rostov-
on-Don school under the leadership of I. I. Vorovich, very strong and numerous the Ukrainian 
school (V. T. Grinchenko, A. F. Ulitko, A. M. Gomilko, V. V. Meleshko). Strong and bright 
works have been published in the Proceedings of the Armenian, Azerbaijani, Georgian 
Academy of Sciences. After the 1980s there were no notable publications. Western papers 
were sketchy and much weaker than the Soviet. 

The heart of the problem is simple. Let us explain it on the example of the first 
fundamental boundary-value problem for the semi-strip in the case of symmetric deformation. 
We can find the solution of the biharmonic equation in the semi-strip { 0, | | 1}x y  , that has 
free longitudinal sides, i.e. 

( , 1) ( , 1) 0,y xyx x      (1) 

and normal (0, ) ( )x y y    and tangential (0, ) ( )xy y y   stresses are set on the end face  

(0, ) ( ), (0, ) ( ).x xyy y y y      (2) 

Without loss of generality we can assume that the stresses ( )y  are self-balanced. Solving 
the problem by the method of separation of variables, we come to the problem of determining 
the coefficients ka  of expansions of the two functions ( ), ( )y y   set on the semi-strip’s end 

face in a series in the two systems of boundary value problem’s eigenfunctions – the so-called 
Fadle–Papkovich functions:   

       
1 1

( ) , , , ( ) , , .k x k k x k k xy k k xy k
k k

y a s y a s y y a t y a t y     
 

 

      (3) 

The Fadle–Papkovich functions (in the case of symmetric deformation of the semi-strip) 
have the form: 

   
  2

, (1 ) { sin cos cos sin sin },

, (1 ) {cos sin sin cos }.

x k k k k k k k k k

xy k k k k k k

s y y y y

t y y y y

         

      

   

  
(4) 

  is a Poisson's ratio. The numbers k  are the set 1{ , }k k k  
     of all complex zeros of 

the exponential type’s entire function: 

  sin cos .L       (5) 

If the expansion coefficients ka  are found, the final solution of the boundary value 

problem in the semi-strip will have the form (below only expressions for stresses are shown) 
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 (6) 

where 

   , (1 ) { sin cos cos sin sin }.y k k k k k k k k ks y y y y              

The boundary conditions on the longitudinal sides of the semi-strip (1) will be satisfied 
exactly, because the Fadle–Papkovich functions are such, that 

   , 1 , 1 0.xy k y kt s      (7) 

If the periodicity conditions were set on the longitudinal sides of the semi-strip, 
eigenfunctions would be the usual trigonometric set of functions, and then we would obtain 
instead of expansions (3), for example, 

 

 

1

1

( ) (1 ) 2 cos ,

( ) (1 ) (3 ) sin .

k k
k

k k
k

y A k B k y

y A k B k y

   

    









   

   




(8) 

The trigonometric sets of functions included in (8) are orthogonal and form a basis on the 
semi-strip’s end face. Therefore, there aren’t problems with determining of the coefficients 

,k kA B  of expansions. Thus the well-known Filon–Ribiere solutions are obtained. 

The Fadle–Papkovich functions are much more difficult than trigonometric series: they are 
complex-valued and non-orthogonal. But their main feature is that they do not form basis on 
the segment on which the expanded functions (end faces of the rectangle or the semi-strip) are 
set. Therefore, it is impossible to obtain explicit formulas for the coefficients of expansions in 
terms of the Fadle–Papkovich functions on the basis of the classical methods of the theory of 
the basis of functions. Numerous methods have been proposed for the determination of the 
coefficients of expansions in terms non-orthogonal sets of the Fadle–Papkovich functions. 
However, almost all of them, anyway, were reduced to an approximate determination of the 
unknown coefficients from the infinite, not reducible system of algebraic equations. 

The basis of this method is a generalization of the classical notion of the basis of functions 
on the segment. If the classical basis on the segment can be considered as a basis in the 
complex plane, the Fadle–Papkovich functions form a basis on the Riemann surface of the 
logarithm. Therefore, it is possible to construct biorthogonal sets of functions, which are 
determined on the Riemann surface of the logarithm and, then, to find the coefficients of 
expansions. The Fadle–Papkovich functions are generalization of systems of exponential 
functions with complex exponents. A. F. Leontiev, and then Yu. F. Korobeinik were studied 
the basis properties of exponential functions’ systems with complex exponents and were 
investigated that they do not form a basis in the classical sense, and the expansions on them 
are not unique. Korobeinik has named such function systems as the representing function 
systems. The base for study of basis properties of exponential functions’ systems is the theory 
of entire functions of exponential type and Borel transform in this class of functions. The base 
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for study of basis properties of the Fadle–Papkovich functions is the theory of quasi-entire 
functions of exponential type and Borel transform in this class of functions. 

The quasi-entire functions of exponential type were first introduced by A. Pfluger in [4] in 
1936 and it is the only work of quasi-entire functions of exponential type. Based on the 
Pfluger's results, it is possible to construct systems of functions which biorthogonal to the 
Fadle–Papkovich functions, and then exactly determine the expansion coefficients, thereby to 
construct an exact solution of the problem. Such a solution was first published in [5]. 

The solutions that are obtained using of functions’ biorthogonal sets are called exact 
because they are constructed on the same scheme as the Filon–Ribiere solutions, and the 
desired coefficients are explicitly determined (and not as the solution of the infinite system of 
algebraic equations). Moreover, if the complex eigenvalues in obtaining exact solutions of the 
boundary-value problem are aim to the numbers ( 1,2,...)k k   , the Fadle–Papkovich 
functions turn into the usual trigonometric functions, and the solutions – into the Filon–
Ribiere solutions. 

Since the biorthogonal sets of functions are determined on a certain infinite curve lying on 
the Riemann surface of the logarithm, it is necessary to continue the expanded functions 
initially defined on the segment (end face of the semi-strip) outside the segment on this curve. 
Because such continuations are not unique, the solutions of the boundary-value problems in 
the semi-strip are not unique as well. In 1996 academician E.I. Shemyakin first drew attention 
to the non-uniqueness of boundary value problems’ solutions of elasticity theory in finite 
domains with boundary’s angular points and changing type’s points of the boundary 
conditions. As the solutions are not unique, the nonzero solutions do exist despite the fact that 
the load on the sides of the semi-strip is equal to zero. Such solutions are called 
eigensolutions, and the corresponding stresses – residual or initial. Constructing exact 
solutions in the semi-strip or in a rectangle, we do obtained the theory describing the residual 
stresses (one of the most important problems of elasticity theory). The residual stresses satisfy 
the equilibrium equations and the boundary conditions, but do not satisfy the strain 
compatibility conditions and so the displacements are not uniquely determined. To understand 
the physics of this known statement, let us cut the rectangle { : | | , | | 1}P x a y   along the axis 
y . Replace the resulting right and left rectangles by almost rectangles that if a certain load is 

applied to them, they take their initial shape of rectangles. Let us apply the required load and 
then glue together the rectangles. As a result we will obtain the rectangle P , where there is a 
nontrivial field of residual stresses such that the relations (0, ) ( )x y y   and (0, ) ( )xy y y   

are satisfied on the glue line. The fact that the displacements are not determined uniquely 
means the following: there are infinite numbers of profiles sides of almost rectangles, 
connected into the original rectangle, after gluing such profiles the normal and tangential 
stresses are the same on the glue line.  

The eigensolutions have the property that the boundary conditions are strictly satisfied for 
them on rectilinear boundaries of the rectangle. Hereby they are fundamentally different from 
the solutions in the classical statement, in which "boundary conditions are conventionally 
moved to the nondeformed surface", i.e., either the missing material is added, or the extra 
material is removed. In 1940 D.I. Sherman proposed a more strict understanding of boundary 
conditions. Let us consider the content of understanding in the following example. Suppose 
that the semi-strip {| | 1, 0}y x   is given, the longitudinal sides of which are free, and 

normal stresses (0, ) ( )x y y   are set on the end face (for simplicity, we assume that the 

tangential stresses are equal to zero, and the function ( )y  is even). Following Sherman 
understanding, we can consider an infinite plane {| , | }x y   , in which let us draw two 
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horizontal cuts { 1,| | }y x     and the vertical cut { 0,| | 1}x y  .  Let us make insertions 
along a cut of the same material as that of the plane material, which continuously glue with 
the sides of the cuts. Then the shapes of insertions can be chosen so that the normal and 
tangential stresses are equal to zero on axes of the horizontal insertion, and we have such 
relations on an axis of the vertical insertion: (0, ) ( ), (0, ) 0x xyy y y    . At first sight this 

understanding of boundary conditions on the sides of the semi-strip seems more stricter, but 
actually nothing has changed since and in this case we have to "add" or "remove" material. As 
a result, the boundaries of the semi-strip are rectilinear before the deformation and remain 
rectilinear after the deformation. Due to this condition the strain compatibility conditions are 
satisfied, both in the classic sense of the boundary conditions, and acc. Sherman.  

In solving the boundary value problems the need to continue the boundary functions set on 
the end faces of the rectangle P  outside the segment, in which they were initially determined, 
is physically quite understandable. In fact, within the framework of classical concepts of 
mechanics of solids, not only values of boundary functions, but all their derivatives, both 
along the axis x , and along the axis y  must be defined at each point of the rectilinear sides of 
the rectangle, including in its angular points (the same belongs to changing type’s points of 
the boundary conditions). Therefore, for a correct formulation of the boundary-value problem 
in the rectangle it is necessary to specify: 1) how  the boundary functions set on the end faces 
of the rectangle continues to the whole infinite straight line | |y    and 2) how the solution 
continues through the end faces of the rectangle. The necessity for the continuation of the 
boundary functions on the axis y  is dictated by the fact that sets of functions biorthogonal to 
the Fadle–Papkovich functions are not finite. Let us explain the second point. Consider the 
same semi-strip    with free longitudinal sides, when on the end face of the semi-strip 

 (0, ) ( ), (0, ) 0, (| | 1)x xyy y y y     . (9) 

If the solution from the right semi-strip continues to the same left semi-strip, i.e. in the 
semi-strip with free longitudinal sides, the stresses are finite at the angular points of the semi-
strip. And if the solution continues to the left semi-strip, the longitudinal sides of which are 
rigidly fixed, but the conditions (9) are still satisfied, the stresses may have integrable 
singularities at the angular points 0, | | 1 x y   . The conditions, under which the singularity 
exists or not exist, are strictly established by the solution of the corresponding mixed 
boundary-value problem in a rectangle.  

In conclusion, we give formulas for stresses in the semi-strip, when only the normal self-
balanced stresses (0, ) ( )x y y   are set on its end face, and the tangential stresses are equal 

to zero 
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Abstract. We investigate Discrete Velocity Models as a numerical tool for the simulation of
rarefied flows in the hydrodynamic limit. The study is based on the analysis of the bifurcation
structure of a related linearized transport operator. In combination with a meaningful scaling
this produces explicit formulas for the transport coefficients and closure relations depending
on details of the model collision operator. The theory is applicable even in cases when the
classical asymptotic analysis approach fails or leads to physically irrelevant results [7, 8].
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1 INTRODUCTION

Discrete Velocity Models (DVM) are a promising alternative to the commonly used DSMC
methods for the numerical simulation of rarefied gas flows. While the latter should keep for
the next time their prominent position as long as real gas effects are concerned, the first ones
are able to provide new insights into questions e.g. concerning the hydrodynamic limit. This
is on one hand due to the impressing development of powerful yet achievable hard ware tools
(GPU, GPU). On the other hand have recent contributions taught how to interpret DVMs as
numerical integration tools for the Boltzmann collision operator [1, 2] which allows to tune
such models with respect to order of consistency and to numerical efficiency [3].

In [4] a formalism was introduced for DVM’s based on two-particle collisions which pro-
vides an analytic expression for the pseudo inverse of the linearized collision operator and al-
lows to calculate Navier-Stokes corrections to the Euler equations in the hydrodynamic limit.
In this context it was argued why at least small velocity grids can reveal an appropriate macro-
scopic description only in the case of small Mach numbers. In the present paper we study the
behaviour of DVM’s at small bulk velocities. We identify a bifurcation phenomenon of the
linearized steady transport operator when perturbing the Mach zero Maxwellian. This fea-
ture yields an appropriate macroscopic description when applying the correct scaling limit.
The approach is constructive in the sense that it provides explicit formulas for hydrodynamic
flow parameters and closure relations for the moment hierarchy. In terms of an evaporation
condensation problem for a binary gas mixture we shortly discuss the difference between the
present approach and some standard asymptotic analysis techniques.

Though the following framework is applicale to three-dimensional velocity grids, we re-
strict for sake of brevity to the two-dimensional case.

2 THE COLLISION MODEL

We consider a DVM on a finite integer grid V = {v1, . . . ,vN} ⊂ lR2, vi = (v(i)
x , v

(i)
y ). The

collision operator is composed of single collision events described a quadruple

α = (i, j, k, l)=̇(vi,vj,vk,vl) ∈ V4

and the single-collision operator Jα for a density f = (fr)
N
r=1=̇(f(v),v ∈ V) given by

Jα[f , f ] = (fkfl − fifj) · sα, sα = (ei + ej − ek − el) (1)

with er = r-th canonical unit vector. (For a more detailed introduction into this formalism
see [4].) Jα satisfies the physical conservation laws for mass, momenta and energy, iff vivj
and vkvl are the diagonals of a rectangle in lR2. The set of quadruples α with this property is
denoted byR. The full collision operator reads

J [f , f ] =
∑
α∈R

γα · Jα[f , f ] (2)

with collision frequencies γα ≥ 0. We assume the set of α with γα > 0 large enough such
that the besides mass, momenta and energy there are no other invariants. It is well-known that
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in this case the classical H-Theorem is satisfies, and as a consequence the set of equilibrium
functions of J is equal to the set of Maxwellians

f = f [ρ,v,Θ] =

(
ρ exp

(
−|v − v|2

2Θ

)
,v ∈ V

)
(3)

The linearization of J around a Maxwellian f is given by the operator J [f + φ, f + φ] ne-
glecting the terms quadratic in φ. Taking into account the identity fifj = fkfl =: φα for
α = (i, j, k, l) ∈ R and defining the matrices

Pα = (ei, ej, ek, el), Γ = l1± · l1T±, l1± = (1, 1,−1,−1)T

the linearization takes the form

J [f , φ] + J [φ, f ] = CF−1 (4)

with F = diag(fi, i = 1 . . . N) and

C = −
∑
α∈R

παPαΓP T
α , πα = γαφα (5)

The main properties of C are easy to prove [4] and given as follows.
Lemma: C is symmetric and negative semidefinite. The geometric zero eigenspace has

dimension 4 and is given by

M = span
(

l1 = (1, . . . , 1)T ,vx = (v(i)
x )Ni=1,vy = (v(i)

y )Ni=1, |v| = (|vi|2)Ni=1

)
(6)

Much of the following is based on symmetry arguments. We assume the grid V and the
collision model on V to be invariant with respect to reflections at vx = 0 resp. vy = 0.
Precisely this means the following. Given v = (vx, vy) ∈ V , define Txv = (−vx, vy) and
Ty = (vx,−vy). Tx- and Ty-invariance of V means that

v ∈ V ⇔ Txv ∈ V ⇔ Tyv ∈ V

Given f ∈ lRN (as a function on V), define Txf ∈ lRN by Txf(v) = f(Txv), and similarly Tyf .
Tx- and Ty-invariance of the collision operator J [f , f ] means that J [Txf , Txf ] = TxJ [f , f ] and
J [Tyf , Tyf ] = TyJ [f , f ].

f is called Tx-even, if f = Txf , and Tx-odd, if f = −Txf . Similarly, Ty-even and Ty-odd
are defined.

3 STEADY PROBLEMS AND BIFURCATION

Consider the steady one-dimensional problem

vx∂xf = J [f, f ] (7)

on [−1, 1] with boundary conditions at x = ±1. In the case of totally reflecting boundaries,
the flux into wall direction is zero. Consider a small perturbation f0 + φ, φ ⊥ F0M, around a
centered Maxwellian

f0(v) = f [ρ, 0,Θ](v)
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Neglecting the terms quadratic in φ yields the linearized system

vx∂xφ = J [f0, φ] + J [φ, f0] = CF−1
0 φ (8)

We assume that V contains no velocities with vx = 0. In this case, because of Tx-
invariance, N = 2n has to be even. We choose a numbering of the velocities vi = (v(i)

x , v
(i)
y )

such that v(i)
x > 0, and vn+i = Txvi for i = 1, . . . , n. Under this restriction, the linearized

equation represents an ODE system

∂xφ = L0φ (9)

Under reasonable conditions on the collision model (see [5]), the linearized collision operator

L0 = V −1CF−1
0 (10)

has a Jordan normal form given by

N = diag(0, 0, N0, N0,Λ,−Λ)

with a positive diagonal matrix Λ = diag(λ1 . . . λp) and the Jordan block

N0 =

(
0 1
0 0

)

The columns t(0)
i of the corresponding transformation matrix T (0) are characterized as follows.

– t
(0)
1 = F0vx is Tx-odd and zero-eigenvector of L.

– span{t(0)
2 , t

(0)
3 } = F0 · span{ l1, |v|2}; in particular, t(0)

2 and t
(0)
3 are Tx-even

zero-eigenvectors of L0.
– t

(0)
4 is Tx-odd and solution of L0t

(0)
4 = t

(0)
3 .

– t
(0)
5 = F0vy is Tx-even and Ty-odd and zero-eigenvector of L.

– t
(0)
6 is Tx- and Ty-odd and solution of L0t

(0)
6 = t

(0)
5 .

– L0t
(0)
6+i = λit

(0)
6+i, i = 1, . . . , p.

– L0t
(0)
6+p+i = −λit(0)

6+p+i, i = 1, . . . , p.

Thus the general solution φ of the ODE system is

φ(x) = c4(t
(0)
4 + x · t(0)

3 ) + c5(t
(0)
6 + x · t(0)

5 ) (11)
+ exp ((1 + x)Λ)φ+(−1) + exp ((1− x)Λ)φ−(+1)

The sum F = c4t
(0)
4 + c6t

(0)
6 is the socalled fluctuation part which is mapped to the zero

eigenspace of L. The constant gradient part x · (c4t
(0)
3 + c6t

(0)
5 ) is called the macroscopic part,

while the last two terms represent the boundary layers. From now on we restrict to Ty-even
solutions, putting c5 = 0.
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The solvability condition for L0t
(0)
4 = t

(0)
3 is that t(0)

3 is orthogonal to the kernel of LT0 , in
particular to v2

x. This means that we may choose t
(0)
3 = F0( l1 + ξ · |v|2) with

ξ =
〈v2

x, f0〉
〈v2

x, f0|v|2〉

We now introduce a small shift by changing the Maxwellian into

fδ(v) = exp(−|v − δ · ex|2/2Θ) (12)

and the corresponding matrix F0 into

Fδ(v) = diag(fδ(v),v ∈ G) = F0 ·
(
I +

δ

Θ
Vx

)
+O(δ2) (13)

In the following we investigate the bifurcation structure of the zero eigenspace. Thus we are
interested only in infinitesimal shifts and restrict an O(δ) theory. The linearized collision
operator L0 is affected twofold by this change and takes the form

Lδ=̇V
−1
x (C + δ · C ′)(F0 + δ · F ′)−1=̇L0 + δ · V −1

x C ′F0 − δ · V −1
x CF ′ (14)

The first part of the perturbation, δ · V −1
x C ′F0 stems from the change of the factor φα in (5).

This part does not contribute to the bifurcation structure and is neglected here. Thus we obtain
as the new linearized collision operator

Lδ=̇L0 ·
(
I − δ

Θ
Vx

)
(15)

The perturbation changes the nullspace into

FδM=̇F0

(
I +

δ

Θ
Vx

)
M

The eigenspace data corresponding to nonzero eigenvectors suffer an analytic change and do
not influence the qualitative structure of the Jordan normal form. The main change results
from the non-solvability of the equation Lδtδ4 = tδ3. It has to be replaced with the equation

Lδt
δ
4 = tδ3 +

δ · λ
Θ
· tδ4 (16)

The choice

tδ3 =

(
I +

δ

Θ
Vx

)
t0

3 +
δ · µ
Θ

Vxf0 (17)

and the ansatz tδ4 = t0
4 + δΘ−1t′4 leads to the equation

L0t
′
4 = Vxt

0
3 + L0Vxt

0
4 + λt0

4 + µVxf0 (18)
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for the Tx-even function t′4 with the solvability condition(
〈vx, t0

4〉 〈v2
x, f0〉

〈vx|v|2, t0
4〉 〈v2

x|v|2, f0〉

)(
λ
µ

)
= −

(
〈v2

x, t
0
3〉+ 〈vx, L0Vxt

0
4〉

〈v2
x|v|2, t0

3〉+ 〈vx|v|2, L0Vxt
0
4〉

)
(19)

for (λ, µ).
As a consequence, choosing v := δΘ−1, the corresponding Jordan block N0 changes into

Nδ =

(
0 1
0 λv

)
(20)

which is similar to the diagonal matrix diag(0, λv). The following result is an immediate
consequence of this.

Theorem: (a) The solution of the perturbed ordinary differential system takes the form

φ(x) = c4 ·
(

exp(λvx)t4 +
exp(λvx)− 1

λv
· t3

)
+ exp

(
(1 + x)Λ+

δ

)
φ+(−1) + exp

(
(1− x)Λ−δ

)
φ−(+1)

(b) The fluxes of moment vectors m ∈M are constant and given by〈
vxm, φ〉 = c4〈vxm, tδ4〉

4 DIFFUSIVE SCALING AND CLOSURE RELATIONS

In order to derive a meaningful macroscopic limit we introduce the diffusive scaling (see,
e.g. [6]) for the equation

(∂t + vx∂x)φ = CF−1φ (21)

It consists in replacing the macroscopic variables t and x with ε−2t and ε−1x and leads to the
rescaled equation

(∂t + ε−1vx∂x)φ = ε−2CF−1φ (22)

Formally this is equivalent to replacing the space V of microscopic velocities with ε−1V and
scaling up the collision frequency by a factor ε−2. This is the approach which we take here.

Replacing vi with wi = ε−1vi requires to change the Maxwellians
fδ = (exp(−|vi − δex|2/2Θ), i = 1 . . . N)T to
f

(ε)
δ = (exp(−|wi − δex|2/2T ), i = 1 . . . N)T = (exp(−|v − εδex|2/2ε2T ), i = 1 . . . N)T

(leaving the macroscopic bulk velocity v unchanged) which itself makes only sense if we
rescale the temperature as T = ε−2Θ. From now on we define

f
(ε)
δ = f

(1)
εδ = (exp(−|v − εδex|2/2Θ),v ∈ V)T (23)

with Θ > 0 constant. We write δ =: Θw.
Associated to f

(ε)
Θw are the moments
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density ρ
(ε)
Θw = 〈 l1 , f (1)

0 〉+O(ε2)=̇〈 l1 , f (1)
0 〉

flux φ
(ε)
Θw = 〈wx, f

(ε)
Θw〉 = w · 〈v2

x, f
(1)
0 〉+O(ε2)=̇w · 〈v2

x, f
(1)
0 〉

while temperature T given by ρT ∼ 〈|w|2f (ε)
Θw〉 ↗ ∞

The rescaled steady problem reads

∂xφ = ε−1L
(ε)
Θwφ = ε−1L

(1)
εΘwφ (24)

Repeating the above calculations for the rescaled problem leads to the following result
which only concerns the Ty-even solutions.

Theorem: (a) For ε↘ 0, the general Ty-even solution of the ODE system takes the form

φ(x) = c4 ·
(
ε · exp(wλx)t0

4 +O(ε2) +
exp(wλx)− 1

wλ
· tεΘw3

)
(25)

+ exp
(
(1 + x)ε−1Λ+

w

)
φ+(−1) + exp

(
(1− x)ε−1Λ−w

)
φ−(+1)

≈ c4 ·
(
ε(1 + wλx)t0

4 + x · [t0
3 + εwVx(t

0
3 + µf0)]

)
, for |x| � 1 (26)

t0
i , λ, µ are the quantities of the preceding section.

(b) Let n = (nx, ny) be a multiindex and vn = vnx
x vny

y the n-th moment vector. In the limit
ε = 0, the macroscopic moment is given in first order of w as

〈wn, φ〉 = c4ε
|n| ·

{
x · 〈vn, t0

3〉 nx even
ε〈vn, t0

4〉+ εwλx〈vn, t0
4 + Vxt

0
3 + µVxf0〉 nx odd (27)

From this follow easily closure relations betwen moments and their fluxes. For example, the
heat coefficient (as the ratio between heat flux and temperature gradient) is given as

q = 〈vx|v|2, t04〉/〈|v|2, t03〉 (28)

The above theory is easily extendable to related situations like the following example.
Example: The system

vx∂xg = J [f ,g], vx∂xh = J [f ,h], f = g + h (29)

describes a binary gas mixture of two mechanically identical species A and B. Suppose A
represents vapor which can evaporate or condensate at the walls, while B is totally reflected
thus producing zero flux between the wall. Introducing a pressure difference between the
walls induces a flow of A from one wall to the other. Classical asymptotic analysis produces
an anomaly (“ghost effect”) in the form of infinitesimally thin boundary layers of species B
completely stopping the flow of A [7, 8]. Instead, the above scaling procedure leads to a
boundary layer of finite thickness slowing down the flow of A depending on the concentration
of B. The reason for the differences lies in the fact that the formal asymptotic expansion
procedure in [7, 8] produces the wrong equilibrium state since it is not capable of the arising
bifurcation mode. For details, see [9].
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5 CONCLUSIONS

We have investigated symmetric DVMs at small Mach numbers. A typical feature is a
bifurcation phenomenon of the steady linearized transport operator at zero bulk velocity. A
detailed analysis allows to derive explicit formulas for the closure relations of the moment
system in the hydrodynamic limit.
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Abstract. Macroscopic system of gas dynamic equations, differing from Navier – Stokes and
quasi gas dynamic ones, is derived from a stochastic microscopic model of a hard sphere gas
in a phase space. The model is diffusive in velocity space and valid for moderate Knudsen
numbers. The main peculiarity of our derivation is more accurate velocity averaging due to an-
alytical solving stochastic differential equations with respect to Wiener measure which describe
our original meso model. It is shown at an example of a shock wave front structure that our
approach leads to larger than Navier – Stokes front widening that corresponds to reality. The
numerical solution is performed by a (well suited to high performance computer applications)
special ”discontinuous” particle method.
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1 INTRODUCTION

A description of gas dynamic phenomena at the base of hierarchies of micro – macro models
has become a long time ago a classical part of theoretical physics as well as a foundation for
high performance industrial calculations [1]. In the last years more attention was drawn to
”meso” models in the phase space. That models are often called Kolmogorov – Fokker – Planck
equations. They are used by theoreticians [2] and applied mathematicians [3, 4]. The last ones
mostly implement the models of so-called maxwellian molecules, not hard sphere ones, that
lead to considerably different results [5].

We consider a model valid, on our opinion, at moderate Knudsen numbers (Kn), transient
between a molecular description and an imagination of a gas as continuous medium. Kn is
a parameter of nondimensionalization depending on a space subdomain. Its physical meaning
is a ratio of an average mean free pass to a character dimension of the subdomain. Our model
[6, 7, 8, 9] is a system of stochastic differential equations (SDE) with respect to Wiener measure
dw(t) describing a movement of a particle (x(t) is its position and v(t) is its velocity) in the
phase space at moderately small Kn:

dx(t) = v(t)dt, (1)

dv(t) = − 1

Kn
a(c)(v(t)− V )dt+

1√
Kn

σ(c)dw(t),

where c is an absolute value of the dimensionless heat velocity c ≡ v(t) − V , V (x, t) is a
macroscopic velocity, the coefficients in the second equation (vector a(c) = a(c)c and matrix
σ(c) will be determined later.

The realisations of that random process (the set of trajectories) generate a measure with a
density F (x, v, t) which satisfies an equation of Kolmogorov – Fokker – Planck’s type:

∂F

∂t
+

3∑
i=1

∂viF

∂xi
− 1

Kn

3∑
i=1

∂(ai(F )(vi − Vi)F )

∂vi
=

1

Kn

1

2

3∑
i,j=1

∂2(σ2
ij(F )F )

∂vi∂vj
. (2)

We study that, computationally more efficient than Boltzmann equation, diffusive in velocity
space gas model which is a link in a chain of multiscale algorithms based on micro – macro
models depending on different subdomains (distinguished by their Knudsen numbers) of a
whole problem under consideration. That model, from one side, is connected to microscopic
model and, from the other side, leads to more accurate macroscopic equations [6, 7, 8, 9].

That equation is well known as an heuristic model Boltzmann equation with Fokker – Planck
collision integral [10, 11, 12]. But before now its coefficients a, σ2 and the limits of its appli-
cability were not specified. In [8] it was shown that Boltzmann equation can be approximated
by Kolmogorov – Fokker – Planck one (2) at moderate Knudsen numbers. Its coefficients are
integrals in phase space representing moments of a jump random process describing molecules
collisions formulized by means of stochastic integration with respect to Poisson measures [13]:

a(x1(t), v1(t), t) =
∫ ∫ ∫

f(θ, x1(s), v1(s), x̃, ṽ)m(dθ)Fdx̃dṽ, a ≡ a(c)c

σ2(x1(t), v1(t), t) =
∫ ∫ ∫

f 2(θ, x1(s), v1(s), x̃, ṽ)m(dθ)Fdx̃dṽ.

Here f is a jump function (a molecule velocity increment as a result of a collision with another
one), θ is a goal parameter, m is an intensity of random collision process, F is a distribution
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function, v, v1 are velocity vectors, x, x1 are position vectors. For a gas of hard spheres and
with assumption of jump function locality in x the integrals take the following form:

a(x1(t), v1(t), t) =
π

2

∫
R3

(v1 − v) | v1 − v | δ(x− x1)Fdxdv,

σ2
ij(x1(t), v1(t), t) =

1

4
√
π

∫
R3

(
1

3
| v1 − v |3 +(vi − v1i)(vj − v1j) | v1 − v |)δ(x− x1)Fdxdv,

δ(x) is is Dirac delta - function.
At small Kn for hard spheres gas (at an assumption of distribution function F local maxwellity

and isotropy by thermal velocity c inside eight – foled integrals calculations of ”drift” vector a
and ”diffusion” matrix σ2 in velocity space), these coefficients in equations (1), (2) are obtained
as follows:

a(c) =
c
c
T 1/2

√
π

4
[
√
πerf(c)(2c2 + 2− 1

2c2
) + e−c

2

(2c+
1

c
)],

σ2
ij(c) = T 3/2

√
π

4
[δijP (c) + cicjS(c)],

P (c) =
√
πerf(c)(

c3

3
+

3

2
c+

3

4c
− 1

8c3
) + e−c

2

(
c2

3
+

4

3
+

1

4c2
), (3)

S(c) =
√
πerf(c)(c+

3

2c
− 3

4c3
+

3

8c5
) + e−c

2

(1 +
1

c2
− 3

4c4
),

T is dimensionless temperature, δij is Kronecker symbol.
A square root σ of matrix σ2 is found by the standard way with the implementation of

orthonormal basis of eigenvectors:

σij(c) = T 3/4π1/4/2[δij
√
λ2 + cicj/c

2(
√
λ1 −

√
λ2)],

λ1 = c2S(c) + P (c), λ2 = λ3 = P (c).

The computations [14] have shown that these coefficients are quite adequate for gas descrip-
tion at moderate Knudsen numbers. So we are continuing to develop that model.

In the present paper we’ll try to get more accurate, than in [8] and than Navier – Stokes
system, of macroscopic gas dynamics equations in case of hard sphere gas. The higher in [8]
accuracy is based on analytical solving system (1), more precisely, its version, simplified to a
handwriting level.

Note also that our approach with the help of SDE technique differs from other approaches
for obtaining gas dynamics equations connected to application of deterministic equations for
distribution function in phase space [15, 16, 17, 18] as well as other hierarchical models [19].
The models like ours with the coefficients a and σ depending on velocity are in use by the
physics theoreticians for the study of phenomena in turbulent flows (f. e. [20]).

2 SDE SYSTEM

We’ll rearrange the system (1) in a way that makes it possible to get macroscopic equations
keeping at the same time maximum of microscopic information. The system (1) is a system
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of equations for unknown functions x(t) and v(t). Express v(t) through x(t) from the second
equation and substitute it in the first one having got an equation only for x(t).

That equation will give us macroscopic equations. To do it we need to make some simpli-
fications. Analitical solving SDE is more difficult than solving ordinary differential equations.
Only some successful examples are known. Let lead our equation to one of it.

The coefficients (3) at large c behave themselves as a(c) ∼ a1cc, a1 ≡ π/2 and σ ∼ σ1c
3/2

(we denote σ1 ≡ (2
√
π/(3
√

3))T 1/4). To derive them to a form enabling to get an exact solution
let us put σ = kσ1c, introducing a parameter k which can be taken, for example, so that one of
the terms in our macro – model coincides with the thermodynamical equation of state. We’ll do
it later. Underline that the introduction of the parameter k was done to get an analytical solution,
we do not need the thermodynamical equation of state – all the coefficients in our equations are
obtained from the model of hard spheres. Moreover, let us restrict ourselves to the matrix σ in
a diagonal form not taking into consideration the elements out of the diagonal because of their
smallness in the assumption of the isotropy in velocity space of the distribution function and
further averaging. Then the system (1) takes the form:

dxi = vidt,

dvi = − 1

Kn
a1ic(vi − Vi)dt+

1√
Kn

kσ1ijcdwj,

xi|t=0 = xi0, vi|t=0 = vi0, i = 1, 2, 3,

Here c =
√
c2

1 + c2
2 + c2

3 is an absolute value of dimensionless thermal velocity. Because of
its presence the second equation can still not be solved exactly, so let us continue our simplifi-
cations.

Let ci > 0, then:

dci = − 1

Kn
a0c

2
i dt+

σ0√
Kn

cidw(t),

ci|t=0 = ci0, i = 1, 2, 3,

we’ve replaced c by 3
√
ci, consequently: a0 =

√
3a1i, σ0 =

√
3kσ1ij . For reducing trans-

formations assume that dci = dvi, instead of dci = dvi − ∂V/∂tdt because of slowness of V
changing in comparison to c. To take into account ∂V/∂t technically is not difficult but we’ll
not do it here.

The exact solution of this equation (see Appendix 1) has the form:

ci =
exp

(
σ0√
Kn
wt − σ2

0

2Kn
t
)

c−1
0i + a0

Kn

∫ t
0 exp

(
σ0√
Kn
ws − σ2

0

2Kn
s
)
ds
,

vi = Vi +
exp

(
σ0√
Kn
wt − σ2

0

2Kn
t
)

(v0i − V0i)

1 + a0(v0i−V0i)
Kn

∫ t
0 exp

(
σ0√
Kn
ws − σ2

0

2Kn
s
)
ds
, i = 1, 2, 3.

where wt = w(t), ws = w(s).
Transform obtained vi expanding the exponent in Taylor – Ito series near t = 0:

e−
α2

2
t+αwt = 1 + αwt +

1

2!
α2
(
w2
t − t

)
+

1

3!
α3
(
w3
t − 3twt

)
+ . . . .
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Taking it into account we get

vi = Vi +

(
1 + σ0√

Kn
wt + 1

2!

σ2
0

Kn
(w2

t − t) + 1
3!

σ3
0

Kn
√
Kn

(w3
t − 3twt) + . . .

)
(v0i − V0i)

1 + a0(v0i−V0i)
Kn

∫ t
0

(
1 + σ0√

Kn
ws + 1

2

σ2
0

Kn
(w2

s − s) + . . .
)
ds

,

vi = Vi +

(
Kn + σ0

√
Knwt + 1

2
σ2

0 (w2
t − t) +

σ3
0

6
1√
Kn

(w3
t − 3twt) + . . .

)
(v0i − V0i)

Kn + a0 (v0i − V0i)
(
t+

∫ t
0

σ0√
Kn
wsds+ . . .

) .

Rejecting the terms of order Kn:

vi = Vi +

(
σ0

√
Knwt + 1

2
σ2

0 (w2
t − t) +

σ3
0

6
1√
Kn

(w3
t − 3twt) + . . .

)
a0

(
t+ σ0√

Kn
η t

3
2√
3

+ . . .
) ,

η ∼ N (0, 1) is a standard normally distributed random value.
At t→ 0 we get finally:

vi = Vi +
σ0

√
Kn

a0

wt
t

+
σ2

0

2a0

(
w2
t

t
− 1

)
,

dxi = vidt.

In the same manner, for the case ci < 0:

vi = Vi +
σ0

√
Kn

a0

wt
t
− σ2

0

2a0

(
w2
t

t
− 1

)
,

dxi = vidt.

So:

vi = Vi +
σ0

√
Kn

a0

wt
t

+ sign(c)
σ2

0

2a0

(
w2
t

t
− 1

)
,

dxi = vidt.

xi =
∫
vidt = x0 + Vit+

σ
√
Kn

a0

∫ t

0

ws
s
ds+ sign(c)

σ2
0

2a0

∫ t

0

(
w2
t

t
− 1

)
ds.

The calculation of integral
∫ t

0 ws/sds is shown in Appendix 2:∫ t

0
ws/sds =

√
t(ε+ ε̃),

where ε, ε̃ ∼ N (0, 1) are independent random values normally distributed with zero mean and
unit dispersion.

xi = x0i + Vit+
σ0

√
Kn

a0

(ε+ ε̃)
√
t+ sign(c)

σ2
0

2a0

∫ t

0

(
w2
t

t
− 1

)
ds.
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Our goal is an obtaining macroscopic equations for non – random macro – parameters, that’s
why we’ll not take into account in the last expression the fast changing sign, blinking term with
the mean equal to zero. Then:

dxi = Vidt+
σ0

√
Kn

a0

dwt +
σ0

√
Kn

a0

dw̃t,

dwtdwt = dt, dw̃tdw̃t = dt, dwtdw̃t = 0.

So we’re coming to the system:

dx(t) = V dt+
√
Knσ̃ (dw + dw̃) , (4)

dv(t) = − 1

Kn
a(v(t)− V )dt+

1√
Kn

σdw,

where:

σ̃ij ≡ σ0ij/a0i = 0, 43 kT 1/4, (5)

and V is vector with the coordinates Vi, i = 1, 2, 3.
In the second equation instead of a(c) and σ(c) from (3) we take their computed values,

averaged in velocity space with respect to the local maxwellian:

a ≈ 2, 979 T 1/2, σ ≈ 1, 73 T 3/4. (6)

The choice of coefficients depending only on x and t is frequently used, for instance, in
the context of model collision integral in Fokker – Planck form [12]. Note, that from (6) with
our simplifications we get Einstein’s fluctuation – dissipation relation (in dimensional form for
explicity): σ2/a = 2RT .

The presence of the increment of stochastic term in the first equation in the form of two
independent processes, which has appeared at the calculation of

∫ t
0 ws/sds, is not trivial, at our

glance. That is a significant step forward comparing to our previous results.
Let us derive the equations of stochastic gas dynamics for that set of coefficients. It means

that we need to construct the equations for measures in 3D space which are generated by the
random processes x(t) and v(t) belonging to the phase space. A physical meaning of that
measures is the evolution of mass, momentum and energy distributions.

3 CONTINUITY EQUATION WITH SELF DIFFUSION

An amount of gas in a domain D is, from one side, a whole mass of molecules and, from the
other side, an integral with respect to a measure:

∑
l:xl∈Dml =

∫
D µt(dx), or, if all the particles

possess the equal masses 1/N : 1
N

∑N
l=1 χ(xl(t) ∈ D) =

∫
D µt(dx), where χ is a characteristic

function. N can be considered as a number of realizations of the random process x(t) which is
a solution of the system (4).

We define a stochastic empirical measure µt(dx) by an expression: for any function ψ ∈
C

(2)
b (R3) (a space of continuously differentiable finite functions)

∫
ψ(x)µt(dx) =

1

N

N∑
l=1

ψ(xl(t)), (7)
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more precisely: ∀ψ ∈ C(2)
b (R3) and ∀D ∈ R3

∫
D
ψ(x)µt(dx) =

1

N

N∑
l=1

ψ(xl(t))χ(xl(t) ∈ D).

That expression, connecting the measure distribution to realizations of particle positions at
time moment t, is a Chebyshev quadrature formula (the weights are known and the nodes are
parameters) if to read if from left to right.

For obtaining an equation for measure µt(dx), let us take a stochastic differentials from both
of two sides of (7). We’ll use Ito’s formula for complex function differentiation

dψ(x) =
3∑
i=1

∂ψ

∂xi
dxi +

1

2

3∑
i,j=1

∂2ψ

∂xi∂xj
dxidxj,

where stochastic differentials dxi are taken from the system (4):

dxi = Vidt+
√
Kn

3∑
j=1

σ̃ij (dwj + dw̃j) ,

and because of definition of a standard three – dimensional Wiener process increment, the
smallness of which is

√
dt [21]:

dwidwj = δijdt, dwidt = 0, dt2 = 0, (8)

that leads to

dxidxj = 2Kn
3∑

m,n=1

(σ̃imσ̃jn) δmndt = 2Kn
3∑

m=1

(σ̃imσ̃jm) dt ≡ 2Knσ̃2
ijdt,

which means that Ito’s formula in our case turns out to be:

dψ(x) =

 3∑
i=1

Vi
∂ψ

∂xi
+ Kn

3∑
i,j=1

σ̃2
ij

∂2ψ

∂xi∂xj

 dt
+
√
Kn

3∑
i,j=1

σ̃ij
∂ψ

∂xi
(dwj + dw̃j) . (9)

Then we get the stochastic differentials from both of two sides of (7):

d
∫
ψ(x)µt(dx) =

1

N

N∑
l=1

[(
3∑
i=1

Vi
∂ψ

∂xi
+ Kn

3∑
i,j=1

σ̃2
ij

∂2ψ

∂xi∂xj
)(xl(t))]dt

+
1

N

N∑
l=1

√Kn

 3∑
i,j=1

σ̃ij
∂ψ

∂xi

 (xl(t)) (dwj + dw̃j)

 ,
or, applying the formula (7) from right to left for the right hand side of the last expression:

d
∫
ψ(x)µt(dx) =

∫
[(

3∑
i=1

Vi(x, t)
∂ψ

∂xi
(x)

+Kn(x, t)
3∑

i,j=1

σ̃2
ij(x, t)

∂2ψ

∂xi∂xj
(x))dt]µt(dx)

+
∫ √Kn(x, t)

 3∑
i,j=1

σ̃ij(x, t)
∂ψ

∂xi
(x)

 (dwj + dw̃j)

µt(dx).
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Assuming existence of a density ρ(x, t) of stochastic empirical measure µt(dx) (taking the
usual steps while deriving from a generalized equation an equation in partial derivatives: hav-
ing integrated by parts one or two times in appropriate places) we get a stochastic continuity
equation in the form:

dρ =

− 3∑
i=1

∂

∂xi
(Viρ) +

3∑
i,j=1

∂2

∂xi∂xj

(
Kn σ̃2

ijρ
) dt

−
3∑

i,j=1

∂

∂xi

(√
Kn σ̃ijρ

)
(dwj + dw̃j) ,

and having averaged over the time (taking mathematical expectation and having in mind that the
mathematical expectations of the terms with dwj, dw̃j are equal to zero ([16], theorem 3.2.1))
we get a deterministic continuity equation for time averaged deterministic mass density ρ(x, t):

∂ρ

∂t
+

3∑
i=1

∂

∂xi

(
Viρ

)
=

3∑
i,j=1

∂2

∂xi∂xj

(
Kn σ̃2

ijρ
)
,

which is valid for small Knudsen numbers. The right hand side reflects the trace left by the
thermal motion of molecules, or self – diffusion. It does not destroy conservation because it
describes diffusion and has a divergent form. So the doubts on the absence of the conservation
law in our macro – model, marked in [22], seems to be not correct.

It is natural to regard the random values ρ, Vi and σ̃2
ij (which depends on thermal velocity

c) independent, that gives the product of averaged values after the averaging procedure. If we
assume that the time averaging leads to the values using by traditional gas dynamics, then we
get a continuity equation taking into account the self – diffusion (we omit the lines denoting
time averaging above the macroparameters):

∂ρ

∂t
+

3∑
i=1

∂

∂xi
(Viρ) =

3∑
i,j=1

∂2

∂xi∂xj

(
Kn σ̃2

ijρ
)
.

If to perform our derivations for a gas of maxwellian molecules, the self – diffusion corrector
in the right hand side will vanish.

4 MOMENTUM EVOLUTION

Let us get equations for momentum and its density. We connect an amount of movement of
a gas in D with a vector measure νt(dx) by

∑
l:xl∈D vlml =

∫
D νt(dx), or, in a generalized form:

∀ψ ∈ C(2)
b (R3) :

∫
ψ(x)νt,i(dx) =

1

N

N∑
l=1

vi(xl(t))ψ(xl(t)) (i = 1, 2, 3), (10)

considering the process v(t) (the solution of (6)) as a function of x(t).
Let us take stochastic differentials from both of two sides of that equality. We’ll need a

stochastic formula for product differentiation [21]:

d(viψ) = ψdvi + vidψ + dvidψ.

The stochastic differentials dvi are the equations of the system (4):

dvi = − ai
Kn

(vi − Vi)dt+
1√
Kn

3∑
j=1

σijdwj
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Applying Ito’s formula (9) and the rules (8), calculate:

dvidψ =

− ai
Kn

(vi − Vi)dt+
1√
Kn

3∑
j=1

σijdwj


×[

 3∑
i=1

Vi
∂ψ

∂xi
+ Kn

3∑
i,j=1

σ̃2
ij

∂2ψ

∂xi∂xj

 dt+
√
Kn

3∑
i,j=1

σ̃ij
∂ψ

∂xi
(dwj + dw̃j)]

=
3∑
j=1

σijdwj
3∑

m,n=1

σ̃mn
∂ψ

∂xm
dwn =

3∑
j=1

3∑
m,n=1

σijσ̃mn
∂ψ

∂xm
δjndt

=
3∑
j=1

3∑
m=1

σijσ̃mj
∂ψ

∂xm
dt ≡

3∑
m=1

σimσ̃im
∂ψ

∂xm
dt. (11)

Rewrite as well:

ψdvi =
(
−aivi
Kn

+
aiVi
Kn

)
ψdt+

1√
Kn

3∑
n=1

σinψdwn,

vidψ = vi

 3∑
m=1

Vm
∂ψ

∂xm
+ Kn

3∑
m,n=1

σ̃2
mn

∂2ψ

∂xm∂xn

 dt
+vi
√
Kn

3∑
m,n=1

σ̃mn
∂ψ

∂xm
(dwn + dw̃n) .

Then:

d(viψ) =
(
−aivi
Kn

+
aiVi
Kn

)
ψdt+ [vi

 3∑
m=1

Vm
∂ψ

∂xm
+ Kn

3∑
m,n=1

σ̃2
mn

∂2ψ

∂xm∂xn


+

3∑
m=1

σimσ̃im
∂ψ

∂xm
]dt+

1√
Kn

3∑
n=1

σinψdwn + vi
√
Kn

3∑
m,n=1

σ̃mn
∂ψ

∂xm
(dwn + dw̃n) .

Therefore, the stochastic differentials from both of two sides of that equality (10) is:

d
∫
ψ(x)νt,i(dx) =

1

N

N∑
l=1

{[
−aivi
Kn

+
aiVi
Kn

]
(xl(t))

}
dt

+
1

N

N∑
l=1

{[
vi

3∑
m=1

Vm
∂ψ

∂xm
+

3∑
m=1

σimσ̃im
∂ψ

∂xm

]
(xl(t))

}
dt

+
1

N

N∑
l=1


viKn

3∑
m,n=1

σ̃2
mn

∂2ψ

∂xm∂xn

 (xl(t))

 dt
+

1

N

N∑
l=1

[(
1√
Kn

3∑
n=1

σinψdwn + vi
√
Kn

3∑
m,n=1

σ̃mn
∂ψ

∂xm
(dwn + dw̃n))(xl(t))],

Remembering the definitions of the measures µt(dx) and νt(dx), we get the equation for the
measure νt,i(dx):

d
∫
ψ(x)νt,i(dx) =

[
−
∫ ai

Kn
ψνt,i(dx) +

∫ ai
Kn

ψVi(x, t)µt(dx)
]
dt
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+

[
3∑

m=1

∫
Vm

∂ψ

∂xm
νt,i(dx) +

3∑
m=1

∫
σimσ̃im

∂ψ

∂xm
µt(dx)

]
dt

+
3∑

m,n=1

∫
Kn σ̃2

mn

∂2ψ

∂xm∂xn
νt,i(dx)dt

+
3∑

n=1

∫ 1√
Kn

σinψµt(dx)dwn +
3∑

m,n=1

∫ √
Kn σ̃mn

∂ψ

∂xm
νt,i(dx) (dwn + dw̃n) .

Denoting as ρVi(x, t) a density of the measure νt,i(dx) and integrating by parts one or two
times in appropriate places, we get a stochastic differential equation, which is a stochastic ana-
logue of Navier – Stokes equation:

d(ρVi) = −
3∑

m=1

∂

∂xm
(VmρVi) dt−

3∑
m=1

∂

∂xm
(σimσ̃imρ) dt

+
3∑

m,n=1

∂2

∂xm∂xn

(
Kn σ̃2

mnρVi
)
dt

+
3∑

n=1

1√
Kn

σinρdwn +
3∑

m,n=1

∂

∂xm

(√
Kn σ̃mnρVi

)
(dwn + dw̃n) ,

if Knudsen numbers are small.
Taking a mathematical expectation, using the same arguments as at derivation of determinis-

tic continuity equation with self – diffusion, we get deterministic quasi gas dynamics equations
for the momentum density (omitting the lines above gas dynamics values):

∂

∂t
(ρVi) +

3∑
m=1

∂

∂xm
(VmρVi) = −

3∑
m=1

∂

∂xm

(
σimσ̃imρ

)

+
3∑

m,n=1

∂2

∂xm∂xn

(
Kn σ̃2

mnρVi
)
, (i = 1, 2, 3).

5 ENERGY DISTRIBUTION

Let us get equations for energy density. Define a measure εt(dx):

∀ψ ∈ C(2)
b (R3) :

∫
ψ(x)εt(dx) =

1

N

N∑
l=1

ψ(xl(t))
3∑
i=1

v2
i

2
(xl(t)).

(12)

Take the stochastic formula for product differentiation

d(
v2
i

2
ψ) = ψd(

v2
i

2
) +

v2
i

2
dψ + d(

v2
i

2
)dψ,

d(
v2
i

2
) = vidvi +

1

2
(dvi)

2,

the system (4), Ito’s formula (9), expressions (8):

1

2
(dvi)

2 =
1

2Kn

3∑
n=1

σindwn
3∑

m=1

σimdwm =
1

2

σ2
ii

Kn
dt,
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the formula (11):

dvidψ =
3∑

m=1

σimσ̃im
∂ψ

∂xm
dt,

d(
v2
i

2
ψ) = ψvidvi +

v2
i

2
dψ + vidvidψ + ψ

1

2

σ2
ii

Kn
dt

= ψ

[(
−aiv

2
i

Kn
+
aiviVi
Kn

+
1

2

σ2
ii

Kn

)
dt+

1√
Kn

3∑
m=1

σimdwm

]

+
v2
i

2

 3∑
m=1

Vm
∂ψ

∂xm
+ Kn

3∑
m,n=1

σ̃2
mn

∂2ψ

∂xm∂xn

 dt
+
v2
i

2

√
Kn

3∑
m,n=1

σ̃mn
∂ψ

∂xm
(dwn + dw̃n) + vi

3∑
m=1

σimσ̃im
∂ψ

∂xm
dt.

The stochastic differentiation of the formula (12) with account to the just obtained expres-
sions leads to an equation for evolution of the measure εt(dx) (regarding to assumed isotropy in
velocity space we can put ai = a):

d
∫
ψ(x)εt(dx) = [−2

∫
ψ
a

Kn
εt(dx) +

∫
ψ

1

2

3∑
i=1

σ2
ii

Kn
µt(dx) +

∫
ψ

3∑
i=1

a

Kn
Vi(x, t)νt,i(dx)]dt

+
∫  3∑

m=1

Vm
∂ψ

∂xm
+ Kn

3∑
m,n=1

σ̃2
mn

∂2ψ

∂xm∂xn

 εt(dx)dt+
3∑

i,m=1

σimσ̃im
∂ψ

∂xm
νt,i(dx)dt

+
∫
ψ

1√
Kn

3∑
i,m=1

σimµt(dx)dwm +
∫ √

Kn
3∑

m,n=1

σ̃mn
∂ψ

∂xm
εt(dx) (dwn + dw̃n) .

Assuming existence of densities ρVi(x, t) and ρE(x, t) of measures νt,i(dx) and εt(dx) we
get for the term inside the first square brackets:

[−
∫
ψ

2a

Kn

(
ρE −

3∑
i=1

(
ρV 2

i

2
+
σ2
ii

4a
)

)
dx].

For ideal gas, because of the fluctuation – dissipation theorem [12, 23], we can write:
σ2/2a = RT (in dimensional form for clearness). That, together with the definition of tem-
perature and total energy density

ρE =
ρV 2

2
+

3

2
RTρ

brings zero to this expression after averaging.
Then a stochastic differential equation for energy density looks like

d(ρE) =

− 3∑
j=1

∂

∂xj
(VjρE)−

3∑
i,j=1

∂

∂xj
(σijσ̃ijρVi)

 dt+

 3∑
i,j=1

∂2

∂xi∂xj

(
Kn σ̃2

ijρE
) dt

+
1√
Kn

3∑
i,m=1

σimρdwm +
√
Kn

3∑
m,n=1

∂

∂xm
(σ̃mnρE) (dwn + dw̃n) ,

and its deterministic part

∂(ρE)

∂t
+

3∑
j=1

∂

∂xj
(VjρE) = −

3∑
i,j=1

∂

∂xj

(
σijσ̃ijρVi

)
+

3∑
i,j=1

∂2

∂xi∂xj

(
Kn σ̃2

ijρE
)
,

3131



S.V. Bogomolov, N.B. Esikova and A.E. Kuvshinnikov

6 STOCHASTIC GAS DYNAMICS SYSTEM

Let us write the obtained system in Cartesian coordinates:

∂

∂t
ρ+

3∑
j=1

∂

∂xj
(ρVj) =

3∑
i,j=1

∂2

∂xi∂xj

(
Kn σ̃2

ijρ
)
,

∂

∂t
(ρVi) +

3∑
j=1

∂

∂xj
(VjρVi) = −

3∑
j=1

∂

∂xj

(
σijσ̃ijρ

)
+

3∑
k,j=1

∂2

∂xk∂xj

(
Kn σ̃2

kjρVi
)
,

∂

∂t
(ρE) +

3∑
j=1

∂

∂xj
(VjρE) = −

3∑
i,j=1

∂

∂xj

(
σijσ̃ijρVj

)
+

3∑
i,j=1

∂2

∂xi∂xj

(
Kn σ̃2

ijρE
)
.

Denote and compute taking into account (5), (6): A ≡ σ̃2
ij = 0.085 T 1/2, B ≡ σijσ̃ij = 0.5 T .

The latter means our choice of the parameter k = 0.675 for denoting a combination (we’ll find
it in the second equation of the system below) Bρ as p calling it ”pressure”. Then the equality
p = Bρ or p = ρRT (in dimensional form) can be called an equation of state. So:

∂ρ

∂t
+

3∑
j=1

∂

∂xj
(ρVj) =

3∑
j=1

∂2

∂x2
j

(KnAρ)

∂(ρVi)

∂t
+

3∑
j=1

∂

∂xj
(Vj(ρVi)) = − ∂

∂xi
(Bρ) +

3∑
j=1

∂2

∂x2
j

(KnA(ρVi)),

∂(ρE)

∂t
+

3∑
j=1

∂

∂xj
(Vj(ρE)) = −

3∑
j=1

∂

∂xj
(B(ρVj)) +

3∑
j=1

∂2

∂x2
j

(KnA(ρE)).

Introducing the notions p ≡ Bρ, ν ≡ KnA and calling p by pressure and ν by coefficient of
kinematic viscosity, we’ll have the macroscopic system in traditional form:

∂ρ

∂t
+

3∑
j=1

∂

∂xj
(ρVj) =

3∑
j=1

∂2

∂x2
j

(νρ)

∂(ρVi)

∂t
+

3∑
j=1

∂

∂xj
(Vj(ρVi)) = − ∂p

∂xi
+

3∑
j=1

∂2

∂x2
j

(ν(ρVi)), i = 1, 2, 3

∂(ρE)

∂t
+

3∑
j=1

∂

∂xj
(Vj(ρE)) = −

3∑
j=1

∂(pVj)

∂xj
+

3∑
j=1

∂2

∂x2
j

(ν(ρE)).

7 A NUMERICAL EXAMPLE USING DISCONTINUOUS PARTICLE METHOD

We take a well known problem of shock wave structure as a test. Strictly speaking, it is not
a test for macroscopic models because of quite high value of Knudsen number.

The original model (1) is of interest not only because of the possibility to construct new
stochastic and deterministic macro – models but also is a base for direct modeling by the help
of stochastic particle method [8], attractable for high performance simulation. In the present
paper we use a deterministic particle method, alternative to stochastic one, free from parasitic
fluctuations.

The applied explicit particle method [24] has a minimal dissipation that makes it possible
to get a solution with high accuracy for correct comparison of different models. Here we’ll
describe our method shortly, paying attention at algorithmic peculiarities.
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Divide a 1D computational domain in equal intervals. The heights of particles of three types
(representing mass, momentum and energy densities) are taken equal to values of initial ρ(x, 0),
ρv(x, 0), ρE(x, 0) in points xi(0). The heights of particles with number i at j time step are
denoted by ρji , ρv

j
i , ρE

j
i ; p

j
i and T ji are the values of pressure and temperature in a particle with

number i at j time step.
1. Predictor. A system for positions of mass, momentum and energy particles is solved

dxi
dt

= vi; xi(0) = xi0.

by explicit Euler scheme (its accuracy is quite enough because the main source of error is
transport nonlinearity):

xj+1
i = xji + τ ∗ vji ; vji = ρvji /ρ

j
i

2. Corrector (the main step to struggle with nonlinearity and the main peculiarity of our
”discontinuous” method). As a result of particles movements ”overlaps” and ”gaps” occurs. It
destroys the approximation of a function by discrete set of particles. To avoid it let us use the
particles reconstruction from [24].

3. The pressure calculation. The difference of pressures leads to the particles volumes change
(see more in [24]).

4. The account of viscosity. To do it we take a standard difference approximation for the
second derivative at nonuniform grid:

∂2(νu)

∂x2
≈ (νu)x̄x̂ ≡

ν

h̄i

(
ui+1 − ui
hi+1

− ui − ui−1

hi

)
,

where h̄i = 0.5(hi + hi+1).
We do not use limiters as in [24] because of sufficient natural viscosity. Our system turned

out to be less demanding to the values of time steps than Navier – Stokes one.
We consider a one – atom gas (γ = 5/3, Pr = 2/3) at inlet flow Mach number M = 1.55.

At Fig.1 the profiles of the normed density for the stochastic gas dynamics (SDE) and Navier –
Stokes systems are given.

ρ′ =
ρ− ρ1

ρ2 − ρ1

.

where ρ1 and ρ2 are the values at infinity.
Note that our system gives a result close to the experiment [25].

8 CONCLUSIONS

Regardless to our quite severe simplifications we obtained a gas dynamics system which has
clear microscopic origin and gives more adequate than usual results at the well known test.
Moreover, we’ve got the hierarchy of micro – macro stochastic and deterministic models each
of which has its own place in a row of unified solvers.

9 APPENDIX 1. EQUATION dxt = βxγt dt+ αxtdwt

Consider a stochastic differential equation:

dxt = βxγt dt+ αxtdwt, where α, β, γ − const. (13)
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Introduce an integrating multiplyer ([21], chapter 5)

Ft = exp

(
−αwt +

α2

2
t

)
.

Multiply by it both sides of the equation:

Ftdxt = βxγtFtdt+ αxtFtdwt, Ftdxt − αxtFtdwt = βxγtFtdt,

and show that

Ftdxt − αxtFtdwt = d(Ftxt).

By the formula of product stochastic differentiation

d(Ftxt) = Ftdxt + xtdFt + dxtdFt.

Apply Ito formula for a function g(t, x) = exp
(
−αx+ α2

2
t
)

dFt =
∂g

∂t
dt+

∂g

∂x
dwt +

1

2

∂2g

∂x2
(dwt)

2,

dtdt = 0, dtdwt = 0, dwtdt = 0, (dwt)
2 = dt,

∂g

∂t
= Ft

α2

2
,

∂g

∂x
= (−α)Ft,

∂2g

∂x2
= α2Ft.

Then:

dFt =
α2

2
Ftdt+ (−α)Ftdwt +

α2

2
Ftdt = α2Ftdt+ (−α)Ftdwt.

Replace dxt using equation (13):

dxtdFt = −α2Ftxtdt,

d(Ftxt) = Ftdxt + α2Ftxtdt− αFtxtdwt − α2Ftxtdt = Ftdxt − αFtxtdwt.

So, equation (13) is equivalent to equation:

d(Ftxt) = βxγtFtdt. (14)

Denote Ft(ξ)xt(ξ) = yt(ξ) considering ξ as a parameter, then xt = F−1
t yt, and equation (14)

can be written as a deterministic differential equation with respect to a function t → yt(ξ) for
each ξ [21]:

dyt(ξ)

dt
= Ft(ξ)h(t, F−1

t (ξ)yt(ξ))

y|t=0 = x0(ξ), (15)
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where h(t, xt) = βxγt . Solve equation (15) for yt(ξ).

xt = F−1
t yt = exp

(
αwt −

α2

2
t

)
yt,

dyt/dt = exp

(
−αwt +

α2

2
t

)
βyγt /

(
exp

(
−αwt +

α2

2
t

))γ
,

dyt
yγt

= β

(
exp

(
−αwt +

α2

2
t

))1−γ

dt,

y−γ+1
t

−γ + 1
= β

∫ t

0
exp

((
−αws +

α2

2
s

)
(1− γ)

)
ds,

yt =

(
y1−γ

0 + (1− γ) β
∫ t

0
exp

((
−αws +

α2

2
s

)
(1− γ)

)
ds

) 1
1−γ

.

Finally, for xt we get:

xt = exp

(
αwt −

α2

2
t

)(
x1−γ

0 + (1− γ) β
∫ t

0
exp

((
−αws +

α2

2
s

)
(1− γ)

)
ds

) 1
1−γ

.

We are interested in values γ = 2 and α = σ0√
Kn

, β = − a0
Kn

:

xt = exp

(
αwt −

α2

2
t

)(
x−1

0 − β
∫ t

0
exp

(
αws −

α2

2
s

)
ds

)−1

.

10 APPENDIX 2. CALCULATION OF INTEGRAL
∫ t

0 ws/sds.

Show that

∫ t

0
f(s)wsds = σ(t)η,

where f(t) is an arbitrary function, σ2(t) =
∫ t
0

(∫ t
s f(τ)dτ

)2
ds is a dispersion [26],

σ2(t) = 〈
∫ t

0
f(τ)wτdτ,

∫ t

0
f(τ)wτdτ〉,

a random value η is not independent of Wiener wandering wt, where wt = ε
√
t, η can be

represented as η = ρε+
√

1− ρε̃ where ε and ε̃ are independent random values, ρ is correlation
cofficient:

ρ =< ε, η >=
(
1/
(
σ(t)
√
t
)) ∫ t

0
(
∫ t

s
f(τ)dτ)ds
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Figure 1: The profiles of the normed density in a shock wave for the stochastic gas dynamics (SDE) and Navier –
Stokes (NS) systems, compared to EXPeriment.

Determine the integral by an integral sum Sn.
Let ε1, ε2, . . . , εn are independent random values, having normal distribution with zero mean

and unit dispersion: εi ∼ N (0, 1). Divide a segment [0; t] in n segments of length ∆t = t/n.
The values of Wiener process at the end k-th segment is equal to a sum of k independent random
Gaussian increments at each segment k = 1, 2, . . . , n. Denote fi ≡ f((i− 1)∆t), then

Sn = (f1ε1 + f2(ε1 + ε2) + . . .+ fn−1(ε1 + ε2 + . . .+ εn−1))
√

∆t∆t,

and its dispersion:

σ2
n = 〈Sn, Sn〉 = 〈((f1ε1 + f2(ε1 + ε2) + . . .+ fn−1(ε1 + ε2 + . . .+ εn−1))

√
∆t∆t),

((f1ε1 + f2(ε1 + ε2) + . . .+ fn−1(ε1 + ε2 + . . .+ εn−1))
√

∆t∆t)〉
= 〈∆t

3
2 ((f1 + f2 + . . .+ fn−1)ε1 + (f2 + f3 + . . .+ fn−1)ε2 + . . .+ fn−1εn−1),

∆t
3
2 ((f1 + f2 + . . .+ fn−1)ε1 + (f2 + f3 + . . .+ fn−1)ε2 + . . .+ fn−1εn−1)〉

= ∆t((f1 + f2 + . . .+ fn−1)2∆t2 + (f2 + f3 + . . .+ fn−1)2∆t2 + . . .+ f 2
n−1∆t2).

At ∆t→ 0

lim
∆t→0

(fk + fk+1 + . . .+ fn−1)2∆t2 = (
∫ t

tk

f(τ)dτ)2,

σ2(t) = lim
∆t→0

∆t

((∫ t

t0
f(τ)dτ

)2

+
(∫ t

t1
f(τ)dτ

)2

+ . . .+
(∫ t

tk

f(τ)dτ
)2
)

=
∫ t

0

(∫ t

s
f(τ)dτ

)2

ds,
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Let’s calculate σ2(t) and ρ(t) for f(t) = 1/t.

σ2 =
∫ t

0

(∫ t

s
f(τ)dτ

)2

ds =
∫ t

0

(∫ t

s
1/τdτ

)2

ds =
∫ t

0

(
(ln |τ |) |ts

)2
ds

=
∫ t

0
(ln t− ln s)2ds = t

∫ t

0
ln2(s/t)d(s/t)

= t(s/t ln2(s/t)− 2s/tln(s/t) + 2s/t)|t0 = 2t,

An integral I =
∫ t

0(
∫ t
s 1/τdτ)ds:

I =
∫ t

0
(ln |τ |)|tsds =

∫ t

0
(ln t− ln s)ds = −t

∫ t

0
ln(s/t)d(s/t)

= −t(s/t ln(s/t)− s/t)|t0 = t,

then ρ = 1/
√

2, η = (ε+ ε̃)/
√

2.
Finally, we have

∫ t
0 ws/sds =

√
t(ε+ ε̃).
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Abstract. In this work a novel approach is presented for the Boundary Element analysis of
problems in geomechanics. Firstly, Non-Uniform Rational B-Spines (NURBS) are used for the
description of the geometry and for the approximation of the unknowns. This results in a sig-
nificant decrease in the number of parameters used for an accurate description of the geometry
as well as a decrease in the number of degrees of freedom required for good quality results.
Secondly, NURBS are also used for the description of the geometry of geological inclusions,
which can have properties different to the rock mass and can experience inelastic behavior.

After a short introduction to the theory, some details of implementation are shown. On
test examples, involving elastic homogeneous domains, it is first shown that the method delivers
accurate results with fewer parameters and number of unknowns as compared with conventional
analysis. Solutions are compared to either known solutions or with conventional BEM analyses.
Geological inclusions are introduced next and results of test examples are compared with Finite
Element analyses. Finally a practical example is shown.

3139



G. Beer

1 INTRODUCTION

The Boundary Element Method (BEM) is ideally suited for the analysis of problems in ge-
omechanics as it can easily consider infinite and semi-infinite domains because the radiation
condition is implicitly fulfilled. In the case of elastic, homogeneous domains only boundary
integrals appear, and the solution involves a discretization of the boundary, thereby reducing
the analysis effort by an order of magnitude.

However, to analyze real problems in geomechanics the consideration of heterogeneous and
inelastic ground conditions is essential. The BEM can be extended to analyze these problems,
but additional volume integrals appear. The numerical solution of the integral equations requires
the discretization of a volume, therefore partially destroying the attractiveness of the method.
However, the volume integrals only cover the part of the domain that has different material
properties or behaves in an inelastic way. Currently the most popular method is to use internal
cells for the volume discretization. Cells are like Finite Elements but the main difference is that
their only purpose is the evaluation of the volume integral. This means that no additional de-
grees of freedom are introduced. The requirement for an additional volume discretization seems
to have severely restricted the application of the BEM in geomechanics, with the Finite Element
or similar domain methods dominating. In this paper it will be shown how piecewise hetero-
geneous, inelastic domains can be analyzed without a volume discretization, thereby enhancing
the applicability of the method for problems in geomechanics.

Isogeometric analysis [1] has gained significant popularity in the last decade because of the
fact that geometry data can be taken directly from Computer Aided Design (CAD) programs,
potentially eliminating the need for mesh generation. NURBS basis functions, that are used
for the definition of the geometry, are able to describe certain geometries such as arcs exactly.
Therefore, as will be shown, the number of parameters, required to accurately define geometry,
can be reduced significantly. NURBS are also used to define geological inclusions, eliminating
the need for a volume discretization.

2 THE BEM WITH VOLUME EFFECTS

To apply the BEM to heterogeneous and inelastic problems, so called body force effects have
to be included. Using the theorem of Betti as explained in [2], the boundary integral equation
with body forces acting in a sub-volume V0 can be written in incremental form and in matrix
notation as (see Figure 1):

c u̇(y) =
∫
S

U(y,x)ṫ(x)dS+
∫
S0

U(y, x̄)ṫ0(x̄)dS0 (1)

−
∫
S

T(y,x)u̇(x)dS+
∫
V0

U(y, x̄)ḃ0(x)dV0

where c is a free term, U(y,x) and T(y,x) are matrices containing fundamental solutions (Ker-
nels) for the displacements and tractions at a point x due to a unit force at a point y [3], u̇(x) and
ṫ(x) are increments of the displacement and traction vectors on the surface S, defining the prob-
lem domain. ḃ0(x̄) are increments of body force inside the inclusion and ṫ0(x̄) are increments
of tractions related to the body force acting on surface S0 bounding V0.

The integral equations can be solved for the unknowns u or t by discretization. As in the
majority of previous work on the isogeometric BEM [4, 5, 6, 7, 8, 9, 10] we use the collocation
method, i.e. we write the integral equations for a finite number, N, of source or collocation
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dS

S

ṫ0
dS0

S0

dV0

x̄

V0 ḃ0

Figure 1: Explanation of the derivation of the integral equation with volume effects

points yn:

c u̇(yn) =
∫
S

U(yn,x) ṫ(x)dS+
∫
S0

U(yn, x̄) ṫ0 (x̄)dS0 (2)

−
∫
S

T(yn,x) u̇(x)dS+
∫
V0

U(yn, x̄) ḃ0 (x̄)dV0

with n = {1, . . . ,N}.
For the numerical evaluation of the surface integrals over S we divide the boundary into

patches and use a geometry independent field approximation approach for each patch, i.e. we
use different basis functions for the description of the geometry and for the field values:

xe =
K

∑
k=1

Nk(u) ·xe
k (3)

ue =
Kd

∑
k=1

Nd
k (u) ·u

e
k (4)

te =
Kt

∑
k=1

Nt
k(u) · t

e
k (5)

In the above the superscript e refers to the number of the patch, Nk,Nd
k , Nt

k are NURBS basis
functions of the local coordinate u for describing the geometry xe, displacements ue and trac-
tions te, xe

k specify the location of control points, ue
k, t

e
k are parameter values and K, Kd , Kt

specify the number of parameters for each patch.
For an excavation problem for example the following system of equations can be assembled:

[T]{u}= {F}+{F}0 (6)

where [T] is an assembled matrix with coefficients related to Kernel T and {u} is a vector that
collects all displacement components on points yn. {F} is a vector related to the the applied
excavation tractions and {F}0 = {F}S0

0 +{F}V0
0 is the right hand side related to the body force

effects, i.e. related to the integrals over S0 and V0 in Equation (2). Details of the implementation
of the isogeometric BEM for elastic homogeneous domains can be found in [3, 11].
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3 NURBS basis functions

An detailed treatise on NURBS basis functions is presented in [3], here only a short ex-
planation is given. NURBS or Non-uniform rational B-splines are an extension of classical
B-splines. To define B-splines we start with a knot vector. This is a vector containing a series
of non-decreasing values of the local coordinate:

Ξ =
(

u0 u1 · · · uN
)

(7)

We define the entries in the vector as knots. With the knot vector a recursive formula is
applied. First we compute the functions for order p = 0 (constant) and for i = 0, · · · ,N .

Ni,0(u) =
{

1 if ui 6 u < ui+1
0 otherwise (8)

Higher order basis functions are defined by referencing lower order functions:

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u)+

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u) (9)

NURBS basis functions are obtained by including weights, wi :

Ri,p(u) =
Ni,p(u)wi

∑
I
j=0 N j,p(u)w j

(10)

4 Geometry description with NURBS

NURBS are ideally suited for the description of geometry (for example they are able to
describe circular arcs exactly) and this is one of the main reasons they are used by the CAD
community. The main difference to commonly used Lagrange polynomials, is that the concept
of nodal points is replaced by a concept of control points, which do not always lie on the curve.

As an example we show the description of the geometry of an NATM tunnel, where the
design shape is specified by arcs (center, radius and extent) as shown in the tables in Figure
2. One half of the tunnel can be described with 1 NURBS patch of order 2 and only 7 control
points.

This describes exactly the design geometry. It is noted that some control points do not lie on
the curve. The control polygon that connects the control points indicates that there is a smooth
transition (unique tangent) between the arcs.

5 Approximation of unknowns with NURBS or B-splines

NURBS or B-spline basis functions are also ideally suited for the approximation of the un-
known. In contrast to the commonly used Lagrange polynomials they offer more advanced
refinement features. The main difference is that basis functions are not linked to nodal points,
but to anchors.

The continuity of B-splines can be controlled by the knot vector. Knots that are repeated
at the beginning and the end, control the order of the function. For example knot vectors Ξ =
(0,0,0,1,1,1) and Ξ = (0,0,0,0,1,1,1,1) result in basis functions of order 2 and 3 respectively
as shown in Figure 3.

In Figure 4 we show how the extent and continuity of the basis functions can also be con-
trolled by the knot vector. In the left we see that the first and last basis function has a limited
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Control points

Figure 2: Example of geometry description with NURBS: NATM Tunnel definition, description of right half with
NURBS basis functions, showing control points and control polygon.
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Figure 3: Example of order elevation: Left, B-splines of order 2 and right of order 3. Knot locations are depicted
by squares, anchors by filled circles
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Figure 4: Example of knot insertion: B-splines of order 2 with (left) Ξ = (0,0,0,0.5,1,1,1) and (right) Ξ =
(0,0,0,0.5,0.5,1,1,1).
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Control points
Colloc. points

Figure 5: Test example circular excavation: Left definition of a quarter of a circle with one NURBS curve and right
resulting stress distribution

span, i.e. span only half the parameter space, whereas in the right we can see that the basis
functions are discontinuous at u=0.5.

This means that refinement strategies are simply implemented by changing the knot vector
and this is in contrast to isoparametric elements, that involves a change of element type (to
higher order) or an increase in the number of elements. The classical p-refinement can be
achieved by increasing the number of repetitions at the beginning and end of the knot vector,
whereas a refinement similar to the classical h-refinement can be achieved by inserting values
into the knot vector. For basis functions of oder 2, for example, inserting one value means that
the basis functions have limited span but are still continuous. Repetition of the inserted value
means that the basis functions are discontinuous. This refinement strategy would be identical to
a classical h-refinement.

In the following we show first examples involving a homogeneous, elastic domain and then
consider geological inclusions.

6 Test example

This example is designed to demonstrate how very accurate (or in this case exact) results can
be obtained with a very coarse discretization. It relates to the simulation of a circular excavation
in an elastic prestressed domain. The following data describes the problem:

E=10; Poissons ratio=0.3, virgin stress σx0 = 0, σy0 =−1.
The exact solution of this problem is known. Only one quarter of the problem was analyzed

with two axes of symmetry assumed. The geometry is described by one NURBS patch defined
with a basis function of order 2 and 3 control points. This exactly describes a quarter circle. The
same basis function as for the description of the geometry was used (isogeometric approach)
resulting in the collocation points shown in the left of Figure 5. This means that the mesh has
only 6 degrees of freedom. The exact solution for the stress concentration is 3.0. As can be seen
on the right of Figure 5 the simulation yields the exact solution in this case.

7 Practical example

Here we present an example of the analysis of an NATM tunnel. The geometry of the tun-
nel is defined by arcs as shown in Figure 2. The tunnel is excavated in a homogeneous elastic
domain with the following properties: E = 10000 MPa,ν = 0.3. The virgin stress field was
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Figure 6: Approximation of geometry of half the tunnel with conventional BEM and a classical h-refinement
(Elements are color coded). Nodal points are depicted by hollow squares. Note that the approximation of the
geometry changes (i.e. improves) with refinement.

Control points
Colloc. points

Figure 7: Definition of geometry of half the tunnel using one NURBS patch of order 2. Refinement of solution by
order elevation showing collocation points (from left to right oder 2 to 4). Collocation points are depicted by filled
squares. Note that in contrast to the above the description of the geometry (already exact) does not change.

assumed to be σx0 = −0.4,σy0 = −1.0 MPa. We show the salient differences between a con-
ventional and a NURBS based analysis by comparing the two.

7.1 Conventional BEM analysis

In the conventional BEM analysis Lagrange polynomials are used for the approximation
of the geometry and the unknown (= isoparametric boundary elements). A refinement of the
solution can be obtained either by increasing the order of the element (p-refinement), or by in-
creasing the number of elements (h-refinement). In most cases h-refinement is used. Figure 6
shows the approximation of the geometry of half of the tunnel and of the unknowns by increas-
ing the number of elements. We see that for this refinement strategy both a better approximation
of the geometry as well of the unknown is achieved.

7.2 NURBS based approach

Here half of the tunnel is discretized with 1 NURBS patch of order 2. The simulation starts
with assuming the same basis functions for the approximation of the displacements as for the
geometry. Refinement of the results can be achieved by order elevation or knot insertion. In
the isogeometric BEM the collocation points are chosen to be the anchors of the basis functions
used for the approximation of the unknown. Figure 7 shows the location of collocation points
for the original and the first two stages of refinement by order elevation.
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7.3 Results and Comparison

First we compare the variation of the tangential stress1 along the tunnel surface, as a function
of the number of degrees of freedom in Figure 8.
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Figure 8: Distribution of tangential stress along tunnel wall for different degrees of freedom. Top: analysis with
NURBS, bottom: conventional BEM analysis

It can be seen that even without refinement the NURBS based analysis gives good results,
with a smooth stress distribution and very little difference between the solutions with increas-
ing degrees of freedom. The conventional BEM analysis shows a jump in stresses between
elements, which decreases as the number of degrees of freedom is increased. This is because
the approximation of the geometry with isoparametric boundary elements does not have CI con-
tinuity between elements and a small kink appears which is reduced, as the number of elements
is increased. In Figure 9 we show the results of the unrefined NURBS based simulation. It can
be seen that good results can be obtained with very few degrees of freedom.

8 Extension of method to include geological features

Being restricted to elastic homogeneous domains severely restricts the practical applicability
of the method in geomechanics.

1The computation of the tangential stress using the stress recovery method is explained in [3]
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Figure 9: NATM Tunnel: Resulting stress fields

Here we extend the capabilities by considering inclusions that have different material prop-
erties and may exhibit non-linear material behavior. As mentioned earlier volume effects will
appear, that have to be dealt with. The aim in the implementation will be to avoid additional
discretization effort because of this.

The basic approach is to use an iterative solution method. First the problem is solved consid-
ering an elastic homogeneous domain. Then the solution is modified to account for the presence
of inclusions and inelastic behavior.

The procedure is similar to the initial stress method used in Finite Element work and can be
summarized as follows:

1. Solve the elastic, homogeneous problem and determine the increment of stress σ̇ inside
the inclusion V0.

2. Determine an increment in initial stress σ̇0 due to the fact that the elastic material proper-
ties of the inclusion are different from the ones used for the fundamental solutions and/or
due to the fact that the elastic limit has been exceeded.

3. Convert σ̇0 to body force and traction increments ḃ0, ṫ0.

4. Compute new right hand side by evaluating the arising volume and surface integrals.

5. Solve for the new right hand side and compute a new increment of stress σ̇ inside the
inclusion.

6. Repeat 2. to 5. until σ̇0 is sufficiently small.

8.1 Elastic inclusions

Elastic inclusions can be modeled with the multi-region method (see for example [2]) and this
involves an additional discretization and increases the number of unknowns. Here we include
their treatment in the iterative process required for plasticity.
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To compute the initial stress increment for the case where the inclusions have elastic prop-
erties which are different to the ones used for the fundamental solutions we use the relation
between increments of stress σ̇ and strain ε̇ in Voigt notation

σ̇ = C ε̇ (11)
ε̇ = C−1 σ̇ (12)

where C is the constitutive matrix for the domain used for the computation of the fundamental
solutions. The difference in stress between the inclusion and the domain and therefore the initial
stress increment can be computed by

σ̇0 = (Ci−C) ε̇ (13)

where Ci is the constitutive matrix for the inclusion.

8.2 Inelastic behavior

If the inclusion experiences inelastic behavior then additional initial stresses are generated.
Here we use the concept of visco-plasticity, but it is obvious that the method presented here can
also be applied to elasto-plasticity. In visco-plasticity we specify a visco-plastic strain rate

∂εvp

∂ t
=

1
η

Φ(F)
∂Q
∂σ

(14)

where η is a viscosity parameter, F is the yield function, Q the plastic potential [12]. It holds
that

Φ(F) = 0 f or F < 0 (15)
Φ(F) = F f or F > 0. (16)

The visco-plastic strain increment during a time increment ∆t can be computed by an explicit
scheme

ε̇vp =
∂εvp

∂ t
∆t. (17)

The time step ∆t can not be chosen freely and if chosen too large, oscillatory behavior will occur
in the solution. Suitable time step values can be found in [13]. The initial stress increment is
given by

σ̇0 = C ε̇vp. (18)

8.3 Previous work

The first BEM formulation for inelastic problems has been proposed in [14]. The method
has been improved substantially in [15], [16] and [17]. The latter approach proposed an initial
strain formulation in which the consistent tangential operator [12] is used to obtain convergence
of quadratic order for the iterative solution procedure.

The common approach for the evaluation of the necessary domain integration is to use cells
which are identical to isoparametric finite elements. The cell based method for solving inelas-
tic problems with the BEM is explained in detail in [18] and [2]. To overcome the need for a
volume discretization, approaches such as the dual reciprocity BEM [19] or the use of radial
basis functions [20] have been proposed. A comparison of these methods to the cell based ap-
proach found in [21] recommends the latter for accuracy and robustness. Moreover, radial basis

3148



G. Beer

functions are not suitable for the analysis of infinite domains. The possibility to automatically
generate cells in the inelastic region has been explored in [22]. In [23] and [24] the cell method
is extended to cover the simulation of elastic inclusions with different material properties and
in [25] applied to a fast BEM formulation.

All these approaches require the generation of a mesh of cells, which adds an additional
effort. Therefore the main innovation presented here is that the concept of cells is abandoned
and replaced by a geometry definition of the inclusion as will be explained. It is expected that
this approach will not only make the simulation of these simulations more user friendly but
we expect also an increase in accuracy of the results, because the approximation of initial stress
inside cells with basis functions is avoided. An important aspect regarding accuracy is that most
published cell based methods a continuous variation of initial stresses is assumed, regardless of
the fact that the elasto-plastic boundary may cut through a cell and that in this case the variation
of the initial stress is discontinuous.

In the following it is first outlined how the geometry of inclusions is defined using NURBS
curves and how the arising volume and surface integrals are numerically evaluated.

9 Geometry definition for inclusions

The first task is the description of the geometry of the subdomain V0. For this we propose to
use a mapping method introduced recently for trimmed surfaces in [9] and [3]. This means that
the subdomain is defined by two NURBS curves and a linear interpolation between them.

We establish a local coordinate system s= (s, t)ᵀ = [0,1]2 as shown in Figure 10 and perform
all computations such as integration and differentiation in this system and then map it to the
global x,y-system. Note that there is a one to one mapping between the coordinate s = [0,1]
and coordinate u of the red and green NURBS curve in Figure 10 . The global coordinates of a
point x with the local coordinates s are given by

x(s, t) = (1− t)xI(s)+ t xII(s) (19)

where

xI(s) =
KI

∑
k=1

RI
k(s)xI

k and xII(s) =
KII

∑
k=1

RII
k (s)xII

k . (20)

The superscript I relates to the bottom (red) curve and II to the top (green) curve and xI
k, xII

k
are control point coordinates. KI and KII are the number of control points, RI

k(s) and RII
k (s) are

NURBS basis functions. The derivatives are given by

∂x(s, t)
∂ s

= (1− t)
∂xI(s)

∂ s
+ t

∂xII(s)
∂ s

(21)

∂x(s, t)
∂ t

= −xI(s)+ xII(s)

where

∂xI(s)
∂ s

=
KI

∑
k=1

∂RI
k(s)

∂ s
xI

k (22)

∂xII(s)
∂ s

=
KII

∑
k=1

∂RII
k (s)
∂ s

xII
k .

3149



G. Beer

0

0.5

1

0 0.5 1

t

s

Figure 10: A circular excavation with an inclusion above it: Definition of the geometry of the inclusion with 2
NURBS curves in left global and right local coordinate space

The Jacobian matrix of this mapping is

J =

∂x
∂ s

∂y
∂ s

∂x
∂ t

∂y
∂ t

 (23)

and the Jacobian is J(s) = |J|.
Remark: The geometry definition just outlined is suitable for geological inclusions of tab-

ular shape, as are defined in the following examples. However, the theory presented is not
restricted to this geometry definition and any definition that involves a mapping to a local coor-
dinate system s can be used.

10 Computation of {F}0

Here we discuss the computation of the right hand side during iteration. This involves the
evaluation of the integrals in Equation (2) over S0 and V0 of the inclusion using numerical
integration (Gauss quadrature). First the initial stresses have to be converted to tractions acting
on boundary S0 and body forces acting in the domain V0. The traction increments are given by:

ṫ0 =

(
σ̇0x τ̇0xy
τ̇0xy σ̇0y

)
n (24)

where n is the unit outward normal vector to the surface S0. The body force increment ḃ0 can
be computed by

ḃ0 =−


∂ σ̇0x
∂x +

∂ τ̇0xy
∂y

∂ τ̇0xy
∂x + ∂ σ̇0x

∂y

 (25)

It is convenient to compute the derivatives with respect to local coordinates s first and then
transform them to global coordinates. For example the global derivatives of σx in terms of local
derivatives are given by the transformation

σx,x = J−1σx,s (26)
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where

σx,x =

(
∂σx
∂x

∂σx
∂y

)
and σx,s =

(
∂σx
∂ s

∂σx
∂ t

)
(27)

and J is the Jacobian matrix (23).
The derivatives are numerically computed using finite differences. We define a regular grid

of points inside the inclusion in the local coordinate system s. For grid points that have other
points left and right (or top and bottom) of them we use a central finite difference, whereas for
points that only have one point on a side we use forward or backward finite differences.

Remark: In the following examples a simple linear interpolation between grid points and a
linear extrapolation from grid points to the boundary S0. Obviously more sophisticated schemes
may be applied. However care has to be taken that the variation of the initial stress may be
discontinuous. The simple scheme applied here leads to an increase in the accuracy for deter-
mination of the derivatives and for the evaluation of the associated integrals as the number of
grid points is increased. The convergence of the solution as a function of the number of internal
points is investigated in [26].

The numerical evaluation of {F}S0
0 and {F}V0

0 is explained in detail in [26].

11 Computation of results inside the inclusion

As mentioned above, the solution algorithm requires the evaluation of strains and stresses
at internal points. For the initial solution (without body forces) the displacements at a point yi
inside the inclusion V0 can be computed by

u(yi) =
∫
S

U(yi,x) t(x)dS−
∫
S

T(yi,x)u(x)dS. (28)

The strain at a point yi inside the inclusion is

ε(yi) =
∫
S

S(yi,x) t(x)dS−
∫
S

R(yi,x)u(x)dS (29)

where S and R are derived fundamental solutions [2]. The stresses can be computed using (11).
For the subsequent solution (including body forces) the displacements at a point yi inside the

inclusion is

u(yi) =
∫
S

U(yi,x) t(x)dS−
∫
S

T(yi,x)u(x)dS (30)

+
∫
S0

U(yi, x̄) ṫ0 (x̄)dS0 +
∫
V0

U(yi, x̄) ḃ0 (x̄)dV0

The strain can be computed by

ε(yi) =
∫
S

S(yi,x) t(x)dS−
∫
S

R(yi,x)u(x)dV (31)

+
∫
S0

S(yi, x̄) ṫ0 (x̄)dS0 +
∫
V0

S(yi, x̄) ḃ0 (x̄)dV0

Again, for the evaluation of the integrals Gauss integration is used and is described in detail in
[26].
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Figure 11: Test example 1: Definition of the geometry of the excavation and the inclusion with 2 NURBS curves.
Control points for the excavation are shown as hollow squares, red squares indicate the collocation points used for
the analysis.

12 Test examples

The theory is tested on two simple examples here and comparison is made with a coupled
BEM/FEM analysis.

12.1 Example 1: Elastic inclusion above circular excavation

Here we test the capability of the method to simulate elastic inclusions. The example is that
of a circular excavation in an infinite domain with the following properties:

E=1; Poissons ratio=0, virgin stress σx0 = 0, σy0 =−1.
Above the circular excavation there is an elastic inclusion with the elastic modulus of half

the one assumed for the domain. Figure 11 shows the geometry definition of the excavation
and the inclusion. The solution was achieved by order elevating the basis functions used for
the description of the geometry three times. Figure 12 shows that the simulation converges
after 8 iterations and that the end result compares well with a coupled Boundary/Finite element
analysis using the software BEFE. The results of the simulation are shown in Figure 13.

12.2 Example 2: Elasto-plastic inclusion above circular excavation

This is the same example as the previous one except that the inclusion has the same elas-
tic properties as the domain but has elasto-plastic properties. In this case a laminate plasticity
model was applied with a horizontal orientation of the lamina and a Mohr-Coulomb yield con-
dition. The properties assumed were:

Angle of friction φ : 10◦, c: 0, non-associative flow law with ψ : 0.
The convergence of the maximum displacement after about 10 iterations is shown in Figure

14 and compared with a coupled analysis using BEFE.
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Figure 12: Convergence of maximum displacement as a function of the number of iterations

Figure 13: Results of the simulation. Left: Displaced shape; Right: Vertical stress
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Figure 14: Example 2: Convergence of maximum displacement as a function of the number of iterations
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Figure 15: Practical example: Geometry of cavern showing the geology.

Rock mass
Young’s modulus E=10000 MPa
Poisson’s ratio ν=0.20

Inclusion
Young’s modulus Ei=6000 MPa
Poisson’s ratio νi=0.25

Mohr-Coulomb yield condition
Angle of friction φ=30◦

Cohesion c=0.73 MPa

Virgin stress field σxv=−4 MPa
σyv=−8 MPa

Table 1: Practical example: Material parameters and stress field

13 Practical example

The practical example is one that has been solved with a coupled BEM/FEM method and
reported in [2]. It relates to the plane strain analysis of an underground power station cavern.
Figure 15 shows a sketch of the final excavation stage together with the geology which basi-
cally consists of mudstone, sandstone and conglomerate. The mudstone is the weakest material
and has the most profound effect on the ground behaviour. Therefore these layers have been
modelled in the simulation reported in [2].

The material parameters assumed in the simulation are summarised in Table 1. For revisiting
the coupled BEM/FEM analysis with the novel simulation method, using BEM only we consider
an excavation stage to level 232 m and a limited extent of the inclusions. It should be noted here
that no truncation of the mesh is necessary, as the solution obeys the radiation condition. The
limited extent of the inclusions simply means that the effect of the mudstone layers diminishes
at a distance from the excavation surface.
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Figure 16: Practical example: The geometry of the cavern is described by 14 NURBS patches. The associated
control points are shown as hollow black squares. Five inclusions are described by bounding curves with the
associated control points shown as red hollow squares
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Figure 17: Practical example: Figure showing the location of collocation points
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Figure 18: Practical example: Displaced shape

Figure 16 shows the geometry of the cavern with the discretization into 14 NURBS patches.
For the analysis some basis functions for describing the geometry were order elevated, resulting
the the collocation points shown in Figure 17. The resulting displacements are shown in Figure
18.

14 Summary and Conclusions

The aim of the paper was to show recent advances of the Boundary Element Method with
applications in geomechanics. It has been demonstrated that the use of NURBS basis functions
results in a significantly more efficient simulation with fewer parameters required for accurately
describing the geometry and fewer degrees of freedom. It was also shown that NURBS tech-
nology can be used for the definition of geological inclusions with few parameters, resulting in
more efficient simulation of these problems. The claims have been verified by test examples
and a practical application. An extension of the theory to 3-D problems is underway.
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Abstract. The analysis of damping phenomena that occur in many physics and engineering
problems, such as fluid dynamics, kinetic theory and semiconductors, is of particular interest.
For this kind of problems, one needs accurate and stable approximate solutions even on large
time intervals. These latter can be obtained reformulating time-dependent problems modeled by
partial differential equations (PDEs) of hyperbolic type in terms of boundary integral equations
(BIEs) solved via boundary element methods (BEMs).
In this context, starting from a recently developed energetic weak formulation of the space-time
BIE modeling, in particular, classical wave propagation exterior problems [2, 3], we consider
here an extension for the damped wave equation in 2D space dimension, based on successful
simulations for the 1D case [6, 7].
In fact, the related energetic BEM reveals a robust time stability property, which is crucial in
guaranteeing accurate numerical solutions on large time intervals. Several benchmarks will be
presented and discussed.
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1 INTRODUCTION

A variety of engineering and physical applications, such as the propagation or the scattering
of acoustic or electromagnetic waves, leads to the problem of solving linear hyperbolic partial
differential equations in two or three dimensional space. These problems are normally consid-
ered in an unbounded homogeneous domain and a method to tackle them is to reformulate the
partial differential equation as an integral equation on the, usually bounded, boundary of the
domain (BIE) which can then be solved using the boundary element method (BEM) ([11], [19]).
The BIE-BEM combination is especially useful for solving problems of practical importance
with irregular geometries. In some applications, the physically relevant data are given not by
the solution in the interior of the domain but rather by the boundary values of the solution or its
derivatives. These data can be obtained directly from the solution of boundary integral equa-
tions, whereas boundary values obtained from finite element method (FEM) solutions are in
general not very accurate. Sometimes, however, a coupling of FEM and BEM proves to be
useful. Also the analysis of damping phenomena that occur, for example, in fluid dynamics and
in kinetic theory is of particular interest [8, 16, 23]. The use of advanced numerical techniques
to solve PDEs, such as the finite element method (FEM) and the finite difference (FD) methods,
for instance in structural mechanics and for fluid flow calculations, is now well established.
On the other side, both frequency-domain and time-domain boundary element method (BEM)
can be used for hyperbolic boundary value problems [9, 10].
The most frequently adopted discretization scheme is the collocation technique [12, 15] with
direct step-by-step evaluation of the time convolution, even if this approach has never reached
the same level of maturity as in the frequency domain: the high computing costs of the time
convolution and the limited robustness associated to instability phenomena have hindered con-
siderably its diffusion. This is partly because accuracy and stability of the solution are affected
by the time step size. Properties of the numerical solution by this method have been already
studied in [14]. The former issue has been addressed in several ways. The time convolution can
be evaluated applying the convolution quadrature method which has been developed initially in
[20, 21] and has since then been successfully applied to many applications (see e.g.[22]). This
method has the fundamental property of not using explicitly the expression of the kernel which
is instead replaced by its Laplace transform.
On the contrary, the latter problem has been recently tackled in [1, 5, 4] where an energetic
direct space-time Galerkin BEM for the discretization of retarded potential BIEs related to 1D,
2D and 3D wave propagation problems has been put forward and compared with the weak for-
mulation due to Bamberger and Ha-Duong [9, 10, 17, 18]. The proposed technique is based
on a natural energy identity satisfied by the solution of the corresponding differential problem,
which leads to a space-time weak formulation of the BIEs with precise stability properties.
Consequently, the integral problem can be discretized by unconditionally stable schemes via
the so-called energetic BEM.
In this context, starting from the application of energetic BEM to classical wave propagation
exterior problems [2, 3], we consider here an extension for the damped wave equation in 2D
space dimension, based on successful simulations for the 1D case [6, 7]. Several benchmarks
will be presented and discussed.

2 MODEL PROBLEM and its BIE ENERGETIC WEAK FORMULATION

We will analyze the following initial-boundary value problem for damped wave equation
exterior to an open arc Γ ⊂ R2

3160



A. Aimi, M. Diligenti and C. Guardasoni

∆u(x, t)− 1

c2
ü(x, t)− 2D

c2
u̇(x, t)− P

c2
u(x, t) = 0 x ∈ R2 \ Γ, t ∈ [0, T ] (1)

u(x, 0) = 0 x ∈ Γ (2)
u̇(x, 0) = 0 x ∈ Γ (3)
u(x, t) = ū(x, t) x ∈ Γ, t ∈ (0, T ) (4)

where overhead dots indicate derivatives with respect to time, c is the propagation velocity of a
perturbation in the domain, ū(x, t) is the Dirichlet boundary datum; the viscous damping term
is characterized by the coefficient D, while the material damping is modeled by the coefficient
P .
Since the goal of this paper is to approximate u using a BEM technique, we have to obtain a
boundary integral reformulation of the problem (1)-(4) over Γ.
For this purpose, using classical arguments [13], let us consider the single layer space-time
integral representation formula of u(x, t):

u(x, t) =
∫

Γ

∫ t

0
G(r, t− τ)φ(ξ, τ)dτdγξ =: Vφ(x, t), x ∈ R2 \ Γ, t ∈ [0, T ] (5)

where r = ‖x − ξ‖2, φ(x, t) =
[

∂u
∂nx

(x, t)
]
Γ

is the jump of u(x, t) along Γ and G(x, t) is the
forward fundamental solution of the two-dimensional damped wave operator, that is

G(r, t) =





c
2π

e−Dt
cos

(√
P−D2

c

√
c2t2−r2

)
√

c2t2−r2 H[c t− r] , P ≥ D2

c
2π

e−Dt
cosh

(√
D2−P

c

√
c2t2−r2

)
√

c2t2−r2 H[c t− r] , P < D2

(6)

with H[·] the Heaviside distribution.
Now, with a limiting process for x tending to Γ and using the Dirichlet datum (4), one obtains
the following BIE

Vφ(x, t) = u(x, t) , x ∈ Γ, t ∈ [0, T ] (7)

whose energetic weak formulation reads (see [2]):
find φ ∈ H0([0, T ], H−1/2(Γ)) such that

〈 ˙(Vφ), ψ〉Γ×L2([0,T ]) = 〈u̇, ψ〉Γ×L2([0,T ]) , (8)

where ψ is a suitable test function belonging to the same functional space of φ.
Note that, performing a time integration by parts in the sense of distributions, the equation (8)
can be equivalently rewritten as

〈(Vφ), ψ̇〉Γ×L2([0,T ]) = 〈u, ψ̇〉Γ×L2([0,T ]) . (9)

3 SPACE-TIME GALERKIN APPROXIMATION

For time discretization we consider a uniform decomposition of the time interval [0, T ] with
time step ∆t = T/N∆t, N∆t ∈ N+, generated by the N∆t + 1 time instants: tk = k∆t, k =
0, . . . , N∆t and we choose piecewise constant shape functions for the time approximation of φ.
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In particular, for k = 0, . . . , N∆t − 1, time shape functions for the approximation of φ will be
defined as

ϕk(t) = H[t− tk]−H[t− tk+1] . (10)

For the space discretization we consider a polygonal approximation of boundary Γ denoted by Γ̂
and constituted by N∆x straight elements ei, i = 1, . . . , N∆x, with length(ei) ≤ ∆x, ei∩ej = ∅
if i 6= j and such that ∪N∆x

i=1 ēi = Γ̂.
The functional background compels one to choose spatial shape functions belonging to L2(Γ̂)
for the approximation of φ. Hence, having defined Pdi

the space of algebraic polynomials of
degree di on the element ei of Γ̂, we consider the space of piecewise polynomial functions

X−1
∆x := {ϕ̃(x) ∈ L2(Γ̂) : ϕ̃ |ei

∈ Pdi
, ∀ ei ⊂ Γ̂ } .

Hence, denoting with M , the number of unknowns on Γ̂, and having introduced in X−1
∆x the

standard piecewise polynomial boundary element basis functions ϕj(x), j = 1, · · · ,M , the ap-
proximate solutions of the problem at hand will be expressed as

φ̂(x, t) :=
N∆t−1∑

k=0

M∑

i=1

αk
i ϕ̃i(x) ϕk(t) . (11)

Energetic Galerkin BEM is obtained inserting the introduced discretization into the weak prob-
lem (9) and its algebraic reformulation consists in a linear system: AΦ = b of order (M ·N∆t),
whose matrix elements are linear combination of integrals of the form

∫

Γ̂
ϕ̃j(x)

∫ T

0
ϕ̇h(t)

∫

Γ̂
ϕ̃i(ξ)

∫ t

0
G(r, t− τ)ϕk(τ)dτdγξdtdγx . (12)

Specifying the choice made for time basis function, from (12) one obtains a combination of
integrals of the form

∫

Γ̂
ϕ̃j(x)

∫

Γ̂
ϕ̃i(ξ)

∫ th

0
G(r, th − τ)H[τ − tk]dτdγξdγx . (13)

The analysis of kernel singularities has been performed for the case of the wave equation with-
out damping, i.e. for P = D = 0, in [2]; in particular the presence of the Heaviside distribution
H[ct − r] and of the square root

√
c2t2 − r2 can cause a lot of numerical troubles that in [2]

have been solved by suitable splitting of the outer integral over Γ̂ and using quadrature schemes
which regularize integrand functions with mild singularities for the second nested integral in
space variable. Since we expect a similar behavior for the damped kernel, having set

G0(r, t) =
c

2π

1√
c2t2 − r2

H[c t− r] (14)

the fundamental solution related to the classical wave operator, we consider the expansion of
G(r, t) with respect to damping parameters, centered in P = D = 0, and we rewrite (13) as

∫

Γ̂
ϕ̃j(x)

∫

Γ̂
ϕ̃i(ξ)

∫ th

0
[G(r, th − τ)−G0(r, th − τ)]H[τ − tk]dτdγξdγx

+
∫

Γ̂
ϕ̃j(x)

∫

Γ̂
ϕ̃i(ξ)

∫ th

0
G0(r, th − τ)H[τ − tk]dτdγξdγx , (15)

in such a way that the problematic issues described above are confined in the second term,
whose time integral can be evaluated analytically. The time integral of the first term is instead
performed numerically. At last, the outer integrals over Γ̂ are numerically treated by suitable
quadrature schemes as in [2].
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4 Numerical Results

In the following, we will present some numerical results obtained for 2D exterior problems
starting from the proposed energetic weak formulation. We consider the problem (1)-(4) with
Γ = {(x, 0) |x ∈ [−1, 1]} and the Dirichlet boundary datum

g(x, t) = −H[t− kx]f(t− kx)x, where f(z) =





sin2
(

ωz

2

)
, if 0 ≤ z ≤ π

ω

1 , if z ≥ π

ω

with ω = 8π, k = cos θ and θ = π/2 as suggested in [2]. Further the velocity is fixed as c = 1.
For the energetic BEM, constant shape and test functions in space and time are here always
adopted.
At first, we chose a uniform decomposition of Γ in 80 straight elements (∆x = 0.025) and we
set ∆t = 0.025. We show in Figure 1, the time history of the solutions φ(x, t) on the straight
element e20 and on the time interval [0, 4], for P = 0 varying D = 0, 1, 10, 20 on the left
and for D = 0 varying P = 0, 10, 20 on the right. Note the effects of increasing viscous and
material damping which substantially change the aspect of the solution related to the classical
wave equation, visible in the graphs for trivial parameters.
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Figure 1: Time history of φ(x, t) on straight element e20.

Then, we chose a uniform decomposition of Γ in 40 subintervals (∆ x = 0.05) and enlarge
the observation time interval, fixing T = 10 and ∆t = 0.1. Since in this benchmark the Dirich-
let datum becomes independent of time, for P = 0 we expect that the BIE transient solution
φ(x, t) on Γ tends to the stationary one φ∞(x) (Fig. 2, left), i.e. the solution of the BIE related
to the following Dirichlet problem for the Laplace equation:

∆u∞(x) = 0 x ∈ R2 \ Γ
u∞(x) = −x x ∈ Γ
u∞(x) = O(1) ‖x‖ → ∞

Looking at the graphs of the time history of ‖φ(·, t) − φ∞(·)‖L1(Γ), shown in Figure 2 (right),
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Figure 2: Stationary solution φ∞(x) on Γ (left); convergence of damped BIE solution towards
the solution of Laplace problem, when P = 0 (right)

we observe the expected convergence, that becomes slower for increasing values of parameter
D.
Analogously, for D = 0 and P 6= 0 we expect that the transient solution φ(x, t) on Γ tends to
the stationary one φ∞(x) (Fig. 3), i.e. the solutions of the BIE related to the following Dirichlet
problem for the Helmholtz equation:

∆v∞(x) + k2v∞(x) = 0 x ∈ R2 \ Γ
v∞(x) = −x x ∈ Γ
v∞(x) = O(‖x‖−1) ‖x‖ → ∞

with wave number k =
√−P/c2.
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Figure 3: Stationary solutions φ∞(x) on Γ.

Looking at the graphs of the time history of ‖φ(·, t) − φ̄∞(·)‖L1(Γ), in Figure 4, we observe
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the expected convergence, that becomes more oscillating for increasing values of parameter P .

0 5 10

10
−2

10
0

t
0 5 10

10
−2

10
0

t

0 5 10

10
−2

10
0

t
0 5 10

10
−2

10
0

t

P = 1/10 P = 1

P = 10 P = 20

We are here.

‖φ(·, t)− φ̄∞(·)‖L1(Γ)

Figure 4: Convergence of damped BIE solution towards the solution of Helmholtz problem,
when D = 0 and P 6= 0.
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Abstract. The Boundary Element Method (BEM) is ideally suited for the simulation of un-
derground constructions like tunnels or caverns. Such structures are modelled with the BEM
inside an infinite or semi-infinite domain. As the radiation condition is fulfilled by the BEM no
truncation of the domain is necessary. Only the surface of the structure (e.g. tunnel) has to be
discretised by boundary elements (BE). An accurate simulation of the tunnelling process has to
consider the sequential excavation where parts of the rock mass are excavated at different time
and location. This special constructional condition has a direct influence onto the simulation
model. In this work different methods are presented which consider the sequential excavation.
The first method is the discretisation of the problem by multiple BE regions (MRBEM). Each re-
gion, which will be excavated during the excavation process, is discretised by a separate finite
BE region. These regions are embedded inside an infinite region which represent the infinite
extend of the domain. Thus, a system of BE regions arise which have to be coupled at their
common interfaces. Two coupling strategies, the Boundary Element Tearing and Interconnect-
ing Method (BETI) and the method of Interface Coupling (IC) will be presented to solve the
sequential tunnel excavation.
The second method uses only a single BE region (SRBEM) for every step of excavation. For
each load step the geometry/mesh has to be updated. Thus, the mesh of the previous load step
will be extended by the surface of the new excavation volume of the current load step. Beside
the geometry update an essential part of this method is an accurate evaluation of the excava-
tion loading. The excavation loads for each excavation step are tractions applied at the part
of the boundary surface just generated by the geometry update. These tractions depend on all
previous load steps and will be evaluated by a calculation of internal results in the interior of
the single region. The internal results can be either stresses or displacements.
In this work the modelling strategies of the MRBEM and SRBEM approach will be presented.
On a realistic tunnel example the accuracy of the results for the mentioned methods will be
shown as well as the performance of the calculations.

3168



C. Duenser and G. Beer

1 INTRODUCTION

Among other characteristics the construction of tunnels within the New Austrian Tunnelling
Method is characterised by the sequential excavation of the tunnel. A typical sequential exca-
vation is shown in the Fig. 1 where top heading and bench excavation is performed. Thus the
cross section of the tunnel is divided into two parts, top heading and bench. Within the sequen-
tial excavation those volume parts are excavated at different time and location. As shown in the
figure, in the longitudinal direction of the tunnel the top heading excavation is more advanced
as the bench excavation at the same time.

top heading

bench

Figure 1: Sequential tunnel excavation

The modelling of the tunnel excavation is done either in an infinite or semi-infinite domain,
depending on the depth of the tunnel from the ground surface. Using the Boundary Element
Method (BEM) for the simulation of such problems the radiation condition is fulfilled implic-
itly within the solution, thus no truncation of the mesh and special boundary conditions are
necessary. Using the BEM only the surface of the problem has to be discretised. Thus the mesh
generation is drastically reduced for such simulation problems. This will be shown by a 3D
example in section 4.

2 BOUNDARY INTEGRAL EQUATION

The basis of the current work is the displacement boundary integral equation (see [1]) which
is:

C(y)u(y) + C

∫
Γ

T(y,x)u(x) dΓ =

∫
Γ

U(y,x)t(x) dΓ (1)

where U(y,x) and T(y,x) are the fundamental solutions for displacements and tractions and
u(x) and t(x) are the boundary displacements and tractions, respectively. C(y) is an integral
free term depending on the geometrical conditions at the boundary point y. The boundary
integral equation (1) is valid for a single region whose boundary is discretised with boundary
elements. Due to the discretisation the boundary Γ is divided into elements E and nodes N .
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Thus, the integral equation (1) is transformed to:

Cui +
E∑

e=1

N∑
n=1

∆Te
niu

e
n =

E∑
e=1

N∑
n=1

∆Ue
nit

e
n (2)

∆Te
ni and ∆Ue

ni are integrated kernel matrices with respect to the collocation node i and ele-
ment n. Eq. 2 is evaluated for all collocation points i and the coefficient matrices ∆Te

ni and
∆Ue

ni are assembled into matrices [∆T ] and [∆U ], whereas the following equation arise:

[∆T ]{u} = [∆U ]{t} (3)

Eq. 3 allows the solution of a single boundary element region. At the nodes of the boundary
either displacements or tractions are known. The values for the unknown boundary conditions
(BC’s) are solved by rearranging Eq. 3. The corresponding columns of matrices [∆T ] and [∆U ]
related to the unknown BC’ are shifted to the left side and the columns of the matrices [∆T ]
and [∆U ] related to the known BC’s are multiplied with the values of the known BC’s and form
the right hand side vector {f} of the following equation:

[A]{x} = {f} (4)

In case of a mixed boundary value problem the content of the solution vector {x} are either
displacements or tractions, matrix [A] is filled up either with columns of matrix [∆T ] or [∆U ].

3 MODELLING THE SEQUENTIAL EXCAVATION PROBLEM

In the particular case of a sequential excavation rock volumes are excavated gradually. Thus
the simulation is performed step wise. In each step in general one or more rock volumes may
be excavated. The simulation model has to meet these requirements to evaluate the deformation
and stress state [2] of the tunnel progress. With the BEM this process can be simulated by
applying a Multiple Region BEM (MRBEM) or a Single Region BEM (SRBEM). Using a
MRBEM approach each region removed during the excavation process is discretised by a BEM
region. The regions are coupled at their common interfaces and form the MREBM system.
Using the SRBEM only a single region is necessary to solve the tunnelling problem for a certain
step of excavation.

Figure 2: MRBEM model (left) and SRBEM model (right)

In Fig. 2 the meshes are shown which are necessary to solve the tunnelling problem for
a certain excavation state either with the MRBEM (left mesh) or with the SRBEM method
(right mesh) [3]. The mesh of the MRBEM model consists of several finite regions which are
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embedded in an infinite region. The finite regions are deactivated from the calculation model
during the simulation process according to a predetermined sequence.

With the SRBEM model a single BEM region is discretised which represents the actual
excavation state of the tunnel, which is the surface of the volume already excavated. The mesh
size at the beginning of the analysis is very small and is increasing together with the progress
of the tunnel excavation.

3.1 Multiple region BEM

Currently two coupling methods are used to simulate the sequential excavation.These two
methods are explained next.

3.1.1 Interface coupling method (IC)

For the interface coupling method [1] stiffness matrices are evaluated which are related only
to the interface of a region.

Region 1

Region 2

Region 1

Region 2

ΓI ΓI ΓI

ΓN ΓN

ΓN ΓN

Figure 3: Interface coupling (IC)

Starting with the assembled equation system (3), which is

[∆T ]{u} = [∆U ]{t} (5)

and assuming that no Dirichlet boundary conditions are present (which in tunnelling is usu-
ally the case) the boundary can be divided into a Neumann and Interface part. This is shown in
Fig. 3 where 2 regions are coupled at the common interface ΓI . Due to the different boundary
condition types Eq. 5 can be separated to:[

[UI ] [UN ]

]{
{tI}
{tN}

}
=

[
[TI ] [TN ]

]{
{uI}
{uN}

}
(6)

The traction tN are the known boundary condition values and will be shifted to the right
side together with the kernel matrix [UN ]. uN is the unknown vector of displacements of the
Neumann boundary and this will be shifted to the left together with the kernel matrix [TN ].[

[UI ] − [TN ]

]{
{tI}
{uN}

}
=

[
[TI ] − [UN ]

]{
{uI}
{tN}

}
(7)

The matrix on the left side of Eq. 7 is renamed by [A] and on the right hand side the vector
of interface displacements {uI} are separated from the traction vector {tN} belonging to the
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Neumann boundary:[
A

]{
{tI}
{uN}

}
= [TI ] {uI}+

[
− [UN ]

]{
{tN}

}
(8)

Solving this equation for {tI} and {uN} will result to the following:{
{tI}
{uN}

}
= [A]−1[TI ] {uI}+ [A]−1

[
− [UN ]

] {
{tN}

}
(9)

The matrix product [A]−1[TI ] will result to the stiffness matrix [K]∗ and a flexibility matrix
[D], and the second part of the right hand side of Eq. 9, as vector {tN} is known, will give a
known vector shown next:{

{tI}
{uN}

}
=

[
[K]∗

[D]

]
{uI}+

{
{tIN}
{uNN}

}
(10)

The first equation of 10 represents the interface tractions {tI}. Multiplying it with the mass
matrix [M ]r of region r, the tractions are replaced by equivalent nodal point forces. A coupling
to a Finite Element region would be possible know. This equation is shown next:

{fI}r = [K]r{uI}r + {fIN}r (11)

The final forces {fI}r at the interface of region r are the forces due to the interface dis-
placements {uI}r plus the forces at the interface due to the loading (given tractions {tN}r. The
interface forces {fI}r as well as the interface displacements {uI}r are unknown at the present
state. These unknowns are evaluated together with all other regions. Thus, [K]r and {fIN}r are
evaluated for every region r of the multiple region system and the final system of equation can
be assembled under the following conditions:

– Equilibrium of forces at the interface:

{fI}1 + {fI}2 + ......+ {fI}r = 0 (12)

Eq.12 states that the forces at the interface of all adjacent regions are in equilibrium.

– Compatibility of displacements at the interface:

{uI}m = {uI}n (13)

Equation (13) states that the displacements at the interface of adjoining regions n and m
are equal.

Considering these conditions, Eq.11 of every region is assembled into a global equation
system which is shown as following:

{fI}r = [K]sys{uI}+ {fN} = 0 (14)

where [K]sys is the assembled stiffness matrix related to all coupling interfaces of the system.
{fIN} is the right hand side vector related to the loading of the system and {uI} is the vector
of interface displacements. From this equation the interface displacements are solved. Once
{uI} is known all remaining unknowns (tractions at the interface {tI} and displacements at the
Neumann boundary {uN}) can be evaluated using Eq.10.
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3.1.2 Boundary element tearing and interconnecting method (BETI)

The Boundary Element Tearing and Interconnecting Method (BETI) is a domain decompo-
sition method based on the Symmetric Galerkin BEM [4] similar to the Finite Element Tearing
and Interconnecting Method (FETI) for the FEM introduced by [5]. In this work the collocation
BEM is used to set up the equation system similar to the original BETI method. Applying this
method for each region a stiffness matrix based on the DOFs of the whole region surface is
calculated which is in contrast to the method IC applied in section 3.1.1, where the stiffness
matrix is based on the coupled DOFs only. From Eq.3 the boundary tractions of a region are
calculated as following:

[∆U ]−1[∆T ]{u} = {t} (15)

As in the IC method tractions are converted to work equivalent nodal point forces by multi-
plying Eq.15 with the mass matrix [M ]:

[M ][∆U ]−1[∆T ]{u} = [M ]{t} = {f} (16)

where the stiffness matrix [K] is:

[K] = [M ][∆U ]−1[∆T ] (17)

Inserting this into Equation (16) will result in the well known relation between displacements
and forces:

[K]{u} = {f} (18)

As in the IC method two conditions have to be satisfied to formulate a coupled system con-
sisting off r boundary element regions:

– Equilibrium

– Compatibility

The equilibrium state of a region can be described by using Equation (18):

[K]{u} = {fN}+ [B]T{λ} (19)

whereas the force vector on the right hand side of Equation (18) is split into:

{f} = {fN}+ [B]T{λ} (20)

and inserted into Equation (19). [K]{u} are the forces at the boundary of the region due to
deformation, {fN} is the force vector of the given loading (Neumann boundary conditions) and
[B]T{λ} are the coupling forces (Lagrange multipliers) to the neighbouring regions.

The compatibility of a system of r regions can be written in following form:

[B]1{u}1 + [B]2{u}2 + · · ·+ [B]r{u}r = {b} (21)

Equation (21) either guaranties that the displacements at the interface of adjacent regions are
equal or that the displacements at the Dirichlet boundary are equal to the applied Dirichlet
boundary conditions which are entries of vector {b}.
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The final system of equation of a coupled system of r boundary element regions is shown as
following: 

[K]1 0 −[B]T1
[K]2 −[B]T2

0
. . . ...

[K]r −[B]Tr
[B]1 [B]2 · · · [B]r 0

 ·


{u}1

{u}2
...
{u}r
{λ}


=



{fN}1

{fN}2
...

{fN}r
{b}


(22)

Equations 1 to r of Eq.22 are representing the equilibrium of each region and the last equation
of Eq.22 guaranties compatibility of displacements at every node at the interface of adjacent
regions and at the nodes corresponding to the Dirichlet boundary.

In the implementation of the BETI method Eq.22 is not assembled to an equation system.
The equation system Eq.22 is condensed to the solution of the coupling forces λ (Lagrange
multipliers). This is done by inserting equations 1 to r into the last equation of Eq.22. From
this equation λ is solved either directly or iteratively with a BiCGSTAB iterative solver. As the
stiffness matrix [K]r of a finite region (floating region) is singular [6] special treatment of rigid
body motions have to be considered. The whole solution formulation is shown in detail by [4].

3.1.3 Comparison of coupling methods

The main advantage of the BETI method is that the stiffness matrix of each region has to
be calculated only once and in the case of a sequential tunnel excavation these matrices can
be used for each load step of excavation. Using the BETI method for this application type the
stiffness matrices are independent on the changing boundary conditions. Changing boundary
conditions due to sequential excavation are considered by the coupling matrix [B]r of Equation
(22). The coupling matrices have to be computed repeatedly for each calculation step. As those
matrices are sparsely populated they are implemented as sparse matrices. The effort to set up
those matrices is small and it is insignificant compared to the overall computing time. The way
how the equation system is formulated makes the treatment of operations related to a region in-
dependently from the other regions. Thus, the BETI method is ideally suited for parallelisation
techniques.

The advantage of the IC method is that the size of the stiffness matrix is related to the number
of DOFs at the interface of the coupled system of regions. In the case of a sequential excavation
the coupling surfaces are reduced from one excavation step to the other. In each load step one or
more regions are deactivated from the simulation model. Due to the deactivation the boundary
condition of surfaces adjacent to the deactivated regions change from Interface condition to
Neumann condition. Thus, the size of the assembled system stiffness matrix reduces from
one load step to the other and the solution of the equation system gets faster. For regions for
which a change of boundary conditions happens the stiffness matrix has to be calculated newly.
Compared to the BETI method stiffness matrices do not remain constant throughout the entire
analysis of such an excavation simulation.

3.2 Single region BEM

In Fig.4 the excavation using single regions [7] are shown on a simple example in 2D for
two excavation steps. The simulation considers a top heading excavation in the first excavation
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step and a bench excavation in the second step by using a single BEM region for each step. The
region for the first step is the boundary of the top heading and the region for the second step is
the boundary of the final tunnel surface (the outer boundary of top heading and bench together).

excavation step 1 excavation step 2

top heading

bench

Figure 4: Single region BEM (SRBEM) excavation

The crucial task is the evaluation of the excavation loading (boundary tractions) for the sub-
sequent excavation step. For the first step the excavation loading (boundary traction) is given
from the known primary stress field at the whole surface of the top heading region. Applying
Eq.3 with known tractions the displacements are calculated for the top heading boundary. In a
post-processing algorithm the tractions along the boundary of the bench (dashed line in Fig.4)
inside of region 1 (top heading region) are calculated. These tractions are applied at the region
of the subsequent load step (shown in Fig.4 on the right) and again Eq.3 is used to solve this
load step.
For the evaluation of the tractions inside a region two methods have been investigated. The
simpler method is the direct evaluation of the stress at points inside the region using the stress
boundary integral equation. As the stress at the corners of the bench (shown in Fig.4) are sin-
gular, an evaluation of the stress is difficult as well as the distribution of the stress towards that
corner point. The results due to this method are not satisfactory, thus a second method was
investigated where displacements are calculated at the inner points. With this method an inter-
mediate calculation for the region which is excavated (only the bench region!) is necessary. The
mentioned displacements will be the known Dirichlet boundary conditions and the tractions will
be calculated by this intermediate single region calculation. In excavation step 2 this traction
will be applied as loading. A detailed explanation about the key issue of evaluating excavation
loads can be found in [8].

In comparison to the the coupling methods with this method the mesh of the model has to
be adapted at each step of excavation due to the change of the tunnel surface. The simulation is
starting with a very small mesh and in every subsequent excavation step the existing mesh has
to be extended by the surface of the removed volume of excavation. At the end of the excavation
simulation (all regions are excavated) the mesh size is the same as for the coupling methods.
This will be shown in the 3D example shown next.
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4 EXAMPLE - CROSSING PASSAGE - NEW YORK UNDERGROUND

In the following an example of a sequential tunnel excavation is shown. More precisely it
is the crossing passage of two tunnels of the New York Underground. In the planning phase
3D-CAD planning documents were available. In order to create the BEM model these data was
used to mesh the geometry. The initial CAD model of the construction design was too detailed
in order to use it for the numerical discretisation and therefore the CAD geometry description
had to be simplified. After some adaptation and simplification of the CAD model it was im-
ported to the pre-processor CUBIT 2014 [9] and the mesh was automatically generated. The
final mesh is shown in Fig.5 and was modelled with linear (4 nodes) quadrilateral boundary el-
ements (BE). At all four ends of the simulation model infinite BE’s [10] are situated to consider
correct boundary conditions in the longitudinal direction of the tunnels. The mesh consists of
approximately 20 000 nodes and 7 800 elements.

linear boundary elements

infinite boundary elements

Figure 5: Mesh for the BEM analysis

In Fig.6 the sequence of the sequential excavation is shown. In sum 12 load cases (indicated
by LC#) are considered. In the first 6 load cases the main tunnels are excavated, from LC7 to
LC12 the crossing passage is excavated. The meshes for each LC shown in Fig.6 correspond to
the single regions used in the SRBEM simulation method. The excavation model starts with a
small mesh which is extended from LC to LC.

For both coupling methods (IC and BETI) the mesh of LC12 (shown in Fig.6) would be the
infinite region, which is filled with finite regions, the region volumes which are excavated from
LC to LC. Thus, the simulation for the coupling methods starts with a large model (with all
coupled regions) which is reduced by finite regions during the excavation process.
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LC1 LC2 LC3 LC4

LC5 LC6 LC7 LC8

LC9 LC10 LC11 LC12

Figure 6: Excavation sequence LC1 to LC12

In Fig.7 contour lines of displacements in z-direction for the fully excavated tunnels and
crossing passage are shown. The maximum settlement is 8.1 cm at the joining openings of the
crossing passage and the upper main tunnel. The maximum heave is about 8.3 cm at the joining
tunnels of the crossing passage and the bottom main tunnel.

Figure 7: Contour lines of z-displacements for LC12

3177



C. Duenser and G. Beer

In the following diagram of Fig.8 vertical displacements for node A (location shown in Fig.7)
of all load steps are displayed. The calculations were done for the three methods of excavation
explained in section 3:

– Single region BEM method (SRBEM)

– Multiple region BEM method / interface coupling (MRBEM IC)

– Multiple region BEM method / BETI (MRBEM BETI)
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Figure 8: z-displacements of point A for LC1 to LC12

The displacements are displayed for each load case and each simulation method. It is shown
that for the SRBEM and for the MRBEM IC very similar results are obtained. The results for
the MRBEM BETI are slightly different from the two other methods.

Table 1: Computation times for different number of CPU’s

The calculation times for the three simulation methods are shown in Table1 depending on
the number of CPU’s used. Without any parallelisation (calculation with 1 CPU) the calculation
time for the MRBEM IC is the largest of the three methods. For this method the stiffness matrix
of BEM regions with changing boundary conditions has to be calculated again from one load
step to the other. This is the main reason for the lack of efficiency of this method (IC). For
the present example the calculation time for the SRBEM is similar to the one of the MRBEM
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[CPU’s]

[h] Figure 9: Performance of parallel computation

BETI. At the first excavation step the SRBEM method always starts with a very small mesh
(small equations system), the size of the equation system increases from step to step as the
surface of the excavation volume grows. For the MRBEM BETI method the stiffness matrices
of all regions are calculated only once at the beginning of the analysis. They dont change any
more during the whole analysis. This is the main advantage of the MRBEM BETI against the
MRBEM IC method.

In Fig.9 the performance of the three simulation models is shown taking advantage of paral-
lelisation. As shown the time difference for the overall computation of this excavation problem
is decreasing as the number of CPU’s increase.

At the current state of experience an objective statement cant be made whether SRBEM or
MRBEM BETI is favourable in relation to computing performance. Maybe for an example of
an increased number of load steps it can be expected that the MRBEM BETI method has an
advantage over the SRBEM method.

5 CONCLUSIONS

In this work three simulation methods for the calculation of the sequential tunnel excavation
using the BEM have been presented. Two coupling methods, the classical multiple region
boundary element method with interface coupling (MRBEM IC) and the BETI coupling method
(MRBEM BETI) are explained in brevity as well as the single region method (SRBEM).

On a practical example in 3D the results for the three methods are verified and it has been
shown that the accuracy of the solutions of all methods is excellent and corresponds well to each
other. The performance of parallelisation is demonstrated, whereas the methods SRBEM and
MRBEM-BETI have distinct advantages in computing efficiency over the classical interface
coupling. Causes and consequences of the three models for the simulation of the sequential
tunnel excavation related to their implementation and the final performance have been worked
out and are demonstrated by a realistic example in 3D.
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Abstract. The issue of dissipation has a peculiar importance in micro-electro-mechanical-
structures (MEMS). Among the sources of damping that affect their performance, the most rele-
vant are [1]: thermoelastic coupling, air damping, intrinsic material losses, electrical loading
due to electrode routing, anchor losses. Moreover, recent experimental results indicate the
presence of additional temperature dependent dissipation mechanisms which are not yet fully
understood (see e.g. [2, 12]). In a resonating structure the quality factor Q is defined as:

Q = 2πW/∆W (1)

where ∆W and W are the energy lost per cycle and the maximum value of energy stored in
the resonator, respectively. According to eq.(1), the magnitude of Q ultimately depends on the
level of energy loss (or damping) in a resonator. The focus of the present contribution is set
on anchor losses and the impact they have in the presence of axial loads. Anchor losses are
due to the scattering of elastic waves from the resonator into the substrate. Since the latter is
typically much larger than the resonator itself, it is assumed that all the elastic energy entering
the substrate through the anchors is eventually dissipated. The semi-analytical evaluation of
anchor losses has been addressed in several papers with different levels of accuracy [3, 6].
These contributions consider a resonator resting on elastic half-spaces and assume a weak
coupling, in the sense that the mechanical mode, as well as the mechanical actions transmitted
to the substrate, are those of a rigidly clamped resonator. The displacements and rotations
induced in the half-space are provided by suitable Green’s functions. Photiadis, Judge et al. [7]
studied analytically the case of a 3D cantilever beam attached either to a semi-infinite space
or to a semi-infinite plate of finite thickness. Their results are based on the semi-exact Green’s
functions established in [4]. More recently Wilson-Rae et al. [9, 10] generalized all these
approaches using the involved framework of radiation tunnelling in photonics. Unfortunately,
these contributions provide estimates of quality factors that differ quantitatively. In this paper
we revisit the procedure of [7], which rests on simple mechanical principles, but starting from
the exact Green’s functions for the half space studied by Pak [14]. Through a careful analysis
utilizing the theory of residues and inspired by the work of Achenbach [15], we show that the
results obtained coincide exactly with those of [9], but for the case of torsion.
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1 INTRODUCTION: ANALYTICAL ESTIMATE OF DISSIPATION

Following a rather standard procedure [6, 7, 8], in this Section we describe the simplest
possible analytical (or semi-analytical) approach based on a decoupling assumption. Let us
consider a structure, like the beam of Figure 1, attached to semi-infinite elastic spaces and
vibrating in one of its fundamental modes with angular frequency ω. The number of anchor
points is irrelevant and the procedure must be identically repeated for all of them.

Figure 1: Sketch of a bistable doubly clamped beam

As a consequence we focus on a specific attachment point and start considering it as perfectly
rigid. Standard theories of structural mechanics permit to express concentrated forces and cou-
ples exerted by the structure on the support. These generally include a constant component (due
for instance to pre-stresses or initial deformation) and a sinusoidal varying contribution (see
Figure 1 for the notation):

axial force : n(t) = n0 +Neiωt (2)

shear force : r(t) = r0 +Reiωt (3)

bending couple : b(t) = b0 +Beiωt (4)

torque : τ(t) = τ0 + Teiωt (5)

The shear force and bending couple have in general two components which are treated in the
same manner.

We now introduce the decoupling assumption, according to which frequencies, forces and
couples are not significantly altered if the rigid support is replaced with a deformable half space.
These concentrated actions induce displacements and rotations:

n(t) → d(t) = d0 +Deiωt (6)

r(t) → v(t) = v0 + V eiωt (7)

b(t) → φ(t) = φ0 + Φeiωt (8)

τ(t) → ψ(t) = ψ0 + Ψeiωt (9)

where D, V,Φ,Ψ are in general complex variables and denote the amplitude of the time depen-
dent part of, respectively, axial and tangential displacements, bending and torsional rotations.
These are known as Green’s functions for the half elastic space and it is worth stressing that the
real part of these kinematic quantities is in general unbounded.

However, the dissipation over one cycle due to the scatter of elastic waves in the infinite
half-space is:

∆W = −π (Im[D]N + Im[V ]R + Im[Φ]B + Im[Ψ]T )
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Figure 2: Functions gN (eq.21), gR (eq.28) and gB (eq.24)

and only depends of the bounded imaginary part of the Green’s functions.
In particular, setting kT = ω/cT, cT =

√
µ/ρ, in Section 2 we show that

Im[D] = N
kT

µ
gN(ν) Im[V ] = R

kT

µ
gR(ν) (10)

Im[Φ] = B
k3T
µ
gB(ν) Im[Ψ] = −T k

3
T

µ

1

12π
(11)

where gN , gR and gB are plotted versus the Poisson coefficient ν in Figure 2. Most of these
functions, rigorously established starting from the work by Pak [14], are similar to analogous
results published in [7], but differ quantitatively. On the contrary, the numerical values of the
g functions coincide, but for Im[Ψ], with the expressions given in [9] starting from a totally
different perspective.

Finally, summing over all the anchor points:

∆W = −π
∑
i

(
N2
i

kT

µ
gN(ν) +R2

i

kT

µ
gR(ν) +B2

i

k3T
µ
gB(ν)− T 2

i

k3T
µ

1

12π

)
(12)

In order to apply eq.(12) only the expressions of R,N,B, T are required. In many cases fully
analytical estimates are available, like for a cantilever beam in axial or bending vibrations. More
in general, a numerical tool is required, as for the case of the buckled beam of interest in this
paper, discussed in the following section.

2 DISPLACEMENTS AND ROTATIONS DUE TO POINT LOADS ON AN ELASTIC
HALF-SPACE

The general procedure proposed by Pak [14] is here employed to derive the surface displace-
ments and rotations induced by harmonic point forces and couples exerted on the surface of an
elastic half-space of outward normal ez. In [14] forces, represented as stress discontinuities,
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are distributed on a circle of radius a. By suitable specifying their form and taking the limit
a → 0, all the concentrated loads of interest herein can be recovered. Starting from formulas
(18) and (25) provided by [14], the Green’s functions for bending and torque couples are also
obtained. Next, focusing on the imaginary part of interest for the dissipation, free terms are
evaluated using the theory of residua and results are provided in the form of at most weakly
singular integrals, in general functions of the Poisson coefficient. All the results are presented
graphically in Figure 2.

Here we set kT = ω/cT, kL = ω/cL, η = k/kT (cT and cL are shear and longitudinal wave
velocities) and

α2 =
c2T
c2L

=
1− 2ν

2(1− ν)
(13)

q2 = k2 − ω2/c2T = k2 − k2T = k2T(η2 − 1) (14)
p2 = k2 − ω2/c2L = k2 − k2L = k2T(η2 − α2) (15)

G = (k2 + q2)2 + 4k2pq = k4T

(
(2η2 − 1)2 + 4η2

√
η2 − α2

√
η2 − 1

)
(16)

F = (k2 + q2)2 − 4k2pq = k4T

(
(2η2 − 1)2 − 4η2

√
η2 − α2

√
η2 − 1

)
= k4Tf(η) (17)

Vertical displacement due to a vertical force. The distribution of surface stresses:

tz =
1

πa2

over the circle of radius a centered at the origin induces a unit vertical force. From [14], the
resulting displacement w along the z axis is:

w(r) =
1

πµa

∫ ∞
0

Ω(k)J1(ak)J0(kr)dk (18)

where Jm is the m-th order Bessel function, r = |y − x| and

Ω =
1

2k2T

(
−p+

k2

q
− G

F

(
p+

k2

q

)
+

8k2p(k2 + q2)

F

)
= − 1

kT

√
η2 − α2

f(η)
(19)

where f(η) has been defined in eq.(17). Equation (18) can be rewritten:

w(r) = − 1

πµa

∫ ∞
0

√
η2 − α2

f(η)
J0(kTηr)J1(kTηa)dη (20)

It is worth stressing that the real part has a potential singular behavior at the origin, as expected.
However we are interested only in the imaginary part of D = limr→0w(r) which is smooth,
since the integrand in eq.(18) is real for η > 1. Hence the limits r → 0, a → 0 can be safely
taken.

The integral has a pole in η = ηR such that f(ηR) = 0, which corresponds to Rayleigh
waves, with ηR > 1. Following [15] this gives the free term:

DR(r) = − kT
2πµ

(
−iπ

ηR
√
η2R − α2

f ′(ηR)

)
= i

kT
µ

(
ηR
√
η2R − α2

2f ′(ηR)

)
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The integral in eq.(20) has to interpreted in the Cauchy principal value sense. Globally:

Im[D] = N
kT

µ
gN(ν) (21)

with:

gN(ν) = − 1

2π
Im

[∫ 1

0

η
√
η2 − α2

f(η)
dη

]
+
ηR
√
η2R − α2

2f ′(ηR)

It is worth stressing that the final results coincides with that provided by Achenbach ([15],
eq.77) using a different procedure.

Rotation due to bending moment. The distribution of surface stresses

tz =
4

πa4
r cos θ =

2

πa4
reiθ +

2

πa4
re−iθ

over the circle of radius a is equivalent to a unit bending couple around the θ = π/2 axis.
Indeed, in order to apply the procedure of [14], tz needs to be expressed in polar coordinates
over the circle as:

tz =
∑
m

tz,m(r)eimθ

The induced radial displacement on the surface is:

w(r) =
4 cos θ

πµa2

∫ ∞
0

Ω(k)J2(ak)J1(kr)dk (22)

which, by differentiation, yields the rotation φ around the θ = π/2 axis:

φ =
∂w(r)

∂r

∣∣∣∣
θ=0

=
2

πµa2

∫ ∞
0

ΩJ2(ak)k(J0(kr)− J2(kr))dk (23)

Since we are only interested in the imaginary part of Φ and the integrand is real for η > 1, the
rotation for r → 0, a→ 0, is bounded and:

Im[Φ] = B
k3T
µ
gB(ν) (24)

with:

gB(ν) = − 1

4π
Im

[∫ 1

0

η3
√
η2 − α2

f(η)
dη

]
+
η3R
√
η2R − α2

4f ′(ηR)

where the second term represents the contribution of Rayleigh waves at f(ηR) = 0.

Tangential displacement due to tangential force. Like the vertical force also this case is
already treated in [14]. The surface stress distribution

tθ = − 1

πa2
sin θ tr =

1

πa2
cos θ
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over the circle of radius a, which is equivalent to a unit horizontal force, generates the radial
displacement ur:

ur =
cos θ

2πµa

[∫ ∞
0

(γ1 + γ2)J0(kr)J1(ak)dk +

∫ ∞
0

(γ2 − γ1)J2(kr)J1(ak)dk
]

(25)

with

γ1 =
1

2k2T

(
k2

p
− q − G

F

(k2
p

+ q
)

+
8k2q(k2 + p2

F

)
= − 1

kT

√
η2 − 1

f(η)
(26)

γ2 =
1

q
=

1

kT

1√
η2 − 1

(27)

The displacement V at the point of application of the load and θ = 0 is the limit of ur for r → 0,
a→ 0, and

Im[V ] = R
kT

µ
gR(ν) (28)

having set:

gR(ν) = − 1

4π

∫ 1

0

ηh1(η)

f(η)
√
η2 − 1

dη +
ηRh1(ηR)

4f ′(ηR)
√
η2R − 1

(29)

with:

h1(η) = −2− 4η4 + η2
(

5 + 4
√
η2 − 1

√
η2 − α2

)
(30)

Rotation due to torque. Finally, the distribution of surface stresses

tθ =
2

πa4
r

over the circle of radius a is equivalent to a unit torque and induces the circumferential displace-
ment

uθ =
2

πµa2

∫ ∞
0

γ2(k)J2(ak)J1(kr)dk (31)

and the torque angle

ψ =
∂uθ
∂r

=
2

πµa2

∫ ∞
0

γ2(k)J2(ak)(J0(kr)− J2(kr))kdk (32)

with γ2 defined in eq.(27). In this case the free term due to Rayleigh waves is absent and, all
the limits taken, the imaginary part of the rotation Ψ at the origin is

Im[Ψ] = T
k3T
µ
gT (33)

with:

gT =
1

8π
Im

[∫ 1

0

η3√
η2 − 1

dη

]
= − 1

12π

It is worth stressing that gT is independent of the Poisson coefficient, like in [7], but differs from
the results of [9].
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3 APPLICATIONS: AXIAL AND BENDING MODES

Simple applications of these formulas give estimates of the quality factors of cantilever
beams of length L and cross section area A, resting on an elastic half space. For simplicity,
the half-space is assumed to be made of the same isotropic material as the beam. In the case of
axial vibrations for a cantilever on a rigid support the axial displacement reads:

u = U sin(kBx)eiωt

with:

kB = (1 + 2m)
π

2L
, ω =

√
E

ρ
kB

The maximum value of the stored elastic energy is:

W =
1

2
U2EAk2B

L

2

and the force exerted on the supportN = EAkBU . Assuming that ω,N,W are not significantly
altered if the rigid support is replaced with a deformable half space, N induces a displacement
D of the half space given by eq.(21) and the dissipation is:

∆W = −πN Im[D] = πE2A2k2BU
2 1

µ
kT gN(ν)

leading to:

Q =
L

EA

µcT

gN(ν)

1

ω
(34)

Similarly, for a bending mode ψ(x)U characterized by a given wave number kB (e.g. kBL =
1.875 in the first mode) and normalised such that∫ L

0

ψ2ds = L,

the maximum stored energy is W = (1/2)EILk4BU
2, while the bending couple and shear force

read
B = 2EIk2BU, R = 2EIk3BβU, with β =

sin kBL− sinh kBL

cos kBL+ cosh kBL

If only the shear force is considered (bending dissipation is usually negligible):

Q =
L

4EJk2Bβ

µcT

gR(ν)

1

ω
(35)

where ω =
√
EI/(ρA)k2B. Formulas (34) and (35) coincide with the ones given by [9], Table

1.
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4 APPLICATION: ANALYSIS OF A BISTABLE BEAM

The motion of a beam of length L subjected to a compressive force P and undergoing large
displacements is governed, as a first approximation, by the non-linear equation:

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
+

[
P − EA

2L

∫ L

0

(
∂w

∂x

)2

dx

]
∂2w

∂x2
= 0 (36)

where w is the beam deflection, A is the cross-section area, I is the inertia modulus and E is
the Young modulus. In eq.(36) the classical equation of slender beams has been corrected for
the presence of the uniform axial force

n(t) = −P +
EA

L

∫ L

0

1

2

(
∂w

∂x

)2

dx

In particular we start considering the quasi-static post-buckling response of a clamped-clamped
beam, i.e. the evolution beyond the critical load Pc = 4π2EI/(L2) as P is slowly increased.

Let φ denote the buckling mode:

φ =
1

2

(
1− cos

2πx

L

)
Assuming that the beam deflection has the expression w(x) = bφ(x), one obtains a non-linear
relationship between P and b:

P = Pc + b2
EA

2L

∫ L

0

d2φ

dx2
dx

We now study the small vibrations around a postbuckling state, characterized by a given b:

w(x, t) = bφ(x) + u(x, t), |u(x, t| << b|φ(x)| (37)

A linearization of eq.(36) yields:

ρA
∂2u

∂t2
+ EI

∂4u

∂x4
+ Pc

∂2u

∂x2
− EAb2

L

d2φ

dx2

∫ L

0

dφ
dx
∂u

∂x
dx = 0 (38)

An explicit and simple expression for the quality factor can be obtained with very good approxi-
mation for small values of b/V . In this case it is reasonable to assume that Φ(x) is the buckling
mode. Assuming that the greatest contribution to dissipation is due to axial loads:

N = αEA
b

L

π2

2
→ ∆W = N2 b

µL2

(
4π3

√
1 + ν

3
gN(ν)

)

and the quality factor is:

Q
HV 2

L3
=

1

b̃

(
1

8π3

1

gN(ν)

1

1 + ν

√
3

1 + ν

)
(39)
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Abstract. The problem of thermoelasticity is present in many different areas of solid mechan-
ics. It describes the effects of thermal as well as mechanical loads on an elastic structure. We
use the uncoupled quasistatic formulation of thermoelasticity (UQT), in a linear model and ap-
ply the Boundary Element Method. The UQT formulation is applicable in most cases, where
the mechanical load is constant or slowly varying in time. Here, the influence of the elastic
deformations on the heat distribution is neglected. This leaves us with a decoupled system
of differential equations, consisting of the heat equation and an elastic equation, which ac-
counts for thermal and mechanical loads. In the elastic equation the thermal field variables
are introduced via convolutions. We apply three different methods for the calculation of these
convolutions to find the elastic field variables and compare their computation times.
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1 INTRODUCTION

For a large class of problems in solid mechanics not only mechanical loads but also thermal
influences have to be considered to describe the behavior of a structure correctly. For an elastic
deformation under the influence of heat, the theory of thermoelasticiy is well known for over
5 decades (see for example [1–3]). Today we can apply the theory in many different fields, for
example in structural engineering or in the description of a hot forming tool. This tool is used in
the production of vehicle parts. The process of hot forming makes use of the thermomechanical
properties of the material. In the process, the tool is directly heated and cooled down thereafter.
For this industrial application the thermal problem has been simulated and a fast method was
developed in a previous work by Messner and Schanz [4]. It is work in progress to extend this
thermal problem to the elastic deformations, caused by the temperature change.

Therefore, in our studies we aim to develop a fast numerical method to calculate the effect
of such thermomechanical loads and to simulate the elastic deformations. The model we use
is linear in its geometry, as well as in its elastic and thermal behavior and thus applicable
only to small deformations. For this purpose the Boundary Element Method (BEM) is a good
framework for our numerical model. In the BEM the discretization of the body is reduced
to a discretization of the body’s surface. Results at an arbitrary point of the volume can be
calculated in a subsequent step. In particular, we use the theory of Uncoupled Quasistatic
Thermoelasticity (UQT), which is a special case of thermoelasticity that meets the requirements
of our applications. The UQT has been studied [3, 5, 6] and applied by different authors (see
[7, 8]).

In the following, we will describe the theoretical approach we use and the different methods
to solve the equations. We show numerical results and compare them to a known analytic
solution. Additionally, we present a comparison of computation times for these results.

2 BASIC EQUATIONS

The general case of coupled thermoelasticity can be described by the following set of coupled
differential equations [6]

κ θ,jj − θ̇ − κ α u̇j,j + ψ = 0 (1)
µ ui,jj + (λ+ µ) uj,ij − (3λ+ 2µ) α θ,i + fi = ρ üi , (2)

with

ui displacement λ, µ Lamé isothermal elastic constants
θ temperature α thermal expansion coefficient
fi body forces κ thermal diffusivity
ψ body heat sources ρ mass density.

For this set of coupled differential equations, a simplification can be justified, which applies
to many technical applications. In a process of slowly varying mechanical load, the heat produc-
tion or consumption due to mechanical stress can be neglected. For such a slow or quasistatic
process the elastic inertia terms can be neglected as well. With these assumptions we end up
with the set of uncoupled quasistatic differential equations of thermoelasticity (in the following
denoted by UQT) [5], where the term describing the influence from mechanical stress on the
heat evolution vanishes. Additionally, we do not consider body forces or inner heat sources in
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this model

κ θ,jj − θ̇ = 0 (3)
µ ui,jj + (λ+ µ) uj,ij − (3λ+ 2µ) α θ,i = 0 . (4)

With this set of equations, the thermal evolution in equation (3) is completely independent, or
uncoupled, from the mechanical variables. This provides us with the possibility to solve this
differential equation independently. As a result, the thermal quantities are determined and are
known in advance for the solution of the elastic differential equation (4), where they can be
considered as a thermal load.

To apply the Boundary Element Method we need to formulate boundary integral equations
for this set of differential equations, which are [7]

cθθ(ξ) θ(ξ, t) =

∫
Γ

{ [gθθ ∗ q](x, t)− [fθθ ∗ θ](x, t)} dΓ (5)

cij(ξ) uj(ξ, t) =

∫
Γ

{ gijtj(x, t)− fijuj(x, t) + [giθ ∗ q](x, t)− [fiθ ∗ θ](x, t)} dΓ , (6)

where i, j = 1, 2, 3. The functions g and f are the fundamental solutions, which can be found
in [1, 3, 6]. While the purely thermal equation (5) is scalar, the elastic equation (6) is vectorial.
The jump terms cθθ and cij follow from shifting the field point ξ from the domain Ω to the
boundary Γ.

In our studies, we will focus on the numerical solution of the elastic equation (6), since a fast
method for the thermal equation (5) already exists [4].

Spatial Discretization

For a numerical description of our problem we need discretizations of both, space and time.
The geometry description is based on an element formulation, establishing the Boundary Ele-
ment Method. This method uses the triangulation of the geometry, yielding disjoint, adjacent,
finite elements τl on the boundary Γ

Γ ≈ ΓL =
L∑
l=0

τl . (7)

In contrast to other element methods, for the BEM the discretization of the surface Γ is suffi-
cient, due to the boundary integral equations used. As a consequence, the volume description
only depends on the quality of the surface description. The field y(x, t) to be investigated is
formed by a linear combination of shape functions φ(x). Depending on the choice of the shape
functions, the physical quantity is determined by a sum over element functions φn and nodal
values yn,

y(x, t) =
N∑
n=0

φn(x) yn(t) , (8)

where N is the number of shape functions. The field variable y represents all four fields of
interest, the displacement ui, the temperature θ, the tractions ti and the heat flux q.
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3 TREATMENT OF THERMAL QUANTITIES

In the elastic equation, the thermal variables are introduced via convolutions over time. The
boundary integral equation (6) convolves known boundary values with the fundamental solu-
tions of the coupling terms as a right hand side. The treatment of these convolutions can be of
different kind.

3.1 Analytic integration in time

We introduce discrete time steps

tm = m∆t m = 0, 1, ..M (9)

and shape functions ψm(t) in time. The field is consequently a linear combination of these time
shape functions

yn(t) =
M∑
m=0

ψm(t) ym , (10)

where M denotes the number of contributing time shape functions. Inserting these shape func-
tions in the first convolution integral in 6, yields∫ t

0

giθ(x, t− τ)q(x, τ) dτ =
M∑
m=1

∫ m∆t

(m−1)∆t

giθ(x,M∆t− τ) qm(x)ψm(t) dτ . (11)

Choosing constant discontinuous shape functions in time results in variables, which are only
dependent on the present interval. As a consequence, it becomes possible to pull out the field
quantity from the time integral [7]. An analytic integration of the fundamental solutions is
favorable. It exists for the heat-coupling fundamental solution and was developed by Dargush
[7]. With these assumptions the convolution involves only the multiplication of matrices and
boundary value vectors∫ t

0

giθ(x, t− τ)q(x, τ) dτ =
M∑
m=1

qm(x)

∫ m∆t

(m−1)∆t

giθ(x,M∆t− τ) dτ

=
M∑
m=1

qm(x) GM+1−m
iθ (x) ,

(12)

where Giθ is the time integrated fundamental solution. A triangular block Toeplitz structure is
formed. This is a convenient method involving nothing but variables in the time domain.

3.2 The Convolution Quadrature Method (CQM)

The Convolution Quadrature Method was developed by Lubich [9, 10], to numerically eval-
uate a convolution, making use of one of the functions in the Laplace domain. The basic idea of
the CQM is to express the convolution as a quadrature formula. The weights are derived from
one of the function’s Laplace transform

L{g}(s) = G(s) =

∫ ∞
0

g(t) e−st dt . (13)
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The entire derivation of the CQM is shown in the Appendix. The strategy leads to the following
formulation. First, we discretize in time

tn = n∆t , (14)

with n = 0, 1, ..., N , for the discrete convolution of N + 1 time intervals of equal size. Hence,
it is ∫ t

0

giθ(x, t− τ)q(x, τ) dτ ≈
n∑
k=0

ωn−k(∆t)q(k∆t) . (15)

ωn(∆t) depends on the Laplace transform of the function, Giθ(
γ(z)
∆t

), where γ(z) is the charac-
teristic function of the underlying multistep method.

3.3 Fast Fourier Transformation (FFT)

The Fourier transform is another method which shifts the problem to the frequency domain,
where the convolution becomes simply a multiplication

F{g ∗ q}(ω) = F{g}(ω) F{q}(ω) = Y (ω) . (16)

Here F denotes the Fourier transformation of the form

F{g}(ω) = G(ω) =
1√
2πi

∫ ∞
−∞

g(t) e−iωt dt . (17)

As the thermoelastic problem is causal, there is no solution at negative times, and the Fourier
transformation becomes almost equivalent to the Laplace transform for setting the parameter
s = iω.

Therefore, it is possible to make use of the fundamental solution, which exists for the Laplace
domain in an analytic form, and use it for the transformation into Fourier space as well. Finally,
an inverse Fourier transformation has to be applied to the product Y (ω), which yields the result
y(t) in time domain

F−1{Y }(ω) = y(t) . (18)

For a numerical algorithm of the discrete Fourier transformation there exists the very efficient
Fast Fourier Transform algorithm (FFT). It operates at an effort of order O(NlogN).

Even though all methods are given for one of the convolution integrals exemplary here, both
convolution integrals in the elastic equation (6) are treated in the same way.

4 RESULTS

4.1 Problem Validation

To validate the results of the uncoupled quasistatic thermoelastic problem, we want to con-
sider a test problem for which an analytic solution exists. In literature there exist several simple
and well known problems for the solution of the heat equation alone but not so many with a
simple thermoelastic solution as well. There is one popular test case which goes back to Timo-
schenko and Goodier [11] and was also used by Dargush [7] and Chatterjee [8] for validation.

The problem setting is the following. A cubic body of homogeneous, isotropic material
properties is fixed by roller bearings on 5 of its faces. At these faces the heat flux is zero, thus
the system is thermally insulated there. The remaining 6th face of the cube is mechanically
unconstrained (figure 1). Initially, the cube is in an equilibrium state at zero degrees. At time
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Figure 1: Mechanical and thermal constraints of the unit test cube, in top view and front view.

zero the temperature at the mechanically unconstrained face 6 is raised by 1 degree. As a re-
sult, the body expands elastically, as the temperature increases. After a certain time a stationary
state is reached. Due to the mechanical boundary conditions the elastic expansion of the cube
is only possible in x-direction. The three-dimensional model shows, therefore, a one dimen-
sional behavior, for which solutions are known. The behavior is reduced to a one dimensional
problem of the coordinate x with the following analytic solutions for the temperature θ and the
displacement u

θ(x, t) = 1− 4

π

∞∑
n=0

(−1)n

(2n+ 1)
exp

(
− (2n+ 1)2π2κ t

4L2

)
cos
((2n+ 1)π x

2L

)
, (19)

u(x, t) =
(3λ+ 2µ)α

λ+ 2µ

∫ x

0

θ(x, t) dy

=
(1 + ν)α

(1− ν)

(
x− 8L

π2

∞∑
n=0

(−1)n

(2n+ 1)
exp

(
− (2n+ 1)2π2κ t

4L2

)
sin
((2n+ 1)π x

2L

))
,

(20)

where L is the length of the cube in x-direction. With the relations of the Lamé coefficients of
an isotropic material, the prefactor depends only on Poisson’s ratio ν and the thermal expansion
coefficient α.

For the following calculations the heat equation was solved in a first step, using the CQM.
Since a fast method for the thermal problem exists, we want to focus on the deformations only.
The elastic part was solved in a second step using the three different methods presented before
for the convolution terms. Each method is going to be compared to the analytic solution of
our test problem. As our test body, we choose the unit cube (figure 1), with its mechanically
unconstrained face at x = 1. We show the elastic displacement over time for a point on this
surface and denote the surface by x = 1.

Discretization The Boundary element mesh chosen for our surface approximation consists
of triangular elements. The basic mesh has 24 elements, 4 triangles on each cube face. From
this basic mesh 2 refinement levels are created, each splitting a previous element into 4 smaller
triangles. In this manner, we receive refinement 1 with 96 boundary elements and refinement 2
of 384 elements. The meshes are shown in figure 2.

Time stepping For choosing an appropriate time step it is necessary to resolve the time de-
pendence sufficiently. Therefore, the time step size highly depends on the material parameters,
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Figure 2: Basic mesh, refinement 1 and refinement 2.

especially on the thermal diffusivity κ and the heat expansion coefficient α. For the test case we
choose the material parameters α and κ to be 1 and the Poisson’s ratio ν to be zero. With these
parameters a time step size of 0.01s is adequate.

Analytic integration in time (AIt)

As described in section 3.1, the fundamental solutions were analytically integrated for the
elastic convolutions, which couple the heat quantities to the elastic deformations. The displace-
ment ux is shown for the basic mesh (24 elements), refinement 1 (96 elements) and refinement
2 (384 elements) and compared to the analytic solution, at a point on the free surface x = 1.
In figure 3 a good agreement with the analytic solution is shown and in figure 4 convergence is
observable.
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Figure 3: Convolution calculated by analytic integra-
tion with a time step size of ∆t=0.01 seconds.
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Figure 4: The zoom into the curve of figure 3 shows
the convergence with the refinement.

Convolution Quadrature Method

The CQM yields high precision and convergence to the analytic solution as well. The quality
is of the same order as for the analytic integration, for each mesh refinement, as shown in figures
5 and 6.
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Figure 5: Displacement ux(x = 1), calculated using
the CQM with ∆t =0.01s.
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Figure 6: Zoom into figure 5 at around 0.5 seconds.

Fast Fourier Transformation

Calculating the elastic convolutions with the FFT, we once more receive results of compara-
ble quality. The results for the test case are shown in figures 7 and 8.
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Figure 7: Displacement ux(x = 1), for the FFT con-
volution ∆t =0.01s.
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Figure 8: Zoom into figure 7 shows the convergence
with the mesh refinement.

The result of refinement 2 is not as good as with CQM or the analytic integration method.
This can be improved by choosing the parameters for the FFT differently.

Timings

Finally, we compare the computation time of the elastic equation for the three different meth-
ods of the convolution calculation. For each mesh refinement level the timings are shown, where
AIt is our first method, which integrates the fundamental solutions analytically in time. The tim-
ings were taken on a standard PC using 6 cores. We use the parameters ∆t = 0.01 seconds for
the time step, for a total duration of 5 seconds.
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AIt CQM FFT
basic mesh 38 35 35
refinement 1 495 457 457
refinement 2 5921 5450 5250

Table 1: Comparison of computation times in seconds for the three convolution methods.

All three methods have similar computation times. The FFT is the fastest, followed by CQM
and the analytic integration in time AIt, which is still fast.

5 CONCLUSIONS AND OUTLOOK

We showed the convergence of the displacement results to an analytic solution for the elastic
equation of UQT, using three different methods for the convolution, an analytic integration, the
CQM and the FFT. The results show a good agreement with the analytic solution, especially for
high spatial discretization but already for quite coarse meshes as well. The time steps need to
be chosen accordingly, depending on the thermal diffusivity and the heat expansion coefficient.
Setting the material parameters to 1, we get a good resolution with ∆t =0.01s. The computation
time for the elastic equation is of the same order for all three methods. Still an even more
efficient method is desirable, which accounts for the decrease of the rate of change of the field
variables over time.

For time steps of variable sizes there exists the Generalized Convolution Quadrature Method
(GCQM) introduced by Fernandez and Sauter [12]. We plan to apply this method to our prob-
lem. For the matrix assembling there are various fast methods available in the literature. It is
work in progress to implement further methods for efficiency improvements.

A Appendix: CQM

The Convolution Quadrature Method was introduced by Lubich [9], in 1988 and has since
been adapted by other authors such as Banjai and Sauter [13]. The following derivation of the
CQM is taken from [14], where further details can be found.

We want to determine the convolution of two functions f and g

[f ∗ g](t) =

∫ t

0

f(t− τ) g(τ) dτ . (21)

The first step is to replace the function f by its inverse Laplace transformation f̂(s) like∫ t

0

f(t− τ) g(τ) dτ =
1

2πi
lim
R→∞

∫ c+iR

c−iR
f̂(s)

∫ t

0

es(t− τ)g(τ)dτ︸ ︷︷ ︸
x(s,t)

ds (22)

The term x(s, t) can be interpreted as the solution of a differential equation of first order with
zero initial condition

dx(s, t)

dt
= sx(s, t) + g(t) . (23)

This differential equation can be solved by a linear multistep method in a discrete formulation.
The introduction of N + 1 discrete time steps of length ∆t leads to a discrete formulation of
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our convolution

y(tn) =
1

2πi
lim
R→∞

∫ c+iR

c−iR
f̂(s)x(s, tn) ds . (24)

The solution of x(s, tn) by a linear multistep method, such as the Backward Differential For-
mula of order 1 or 2 (BDF1, BDF2), together with some reformulations, which can be found
in [14], leads us to the following representation of x(s, tn) = xn as a power series

∞∑
n=0

xnz
n =

1
γ(z)
∆t
− s

∞∑
n=0

g(tn)zn , (25)

where γ(z) is the characteristic function of the chosen multistep method. Plugging xn into the
discrete convolution in equation (24)

∞∑
n=0

ynz
n =

1

2πi
lim
R→∞

∫ c+iR

c−iR
f̂(s)

1
γ(z)
∆t
− s

ds

∞∑
n=0

g(tn)zn , (26)

with y(tn) = yn, and applying the residue theorem gives

∞∑
n=0

ynz
n = f̂

(
γ(z)

∆t

) ∞∑
n=0

g(tn)zn . (27)

Since we are interested in the solution yn of the convolution for every time step, we use Cauchy’s
integral formula for the coefficients of the power series

ωn(∆t) =
1

2πi

∫
|z|=ρ

f̂

(
γ(z)

∆t

)
z−n−1dz , (28)

where ρ is the radius of analyticity of f̂
(
γ(z)
∆t

)
. Each of the discrete solutions yn can then be

determined by a comparison of coefficients

∞∑
n=0

ynz
n =

∞∑
n=0

∞∑
k=0

ωn−k(∆t)g(k∆t)zn , (29)

resulting in

yn =
n∑
k=0

ωn−k(∆t)g(k∆t) (30)

for all discrete times n = 0, 1, ..., N . With this reformulation we gained a simple multiplication
of the function g in time domain by weights, depending on the Laplace transform of the function
f and the chosen linear multi-step method for the term x(s, tn).

A further reformulation has been introduced by Banjai and Sauter [13], which leads to a
system of decoupled linear equations in the Laplace domain. By inserting the weights ωn into
equation (30) a representation as an inverse transformation of the CQM can be found. An
engineering application of this can be found in [15].
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Abstract. The treatment of porous media with the BEM exhibits some problems, which are
common also for the Finite Element Method, but also some BEM specific ones. The three main
problems are: First, the multiphase system requires four degrees of freedom per node, leading
to large matrices even for small problems. Since the BEM matrices are densely populated,
this makes the method prohibitive for large problem sizes. Second, due to the different physical
nature of the degrees of freedom the matrix entries vary over several orders of magnitude. Third,
the fundamental solution of poroelasticity is computationally expensive.

We present a FM-BEM that circumvents those points: The Chebyshev interpolation-based
FMM significantly reduces the memory consumption of the system matrix and thus allows for
larger problem sizes to be treated. As well, it requires fewer evaluations of the fundamental
solution. To employ an iterative solver, the use of a transformation of the material data is
mandatory.
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1 INTRODUCTION

Porous media occur frequently in nature as well as construction materials; probably the best-
known example for a natural porous medium is soil. The understanding of wave propagation in
such media is of distinct interest for oil and gas explorisation but also for earthquake analysis.
In these particular fields the treatment of unbounded domains, such as a halfspace, is required.
The Boundary Element Method (BEM) is advantageous over the Finite Element Method (FEM)
for the numerical treatment of such geometries, since it requires only the discretisation of the
boundary and inherently fulfills the radiation condition [1].

In the most straightforward description the saturated porous media problem shows six un-
knowns, i.e. the solid’s and fluid’s displacements u and uf , respectively. The description can
be reduced to four, using the fluid’s pressure p instead of its displacements uf , which is only
possible in the Laplace domain. The BEM requires the knowledge of the fundametal solution
of the underlying partial differential equation, which is accordingly also solely available in the
Laplace domain. To derive the temporal behavior the Convolution Quadrature Method [2, 3]
can be employed.

A review of poroelastic models and their numerical treatment is given in [4]. Early BEM for-
mulations were given by Manolis and Beskos, who presented an (u,uf )-description in Laplace
domain, and by Cheng et al. [5] and Domı́nguez [6], publishing frequency domain (u, p)-for-
mulations. An extensive discussion of the collocation BEM for linear poroelasticity is given by
Schanz [7]. A symmetric Galerkin BEM, which is advantageous for FEM-BEM-Coupling, was
presented in [8].

The application of so-called fast methods is necessary for the efficient treatment of the porous
media problem with BEM for the following two reasons: The complicated structure of the
fundamental solution makes the evaluation of the matrix entries computationally expensive, and
the multiphase system requires four degrees of freedom per node, leading to large matrices even
for small problems. Furthermore, it is well known that the BEM matrices are densely populated.
Hence, methods are needed that reduce memory and the number of function evaluations; so-
called blackbox methods would be preferable. The most promising candidates are the Adaptive
Cross Approximation (ACA) [9] and the Fast Multipole Method (FMM). The classical FMM
[11] uses an expansion into spherical harmonics to construct a separable expansion of the kernel
function. A review of the application of the FMM in BEM is given in [12]. Regarding vector-
valued problems, elastodynamics has been successfully treated with the classical FMM, e.g.
in [13, 14]. Among the FMM variants the Chebyshev interpolation FMM [10] seems to be
favorable for poroelasticity, since the fundamental solution is only evaluated at a small set of
spatial points, avoiding an analytical expansion.

In this paper we present a Chebyshev interpolation-based FM-BEM for poroelasticity. In the
next section, we briefly summarize the BEM formulation for poroelasticity in Laplace domain.
Then we describe the employed Chebyshev interpolation-based FMM where we focus on the
differences to the standard FMM. Finally we present numerical experiments to validate the
presented algorithms and to demonstrate their advantage over the standard BEM.

2 BOUNDARY ELEMENT FORMULATION IN LAPLACE DOMAIN

In this work we study the linearized behavior of a porous medium saturated with one fluid in
the open domain Ω ⊂ R3. In the following we give a brief summary of the problem at hand. A
detailed dicussion of Biot’s theory [15] and a BEM formulation thereof can be found in [7].

The governing equations of the poroelastic problem are stated for the solid’s displacement u
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and the fluid’s pressure p and read as

Lug(x) = 0 (1)

where ug = (u, p)> and

L =

[
LS + s2(ρ− βρf )I (α− β)∇

s(α− β)∇> β
sρf
∇2 + sφ2

R

]
. (2)

LS is the differential operator of the linear elastodynamic problem, s ∈ C,<(s) > 0 is the
Laplace parameter, β is defined as

β =
κρfφ2s

φ2 + sκ (0.66φρf + φρf )
. (3)

The remaining symbols are material parameters listed in Table 1.

ρ density 2458 [kg/m3]
ρf density of the fluid 1000 [kg/m3]
α Biot parameter 0.778 [N/m2]
R Biot parameter 4.885 · 108 [N/m2]
φ porosity 0.19 [−]
λ Lamé parameter 0 [N/m2]
µ Lamé parameter 7.2 · 109 [N/m2]
κ permeability 1.9 · 10−10 [N/m2]

Table 1: Material parameters of Berea sandstone [16]

In this paper we focus on the examination of the different BEM operators which are needed
to solve a mixed boundary value problem (BVP) through the so-called direct approach. For
simplicity we restrict ourselves to the Dirichlet problem, i.e.

ug(x) = gD ∀x ∈ Γ, (4)

where Γ = ∂Ω.
A solution ug(x) for x ∈ Ω can be constructed by the indirect Single-Layer-Potential (SLP)

approach

ug(x) =

∫
Γ

(U∗(x,y))>w(y)dsy ∀x ∈ Ω, (5)

or by the indirect Double-Layer-Potential (DLP) approach

ug(x) =

∫
Γ

(
T ∗y U∗(x,y)

)>
v(y)dsy ∀x ∈ Ω, (6)

where the traction operator is defined as

T ∗y =

[ T Sy s αny
−βn>y

β
sρf

∂
∂ny

.

]
(7)
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with the traction operator T Sy of elasicity. The corresponding boundary integral equation (BIE)
for the unknown densities w(x), v(x) reads as

ug(x) =

∫
Γ

(U∗(x,y))>w(y)dsy ∀x ∈ Γ (8)

and

ug(x) =

∫
Γ

(
T ∗y U∗(x,y)

)>
v(y)dsy + (σ − 1)v(x) ∀x ∈ Γ, (9)

where σ = 0.5 almost everywhere. The function U∗(x,y) is the fundamental solution of the
differential equation, i.e. the Green’s function of the adjoint operator L∗. It is a four-by-four-
tensor-valued function, where

U∗(x,y) =

[
US U f

P S P f

]
(10)

with US being a three-by-three tensor, U f a three-by-one tensor, P s a one-by-three tensor and
P f a scalar. The explicit expressions of the four subblocks can be found in [7].

To achieve a numerical solution of the unknown densities w(x), v(x), we approximate w(x)
using constant discontinuous functions ϕ0 on a partition of the boundary (triangulation)

w(x) ≈
N∑
j=1

ϕ0
j(x)wj (11)

and v(x) using linear continous functions ϕ1

v(x) ≈
M∑
j=1

ϕ1
j(x)vj , (12)

respectively. Note that for the vector valued problem at hand, the coefficients wj and vj are
accordingly vector valued. The supports of the functions are restricted to either one or some
neighboring triangulation elements. Hence, the boundary integral equation can be reformulated
to its discretized form

ug(x) =
N∑
j=1

∫
supp(ϕ0

j )

(U∗(x,y))> ϕ0
j(y)dsy wj ∀x ∈ Γ (13)

and

ug(x) =
M∑
j=1

∫
supp(ϕ1

j )

(
T ∗y U∗(x,y)

)>
ϕ1
j(y)dsy vj + (σ − 1)ϕ1

j(x)vj ∀x ∈ Γ, (14)

respectively. This yields N (M ) vector-valued unknowns wj (vj). The collocation method is
employed to solve the BIE for the unknown coefficients: The equation is evaluated for N (M )
xi ∈ Γ, yielding a set of equations for w

ug(xi) =
N∑
j=1

∫
supp(ϕ0

j )

(U∗(xj,y))> ϕ0
j(y)dsy wj =: Vij wj (15)
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and v

ug(xi) =
M∑
j=1

∫
supp(ϕ1

j )

(
T ∗y U∗(xi,y)

)>
ϕ1
j(y)dsy vj + (σ − 1)ϕ1

j(xi)vj (16)

=: (Kij + (σ − 1)I) vj , (17)

Note that the indices i, j refer to four-by-four blocks (block entry) of the fundamental solution
and to a subvector wi of lentgh four.

The system matrix Vij (Kij) is densely populated and hence, the standard collocation BEM
scales quadratically in the number of unknowns. It can be solved using a direct solver, which
scales like N3 (M3), or by means of an iterative solver, which involves a matrix-vector-product
(MVP) in each iteration, scaling quadratically, while the number of iterations may be kept
approximately constant with respect to N (M ) when using a preconditioner [1].

For the measured material data of Berea sandstone [16], c.f. Table 1, the entries of the
system matrix Vij (Kij) differ by magnitudes. Numerical tests show that the direct solver
employed (Eigen’s PartialPivLU [17]) indeed yields an accurate solution of the resulting
ill-conditioned system. The use of iterative solvers, on the other hand, requires a better condi-
tioning and is mandatory for the use of fast methods like the FMM.

Numerical tests show that a simple transformation of the material data as described in [18]
is sufficient to achieve that, i.e.

x̃i =
xi
A

t̃ =
t

B
λ̃ =

λ

C
µ̃ =

µ

C
ρ̃ =

A2

B2C
ρ κ̃ =

B C

A2
κ (18)

with A = 1, B = 1, C = µ(3λ+ 2µ)/(λ+mu).
Similar to iterative solvers, compression methods like the truncated Singular Value Decom-

position (SVD) are likewise sensitive to such differing matrix entries, whereas the use of the
transformed material data allows for its immediate application. Hence, in the following, we use
the transformed material data for all calculations.

3 INTERPOLATION-BASED FM-BEM FOR POROELASTICITY

Solving (15) for wj using an iterative solver involves evaluating the matrix-vector-product
many times. The basic idea of the FMM is to construct a fast summation scheme by the use of
a separable expansion (often denoted “degenerate expansion”) of the considered function.

The FMM used in this paper is a Chebyshev interpolation-based FMM based on the black-
box FMM by Darve [10]. In the case of the BEM the considered function is the discretized
boundary integral operator Vij , or Kij , respectively. Thus, it involves the integration over the
function at hand. A separable expansion of the fundamental solution allows to shift its eval-
uation outside the integral. Such an expansion is only possible for distant points x,y, i.e. for
off-diagonal blocks of the system matrix. Therefore the standard geometrical clustering scheme
of the FMM [11] is employed. For the FM-BEM we cluster over the collocation points, which
is straightforward, and over the shape functions. Because of the strictly geometrical clustering
the supports of some shape functions are not entirely enclosed within the cluster’s boundaries.
Thus the cluster’s bounding box is extended such that the supports are just enclosed within.

Before we describe the different FM-operators, we briefly summarize the Chebyshev inter-
polation of an arbitrary function f : R→ C,

f(x) ≈
p∑

m=1

Sp(x̄m, x) f(x̄m). (19)
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The interpolation function Sp(x̄m, x) is defined on the interval [−1, 1] and reads as

Sp(x̄m, x) =
1

p
+

2

p

p−1∑
n=1

Tn(x)Tn(x̄m) ∀x ∈ [−1, 1]. (20)

It can easily be extended to arbitrary intervals using a linear transformation. Tn(x) denote the
Chebyshev polynomials of order p,

Tn(x) = cos(n arccos(x)) ∀x ∈ [−1, 1], (21)

and x̄m the corresponding roots,

x̄m = cos

(
(m− 1

2
)π

p

)
. (22)

For the sake of readability we do not distinct between the standard interpolation function and
its transformed variant and denote both Sp(x̄m, x), since it is clear from the context which one
is used. This interpolation scheme can easily be extended to functions on R3 using

Sp(x̄m,x) =
3∏
i=1

Sp(x̄mi
, xi), (23)

where x̄m = (x̄m1 , x̄m2 , x̄m3) and m is a multi-index. The straightforward way to approximate
non-scalar functions like the tensor-valued fundamental solution U∗(x,y) is to interpolate all
entries using the same intepolation scheme, which is equivalent to multiplying the whole block
with the scalar interpolation function Sp.

We concentrate on the differences between the standard FMM and the FM-BEM and hence
omit the description of the multilevel scheme which can be found in [11]. To illustrate the
method we present the idea of the Chebyshev interpolation-based FMM for one block entry of
the discretized SLP operator

Vij =

∫
supp(ϕ0

j )

(U∗(xi,y))> ϕ0
j(y)dsy . (24)

Interpolation with respect to y yields

Vij =
∑
m

(U∗(xi, ȳm))>
∫
supp(ϕ0

j )

Sp(ȳm,y)ϕ0
j(y)dsy︸ ︷︷ ︸

P2M-operator

. (25)

Further, interpolation with respect to x yields

Vij =
∑
n

Sp(xi, x̄m)︸ ︷︷ ︸
L2P-operator

∑
m

(U∗(x̄n, ȳm))>︸ ︷︷ ︸
M2L-operator

∫
supp(ϕ0

j )

Sp(ȳm,y)ϕ0
j(y)dsy . (26)

The points x̄n, ȳm ∈ R3 are the three-dimensional Chebyshev nodes transformed to the bound-
ing box. Obviously, using such an interpolation, the number of kernel evaluations can be re-
duced if the submatrix associated with the corresponding clusters of xi and ϕ0

j is larger than
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x y

z
ys

(a) domain and source point (b) coarsest mesh

Figure 1: Computation domain.

the associated M2L-operator of size p3 × p3. The reduction is actually significantly larger,
since for the numerical integration in the standard BEM (15) the kernel is evaluated for each
quadrature point. Using the FMM this integration arises in the P2M-operator, which involves
only the numerical integration of a polynomial. We emphasize that the matrix approximation is
implemented in terms of MVPs, and that an aforementioned multi-level scheme is used.

The traction fundamental solution explicitly depends on the normal vector of an associated
surface, i.e. on the normal vector of the triangulation element in the case of the discretized
boundary integral operator. Hence a direct interpolation as presented for the SLP is not possible.
Recalling (16) the DLP operator is defined as

Kij =

∫
supp(ϕ1

j )

(
T ∗y U∗(xi,y)

)>
ϕ1
j(y)dsy (27)

and can thus be interpolated using the interpolation of U∗

Kij =
∑
m

(U∗(xi, ȳm))>
∫
supp(ϕ1

j )

(
T ∗y
>Sp(ȳm,y)

)
ϕ1
j(y)dsy. (28)

The traction operator T ∗y can be shifted onto the interpolation functions, which leads to a ten-
sorial interpolation operator, whereas all other operations are identical to the SLP. Hence, the
calculation of the far field of the DLP-operator only involves the evalution of the fundametal
solution U∗ itself.

4 NUMERICAL EXAMPLES

To study the FMM for the poroelastic problem we seek a numerical solution of a known
solution to the homogenous differential equation. For a source point ys outside the domain,
the individual rows of the fundamental solution U∗(x,ys) fulfill (1) and thus we use a linear
combination of all rows as boundary condition. To study a general case, the calculation domain
is a unit cube which is rotated along the axes of the coordination system, c.f. Figure 1.

We create a sequence of triangulations by global uniform refinement starting at the coarsest
discretization using 12 elements as depicted in Figure 1, denoted Level 0.

All computations are performed using our in-house developed C++ library HyENA. The
dense computations are solved using Eigen’s PartialPivLU [17], the FMM computations
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Barbara Knöbl, Thomas Traub and Martin Schanz

using AHMED’s FGMRes [19]. Further, the M2L-operators are compressed using the Singular
Value Decomposition of LAPACK, and OpenMP is used for parallelization. All computation
parameters are listed in Table 2.

The mean error of the computation is determined using (5). It is evaluated for a set of 27
points in the interior of the box [−0.01,0.01] ⊂ R3 in the center of the computation domain.
We compare the inner error of the FM-BEM to the dense calclulation to find the required mini-
mal interpolation order, which turns out to be p = 4 for Level 3. The errors are listed in Tables
3 (SLP) and 4 (DLP). We note that for the finest mesh (Level 6), where a comparision with a
dense computation is not possible, the order of convergence (eoc) of the SLP approach deviates
from its assumed value of 2. The convergence of the coarser levels exceeds that value, which
might explain this deviation.

SLP DLP
Mesh level N L p εSVD Nit M L p εSVD Nit

3 3072 2 4 10−4 30 1544 2 4 10−4 15
4 12288 3 5 10−5 38 6152 3 5 10−5 18
5 49152 4 6 10−6 48 24584 4 6 10−6 19
6 196608 5 7 10−7 61 98312 5 7 10−7 20

Table 2: Indirect SLP, DLP: computation parameters

displacement pressure
Mesh level εdense eoc εFM eoc εdense eoc εFM eoc

3 2.306E-4 2.358E-4 4.388E-4 4.350E-4
4 4.018E-5 2.52 3.957E-5 2.57 7.904E-5 2.47 7.859E-5 2.47
5 7.363E-6 2.45 7.126E-6 2.47 1.458E-5 2.44 1.405E-5 2.48
6 - - 3.193E-6 1.16 - - 5.063E-6 1.47

Table 3: Indirect SLP: mean relative inner error

displacement pressure
Mesh level εdense eoc εFM eoc εdense eoc εFM eoc

3 9.224E-4 9.487E-4 4.333E-4 4.417E-4
4 2.311E-4 2.00 2.376E-4 2.00 9.981E-5 2.12 1.038E-4 2.09
5 6.270E-5 1.88 6.270E-5 1.92 2.228E-5 2.16 2.387E-5 2.12
6 - - 1.495E-5 2.07 - - 1.113E-5 1.10

Table 4: Indirect DLP: mean relative inner error

Further, we analyze the memory requirement of the FM-BEM. It is calculated by the total
size of all FMM operators. Comparision with the dense operators yields the compression of the
FM-BEM. Table 5 lists the memory requirement, its scaling with respect to refinement and the
compression.

The classical FMM scales linearly inN /M for constant interpolation order p. To preserve the
convergence of the inner error the interpolation order p needs to be increased for each refinement
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SLP DLP
Mesh level Mdense scal. MFM scal. compr. Mdense scal. MFM scal. compr.

3 0.15 0.17 115% 0.04 0.07 186%
4 2.42 2.00 1.22 1.41 51% 0.61 1.99 1.12 1.99 185%
5 38.65 2.00 4.65 0.96 12% 9.67 2.00 4.64 1.02 48%
6 618.48 2.00 15.25 0.86 2% 154.64 2.00 14.13 0.80 9%

Table 5: Indirect SLP, DLP: memory requirement M[GB] and compression

and, hence, this scaling cannot be achieved. Still, the memory consumption of the FM-BEM
scales better than the dense computation and is close to 1. The measured scalings below 1 arise
from the compression of the M2L-operators using SVD. The indirect SLP collocation FM-BEM
requires less memory than the dense case from refinement level 4 upwards, with a compression
of 51% and better. The indirect DLP collocation FM-BEM achieves a compression below 1 for
levels 5 and higher. The validity of the FM-BEM is confirmed by the convergence of the inner
error.

5 CONCLUSION

The presented FM-BEM circumvents three major problems of the standard BEM for poroe-
lasticity: First, using the Chebyshev interpolation-based FMM, the number of evaluations of
the computationally expensive fundamental solution U∗(x,y) is significantly reduced. Second,
for large problems, the storage requirement of the FM-BEM operators is much smaller than for
the dense operators. A significant compression, though, was only achieved using the SVD to
compress the M2L-operators.

Third, the different physical natures of the unknowns lead to system matrices whose entries
vary over several orders of magnitude. The Chebyshev interpolation is insensitive to such vary-
ing magnitudes, and numerical tests show that even for the untransformed material, this most
simple interpolation yields similar relative errors for all four matrix blocks. The use of an iter-
ative solver, however, requires the use of the transformed material data as described in Section
2. Finally, the accuracy of the presented FM-BEM is mirrored by the convergence of the mean
inner error.
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Abstract. We consider wave equations in first-order form and derive provably stable, high
order finite difference operators on staggered grids. This is the first time that stability has been
proven for initial boundary value problems for wave equations on staggered grids. The stag-
gered grid operators are in summation-by-parts form and when combined with weak boundary
conditions, lead to an energy stable scheme. Numerical computations for the two dimensional
acoustic wave equation in Cartesian geometries corroborate the theoretical developments.
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1 INTRODUCTION

High order finite difference methods are highly effective for wave propagation over long
distances. In particular for electromagnetic and elastic wave propagation, staggered spatial
schemes perform very well [5]. Arguably the most significant challenge in a staggered grid fi-
nite difference formulation is the implementation of boundary and interface conditions at curved
boundaries and material discontinuities [8]. The curved boundary is often approximated using
a stair-cased grid approximation, which results in at most first-order accuracy. An alternative
strategy is to conform to the boundary geometry using a curvilinear coordinate transformation.
However, unless the resulting spatial discretization is energy conserving, instabilities can de-
velop.

The curvilinear coordinate transformation technique works exceptionally well for high order
finite difference methods on nodal grids that combine summation-by-parts (SBP) operators [3,
6, 11] and weak boundary conditions using the simultaneous approximation term (SAT) method
[2]. The SBP-SAT approach leads to a provably stable multiblock scheme, even for highly
skewed grids (provided that the Jacobian of the coordinate transformation is not ill-conditioned).
So far, the SBP-SAT approach has only been applied on nodal grids. Thus, the motivation for
this work is to develop a provably stable curvilinear multiblock scheme on staggered grids. As a
first step toward this goal, we formulate the SBP-SAT approach on staggered grids in Cartesian
geometries and construct corresponding SBP operators of the first derivative. To the best of our
knowledge, this is the first time that stability has been proven for a high order finite difference
method on a staggered grid for initial boundary value problems for wave equations.

2 DEFINITIONS

We begin by discretizing the interval [α β] ∈ R using a nodal grid x+ and a cell-centered
grid x− (see e.g, [7]) . The grids are given by x+ = (x0, x1, . . . , xN)T ∈ RN+1 and x− =(
x0, x1/2, x3/2, . . . , xN−1/2, xN

)T ∈ RN+2, where

xj = α + j∆x, 0 ≤ j ≤ N, xj−1/2 = α + (j − 1/2)∆x, 1 ≤ j ≤ N,

and ∆x = (β − α)/N is the grid spacing (Figure 1). Note that both grids share the same
boundary points.

Figure 1: Nodal grid x+ and cell-centered grid x−. Both grids share the same boundary points. The difference
operator D− acts on a grid function φ defined on the nodal grid x+ and stores the result on the cell-centered grid
x−, D+ acts on a grid function ψ defined on the cell-centered grid x− and stores the result on the nodal grid x+.

SBP staggered grid operators employ a high order, central finite difference approximation
at each interior grid point, and one-sided difference approximations near the boundary. For
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example, 2nd-order accuracy in the interior is given by the standard central approximation

dψ

dx

∣∣∣∣
xi

≈ ψi+1/2 − ψi−1/2

∆x
,
dφ

dx

∣∣∣∣
xi−1/2

≈ φi − φi−1

∆x
,

for smooth grid functions ψ and φ defined on x− and x+, respectively. The SBP staggered grid
operators are defined by

D+ = P−1
+ Q+ ∈ R(N+1)×(N+2), D− = P−1

− Q− ∈ R(N+2)×(N+1),

where P+ ∈ R(N+1)×(N+1), Q+ ∈ R(N+1)×(N+2), P− ∈ R(N+2)×(N+2), Q− ∈ R(N+2)×(N+1).
Here, D+ acts on grid functions defined on x− and D− acts on grid functions defined on x+.
The way that D+, D− acts on x−, x+ and store the result is schematically shown in Figure 1,
for the 2nd-order accurate case. For an order of accuracy q we have the relations

D+ψ
k = kφk−1, D−φ

k = kψk−1, k = 0, 1, . . . , q,

where φk denotes the kth-monomial (each component of the vector is raised to the kth-power).
In the interior the accuracy is q = 2s and for points near the boundary it is q = s. In addition,
the SBP staggered grid operators satisfy:

(i) P+ and P− are symmetric and positive definite matrices defining the respective discrete
L2 norms

‖φ‖2
h+ = φTP+φ ≈

∫ β

α

φ2dx, ‖ψ‖2
h− = ψTP−ψ ≈

∫ β

α

ψ2dx.

(ii) The matrices Q+ and Q− satisfy the SBP property

Q+ +QT
− = B+ = BT

− = eN+e
T
N− − e0+e

T
0− ∈ R(N+1)×(N+2). (1)

In (1), the vectors e0± ,eN± are of appropriate sizes, and gathers the value at each boundary
point, i.e.,

eT0+x+ = eT0−x− = α, eTN+x+ = eTN−x− = β. (2)

For example, a pair of 2nd-order SBP staggered grid operators are given by

Q+ =


−1

2
1
4

1
4

−1
2
−1

4
3
4

−1 1
. . . . . .

 , Q− =


−1

2
1
2

−1
4

1
4

−1
4
−3

4

−1 1
. . . . . .


and

P+ = diag
(

1

2
, 1, 1, . . .

)
∆x, P− = diag

(
1

2
,

1

4
,

5

4
, 1, . . .

)
∆x.
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3 ANALYSIS

As a prototype problem, we consider the scalar wave equation in one dimension

ut + Aux = 0, α ≤ x ≤ β, t ≥ 0, u =

(
p
v

)
, A =

(
0 1
1 0

)
, (3)

subject to appropriate initial and boundary conditions. We apply the energy method [1] to (3),
which leads to

d

dt
‖u‖2 = −uTAu

∣∣β
α

= −2pv
∣∣β
α
, (4)

where ‖u‖ =
∫ β
α
uTudx. By considering the boundary at x = α only and diagonalizing

A = XΛXT , X =
1√
2

(
−1 1

1 1

)
, Λ =

(
−1 0

0 1

)
(5)

we obtain

d

dt
‖u‖2 = wTΛw

∣∣
x=α

= (w+)2
∣∣
x=α
− (w−)2

∣∣
x=α

,

where w = (w−, w+), w± = (X±)Tu are the characteristic variables, and Λ = diag(Λ−,Λ+)
contain the positive and negative eigenvalues and the corresponding eigenvectorsX = (X−, X+),
respectively. The linear homogeneous boundary condition

w+
∣∣
x=α
− rw−

∣∣
x=α

= 0 (6)

leads to

d

dt
‖u‖2 = wTΛw = (r2 − 1)(w−)2

∣∣
x=α

, (7)

and we have an estimate for |r| ≤ 1.

3.1 The semi-discrete approximation

An SBP-SAT staggered grid approximation of (3) is given by

ut + Ãu = P−1E0ΣLET
0 u, (8)

where

u =

(
p
v

)
, Ã =

(
0 D−
D+ 0

)
, E0 =

(
e0− 0
0 e0+

)
, P =

(
P− 0
0 P+

)
,

and p =
(
p0, p1/2, . . . , pN−1/2, pN

)T is stored on x−, v = (v0, v1, . . . , vN)T is stored on
x+. The boundary condition is weakly imposed at x = α with the aid of ET

0 that gathers the
solution on the boundary, i.e. u0 = ET

0 u = (p0, v0). The boundary operator L ∈ R1×2 is given
by (6), that is

Lu0 =
(
(X+)T − r(X−)T

)
u0 = w+

0 − rw−0 . (9)
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The penalty matrix Σ ∈ R2×1 is determined by applying the discrete energy method (see [12]
for a general outline of the procedure). We have

d

dt
‖u‖2

P = −2pTQ−v − 2vTQ+p + uT0 (ΣL+ LTΣT )u0

= −2pT
(
QT

+ +Q−
)
v + uT0 (ΣL+ LTΣT )u0

= −2 (pNvN − p0v0) + uT0 (ΣL+ LTΣT )u0, (10)

where ‖u‖2
P = uTPu. Note that the SBP property (1) was used in the last step. We consider

only the boundary x = α and write (10) in quadratic form

d

dt
‖u‖2

P = uT0Au0 + uT0 (ΣL+ LTΣT )u0.

By using the diagonalization A = XΛXT given in (5) and applying (9), we find

d

dt
‖u‖2

P = wT
0 Λw0 + wT

0 X
TΣ(w+

0 − rw−0 ) + (w+
0 − rw−0 )ΣTXw0, (11)

where w0 = (w−0 , w
+
0 ) = XTu0. Finally, the choice

Σ = −X+Λ+ (12)

leads to

d

dt
‖u‖2

P = (r2 − 1)(w−0 )2 − (w+
0 − rw−0 )2 ≤ 0, |r| ≤ 1.

The result is similar to (7), but also includes numerical dissipation that vanishes with grid re-
finement.

Remark 1. The penalty matrix and boundary operator in (8) are given by

Σ = − 1√
2

(
1
1

)
, L =

1√
2

(
1 + r
1− r

)T
,

where (5), (9), and (12) have been used.

4 THE TWO-DIMENSIONAL WAVE EQUATION

We now consider the wave equation in two dimensions

Mut + Aux +Buy = 0, (x, y) ∈ Ω, t ≥ 0, (13)

where

u =

 p
v1

v2

 , M =

 K−1 0 0
0 ρ 0
0 0 ρ

 , A =

 0 1 0
1 0 0
0 0 0

 , B =

 0 0 1
0 0 0
1 0 0

 . (14)

The system (13) describes the propagation of acoustic waves with pressure p = p(x, y, t),
and velocity vector v = v(x, y, t) = (v1, v2) in a medium characterized by the fluid density
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ρ(x, y) > 0 and the bulk modulus K(x, y) > 0. The same set of equations also describes
electromagnetic transverse wave propagation [9]. The energy method applied to (13) leads to

1

2

d

dt
‖u‖2

M = −
∮
∂Ω

pv · n̂ds, (15)

where ‖u‖2
M =

∫
Ω
uTMudxdy, n̂ is the outward-pointing unit normal associated with the

boundary ∂Ω, and ds is the infinitesimal line element. The number and form of the bound-
ary conditions can be determined by following the procedure in section 3. For instance, the
boundary condition

p− Z (v · n̂) = r [p+ Z (v · n̂)] , (x, y) ∈ ∂Ω, (16)

where Z =
√
ρK, results in an estimate if |r| ≤ 1.

4.1 The semi-discrete approximation

An SBP-SAT staggered grid approximation of (13) is given by

M̃ut + Ãu + B̃u = BTT + BTB + BTL + BTR. (17)

In (17), we have introduced

u =

 p
v1

v2

 , M̃ =

 K−1 0 0
0 ρ1 0
0 0 ρ2

 ,

Ã =

 0 Dx− ⊗ Iy− 0
Dx+ ⊗ Iy− 0 0

0 0 0

 , B̃ =

 0 0 Ix− ⊗Dy−
0 0 0

Ix− ⊗Dy+ 0 0

 ,

where⊗ denotes the Kronecker product. Here we have chosen to store p at the center of the grid
cells (Figure 2). The diagonal matrices K−1, ρ1, ρ2 hold the material properties and coincide
with the location of p, v1, v2, respectively. Furthermore, Ix± and Iy± are identity matrices of
appropriate sizes.

Figure 2: Staggered grid layout for the acoustic wave equation (13).
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The boundary condition (16) on the top boundary is weakly imposed by

BTT = P−1ETPTΣTLTE
T
T u, P =

 Px− ⊗ Py− 0 0
0 Px+ ⊗ Py− 0
0 0 Px− ⊗ Py+

 ,

PT =

 Px− 0 0
0 Px+ 0
0 0 Px−

 , ET =

 Ix− ⊗ eyN− 0 0
0 Ix+ ⊗ eyN− 0
0 0 Ix− ⊗ eyN+

 .

(18)

The penalty matrix and boundary operator related to (18) are given by

Σ =
1

2

 −Z−1

n̂1

n̂2

 , L(r) =

 1− r
−Zn̂1 (1 + r)
−Zn̂2 (1 + r)

T

, (19)

where ΣT and LT in (18), are obtained by inserting the unit normal on the boundary n̂ = (0, 1)T

into (19).

5 NUMERICAL EXPERIMENTS

We test the accuracy of the SBP staggered scheme by using a manufactured solution. The
SBP staggered scheme are compared against SBP nodal schemes of the same order for wave
propagation over long times. Finally, we demonstrate that the SBP staggered scheme can accu-
rately propagate waves generated by a singular source term acting on the boundary.

In each numerical experiment there is a fundamental wavelength λ that must be resolved. We
use λ and the wave speed c =

√
K/ρ to nondimensionalize (13), assuming constant material

properties (ρ = const., K = const.). The dimensionless temporal and spatial scales are given
by

t̄ = kct, x̄ = kx, ȳ = ky,

where k = 2π/λ. We also nondimensionalize pressure and velocity using

p̄ =
p

ρcV
, v̄1 =

v1

V
, v̄2 =

v2

V
,

where V is a reference amplitude. The wave equation (13) in dimensionless form becomes

ūt̄ + Āūx̄ + B̄ūȳ = 0, ū =

 p̄
v̄1

v̄2

 , Ā =

 0 1 0
1 0 0
0 0 0

 , B̄ =

 0 0 1
0 0 0
1 0 0

 . (20)

Throughout the remainder of the paper we will exclusively use the nondimensional form (20).
For notational convenience we will drop the superscript denoting nondimensional variables. In
the experiments, we will use the same grid spacing in each coordinate direction ∆x = ∆y,
and advance in time using a 4th-order Runge-Kutta scheme and a sufficiently small time step
to make the temporal errors negligible. The error will be measured as ‖u(∆x1) − u∗‖2

h where
u(∆x) is the numerical solution obtained using the grid spacing ∆x and u∗ is computed from an
analytic solution, sampled at the grid points.
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5.1 Accuracy

To assess the accuracy of the SBP staggered grid operators, we introduce the manufactured
solution

p(x, y, t) = sin(x+ y +
√

2t),

v1(x, y, t) = − 1√
2

sin(x+ y +
√

2t),

v2(x, y, t) = − 1√
2

sin(x+ y +
√

2t)

(21)

The computational domain is the square Ω = (0, 2πm) × (0, 2πm), where m = 10 (number
of wavelengths). The numerical boundary condition is imposed by setting r = 0 in (16) and
using the manufactured solution (21) as boundary data. The numerical solution is advanced
in time until t = 2πm and is resolved using 2π/∆x = 6.4 grid points per wavelength on the
coarsest grid. For numerical schemes constructed using nodal SBP operators the convergence
rate is expected to be s+ 1, where 2s is the interior accuracy [10]. Figure 3 shows that the SBP
staggered scheme converges at this rate or higher.
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Figure 3: Error in the numerical solution computed using SBP staggered grid operators for the test problem (21).
The dashed lines show reference convergence rates s = 2, 3, 4, respectively.

5.2 Dispersion error

To assess the dispersion error of the SBP staggered grid operators, we introduce the manu-
factured solution

p(x, y, t) = sin(x) sin(y) cos(
√

2t),

v1(x, y, t) = − 1√
2

cos(x) sin(y) sin(
√

2t),

v2(x, y, t) = − 1√
2

sin(x) cos(y) sin(
√

2t),

(22)
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defined on the computational domain Ω = (0, 2πm) × (0, 2πm), where m = 16 (the number
of wavelengths). The manufactured solution (22) satisfies the boundary condition p = 0 on all
of the boundaries. The numerical boundary condition is imposed by setting r = −1 in (19).
For this boundary condition the continuous energy is conserved. Therefore solution is trapped
inside the computational domain, causing the error to grow in time. This test will also confirm
that the implementation is stable by integrating over long times.

We compare the performance of the 6th-order SBP staggered and nodal grid operators using
2π/∆x ≈ 16 grid points per wavelength, and advance until the final time t ≈ 104, which
requires nearly 5 × 104 time steps. The relative error growth in time of the SBP staggered
and nodal schemes is shown in Figure 4. In a practical calculation, it is useful to define an
error threshold that denotes the maximum relative error that can be tolerated. If the maximum
error is ε = 0.05, then the SBP staggered and nodal schemes reach this threshold after about
t = 4775 and t = 616, respectively. This test clearly demonstrates the superior accuracy of the
SBP staggered grid operators.
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Figure 4: Error growth in time for the test problem (22) using 16 grid points per wavelength.

5.3 An additional capability

A staggered grid difference method offers the ability to discretize a singular source term
without introducing any spurious oscillations. We will confirm that the new SBP staggered grid
operators also possess this property.

On the top boundary, we specify the boundary condition p = g(t)δ(x − x∗), where g(t) is
the Ricker wavelet function

g(t) = (1− 2π2f 2
0 (t− t0)2)e−π

2f20 (t−t0)2 , (23)

and δ(x) is the Dirac delta function. The Dirac delta function is defined by∫ ∞
−∞

f(x)δ(x− x∗)dx = f(x∗), (24)
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Figure 5: The normalized pressure wave field generated by a singular source term placed in the middle of the
top boundary. The simulation uses 6 grid points per minimum wavelength and the 6th-order SBP staggered grid
operators. Note that only positive values of p are shown.
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Figure 6: The numerical solution obtained at a fixed point in space 26 minimum wavelengths away from the source.
The simulation uses 6 grid points per minimum wavelength and the 6th-order SBP staggered grid operators.

for some function f(x). We approximate (24) by

N∑
j=0

djf(xj) ≈ f(x∗), (25)

where the sum is taken over N grid points and the weights dj at each grid point xj are deter-
mined such that (25) is an accurate approximation of (24). If the source location x∗ coincides
with a grid point xl, then the following approximation is commonly used

dj =

{
1

∆x
, j = l,

0, j 6= l.

Otherwise, if x∗ is not located exactly on a grid point, then the approximation (26) will be
1st-order accurate. We store the discretization of the delta function at the cell-centered grid
points along the top boundary in the vector d =

(
d0, d1/2, . . . , dN−1/2, dN

)T and set the
source location to the grid point in the middle of the boundary. The boundary condition is
implemented by

BTT = P−1ETPTΣTLT (r = −1)
(
ET
T u− g(t)e

)
, e = (d, 0, 0)T ,

where the dimensionless penalty matrix ΣT and boundary operator LT are determined by (19).
We use the 6th-order SBP staggered grid operators with 2π/∆x ≈ 6 grid points per minimum

wavelength. The minimum wavelength λmin is defined by the maximum frequency fmax above
which the spectral amplitude becomes less than 5% of the maximum value associated with the
fundamental frequency f0 of the Ricker wavelet (23) [4]. The maximum frequency is estimated
as fmax ≈ 2.5f0. Thus, λmin = 1/fmax since the wave equation has been nondimensionalized.
Figure 5 shows the pressure wave field at different instances in time. We also compare the
numerical solution against an analytic solution at a fixed point 26 minimum wavelengths away
from the source (Figure 6). The numerical solution is in very good agreement with the analytic
solution. The maximum error in amplitude is ≈ 4%.
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6 CONCLUSIONS

We have extended the SBP-SAT methodology to staggered grids. The general procedure
was outlined for both the wave equation in one dimension and two dimensions. The accuracy
of the scheme was investigated using a smooth analytic solution. A test with a singular source
term on the boundary was used to show that the SBP boundary modification did not destroy the
excellent dispersion properties of staggered grid difference methods. Due to the generality of
the SBP-SAT methodology, the work can easily be extended to other types of wave equations.
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Abstract. Computing plastic strain is a crucial issue in finite element methods. This problem
is also known as closest point projection. The radial return used for circular models reduces
the computations to literal expressions. But in geomechanics, the deviatoric shape of yield
functions is generally non circular, so that return mapping algorithm becomes cumbersome and
time consuming.

Works that will be presented rather focus on a geometric based methods. It will be demon-
strated that the numerical problem of closest point projection of the trial stress on the yield
surface is equivalent to a geometrical bounded problem. Whereas this property is intuitive, the
tools ensuring a straightforward equivalence between the two problems were to be developed.

We identify the geometric problem associated to the problem of the closest point projection
in the deviatoric plane. The geometric problem is independent from the mechanical one, and
can be solved with trigonometric and geometric laws. Those laws are integrated in a general
algorithm to compute plastic strain, taking account of associated and non associated dilatancy
for the computation of volumic plastic strains
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1 INTRODUCTION

The Mohr’envelope of many porous media - soils, rocks, bones, compacted powder, show
their dependence to mean stress, and also differences in strength between triaxial extension and
traxial compression. Criteria like Coulomb or Hœk-Brown [3] take into account this depen-
dence but present corners, whereas circular yield functions like Drucker-Prager don’t. Exper-
imental results using true triaxial tests prove that geomaterials present a triangular deviatoric
shape with rounded corners [12]. Taking into account this particular shape in a smooth criterion
involve using the third invariant. Various yield functions had been proposed, for soils [6, 11],
concrete [16] or rocks [8].

The radial return [15] used for circular models reduces the computations to literal expres-
sions [5]. The main drawback of non circular models is that return mapping algorithm becomes
complex, expensive [13] and time consuming, even if efficiency is increased with spectral de-
composition techniques [1, 2]. Works that will be presented rather focus on a geometric based
methods : in order to bypass the computational costs of return mapping algorithm, we will focus
on simpler equivalent geometric problems.

2 POLAR DECOMPOSITION OF THE YIELD SURFACE

Traction stresses are positive, and the principal stresses ordered as follow : σI ≥ σII ≥ σIII

2.1 Geometric parametrage

For a given mean stress
(
σm = Trσ/3

)
, the yield surface can be reduced to its cross-sectional

shape on the deviatoric plane, or π plane. A yield surface (f
(
σ
)

= 0) can be represented in a
unique manner by the mean stress and the deviatoric invariants

(
J2 = 1

2
Tr
(
s2
)
, J3 = 1

3
Tr
(
s3
)
,

with s = σ − σm1I
)
, but it is more practical to replace the third invariant by the Lode angle θ,

to work in the π plane (deviatoric plane).

−π
6
≤ θ =

1

3
arcsin

(
−3
√

3

2

J3√
J2

3

)
≤ π

6
(1)

The set
(√

J2, θ
)

define polar coordinates on one sixth of the deviatoric plane, which is sufficient
for an isotropic criterion. Zienkiewicz and Pande [17], using the fact that a yield surface can
be reduced to its polar expression, provided tools to study the regularity, the sensitivity to the
extension and the convexity of a criterion starting from the shape function gp (θ)√

J2 = σ+gp (θ) (2)

The deviatoric radius : σ+(σm) =
√
J2/θ=π

6
, gives the yield function in the meridional plane(

σm,
√
J2

)
, for θ = π

6
. This value of the Lode angle corresponds to a classical triaxial test,

or compression triaxial test (σI = σII > σIII). The function gp (θ) is the shape function of the
yield surface in the deviatoric plane. It is normalized

(
gp
(
π
6

)
= 1
)

and gives directly the value
of the extension ratio gp

(
−π

6

)
= LS which is more detailed in the following section.

2.2 Characteristic function of a material

The deviatoric radius σ+ can be easily deduced from triaxial compression tests. Whether the
shape is straight or parabolic, the deviatoric radius used can be the Coulomb or Hœk-Brown.
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The extension ratio LS has a physical meaning and can be determined from experiment. The
condition θ = −π

6
corresponds to extension triaxial tests (σI > σII = σIII), which can be

performed with the same triaxial cell as compression triaxial test.

LS =

√
J2

(
θ = −π

6

)
√
J2

(
θ = π

6

) =
(σI − σIII) (extension)

(σI − σIII) (compression)
(3)

Physically, this means that for the same mean stress, the yield value of
√
J2 would be lower in

extension than in compression. The value of LS is directly linked to the deviatoric shape of a
yield surface. While this value can be independent from the mean stress (Coulomb), some rocks
present a shape of their yield surface changing from triangular (low confinement) to circular
(high confinement) [4], i.e, LS increases from 0.5 to 1.

2.3 Introduction of the orthoradial tensor

We consider for stresses and strains (i.e. symetric second order tensors) the following scalar
product. For two tensors, T1 and T2 :

T1 · T2 = T1 : T2 = TrT1T2 (4)

Hence defining the following norm (Frobenius norm) for a symetric second order tensor T :

‖ T ‖=
√
T : T (5)

We introduce the orthoradial tensor, v :

v = 3

√
3

2

1

J2

s2 −
√

31I− 9
√

3J3

4J2
2 s (6)

This tensor is orthoradial as v · 1I = v · s = 0, hence those three tensors, 1I, s, v constitute an
orthogonal basis of symetric second order tensors, for the Frobenius scalar product.

We can then easily decompose the derivatives of the yield function along this orthogonal
basis, as the expression of the gradient of invariants can easily be expressed. It is necessary
to introduce the orthogonal tensor, as the gradient of the third invariant cannot be expressed
using only the hydrostatic tensor or the deviatoric tensor. Expressions of the three gradients of
invariants using the orthogonal basis are the following :

∂I1

∂σ
= 1I (7)

∂J2

∂σ
= s (8)

∂J3

∂σ
= s2 − 2J2

3
1I =

3J3

2J2

s+
2J2

3
√

3
v (9)

Hence the gradient of any yield surface can be orthogonally decomposed.

∂f

∂σ
= fu1I + fss+ fvv (10)

We can observe that the deviatoric part of the gradient, ∂f
∂σ

can be split in two orthogonal com-
ponent, a radial fss, and a orthoradial, fvv. This later part is null for criteria independent from
the third invariant.
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Figure 1: Otrthogonal decomposition of the deviatoric part of the gradient

s

s∗

v∗

2µdev∆εp
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θ
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+
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Figure 2: Physical problem in the deviatoric plane

2.4 Consequences for return mapping algorithm

Let us consider at an integration point, the increment from step n to n + 1. We want to
calculate the plastic strain, if the trial stress σ∗ doesn’t satisfy the yield condition. We want to
implicitly solve the relation that gives the stress.

σ
n+1

= σ = σ∗ − L∆εp (11)

Where L is the elasticity tensor. We can split this relation between two orthogonal components

: an hydrostatic and a deviatoric.

σm − σ∗m = −KTr∆εp (12)

s− s∗ = −2µdev∆εp (13)

Where K is the bulk modulus and µ the shear modulus.
We can notice that the hydrostatic part (12) is purely scalar and that the main difficulties

come from the deviatoric part(13).

3 GEOMETRIC EQUIVALENCE OF CLOSEST POINT PROJECTION

We introduce the following quantity [9, 10]:

ρ =

√
J2
∗

σ+(σ∗m + ∆σm)
(14)

The closest point projection of s∗ on the trace of yield surface (Figure 2) is equivalent to the
following geometric problem(Figure 3): find the closest point projection (polar coordinates:
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g(θ)

ρ

s∗
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d

θ∗
θ
LS

1

Figure 3: Geometric problem in polar coordinates

Figure 4: Angular relations: V + r + δθ = π
2 , (δθ = θ − θ∗)

(θ, gp (θ))) of the point (ρ, θ∗) on the curve defined by the shape function gp (θ). The function
d (θ) reaches its minimum at this point.

d (θ)2 = g2
p (θ) + ρ2 − 2gp (θ) ρ cos (θ − θ∗) (15)

The norm of the deviatoric plastic strain is given directly : ‖ dev∆εp ‖= d(θ)σ+
√

2µ
, and dev∆εp

can be written in the local base associated to the trial stress

dev∆εp =‖ dev∆εp ‖

(
cos r√
2
√
J∗2
s∗ +

sin r

‖ v∗ ‖
v∗

)
(16)

The value of the r angle can be deduced from trigonometric considerations (figure 4), V being
the angle between the tangent to a polar curve and the radial axis :

tanV =
g

g′
(17)

4 COMPUTATION OF DEVIATORIC AND HYDROSTATIC PLASTIC STRAIN

The geometric equivalence allows to get the plastic strain if ∆σm is known. This quantity
is calculated using an iterative method. Initially, ∆σ0

m = 0, and the stopping condition c is
satisfied when the ratio between hydrostatic and deviatoric parts is equal to the dilatancy angle
δ.

c(∆σm, ‖ dev∆εp ‖, tan δ) =‖ dev∆εp ‖ +
∆σm√

3K tan δ
< ε (18)

We use the following definition of the dilatancy angle :

tan δ = − µl√
2

∂εpV
∂εpd

(19)
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Where εpV is the volumic plastic strain, and µl = tan 3θ the factor initially defined by Lode [7].
Using the Lode factor allows to use a formulation that can be used for triaxial compression test
as well as extenions test [14].

The dilatancy angle can be deduced from the expression of the yield function (associated
potential) or from a non associated potential. Whereas it is not easy to identify the potential,
without extensive true trixial tests, the dilatancy angle can be easily identified using classical
triaxial compression tests.

If δ > 0 material is said to be dilatant. The alternative return mapping algorithm can be
expressed as follow, at a given integration point, for a dilatant material

1. Compute σ∗ = σ0 + L
(
ε
n+1
− εp

n

)
2. Check f(σ∗) > 0? No set σ

n+1
= σ∗ and exit.

3. Yes : set i = 0 and ∆σ0
m = 0

4. Set ρi =

√
J∗
2

σ+(σ∗
m+∆σim)

and if LS depends of mean stress : LiS = LS (σ∗m + ∆σim)

5. Compute θi, d (θi),
√
J2

i and ‖ dev∆εp ‖i

6. Evaluate tan δi = tan δ (σ∗m + ∆σim, J
i
2, J

i
3)

7. Evaluate stopping criterion | c
(
σ∗m + ∆σim, ‖ dev∆εp ‖i, tan δi

)
|< ε. If Yes compute

angle r and tensor ∆εp. Update σ
n+1

= σ∗ − L∆εp and exit.

8. If No, set i = i+ 1 and ∆σim = ∆σi−1
m + ∆2σm, then loop to step 4.

The evaluation of ∆2σm depends of the nature of yield function f and δ

5 CONCLUSIONS

We have shown that for J3 dependant yield function, the problem of closest point projection
is equivalent to a pure geometric problem in polar coordinates. For different values of (ρ, θ∗),
solutions can be computed and values of d (θ) sin 3θ and gp (θ) are saved, allowing to short-
cut computational costs of return mapping in the deviatoric plane. For the hydrostatic part,
we propose a general algorithm that allows to take account of the dilatancy in the computa-
tion of plastic strain. Next step will be to define the stability conditions for negative dilatancy
(i.e. contractant material). The last wil be to extend the process to non associated plasticity in
the deviatoric plane. References and experimental studies of non associated flow rules in the
deviatoric part are scarce, so many cases must be considered.
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Mécanique, 333:279–284, 2005.

[9] S. Maı̈olino. Fonction de charge générale en géomécanique : application aux travaux
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Abstract. 

A problem of incompressibility is explored in this paper with application of a discontinuous 
Galerkin (dG) method with reduced integration. We apply two reduced integration schemes, 
namely fully and mixed reduced integrations for the Incomplete Interior Penalty Galerkin 
(IIPG) class of the dG method. The numerical results show convergent solutions with respect 
to a sufficiently large value of the penalty term and number of elements. Additionally, a com-
parison between the standard continuous Galerkin (cG) method and the dG method are estab-
lished to compare and contrast the behavior. Finally, the dG method shows a faster 
convergence with respect to the number of elements. 
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1 INTRODUCTION 
Recent advancements in the field of computational engineering have enabled scientists to 

define novel discretization schemes in solid mechanics. One of these schemes, discussed in 
this paper is the discontinuous Galerkin (dG) method. Unlike many standard Galerkin meth-
ods, the dG method is a non-conforming finite element method. Using the dG method, one 
obtains discontinuities between the interior element boundaries. This is achieved through a 
weak enforcement of the continuity on displacement. To this end, one must modify the weak 
form in a way that the integration by parts is applied not only on the domain boundaries, but 
also additionally, on the subdomain boundaries [1].   

The discontinuous Galerkin method was initially introduced as a new classification in fi-
nite element methods by Reed and Hill [2] to solve a problem of a nuclear transport partial 
differential equation in 1971. Later, Baker [3] applied a dG method with some modifications 
for elliptic problems - refer to [4] and [5] for more details. Nitsche [6] contributed to dG a 
penalty term on the internal subdomain boundaries in order to stabilize the solution. 

Although, dG was initially used in fluid mechanics [7], it found its way to solid mechanics 
as well (e.g. [8]) to remedy frequently encountered problems. An application of this method is 
seen in elliptic problems like incompressibility, which results in the well-known volumetric 
locking phenomenon or in some shell (plate) constructions with shear locking problems [8]. 
Hansbo und Larson [9] investigated the locking-free behavior of the dG method for (near) in-
compressibility with triangle meshes. Another application of the dG method in solid mechan-
ics can be found in the work of Mergheim et al. [10]. They applied dG elements in the pre-
failure regime to avoid stress oscillations just before the failure. 

In this paper, we investigated the reduced integration method for certain boundary terms to 
make this method more efficient and reduce the time of calculation. 

The present work is organized as follows: the first chapter introduces the governing equa-
tions of the dG method. Then the numerical integration scheme and the reductions, which are 
applied in order to decrease the calculation time, are clarified. Finally, a benchmark example 
is simulated to evaluate the method and investigate the differences between the continuous 
and discontinuous Galerkin methods.  

2 GOVERNING EQUATIONS OF DG 
The dG method has different variations depending on the extended terms of its weak form. 

In our case, we apply the Incomplete Interior Penalty Galerkin (IIPG). This method is non-
symmetric due the absence of the symmetric term of dG method and contains the stabilization 
term, namely penalty term.  

2.1 Strong form 
The strong form of the equilibrium of the forces in standard FEM and the boundary condi-

tions are given by 

−𝑑𝑑𝑑(𝝈) = 𝒇 in  ℬ, 

        𝒖 = 𝒖𝑝 on 𝜕ℬ𝑢, 

  𝝈 𝒏𝑒 = 𝒕𝑝 on 𝜕ℬ𝑡. (1) 
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Where 𝝈 = 𝑪: 𝜺 is the Cauchy stress tensor with 𝑪 as the forth order stiffness tensor, e.g. 
elasticity module 𝐸 and Poisson’s ratio 𝜈 and 𝜺 as the symmetric strain tensor, which is in fact 
the symmetric part of the gradient of the displacement field 𝒖. Additionally, 𝒇 represents the 
body forces, 𝒖𝑝 and 𝒕𝑝 are the prescribed displacement and prescribed traction on the Drichlet 
boundary 𝜕ℬ𝑢 and Neumann boundary 𝜕ℬ𝑡, respectively.  

In the dG method we additionally introduce discontinuities along the internal boundaries 𝛤  
of the body ℬ. This divides the body into to ℬ+ and ℬ− parts, with the normal vector 𝒏� direct-
ing from the negative side to the positive side, see Figure 1.  

 
Figure 1: Discontinuity 𝛤 within the body ℬ.  

 
The jump⟦∎⟧ and average  {∎} of quantities are defined as follows: 
 

 

⟦𝒖⟧ =    𝒖+|𝛤 − 𝒖−|𝛤, 
 

{𝒖} =
1
2

 (𝒖+|𝛤 + 𝒖−|𝛤). 

 
 
 

(2) 
 
Introducing the dG method to the strong form, we need to impose extra conditions on the 

internal boundaries 𝛤. On these boundaries, the continuity of the displacements field and the 
traction vector is prescribed by the exact solution:  

 

 
   ⟦𝒖⟧ =  0 

 
⟦𝝈 𝒏�⟧ = 0. 

 
 
 

(3) 

2.2 Weak form 
The weak form of dG is obtained by integration by parts on the internal subdomains. None-

theless, the penalty term must be added to stabilize the solution [6]: 
 

    

 

� 𝝈 : 𝛿𝜺 𝑑𝑉
 

ℬ+∪ℬ−

+ �⟦𝛿𝒖⟧ ∙ {𝝈} 𝒏�  𝑑𝛤
 

𝛤

+ �𝜃⟦𝛿𝒖⟧ ∙ ⟦𝒖⟧ 𝑑𝛤
 

𝛤

= � 𝒇 ∙ 𝛿𝒖 𝑑𝑉 
 

ℬ+∪ℬ−

+ � 𝒕 ∙ 𝛿𝒖 𝑑𝐴
 

𝜕ℬ𝑡

 

 
 
 
 

(4) 
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Where 𝜃 is the penalty parameter. As discussed in equation (3), the jump of displacements 
⟦𝒖⟧ is equal to zero in the exact solution.  

3 NUMERICAL INTEGRATION SCHEME 
The dG element includes the information of two adjacent elements, i.e. displacements, 

strains and stresses. These quantities which appear in the integrands of the weak form (4) are 
numerically evaluated in two Gauss points on the discontinuity 𝛤 with the means of Gaussian 
quadrature. Figure 2 illustrates where the Gauss points are located.  

 

 
Figure 2. Gauss points 1 and 2 on discontinuity 𝛤. 

 
The second term and the third term on the left hand side of the weak form (equation (4)), 

namely the dG term and the penalty term, respectively, are computed in three different ways. 
First, we evaluate these terms on both Gauss points 1 and 2 as in Figure 2. Then, a fully re-
duced integration is applied to decrease the Gauss points to one in the middle (Figure 3). Fi-
nally, a mixed integration scheme is applied, so that the dG term is evaluated only in the 
middle of  𝛤 as in Figure 3 and the penalty term on both Gauss points like in Figure 2. 

 

 
Figure 3. Gauss point 1 in the middle of discontinuity 𝛤. 

 

4 NUMERICAL EXAMPLE 
In this section, we investigate the performance of the dG method in comparison to the 

standard FEM in a numerical plane strain example with linear elastic isotropic material. The 
standard quadrilateral finite elements possess four nodes and four Gauss points for numerical 
integration. In addition, the shape functions are bilinear in both cG and dG elements.  

A common benchmark problem [11] of Cook’s membrane as shown in Figure 4 is studied. 
The left side is fixed in both directions and there is an in-plane shear load of 100 𝑁 in vertical 
direction on the right side. The elastic modulus and Poisson’s ratio of the material are given 
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by 𝐸 = 250 𝑀𝑀𝑀 and 𝜈 = 0.4999, correspondingly. The vertical displacement of the node 𝑀 
is to be investigated. 

 

 
Figure 4. Geometry (in mm), boundary conditions, and loading of Cook’s membrane. 

 
Using the Finite Element Analysis Program FEAP to approximate the solution of this prob-

lem, we consider two cases of continuous Galerkin (cG) and dG methods. Nevertheless, the 
dG method was subcategorized into fully reduced and mixed integration schemes.  

The results of the simulation depend on two factors, namely the penalty parameter and 
mesh refinement. Thus, the simulations are carried out for different values of the penalty val-
ue 𝜃, varying from 5 to 20,000 and also different mesh sizes. Mesh refinement is done by 
simultaneous division of the neighboring sides. 

 Figure 6 and Figure 7 show that for a sufficiently large value of the penalty parameter 𝜃, 
the results converge with respect to the number of elements. Unsurprisingly, the fully reduced 
integration scheme converges to wrong solution due to its instability caused by less number of 
integration points. It is thus more sensitive to the penalty value in comparison to the mixed 
integration scheme. Taking the 𝜃 value greater than 800, the fully reduced integration method 
converges from 64 element divisions independent of theta value (see Figure 6). Nonetheless, 
the mixed integration is almost independent of theta, when the number of divisions is higher 
than 128 (Figure 7).  

 
Figure 5. Vertical displacement contour for reduced integration with 𝜃 = 800, 𝑛 = 64 
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Figure 6. Vertical displacement of the node P for the fully reduced integration scheme 
 
 
 

 
 

Figure 7. Vertical displacement of the node P for the mixed integration scheme 
 

As it is seen in Figure 8, the dG method converges with much lower number of elements in 
comparison to the standard continuous Galerkin (cG) method.  
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Figure 8. Nodal displacement comparison of cG and dG methods for  𝜃 = 800 in vertical direction 
 

5 CONCLUSIONS  
In the present work, we utilized the dG method with reduced integration scheme. The re-

sults for different cases of the fully reduced and mixed integration methods with respect to 
IIPG dG terms were examined. Both schemes converged for a specific number of elements 
and specific value of penalty parameter. Although the dG method converged with a signifi-
cantly lower number of elements compared to the cG method, one must still consider the ma-
jor increase of the number of degrees of freedom in dG method, which will bring about a 
longer calculation time.  
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Abstract. The driver for this research is the development of multi-material additive manufac-

turing processes that provides the potential for multi-functional parts to be manufactured in a 

single operation.  To exploit the potential benefits of this emergent technology, new design, 

analysis and optimization methods are needed. This paper proposes a method in which a mul-

tifunctional part, consisting of a system, comprised of a number of connected functional com-

ponents within a mechanical structure, can be optimized. The main contribution of this paper 

is the coupling strategy that enables the structural topology optimization (TO) of a part to be 

carried out in conjunction with the internal system design. This is achieved by accommodat-

ing the effects of system integration on the structural response of the part within TO. The 

method is demonstrated by performing a coupled optimization on a cantilever plate with inte-

grated components and circuitry.  The results demonstrate that the method is capable of de-

signing an optimized multifunctional part in which both the structural and system 

requirements are considered. 
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1 INTRODUCTION 

A multifunctional part, by definition, has multiple uses, such as structural and electrical 

functions, for example, a structural health monitoring (SHM) part. Multifunctional designs 

could be realized using additive manufacturing (AM) multi-material processes, and allows for 

a new AM design paradigm. The manufacturing processes, such as multi-head ink jet printing, 

capable of producing these parts are still under development, with considerable ongoing re-

search into materials and process configuration. A variety of techniques have been proposed, 

primarily using stereolithography and direct write/print technologies and the reader is directed 

to [1] for a history of work carried out in this area. The EPSRC Centre in Innovative Manu-

facturing in Additive Manufacturing at the University of Nottingham, UK, has the develop-

ment of multi-functional 3D printing processes, specifically multi-material jetting, as one of 

its main aims. The Centre also focuses on developing design optimization strategies and 

methods to enable this multifunctional design paradigm. 

The multi-material manufacturing capability expands the possible design freedom from 

purely design of single material boundary geometry to also include material composition and 

functionality through the volume of the part. The motivation for this work lies in the realiza-

tion of the ultimate aim which is to be able to intelligently optimize the design of a multifunc-

tional part, such as the concepts included in Figure 1. Such multifunctional AM (MFAM) 

designs require coupling of the embedded system optimization (i.e. intelligent placement of 

system components and the associated routing) with a topology optimization (TO) routine (i.e. 

structural optimization technique that iteratively improves the material layout within a given 

design space, for a given set of loads and boundary conditions [2][3]). This coupling, illus-

trated in Figure 2, in principle, should enable in a more compact, better integrated and capable 

design. 

 
a)  

 

 

 

 

 

 

b)  

Figure 1: Multi-material jetted concept prototype - a) an example of a topologically optimized structural part 

with integrated internal system of placed components and the associated routing, b) a prosthetic arm with em-

bedded systems and the associated connections between components [4]. 

 
a) 

 

b) 

 

Figure 2: Coupling placement and routing optimization with structural topology optimization 
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The paper takes the following structure: firstly, some background information about the 

over-arching design framework is provided; secondly, the approach adopted for the design of 

functional systems is outlined; thirdly, the structure-system coupling strategy is detailed; and 

lastly, the appropriateness of this strategy is demonstrated by evaluating and discussing the 

results for example test cases. 

2 BACKGROUND 

The overall optimization based design framework [5] for MFAM, shown in Figure 3, has 

three primary strands within the structure and internal system coupling strategy: Firstly, the 

placement of components within the part, secondly, the routing between these components, 

and thirdly, accommodating the effect of integrating these components on the structural re-

sponse of the part by modification of the structure using an optimization strategy. Completing 

the MFAM design strategy are the incorporation of design constraints and strategies em-

ployed for efficient computation of results. 

 

 

Figure 3: Overall design framework for MFAM 
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3 METHODOLOGY 

3.1 Functional System Design 

By functional system design/optimization, the authors mean the intelligent placement of 

components (based on some pre-determined, performance and/or geometry criterion) and 

generating the connections to form a circuit, commonly termed routing. Although in principle 

it would be best to perform placement and routing in one step as placement has significant 

repercussions on the routing but due to the nested dependencies these can be more efficiently 

(in terms of computational expense) tackled independently.  

One of the key enablers, making the MFAM system design possible, is the skeletal infor-

mation. This can be obtained through the process of skeletonization which is the general name 

given to a process which reduces the quantity of geometric information (i.e. dimensionality) 

required to represent a structure whilst preserving the essence of the topology. In 3D, this 

means a 2D medial surface and a 1D medial axis. A thinning algorithm, as detailed in [6][7], 

has been used to obtain the skeletal information of the part’s topology. The reader is directed 

to the authors previous works [5] for details on how skeletal information is utilized for place-

ment and routing within the context of MFAM design. 

With regards to the system design considered herein, placement of the component is kept 

fixed (i.e. a set of pre-determined points) and the method of accurate routing as described in 

[5] is implemented. The system optimization problem therefore becomes a routing optimiza-

tion problem where the aim is to improve the circuit efficiency by lowering resistance, which 

is proportional to the conductive track length. This is, in principle, achieved by identifying the 

shortest paths between components subject to design rules and constraints. By doing so, we 

also minimize the utilization of the conductive track material. 

3.2 Coupling Strategy 

The three primary strands of Figure 3 are used to formulate a coherent design procedure by 

devising suitable coupling strategies; specifically, the coupling between placement and rout-

ing, and the coupling between the structural optimization and the placement and routing. The 

first of these couplings could be achieved with a heuristic approach similar to those used for 

standard PCB or VLSI design [8], or a general purpose metaheuristic algorithm such ACO. 

Addressing the second of these couplings, is an approach that incorporates the effects of 

placement and routing methods via the finite element analysis (FEA) into a structural topolo-

gy optimization (TO) algorithm.  

Figure 4 shows the algorithm that couples TO routine (specifically, bi-directional evolu-

tionary structural optimization (BESO) algorithm [3]) and a system optimization (specifically, 

placement of components and associated routing). This coupled optimization strategy is es-

sential to fully exploit the design freedoms offered by MFAM. The main reason for the choice 

of BESO was the well-defined solid-void representation provided at every iteration within the 

TO which meant that the system optimization could be performed, for instance, at every itera-

tion of TO. 
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Figure 4: Flowchart showing the coupled optimization procedure 

 Early iteration Middle iteration End iteration  

a) 

   

 

b) 

   
c) 

   
d) 

   

 

e) 

   

 
 

Figure 5: Effects of system integration included in the process of structural topology optimization - a) Sensitivi-

ties for structure, b) sensitivities for internal system, c) combined sensitivities, d) resulting coupled solution, and 

e) TO using just structural sensitivities for comparison. 
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This work is the natural evolution of the earlier works by the authors. The preliminary in-

vestigation of [9] (see Figure 2b) looked at integrating the system design into a structural TO 

algorithm such that the FEA conducted as part of TO accounted for updated material proper-

ties for regions where the components were placed and the routes were identified. Subse-

quently, the authors, extend this work to benefit from a bi-directional coupling between the 

TO and system design [10]. This is best illustrated by Figure 5 wherein we can observe the 

use of elemental sensitivities from both the structural and system aspect of our design to up-

date the design variables for subsequent optimization runs. It is worth pointing out that in both 

these works, the routing was limited to what the authors refer to as approximate routing [5] 

(i.e. routes constrained to medial axis of the structure). This resulted in unstable evolution of 

the system configurations as the skeletal topology would drastically change due to the sudden 

dis-connectivity/disappearance in/of structural members. Therefore, with this work, the au-

thors seek to test the robustness of the proposed coupling strategy (with improved heuristics) 

on problems employing accurate routing. 

3.3 Heuristic sensitivity definition 

The coupled optimization procedure of Figure 4 is built upon the principles of the revised 

BESO method [11][12]. The two key contributions made towards this coupled optimization 

algorithm are: a) heuristic definition for computing system associated elemental sensitivities 

and b) appropriate way of combining the system elemental sensitivities with that of the struc-

tural counterpart as shown by eq (1) 
 

 
(1) 

Where,  represents the normalized structural elemental sensitivities (i.e. normalized 

strain energies) after thresholding the outliers (i.e. at point of loading and boundary conditions) 

and  represents the normalized system elemental sensitivities.  is a user defined weight 

to control the influence/bias of the system design on the overall coupled solution. 

As this work focuses on examples where the placement location of components is pre-

determined/specified therefore the system associated elemental sensitivities can be determined 

exclusively from the routing aspect of system design using eq (2) 
 

 
(2) 

where,  is the Euclidian distance between ‘ith’ element within the design domain and the 

closest point from it on the routed paths. Doing so, assigns a value of ‘1’ to those elements 

which form a route and a lower value for elements that are further away from the routed paths.  

Earlier works [10] (for example, see results of Figure 5) have indicated in the  values to 

be bounded and therefore  is set to zero for  greater than the filter radius (used for TO). 

Another improvement is the use of an adaptive parameter which is multiplied with  ensur-

ing in the appropriate contributions of system associated elemental sensitivities towards the 

combined sensitivities (or ). 
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4 SIMULATIONS, RESULTS AND DISCUSSION  

In order to assess the appropriateness of the proposed coupling strategy, two test cases are 

considered, both addressing questions fundamental to this work: 

Test Case - I. What influence does the updated heuristic sensitivity definition (discussed 

in section 0) has on the coupled solution when compared to the authors’ 

earlier implementation of heuristics? 

Test Case - II. Whether to perform (structure + system) coupled optimization or not?    

(By uncoupled problem, the authors mean performing TO to obtain a 

structure and subsequently include system design) 

 

Test Cases considers a standard 2D cantilever problem with the left edge fixed and a verti-

cally downward force being applied to the bottom right corner. The parameters used to simu-

late the test cases are reported in Table 1. 

 
Parameter Description Value 

 

Parameter used for the single objective weighted sum formulation 1 

Modulus of elasticity used for structure 1 

Modulus of elasticity used for the void region 1e-6 

Modulus of elasticity used for system 1e-3 

Poisson’s ratio used for all materials  0.3 

Filter used to avoid checker-boarding 2 

Evolution rate used for BESO 2% 

Target volume fraction used for optimization 40% 

Number of optimization iterations after which the process is terminated 60 

Table 1: Parameters used for the coupled optimization 

Results for the simulation of Test Case – I are presented below. Figure 6 shows the charac-

teristic straight-line route between two placement locations signifying the system dominated 

solution even though similar weighting for structure and system contributions (i.e. lamda = 1) 

have been used for the older heuristic definition of [10]. On the contrary, a more representa-

tive solution for the coupled problem is obtained using the proposed heuristics (see Figure 7). 

The main difference between solutions of Figure 6 and Figure 7 arises due to: a) the  val-

ues being bounded and b) the inclusion of the adaptive parameter which ensures in the appro-

priate contributions of system associated elemental sensitivities towards the combined 

sensitivities.  

Results for the simulation of Test Case – II which aims to address the most important ques-

tion of this work (i.e. whether to perform (structure + system) coupled optimization or not?) is 

shown qualitatively as Figure 8 and presented quantitatively in Table 2. It is evident after 

comparing the results from Table 2 that the system design benefits the most under a coupled 

optimization formulation. 

3245



Ajit Panesar, Ian Ashcroft, Ricky Wildman and Richard Hague 

 

Figure 6: Results of the coupled optimization problem performed using the older heuristic definition of [10] 

 

 

Figure 7: Results of the coupled optimization problem performed using the proposed heuristic definition 
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a) 

 

b) 

 

Figure 8: Comparison in results for uncoupled and coupled optimization - a) routing performed on a (con-

verged) topology optimized structure, b) routing performed as a coupled (structure + system) optimization 

problem. 

 

 Uncoupled solution Coupled solution difference 

Path length (pixels) 196 138 30% 

Total Strain Energy 39.9 40.2 <1% 

Max. displacement (pixels) 76.7 77.4 <1% 

Table 2: Comparison in performance between uncoupled and coupled optimization 

5 CONCLUDING REMARKS  

This paper has presented a coupled optimization formulation for the design of additively 

manufactured multi-material parts with embedded functional systems (e.g. a structural part 

with electronic/electrical components and associated conductive paths). This marks a signifi-

cant step towards being able to exploit the design freedom offered by these manufacturing 

processes.  

The main contribution of this paper is the improved heuristic definition that allows in a 

more appropriate coupling strategy where the structural optimization of a part is carried out in 

conjunction with the system design. This is achieved by accommodating the effects of system 

integration on the structural response of the part at every iteration within a modified bidirec-

tional evolutionary structural optimization.   

The simulation results for the evaluated 2D cantilever test cases show the suitability of the 

proposed coupling method where the system sensitivities, specifically routing sensitivities, are 

combined with the structural sensitivities for a multifunctional design problem. This work is 

testament to the need for developing the coupling strategy further as doing so would enable in 

the design of a more capable, better integrated and optimal multifunctional parts.   
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Gradient Method. 

Abstract. In this study, we propose a new approach for creating the optimal shape and 

topology of shell structures. By implementing topology optimization in the variable design 

domain which is optimized by shape optimization at every iteration, the optimal topology and 

shape is simultaneously determined. The free-form optimization method and the SIMP method 

for shells are used for shape and topology optimization, respectively. Compliance is 

minimized under both volume constraints for shape and topology optimization, and 

out-of-plane shape variation and fictitious density are used as the design variable. The 

optimum design problem is formulated as a distributed-parameter optimization problem, and 

the sensitivity functions for shape variation and density are theoretically derived. Both the 

optimal the optimal shape variation and density distribution are determined by using the H
1
 

gradient method, where the sensitivity functions are applied under the Robin condition to vary 

the shape and density. With the proposed method, the compliance is minimized, while 

maintaining smooth surface and the density distribution. The results show that the proposed 

simultaneous optimization method provides stiffer and lighter structures with less numerical 

instabilities.  
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1 INTRODUCTION 

The researches in the field of shape and topology optimization method has been active in 

recent years, and successfully applied to optimize structures in many practical automotive or 

aerospace engineering problems. In the shape optimization problems, the main subject is to 

find the optimal geometry with the given loading and boundary conditions. In the area of 

shape optimization for shell structures, the optimization design problem is divided into 

in-plane and out-of-plane. The former design is used to determine the detail shape or realize 

weight reduction by changing boundaries. Thus, this boundary shape optimization is usually 

applied the last stage in design procedure. On the other hand, the latter design has great 

impact to improve stiffness or some performances by changing surfaces. As the shape of the 

structure is optimized by varying only the existing boundaries or surfaces of the geometry, it 

is not able to remove or introduce new boundaries in the design domain. Hence, a general 

need for optimization methods which is able to allow for a change of the material layout in the 

design domain. 

Topology optimization has been primarily applied to structural problems to obtain lighter 

structures with optimal material layout. SIMP (Solid Isotropic Material with Penalization) 

method [1] has been wildly used for topology optimization. This approach is to seek density 

distribution in the design domain, where the elastic tensor of the intermediate density of 

material is penalized with exponential function of density.  

With a conventional topology optimization method for shell structures, it cannot be 

expected to improve the stiffness because the material layout is determined only in the fixed 

design domain. On the other hand, shape optimization for shell surface can largely improve 

the stiffness, but cannot create new holes. Therefore, in this study, we proposed an approach 

which can create stiffer and lighter shell structures by implemented topology optimization in 

varying design domain of a shell structure which is optimized by shape optimization.  

Some early research for combined shape and topology optimization can be found in papers 

by Bremicker et al. [2] or Schwarz et al. [3]. Note that the procedure was to find optimal 

topology first and obtained structure was dealt as the initial design, then boundary shape 

optimization was additionally applied within obtained design domain in order to increase the 

performances. Thus the obtained boundaries by topology optimization are modified by shape 

optimization. Ikeya et al. [4] extended the two-phase optimization method to produce stiffer 

and lighter shell by carrying out surface shape optimization first and then size optimization. 

This approach intended to obtain a weight reduced shell with high stiffness by moving shell 

surface, but the optimization methods are considered separately and it can’t take into account 

the coupling effect of shape and sizing parameters. In other words, these researches are two 

steps optimization method considering integrated shape and topology or sizing optimization. 

Ansola et al. [5, 6] and Hassani et al. [7] introduced a simultaneous shape and topology 

optimization method for shell structures. In their methods, material layout is determined while 

shape is varying. However, the obtained structures depend on the initial setting of design 

variables due to the use of parametrization method for shape optimization.  

In this study, H
1
 gradient method [8-11], a gradient method in a function space, is 

employed in order to determine the optimal surface for shape optimization and to overcome 

numerical instabilities for topology optimization while minimizing an objective functional. In 

our previous work, we developed a free-form optimization method for determining the 

dynamically natural and optimal shell form. In this work, we apply this method to 

shape-topology optimization method, and the influence of the method is investigated. 

The stiffness maximization problem is solved as a compliance minimization problem under 

volume constraints for both shape and topology optimization. Shape variation and fictitious 
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density are optimized by applying the sensitivity functions. The simultaneous optimization 

problem is solved by means of integrated iterative algorithms, which is simultaneously 

implemented shape and topology optimization. 

2 FORMULATION OF OPTIMIZATION PROBLEM 

2.1 Governing equation for a shell structure 

As shown in Fig. 1 (a), a shell has an initial design domain  , mid-surface A with the 

boundary of A , side surface S and thickness t. It is assumed for simplicity that a shell 

structure occupying a bounded domain is a set of infinitesimal flat surfaces. The notations

0 1,2{ }u   , w and 1,2{ }   express the in-plane displacements, out-of-plane displacement and 

rotational angles of the mid-surface of the shell, respectively in Fig 1 (b). In this paper, the 

Mindlin-Reissner plate theory is applied concerning plate bending. 

The weak form of the state equation with respect to 0( , )w Uu ,  can be expressed as: 

 0 0 0 0( , ), ( , ) ( , ), ( , )a w w l w w U u u u u, , , ,    (1) 

where the energy bilinear form ( , )a   and the linear form ( )l  for the state variables

0( , )wu ,  are respectively defined as: 

   0 0 0 , 3 , 0 , 3 , , ,( , ), ( , ) ( )( ) ( )( )sa w w C u x u x C w w d                


      u u, , 

 0 , 0 ,( )B M s

A
c c kc dA                  (2) 

0 0 0 3 0( , ) ( ) ( ) ( ),
A A A

l w f u m qw dA t b u b w dA N u M Qw dS          


         u   (3) 

It should be noted that U in Eq. (1) is Sobolev space that satisfies the given Dirichlet 

conditions on each subboundary. In this paper, the subscripts of the Greek letters are 

expressed as 1,2  , and the tensor subscript notation uses Einstein's summation convention 

and a partial differential notation. Loads acting relative to the local coordinate system

1 2( , ,0)x x are defined as: an out-of-plane load q, an in-plane load 1,2{ }f f and an 

out-of-plane moment 1,2{ }m m , an in-plane load 1,2{ }N N , a shearing force Q, a 

bending moment 1,2}{M M and a body force  
1,2,3i i

h hb


b are considered as the 

external forces. In addition, , , , 1,2{ }C      and , 1,2{ }SC   express an elastic tensor 

including bending and membrane stresses, and an elastic tensor with respect to the shearing 

stress, respectively. , , , 1,2{ }Bc      , , 1,2{ }Sc   and , , , 1,2{ }Mc      express orthotropic 

elastic tensors with respect to bending, shear and membrane component, respectively. The 

constants k expresses a shear correction factor (assuming k=5/6). The notations , 1,2{ }   

and 1,2{ }   express the curvatures and the transverse shear strains. 
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(a) Geometry of shell (b) Local coordinates and DOF of flat surface 

Figure 1: Shell as a set of infinitesimal flat surfaces. 

2.2 Compliance minimization problem 

In this paper, compliance minimization problem under volume constraints is considered. 

Letting the volume and the state equations be the constraint conditions, and the compliance be 

the objective functional to be minimized, a distributed-parameter optimization problem for 

finding the optimal design velocity field V and density field  can be formulated as: 

Given ˆ ˆ, ,S TA M M (4) 

Find , V (5) 

Minimized  0 , ,θl wu (6) 

Subject to ˆ ˆ,S S T TM tdA M M d M       and Eq. (1) (7) 

where M and M̂ denote the volume and its constraint value, respectively. 

2.3 Sensitivity analysis 

Here, the Lagrange multiplier method is used to transform this constrained shape and 

topology optimization problem to the non-constrained one. Letting 0( , )wu ,  and  denote 

the Lagrange multipliers for the state equation and the volume constraints, respectively, the 

Lagrange functional L associated with this problem can be expressed as: 

   0 0 0 0 0 0, ( , , ), ( , , ), ( , , ) ( , , ) ( , , ), ( , , )L w w l w l w a w w    u θ u θ u θ u θ u θ u θ

ˆ ˆ( - ) ( - )S TM M M M   (8)

Using the design velocity field V and density  to represent the amount of domain 

variation, the material derivative L of the Lagrange functional L can be expressed as: 

   0 0 0 0 0 0( , , ) ( , , ) ( , , ), ( , , ) ( , , ), ( , , )L l w l w a w w a w w              u θ u θ u θ u θ u θ u θ

ˆ ˆ+ ( - ) + ( - ) , , ,S S T T s T
M M M M G G C  

     n V V (9) 

, A n f nS A A A
G G VdA G V dA G V dA    n V n (10) 

,
T A

G G dA     (11)

where C is the suitably smooth function space that satisfies the constraints of the domain 

variation and notation n denotes the unit normal vector to the shell surface.  

𝑤 

𝑥1 𝑥2 

𝑥3 

𝜃2 𝜃1 

𝑢01 𝑢02 

𝑡
𝑥1 𝑥2 

𝑥3 

𝑡

𝑋1 
𝑋2 

𝑋3 

𝐴 Ω 

𝑆 
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KKT (Karush-Kuhn-Tucker) optimality conditions for this problem are expressed as 

follows: 

 0 0 0 0 0( , , ), ( , , ) ( , , ), ( , , ) , ( , , )a w w l w w U w U           u θ u θ u θ u θ u θ (12) 

 0 0 0 0 0( , , ), ( , , ) ( , , ), ( , , ) , ( , , )a w w l w w U w U           u θ u θ u θ u θ u θ (13) 

ˆ ˆ( - ) 0, 0, - 0S SM M M M      (14) 

By assuming the KKT optimality conditions hold true, the shape and density sensitivity 

functions AG and G for this problem are derived as: 

0 , , 0 , , 0 , , 0 , ,( )( ) ( )( ) Λ
2 2 2 2

A

t t t t
G C u u C u u tH                            (15) 

, , 0 , 0 ,

B M Sc c c
G u u

  

              
  

  
   

  
(16) 

where H is twice the mean curvature of mid-area A. In the derivation of AG and fG , we 

assumed that the loading boundaries and surfaces were not varied in the optimization process. 

  In the SIMP method, the elastic tensor of an intermediate density can be expressed as: 

0 pC C  (17) 

where 0C is the initial value of the elastic tensor of material and p is the penalization factor. 

3 SIMULTANEOUS OPTIMIZATION 

In the proposed simultaneous shape and topology optimization method, the optimal design 

velocity field V and the optimal density field  are determined by using H
1
 gradient method.

With the proposed method, the update shape and topology of a shell structure is 

simultaneously implemented without seeing parameter and with smooth surface, while 

minimizing the objective functional. 

3.1 Optimization algorithm 

Fig. 2 shows a flowchart of the simultaneous optimization method. At the first step, the 

equilibrium equation in Eq. (1) is solved using the FEM. In the second step, shape and density 

sensitivity functions are calculated by Eq. (15) and (16). In the third step, give virtual loading 

and internal heat generation based on shape and density functions, and then pseudo 

displacement and temperature field are obtained, respectively. In the fourth step, the 

equilibrium equation and Poisson’s equation are resolved using the virtual loading and 

internal heat generation, respectively. This third and fourth step is procedure of H
1
 gradient 

method to determine the smooth shell surface and smooth density field. By applying H
1
 

gradient method, design velocity field V and density field  are updated. After that, this 

optimization procedure is repeated until the calculated objective function and volumes are 

converged. 
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Figure 2: Flowchart of simultaneous optimization method. 

3.2 H1
 gradient method for shell structures

The original H
1
 gradient method under the Robin condition was introduced by Azegami [8], 

and Shimoda [10] modified it for free-form shell optimization. To obtain optimal design 

velocity field V, the following weak formed governing equation is introduced. 

 0 3, ( ) , ( ) , ( )( , ( ,) )Va w w wG    0 0 0θ V nV u θ u θ un θn, , , , , ,，

30( , ) , ( )V C w C   0V u θθ , ,， (18) 

where  is distributed spring constant. 

In this paper, we apply this method to topology optimization. The concept illustration is 

shown in Fig. 3. In the SIMP method, it causes the numerical instabilities [12] such as gray 

scale, checkerbording pattern and mesh dependency problem because material layout is 

expressed by density distribution. The proposed H
1
 gradient method for topology optimization 

is also effective to overcome these instabilities. 

To obtain the optimal density field  , the following weak formed Poisson’s equation, or 

the governing equation for  is introduced. 

0( , ) , , ,  ,a v v G s C C                 (19) 

, ,( , ) i ij j
A

a v k v dA    (20)

where  0s  is sufficiently small constant. 0 and C denote the reference density and 

the kinematic admissible function space that satisfies Dirichlet condition for density variation, 

respectively. The notations  and ijk are equivalent to the heat transfer coefficient and the 

thermal conductivity tensor in the steady heat transfer equation, respectively. 

In this method, G is applied as internal heat generation to the design domain on a 

pseudo-elastic shell. The density field  is calculated as the pseudo-temperature distribution 

of Poisson’s equation and is used to update the original density. 
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(a) For shape optimization (b) For topology optimization 

Figure 3: Concept illustrations of H1 gradient method. 

4 NUMERICAL EXAMPLES 

In this section, two examples are considered to demonstrate the validity and effectiveness 

of the simultaneous shape and topology optimization method. In all cases, the material 

constants are used as the Young’s module 210E  GPa, the transverse elasticity module

80.7G  GPa and Poisson ratio 0.3  . Furthermore, minimum value of the normalized 

density is set min 0.01  to avoid the numerical error. 

4.1 Torsion plate problem 

Fig. 4 shows the design domain for a square plate. In the stiffness analysis, the plate is 

supported on three corners and upward force is applied on the other corner in Fig. 4 (a). In the 

velocity analysis, all edges are simply supported as shown in Fig. 4 (b). The volume 

constraints of shape and topology are set to 105% and 50% of the initial value, respectively. 

The material of the shell is modeled using power law SIMP model with a penalty factor of

5p  and the optimization is carried out using 6400 elements with triangle mesh. 

Fig. 5 shows the optimal result. As can be seen, a net-shaped topology is created on the 

X-shaped surface. Fig. 6 shows the iterations history of the compliance and the volumes along 

with the configurations. Note that the value of compliance is stably reduced by approximately 

82% compared with the initial value. 

(a) Stiffness analysis (b) Velocity analysis 

Figure 4: Boundary conditions for a square plate under torsion. 

SPC = 123 SPC = 3 

SPC = 123

Q 

AG n

  

G  
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Figure 5: Optimal shape and material layout. Figure 6: Iterations history of torsion plate. 

4.2 Link part problem 

The proposed method is applied to a link part model. The initial shape and the problem 

definition are illustrated in Fig. 7. In the stiffness analyses shown in Fig. 7 (a), the bending 

moments are applied at the two joints and the other joint is supported. In the velocity analysis 

shown in Fig. 7 (b), it is assumed that all joints are supported. The volume constraints of 

shape and topology are set to 100% and 70% of the initial value, respectively. The penalty 

parameter is set 5p  and the triangle mesh is created by auto-mesh function of HyperMesh 

[12].  

The obtained optimal shape and topology is illustrated in Fig. 8. As it is observed, the 

constraint area is expanded in the x-direction while the side, bottom and curve area are 

vertically narrowed, respectively. The material is distributed on the corners and the holes are 

created on the curve and narrowed area due to reduction the volume. The iterations history is 

illustrated in Fig. 9. The compliance is gradually decreased by approximately 66% under the 

constant volume. Hence, the proposed method is successful for finding the optimal shape and 

material layout. 

(a) Stiffness analysis (b) Velocity analysis 

Figure 7: Boundary conditions for link part model under bending moment. 

SPC = 123456

SPC = 123456 

M 

M 

3256



H. Nakayama and M. Shimoda 

Figure 8: Optimal shape and material layouts Figure 9: Iterations history of link part model 

5 CONCLUSION 

This paper described simultaneous shape and topology optimization method for shell 

structures to minimize the compliance under both shape and topology volume constraints. 

From a view of stiffness, the conventional topology optimization in a fixed design domain 

causes the stiffness reduction from the initial solid condition due to the reduction the volume 

constraint. To overcome this problem, varying design domain is introduced, where the 

optimal density distribution is determined on varied design domain determined by the shape 

optimization. The proposed simultaneous optimization method provided lighter and stiffer 

shell structures where both shape and topology optimization was carrying out concurrently. In 

the shape optimization problem, the free-form optimization method was applied to vary the 

shape surface. For the topology optimization problem, the SIMP method was employed to 

obtain the density distribution. The shape and topology sensitivity functions were derived 

from governing equation for shell structures and applied to each method. Using H
1
 gradient 

method with sensitivity analysis to optimize shape and material layout, smooth surface was 

obtained and numerical instabilities for topology were thoroughly solved while reducing the 

objective functional without shape and topology parameterization.  
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Abstract. Topology optimization (TO) enables creation of structures which are highly efficient
with respect to precisely those conditions formulated mathematically in the optimization prob-
lem. To ensure that optimized structures are robust with respect to variations in geometric and
material parameters as well as external loads it is therefore necessary to set up problem for-
mulations in which such uncertain variations are accounted for. The author and co-workers
have recently proposed to formulate TO under load-uncertainty as a two-person game in which
the two players are the ”designer”, which controls the design variables, and ”nature”, which
controls variables parametrizing the external loads. For this game a Nash-equilibrium is then
sought which solves a standard TO problem to find the best design for a given load and an
optimization problem – the ”load-problem” – to find the ”worst” load(s) for a given design
(a problem of obvious interest also on its own). This work focuses on the load-problem – a
non-convex problem with a relatively small number of variables and simple constraints – and
investigates the practical possibility of solving it to global optimality using a simplicial branch-
and-bound algorithm. The algorithm is tested on a topology optimized design to which a number
of point loads are applied and allowed to vary in magnitude and direction in order to maximize
a smooth approximation of the maximum von Mises stress. Numerical results show promise, but
also that more work is needed to be able to solve large-scale (in terms of both the size of the
structural model and the number of independent loads) instances of the load-problem to global
optimality.
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1 INTRODUCTION

Topology optimization (TO) can be used to design load-carrying structures that are highly
efficient with respect to precisely those conditions formulated mathematically in the optimiza-
tion problem. Deviations, uncertain and inevitable in practise, from those conditions may cause
optimized structures to behave erratically or even collapse. This leads to the idea of robust
TO wherein uncertainties are accounted for explicitly in the optimization problem, either by
assuming stochastic variations of problem parameters or using a worst-case approach [1]. Here
we consider the latter approach and its use under load-uncertainty. This paper therefore con-
cerns the problem of finding the ”worst” load(s) for a given functional f ; i.e. the load(s) which
maximize (or minimize) f . The setting, studied by the author and co-workers in [2, 3, 4], is
a two-player Nash game formulation for robust TO wherein a ”designer” controls the design
variables in x and ”nature” the load variables in r. Assuming the same pay-off functional f for
both players a Nash equilibrium (x∗, r∗) is defined by

x∗ ∈ argmin
x∈X

f(x, r∗) (1a)

r∗ ∈ argmax
r∈T

f(x∗, r) (1b)

where X ⊂ Rm and T ⊂ Rd is the strategy set of respective player. Ideally (and suggested
by the notation), x∗ and r∗ should be globally optimal solutions in their respective problem.
Unfortunately the (standard) TO problem (1a) typically has a very large number of variables
and solving it to global optimality is currently not a viable option. In problem (1b) – the ”load-
problem” – however, the design is fixed and a useful parametrization of the load can often be
obtained using a relatively small number of variables. Obtaining a globally optimal solution is
also in one sense more important in (1b) than in (1a) as it ensures robustness of the optimized
design; i.e., that there are no other loads realizable by the given parametrization that result in
worse performance. For these reasons the focus here is the load-problem, for which globally
optimal solutions are sought.

If f is the so-called compliance and the parametrization of the load is suitably chosen the
load-problem is readily solved: the worst load can be obtained by solving an eigenvalue problem
[5] or a generalized eigenvalue problem [6]. Here however, we let f be an `p-norm approxima-
tion of the maximum von Mises stress. In this case no ”closed-form” solution is, to the author’s
knowledge, available and the load-problem has to be treated as a non-convex, non-linear op-
timization problem (NLP). We propose to solve this problem to global optimality by a branch
and bound algorithm rather than some type of heuristic method (such as gradient-based mul-
tistart or genetic algorithms). The obvious advantage of this choice is that we get a guarantee
of the quality of the solution in the sense that the computed optimal value deviates at most a
user-specified number ε from the globally optimal value.

Related work in solid mechanics includes [7] and [8] which describe the use of exact global
optimization to evaluate a fatique criterion and the minimum limit load factor in worst case
plastic analysis, respectively. Branch and bound has also been used for design of trusses under
fixed loading conditions [9, 10].

In the following we describe the structural model and the parametrization of the external
loads. We then define the `p-norm approximation of the maximum von Mises stress to be used
as objective function in the load-problem. Thereafter a simplical branch and bound method
is described (the method itself is rather standard [11, 12] and is described here mainly for the
reader’s convenience). Finally some numerical examples are described to give an idea of how
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the method works and performs.

2 THE MODEL AND ITS PARAMETRIZATION

We consider an elastic body undergoing small deformations. Using the finite element method
we obtain the global equilibrium equation

K(x)u = f(r) (2)

for the nodal displacements inu ∈ RN . Following the SIMP-approach to TO the global stiffness
matrix

K(x) =
m∑
e=1

ρe(x)
qKe,

where the (relative) density-variables ρe depend on the design variables in x through a, in this
case linear, filter [13], and q > 1. The matrices Ke are element stiffness matrices for material
of unit (relative) density. The design x is assumed to be such thatK(x) is positive definite.

The load vector in (2) is taken as

f(r) = f 0 +
n∑
i=1

QT
i ri, (3)

where f 0 is a fixed vector, and ri ∈ Rs, where s is the number of spatial dimensions, account
for load variations during the optimization. The matricesQi can be used to specify which nodes
are loaded and the maximum load variation in different directions. The vectors ri are collected
in r ∈ T = {r ∈ Rd | ||ri|| ≤ 1, i = 1, . . . , n }, where d = sn and || · || is the Euclidean
vector norm.

3 THE GLOBAL STRESS MEASURE

In this section we omit all dependencies on x as it is fixed to x∗ in (1b).
Given the matrix

A =

 1 −1/2 0
−1/2 1 0
0 0 3

 ,

the von Mises stress at stress evaluation point a can be written as

σvMa (r) =
[
σa(r)

TAσa(r)
]1/2

, (4)

where the stress vector is, via (2), given by

σa(r) = EaBau(r) = EaBaK
−1f(r). (5)

HereBa is the (expanded) strain-displacement matrix evaluated at a and

Ea = ρreE0a,

where r > 0 is a constant, the index e indicates the finite element in which point a is found, and
the symmetric, positive semi-definite matrix E0a is the constitutive matrix for material of unit
relative density.
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Following a currently popular approach to TO with stress constraints/objectives [14, 15] we
use as a global stress measure (

S∑
a=1

σvMa (r)p

)1/p

, (6)

where p > 0. This is the `p-norm of the vector of von Mises stresses and it converges from
above to maxa∈{1,...,S} σ

vM
a (r) as p tends to infinity. Since for p > 0 the function x → x1/p is

monotone increasing on [0,∞) we omit the outer exponentiation in (6) and consider maximizing

σ(r) =
S∑
a=1

σvMa (r)p. (7)

Since the design x is fixed, (7) can be evaluated very efficiently by a rewriting of (4). Let
QT = [QT

1 . . . QT
2 ] ∈ RN×d. Then, recalling (5) and (3),

σvMa (r) =
[
(f 0 +Q

Tr)TK−1BT
aEaAEaBaK

−1(f 0 +Q
Tr)
]1/2

=[
uT

0W au0 + r
TUTW aUr + 2uT

0W aUr
]1/2

,

where W a = ρreB
T
aE0aAE0aBa is a very sparse matrix, and u0 ∈ RN and U ∈ RN×d solves

the sn+ 1 linear systems
K[u0 U ] = [f 0 Q

T].

These equations need only be solved once before the optimization process starts, and the von
Mises stress is then given by

σvMa (r) =
[
va + 2vT

ar + r
TV ar

]1/2
,

where va = uT
0W au0, va = UTW au0 ∈ Rd, and V a = U

TW aU ∈ Rd×d.

4 THE LOAD-PROBLEM

In the special case when the fixed part of the load f 0 = 0, (7) and (4) gives σ(r) = σ(−r).
This implies (see Appendix A) that

{σ(r) | r ∈ T } = {σ(r) | r ∈ T , nTr ≥ 0 }

for some vector n. In view of this we now introduce

T+ = { r ∈ Rd | ||ri|| ≤ 1, i = 1, . . . , n, nTr ≥ 0 } (8)

(the case when f 0 6= 0 is retrieved by letting n = 0) and consider problem (1b), with σ = −σ
in place of f and feasible set T+ instead of T :

min
r∈T+

σ(r). (9)

This problem is one of minimizing a smooth, concave function [2] over a compact, convex set.
Existence of globally optimal solutions is thus guaranteed, and the problem is of a type much
studied in the global optimization literature [12, 11].
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4.1 A BRANCH-AND-BOUND ALGORITHM FOR THE LOAD-PROBLEM

We describe a branch-and-bound algorithm to solve (9) where the feasible set T+ is parti-
tioned into simplices Si. A d-simplex in Rd is defined as the convex hull of d + 1 affinely
independent vertices v0, . . . ,vd, i.e.

r ∈ Si ⇔ r =
d∑
i=0

λivi,

d∑
i=0

λi = 1, λi ≥ 0, i = 0, . . . , d. (10)

To specify the algorithm we need to know: i) how to construct an initial simplex; ii) how to
obtain upper and lower bounds on a simplex; iii) how to perform the partition of T+; and iv)
how to check whether T+ ∩ Si = ∅. These items are described next.

4.1.1 AN INITIAL SIMPLEX

Following [12, Section 3.5.3] we choose an initial simplex S0 ⊃ T+ as

S0 =

{
r ∈ Rd | ri ≥ γi, i = 1, . . . , d,

d∑
i=1

ri ≤ γ

}
,

where γ, γ1, . . . , γd are obtained by solving the convex problems

γi = min
r∈T+

ri, i = 1, . . . , d, and γ = max
r∈T+

d∑
i=1

ri.

The vertices of S0 are then given by v0 = (γ1, . . . , γd)
T and

vi = (γ1, . . . , γi−1, αi, γi+1, . . . , γd)
T, i = 1, . . . , d,

where αi = γ −
∑

j 6=i γj .

4.1.2 UPPER BOUNDING

Assuming T+ ∩ Si 6= ∅, an upper bound Ui is obtained on T+ ∩ Si by solving the problem

Ui = min
r∈T+∩Si

σ(r). (11)

It is possible to treat this problem in two different ways: (i) compute the polytope representation
of Si [16, p. 33] and optimize directly in r; or (ii) use the vertex representation (10) with the λi-s
as variables. Here we choose the former strategy because of convenience in the implementation.
For problems with more variables than the ones treated here, the fact that the polytope represen-
tation requires solution of some additional linear systems compared to the vertex representation
may be one reason to prefer the latter.

To represent Si as a polyhedron we follow [16, p. 33] and introduce a matrix

Bi = [v1 − v0 . . . vd − v0]−1 ∈ Rd×d,

where the inverse is well-defined since v0, . . . ,vd are affinely independent. Now [16, p. 33]

Si =
{
r ∈ Rd | Bir ≥ Biv0, 1

TBir ≤ 1TBiv0 + 1
}
,

where 1 is a vector of ones.
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4.1.3 LOWER BOUNDING

Since σ(r) is concave, its convex envelope over Si is [12, Theorem 1.22] the affine function
`(r) = aTr + b, where a and b comprise the unique solution to the linear system

aTvi + b = σ(vi), i = 0, . . . , d.

Assuming T+ ∩ Si 6= ∅, a lower bound Li on T+ ∩ Si is obtained by solving

Li = min
r∈T+∩Si

`(r). (12)

Since the intersection of two convex sets is convex, this problem consists of minimizing a linear
function over a convex set.

In this case, solutions to the lower bounding problem are feasible in the original problem
(9), so, in order to obtain an upper bound Ui, simply evaluating σ at a solution to (12) is an
alternative to solving (11)

4.1.4 SUBDIVISION OF SIMPLICES

Subdivision of a simplex Si is done by bisection along one of its longest edges. Letting vk
and vk+1 be the end-points of this edge we take the bisection point as w = 0.5(vk + vk+1)
and thus obtain two new simplices Si1 and Si2 with vertices (v0, . . . ,vk,w,vk+2, . . . ,vd) and
(v0, . . . ,vk−1,w,vk+1, . . . ,vd).

4.1.5 INTERSECTION BETWEEN T+ AND Si

It could happen that the intersection T+ ∩ Si is empty, in which case Si should be discarded
from further consideration. Here we propose to check for an empty intersection in three steps1:

1. If any of the vertices of Si lie in T+, then T+ ∩ Si 6= ∅ and Si should not be discarded.

2. Let Ij be a diagonal matrix with diagonal elements 2j− 1 and 2j set to one and the other
to zero. If

max
j∈{1,...,n}

[
−vT

0Ijv0 + 2 min
i∈{1,...,d}

vT
0Ijvi

]
> 1,

then T+ ∩ Si = ∅ (see Appendix B) and Si should be discarded.

3. If neither of Step 1 or 2 hold we proceed to solving the convex feasibility problem

z∗ = min
z∈R,r∈Si

z

s. t.

{
nTr ≥ 0

||ri||2 − 1 ≤ z, i = 1, . . . , n.

(13)

If z∗ ≤ 0 we conclude that T+ ∩ Si 6= ∅, and Si should not be discarded.
1Since the criteria in Step 2 is sufficient for an empty intersection, it is also possible to skip Step 3 altogether

without losing candidate solutions to (9).

3264



Carl-Johan Thore

4.2 THE COMPLETE ALGORITHM

Let A denote a set of problems. A problem i in A is defined simply by the vertices of a
simplex Si and is associated with a lower bound Li. The proposed algorithm for solving (9) to
global optimality (to within a certain tolerance) can now be described as follows:

Algorithm 1
Choose ε > 0. Construct an initial simplex S0 as described in section 4.1.1
and add it to A. Solve the lower bounding problem (12) and take the objective
function value as the best lower bound L. Set the best upper bound U to∞.

1. Select the problem, i, with the least lower bound and delete it from A.

2. (Optional) Solve the upper bounding problem (11). If the optimal value Ui
is smaller than U then set U := Ui.

3. Divide Si into Si1 and Si2.

4. For j = 1, 2: If Sij ∩ T+ 6= ∅, solve the lower bounding problem on Sij . If
Lij < U , then add problem ij to A.

5. Set L to the least lower bound found in A.

6. If U − L < ε, then STOP. Else goto Step 1.

Let σ∗ denote the global minimum value of problem (9). Then according to Theorem 5.26
in [11] Algorithm 1 converges in a finite number of iterations to a point r∗ such that σ(r∗) ≤
σ∗ + ε2.

5 NUMERICAL EXAMPLES

We consider solutions to some instances of (9) based on the design (i.e. x∗) shown in the
left plot of Fig. 1. This design was obtained in [2] by varying, under an upper bound on the
total mass, x to minimize the `24-norm of the von Mises-stress vector and varying the load to
maximize the same quantity. The L-shaped design domain is indicated by thin dashed lines.
The finite element model consists of 6400 four-noded, bilinear elements, and stress is evaluated
at the geometric center of each element. To see the effect of varying the design we also consider
a problem where the design variables are set to one in the entire design domain. This design is
denoted by ”s” in Tab. 1 below; the one seen in Fig. 1 by ”c”.

The load is given by (3) with f 0 = 0, i.e., f(r) =
∑n

i=1Q
T
i ri. Each Qi consists here

of zeros except for an identity matrix placed at the positions corresponding to the degrees of
freedom of a loaded node; i.e. we consider point loads at various parts of the structure varying
freely expect that their magnitude is limited to unity and that nTr ≥ 0. Here we take n =
(1 0 . . . 0)T; i.e., we require that r1 ≥ 0. Stresses in a small patch of 3 by 4 elements around
the point of application of each force are set to zero; c.f. [14, 15].

The right plot in Fig. 1 shows normalized maximum von Mises stress and its approximation
using the `24-norm as functions of the angle θ defining the direction of the unit load applied at
the tip of the beam in the left plot (here n = 1). Three local maxima are clearly discerned in the
solid graph, illustrating the non-convexity of problem (9).

Algorithm 1 has been implemented in Matlab R2015b. The NLPs are solved by an interior-

2Exactness in the limit, as required by the cited theorem, follows from the Lipschitz continuity of σ and that `
interpolates σ at the vertices of each simplex. Exhaustivness of the subdivision process follows from Proposition
3.14 in [12].
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Figure 1: Left: Design with boundary conditions and loading. ` = 100 [mm]. A
point load is applied at the tip of the beam and the arrowhead is allowed to vary
within the half-circle delimited by the dashed line. Right: Normalized maximum
von Mises stress (dashed line) and its `24-norm-approximation (solid line) as func-
tions of the angle θ in the left plot.

point algorithm available via the function fmincon in the Matlab Optimization Toolbox. The
global stress measure (7) and its gradient are implement as C-functions interfaced to Matlab via
the MEX API. Exact first-order derivatives are used for all problems. A BFGS approximation
of the Hessian of the Lagrangian is used to solve (9), whereas exact Hessians are used for the
other problems. In the model we use q = 3, r = 0.5; filter radius 3 [mm]; an isotropic material
with Young’s modulus 1000 [N/mm2] and Poisson’s ratio 0.3; and domain thickness 1 [mm].
The stopping tolerance in Algorithm 1 is set to ε = 10−3. Stopping tolerances for fmincon are
set to TolX = 10−12, TolCon = 10−10 and TolFun = 10−10. The upper bounding problem
in Step 2 of Algorithm 1 is solved every 50:th iteration. All computations are carried out by an
Intel Core I7-4712MQ.

Table 1 shows some numerical results. In all cases the NLPs in Algorithm 1 were, after
appropriate scaling, solved by fmincon using between 10 and 30 iterations for problems (12)
and (13), and occasionally up to around 100 for problem (11). For the cases n = 1, d = 2
in the table, the total CPU time is on the order of 10 seconds and the number of iterations of
Algorithm 1 around 200. For the three cases with n = 2, d = 4, the number of iterations jump
to the order of 10000 and CPU times to between 700 and 1200 [s]. The absolute gap U − L as
a function of the number of iterations for the case in row three is shown in Fig. 2. Changing the
design from the one seen in Fig. 1 to the simpler design ”s” in the forth row of Tab. 1 yields a
slight increase in computational time compared to the third row. For the cases n = 3, d = 6,
the iteration count increased further. The total time increases with increasing p, with p = 24
resulting in around 38 hours of CPU time.

6 CONCLUSIONS

A branch and bound method for finding loads that maximize a given functional, in this case
an `p-norm approximation of the maximum von Mises stress, has been described. The proposed
method is quite general and can be applied to a wide range of functionals and for many different
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n d p des. load position iter. f. eval. low. bnd. |A| CPU [s]
1 2 24 c (100,40) 191 1129 343 17 14
1 2 24 c (40,0) 161 1227 298 13 21
2 4 24 c (100,40), (0,40) 13761 1.3·105 2.4·104 877 875
2 4 24 s (100,40), (0,40) 20001 1.8·105 3.5·104 820 1197
2 4 24 c (40,0), (0,40) 10631 1·105 1.8·104 668 710
3 6 4 c (100,40), (0,40), (40,0) 8.7·104 1.2·106 1.6·105 5913 6912
3 6 8 c (100,40), (0,40), (40,0) 3.3·105 4.2·106 5.7·105 15835 24418
3 6 24 c (100,40), (0,40), (40,0) 2·106 25·106 3.4·106 97540 139435

Table 1: Numerical results. Columns show number of individual loads; number of
variables; `p-norm exponent; type of design; point of application of loads in the
coordinate system shown in Fig. 1; number of iterations of Algorithm 1; number
of evaluations of (7); number of times the lower bounding problem (12) has been
solved; maximum number of active problems; and total time

Figure 2: Absolute gap U − L versus number of iterations in Algorithm 1 for the
case n = 2, d = 4 described in the third row of Tab. 1.

loading parametrizations. A test problem based on a topology optimized design showed that
the approach is promising, but, although further optimization of the code might bring down
computational times somewhat, the large number of iterations observed indicate that more work
is needed to be able to solve large-scale (in terms of both the size of the finite element model and
the number of independent loads) instances of the load-problem to global optimality. Finally
we remark that although the load-problem is here described as part of a Nash game for robust
TO it is obviously very relevant on its own.
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A IMAGES OF T AND T+
Proposition. Let g : Rd → R satisfy g(r) = g(−r) for all r ∈ T = {r ∈ Rd | ||ri|| ≤ 1, i =
1, . . . , n }. Then

{ g(r) | r ∈ T } = { g(r) | r ∈ T+ },
where T+ = { r ∈ Rd | ||ri|| ≤ 1, i = 1, . . . , n, nTr ≥ 0 } for some vector n ∈ Rd.

Proof. We have

{ g(r) | r ∈ T } =
{ g(r) | r ∈ T , nTr ≥ 0 } ∪ { g(r) | r ∈ T , nTr ≤ 0 } = U+ ∪ U− (14)

Since ||ri|| ≤ 1 and nTr ≤ 0 if and only if if and only if || − ri|| ≤ 1 and nT(−r) ≥ 0 we can
write

U− = { g(r) | − r ∈ T , nT(−r) ≥ 0 } = { g(−r) | − r ∈ T , nT(−r) ≥ 0 }.

Now defining s ≡ −r we see that U− = U+, so that, going back to (14),

{ g(r) | r ∈ T } = U+ ∪ U− = U+ ∪ U+ = U+.

�

B A SUFFICIENT CONDITION FOR T+ ∩ Si = ∅

Proposition. Let Ij be a diagonal matrix with ones in diagonal elements 2j − 1 and 2j and
zeros otherwise. If

max
j∈{1,...,n}

[
−vT

0Ijv0 + 2 min
i∈{1,...,d}

vT
0Ijvi

]
> 1, (15)

then T+ ∩ Si = ∅.
(A version of this criteria was originally proposed by Raber [17].)

Proof. Let r denote a vector from the origin to an arbitrary point in Si. Then

rTIjr = (v0 + (r − v0))TIj(v0 + (r − v0)) =
vT
0Ijv0 + 2vT

0Ij(r − v0) + (r − v0)TIj(r − v0) ≥
vT
0Ijv0 + 2vT

0Ij(r − v0), (16)

where the last inequality follows from Ij being positive semi-definite. We now write r =

v0 +
∑d

i=1 λi(vi− v0), where λi ≥ 0, i = 1, . . . , d and
∑d

i=1 λi ≤ 1. Substitution in (16) gives

rTIjr ≥ vT
0Ijv0 + 2vT

0

(
d∑
i=1

λiIj(vi − v0)

)
≥

vT
0Ijv0 + min

λi≥0, i=1,...,d,
∑d

i=1 λi≤1
2vT

0

(
d∑
i=1

λiIj(vi − v0)

)
≥

vT
0Ijv0 + min

i∈{1,...,d}
2vT

0Ij(vi − v0). (17)
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The last inequality follows from the fact that for a linear program with a bounded feasible
set, at least one extreme point of this set will be a solution [18, Theorem 8.10]; i.e, at least
one of the vertices of Si will be a solution. The last inequality in (17) shows that vT

0Ijv0 +
mini∈{1,...,d} 2v

T
0Ij(vi − v0) > 1 implies rTIjr > 1 and thus, since r ∈ Si is arbitrary, that

T+ ∩ Si = ∅. �

Remark. The smaller the simplex, the smaller is the term (r − v0)TIj(r − v0) in (16) and the
better is the accuracy of the criterion (15).
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Abstract. Technical codes for buildings deal with cracked reinforced concrete structures as-
suming concrete as a compression–only material, whereas rebar provides the structural compo-
nent with the required tensile strength [1]. Numerical methods can handle reinforced concrete
structures calling for demanding non–linear analysis. Indeed, well–known convergence issues
arise when copying with concrete as a compression–only material. Recently, an alternative
energy–based approach has been proposed to solve the equilibrium of a linear elastic no–
tension medium exploiting its hyper–elasticity [2]. A topology optimization problem distributes
an equivalent orthotropic material to minimize the strain energy of the no-tension body, thus
avoiding more demanding non–linear analysis. This contribution provides an extension to the
analysis and optimal design of reinforced concrete structures. Following [3], truss members
are modeled within a two–dimensional no–tension continuum in order to model structural el-
ements made of reinforced concrete. The solution of the equilibrium is straightforward within
the approach proposed in [2], thus allowing performing analysis at the serviceability limit state
with cracked sections. Also, introducing the areas of the reinforcement bars as an additional
set of unknowns, a problem of size optimization is outlined to cope with the optimal rebar of r.c.
structures. Preliminary numerical simulations are shown to assess the proposed procedure.
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1 INTRODUCTION

An extensive research has been done in the last decades addressing the non–linear analysis
of reinforced concrete (r.c.) structures, see e.g. the seminal paper [4]. At the serviceability limit
state, the practical detailing of a reinforced concrete structure is based on simple assumptions,
i.e. the adoption of linear elastic modeling for the composite structural member and the as-
sumption that concrete strength in tension is negligible [5]. Implementing this theoretical model
within a numerical code is not trivial, due to well–known instabilities arising when addressing a
linear elastic no–tension body through conventional incremental approaches. Recently, [6] has
proposed to solve the equilibrium of a no–tension solid resorting to a minimization problem that
adopts the displacement field as unknown and the strain energy of the hyper–elastic no–tension
body as objective function.

An alternative energy–based approach has been proposed in [2]. A topology optimization
problem [7] distributes an equivalent orthotropic material to minimize the strain energy of the
compression–only body, thus resorting to an established and computationally efficient formula-
tion of compliance minimization that avoids more demanding non–linear analysis.

A possible extension to the simplified analysis of reinforced concrete structures is investi-
gated in this contribution. Following [3], truss members are modeled within a two–dimensional
no–tension continuum in order to address two–dimensional structural elements made of rein-
forced concrete. The solution of the equilibrium is straightforward within the approach pro-
posed in [2], thus allowing performing analysis at the serviceability limit state with cracked
sections. Preliminary numerical simulations are shown to investigate the capabilities of the
proposed procedure.

Moreover, introducing the areas of the reinforcement bars as an additional set of unknowns
for the minimization problem, size optimization is outlined as a possible extension of the pro-
posed procedure to cope with the optimal rebar of r.c. structures. A first numerical test shows
that the computational burden tied to this extension is almost equivalent to that required for the
solution of the equilibrium equations.

The outline of the paper is as follows. Section 2.1 recalls fundamentals of the topology
optimization problem used to address linear elastic no–tension structures according to [2, 8],
whereas Section 2.2 introduces the minimum compliance problem to cope with r.c. members.
Section 3 presents preliminary numerical simulations performed on a benchmark example and
Section 4 provides remarks and outlines the ongoing research.

2 PROBLEM FORMULATION

2.1 Equilibrium of no–tension structures as a topology optimization problem

The analysis of a 2D no–tension continuum is re–formulated as a topology optimization
problem for minimum compliance. The equilibrium of any compression–only structure is
solved seeking for the distribution of an ’equivalent’ orthotropic material that minimizes the
potential energy of the hyper–elastic solid. A one–shot energy–based procedure computes the
non–incremental solution under given loads, provided that the applied forces are compatible
with the no–tension constraint.

A 2D Cartesian reference is considered to address a no–tension isotropic solid in the region
Ω. Prescribed displacementsu0 are enforced along its constrained boundary,Γu, whereas trac-
tion t0 is assigned along its free boundary,Γt. An equivalent orthotropic material is introduced
to mimic the behavior of a no–tension body. (z̃1, z̃2) are the symmetry axes of the equiva-
lent phase that are assumed to be aligned with the directions (zI , zII) of the principal stresses
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(σI , σII) at any point inΩ. The parameterθ defines the orientation of the axes (zI , zII) with
respect to the given Cartesian reference.

In weak form, the energy–based minimization problem can be stated as follows:







min
ρmin≤ρ1,ρ2≤ 1

∫

Ω

D(ρ1, ρ2, θ)ε(u) ε(u) dΩ

s.t.
∫

Ω

D(ρ1, ρ2, θ)ε(u) ε(v) dΩ =
∫

Γt

t0 · v dΓ andu |Γu
= u0 ∀v,

θ | z̃1 = zI and z̃2 = zII ,

ρ1, ρ2 | σI ≤ 0 andσII ≤ 0.

(1)

The above equation adopts the compliance (i.e. twice the strain–energy) as objective function,
u is the displacement field,ε(u) the strain tensor andD the fourth–order elasticity tensor of
the ’equivalent’ orthotropic material. Using a suitable transformation matrixT(θ), one has that
D = T

−1˜DT
−t. Exploiting the Voigt’s notation,˜D, which is the constitutive tensor written in

the material frame (̃z1, z̃2), reads:

˜D =
1

1− ν̃12ν̃21






˜E1 ν̃12 ˜E2 0

ν̃21 ˜E1
˜E2 0

0 0 (1− ν̃12ν̃21) ˜G12




 , (2)

where ˜E1 and ˜E2 are the Young’s moduli of the ’equivalent’ orthotropic material,ν̃12, ν̃21 its
Poisson’s ratios (being̃ν12/ ˜E1 = ν̃21/ ˜E2) and ˜G12 its shear modulus.

A generalization of the so–called SIMP model [9] relates the elastic constants of the equiv-
alent material and those (E, ν) of the isotropic no–tension material according to the following
interpolations:

˜Ei = ρpiE, ν̃ij =

√
√
√
√
ρpi
ρpj
ν, ˜Gij =

√

ρpi ρ
p
j

E

2(1 + ν)
, (3)

for i, j = 1, 2. Each minimization unknownρi ranges betweenρmin > 0 and1 to penalize
or preserve stiffness along the relevant axis depending on the sign of the principal stress. To
avoid any tensile stress in the solid, Eqns. (1.4) enforce vanishing stiffness of the equivalent or-
thotropic material along the direction of any arising positive principal stress. The adopted lower
boundρmin avoids singularity of the stiffness matrix when solving the discrete formulation,
whereasp = 3 is conventionally assumed [7].

2.2 Equilibrium of r.c. structures as a topology optimization problem

The generalization of the above problem to the finite element analysis of a cracked reinforced
concrete structure seen as a strengthened no–tension body is straightforward. Following [3],
truss elements are modeled within a two–dimensional continuum in order to cope with the
arising composite structure. The formulation is presented in its discrete form.

A finite element discretization made ofN truss elements is used for the reinforcement bars,
along withM four–node plane elements for the underlying compression–only structure. An
element–wise constant discretization is adopted to cope withρ1, ρ2, θ, see Section 2.1. The
stiffness matrix of thej–th truss–like element is denoted byKr

j , whereasx1i andx2i are the
discrete minimization unknowns that govern the stiffness of the ’equivalent material’ along its
symmetry axes, beingti the value of the orientation parameter in thei–th element. Denoting by
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Ki(x1i, x2i, ti) the stiffness matrix of thei–th plane element, the implemented discrete form for
the minimization of the strain energy of a 2D r.c. structure reads:







min
xmin≤x1i,x2i≤ 1

C =
∑M

i=1 U
T
i Ki(x1i, x2i, ti) Ui +

∑N
j=1U

T
j K

r
j Uj

s.t.
∑M

i=1
Ki(x1i, x2i, ti) U+

∑N
j=1

K
r
j Uj = F,

ti | z̃1 = zI andz̃2 = zII ,

x1i, x2i | σi,I ≤ 0 andσi,II ≤ 0,

(4)

whereUi is the vector of the d.o.f.s of the 2D finite elements,Uj is the vector of the d.o.f.s
of the truss elements andF is the array of the nodal loads. Eqn.(4) is fully along the lines
of Eqn.(1). It is recalled that the structural complianceC is the work of the external loads
computed at equilibrium. Dealing with a composite structure, the overall strain energy depends
on the amount stored in the underlying compression–only material and that stored in the steel
reinforcement.

Sequential convex programming [10] and analytical computation of the sensitivities [7] can
be used to solve the minimization problem stated in Eqn.(4).

Instead of implementing demanding sets of stress constraints, the penalization approach al-
ready used in [2, 8] is herein adopted to cope with Eqn.(4.4). A set of penalized densitieŝx1i,
x̂2i can be introduced for a straightforward computation of a modified strain energŷC, in which
the terms related to any possible positive principal stress arising in the underlying compression–
only material are reduced by a parameterk = 0.5. Providing the optimizer with the reduced
objective function̂C and its sensitivities∂ ̂C/∂x1i, ∂ ̂C/∂x2i, variablesx1,x2 are updated pre-
venting any distribution of stiff material along the weak direction(s) of the no–tension body.

Introducing a new set of minimization unknowns to cope with bars having different sec-
tions, minor modifications are required in Eqn.(4) to cope with a problem of size optimization.
A preview of this approach is shown in Section 3.2, addressing the optimal detailing of r.c.
structures.

3 NUMERICAL SIMULATIONS

A set of preliminary numerical simulations are presented in this section, adopting the formu-
lation described above to cope with the analysis of the reinforced concrete cantilever represented
in Figure 1. The left edge is clamped and a nodal forceP = 1 kN is applied at the upper right
corner.

Concrete is modeled as a linear elastic no–tension material with Young modulusEc =
20, 000MPa and Poisson’s ratioνc = 0.15 , whereas the prescribed steel reinforcement is dis-
cretized through linear elastic truss elements with Young modulusEs = 210, 000MPa. The

Figure 1: Geometry and boundary conditions for the numericalapplication.
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Figure 2: Finite element mesh and steel reinforcement layout.

(a) (b)

Figure 3: Analysis of the r.c. cantilever: principal stresses in the concrete specimen along with uniaxial stresses in
the reinforcement (MPa) computed for a conventional linear elastic beam (a) and a no–tension beam (b).

area of each bar is twice that of a circular section with diameterφs = 12mm.
Section 3.1 assesses the proposed procedure of analysis, whereas Section 3.2 outlines a pos-

sible extension to the size optimization of the steel reinforcement.

3.1 The analysis problem

Figure 2 shows the two–dimensional finite element discretization used to handle the concrete
cantilever along with the truss elements that model stirrups and longitudinal reinforcement, both
with the same diameterφs. For simplicity’s sake, no reinforcing covering is considered in this
preliminary investigation. Stirrup spacing is uniform along the beam and equal to half the height
of the square section.

Figure 3(a) shows results computed through a linear elastic analysis that models concrete as
a material with equal behavior in tension and compression. Principal stresses in the concrete
specimen and uniaxial stresses in the reinforcement are represented in the same picture. Due
to the enforced compatibility, the steel reinforcement and the concrete beam carry different
amounts of the external load, depending on their stiffness. As expected, the upper part of the
beam is tensile–stressed (red vectors), whereas the region under the neutral axis is compressed
(blue vectors). Minor axial stresses are found in the longitudinal reinforcement; stirrups are
nearly unloaded.
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Figure 4: Optimization of the r.c. cantilever: achieved layout.

Figure 3(b) shows results computed through the minimization problem of Eqn. (4), which al-
lows modeling concrete as a linear elastic no–tension material. Results shown in this picture are
quite different with respect to those of the previous one. No tensile stress arises in the concrete
body (no red vector is found). The tensile stresses in the upper longitudinal reinforcement are
around230MPa, whereas compressive stresses in the lower horizontal bars are around50MPa.

The direction of the principal stresses computed in the two–dimensional concrete domain
clearly shows the expected activation of a strut–and–tie model for shear resistance that involves
the stirrups, now tensile–stressed by nearly50MPa. Note that the inclination of the struts in the
arising truss–like structure is not the same along the cantilever. This can be directly compared
with established results of strut–and–tie modeling, see e.g. [1, 11].

3.2 The optimization problem

The formulation in Eqn. (4) can be straightforwardly modified to cope with the detailing of
the optimal amount of steel reinforcement in the cantilever.

Replacing the stiffness of thej–th reinforcement barKr
j with xjK

r
j , being0 ≤ xj ≤ 1

a sizing unknown that allows for a variation of the diameter of the bar section in the range
0 ≤ φs ≤ 12mm, the problem in Eqn. (4) minimizes the strain energy of the composite
structure solving, within the same formulation, the equilibrium of the no–tension cantilever and
the size optimization of the prescribed reinforcement bars.

Figure 4 shows the distribution of the unknownsxj found by the algorithm to detect opti-
mal sections, enforcing that the allowed global amount of reinforcement is half the case with
xj = 1, ∀j. Figure 5 represents the principal compressive stresses found in the concrete spec-
imen along with the uniaxial stresses computed in the reinforcement. Removing the horizontal
reinforcement lying in the compressive–stressed region and suitable portions of the stirrups, a
lighter layout is achieved than in Figure 2 without introducing any remarkable variation in the
computed stress field. The achieved solution is trivial, but allows outlining capabilities of the
proposed formulation that can be conveniently exploited in case of more complex geometry,
load and reinforcement patterns.
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Figure 5: Optimization of the r.c. cantilever: principal stresses in the concrete specimen along with uniaxial
stresses in the reinforcement (MPa).

Figure 6 reports the history plot of the objective function for the analysis problem and the
optimization problem that have been considered above. Both curves are similar, convergence
is smooth and the computational cost is limited, as for conventional problems of topology opti-
mization for minimum compliance.

4 CONCLUSIONS

A topology optimization problem has been formulated as an alternative approach to cope
with the analysis of cracked reinforced concrete structures, assuming the hyper–elastic no–
tension model for concrete. An energy–based formulation which was originally developed for
plain elements has been herein extended to handle compression–only composite structures em-
bedding bars of steel reinforcement.

Results found by the preliminary analysis commented above are in very good agreement with
established theories addressing the behavior of cracked reinforced–concrete structures, see e.g.
[11]. The proposed approach allows for a direct computation of compressive stresses acting in
the concrete domain along with axial stresses in the steel reinforcement. This matches well–
known methods used in engineering practice that neglect the tensile strength of concrete, see
e.g. [5].

Moreover, a problem of size optimization has been outlined to cope with the optimal rebar
of r.c. sections through minor modifications of the proposed numerical procedure.

The ongoing research is mainly focused on the assessment of the analysis problem, the de-
velopment of the optimization problem and the extension of the proposed approach to cope with
the optimal fiber–reinforcement of existing structures, see in particular [12, 13] for plain and
reinforced concrete structures and [14, 15] for masonry structures.

Referring to computational issues, adaptive techniques are currently under investigation to
improve the accuracy in the evaluation of both the displacement field and the stress field in the
no–tension layer while decreasing the computational effort, see in particular [16, 17].
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Abstract. In the last years adjoint optimal control has been increasingly used for design and
simulations in several research fields. Applications to Computational Fluid Dynamics problems
dedicated to the study of transient-diffusion equations, shape optimization problems, fluid-solid
conjugate heat transfer and turbulent flows can be found in literature. The study of Fluid-
Structure Interaction problems gained popularity recently because of many interesting appli-
cations in engineering and biomedical fields. In this paper we study adjoint optimal control
problems for Fluid-Structure Interaction systems in order to improve the advantages of using
FSI simulations when designing engineering devices where fluid-dynamical interactions be-
tween a fluid and a solid play a significant role. We assess distributed optimal control problems
with the purpose to control the fluid behavior by moving the solid region to obtain a desired
fluid velocity in specific parts of the domain. The adjoint equations of the FSI monolithic sys-
tem are derived and the optimality system solved for some simple cases with an in-house finite
element code with mesh-moving capabilities for the study of large displacements in the solid.
The approach presented in this work is general and can be used to assess different objectives
and types of control in future works.
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1 INTRODUCTION

Optimization has always been used to improve the performance of engineering devices.
Nowadays several approaches to optimization are available, such as single and multi-objective,
adjoint or sensitivities based method, evolutionary algorithms and many others. In literature
there are several works dealing with this subject, for a quick review the interested reader can
see [1, 2, 3, 4, 5, 6, 7, 8] and references therein.

Fluid-Structure Interaction (FSI) problems can be defined as a system where the fluid flow
alters the tensional state of a solid moving shape and the solid deformation has an important
effect on the fluid flow. Examples of this type of systems are quite common in engineering, like
floating structures, wind turbines, man-made drones and in the study of biological systems such
as artery or heart valves. In literature these topics are investigated deeply and the interested
reader can see [9, 10, 11, 12, 13, 14]. Many attempts to use optimization techniques can be
found, for example in [15], where the authors propose a solution method for the problem of op-
timizing a non-linear aeroelasticity system in a steady-state flow by using a sensitivity method.
The work in [16] deals with general shape optimization methods based on design sensitivity
analysis. In [17] a partitioned approach for a NURBS-parametrized shape optimization prob-
lem is studied. In the recent work [18] the authors propose a reduced order model, based on a
sequential quadratic programming approach, to accelerate the shape optimization process.

In this work we focus on adjoint based optimal control approach which is very popular in
industrial applications where Computational Fluid Dynamics simulations should be performed
[19, 20, 21, 22, 23]. Moreover this method has a solid mathematical background and the exis-
tence of local optimal solutions can be investigated in many interesting cases, see for examples
[21, 22, 24]. We are interested in a monolithic approach to the solution of the FSI system leading
to a stable and well defined solution in a finite element setting [25, 26]. Inside this framework
we study a distributed optimal control problem applied to the monolithic FSI system. The ob-
jective of the control is a velocity profile matching in a specific region of the domain. This is
accomplished by enforcing a force in the solid domain which deforms the shape and thus the
fluid flow profile. In the next section we derive the optimality system which consists of the state,
the adjoint system and the control equation. In order to solve the optimality system we propose
a simple steepest descent algorithm. In Section 3 we report some numerical results obtained by
the implementation of the optimal control algorithm in a finite element parallel code designed
for multiphysics simulations.

2 OPTIMALITY SYSTEM

In this section we present the mathematical model of the FSI problem together with the
derivation of the optimality system. We use standard notation Hs(Ω) for the Sobolev spaces
with norm ‖ · ‖s (H0(Ω) = L2(Ω) and ‖ · ‖0 = ‖ · ‖). Let Hs

0(Ω) be the space of all functions
in Hs(Ω) that vanish on the boundary Γd of the bounded open set Ω and H−s(Ω) be the dual
space of Hs

0(Ω). The trace space for the functions in H1(Ω) is denoted by H1/2(Γ).
Let us consider the domain Ω ⊂ RN which consists of a fluid Ωf and a solid part Ωs. The

solid domain is defined through the solid displacement field l as

Ωs(l) = {x ∈ R3 such that x = x0 + l} . (1)

The position vector x0 defines the initial solid domain Ωs
0 before the deformation l. We write

Ωs(l) for the final domain and Ωs(0) = Ωs
0 for the initial undeformed domain. In the rest of the

paper we drop the notation (l) and (0) over the domain whenever it is not necessary.
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The mathematical model of the steady state FSI problem in strong form is

∇ · v = 0 on Ωf , (2)

ρ(v ·∇)v −∇ ·T− ff = 0 on Ωf , (3)
∇ · S(l) + fs = 0 on Ωs , (4)

where v is the fluid velocity, ρ the fluid density, T the viscous stress tensor of the fluid, S the
strain tensor of the solid, f a force acting on the solid and Ωf and Ωs the fluid and solid domain,
respectively. The tensors T and S have to be defined by a constitutive model. A simple choice
is a Newtonian fluid for T and a linear elastic solid for S,

T(p,v) = −pI + µl∇v , (5)
S(l) = λs(∇ · l)I + µs∇l , (6)

where p is the fluid pressure, µl is the dynamic viscosity of the fluid and λs and µs are the
first and second Lamè parameters of the solid. When the parameter λ → ∞ the solid be-
comes incompressible and another equation is needed for the incompressibility constraint. In
the following we study incompressible solid materials only.

The system (2-4) has to be completed with appropriate boundary and interface conditions,
which are

v = v0 on Γfd ,

l = l0 on Γsd ,

T · n = 0 on Γfn , (7)
S · n = 0 on Γsn ,

T · n = S · n on Γi ,

v = 0 on Γi ,

where Γfd and Γsd are the surfaces where a Dirichlet boundary condition is imposed for the fluid
velocity and solid displacement, Γfn and Γsn are the surfaces where Neumann homogenous
conditions are imposed for both the fields and Γi is the interface between the solid and the fluid
domain, Γi = Ωf ∩ Ωs. In FSI problems the boundary conditions are of primary importance
because conditions on the fluid-solid interface can lead to convergence issues so they must be
correctly imposed. It is very common to solve FSI problems using dedicated solvers for the
fluid and solid domains. This method is called segregated approach and it is widely used in
commercial CFD codes. A known drawback of this method is the need to impose interface
conditions in an iterative way because the two solvers are coupled through the field values on
the interface which give the appropriate boundary conditions to the other solver. This approach
can lead to convergence issues, especially when large deformations occur in the solution. On
the other hand, by using a monolithic approach with a finite element method, the interface
conditions are imposed directly in the same solver and there is no need to iterate to obtain the
correct interface values. In this work we use a monolithic approach, so the same solver is used
for both the fluid and the solid domain. However the derivation of the optimality system is
performed a priori and though is valid for both segregated and monolithic approaches.

To derive the optimality system with the Lagrange multiplier method we first establish the
objective of the control. In this work we study a fluid velocity matching problem in which the
control is a force inside the solid domain. This can be done since we have a complete FSI
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formulation in which the fluid and solid domains are considered in the mathematical model
definition. The objective or cost functional can be defined

J (v, f) =
1

2

∫
Ωd

w (v − vd)
2 dΩ +

1

2

∫
Ωc

β f2 dΩ . (8)

The function w is a weight function of the coordinate x which can be used to set a control in a
specific region of the fluid domain. The positive number β is a regularization parameter which
is needed in the optimal control formulation to obtain a control function in the space of non
singular integrable functions L2(Ωc). If a too high value of β is chosen the control becomes too
smooth and the objective cannot be achieved well, while convergence problems can arise in the
numerical solution of the problem if β is chosen too low.

In order to derive the optimality system we write the full constrained Lagrangian of the prob-
lem which consists of the objective functional and state equations multiplied by the appropriate
Lagrangian multipliers

L(p,v, l, l̂, f , pa,va, l̂a, ŝa,βa) = J (v, f) +

∫
Ωf

(∇ · v) pa dΩ +∫
Ωf

[(ρ(v · ∇)v) + ∇p+ ∇ · (µf∇v)] · va dΩ +∫
Ωs

[−∇ · (µs∇l + λsI(∇ · l))− f ] · va dΩ +

∫
Ωs

∇2̂l · l̂a dΩ+ (9)∫
Γi

ŝa ·
[
(̂l− l) +

v

h

]
dΓ +

∫
Ωs

βa ·
[
v − h(l− l̂)

]
dΩ .

In (9) the auxiliary mesh displacement field l̂ is defined over the solid domain Ωs(l), which is
the solution of a Laplacian operator. Moreover the velocity field is defined also on the solid
domain through the last term in (9). By taking the Frèchet derivatives of (9) with respect to the
adjoint variables we recover the state system (2-4) in weak form with the correct boundary and
interface conditions. When the derivatives are taken with respect to the state variables and some
simplifications are performed on the equations, the adjoint system in weak form reads∫

Ωf

δp∇ · va dΩ = 0 ∀δp ∈ L2(Ωf ) , (10)∫
Ωd

(v − vd) · δv dΩ +

∫
Ωs

[µs∇va : ∇δv + λs(∇ · va)(∇ · δv)] dΩ+ (11)∫
Ωf

(∇ · δv) pa dΩ +

∫
Ωf

[(ρ(δv ·∇)v) · va + (ρ(v ·∇)δv) · va+

µf∇va : ∇δv] dΩ = 0 ∀δv ∈ H1

Γf
d∪Γs

d

(Ω) ,

The shape derivatives with respect to the fluid and solid domain are taken into account. Since
Ωd and Ωc are fixed and the system is solved by using a monolithic approach then the shape
derivative contribution can be only seen in the la adjoint equation. We do not need the solution
of the la adjoint equation to compute the distributed control f and therefore it is not reported.
We remark that the use of a segregated approach, where the solid and the fluid are solved
on separated domains, needs to take into account of shape derivatives which appear split into
two contributions on different domains. This is one of the main advantage of the monolithic
approach.
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If one is interested in the strong form of the adjoint system, for instance to obtain a proper
finite volume discretization, it is necessary to perform some integrations by parts on the terms
where the variations δ are differentiated. After performing the integration by parts, we recover
the adjoint state (vf

a ,v
s
a, pa) ∈ H1

∂Ωf−Γi
(Ωf ) ∩H2(Ωf )×H1

∂Ωs−Γi
(Ωs) ∩H2(Ωs)× L2

0(Ωf ) ∩
H1(Ωf ), by solving

∇ · vf
a = 0 , (12)

− ρ(∇v)Tvf
a + ρ[(v ·∇)vf

a ] + ∇pa −∇ · (µl∇vf
a) = w(v − vd) , (13)

∇ · S(vs
a) = 0 . (14)

with boundary conditions defined as

vs
a = vf

a on Γi (15)

S(vs
a) · n =

(
µl(∇vf

a + (∇vf
a)T )− pa

)
· n on Γi (16)

µl(∇va) · n = −(v · n)va , pa = 0 on Γfn . (17)

To obtain the definition of the control f we take the derivative of 9 with respect to f and we
have

f = va/β . (18)

The distributed control is then equal to the adjoint variable va scaled by the regularization
parameter β.

We use the following steepest descent algorithm to solve the optimal control problem. In
Algorithm 1 we set the tolerance on the optimal control convergence τ = 10−6. The step
length r allows us to under-relax the solution of the optimal control problem and to avoid

Algorithm 1 Steepest descent algorithm to find the optimal solution
1: function FIND OPTIMAL

2: set a state (v0, p0, l0) satisfying (2-4) . Setup of the state - Reference case
3: compute the functional J 0 in (8)
4: set f0 = 0, r0 = r0

5: for i = 1→ imax do
6: Solve the system (10)-(11) to obtain the adjoint state (vi

a, p
i
a)

7: for j = 1→ jmax do
8: compute the control f i = f i−1 + ri,j vi

a/β
9: solve (2-4) for the state (vi,j , pi,j , li,j) with the new control f i.

10: compute the new functional J i,j+1 in (8)
11: if ‖J i,j+1 − J i,j‖/J i,j < τ then
12: convergence reached . end of the algorithm
13: else if J i,j+1 > J i,j then
14: set ri,j+1 = 2/3 ri,j , j = j + 1 and go to 8 . loop on j again
15: else if J i,j+1 < J i,j then
16: set ri,j+1 = 3/2 ri,j , i = i+ 1 and go to 6 . loop on i again
17: end if
18: end for
19: end for
20: end function
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strong oscillations. In the loop j, the search of a decreasing functional, we solve iteratively the
state system by adjusting this parameter in order to obtain a proper decrease of the functional.
When this is accomplished we save the control and we iterate again on the main loop i where
the adjoint system is solved. This algorithm requires several solutions of the state and adjoint
systems in order to find the optimal control, however it does not need a great amount of memory
which is limited to a standard CFD simulation.

We implemented this algorithm in a finite element code which is parallelized with openMPI
libraries and uses a multigrid solver with mesh-moving capability [26, 27]. We have used
standard Taylor-Hood finite elements for the velocity and pressure solution in order to fulfill
the inf-sup condition and a SUPG stabilization technique. The displacements are approximated
with standard quadratic elements. In the following we report the results obtained with the
proposed algorithm in some simple test cases. First we overview the reference FSI problem
with no control, then report the optimal solutions found for different objective velocity profiles
and values of β ranging from 10−2 to 10−6. The test case setting and the results are presented
in a non-dimensional form.

3 NUMERICAL RESULTS

In this section we report the numerical results obtained by applying Algorithm 1 to a two-
dimensional test case. The geometry of the test case is shown in Figure 1, where the blue region
represents the fluid and the red region of the solid domain. The inlet of the flow is defined by the
green line AB, the outlets by the two black lines CD and EF on the right. The overall domain is

Figure 1: Geometry of the test case. The blue region is the fluid and the red one is the solid domain. On the left
the green line AB is the inlet, on the right the black lines CD and EF are the outlets of the flow. The rest of the
boundary is a non deformable solid wall.

Property value Property value
E 2× 102 µ 1× 10−2

ρs 1 ρl 1

Table 1: Physical data for the solid and the fluid.
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Figure 2: Axial velocity of the reference test case. The velocity vx is reported with colors and with six lines of
iso-magnitude.

Figure 3: Reference test case, flow field and displacement in the vertical direction. The streamlines are colored
with the velocity magnitude and the displacement in the vertical direction dy is reported on the solid bar with
colors.

10 wide on the x-axis and 5 high on the y-axis, while lines AB, CD and EF are 1 long each.
The fluid enters from the left with a flat profile, it develops in the region between the two

solid bars and hits the solid non deformable wall on the right where the flow is split in two
equal secondary flows that leave the domain from the bottom and the outlets on the right. The
inlet velocity is set to v = (0.5, 0) and the other boundaries are considered non deformable
solid walls, so the velocity is v = (0, 0). The solid bars have a boundary that is assumed to be
non deformable, so here the solid displacement is set to l = (0, 0). The physical properties are
reported in Table 1. Given these properties, the inlet velocity and the transverse length we can
compute the Reynolds number of the flow as Re = 500.

We first report the reference flow field without control and then set up the optimal control
problem. In Figure 2 the axial velocity vx is reported with colors and with six lines of iso-
magnitude. The flow is accelerated between the two solid bars and then it slows down and split
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Figure 4: Controlled test case with vd1 and β = 10−6, flow field and displacement in the vertical direction. The
streamlines are colored with the velocity magnitude and the displacement in the vertical direction dy is reported
on the solid bar with colors.

Figure 5: Controlled test case with vd2 and β = 10−6, flow field and displacement in the vertical direction. The
streamlines are colored with the velocity magnitude and the displacement in the vertical direction dy is reported
on the solid bar with colors.

before leaving the domain with an average velocity around 0.2. In Figure 3 the streamlines of
the velocity field are reported and colored with the magnitude of the velocity field. With this
visualization of the flow two slow recirculation vortexes appear in the region near the tips of
the solid bars. The solid bars displacement can be seen in this Figure and the value of ly = dy
is reported with colors on the solid bars. The whole problem is symmetrical with respect to the
line y = 2.5.

To obtain a proper benchmark for our Algorithm we assign the objective of the functional
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Figure 6: Controlled test case with vd2 and β = 10−6, adjoint velocity field. The streamlines and arrows are
colored with the adjoint velocity magnitude and in the solid bars the vertical adjoint variable is reported with a
different color scale.

0 1 2 3 4 5
y

0

0.1

0.2

0.3

0.4

v
x

A

B

C

Figure 7: Axial velocity vx plotted on a vertical line at x = 10, comparison between reference case (A, continuous
line), test case with vd1 and β = 10−6 (B, dashed line) and test case with vd2 and β = 10−6 (C, dotted line).

with a weight function

w(x) =

{
1 if x > 9, y > 4
0 otherwise (19)

and set the desired velocity vd1 = (0.25, 0) or vd2 = (0.4, 0) in this region. By doing so we aim
at breaking the symmetry of the problem by increasing the axial velocity near the upper outlet.

3288
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β ∞ 10−2 10−4 10−6

Case with vd1 0.00521914 0.00519039 0.00511677 0.00511527
Case with vd2 0.0312969 0.0297863 0.0295657 0.0295634

Table 2: Objective functionals computed with different β values in the test cases with vd1 and vd2. The reference
case with no control is labeled with β =∞.

The optimal control problem has been studied for the two desired velocities vd1 and vd2 and for
three values of the parameter β = 10−2, 10−4 and 10−6. In Figure 4 the results of the algorithm
obtained by using vd1 and β = 10−6 are reported with streamlines that visualizes the flow field
and with the displacement in the vertical direction ly = dy. The controlling force pushes the
bars upper and changes their shape allowing the fluid to be mainly directed towards the upper
outlet thus increasing the axial velocity in this region. Also the vortexes change, with the one
on the bottom becoming wider than the upper one. In order to improve the control power we
can use vd2. In Figure 5 we report the results of the optimal control algorithm by using vd2

and β = 10−6. The main flow is very similar to the one depicted in Figure 4, the differences
lying in a higher displacement in the vertical direction ly = dy with the bottom bar displaced
too and in a more pronounced flow pattern towards the upper outlet. The adjoint velocity is the
controlling force in the solid domain but its source is located in the fluid domain. In Figure 6
this variable is reported with streamlines and arrows colored with its magnitude to visualize the
adjoint flow field in the test case with vd2 and β = 10−6. In the solid bars the vertical adjoint
velocity is reported with colors and rescaled. The adjoint flow field enters the domain from the
bottom outlet, it develops inside the two bars, crosses them in the internal region and then exits
through the upper outlet. One has to keep in mind that the value of the adjoint velocity is related
with the value of β since the physical controlling force that is used in the state FSI problem is
the adjoint divided by β.

We report in Figure 7 a plot of the axial velocity vx on a vertical line parallel to the y-axis at
x = 10, on the outlet. The reference result is reported with a continuous line and it is compared
with the controlled result obtained by using vd1 (dashed line) and vd2 (dotted line), both with
β = 10−6. A small asymmetry can be seen in the reference case between the upper and the
bottom velocities. However this is negligible compared with the clear velocity increasing that
can be seen in the upper outlet in the controlled cases and this is followed by a flow decreasing
on the bottom outlet, due to the mass conservation constraint. To gain a more quantitative
comparison of the results we report in Table 2 the objective functional (8) as computed in the
reference and in the controlled cases, with the different β. One can appreciate the decrease
in the functional in both the test cases with decreasing β. We can therefore conclude that
the optimal control algorithm is performing well in the search of a minimum of the objective
functional. However the movement of the solid cannot increase or decrease in large amount the
outlet velocity due to the mass constraint at the inlet.

4 CONCLUSION

In this work a distributed optimal control for the fluid-structure interaction problem has been
studied. The objective of the optimal control problem is a velocity matching profile in a specific
region of the fluid domain and the control acts through a force in the solid that changes the shape
of the solid domain. The optimality system has been derived from the complete Lagrangian of
the problem and an algorithm for the numerical solution of this system has been presented. The
results obtained show the feasibility of this approach and the possible use of this method in
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many industrially relevant applications. However some improvements are needed in the FSI
solver because too large deformations with small change in topology are not allowed unless re-
meshing or more complex techniques are used to handle this problem. With this limitation the
optimal control algorithm might not find the local minimum if this is obtained with a large shape
change. Nevertheless this algorithm is useful to obtain a reduction in the objective functional
that can be a first step in industrial design and the shape cannot be changed dramatically due to
other constraints. In future works we plan to assess other objectives and types of control in order
to better show the capability of this optimization approach for the design and improvement of
engineering devices where the interaction between fluid and solid plays a significant role.
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D. Cerroni, R. Da Vià, S. Manservisi, F. Menghini, and L. Zaniboni

[12] M. Bukac̀, S. C̀anic̀ and B. Muha, A partitioned scheme for fluid-composite structure
interaction problems, Journal of Computational Physics, Vol. 281, pp. 493-517, 2015.

[13] A. Gilmanova, T.B. Lea, F. Sotiropoulos, A numerical approach for simulating fluid struc-
ture interaction of flexible thin shells undergoing arbitrarily large deformations in complex
domains, Journal of Computational Physics, Vol. 300, pp. 814-843, 2015.

[14] A. Calderer, S. Kang, F. Sotiropoulos, Level set immersed boundary method for coupled
simulation of air/water interaction with complex floating structures, Journal of Computa-
tional Physics, Vol. 277, pp. 201-227, 2014.

[15] K. Maute, M. Nikbay and C. Farhat, Sensitivity analysis and design optimization of three-
dimensional nonlinear aeroelastic systems by the adjoint method, International Journal for
Numerical Methods in Engineering, Vol. 56 (6), pp. 911-933, 2003.

[16] E. Lund, H. Moller and L.A. Jakobsen, Shape design optimization of stationary fluid-
structure interaction problems with large displacements and turbulence, Structural and
Multidisciplinary Optimization, Vol. 25 (5), pp. 383-392, 2003.

[17] M. Hojjat, E. Stavropoulou, T. Gallinger, U. Israel, R. Wüchner, K.U. Bletzinger, Fluid-
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Abstract. This paper deals with whirl flutter analysis of aircraft structures. It gives the 
theoretical background of the whirl flutter phenomenon and aircraft certification-related 
issues. After that, the ordinary and optimization-based analytical approaches are described. 
The optimization based analytical procedure is used to determine the whirl flutter stability 
boundaries for the certification speed. The focus is on the application of the 
optimization-based approach on a full-span model of an aircraft structure. The necessary 
adjustments of a stick computational model to make it applicable as a full-span and also the 
modification of the optimization solution are described. The methodology is demonstrated on 
the model of a twin-engine turboprop commuter aircraft. The evaluated results include the 
available choices of both propeller rotation directions, i.e. CW-CW and CW-CCW. Finally, 
the outlook and the future work on the described topic is outlined.     
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1 INTRODUCTION

Turboprop aircraft are certified considering the whirl flutter stability. Whirl flutter is a 
specific type of flutter instability caused by the effect of rotating parts as a propeller or a gas 
turbine engine rotor. Rotating mass causes additional forces and moments and increases the 
number of degrees-of-freedom. Rotating propeller also causes aerodynamic interference effect 
with a nacelle and a wing structure. Whirl flutter instability is driven by motion-induced 
unsteady aerodynamic propeller forces and moments acting in the propeller plane. It is quite 
serious phenomenon, that may cause unstable vibration of a propeller mounting, even a failure 
of an engine installation or a whole wing. Airworthiness regulations require flutter analysis 
taking into account the influence of the degrees of freedom of the propeller plane of rotation 
and significant elastic, inertia and aerodynamic forces. Also the changes in the stiffness and 
damping of the propeller–engine–nacelle structure system must be considered (FAR/CS 
§23.629(e)(1)(2)) [1, 2].

The reliable stiffness data regarding the engine attachment are not usually at disposal until 
the ground vibration test of the prototype is done and the final updating of the analytical 
model is possible. Nevertheless, considering timesaving in the final development phase, it is 
worth performing whirl flutter calculations in the earlier phase. For this purpose, an 
optimization based analytical procedure to determine the critical values of an engine 
attachment stiffness parameters was prepared. It allows determination of whirl flutter and 
whirl divergence stability boundaries for the speed, which is set by regulations as the 
certification speed. The solution employs the gradient-based algorithm and includes 
modal-based and flutter-based design responses. Design variables are represented by the 
engine attachment stiffness parameters.

The initial solution was prepared for the half-span models of aircraft with either symmetric 
or antisymmetric boundary condition, which are usually used for flutter analyses. But, the 
applicability of half-span models is limited and application of a full-span model is necessary 
in some cases. The typical example is the whirl flutter. Considering the usual twin
wing-mounted engine aircraft concept, one of the parameters influencing the whirl flutter 
stability is the direction of rotation of both propellers. Therefore, the applicability of the 
optimization-based solution was enlarged also to the full-span models. The optimization 
solution for a full-span model is, compare to a half-span model, more complicated. Also, the 
specific adjustment of a structural model is necessary. The solution is demonstrated on the 
example of the reference model of the twin-engine turboprop commuter aircraft. Whirl flutter 
stability boundaries are constructed for different conditions of propeller rotations.

2 THEORETICAL BACKGROUND

The principle of whirl flutter phenomenon is outlined on the simple mechanical system 
with two degrees-of-freedom. Propeller and hub are considered as rigid. An engine flexible 
mounting is represented by two rotational springs (stiffness KΨ, KΘ) as illustrated in figure 1. 
Such a system has two independent mode shapes (yaw and pitch) with angular frequencies Ψ

and Θ. Considering a propeller rotation with the angular velocity Ω, the primary motion 
changes and the gyroscopic effect makes both independent mode shapes merge into the whirl 
motion. A propeller axis of rotation shows an elliptical movement. A trajectory of this 
elliptical movement depends on both angular frequencies Ψ and Θ. The orientation of the 
gyroscopic movement is backward relative to the propeller rotation for the mode with the 
lower frequency (backward whirl mode) and forward relative to the propeller rotation for the 
mode with the higher frequency (forward whirl mode). Because the yaw and pitch motions 
have a 90° phase shift, the mode shapes in the presence of gyroscopic effects are complex.   
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Figure 1.  Gyroscopic system with propeller.

The gyroscopic motion results in changes of the propeller blades' angles of attack and 
consequently, leading to unsteady aerodynamic forces. These forces may under specific 
conditions induce whirl flutter instability. The flutter state is defined as the neutral stability 
with no damping of the system and the corresponding airflow (V = VFL) is called critical 
flutter speed. If the air velocity is lower than flutter speed (V < VFL), the system is stable and 
the gyroscopic motion is damped (see figure 2a). If the airspeed exceeds the flutter speed 
(V > VFL), the system becomes unstable, and gyroscopic motion divergent (see figure 2b).

(a)                                                                            (b)
Figure 2.  Stable (a) and unstable (b) state of gyroscopic vibrations for backward flutter mode.

The analytical solution is aimed to determine the aerodynamic force caused by the 
gyroscopic motion on each of propeller blades. Presented equations of motion were derived 
for the system shown in figure 1 using Lagrange's approach. The kinematical scheme is 
shown in figure 3. We select three angles (φ, Θ, Ψ) as the independent generalised 
coordinates. The propeller angular velocity is considered constant (φ = Ω t). The rotating part 
is assumed cyclically symmetric with respect to both mass and aerodynamics (i.e., propeller 
of three blades in minimum). Non-uniform mass moments of inertia of the engine with 
respect to pitch and yaw axes (JZ  JY) are considered.  
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Figure 3.  Kinematical scheme of gyroscopic system.

Considering small angles, the equations of motion become: 
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where a is the distance between a propeller plane and a vibration mode node point. 

Neglecting the aerodynamic inertia terms ( ΘΘ   ; ΨΨ   ), the propeller aerodynamic 
forces and moments at the propeller plane (PY; PZ; MY,P; MZ,P)  are calculated as:
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where  is an air density and R is a propeller radius. Aerodynamic derivatives (c-terms) are 
given from the propeller blade integrals (by [3, 4] or by [5]). Using the quasi-steady theory [6], 
the effective angles (Θ*, Ψ*) become:
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where (w1/V) and (w2/V) are optional downwash and sidewash terms. Downwash and 
sidewash angles behind the propeller describe the interference between propeller and nacelle. 
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Induced downwash and sidewash angles are added to the effective static angles, which are
represented by the remaining terms of eq. (3). Induced downwash and sidewash angles, which 
are dependent on the reduced frequency, can be obtained from the lift solution by partitioning 
the interference coefficients. The downwash effect influences the aerodynamic stiffness 
matrix; the influence to the aerodynamic damping matrix is neglected. An option to include 
the downwash and sidewash effects may be important for the aircraft configuration with 
wing-mounted engines.  

Finally, seeking for the critical (flutter) state assuming the harmonic motion has a character 
of an eigenvalue problem. The final whirl flutter matrix equation can be expressed as:    
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where [M] is mass matrix, [D] is structural damping matrix, [K] is structural stiffness 
matrix. [DA] and [KA] are aerodynamic damping and aerodynamic stiffness matrix, 
respectively. Finally, [G] is gyroscopic matrix. The critical state emerges when the angular 
velocity ω is real. The critical state can be reached by increasing either V or Ω. Increasing 
the propeller advance ratio (V / (ΩR)) has destabilizing effect. Another important parameter 
is distance of propeller plane and node points of engine vibration modes. Structural damping 
is a significant stabilization factor. The paper [7] describes an experiment during which 
friction was deeply suppressed and whirl flutter occurred. However, the notably slight 
structural damping made the model stable. By contrast, the influence of the propeller thrust is 
negligible. This small influence comes from the fact that the aerodynamic derivatives of the 
thrusted propeller and windmilling propeller variance can be high in the low speed region, but 
at high velocities (where whirl flutter is expected), the variance is less than 5% [8]. The most 
critical state is ωΘ = ωΨ when the interaction of both independent motions is maximal and the 
trajectory of the gyroscopic motion is circular. Considering the rigid propeller blades, the 
whirl flutter inherently appears at the backward gyroscopic mode. A special case of eq. (4) for 
ω = 0 is gyroscopic static divergence, which is characteristic by uni-directional divergent 
motion.

The described model that considers a rigid propeller is obviously applicable to 
conventional propellers, for which the propeller blade frequencies are much higher compared 
to the nacelle pitch and yaw frequencies. Considering the large multi-bladed propellers of 
heavy turboprop aircraft, the consideration of a rigid propeller appears too conservative and 
the blade flexibility must also be modeled. Obviously, the whirl flutter investigation of 
tilt-rotor aircraft must include even more complex analytical models [9].  

The comprehensive information regarding the whirl flutter phenomenon can be found in
[10].

3 STANDARD ANALYTICAL APPROACH

The standard whirl flutter solution is based on the strip aerodynamic theory [11] for the 
propeller at the windmilling mode. The propeller is assumed rigid. For the residual structure 
the unsteady doublett-lattice method including wing–body interference aerodynamic theory is 
used [12]. For the flutter stability solution the p-k method [13] is applied. The basic flutter 
equation in modal coordinates is:
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[Mhh], [Bhh] and [Khh] are modal mass, damping and stiffness matrices, respectively, a 
function of the Mach number (M) and the reduced frequency (k). Aerodynamic loads are 
incorporated into damping and stiffness matrices. [Qhh

Re] and [Qhh
Im] are the real and the 

imaginary part of a complex aerodynamic matrix, also a function of parameters M and k. The 

parameter  is the air density, c is a reference length, and {uh} is a modal amplitude vector. 
The eigenvalue λ is given as:

                                                            j                          (6)

and  is a transient decay rate coefficient. Note that the structural damping coefficient (g)
is expressed as:

                                                                 g = 2.                                       (7)

The standard whirl flutter solution is performed for multiple velocities. The resulting 
quantities are V-g-f curves, i.e. the dependence of the damping and frequency of analyzed 
modes on the flight velocity. The state with the zero damping represents the critical flutter 
state and the corresponding flight velocity is the critical flutter speed. 

4 OPTIMIZATION-BASED ANALYTICAL APPROACH

Optimization-based approach employs the gradient-based algorithms [14] for the whirl 
flutter solution. It makes possible the calculation of the flutter stability boundaries for the 
specified certification speed. In this case, the flutter speed is set equal to the certification 
speed, and the results are critical values of the structural parameters. The stability margin can 
be then obtained from these critical structural parameters. The analyzed states are then 
compared only with respect to the structural parameters and the relationship to the stability 
margin. Such an approach can save large amounts of time because the number of whirl flutter 
analyses required by the regulations is dramatically reduced. 

The whirl flutter optimization employs two types of the design responses (eigenvalue and
flutter). The eigenvalueequation is:

                                                      
      0 nn MK                                                   (8)

where n and n are the nth eigenvalue and eigenvector, respectively. [K] is the structural 
stiffness and [M] is the structural mass matrix. Eq. (8) can be differentiated with respect to the 
ith design variable xi:
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When eq. (9) is premultiplied by n
T, the first term becomes zero and eq. (9) can then be 

solved for the eigenvalue derivatives:
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In practice, the solution of eq. (10) is based on the semi-analytical approach. The 
derivatives of the mass and stiffness matrices are approximated using the finite differences. 
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The equation is solved for each retained eigenvalue referenced in the design model and for 
each design variable.

Aeroelastic flutter stability matrix equation is given by eq. (5). The equation represents the 
p-k method of the flutter solution, which is the only method applicable for the purpose of the 
design optimization. Flutter sensitivity computes the rates of change of the transient decay 
rate coefficient  with respect to changes of the design variables. Eq. (5) is differentiated with 
respect to the design variables for the quantity (/xi). The solution is semi-analytical in 
nature with derivatives approximated using either forward differences or central differences.

Flutter sensitivities are computed as the rate of change of the transient decay coefficient 
with respect to changes in design variables (∂/∂xi). 

The optimization-based whirl flutter solution is performed for a single velocity. The 
resulting quantities are structural parameters, for which the flutter speed is equal to the
specified certification speed.   

5 STRUCTURAL MODEL OF AIRCRAFT STRUCTURE

5.1 Half-span Model 

Aeroelastic analyses of aircraft structures are usually performed using simple dynamic 
structural models (stick models). Stiffness characteristics of the structural parts are modeled
by means of the massless beam elements, and inertial characteristics are modeled by 
concentrated mass elements including appropriate moments of inertia. The model also 
includes spring elements, various conditions and auxiliary elements (controls suspension, 
visualization, etc.). In the most cases, the analysis can be performed using half-span model. In 
this case, the half-values of the stiffness and inertial characteristics are applied at the plane of 
symmetry as well as either symmetric or antisymmetric boundary condition. Such a model is 
shown in figure 4. Attachment of the engine to the wing is realized simply by means of two 
spring elements, which model engine pitch and yaw vibration modes. Stiffness constant of the 
spring determines the natural frequency of the mode. Spring element is stationed at the node 
point of the mode. 

Figure 4.  Half-span structural model of twin engine turboprop commuter aircraft.
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5.2 Full-span Model 

The applicability of half-span models is limited and application of a full-span model is 
necessary in some specific cases. In the case of the full-span model, both symmetric and 
antisymmetric engine vibration modes must be modeled. Such a model is shown in figure 5.  

Figure 5.  Full-span structural model of twin engine turboprop commuter aircraft.

The engine attachment includes four modes with diverse natural frequencies and diverse 
node points. The typical order of engine modes (by frequency) is 1) symmetric pitch, 2) 
symmetric yaw, 3) antisymmetric pitch and, 4) antisymmetric yaw. The node points of these 
modes are typically stationed in the direction from the rear to the front (in the flight direction).

The systems to model pitch and yaw engine vibration modes are separate. The appropriate 
rotational degree-of-freedom (i.e., around lateral or around vertical axis) is connected to the 
central system, which consists of the grounded spring element and two rod elements. The 
grounded spring is placed at the plane of symmetry at the station of the node of the symmetric 
mode while rod elements are placed at the station of the node point of the antisymmetric 
mode. Rod elements are oriented in the appropriate direction (i.e., laterally or vertically). 
Node point of the grounded spring is connected with the central node of rod elements by 
means of multi-point constraint. Apart from the appropriate degree-of-freedom, other ones are 
omitted from the analysis. Spring constant of the grounded spring element K and the 
torsional stiffness of rod elements (GIk) then determine natural frequencies of both symmetric 
and antisymmetric mode. Spring constant is decisive for the symmetric mode frequency, 
while rod torsional stiffness is decisive for the antisymmetric frequency. However, there is 
also cross-influence; and therefore, both parameters must be used to set both frequencies. The 
examples of mentioned engine vibration modes are shown in figure 6.

Note, that also both symmetric and antisymmetric control surface and tab flapping modes 
must be modeled on the full-span models. However, no detailed description of the modeling 
technique is provided here as these modes are not important from the whirl flutter 
phenomenon point of view.
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(a)                                                                            (b)

(c)                                                                            (d)
Figure 6.  Engine vibration modes: (a) symmetric pitch, (b) antisymmetric pitch, (c) symmetric yaw, 

(d) antisymmetric yaw.

6 DESCRIPTION OF OPTIMIZATION-BASED SOLUTION

The important parameters influencing the whirl flutter stability are engine pitch and yaw 
frequencies. The solution is therefore demonstrated on the example of variation of these 
parameters. We consider the inertia characteristics of the engine and propeller system as well 
as the characteristics of the residual structure to be reliably determined; thus, we will use the 
engine attachment stiffness properties as parameters for the optimization.

6.1 Solution for Half-span Model 

We define two design variables: 1) effective stiffness of the engine attachment in pitch and 
2) effective stiffness of the engine attachment in yaw. These design variables are directly 
related to the spring constants of two spring elements (pitch-KφV and yaw-KφH ). 

The first preparatory step is intended to set the initial design variables for the main 
optimization. The target frequency ratio (TFR) is set, and both effective stiffnesses are 
adjusted to reach this target ratio. The simplest way is to set any of the mentioned stiffnesses 
as the design variable (while the other one is fixed) and use the optimization solution with the 
objective function (OBJ) defined as:
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f

f
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                             (11)
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where ABS denotes for the absolute value. Symbols f1 and f2 represent both pitch and yaw 
engine frequencies (f2 is the higher frequency while f1 is the lower frequency). Note that the 
yaw frequency is usually higher compare to the pitch frequency; nevertheless, the solution 
may be done regardless the frequency order. This preparatory analysis gives the initial values 
of KφV and KφH for the main optimization. The ratio of both frequencies (pitch-f and yaw-fΨ) 
is equal to the TFR.

The main optimization includes both design variables (KφV and KφH). The design 
constraints include the requirement to keep the target frequency ratio. For the practical 
applications, specification of a constraint with the ±2% band is usually used:
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Another constraint includes the requirement to keep the flutter stability (i.e., negative 
damping) at the selected certification speed Vcert. This requirement is expressed as:

                                                         0 certVVg                                                 (13)

In the practical solution, the constraint is modified as:
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The interval shift from the null value is given due to the numerical character of the solution 
preventing the division by zero. This constraint should also prevent another type of flutter 
instability below the certification speed that may be caused by the design variable changes. 
The constraint should therefore be applied to all modes included in the solution. 

The objective function is defined simply as minimization of pitch and yaw frequency sum 
as:

                                                    2ffminBJO 1                                                     (15)

As the output, we will obtain the engine pitch and yaw stiffness for which the flutter speed 
is equal to the specified certification speed and the yaw-to-pitch frequency ratio is equal to 
specified target value. The optimization is then repeated for a several yaw-to-pitch frequency 
ratios, typically ranging from 1.05 to 2.0 to get enough points to construct a stability boundary 
curve. Note that the described solution is applicable for the whirl divergence as well.

The procedure described above is applicable to the "no downwash" option (see section 2). 
Provided the downwash effects are to be included, the procedure is extended by the extra 
steps described here. The basic assumption is, that the minor change in the engine pitch and 
yaw frequencies will have negligible effect on the downwash terms. The downwash terms are 
therefore calculated only for the structure optimized excluding the downwash as described 
above. After that, the downwash terms are calculated and the main optimization step is 
repeated in the same manner as described above.

Due to the possibility of switching of the engine pitch or yaw mode frequency with the 
other modes, it is worth to re-order the modes at the end of the optimization iteration, 
provided such mode switch appear. The re-ordering is based on the cross-orthogonality 
correlation analysis of both sets of modes (before and after the optimization iteration) using 
the modal assurance criterion, which is expressed as:
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where ψ1 and ψ2 are correlated mode shapes. Only engine pitch or yaw modes are switched, 
if necessary.

6.2 Solution for Full-span Model 

The optimization solution for a full-span model is more complicated. We define four 
design variables: 1) effective stiffness of the engine attachment for symmetric pitch, 2) 
effective stiffness of the engine attachment for antisymmetric pitch, 3) effective stiffness of 
the engine attachment for symmetric yaw and 4) effective stiffness of the engine attachment 
for antisymmetric yaw. These design variables are related to the spring constants of two 
grounded spring elements (K1 and K2) and to torsional stiffness of two pairs of rod elements 
[(GIk)1 and (GIk)2]. However, the relation is not direct here due to the above mentioned 
cross-influences (see section 5.2).

We define three frequency ratios: 1) pitch frequency ratio (VFR = fA/fS), 2) yaw 
frequency ratio (HFR = fAΨ/fSΨ) and finally 3) critical frequency ratio (CFR). Critical modes 
are those ones, the combination of which causes a flutter instability. Choice of the critical 
modes is dependent on the relation of directions of rotation of both propellers, and on the 
mode order. Considering the identical directions (i.e., CW-CW or CCW-CCW), the critical 
modes are symmetric pitch and antisymmetric yaw (it corresponds to a half-span symmetric 
case) or antisymmetric pitch and symmetric yaw (it corresponds to a half-span antisymmetric 
case). Considering the inverse directions (i.e., CW-CCW or CCW-CW), the critical modes are 
symmetric pitch and symmetric yaw or antisymmetric pitch and antisymmetric yaw. Note that 
CW denotes for the clockwise direction and CCW denotes for the counter-clockwise direction.

VFR and HFR are not changeable. The values are set according the ground vibration test 
results or guessingly. The typical ratios are ranging from 1.12 to 1.18. CFR is an analogy of 
TFR shown above.

We assume the typical frequency order (i.e. pitch frequency lower compare to the yaw 
frequency) in the following description. The first preparatory step is intended to set the initial 
design variables for the main optimization.

The design constraint includes the requirement to keep the frequency of the selected engine 
vibration mode, typically the highest one (fAΨ), at the selected value (fAΨT) using the ±2% 
band as:
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The objective function is defined as the minimization of the frequency ratio error 
expressed as:
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or as:
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where SSQ denotes for sum of squares. Eq. (18) is applicable for the case of identical 
directions of propeller rotations while eq. (19) is applicable for the case of inverse directions 
of propeller rotations. This preparatory analysis gives the initial values of design variables for 
the main optimization. Frequency ratios are equal to VFR, HFR and CFR values.

The main optimization is performed similarly as for the half-span model. The design 
constraints include the requirement to keep the frequency ratios, again, with the ±2% band as:    
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Again, eq. (22) is applicable for the case of identical directions of propeller rotations while 
eq. (23) is applicable for the case of inverse directions of propeller rotations.

Another constraint including the requirement to keep the flutter stability (i.e., negative 
damping) at the selected certification speed Vcert is expressed in the same way as for the 
half-span model, i.e. by eq. (14).

The objective function is defined as minimization of frequency sum, here expressed as:

                                  f,f,f,f SUMinmOBJ ASAS                                      (24)

As the output, we will obtain the values of design variables ((K1; K2; (GIk)1; (GIk)2), for 
which the flutter speed is equal to the specified certification speed and three specified 
frequency ratios are equal to the specified target values. Similarly as for the half-span model, 
the optimization is then repeated for a several CFR values, typically ranging from 1.05 to 2.0 
to get enough points to construct a stability boundary curve. Also, the notes regarding the 
divergence, downwash effect and regarding the mode switches mentioned in section 6.1 are 
valid also for the full-span model. 
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7 APPLICATION EXAMPLE

The reference model to test the described methodology was derived from the model of the 
new Czech twin wing-mounted engine commuter aircraft for 19 passengers with the maximal 
take-off weight of 7000 kg.

For the purpose of the first test analyses, the simplified model with four 
degrees-of-freedom, which are represented by both the symmetric and antisymmetric engine 
pitch and yaw vibrations, was used. Stiffness characteristics of residual structure, which were 
modeled using beam elements, were replaced by rigid connections and control surface and tab 
actuation drives were blocked.

Aerodynamic model included only the wing, nacelles and tip tanks. This simplification was 
made with regard to the fact, that the aerodynamics of the fuselage and tail surfaces has the 
negligible effect to the whirl flutter phenomenon. Wing was modeled as Doublet-Lattice 
Panels and nacelles and tip tanks were modeled as Slender and Interference Bodies. The 
aerodynamic model included also correction factors for the propeller slipstream applied to the 
appropriate aerodynamic elements of the wing and nacelles. Furthermore, there was also a 
correction in the aerodynamic forces and moments at the nose part of the control surfaces. 
The aerodynamic model is shown in figure 7.   

Figure 7.  Aerodynamic full-span model of reference aircraft - reduced model (wing, nacelles and tip tanks), only 
interference tubes are depicted for bodies.

Flight parameters for test analyses were chosen according the aircraft flight envelope. 
Certification speed was Vcert = 191.4 m.s-1, air density  = 0.7963 kg.m-3 (altitude H = 4267 m) 
and reference Mach number M = 0.493. Structural damping was neglected. First set of
analyses, which is presented here, include the symmetric propeller revolutions, i.e. same 
revolutions for both left and right propeller ( = 2080 rpm). Tested directions of propeller 
revolutions include CW-CW and CW-CCW combinations.

For the case of identical directions of propeller revolutions (CW-CW), two mechanisms for 
the whirl flutter appear: 1) a combination of symmetric pitch and antisymmetric yaw modes 
(S/AΨ) and 2) a combination of antisymmetric pitch and symmetric yaw modes (A/SΨ). 
The stability margins were calculated with respect to both of the mechanisms of whirl flutter 
and both are presented in figure 8. As is apparent from the figure, the required engine pitch 
and yaw frequency is higher for the former mechanism of whirl flutter. Therefore, this 
mechanism of flutter is more critical compare to the latter one. Values of VFR and HFR were 
considered at the three levels (1.00; 1.05; 1.10). As the influence of VFR and HFR on the 
stability margin is negligible, the influence of remaining modes on the stability is negligible 
as well.  
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Figure 8.  Whirl flutter stability margins - identical directions of revolutions (CW-CW), 
legend: prim = primary flutter (S/AΨ), sec = secondary flutter (A/SΨ), (1.xx) = VFR, HFR

Figure 9 shows the example of a V-g-f (velocity - damping - frequency) diagram calculated 
by the standard approach. The crossing of the V-g curve from the negative to the positive 
damping values represents a flutter state. The mode nr.1 (S mode) crossing represents the 
primary flutter mechanism (S/AΨ). The flutter speed is here equal to the certification speed. 
The mode nr.2 (A mode) crossing represents the secondary flutter mechanism (A/SΨ). 
The flutter speed is here above the certification speed, i.e. above the stability margin, as this 
type of instability is less critical.  

Figure 9.  Example of V-g-f diagram - identical directions of revolutions (CW-CW)
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For the case of inverse directions of propeller revolutions (CW-CCW), the character of the 
whirl flutter is different. The instability is caused by the combination of antisymmetric pitch 
and antisymmetric yaw modes (A/AΨ). Stability margins are presented in figure 10.
Compared to the CW-CW case, the required engine pitch and yaw frequencies are 
considerably higher. Furthermore, this type of instability is influenced also by the remaining 
modes (S and SΨ) as the influence of VFR and HFR on the stability margin is remarkable.    
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Figure 10.  Whirl flutter stability margins - inverse directions of revolutions (CW-CCW), 
legend: (1.xx) = VFR, HFR

Similarly to the previous case, figure 11 shows the example of a V-g-f diagram for the  
inverse directions of propeller revolutions. The mode nr.2 (A mode) represent the flutter 
mechanism (A/AΨ). The flutter speed is here equal to the certification speed. 

8 CONCLUSION

This paper presents the optimization-based approach to whirl flutter analysis and the 
application of the method to the full-span model of the aircraft structure. The necessary 
adjustments of a stick computational model to make it applicable as a full-span and also the 
modification of the optimization solution are described. The methodology is demonstrated on 
the reference model of a twin-engine turboprop commuter aircraft. First test analyses 
including the symmetric propeller revolutions with both available choices of both propeller 
rotation directions, i.e. CW-CW and CW-CCW are presented. The results include whirl flutter 
stability margins for several flutter mechanisms. The most critical one is the case of inverse 
directions of propeller revolutions (CW-CCW), for which, the critical flutter modes are 
engine antisymmetric pitch and antisymmetric yaw. The future work will be focused on 
additional choices of propeller rotations, including unsymmetrical revolutions representing
the failure cases of a single propeller overspeed, and the absence of a single propeller rotation 
representing a failure case of a single propeller feathering.    
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Figure 11.  Example of V-g-f diagram - identical directions of revolutions (CW-CCW)
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Abstract. Structural designs aspire to ensure the functionality of a system respecting specific re-
quirements defined by engineers. Structural optimization techniques are widely used to optimize
the system performances while garanteeing that specific requirements are fulfilled. However, it
is worth remembering that uncertainties might affect all design quantities which can make the
design problem much more arduous to solve. This paper aims to discuss the formulation of
design problems under uncertainty. Several strategies might be identified when considering un-
certainties in the objective and/or constraint functions. Moreover, this paper aspires to clarify
the notions of robustness and reliability. After a presentation of each formulation, an academic
example illustrates the different strategies and shows the main differences between results of
each one. Thus, the choice of the formulation should be viewed as a crucial step of design
procedure.
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1 Introduction

During the design of a structure, engineers can aim to two main strategies. On one hand,
structures have to be able to resist the environmental loads. The structure is thus character-
ized by an analytical or numerical model which can be used to identify the admissible designs
(see e.g. [1]). Designer can adapt the structure parameters to prevent failures and identify an
appropriate design. The second strategy is the optimization of the structure which consists of
maximize (resp. minimize) the performance (resp. cost) of the structure. The two strategies can
obviously be coupled to constrained optimization which provides the best admissible design.

Parameters from structural design problems are in practice affected by uncertainties which
may be caused by a lack of knowledge of the production condition for instance or by intrinsic
uncertainties. To take into account these uncertainties in design, engineers often use simplifying
hypothesis such as safety factors or considering only a reference value. Nevertheless, the vari-
ability of the uncertain parameters cannot be considered completely by these methods which
can be perform accounting explicitly for uncertainties with probabilities or imprecise probabil-
ities.

In the literature, many papers on design under uncertainty are relating to numerical methods
to solve these problem (see e.g. [2]) whereas the objective of the present paper is the clari-
fication of problem formulations. Indeed, stochastic formulations of constraint and objective
functions are described. Two main notions are explained: robustness which is habitually as-
sociated with the consideration of uncertainties in objective functions and reliability which is
based on the introduction in the constraint functions. The proposed classification presented in
Table 1 is based on an overview of the literature on the topic (see e.g. [3, 4]).

The paper is structured as follows: section 2 discusses the general concept of uncertainties
and also proposes our classification of design formulations. Based on this classification, section
3 presents three deterministic design formulations. Section 4 introduces five formulations for
design under uncertainty. An academic example then compares the results obtained from each
formulation in section 5. Finally, some conclusions are drawn in section 6.

2 Design under uncertainty

2.1 Sources of uncertainty and their classification

Engineers face uncertainties during the design process, which might affect any parame-
ter. Two catergories are commonly identify in the structural engineering community, namely
aleatory or random uncertainties and epistemic uncertainties, see e.g. [5, 6]. On one hand,
aleatory or random uncertainties refer to those that cannot be reduced by introducing additional
data or improving the modeling process. They therefore should be viewed as inherent or intrin-
sic to the considered phenomenon and, as Beyer and Sendhoff [5] pointed out, “the designer
has to “live with them” and optimize his design according to this reality”. On the other hand,
epistemic uncertainties are only due to a lack of knowledge of the studied phenomenon or sys-
tem behavior, and could therefore be reduced if some conceivable efforts are undertaken.

In a design framework, another classification for uncertainties might be proposed, as sug-
gested by several authors [5, 7]. From their standpoint, uncertainties can be distinguished de-
pending on whether they can be acted upon or not in the design phase:

• Type I uncertainties are primitively linked to the environment and conditions of use. The
variables that show this type of uncertainty are hereafter noted in the series Pj(ω), j =
1, ...,m and stored in vector P(ω). They do not play a role in the design procedure, i.e.
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they are independent from it, and as such they are not design variables.

• System function uncertainties are those linked to the evaluation of the performance (or
output) of the system. In this paper, these uncertainties are also gathered in vector P(ω).

• Feasibility uncertainties are associated with uncertainties on the constraint functionsand
have hence an influence on the definition of the design space. These uncertainties are also
considered as model uncertainties and grouped in vector P(ω).

• Type II uncertainties are those connected with the production/ manufacturing process.
Geometrical variables noted Xi(ω), i = 1, ..., n (and stored in vector X(ω)) are usually
linked to this type of uncertainty. They are part of the design variables which might affect
the performance of the system.

2.2 Consideration of uncertainties in engineering

In the design process, uncertainties can be considered by two approaches. The first approach
is the conversion of each uncertain parameter into a reference value. The stochastic problem
thus becomes a deterministic problem. The so-called worst-case method permits to identify this
reference value. Indeed, in this method, uncertain parameters are assumed to be bounded, and
the bound of each variable associated with the worst scenario is identified. In tolerance analysis,
this method is commonly used (see e.g. [8]) because each dimensions are uncertain and the
tolerance intervals provide suitable bounds. However, this strategy is not applicable to general
problems and the identification of the bounds may be a complex task. The second method to
convert a random variable into a deterministic parameter consists of weighting each uncertain
parameter by a safety factor commonly, which depends on the importance of the variable. With
this method, unbounded variable can also be treated.

The second approach is the explicit consideration of uncertainties which are characterized
by a mathematical representation. The variation of uncertain parameters can thus be taken
entirely into account and it allows the propagation uncertainties to the response of the structure.
Several approaches may be used to realize this characterization. The probabilistic approach
defines each uncertain variable by a distribution function (see e.g. [9]) and it is commonly used
in mechanical design (see e.g. [10]). An alternative approach is imprecise probabilities. The
possibilistic approach defines uncertain parameters by their possibility distributions, as detailed
e.g. by Zadeh [?]. Another method is using fuzzy sets to characterize uncertainties (see e.g.
[?]).

2.3 Design requirements

In design processes, the state of mechanical system’s performances can be characterized
by two different functions. First, the objective-type functions f(X(ω),P(ω)) aim to quantify
the performances of the mechanical system. Hence, optimization consist of maximizing the
performances of the system (e.g. quality level), minimizing the cost or targeting a reference
value. Other design-related functions are the constraint-type functions g(X(ω),P(ω)) which
must be satisfied in all operating conditions to ensure the functionality of the system. These
constraint functions must be achieved as closely as possible in order not to degrade the objective
functions. The constraint functions are used to define the admissible space which is defined as
{X ∈ Rn | g(X(ω),P(ω)) ≥ 0}.
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2.4 Proposed classification of design formulations

During design process, uncertainties can be accouted by several strategies, which involves
multiple design problem formulations. Concepts such as reliability and robustness need to be
introduced. A classification is proposed by Gang [11] who brings forward five design problem
formulations. Our classification is introduced in Table 1, where eight design formulations are
considered making the distinction by taking into account uncertainties in the objective and/or the
constraint functions. Robustness is defined by the faculty of a system’s response to be insensi-
tive to small variations in system parameters, and is thus associated with the objective function.
When uncertainties are taken into consideration in the constraint functions, non-admissible so-
lutions are tolerated as long as they remain rare. Reliability is therefore associated with the
constraint functions; it characterizes the ability of a system to ensure its functions in a given
context.

Three possible states can be defined for each output function: no function is used, a deter-
ministic function is employed or a function subject to uncertainties is considered. Nine combi-
nations are thus introduced according to the state of objective and constraint functions in Table 1
and are detailed in the next sections.
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– No function f Function f Function f
(objective) X,P deterministic X,P uncertain

No function g Optimal design Robust design
(constraint) (optimization without

constraint)

(Section 3.2) (Section 4.3)

Function g Admissible design Optimal and Robust and admissible
X,P deterministic (sizing) admissible design design

(optimization under
constraint)

(Section 3.1) (Section 3.3) (Section 4.4)

Function g Reliable design Optimal and reliable Robust and reliable
X,P uncertain (reliability) design (RBDO) design (RBRDO)

(Section 4.1) (Section 4.2) (Section 4.5)

Table 1: Different design approaches. Grey boxes take into account some uncertainties

3 Deterministic design formulation

3.1 Admissible design - Sizing

Sizing is the most often used scheme in design because of it ease of implementation. Indeed,
the admissible design corresponds to the set of solutions that respect problem constraints and
thus provides the solution space of design variables. This design formulation (Equation (1)) is
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completely deterministic.

Find X̄Adm such that : g(X̄Adm,P
(k)) ≥ 0 (1)

However, dealing with uncertainties in an implicit manner can be realized by transforming the
initial stochastic problem into a deterministic problem using the worst-case approach or the
safety factors

3.2 Optimal design - Optimization without constraint

The principle of optimal design is to optimize an objective function which is not subject to
constraints. This problem formulated in Equation (2) is entirely deterministic.

Find X̄Opt such that : X̄Opt = Arg max
X̄

f(X̄,P(k)) (2)

Industrial problems cannot be treated with this design formulation since this is an unconstrained
optimization and can thus lead to non-admissible solutions (see section 3.1). However, this
design formulation can be applied for mathematical applications such as for instance linear and
non-linear regressions solved by the least-square method.

3.3 Optimal and admissible design - Optimization under constraint

The optimal and admissible design in the combination of the two previous formulations
since using only one of the two formulations is generally insufficient for designers. Hence,
the obtained design is both optimal with respect to the objective function and admissible with
respect to the constraint functions (Equation (3)).

Find X̄OptAdm such that :

X̄OptAdm = Arg max
X̄

f(X̄,P(k))

Subject to (s.t.) g(X̄,P(k)) ≥ 0

(3)

This is a classic problem of optimization under constraint without considering uncertainties,
which is also called deterministic constrained optimization.

4 Formulation of design in an uncertain context

4.1 Reliable design

Reliable design formulation can be viewed as an extension of the admissible design problem
introduced in section 3.1. In this approach, uncertainties are explicitly taken into account. They
may be modeled by the probabilistic approach, as briefly recalled in section 2.2, thereby leading
to an assessment of the failure probability of a system or structure and guaranteeing that it is
below a given threshold value Ptarget. X̄ denotes therefore the mean of the probability law of
X.

Find X̄Rel such that :

Prob
(
g(X(X̄Rel, ω),P(ω)) ≤ 0

)
≤ Ptarget

(4)

The failure probability threshold value may be fixed using a risk-based approach (e.g. [12])
for which consequences of failure are evaluated. In the case of major failure events Ptarget needs
to be very low, whereas its value can be higher if failure events have minor consequences.
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4.2 Optimal and reliable design - Reliability-Based Design Optimization

Optimal and reliable design formulation consists of optimizing a deterministic objective
function subject to stochastic constraints. This design, commonly named reliability-based de-
sign optimization (RBDO), is formulated in Equation (5) as suggested by [13, 14, 15]. In this
paper, RBDO is always associated with deterministic objective and probabilistic constraints.

Find X̄OptRel such that :

X̄OptRel = Arg max
X̄

f(X̄,P(k))

s.t. : Prob
(
g(X(X̄, ω),P(ω)) ≤ 0

)
≤ Ptarget

(5)

Reliability-based design optimization has been widely discussed in the literature and alter-
native formulations might be found where for instance uncertainties are considered in both
objective and constraint functions [16, 17].

4.3 Robust design

Such as the optimal design, robust design formulation consists of optimizing an objective
function without taken any constraints into account (Equation (6)). The main difference is that
uncertainties are taken into account in the objective function (Ψ) and which is thus named robust
objective function.

Find X̄Rob such that :

X̄Rob = Arg max
X̄

Ψ(X(X̄, ω),P(ω)) (6)

The choice of formulation for the robust function is essential, since it can significantly modify
the results of the optimization. Many formulations can be used for the robust function, from
basic ones to more elaborate formulas such as linear combination ([18]), Taguchi’s Mean Square
Deviation ([5, 19]) or the Mean Square Error ([20]). This formulation is generally not relevant
for industrial problem because of the lack of constraints.

4.4 Robust and admissible design

Robust and admissible design consists of optimizing the robust objective function (Ψ) subject
to deterministic constraint functions (Equation (7)).

Find X̄RobAdm such that :

X̄RobAdm = Arg max
X̄

Ψ(X(X̄, ω),P(ω))

s.t. : g(X̄,P(k)) ≥ 0

(7)

In this formulation, uncertainties are considered only in the objective functions, the constraint
functions remain deterministic. The obtained optimum performance is also insensitive with
respect to moderate variations of the variables.

4.5 Robust and reliable design

The last formulation is the robust and reliable design where uncertainties are explicitly taken
into account in both objective and constraint functions (Equation (8)). Solutions are thus both
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robust and reliable. This formulation is sometimes called reliability-based robust design opti-
mization (RBRDO) ([20, 21]).

Find X̄RobRel such that :

X̄RobRel = Arg max
X̄

Ψ(X(X̄, ω),P(ω))

s.t. : Prob
(
g(X(X̄, ω),P(ω)) ≤ 0

)
≤ Ptarget

(8)

This formulation might be viewed as the most complete formulation which provides the surest
solutions.

5 Application example

This section aims to illustrate each design formulation on an academic example. The ap-
plication used to highlight the effect of design formulation on the solution is the study of a
cylindrical container. This container is defined by a radius R and a height h and must be able
to contain a minimum of 33 cm3 whilst using a minimum of material. The container is manu-
factured using metal sheet with the same thickness for each side. Hence, the constraint function
is defined by Equation (9) and the objective function, which represents the area of material, is
defined by Equation (10).

g(R, h) = V (R, h)− 33 = πR2h− 33 (9)

f(R, h) = 2πRh+ 2πR2 (10)

The constraint function must be positive to ensure the sufficient volume of the container. The
objective function must be minimized to obtain the design minimizing the quantity of material.
The search of each design is bounded to 1 ≤ R ≤ 4 and 1 ≤ h ≤ 10 (cm) and results are given
in Table 2.

Deterministic design
The non-admissible domain is defined by the constraint function (Equation (9)) and is repre-
sented by a hatched area in Figure 1. Without any constraint, the minimal quantity of material
is zero, the optimal design is thus the zero solution.To best respect the constraint, the constraint
function must be as close to the equality as possible. The optimal and admissible solution is thus
at the limit between the admissible and non-admissible domains (see continuous curve Figure
1).

Design in an uncertain context
The variables R and h are modeled by Gaussian distributions with the same standard deviation
of 0.5 mm, independently of their nominal value. The failure probability if set at Ptarget = 0.1.
The reliable design domain is bounded by this limit and the non-reliable domain is represented
by the hatched area in Figure 2.

For robust optimization, a new objective function must be defined considering uncertainties.
Here, a linear combination (Equation (11)) of the expectation (E(◦)) and the standard deviation
(σ(◦)) of the initial objective function is chosen.

Ψ(R, h) = 0.25× E(f(R, h)) + 0.75× σ(f(R, h)) (11)
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Since no constraints are taken into account, the robust design solution is the zero solution (as it
happens for optimal design).

As discussed previously, to best respect constraints, the equality mus be targeted by the con-
straint function. The obtained RBDO solution, thus, appears at the limit between the reliable
and non-reliable domains (see dotted curve in Figure 1) whereas the robust and admissible de-
sign (resp. robust and reliable design) is at the limit between the admissible and non-admissible
domains (resp. reliable and non-reliable design). The main difference between each solution is
that the robust solutions are more insensitive to variations in the problem parameters.

This application shows the main differences between the formulations, which therefore should
be considered as an essential component of the design process in order to obtain the desired de-
sign.

non-admissible
domain

Figure 1: Example results – objective function (−f(R, h) to be maximized) in grayscale
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non-reliable
domain

Figure 2: Example results – objective function (−Ψ(R, h) to be maximized) in grayscale
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– No function f Function f Function f
(objective) X,P deterministic X,P uncertain

No function g Optimal design Robust design
(constraint)

X̄Opt = [0; 0] X̄Rob = [0; 0]

Function g Admissible design Optimal and Robust and admissible
X,P deterministic admissible design design

see Figure 1 X̄OptAdm = [1.8; 3.25] X̄RobAdm = [2.1; 2.4]

Function g Reliable design Optimal and reliable Robust and reliable
X,P uncertain design (RBDO) design (RBRDO)

see Figure 1 X̄OptRel = [2.4; 3.55] X̄RobRel = [2.4; 2.7]

Table 2: Summary of results for the container application.

6 Conclusion

In this paper, a comprehensive summary of design formulations is discussed by proposing a
classification of design problems (Table 1). The different definitions and formulations are clar-
ified. Designing aspires to identify admissible solutions subject to constraints, and optimizing
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aims to maximize performance metrics. Robustness is linked to the objective whereas reliabil-
ity is associated with the constraints. The application shows that significant differences exist
between each formulations. The choice of design formulation is thus a crucial step in the design
procedure, and requires careful consideration.
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Abstract. Computational simulations or experiments in engineering applications are often
time and resource consuming. This is especially so when performing optimization, robustness
or reliability analyses, because they need hundreds or even thousands of design evaluations.
A common solution for this are surrogate models, which are mathematical approximations of
the existent data. Nevertheless, these surrogate models also need some design evaluations as
a base to train them and are usually obtained by performing a design of experiments with an
intelligent design plan to reduce the number of needed points.

Moving least squares is a very simple but powerful surrogate model method. It performs a
least squares regression with a subset of the data in the local area of the point to be approxi-
mated. This allows the method to approximate complex functions with a low order polynomial
base (first or second order). This basically works with the help of a weighting function, which
gives a high weight to points near the target point and decreasing weights to points with an in-
creasing distance to this point. Therefore, in the standard moving least squares method, a free
model parameter has to be estimated. This parameter describes the influence radius, in which
points are considered to approximate the target point. In this standard formulation, the weights
depend on the distances of all variables. So, variables with a minor or even non-influence,
contribute to these weights and so to the accuracy of the approximation.

The proposed method works anisotropically and is similar to methods like the anisotropic
Kriging, so that the free model parameters need to be defined for each variable individually and
the possibility of suppressing unimportant variables and thus increasing the prognosis quality
of the standard moving least squares method is given.

This work presents the mathematical description of this method and demonstrates its per-
formance for different analytical test functions compared to the standard moving least squares
method.
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NOMENCLATURE

AMLS anisotropic moving least squares
CFD computational fluid dynamics
DOE design of experiment
FSI fluid structure interaction
LHS latin hypercube sampling
MLS moving least squares
CV cross validation

α constant for weighting function

µ mean value
σ variance
xn n-th variable of prediction point x
n number of input variables
N number of samples
ỹ approximated output
R2

pred prediction quality based on CV
wn Gaussian weighting function
r radius of points used for approximation
wi weight for input point i

x prediction point
vn training values for n-th variable
p(x) vector of basis polynomials
a(X, x) vector of approximation coefficients
y(X) vector of output training values
wN,n weighting vectors for the anisotropic formulation
ỹ vector of approximated output values

X matrix of training points
P(X) matrix of basis polynomials N × n
W(X, x) weighting matrix N ×N
Xtest points used to calculate R2

pred not used for training

SUBSCRIPTS

n n-th variable
m (n− 1)-th variable
N N -th design point
test test point not used for training
iso isotropic
aniso anisotropic
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1 INTRODUCTION

In engineering applications, a lot of time and resource consuming simulations (e.g. CFD
/ FSI - calculations) or experiments take place. Therefore, in most cases, optimization or ro-
bustness evaluations are too expensive in terms of time and resources. One outcome of this
is the usage of surrogate models. These are functions based on given training data points to
approximate new unknown function evaluations within the initial training data range.

Especially in the field of aerodynamic optimization, surrogate models are used, because
of the high calculation time. In [26] used for example a simulated annealing optimization
algorithm to optimize the shape of a three-finned, stepped labyrinth seal. This optimization
took about 830 design evaluations with a calculation time of 25 minutes per design. Hence,
the whole optimization took more than 14 days. Therefore, others like [25] and [22] showed
optimizations of turbo machinery parts by using surrogate models trained on a specific number
of CFD-calculations. Also in other fields, surrogate models are used for optimization such as
aircraft design ([11]), engine cycle design ([3]) or structural reliability analysis ([18]). A general
overview of surrogate based optimization is also given in [9].

A wide range of different methods to create such surrogate models exist. Some of the most
sophisticated are radial basis functions, Kriging (also known as the Gaussian process), support
vector regression, neural networks and moving least squares. Because of this variety of meth-
ods, a lot of benchmarks for these different methods also exist, as described in [6], [10], [15]
and [4]. In most of these comparisons Kriging ([14]) was identified as one of the most accurate
methods and it has been shown that this method works well for a whole range of problems.
However, in some cases other methods, such as moving least squares (MLS), ([16], [17]) can
be more sophisticated then Kriging, as [1] shows for non-convex functions. Especially in ar-
bitrarily spaced data ([7]) or in 3D surface reconstruction presented in [27], [2] and [8], MLS
showed good performance.

MLS regression has the advantage compared to methods like Kriging, that it does not experi-
ence difficulties when there are a large number of design points to train on, because of numerical
instabilities. Also, if the design points show different local behaviour, such as clusters, MLS
performs well. The main obstacle for local regression methods like MLS is to determine the
points to consider for the local approximation, especially if the points have a large variance in a
defined window around the prediction point.

Another point is the dimensionality of the problem to be approximated. A lot of surrogate
methods experience problems with high dimensional data. In the standard isotropic MLS all
dimensions have an influence on the variance of the data points used for the approximation.
Therefore, with increasing dimensionality the approximation accuracy reduces. Two possible
methods exist for working with high dimensional problems. The first method is to reduce the
variables to only the most important parameters through the use of a sensitivity analysis such
as the variance based sensitivity analysis from [12]. An example of the successful utilization
of this type of procedure is presented in [21] or in [5]. In many engineering applications,
the number of most important parameters for an individual output is up to 20 input variables.
Therefore, these methods work very well for finding these few important parameters and thus
dramatically increase the performance of the surrogate model used. The other possible method
of working with high dimensional data is anisotropy. In a similar way to anisotropic Kriging,
the surrogate method provides the opportunity to consider the different importance influence of
the input variables in the prediction. In Kriging, different correlation lengths will be defined
for each input parameter, leading to higher accuracy of the Kriging surrogate model, especially
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if the variance is different for each input parameter. [24] showed this for the MLS method.
Also, an anisotropy was introduced through the definition of different bandwidths for each
input parameter. Then, only the points which fall in the intersection of the different bandwidths
which define the prediction window, are used for the prediction. As will be shown in section
4, different bandwidths for each input parameter will be defined, but a different method of
calculating the overall weights for each prediction point will be used.

In this paper, the concept of anisotropy is used and applied to the moving least squares
method different to [24], which in most cases leads to higher prognosis quality. First, the
standard MLS is described, followed by the extension to anisotropy. Subsequently, examples of
different analytical test functions are shown to compare both methods.

2 DESIGN SAMPLING

To create the training data for the surrogate models, some simulation or experiments have
to be evaluated as base information for different designs. These designs should be part of a
sampling plan which covers the range of interest for the specific problem. There are many
possible methods for creating such a design plan, such as full factorial, D-optimal or orthogonal
arrays. Latin hypercube sampling is commonly used (LHS) ([20]), which creates n hypercubes
for each variable. Within each of these hypercubes, a point is chosen randomly, or in the case
of mid-point LHS the point is always set in the center of this hypercube. Optimized LHS also
exist, with optimized distance between the points and minimal unwanted correlations as [13]
shows. For the test problems shown here, an optimized LHS will be used.

3 REVIEW OF THE MLS APPROXIMATION METHOD

The basis for the anisotropic moving least squares (AMLS) approximation is the standard
MLS. The formulation to approximate the value ỹ of the prediction point x is:

ỹ(x) = pT (x)a(X, x) (1)

The prediction point x consists of the n input variables of the problem to approximate (e.g. a
simulation model, mathematical function or experiment):

x = [x1, x2, ..., xn] (2)

The vector p(x)T contains the basis polynomial for the approximation depending on x. For
example a second order polynomial with cross terms:

pT (x) = [1, x1, x2, . . . , xn, x
2
1, x

2
2, . . . , x

2
n, x1x2, . . . , xnxm]

T (3)

The vector a(X, x) contains the approximation coefficients and is calculated through:

a(X, x) = (PT (X)W(X, x)P(X))−1PT (X)W(X, x)y(X) (4)

with the matrix PT (X) containing the basis polynomials for the N × n training points matrix X
of n samples:

X =


x1,1 . . . xn,1

... . . . ...
x1,N . . . xn,N

 (5)
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Figure 1: Gaussian weighting function depending on r

with PT (X):

PT (X) =


1 x1,1 . . . xn,1 x21,1 . . . x2n,1 x1,1x2,1 . . . xn,1xn+1,1
...

...
...

...
...

...
...

...
...

...
1 x1,N . . . xn,N x21,N . . . x2n,N x1,Nx2,N . . . xn,Nxn+1,N

 (6)

The matrix W(X, x) is the N ×N weighting diagonal matrix for the prediction point x and the
main mathematical difference to normal polynomial regression. W(X, x) contains the weights
for each element of X regarding their distance to x:

W(X, x) =


w1 . . . 0
... . . . ...
0 . . . wN

 (7)

To estimate these weights, different types of weighting functions exist. Some of them can even
force the MLS to interpolate through the training points ([19]). In this investigation a Gaussian
weighting function is used like proposed in [17]:

wN(X, x, r) = e
−(
∑N

1 ‖x− X‖
rα

)2
(8)

with the constant:
α =

1√
−log(0.001)

(9)

In this formulation the ‖x− X‖ stands for the Euclidean distance calculated over all variable
dimensions between the prediction point x and the trainings points X. There is one free model
parameter r, which represent the influence radius around the prediction point x, in which the
training points X are considered to approximate x. As shown in Fig. 1 the weights tend to 0 if
the training points lie outside of r. The last part to estimate a(X, x) is the output vector y(X),
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which contains the output values of the training points X.

y(X) = [y1, . . . , yN] (10)

To estimate the free model parameter r different kinds of possibilities exist. A straightforward
solution is to use an optimizer in combination with a stratified k-fold cross validation (CV).
k-fold CV involves splitting the training points in k equal sized packages. Then the model is
trained with k−1 packages and the remaining package is used as prediction points (test points).
After each package has been evaluated the corresponding prognosis quality can be estimated
with:

R2
pred =

(∑Ntest
1 (y(Xtest)− µytest

)(ỹ(Xtest)− µỹtest
)

(Ntest − 1)σytest
σỹtest

)2

(11)

The objective of the optimization would be to maximize the prognosis quality R2
pred ∈ [0, 1].

4 EXTENSION TO ANISOTROPY

Having explained the standard MLS method, this section describes the extension of the
method to the anisotropy. The key point of the MLS method is the weighting of training points,
so that each prediction point is locally approximated. In the standard formulation, the Euclidean
distance is calculated over all variable dimensions, as shown in 8. To give each variable an in-
dividual influence on the weights for the training points used, the anisotropic version calculates
the weights for each variable separately. This leads to n weighting vectors wN,n(vn, xn, rn) (the
diagonal of the weighting matrix W(X, x)) with n elements and vector vn describing the training
data of the n-th variable:

wN,n(vn, xn, rn) = e

−
(∑N

1 ‖vn − xn‖
rnα

)2

(12)

To combine these weighting vectors to one global and so to a corresponding weighting diagonal
matrix W(X, x), the geometric mean over all n weighting vectors wN,n(vn, xn, rn) is calculated:

W(X, x) = diag

 n

√√√√ n∏
i=1

wN,n(vn, xn, rn)

 (13)

Compared to the standard MLS, one rn per variable exists now. Because the geometric mean is
used to combine the weighting vectors wN,n(vn, xn, rn), variables with a minor or no influence
on the output y(X), their rn will tend to:

rn →∞ (14)

because rn → ∞ gives wN,n(vn, xn,∞) = 1, meaning that all training points are considered
with a weight of 1 regarding the non-important variables (see Fig. 1 with r = 10). Whereas
variable with high influence will tend to:

rn → 0 (15)

and so the weights are 6= 0 for training points in the local area of the prediction point x. This
means that only the rn of the important variables have a significant influence on the final weight-
ing matrix W(X, x). Even though with this anisotropic approach of the MLS method it is not
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necessary to scale the input parameters to equal ranges as is necessary for the isotropic MLS,
but it is recommended that this scaling is done for numerical stability.

To estimate the free model parameters rn the Powell optimization algorithm is used ([23]).
This algorithm is especially suitable for this kind of optimization problem, because it iterates
in a double loop over each optimization variable separately. The inner loop iterates over each
free parameter and changes it individually until no further improvement is archived. If each free
parameter has been optimized once, a new iteration begins (the outer loop). Furthermore, this
algorithm does not need any gradients, just a start vector.

Additional as mentioned in 1, it is suggested that a sensitivity analysis should be used in
applications with very high dimensions, to further increase the accuracy of the model and to de-
crease the optimization effort. So overall, it is recommended that this anisotropic MLS method
is used in combination with a variance based sensitivity analysis ([12]) to receive the most
accurate surrogate model.

5 EXAMPLES

In the following section, examples of comparing the standard MLS method to the anisotropic
version are shown. For the comparison, the same Powell optimization algorithm is used for the
isotropic MLS as for the anisotropic MLS. The optimization criterion is the already introduced
R2

pred (11) evaluated with k-fold CV. To train the surrogate model, 50 uniformly distributed
samples were created, with optimized latin hypercube sampling as mentioned in 2. For these
examples, no scaling was used, because all parameters are in the same value range. Further,
each test function was approximated with a first order and second order polynomial base and
the best result was taken. The k-fold CV was done with k = 5, with the same packages structure
(same designs in each package) for both methods. For the comparisons 4 test functions assist in
demonstrating how the AMLS works and how the free parameters rn behave. They are defined
as:

y(x) = x1 + x2 + x3 + x4 + x5, x1−5 ∈ [0, 1] (16)

y(x) = x61 + x42 + x23 + x4 + 0.001x5, x1−5 ∈ [0, 1] (17)

y(x) = x41x
2
2 + 0.01x3x4 + 0.001x5, x1−5 ∈ [0, 1] (18)

y(x) = 0.5x1 + x2 + 0.5x1x2 + 5sin(x3) + 0.2x4 + 0.1x5, x1−5 ∈ [−π, π] (19)

In Eq. 16 all variables have the same influence on y(x) and should show equal results for
the isotropic MLS and AMLS. Furthermore, all rn of the AMLS should be equal because all
variables have equal influence on the output y(x). Eq. 17 includes decreasing influence from
x1 the highest and x4 the lowest. Here it is intended, that the free parameter rn should also
show a decreasing value for the corresponding input parameters. The variance of each variable
is different and so the power of the anisotropic version should result in a higher R2

pred value for
the AMLS. Eq. 18 contains influence of cross terms with a high variance in one corner of the
data range and Eq. 19 has one dominant variable x3 and 4 ’noise’ terms. The test functions 16
to 19 are illustrated in Fig. 2a to Fig. 2d. Tab. 1 shows the results for the free parameters of
the MLS riso and for AMLS r1−5. Additional the prognosis quality R2

pred for both methods is
given. For the first test function 16 the free model parameter of the AMLS were all equal as
expected. The prognosis quality of both methods is maximal with R2

pred = 1 because the test
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Figure 2: Overview test functions

function is an additive simple example. The values of the free model parameters rn of the AMLS
method is higher than parameter the range of [0, 1], which means all points are considered in
the weighting and there is no local regression effect, in other words it works like a normal
least squares approximation. The same applies to the MLS method for this specific example

with parameter ranges of [0, 1] with a maximum of
√∑5

1 1
2 =
√
5. The results for the second

test function show the first difference between the MLS and the AMLS method regarding the
prognosis quality R2

pred of 5%. The free model parameters rn of the AMLS are very low for the
most important parameters x1, x2, x3 and are very high for the unimportant parameters x4, x5 so
that their weighting does not influence the overall weighting in the geometric mean described
in 13. The values of the important parameters suggest that the approximation works locally.
Additionally, there is a ranking of the parameters x1, x2, x3 corresponding to the real ranking
in the test function. The third test function 18 shows the highest difference of R2

pred with 72%
for all test functions. Here the AMLS seems to use all parameters, but with a focus on the first
two parameters x1, x2 as important parameters for the overall weighting, corresponding to the
test function part with x41x

2
2 which clearly dominate the values of the test function. The MLS is

not capable to approximate this function with one single free parameter r. The last test function
19 yields a difference for R2

pred of 34%. The dominant parameter x3 has been identified in the
AMLS, which results in the lowest free model parameter of r3 = 0.99.
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riso r1 r2 r3 r4 r5 R2
prediso

R2
predaniso

7.06 3.07 3.07 3.07 3.07 3.07 1.0 1.0

1.73 0.33 0.67 0.72 5494.53 2314.16 0.92 0.97

1.97 0.07 0.14 0.88 0.35 0.44 0.09 0.81

7.56 4762.98 5.17 0.99 3.71 2.85 0.54 0.88

Table 1: Overview of free model parameters rn for test functions 16 to 19
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Figure 3: Surrogate model for test function 3, 1D view for parameter x1

In Fig. 3 and 4 the 1D view of the surrogate models for the most important parameters of
test function 18 and 19 is presented. For both pictures, it can be seen, that the trend is captured
much better by the AMLS corresponding to the higher R2

pred, especially for x3 of test function
19, where it captured the sin() term compared to the MLS, which seems to average through the
data points.

6 CONCLUSION

The anisotropic moving least squares (AMLS) surrogate model method presented here uses,
in contrast to the standard isotropic moving least squares (MLS), a free model parameter rn for
each input parameter and further the geometric mean to calculate the overall weighting (see
4). The AMLS method is more accurate than the MLS method for the examples with input
parameters of differing strong influence as demonstrated with the test functions Eq. 17 to Eq.
19. Large differences could be seen in the example with high multivariate dependencies.

This is accomplished by setting the free model parameter rn corresponding to the influence
of the input parameter. Input parameters with a high influence result in lower values for rn and
vise versa. To find the right value for rn, the Powel optimization algorithm was used. A possible
start solution vector for this optimizer can be obtained by previously performing a sensitivity
analysis. Otherwise, it is recommended that the mean value of the input parameter bounds
for each rn are used as a starting point. Additionally, if the input parameters are of different
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Figure 4: Surrogate model for test function 4, 1D view for parameter x3

magnitudes it is recommended that they are rescaled.
If no sensitivity analysis has been performed, the AMLS optimization can also work as a sim-

ple kind of sensitivity analysis. Unimportant parameters can be identified through high values
for the rn parameters (similar to high correlation lengths in the anisotropic Kriging method). For
all other parameters, the optimization also delivers a ranking of importance with the smallest rn

value correspond to the most important parameter etc.
Further improvements might be archived by testing different weighting functions. For exam-

ple an interpolating weighting function or a function which avoids the high numerical numbers
in the optimization for unimportant parameters by normalizing the maximum rn with the maxi-
mum 1D distance for each specific input variable.
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Abstract. In the field of real world or simulation experiments, latin hypercube designs are very
useful to approximate implicit given functions based on experimental designs of rectangular
grid of points used e.g. for an efficient optimization of black-box experiments. The so called
standard latin hypercube sampling is based on an idea of [8] to simulate correlated multivariate
relationships based on uncorrelated variables. Hereby, the linear or rank correlations between
the random variables can be reduced using a Cholesky decomposition of the covariance matrix.
However, this algorithm requires that the number of samples is higher than the number of input
variables to ensure a positive definite and non-singular covariance matrix. Furthermore, a
rearrangement of the latin hypercubes so that they will have the same ordering to increase the
multidimensional uniformity introduces an unwanted pseudo linear correlation of the simulated
variables.

In this paper, the new method of proper orthogonal decomposition methods in adaptive com-
bination with re-sorting the rank-order of the original marginal distributions not only eliminates
the drawbacks of the standard latin hypercube sampling, but also reduces the number of exper-
imental designs necessary. In contrast to the standard latin hypercube sampling, the adaptive
approach results in a further improvement of the independency and the multidimensional uni-
formity of the variables and shows an improved efficiency in comparison to optimization-based
methods. Furthermore, a lower-rank approximation of the design matrix based on singular
value decomposition ensures a positive definite and non-singular correlation matrix to reduce
the correlation error in a stepwise manner during the adaptive procedure.
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1 INTRODUCTION

Physical or computer experiments are widely used for the design and optimization of prod-
ucts and processes. In simulation experiments, rather than carrying out physical experiments,
numerical models describing the performance of the product or the process are only implicitly
given through numerical methods. When modelling complicated physical phenomena we are
searching for a mathematical model

y = f(x1, ..., xi, ..., xn) = f(x), x = (x1, ..., xi, ..., xn)T ∈ Dn ⊂ Rn

where the vector x consists of the n design (input) variables or factors and y defines a specific
output variable (response). The function f(x) is defined within the design space D with the
lower and upper bounds xli, x

u
i of the variables.

In general, efficient design exploration techniques, such as sensitivity analysis and optimiza-
tion are based on surrogate (or meta) models ỹ(xi) of response values using evaluation points or
the so-called designs. A design of experiments with N points and n variables is usually written
as a N × n design matrix

X =
[
x1, ...,xk, ...,xN

]T ∈ DN,n ⊂ RN,n

where each row
xk =

[
xk1, ..., x

k
i , ..., x

k
n

]
represents a sample k and each column represents a variable i. Obviously, in a real world
design of experiment, it is not possible to enlarge the necessary number of experimental designs
n to obtain acceptable space-filling and independency of the simulated design space which is
important for an accurate sensitivity analysis and for design space exploration. So one of the
main aims in the field of experiments is therefore to obtain efficient designs of experiments.

A commonly used stratified sampling technique is the latin hypercube sampling, especially if
the number of design variables is greater than n = 5 and general nonlinearities of the model re-
sponses are possible. Numerous modifications have been proposed for latin hypercube sampling
to minimize correlation error and to ensure the unidimensional uniformity. The pseudo linear
correlations can be minimized by an internal optimization procedure using a column pairwise
switch algorithm to increase uniformity or space-fillingness of a sampling plan. Several meth-
ods are proposed in the literature, e.g.[7, 13] use a simulated annealing and in [9] an enhanced
stochastic evolutionary is presented. Commonly used optimization criteria are the maximiza-
tion of the minimum distance (maximin metric) according to [13] introduced by [10, 5] and
mean of the square of the pairwise correlations, proposed by [8]. A Matlab implementation of
an optimization algorithm to construct these maximin latin hypercubes is given in [5].

Other methods are developed to create small orthogonal or nearly-orthogonal latin hyper-
cube matrices [12], which are perfectly uniform in the multivariate space. These methods are
applicable only for small sets of variables and design evaluations. In [2] a method is presented
for calculating nearly orthogonal latin hypercubes and calculating the best space-filling designs
which is computationally expensive. The method presented in [4] does not necessarily calcu-
late the best space-filling designs but is applicable to high dimensional problems, preserving
the integrity of the latin hypercube sampling estimator by increasing the statistical distance be-
tween designs using sequentially eliminating design evaluations that are near to each other in the
multidimensional space. In [14] another method for reducing correlations of a latin hypercube
using the Gram-Schmidt orthogonalization is proposed. An extended overview of space-filling
designs can be found in [3].
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Because of the huge combinatorial effort of the assigned optimization problem, finding an
optimized latin hypercube sampling is a very difficult and time-consuming task and restricted to
a relative small number of variables. Otherwise, several decomposition methods of the covari-
ance matrix exist to reduce the unwanted pseudo correlation of the variables in a high dimen-
sional space, which can be enhanced to improve unidimensional uniformity and independency
of the design points, as shown in the following.

2 STANDARD LATIN HYPERCUBE SAMPLING

2.1 Plain latin hypercube sampling

A plain Monte Carlo simulation can be used to create i = 1, ..., n nearly-uniformly dis-
tributed samples Uk

i (0.5; 1/(2
√

3)) with k = 1, ..., N designs with normalization into a [0, 1]n

box. Unfortunately, a plain Monte Carlo simulation does not consider that every class of all
variables should be simulated with the same probability and results in non-uniformity of the
marginal distributions.

The basic idea of [15] assumes that each sample out of N is unique with high probability. Of
course, sorting these samples in ascending order gives random numbers too, and returns a row
vector of u for every variable i = 1, ..., n containing a random permutation of the integers from
k = 1, .., N . The permutation matrix πk

Ui
of Uk

i ensures that the bins have their centers in the
center of the latin hypercubes with

Hk
i =

πk
Ui
− 0.5

N

The splitting of the design space Dn into N classes Di
k with the same probability

P
[
hki ∈ Di

k

]
=

1

N
, i = 1, ..., n, k = 1, ..., N

gives Nn hypercubes (bins) with the probability N−n. Hereby, all portions of the random
variables’ range are represented and therefore we obtain a univariate uniformity of the marginal
distribution of the variables. Unfortunately, this procedure leads to an unwanted correlated
sample matrix

H =


h11 h12 · · · h1n
h21 h22 ... h2n
...

... . . . ...
hN1 hN2 · · · hNn


especially for a small number of samples N . In some cases the maximal error of the correlation
matrix of a plain latin hypercube sampling

ερHH
= max

1≤i,j≤n
(|ρHH − I|)

can be larger than the maximal correlation error ερUU
of a plain Monte Carlo sampling.

2.2 Correlation transformation using factorization of the covariance matrix

According to [8], the unwanted linear or rank correlations between the random variables can
be eliminated using a Cholesky decomposition of the covariance matrix

CHH = E
[(

H− H̄
) (

H− H̄
)T]
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wherebyE[.] denotes the expectation value and H̄ the vector of the means of the latin hypercube
samples. Using the standardization Yi(0; 1) ∼ Hi by

Yi =
Hi − E[Hi]

σHi

(1)

the covariance matrix of Yi is equal to the assigned correlation matrix

ρYY = CYY = E
[
YYT

]
(2)

In the general case a variable transformation Zi(0; 1) ∼ Yi is to find so that the correlation
matrix of all variables Zi represents the target correlation in terms of the identity matrix, thus

ρZZ = E
[
ZZT

] !
= I (3)

Inserting Eq. (2) and Eq. (3) in

ρZZ ρ−1
ZZ = I = ρYY ρ−1

YY (4)

and using the Cholesky factorization of the matrix of the pseudo correlations

ρYY = LLT (5)

we obtain

E
[
ZZT

]
= I IT = (L−1L) (L−1L)T = L−1L LTL−1T = L−1ρYYL−1T

and furthermore

E
[
ZZT

]
= L−1E

[
YYT

]
L−1T = E

[
L−1Y YTL−1T

]
= E

(L−1Y)︸ ︷︷ ︸
Z

(L−1Y)T︸ ︷︷ ︸
ZT


In the case of the non-singular lower triangle matrix L the transformation results in

Z = L−1Y (6)

and deals in this way numerically without correlation error. The back substitution of Eq. (1)

Ui = Zi · σHi
+ E[Hi]

gives normalized, nearly-uniformly distributed variables Ui. Finally, the uniform distributed
variables Xi ∼ Ui with respect to the vectors of lower and upper bounds xl and xu are simply
given by

X = xl + U ◦
(
xu − xl

)
=


x11 x12 · · · x1n
x21 x22 ... x2n
...

... . . . ...
xN1 xN2 · · · xNn

 ∈ DN,n ⊂ RN,n (7)

whereby, the symbol ◦ denotes the entrywise product.
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Figure 1: Histogram of the first variable x1, simu-
lated by Eq. (7).
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Figure 2: Histogram of the second variable x2, simu-
lated by Eq. (7).

2.3 Rearrangement of the latin hypercubes

On the other hand, the linear transformation in Eq. (6) moves the sample points coordinates
for all variables i > 1. And as a result the samples may be moved beyond the desired bounds
and marginal distributions may be effected from the change of correlation, as shown in Fig. (1)
and Fig. (2). To solve this problem, in [8] a resorting of the design matrix Z according to the
rank correlation of the exact marginal distributions of H

Hk
i =

πk
Zi

[πk
Zi

]− 0.5

N

is presented. Whereby, the inner permutation matrix describes the rank-order sorting of the N
samples of n variables of the design matrix Z and the outer permutation matrix describes the
rank-order sorting of the sorted indices to create modified center-based latin hypercubes H with
accurate marginal distributions to ensure univariate uniformity. Unfortunately, this rearrange-
ment within the so-called standard latin hypercube sampling achieves the multidimensional
uniformity but introduces an unwanted pseudo linear correlation of the simulated variables

X = xl + H ◦
(
xu − xl

)
again. But in summary, the maximal correlation error of the simulated variables

ερXX
= max

1≤i,j≤n
(|ρXX − I|) (8)

is significantly smaller than the maximal correlation error ερHH
of the first latin hypercube

sampling.

3 LATIN HYPERCUBE SAMPLING BASED ON ADAPTIVE ORTHOGONAL DE-
COMPOSITION

3.1 Adaptive rearrangement of the latin hypercubes

Particularly, in high-dimensional design spaces and with a reduced number of design eval-
uations n . N the correlation error in Eq. (8) increases as a result of the rank-order sorting.
Otherwise, the linear transformation in Eq. (6) achieves an exact correlation and maintain the
uniformity of the first variable. So, an essential enhancement of the standard latin hypercube
sampling is an adaptive rearrangement of the columns of the current given latin hypercube ma-
trix H in each iteration step, as shown in Fig. (3).
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[|ρXX − I|] =



1 . . . . . . j . . . n

1 0 · · · · ·
... · 0 · · · ·
i · · 0 ερXX

· ·
... · · · 0 · ·
... · · · · 0 ·
N · · · · · 0


H =


h11 · · · h1i · · · h1j · · · h1n
h21 · · · h2i · · · h2j ... h2n
... . . . ... . . . ... . . . ...
hN1 · · · hNi · · · hNj · · · hNn



Figure 3: Iterative rearrangement of the columns of the latin hypercube matrix H, according to the rows number i
and the columns number j of the maximal correlation error and the first column with accurate uniformity.

3.2 Orthogonal transformation using proper orthogonal decomposition

The Cholesky factorization Eq. (5) requires that the number of samples is greater than the
number of input variables, thus N > n to ensure a positive definite pseudo correlation matrix.
Otherwise, this kind of decomposition is not applicable. Eq. (5) can be replaced by principal
component analysis, e.g. using the eigenvalue decomposition

ρYYV = VΛ

whereby V denotes the matrix of the eigenvectors and Λ the diagonal matrix of the eigenvalues.
Inserting the orthogonality condition VTV = I we obtain

VTρYYV = Λ

and furthermore the spectral decomposition of the pseudo correlation matrix

ρYY = VΛVT = VΛ
1
2 Λ

1
2
T
VT

which is a symmetric decomposition and can be used instead of Eq. (6) for the transformation
of the design matrix

Z =
(
VΛ

1
2

)−1

Y (9)

This transformation is recommended in case of a non-positive definite pseudo correlation ma-
trix. However, in the next step, the case N ≤ n results in a singular correlation matrix within
Eq. (9), again. Indeed, this is solvable using the Moore-Penrose pseudo inverse but this proce-
dure would occur with the same order of error magnitude as using plain Monte Carlo simulation.

The proper orthogonal decomposition, also known as Karhunen-Loève decomposition, may
serve to ensure the correlation transformation in case ofN < n within two steps, namely the or-
der reduction of the design matrix by projecting high-dimensional data into a lower-dimensional
space and orthogonal transformation of the sample covariance or correlation matrix to the basis
of the largest eigenvalues. A bibliographical review and applications of the proper orthogonal
decomposition is given in [11]. The discrete modelling of the proper orthogonal decomposi-
tion is achieved by the singular value decomposition. The singular value decomposition of the
correlation matrix can be written as

ρYY = USVT = US
1
2 S

1
2 VT

where U is an n × n orthonormal matrix containing the left singular vectors of the correlation
matrix; S is an n×n diagonal and semi-positive definite matrix with diagonal entries containing
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the singular values σi and V is an n×n orthonormal matrix containing the right singular vectors.
Since, the diagonal matrix S contains non-negative real numbers only, we obtain a non-negative
definite transformation matrix in Eq. (6) using

Z =
(
US

1
2

)−1

Y (10)

There are several numerical methods for calculating the singular value decomposition, e.g. pre-
sented in [6].

3.3 Low-rank approximation of the design matrix

Unfortunately, the application of Eq. (10) for the singular caseN ≤ n results in a numerically
singular transformation matrix US

1
2 . This problem can be eliminated by projecting the design

matrix Y from the n-dimensional variable space into a lower-dimensional space, see e.g. [1].
For the non-singular case N > n a singular value decomposition of the design matrix is given
by

Y = ΨΣΦT

where Ψ is an N × N unitary matrix, Σ is a N × n pseudodiagonal matrix with non-negative
numbers on the diagonal also known as the singular values of the design matrix Y and Φ is
an n × n unitary matrix. The columns of Ψ and the columns of Φ are called the left-singular
vectors and right-singular vectors of Y, respectively.

For the singular case we use any m < N < n column-reduced and row-reduced matrices to
calculate an optimal rank m approximation of the data matrix Y as follow

Ym = ΨmΣmΦT
m; Ym ∈ RN,n,Ψm ∈ RN,m,Σm ∈ Rm,m,Φm ∈ Rn,m

with the leading m ×m principal minor of Σm and the m proper orthogonal modes of the m
columns of Φm. The rank m can be chosen stepwise afterwards to reach the optimality of the
approximation in every iteration step of the adaptive orthogonal decomposition and rearrange-
ment of the latin hypercubes.

4 SIMULATION EXAMPLES OF UNCORRELATED VARIABLES WITH MULTIDI-
MENSIONAL UNIFORMITY

4.1 Non-singular, positive definite covariance matrix

In the following example the convergence of the proposed adaptive procedure in comparison
with other methods is presented to simulate uniform distributed variablesXk

i (5; 10/(2
√

3)) with
i = 1, ..., n = 100 variables and k = 1, ..., N = 120 latin hypercube samples.

The initial error ερHH
of plain latin hypercube sampling of 0.323 is near the error of the

Monte Carlo simulation ερUU
of 0.3228. The adaptive procedure converged continuously to

an error of ερXX
= 0.0045 after 100 iterations. For comparison the errors of other methods

are given in the Fig. (4). In particular, optimized latin hypercube sampling1, according to the
Matlab implementation of [5], Matlab implementation lhsdesign, based on the Gram-Schmidt
orthogonalization2, as proposed in [14] and standard latin hypercube sampling algorithm3, as
shown in section (2) with rearrangement of the latin hypercubes, introduced in [8].

4.2 Singular covariance matrix and low-rank approximation of the design matrix

For the singular case N < n of the simulation of i = 1, ..., n = 100 uniform distributed
variables Xk

i (5; 10/(2
√

3)) and k = 1, ..., N = 80 latin hypercube samples it is essential to
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Figure 4: Convergence of the maximal correlation error ερXX
in regular case of n = 100 and N = 120.
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Figure 5: Anthill plot of the simulated variables x1 and xn in singular case of n = 100 and N = 80

calculate a low-rank approximation of the design matrix and perform the proper orthogonal
decomposition in every iteration step. The initial error of plain latin hypercube sampling of
ερHH

= 0.422 is near the error of the Monte Carlo simulation. The adaptive procedure con-

3340



D. Roos

0
0.02
0.04
0.06
0.08
0.1

0 2 4 6 8 10

h
N

(x
1
)

x1

Figure 6: Histogram of the first variable x1 in singu-
lar case of n = 100 and N = 80.
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Figure 7: Histogram of the last variable xn in singular
case of n = 100 and N = 80.
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Figure 8: Convergence of the maximal correlation error ερXX
in singular case of n = 100 and N = 80.

verged continuously to an error of ερXX
= 0.277 after 100 iterations, as shown in Fig. (8).

The anthill plot Fig. (5) and the histograms Fig. (6) and Fig. (7) of the first and last simulated
variable shows the applicability of the proposed method.

5 SUMMARY

The proposed method of proper orthogonal decomposition of the covariance matrix and low-
rank approximation of the design matrix using the singular-value decomposition in combination
with an enhanced adaptive rearrangement of the columns or variables of the latin hypercube de-
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sign matrix and an adaptive rank-order sample resorting of the variables is a fast an accurate
alternative simulation procedure to sample uncorrelated variables with multidimensional unifor-
mity. In contrast to the standard latin hypercube sampling, the Gram-Schmidt orthogonalization
and a chosen optimization-based procedure we obtain a stable convergence of the correlation
error to zero, even in high-dimensional problems. For the singular case, which means a smaller
number of design evaluations as the number of variables, the propose method is more stable
and efficient than other tested optimization-based methods or orthogonalization methods. This
is very important for an efficient design of experiment in industrial applications of the variance-
based sensitivity analysis and the metamodel-based optimization.
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Abstract. Growing popularity of probabilistic and stochastic optimization methods in engi-
neering applications has vastly increased the number of sampling points required to obtain a
solution. Depending on the complexity of the underlying physical model, this often proves to
be a computationally burdensome challenge. In order to overcome this challenge, one possi-
ble approach is to use surrogate models (metamodels), which approximate the responses of the
physical model in a given variable subspace.

In the past years, many different metamodeling algorithms such as Gaussian process (Krig-
ing), moving (weighted) least squares, radial basis functions, regression neural networks and
support vector regression have been suggested as an alternative to ordinary least squares (poly-
nomial regression). The choice of the best metamodeling algorithm for any application is not
a trivial task. Although there has been previous research to compare at least some of these
methods to some extent ([1, 2, 3]), only a small number of publications compare all of these
algorithms over a large number of multidimensional functions with varying characteristics.

In this paper, a comparison of the aforementioned methods is carried out. Using well-known
analytical test functions for optimization, this paper aims to shed some light on the question of
which algorithm performs best under which conditions. Apart from the structure of analytical
test functions, the influence of the number of sampling points and the amount of noise in the
observations on the performance of metamodeling algorithms is investigated.
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1 INTRODUCTION

In physics and engineering, nature is understood and described by mathematical models,
which are abstractions of reality. Although the underlying reality does not change, these mod-
els are updated constantly, whenever a newer theory proposes better results and a better under-
standing of our observations.

In this respect, a metamodel or a surrogate model is a mathematical abstraction of a physical
model that tries to mimic the dependencies between the input and output parameters. This
abstraction is useful if the computational cost of the physical model is too high and a large
number of calculations are needed, as is the case for model optimization and reliability analysis.
Furthermore, finding metamodels to describe the experimental data is also possible, even if a
physical model is not available or is too expensive to compute.

On the other hand, some information loss is inevitable because of the abstraction. The
amount of this information loss or error depends on a number of aspects. Besides the valid-
ity of the physical model, the choice of metamodeling algorithm, number of sample points used
to train the algorithm and the amount of numerical or experimental noise all contribute to the
amount of error in a metamodel. Therefore, this benchmark aims to test some of the existing al-
gorithms under different conditions. There are also other sources of error, such as the inclusion
of unimportant variables and the method for the design of experiments but these issues are not
addressed within this benchmark.

2 METAMODELING

Before beginning with the benchmark, the algorithms to be tested will be introduced briefly.
Our aim here is not to give instruction for building these algorithms but to address similarities
between these algorithms by not conforming to individual choice of notations for each method
and using similar symbols for similar elements of each metamodel. For more detailed instruc-
tions on how to build these algorithms, we refer to the corresponding citations.

2.1 Ordinary least squares

Ordinary least squares (OLS) or polynomial regression is one of the earliest and easiest
methods for surrogate modeling. First, the input vector is mapped to a polynomial. After that,
the coefficients of each monomial term are determined. The prediction function is the sum of
the multiplication of coefficients with their corresponding monomials.

Let x ∈ IRn be an n-dimensional vector with elements x = [x1, x2, x3, . . . , xn] and let
y = f(x) be the function that is trying to be approximated. The prediction function for a
polynomial of degree d can be written as

f̃(x) = c0 + c1x1 + · · ·+ cnxn + cn+1x
2
1 + c2nx1xn + · · ·+ cn(n+1)

2

x2n + · · ·+ ckx
d
n

or in matrix form

f̃(x) = p(x, d) · c
c = [c0, c1, c2, ..., ck]

T

where p(x, d) is the polynomial mapping function of order d for the n-dimensional input vector
x. Coefficient vector c must be determined by using m sampling points. The least squares
problem is underdetermined for m < k. The relationship between the number of monomial
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terms k, number of input parameters n and polynomial degree d is given by

k =

(
n+ d

d

)
=

(n+ d)!

d!n!
(1)

where (·)! denotes the factorial operation. If the matrix of sample points X0 and the vector of
responses y0 has more than k entries, coefficient vector c can be obtained by minimizing

min
c

m∑
i=0

(y0i − f̃(x0
i ))

2 (2)

the sum of squared errors (SSE). This is a quadratic system of equations, which can be solved
easily by the Newton’s method. The only free parameter of OLS is the polynomial degree d.
Figure 1a, shows that the quality of the surrogate model can increase for larger values of d. On
the other hand, polynomial degree d has a large influence on the number of sampling points
m needed for the approximation. Eq. 1 shows that the number of monomials increase rapidly
with the increasing number of input parameters n and the polynomial degree d. This represents
a great setback for this method. Further details about OLS and how to efficiently solve least
squares problems can be found in [4]. In this benchmark, d is varied between 2 and 4 and the
best result is recorded.

2.2 Moving least squares

Another method which has proved to be useful for metamodeling is the so called moving
least squares (MLS). Similar to OLS, the input vector is mapped to a polynomial. Instead of
determining global coefficients c, local coefficients c(x) are obtained by solving a weighted
least squares problem [5]. The prediction function

f̃(x) = P(x, d)T · c(x)

is similar to OLS, except the coefficients c(x) are not constant but functions of the approxima-
tion point x.

Coefficients c(x) depend on the weight functionw(x) which determine the influence domain
D := {x0

i ∈ D | ‖x − x0
i ‖2 ≤ θr} with the radius θr. If the sample points lie in this domain,

the weight function q(x) takes values between 0 < q(x) ≤ 1, while it is set to q(x) = 0 outside
of the influence domain. Following Gaussian function [6]

q(ri) =
e−(ri/αθr)

2 − e−α−2

1− e−α−2

is chosen as the weight function with shape parameter α = 0.5 for this study. Parameter ri
denotes the Euclidean distance between x and the sample point x0

i . The weighted least squares
problem can be written as

min
c

m∑
i=0

q(ri)(y
0
i − f̃(x0

i ))
2

similar to Eq 2. It is easier to formulate and solve this system of equations in matrix form. Local
coefficients can be directly obtained by solving

c(x) = PT
0Q(x) · y0 · (PT

0Q(x)P0)
−1 (3)

Q = diag(q(r1), q(r2), . . . , q(rm))

P0 =
[
P(x0

1, d), . . . ,P(x0
m, d)

]T
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where ri denotes the distance between the prediction point and sample point x0
i . This expression

must be computed for each prediction point. This is illustrated in Figure 1b for different sample
points. Each colour represents the local least squares approximation of a prediction point.
Although the prediction function may seem to be more complicated, better approximations with
lower degrees of polynomials can be achieved by this method. The polynomial degree in Figure
1b and during this benchmark is set to 2. Compared to Figure 1a, it can be seen that the quality
of approximation is much better for the same polynomial degree. On the other hand, the radius
of the influence domain θr is a free parameter and must be determined by optimization. This
process is called training. Training becomes computationally more expensive with increasing
number of free parameters. Nevertheless, this one dimensional optimization problem can often
be solved quite fast even with stochastic optimization methods.

2.3 Kriging (Gaussian process)

Kriging is an interpolation method, which uses the spatial correlation between the data points
to obtain weights for any prediction point. The prediction function for the Kriging model can
be written as [7]

f̃(x) = P(x, d)ĉ+ q(x)Q(X0)−1(y0 −PT
0,dĉ) (4)

and consists of two additive terms.
The first term of the summation is a polynomial regression. In ordinary Kriging, the poly-

nomial degree is zero, hence the first term is a constant value. This can also be seen as the
expectation value of a Gaussian process that this model represents. In the case of universal
Kriging, polynomial degree may be greater than zero. In this case, the Gaussian process has
different expected values at different locations.

The second term of the summation is the interpolating part. If the model is trained well, this
part is equal to the error of the polynomial regression at each observed point. There are different
variations of the spatial correlation functions q(x) and the choice of the correlation function has
great impact on the surrogate model. Squared exponential

qi,sq(x) = exp

(
−

n∑
j=1

θj
(
xj −X0

i,j

)2) (5)

and absolute exponential functions

qi,abs(x) = exp

(
−

n∑
j=1

θj
∣∣xj −X0

i,j

∣∣) (6)

are used in this benchmark. Notice the index j in Eq. 5 and Eq. 6. It denotes that there
may be different values for the free parameter θj for different input dimensions. This is the
difference between anisotropic and the other types of Kriging mentioned above. For the latter,
θj is constant for all dimensions. Theoretically, the set of possible solutions for anisotropic
Kriging includes the solutions for other types of Kriging (i.e. setting all polynomial coefficients
to zero except the constant term and setting all values of θk to some constant). Hence the global
optimal solution for anisotropic Kriging should be at least as good as the other types of Kriging.
On the other hand, there is no guarantee that the chosen optimization algorithm will always
find the global optimum. Universal and anisotropic Kriging are therefore both trained with both
correlation functions. The best result for each function is shown in the benchmark.

3347



Can Bogoclu & Dirk Roos

To determine θ, the maximum likelihood function is used as an alternative to SSE as the
objective function of optimization. After θ is found, coefficients ĉ can be obtained through the
solution of quadratic equation systems as in OLS 2 and in MLS 3.

Figure 1c shows the first part of the Eq. 4 and the final solution of Kriging compared to OLS
for a second order polynomial. It is noticeable that the polynomial provides only a plane for
the mean value, while the correlation function accounts for the variance on each data point and
makes this method an interpolation. The polynomial degree d for this method is also set to 2
during this benchmark.

2.4 Radial basis functions

Another way of metamodeling is to interpolate the data points with radial basis functions
(RBF) of distance. The prediction function

f̃(x) =
m∑
i=1

ciq
(∥∥x− x0

i

∥∥
2
, θ
)

(7)

is a linear combination of radial basis functions q(·). In the above equation, x0
i denotes the i-th

of m data points and ‖ · ‖2 the Euclidean norm. Function q(·) is the chosen radial basis function
which involves a free parameter θ. The choice of the right RBF is crucial and there are many
possibilities. Some authors even suggest using anisotropic [8] (like in anisotropic Kriging) or
locally bounded [1] (like in MLS) radial basis functions. In our preliminary tests, we found that
the following three RBF outperformed others for our test functions. Hence, we chose to use the
multiquadratic RBF

q(x,x0
i ) =

√
‖x− x0

i ‖
2
2 + θ2

the cubic RBF

q(x,x0
i ) = (‖x− x0

i ‖2 + θ)3

and the Gaussian RBF

q(x,x0
i ) = exp(−θ ‖x− x0

i ‖
2
2)

for our benchmark. Like for Kriging, the best solution is chosen with a posteriori knowledge
and shown in the benchmark. After choosing the radial basis function and obtaining the free
parameter θ, coefficients ci can be determined by minimizing SSE as before and the metamodel
is trained. Since there are equal number of coefficients to the data points, the solution is an
interpolation between these points through the RBF. This process is visualized in Figure 1d for
Gaussian RBF.

2.5 Support vector regression

Originally a classification algorithm, support vector machines seek to find the hyperplane that
separates the data with a maximized minimum distance to the margin [9]. In ε-support vector
regression (SVR) this margin is used as the approximation function with a desired precision ε.
This is demonstrated in Figure 1e for a data set with an exaggerated amount of error for visual
purposes. Furthermore, the flattest plane is sought that achieves the above condition if more
than one exist.
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For linearly separable data, the prediction function

f̃(x) = ĉTx+ b

is similar to OLS. However, the coefficients are obtained not through minimizing the SSE but
by solving the following optimization problem

min
1

2
‖c‖22 + θP

m∑
i=r

(ζi + ζ∗i ) (8)

s.t.


y0i − ĉTx− b ≤ ε+ ζi

−y0i + ĉTx+ b ≤ ε+ ζ∗i
ζi, ζ

∗
i ≥ 0

to ensure flatness. ζi and ζ∗i are slack variables in Eq. 8 which relax the constraints and the free
parameter θP is the penalty term for the violation of the constraints with ε. This problem can
be solved for a given free parameter ε and θP . Since we seek to optimize the free parameters,
training of this metamodel becomes a two step optimization problem as in Kriging, MLS and
RBF.

For the solution of nonlinear problems, the input space is mapped to a higher dimensional
space by the mapping operator φ(x) for linearization. The prediction function is modified as

f̃(x) = ĉTφ(x) + b

for this purpose. Obtaining the mapping function φ(X) explicitly is often very difficult. Instead,
the so called kernel trick is generally used to define the mapping function implicitly by defining
a kernel function qi,j(xi,xj) such that the kernel function

q(xi,xj) = φ(xi)
Tφ(xj)

replaces the mapping operator φ(x) and the prediction function

f̃(x) =
m∑
i=r

ciq(x
0
i ,x) + b

can be expressed without φ(x). It can be seen that only m − r of the m data points are used
for the prediction. In this benchmark, r is set to zero since the number of sample points are
relatively small. As kernel functions, sigmoid function

q(xi,xj) = tanh(θxTi xj)

polynomial of degree d = 2

q(xi,xj) = (xTi xj + θ)d

and the Gaussian radial basis function

q(xi,xj) = exp

(
−
‖xi − xj‖22

2θ2

)
are used. As before, the best results for each test function are shown but in practical applications,
choosing the right kernel may become exhausting. The optimization problem in Eq. 8 must be
reformulated to include the kernel mapping. This can be found in [9] and will not be expressed
here.

3349



Can Bogoclu & Dirk Roos

2.6 Artificial neural networks

An artificial neural network (ANN) is a network of mathematical mapping operators, called
neurons. Neurons take an input (a scalar, a vector or a matrix) that is passed to them and map it
to an output with the activation function (kernel) that is stored in them. The Network consists
of one or more layers. Neurons on each layer are connected to the neighboring layers. A
more detailed description can be found in [10]. Among other purposes like classification and
optimization, an ANN can also be used for metamodeling. In this benchmark two variations
of radial basis neural networks are tested for this purpose. Such an ANN consists of one input
layer, one or more hidden layers and one output layer. For each input dimension, there is a
neuron on the input layer. The first hidden layer contains the radial basis neurons and the output
layer contains the approximated value for the given input (Figure 1f).

The prediction function is given as

f̃(x) =
m∑
j=1

cjφj(x) + bj

φj(x) = exp
(
−θj

∥∥x− x0
j

∥∥
2

)2
where φj is the output of j-th neuron on the hidden layer and m is the number of neurons on the
hidden layer which is set to the number of data points in this benchmark. Free parameter θ is
the so called bias of the neurons in the hidden layer and must be obtained through optimization.
Coefficient vectors c and b can be found linearly by minimizing SSE for a given θ.

The similarity between the Gaussian radial basis function and such a network is obvious.
Apart from the additive coefficients bj , the prediction functions are the same, although the
formulations are quite different. Such a network also interpolates the data.

Another more generalized formulation of a regression neural network is also tested in this
benchmark as described in [11]. The main difference between both formulations are in the
second layer so only the first part or the second layer

f̃(x) =
m∑
j=1

yT0 φj(x)

‖φj(x)‖2

of the prediction function is modified. As before, both of these methods are tested and the best
results for each test function are shown in the benchmark.

3 BENCHMARK

The benchmark consists of 15 test functions. DoEs are created for each function and each
number of sample points by an optimized LHS method similar to [12], that takes both distance
and correlation into account. First, the number of sample points is varied stepwise. Consecu-
tively, Gaussian white noise is introduced to the model additively

ŷ0i = y0i (1 +N (0, LN))

and the level of noise LN is varied stepwise for a fixed number of sample points.
Furthermore, optimization of the metamodels is achieved by a particle swarm optimization

algorithm to evade local minimums in combination with a local deterministic optimizer. A k-
fold cross-validation is used to avoid overfitting. In this method, the training data is divided into
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(a) OLS: Colours represent the polynomial order. Blue
points represent the training data.
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local approximation.

x

f
(x
)

OLS
Wt. OLS
Kriging
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(d) RBF: The prediction function (top) is the linear
combination of RBF (middle) and the coefficient vec-
tor ci (bottom). Colours represent prediction points.
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(e) SVR: Error on data points are exaggerated to visu-
alize classification and the margin used as metamodel.
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(f) ANN: All neurons are mathematical transforma-
tions that are interconnected through the layers.

Figure 1: Visualisation of metamodeling methods
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k packages. k− 1 packages are used for the training and one package for testing each iteration.
The SSE is calculated by iterating over all test packages and used as the objective function for
determining the free parameters. The number of folds k was set to 5.

Finally, metamodels are trained with the original and the standardized data to record the best
result. Standardization of a variable z is done by

z =
(z− µz)
σz

(9)

with mean vector µz and variation vector σ2
z . Standardized data includes a standardized input

matrix x0 and a standardized output vector y0.

3.1 Test functions

The following test functions were chosen for this benchmark:

1. Ackley function [13]:

f(x) = −20 exp

(
−1

5

√
1

2
(x21 + x22)

)
− exp

(
1

2
(cos(2πx1) + cos(2πx2))

)
+ e+ 20

−5 ≤ x1,2 ≤ 5

2. Beale function [14]:

f(x) = (1.5− x1 + x1x2)
2 +

(
2.25− x1 + x1x

2
2

)2
+
(
2.625− x1 + x1x

3
2

)
−4.5 ≤ x1,2 ≤ 4.5

3. Booth function [14]:

f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

−10 ≤ x1,2 ≤ 10

4. Bukin function no. 6 [15]:

f(x) = 100
√
|x2 − 0.01x21|+ 0.01|x1 + 10|

−15 ≤ x1 ≤ −5; −3 ≤ x2 ≤ 3

5. Cross-In-Tray function [16]:

f(x) = −10−4

(∣∣∣∣∣sin(x1) sin(x2) exp
(∣∣∣∣∣100−

√
x21 + x22
π

∣∣∣∣∣
)∣∣∣∣∣+ 1

)0.1

−5 ≤ x1,2 ≤ 5

6. Custom probability density function:

f(x) =
(
1 + x41 + 5x42 + 2x22

)−1

−3 ≤ x1,2 ≤ 3
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7. Easom function [17]:

f(x) = − cos(x1) cos(x2) exp
(
−(x1 − π)2 − (x2 − π)2

)
0 ≤ x1,2 ≤ 6

8. Eggholder function [16]:

f(x) = −(x2 + 47) sin

(√∣∣∣x2 + x1
2

+ 47
∣∣∣)− x1 sin(√|x1 − x2 − 47|

)
−512 ≤ x1,2 ≤ 512

9. Goldstein-Price function [18]:

f(x)) =
(
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x21 − 14x2 + 5x1x2 + 3x22

))
·
(
30 + (2x1 − 3x2)

2
(
18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

))
−2 ≤ x1,2 ≤ 2

10. Holder Table function [16]:

f(x) = −
∣∣∣∣sin(x1) cos(x2) exp(|1− π−1

√
x21 + x22|

)∣∣∣∣
−3 ≤ x1,2 ≤ 3

11. Levy function No.13 [16]:

f(x) = sin2(3πx1) + (x1 − 1)2
(
1 + sin2(3πx2)

)
+ (x2 − 1)2

(
1 + sin2(2πx2)

)
−6 ≤ x1,2 ≤ 6

12. Michalewicz function [19]:

f(x) = −
n∑
i=1

sin(xi) sin
20

(
i · xi
π

)
0 ≤ x1,2 ≤ π

13. Six hump camel function [20]:

f(x) = 4x21 − 2.1x41 +
1

3
x61 + x1x2 − 4x22 + 4x422

−2 ≤ x1,2 ≤ 2

14. Three hump camel function [16]:

f(x) = 4x21 − 2.1x41 +
1

3
x61 + x1x2 − 4x22 + 4x422

−5 ≤ x1,2 ≤ 5
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15. Ursem function [21]:

f(x) = − sin(2x1 − 0.5π)− 3 cos(x2)− 0.5x1

−2 ≤ x1,2 ≤ 2

Some of these functions are very easy to approximate (i.e. functions 2 and 3), while some are
extremely challenging (i.e. functions 8 and 10). The majority of these functions should be
moderately difficult to approximate for the tested metamodeling algorithms. In this way, some
variance on the complexity of the structure of the test functions is achieved. The purpose of this
variance is to reduce the bias of the benchmark such that no algorithm is favoured. Functions
are expressed by means of equations and input bounds.

3.2 Results

Root mean squared error (RMSE) of 16384 validation points created from a Sobol sequence
[22] is used as results in Table 1 and Table 2. Smaller values of RMSE represent a better model
quality. The number of sample points are varied incrementally between 32, 64, 96 and 128 first.
Consecutively, noise levels are varied between 1%, 2.5%, 5% and 10% incrementally while the
DoEs with 128 points are reused. It can be argued that 10% noise is quite a lot but since we
suggest using metamodels to model experimental data, such a high level of noise can still be
interesting.

Besides the RMSE for each function, the mean value meanErr of RMSE and the standardized
mean value meanErr are displayed for each category (see Figure 2 and Figure 3). The mean value
meanErr can be used as a measure to compare an algorithm with itself between the categories
but it is biased since functions with greater prediction errors have a bigger impact on the results.
Standardization is needed to equalize the weight of each function and make the score more
independent of the magnitude of errors. Hence, each evaluation of a test function is standardized
with the mean and the standard deviation of the root mean squared error of all algorithms for that
evaluation. The mean value of the standardized error meanErr,k of algorithm k can be expressed
as shown in Eq. 9

ξi,k =
RMSEi,k−mean(RMSEi,all)

std(RMSEi,all)

meanErr,k =
∑15

i=1 ξi,k
15

and will be used for the categorical comparison of algorithms with each other. The variable
RMSEi,all denotes the RMSE of all algorithms for the function i and does possess the same
mean value as meanErr which denotes the mean of the RMSE along all functions in a category.

Samp. Func. ANN GP MLS OLS RBF SVR

32

1 7.17E − 01 7.69E − 01 7.83E − 01 1.11E + 00 6.95E− 01 7.83E − 01
2 8.48E + 03 7.85E + 03 1.19E + 04 1.53E + 04 3.30E+ 03 1.82E + 04
3 2.41E − 04 1.26E− 13 4.66E − 13 6.24E − 12 4.74E − 04 2.37E + 01
4 1.37E + 01 1.31E + 01 1.49E + 01 1.61E + 01 1.31E + 01 1.19E+ 01
5 2.03E − 01 1.13E− 01 2.02E − 01 2.11E − 01 1.77E − 01 2.04E − 01
6 6.11E− 02 6.58E − 02 6.84E − 02 1.51E − 01 6.12E − 02 1.04E − 01
7 5.40E− 02 6.43E − 02 7.46E − 02 1.40E − 01 5.73E − 02 6.09E − 02
8 2.91E+ 02 3.23E + 02 3.64E + 02 3.51E + 02 2.98E + 02 3.18E + 02
9 1.41E+ 04 1.92E + 04 4.13E + 04 5.13E + 04 1.44E + 04 3.74E + 04
10 2.72E + 00 2.62E + 00 4.92E + 00 3.08E + 00 2.69E + 00 2.60E+ 00

3354



Can Bogoclu & Dirk Roos

Samp. Func. ANN GP MLS OLS RBF SVR

11 1.21E + 01 1.10E + 01 1.05E+ 01 1.09E + 01 1.11E + 01 1.17E + 01
12 3.02E − 01 1.28E− 01 2.40E − 01 2.86E − 01 2.33E − 01 3.05E − 01
13 1.24E− 01 8.48E − 01 2.84E + 00 5.18E + 00 2.16E − 01 2.93E + 00
14 5.76E + 01 6.32E− 01 2.15E + 02 2.34E + 02 5.60E + 01 1.56E + 02
15 4.27E− 02 4.70E − 02 1.46E − 01 3.14E − 01 3.21E − 01 4.28E − 02

64

1 7.58E − 01 6.58E− 01 7.17E − 01 1.04E + 00 6.73E − 01 6.98E − 01
2 2.62E+ 02 5.67E + 03 6.29E + 03 1.48E + 04 5.48E + 02 8.38E + 03
3 2.28E − 04 1.17E− 13 4.95E − 13 3.94E − 12 3.05E − 04 1.42E + 01
4 9.51E + 00 8.18E + 00 1.02E + 01 1.54E + 01 7.98E+ 00 1.03E + 01
5 1.54E − 01 8.48E− 02 2.02E − 01 2.06E − 01 1.48E − 01 1.98E − 01
6 2.21E− 02 4.67E − 02 3.24E − 02 1.50E − 01 2.25E − 02 2.45E − 02
7 9.80E − 03 3.34E − 02 1.61E − 02 1.39E − 01 5.00E− 03 5.82E − 03
8 2.87E + 02 2.80E + 02 3.38E + 02 3.45E + 02 2.61E+ 02 2.98E + 02
9 1.11E + 03 5.79E + 03 9.95E + 03 4.83E + 04 1.02E+ 03 1.40E + 04
10 2.55E + 00 2.12E+ 00 2.88E + 00 2.65E + 00 2.59E + 00 2.54E + 00
11 9.36E + 00 8.47E+ 00 9.86E + 00 9.45E + 00 1.05E + 01 1.10E + 01
12 1.68E − 01 4.15E− 02 1.84E − 01 2.78E − 01 1.61E − 01 2.12E − 01
13 2.79E− 03 3.17E − 01 1.40E + 00 5.07E + 00 1.66E − 02 1.50E + 00
14 9.54E − 01 4.58E− 02 8.06E + 01 2.28E + 02 1.24E + 00 1.01E + 02
15 2.01E− 02 5.31E − 02 5.41E − 02 3.13E − 01 2.14E − 01 2.97E − 02

96

1 7.55E − 01 4.83E− 01 6.80E − 01 1.03E + 00 7.13E − 01 6.78E − 01
2 9.80E+ 01 1.52E + 03 3.32E + 03 1.43E + 04 1.48E + 02 4.69E + 03
3 1.22E − 04 1.37E− 13 5.02E − 13 5.05E − 12 2.96E − 04 8.21E + 00
4 8.52E + 00 6.20E + 00 1.20E + 01 1.51E + 01 5.18E+ 00 9.10E + 00
5 1.39E − 01 6.85E− 02 1.98E − 01 1.99E − 01 1.33E − 01 1.49E − 01
6 1.57E − 02 3.66E − 02 2.42E − 02 1.50E − 01 1.17E− 02 1.44E − 02
7 6.07E− 04 1.22E − 02 1.37E − 02 1.39E − 01 1.19E − 03 1.91E − 03
8 2.99E + 02 2.70E + 02 2.90E + 02 3.12E + 02 2.53E+ 02 2.99E + 02
9 1.43E+ 02 1.11E + 03 6.17E + 03 4.83E + 04 2.12E + 02 1.01E + 04
10 2.36E + 00 1.85E+ 00 2.48E + 00 2.53E + 00 2.16E + 00 2.46E + 00
11 9.27E + 00 9.24E+ 00 9.40E + 00 9.78E + 00 1.08E + 01 9.50E + 00
12 1.36E − 01 2.45E− 02 2.47E − 01 2.78E − 01 1.33E − 01 1.37E − 01
13 2.30E− 03 1.93E − 01 6.40E − 01 4.97E + 00 2.84E − 03 3.92E − 01
14 6.18E − 01 2.88E− 03 4.84E + 01 2.34E + 02 8.48E − 01 8.11E + 01
15 1.47E − 02 3.35E − 02 1.87E − 02 3.12E − 01 2.15E − 01 1.06E− 02

128

1 6.40E − 01 3.63E− 01 6.54E − 01 1.02E + 00 6.88E − 01 6.62E − 01
2 4.63E + 01 7.29E + 02 2.52E + 03 1.43E + 04 2.56E+ 01 2.61E + 03
3 1.14E − 04 1.18E− 13 5.34E − 13 4.34E − 12 2.14E − 04 2.55E + 00
4 7.79E + 00 6.03E + 00 7.07E + 00 1.51E + 01 4.70E+ 00 5.98E + 00
5 1.36E − 01 6.34E− 02 1.51E − 01 2.00E − 01 1.32E − 01 1.22E − 01
6 6.89E − 03 2.29E − 02 2.63E − 02 1.51E − 01 5.82E− 03 7.95E − 03
7 4.98E− 05 8.45E − 03 1.43E − 02 1.40E − 01 2.04E − 04 1.75E − 03
8 2.98E + 02 2.45E + 02 2.58E + 02 3.06E + 02 2.30E+ 02 3.00E + 02
9 8.83E+ 01 3.73E + 02 9.43E + 03 4.96E + 04 9.26E + 01 6.03E + 03
10 2.40E + 00 1.78E+ 00 2.18E + 00 2.36E + 00 1.98E + 00 2.48E + 00
11 1.05E + 01 9.79E + 00 9.54E+ 00 1.00E + 01 1.15E + 01 1.08E + 01
12 1.40E − 01 1.40E− 02 7.25E − 01 2.77E − 01 1.12E − 01 1.16E − 01
13 1.26E − 03 1.33E − 02 4.52E − 01 4.98E + 00 9.79E− 04 5.01E − 01
14 3.18E − 01 2.41E− 03 4.88E + 01 2.30E + 02 3.16E − 01 3.53E + 01
15 1.27E − 02 2.57E − 02 1.83E − 02 3.11E − 01 2.22E − 01 1.25E− 02

Table 1: Root mean squared error of prediction at 16384 validation points for various number of sample points
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Figure 2: meanErr and meanErr of the RMSE values for varied number of sample points

Table 1 shows the RMSE of 16384 validation points for a varying number of sample points.
Smaller values of error are better and bold values represent the best result for each function.
It can can be seen that the RMSE generally decreases with the increasing number of sample
points. There are contradictions to this observation (i.e. Function 3), where the prediction error
is already quite low for few samples and becomes larger because of oversampling.

Furthermore, it can be seen that different algorithms have the best score for different func-
tions. Figure 2 shows that Kriging (GP) outperforms other algorithms on average, followed by
ANN and RBF. OLS seems to have the poorest results in this part by a great margin.

Noise Func. ANN GP MLS OLS RBF SVR

1 %

1 6.48E − 01 3.98E− 01 6.63E − 01 7.06E − 01 6.98E − 01 6.61E − 01
2 2.31E+ 02 7.22E + 02 2.56E + 03 5.90E + 03 2.79E + 02 2.60E + 03
3 3.28E + 00 2.72E+ 00 2.86E + 00 3.28E + 00 3.26E + 00 4.78E + 00
4 7.90E + 00 6.05E + 00 7.64E + 00 1.49E + 01 4.84E+ 00 6.11E + 00
5 1.35E − 01 6.56E− 02 1.53E − 01 1.89E − 01 1.33E − 01 1.23E − 01
6 6.54E − 03 7.19E − 03 2.67E − 02 1.19E − 01 5.65E− 03 9.03E − 03
7 4.42E − 03 5.92E − 03 1.40E − 02 1.14E − 01 3.26E − 03 1.85E− 03
8 2.98E + 02 2.36E + 02 2.58E + 02 3.06E + 02 2.30E+ 02 3.00E + 02
9 2.17E+ 03 7.25E + 03 8.99E + 03 3.36E + 04 3.58E + 03 5.69E + 03
10 2.26E + 00 1.62E+ 00 2.33E + 00 2.26E + 00 1.98E + 00 2.48E + 00
11 1.05E + 01 9.86E + 00 9.54E+ 00 1.02E + 01 1.15E + 01 1.09E + 01
12 1.25E − 01 1.50E− 02 7.20E − 01 2.68E − 01 1.12E − 01 1.17E − 01
13 1.21E− 01 2.42E − 01 5.17E − 01 4.57E − 01 1.48E − 01 6.32E − 01
14 5.12E + 00 4.91E+ 00 2.60E + 02 5.21E + 01 6.21E + 00 5.82E + 01
15 4.08E − 02 1.11E− 02 1.82E − 02 1.31E − 01 2.28E − 01 1.18E − 02

2.5 %

1 7.21E − 01 4.57E− 01 6.85E − 01 7.18E − 01 7.25E − 01 6.63E − 01
2 5.21E+ 02 1.35E + 03 2.62E + 03 5.90E + 03 7.08E + 02 2.72E + 03
3 9.06E + 00 6.81E+ 00 7.16E + 00 8.19E + 00 8.68E + 00 1.20E + 01
4 9.04E + 00 6.61E + 00 8.58E + 00 1.50E + 01 5.50E+ 00 6.31E + 00
5 1.40E − 01 7.51E− 02 1.58E − 01 1.90E − 01 1.38E − 01 1.28E − 01
6 7.25E − 03 8.38E − 03 2.75E − 02 1.19E − 01 6.69E− 03 1.16E − 02
7 9.11E − 03 1.13E − 02 1.36E − 02 1.14E − 01 6.10E − 03 3.99E− 03
8 2.98E + 02 2.36E + 02 2.58E + 02 3.06E + 02 2.30E+ 02 2.81E + 02
9 5.97E+ 03 1.21E + 04 8.58E + 03 3.34E + 04 6.07E + 03 9.89E + 03
10 2.26E + 00 1.63E+ 00 2.33E + 00 2.26E + 00 1.98E + 00 2.47E + 00
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Noise Func. ANN GP MLS OLS RBF SVR

11 1.02E + 01 9.66E + 00 9.54E+ 00 1.02E + 01 1.14E + 01 1.01E + 01
12 1.25E − 01 1.50E− 02 7.12E − 01 2.68E − 01 1.12E − 01 1.18E − 01
13 2.95E− 01 3.64E − 01 6.65E − 01 5.14E − 01 3.74E − 01 7.50E − 01
14 1.10E+ 01 1.13E + 01 2.61E + 02 5.23E + 01 1.28E + 01 3.58E + 01
15 4.05E − 02 1.96E − 02 1.85E − 02 1.31E − 01 2.42E − 01 1.46E− 02

5 %

1 7.43E − 01 7.13E − 01 7.26E − 01 7.47E − 01 7.99E − 01 6.69E− 01
2 1.02E+ 03 2.13E + 03 2.77E + 03 5.91E + 03 1.15E + 03 2.60E + 03
3 1.56E + 01 1.36E+ 01 1.43E + 01 1.64E + 01 1.65E + 01 1.49E + 01
4 9.08E + 00 7.77E + 00 1.03E + 01 1.51E + 01 7.06E+ 00 8.36E + 00
5 1.48E − 01 1.01E− 01 1.73E − 01 1.93E − 01 1.48E − 01 1.45E − 01
6 1.13E − 02 1.21E − 02 2.97E − 02 1.19E − 01 1.03E− 02 1.93E − 02
7 1.48E − 02 1.81E − 02 1.34E − 02 1.14E − 01 1.04E − 02 6.76E− 03
8 2.99E + 02 2.36E + 02 2.59E + 02 3.07E + 02 2.30E+ 02 2.99E + 02
9 6.52E+ 03 1.23E + 04 1.48E + 04 3.31E + 04 7.75E + 03 1.06E + 04
10 2.26E + 00 1.63E+ 00 2.18E + 00 2.26E + 00 1.98E + 00 2.46E + 00
11 1.02E + 01 6.76E+ 00 9.54E + 00 1.02E + 01 1.15E + 01 1.04E + 01
12 1.33E − 01 2.02E− 02 6.99E − 01 2.69E − 01 1.12E − 01 1.19E − 01
13 5.94E− 01 6.27E − 01 9.63E − 01 6.52E − 01 7.51E − 01 1.10E + 00
14 2.10E+ 01 2.23E + 01 6.25E + 01 5.35E + 01 2.74E + 01 4.52E + 01
15 3.24E − 02 2.99E − 02 2.07E − 02 1.30E − 01 2.20E − 01 1.93E− 02

10 %

1 8.05E − 01 9.19E − 01 1.03E + 00 8.38E − 01 1.02E + 00 6.98E− 01
2 1.61E+ 03 3.52E + 03 3.14E + 03 5.95E + 03 3.29E + 03 2.78E + 03
3 3.71E + 01 2.72E + 01 2.86E + 01 3.28E + 01 3.54E + 01 2.31E+ 01
4 1.13E + 01 1.11E + 01 1.18E + 01 1.56E + 01 1.07E + 01 1.03E+ 01
5 1.69E − 01 1.65E− 01 2.29E − 01 2.02E − 01 1.83E − 01 1.66E − 01
6 1.99E − 02 2.09E − 02 3.43E − 02 1.19E − 01 1.94E− 02 3.22E − 02
7 2.69E − 02 2.53E − 02 1.45E − 02 1.14E − 01 1.67E − 02 1.21E− 02
8 2.98E + 02 2.37E + 02 2.61E + 02 3.07E + 02 2.31E+ 02 2.94E + 02
9 9.79E+ 03 1.61E + 04 1.61E + 04 3.28E + 04 1.60E + 04 1.63E + 04
10 2.27E + 00 1.66E+ 00 2.20E + 00 2.27E + 00 2.00E + 00 2.45E + 00
11 1.07E + 01 7.42E+ 00 9.57E + 00 1.03E + 01 1.04E + 01 1.13E + 01
12 1.28E − 01 3.05E− 02 6.73E − 01 2.69E − 01 1.15E − 01 1.22E − 01
13 1.00E+ 00 1.21E + 00 1.01E + 00 1.47E + 00 1.02E + 00 1.80E + 00
14 4.12E+ 01 4.44E + 01 2.64E + 02 5.90E + 01 5.82E + 01 5.71E + 01
15 5.80E − 02 3.87E − 02 2.73E − 02 1.30E − 01 2.15E − 01 2.64E− 02

Table 2: Root mean squared error of prediction at 16384 validation points for 128 sample points and varied levels
of Gaussian noise

Results for varying noise levels are displayed in Table 2. Here it can be seen that increasing
noise levels increase the prediction error and some algorithms are effected more than the others.
Interestingly, the only exception is SVR; data with 1% noise seems to train a better metamodel
than data with no noise for some test functions and on average.This can be explained by the fact
that the results of SVR without noise were not as good on average. Furthermore SVR is the
only tested algorithm with free parameters to define process error (ε and θP in Eq. 8).

As before, Kriging seems to perform better than other algorithms followed by ANN and RBF
on average (Figure 3) . SVR becomes comparably good for higher levels of noise. Kriging,
MLS, OLS and SVR also seem to be least affected from increasing levels of noise, since the
relative increase in mean value is considerably smaller than other methods. OLS seems to
consistently achieve the poorest results, although the difference gets smaller with increasing
levels of noise.
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Figure 3: meanErr and meanErr of the RMSE values for varied levels of Gaussian Noise

4 CONCLUSION

Six metamodeling algorithms are tested with 15 analytical functions in 8 different cases. A
total of 720 results are included in this benchmark. The following observations can be made
based on these results:

• Prediction error has a negative correlation with the number of sample points and a positive
correlation with the noise level. On the other hand, it is observed that oversampling may
worsen the quality of some metamodels. Furthermore, a small amount of Gaussian noise
(1%) has a positive impact on the model quality of support vector regression for some test
functions.

• On average, Kriging is the most accurate method followed by radial basis functions and
neural networks independent of varying number of sample points and noise level. Con-
versely, every method except ordinary least squares delivers the best results for at least
one of test functions. This shows that the axiom ”No free lunch theorem” [23] holds for
metamodeling too.

• Kriging, moving least squares and support vector regression handle the noise best since
relative increase of the prediction error is the smallest for these methods.

• Cross-validation helps avoid overfitting even for pure interpolating algorithms like Krig-
ing and radial basis functions. This can be seen in the results for noisy data (Table 2).

Furthermore, the following observations were made during the benchmark:

• Standardizing data often but not always decreases the error.

• Finding the global optimum for anisotropic Kriging may sometimes be challenging for
the optimizer. Therefore isotropic Kriging has better results for some functions.

• Gaussian radial basis function is often but not always the best of all tested radial basis
functions.
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• Radial basis function is the best of all tested kernels for support vector regression consid-
ering this benchmark.

• A better designed neural network for a specific problem may yield better results for that
problem than a generalized network like in this benchmark.

We conclude that Kriging, neural networks and radial basis functions in this order are, on av-
erage, the best choices for unknown problems, at least when the constraints in this benchmark
regarding the number of sample points and noise levels are fulfilled and the structural com-
plexity is similar to those of the chosen test functions. Moreover, testing different algorithms
may yield better results in some cases. Further work should be done regarding the effects of
dimensionality on the quality of metamodels.
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Abstract. Topology optimization is an optimization method which can modify connectivity of 

an object independently of its predefined topology. In this paper, a global optimization meth-

od for topology optimization of flow channels considering fluid and heat transfer using a ge-

netic algorithm is presented. A genetic algorithm (GA) is assisted by the Kriging surrogate 

model to reduce computational cost required for function evaluation. In the present method, 

the boundary of a flow channel is represented by a level set function. Topology optimization 

seldom employs GA since topology optimization requires a large number of design variables 

for a high degree of freedom for shape and topology representation and GA is not effective to 

handle such a large scale problem. This paper presents a novel representation method to ob-

tain the distribution of level set function with a reasonable number of design variables. The 

design variables are given at the scattered control points in the design domain, and the 

Helmholtz equation is solved in the entire domain. The proposed method is applied to a sin-

gle-objective optimization problem to maximize heat transfer. As a result, GA found several 

flow channels, each of which has similar objective function values but with different topology. 

The result indicates that the objective function is a multi-modal function, which means that a 

method of population-based multipoint simultaneous exploration such as GA is essential for 

the present topology optimization problem. Considering minimizing pressure loss of a flow 

channel as the second objective function, the proposed method is applied to a multi-objective 

optimization problem. As a result, we confirm that the proposed representation method ena-

bles to represent flow channels that balance both objective functions and GA captures the 

trade-off between two objective functions.  
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1 INTRODUCTION 

Shape optimization has been attracting much attention in flow problems, which defines the 

boundary between fluid and solid regions. However, shape optimization cannot deal with the 

change of topology, e.g., making new holes into an object. Topology optimization is the most 

flexible optimization method, which can modify connectivity of an object independently of its 

predefined topology in contrast to sizing optimization and shape optimization that keep their 

topology during the optimization. 

Topology optimization has been applied to a variety of engineering optimization problems 

[1] such as structural mechanics problems [2], heat transfer problems [3], and acoustic prob-

lems [4] since Bendsøe and Kikuchi first proposed the so-called homogenization design 

method [5]. Although the topology optimization method for structural design has matured in 

the past few decades, the application to flow problems is still limited due to the non-linearity 

of the governing equations. The first application to flow problems was later than the afore-

mentioned applications. It was performed for the Stokes flow by Borrvall and Petersson [6]. 

The basic concept of topology optimization is replacement of the optimization problem 

with a material distribution problem in a fixed design domain using a characteristic function 

that indicates whether material exists or not. However, conventional topology optimization 

tends to suffer from numerical instabilities such as checkerboard pattern [7]. The level set 

method [8-11] is one of the approaches to avoid such instabilities. The level set method intro-

duces a signed scalar function called level set function and distinguishes solid and fluid re-

gions according to the sign of the function. Thus, zero-contours of the function indicate the 

boundaries of the regions. 

Topology optimization often contains a large design space due to a high degree of freedom 

for shape and topology representation (i.e., the number of design variables is often equal to 

the number of elements in the finite element mesh). Thus, conventional topology optimization 

generally has employed the gradient-based method according to the sensitivity of an objective 

function to explore the optimal solution and has been developed based on this approach. 

However, the gradient-based method tends to get stuck to the local optima rather than the 

global optimum. On the other hand, Evolutionary Algorithm (EA) such as Genetic Algorithm 

(GA) is one of the metaheuristic optimization methods, which is more capable to explore the 

global optimum. However, GA requires numerous function evaluations to realize population-

based multipoint simultaneous exploration. Thus, GA is not efficient to solve the optimization 

problems with expensive calculations and requires much expensive computational cost (i.e., 

large population and many generations) to obtain competitive solutions. In this case, surrogate 

models are effective to reduce computational cost required for function evaluation. This mod-

el approximates the response of each objective or constraint function to design variables in an 

algebraic expression. This model is derived from several sample points with real values of the 

objective or constraint function given by expensive numerical simulations. Thus, it can 

promptly give estimates of function values at arbitrary design variable values. 

The authors have proposed a non-gradient-based topology optimization method for single 

and multi-objective flow problems using GA assisted by the Kriging model [12]. Despite the 

results showed agreement with the results in previous studies [13] and revealed a novel 

insight into topology optimization problems, the representation method with the level set 

function obtained by solving a partial differential equation was not able to represent complex 

shapes. This study proposes a novel level set representation method using another partial 

differential equation. To validate the proposed representation method in a global topology 

optimization method applied to flow problems, this research focuses on a single-objective 
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optimization problems to maximize heat transfer, and a multi-objective optimization problem 

to minimize pressure loss and to maximize heat transfer of flow channels. 

2 COMPUTATIONAL FORMULATIONS 

Figure 1 shows a flowchart of the optimization process in this study. Details of each step in 

the flowchart are described as follows in this section. In Section 2.1 and 2.2, the representa-

tion method of flow channels and the Building-Cube Method (BCM), which is a Cartesian-

mesh CFD approach to evaluate objective functions are stated. Section 2.3 presents NSGA II, 

a genetic algorithm employed in this study. Section 2.4 presents the Kriging model, a surro-

gate-model, and a criterion to decide additional sample points of the Kriging model. 

 

Figure 1: Optimization flowchart 

2.1 Flow channel representation 

In this section, a flow channel representation method proposed [12] and a novel method are 

stated. The boundaries between fluid and solid regions are represented by the level set repre-

sentation that introduces a signed scalar function (level set function)  (x) where x represents 

the location in the simulation domain. This research sets the range of  (x) as |𝜙(𝒙)| ≤ 1, and 

assumes x is in the fluid region if 𝜙(𝒙) > 0 or in the solid region if 𝜙(𝒙) < 0 . A two-

dimensional flow channel is described according to the sign of  (x) given in the three-

dimensional distribution. The example of the distribution of  (x) is shown in Figure 2. As 

mentioned in Section 1, it is required to reduce the number of the design variables to employ 

GA for topology optimization. In this study, the distribution of  (x) is obtained by several 

control points which are treated as the current design variables. Guirguis et al. employed a 

Kriging-interpolated level set (KLS) to obtain the distribution of  (x) with a small number of 

the design variables and successfully applied GA to structural topology optimization [9]. The 

procedure to derive the distribution of  (x) is stated below. First, at the outer boundary of the 

design domain,  (x) is given as the step functions corresponding to the width of the inlet and 

outlet of the channel. Next, design variables ( (x)) are given at several discrete control points 

inside the design domain. Finally, the Laplace equation written in Eq. (1) is solved in the en-

tire design domain to obtain the distribution of  (x).  
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𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
=  0 (1) 

Note that the design variables are independent of the meshing size for CFD simulations in 

present method, which reduces the number of the design variables and enables the application 

of Genetic Algorithm for topology optimization problems. 

The distribution of  (x) derived from solving the Laplace equation is steep and several 

shapes cannot be represented by any value of  (x) given at the control points as the design 

variables. For example, the channels whose boundary is exactly straight cannot be represented. 

This issue must be solved to compare the proposed method with the previous study whose re-

sults include straight wall boundaries. Thus, it is required to develop an advanced method 

which can alleviate the steep distribution smoother. 

Thus, in order to tackle this issue, we introduce another step to derive smooth level set dis-

tribution. Inspired by a filtering method in [14], the Helmholtz equation written in Eq. (2) is 

introduced.  

−∇ [𝑅𝑥

𝜕𝜑

𝜕𝑥
, 𝑅𝑦

𝜕𝜑

𝜕𝑦
]

𝑇

+ 𝜑(𝒙) =  𝜙(𝒙) (2) 

In Eq. (2), 𝜑(𝒙) denotes a new distribution of level set function derived by solving the 

Helmholtz equation.  (x), a solution of the Laplace equation, is substituted on the right hand 

side of Eq. (2). Rx and Ry are independent anisotropic weights of the Helmholtz equation that 

decide the alleviation strength of the level set distribution,  (x). These weights are also in-

volved as design variables and the present method enables to represent various shapes adap-

tively to the problems. Moreover, when both weights are set to 0, 𝜑(𝒙) is identical to  (x). 

This means that the present method provides a higher degree of freedom representation with-

out sacrificing its original representation capability. It is important to note that although the 

flow channels evaluated by CFD simulation are represented based on the sign of 𝜑(𝒙), the 

design variables considered in optimization are given at the control points in the (x) domain. 

A conventional level set method for topology optimization [10, 11] employs the partial dif-

ferential equation to update the value of level set function for a modified shape. The partial 

differential equation is solved with design sensitivities derived from the sensitivity analysis. 

In this study, on the other hand, the partial differential equation is not solved, and the value 

of (x) is updated based on the genetic algorithm stated in Section 2.3. 

  

(a) Initial distribution (b) Final distribution  

Figure 2: Distributions of the level set function obtained by solving the Laplace equation 
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(a) 3D final distribution  (b) 2D flow channel projected on the 2D design do-

main according to the sign of level set function of 

Figure 3 (a) 

Figure 3: Distributions of the level set function obtained by solving theHelmholtz equation 

2.2 Building-Cube Method 

In order to evaluate the objective function of the channels, CFD simulations are conducted 

by the Building-Cube Method (BCM) [15], which is a Cartesian-mesh CFD approach. The 

governing equations of BCM are the 2D incompressible Navier-Stokes equations for unsteady 

state flow, and the 2D energy equation for unsteady state heat transfer. The convection terms 

are evaluated by a third-order upwind differencing [16], and the viscous terms are evaluated 

by a second-order central differencing. Time integration is conducted by the Crank-Nicolson 

method for the viscous terms and the Adams-Bashforth scheme for the convective terms, and 

the coupling of velocity and pressure is conducted by a fractional step method [17]. 

Since BCM employs a Cartesian-mesh CFD approach, it is easy to handle the complicated 

shapes of flow channels with topological change. However, in the Cartesian-mesh CFD ap-

proach, the object surface is represented by a staircase pattern, instead of smooth surface. For 

high accuracy computation, the Immersed Boundary Method (IBM) [18] using ghost cell and 

image point is employed at the wall boundary. 

2.3 Genetic Algorithm 

The genetic algorithm mimics the evolution of organisms, which selects individuals from 

the current generation as parents, generates new individuals as children by the crossover and 

mutation of the parents, and inherits better individuals to the next generation. In this study, the 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [19] proposed by Deb et al. is em-

ployed for exploration because this algorithm is effective and widespread employed for many 

optimization problems [9, 20]. Initially, a parent population Pt=1 with the size of N is created 

randomly. Here, t indicates the number of generation. Each feasible solution is assigned a 

rank (the solution with lower rank is better) according to its objective function value. On the 

other hand, each infeasible solution is assigned a rank which is higher than the minimum rank 

for the feasible solutions. Between two infeasible solutions, the solution with a smaller con-

straint violation has a better rank. Then, after choosing N solutions with lower rank in the par-

ent population, recombination and mutation are conducted to create an offspring population 

Qt with the size of N. In order to introduce elitism, first, a combined population Rt = Pt∪Qt 

with the size of 2N is formed. Then, the solutions in Rt are sorted according to the ranks based 

on objective function values and constraint violation. Now, N solutions are chosen from Rt in 

the order of their ranks and make up a new population Pt+1. The procedure as described above 
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is for one generation. The non-dominated solutions with the lowest rank are explored by re-

peating this procedure for a certain number of generations. 

2.4 Kriging model 

Although GA is capable of finding the global optimum, it requires numerous function 

evaluations to realize population-based multipoint simultaneous exploration. For efficient 

global optimization, the Kriging surrogate model [21] is employed together with GA. The 

Kriging model is based on Bayesian statistics, and can adapt well to nonlinear functions. In 

addition, the Kriging model estimates not only the function values themselves but also their 

uncertainties. Based on these uncertainties, the expected improvement (EI) of an objective 

function, which may be achieved a new global optimum on the Kriging model by adding a 

new sample point, is estimated. In a single-objective optimization problem where y(x) is min-

imized, the improvement value I(x) and its expected value E[I(x)] are defined as Eq. (3) and 

(4), respectively. 

𝐼(𝒙) = {
[𝑦𝑚𝑖𝑛 − 𝑦]

0
             

if 𝑦 <  𝑦𝑚𝑖𝑛

otherwise
 (3) 

𝐸[𝐼(𝒙)] = ∫ (𝑦𝑚𝑖𝑛 − 𝑦)𝜙(𝑦)𝑑𝑦
𝑦𝑚𝑖𝑛

−∞

 (4) 

where  is the probability density function denoted by N[�̂�(𝒙), 𝑠2(𝒙)]. Here, �̂�(𝒙) is the esti-

mation of y(x) and s
2
(x) is the mean square error at point x indicating the uncertainty of the 

estimated value. Maximizing the EI instead of the original objective function itself, the loca-

tion of an additional sample point is determined for updating the Kriging model. Adding new 

samples to the Kriging model based on EI iteratively, these samples are expected to reach the 

global optima under the uncertainty of the Kriging model. This procedure is called Efficient 

Global Optimization (EGO) proposed by Jones et al. and widely employed for optimization 

[22]. 

Since the present optimization is capable of topological change, the flow channels may of-

ten become unconnected depending on design variable values. Since such unconnected chan-

nels make it difficult to evaluate the objective function values, they should not be considered 

as additional sample points for the Kriging model. Although GA has been successfully ap-

plied to topology optimization in several structural problems [9, 23, 24], it has not been ac-

cepted widely due in part to difficulty to ensure structural connectivity during the 

optimization procedure [25]. In order to ensure structural connectivity, the original EI value 

of the objective function, Eq. (4), is multiplied by the probability that the objective function 

value may be below a certain threshold estimated on the Kriging model. This probability 

P(y(x) < a), where a is a threshold, is formulated in  

𝑃(𝑦(𝒙) < 𝑎) =
1

𝑠√2𝜋
∫ exp (−

(𝑦(𝒙) − �̂�(𝒙))2

2𝑠2(𝒙)
) 𝑑𝑦

𝑎

−∞

 (5) 

Maximizing the product of Eq. (4) and Eq. (5), the location of an additional sample point is 

determined for searching the global optima while assuring the connectivity of flow channels 

under the uncertainty of the Kriging model. 

3 OPTIMIZATION PROBLEMS OF MAXIMIZING HEAT TRANSFER 

In this section, two cases of the single-objective optimization to maximize heat transfer are 

presented. In this case, in addition to the 2D incompressible Navier-Stokes equation, the 2D 
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energy equation is also solved to evaluate the temperature field. In all case stated below, the 

design domain is discretized as a 240×240 uniform Cartesian grid. At the inlets, velocity is set 

as the Dirichlet boundary condition, parabolic profile given by Eq. (6) with the reference ve-

locity of 1, and pressure is set as the Neumann condition.  

𝑔𝑛 = �̅� (1 − (
2𝑠

𝑤
)2)      −  

𝑤

2
≤ 𝑠 ≤

𝑤

2
 (6) 

where �̅� is the prescribed velocity at the center of the flow profile, w is the width of the flow 

profile corresponding to the length of the inlet and the outlet, and s is location within the flow 

profile.  

At the outlets, on the other hand, velocity is set as the Neumann condition and pressure is 

also set as the Dirichlet condition (zero pressure). Furthermore, no-slip boundary condition is 

given to the solid-fluid interface. 

Temperature is set to be 0 at the inlet, and given by the Neumann condition at the outlet. 

Furthermore the temperature at the solid-fluid interface is expressed by the third type bounda-

ry condition as 

−𝑘 (
𝑑𝑇

𝑑𝑥
)

𝑤𝑎𝑙𝑙
= ℎ(𝑇∞ − 𝑇𝑤) (7) 

where 𝑇∞ is the temperature of the solid set to be 1, 𝑇𝑤 is the fluid temperature on the wall, k 

and h correspond to the thermal conductivity and the heat transfer coefficient, respectively. In 

this study, h is given by the Nusselt number: Nu = hl/k. Here, the reference length l is the 

width of inlet set to be 1 and k is also set to be 1. Thus, the heat transfer coefficient is equal to 

the Nusselt number. The objective function is to maximize the bulk mean temperature Tm at 

the outlet given by 

𝑇𝑚 =
∫ 𝑢𝑇𝑑𝑠

𝑠𝑜

∫ 𝑢𝑑𝑠
𝑠𝑜

 (8) 

where So indicates the area of the outlet, u and T are the velocity and the temperature at the 

outlet, respectively. In this problem, since the possible range of the objective function value is 

known thermodynamically (i.e., the maximum is not greater than the wall temperature: 1 and 

the minimum is not less than the inlet temperature: 0). Thus, this case does not introduce a 

threshold into the objective function value as seen in Eq. (5) because it can reduce the 

diversity of the population in GA. However, in order to ensure connectivity during the 

optimization and explore the global optimum efficiently, the product of the original EI value 

of the objective function, Eq. (4), is multiplied by the probability written in Eq. (5) that the 

objective function value may be above a certain value is maximized by GA. In this problem, 

the objective function is multiplied by -1 and to be minimized. The threshold a in Eq. (5) is 

set to be 0, which is the largest value of the objective function. 

3.1 Single pipe (Case 1) 

3.1.1. Problem definition 

First, a single pipe illustrated in Figure 4(a) is considered. The Reynolds number and the 

Nusselt number are set to be 5 and 50, respectively. The Prandtl number is set to be 6.78. 

Each dimensionless number is chosen to compare the present study with the previous study 

[12, 26]. The layout of the control points are illustrated as red points in Figure 4(b). The de-
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sign variables are given at the control points vertically symmetric in the range of [-1, 1] and 

the range of the weights for the Helmholtz equation is set to [0, 0.4]. Thus, the number of the 

design variables is 8 in Case 1. Since too large weights make the flow channels discontinuous, 

the valid range of the weights keeping the flow channel connected are investigated beforehand. 

 

 

(a) Design domain (b) Layout of control points 

Figure 4: Geometry definition of a single pipe (Cases 1) 

3.1.2. Results 

In this case, 218 initial sample points satisfying the connectivity from the inlet to the outlet 

are used to construct the Kriging model. The Kriging model is updated 18 times. Figure 5 

shows representative flow channels in the additional samples. In this case, several flow chan-

nels, each of which has similar objective function values as shown in Table 1 but with differ-

ent topology, are found as the local optima. This result indicates that the objective function is 

a multi-modal function and it is required to employ a method of population-based multipoint 

simultaneous exploration such as GA. The result also indicates that, as the number of the solid 

islands in the channels increases, the size of each island becomes smaller. This is because the 

size of island is determined by the length of solid-fluid interface to achieve an equal amount 

of heat flux on the interface. 

Matsumori et al. pointed out that the current optimization problem is non-convex and has 

many local optima [27]. The present method confirms the same issue and copes with that by 

GA. GA finds several solutions as a local optimum with the same topology of the results re-

ported in previous study [12]. Intuitively, large islands should be put to enhance fluid-thermal 

interaction. However, flow separation does not occur easily since this case employs low 

Reynolds number, and basically any shapes of large islands contribute high performance of 

heat transfer. Thus, the Helmholtz weights are small (i.e. a flow channel represented by solv-

ing the Laplace equation is acceptable as local optima directly) and the global optimum 

shown in Figure 5 (b) is very similar to the global optimum shown in Figure 5 (d) and report-

ed in [12]. 

 Temperature 

(a) 11
th

 sample  0.8351 

(b) 13
th

 sample 0.8512 

(c) 18
th

 sample 0.8426 

Table 1: Objective function values of the representative flow channels in the additional samples (Case 1). 
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(a) 11
th

 sample (b) 13
th

 sample (global optimum) 

  

(c) 18
th

 sample (d) The global optimum reported in [12] 

Figure 5: Temperature distributions of the representative flow channels in the additional samples. (Case 1) 

3.2 Double pipe (Case 2) 

3.2.1. Problem definition 

Second, a double pipe illustrated in Figure 6 (a) is considered. The Reynolds number and 

the Nusselt number are set to be 50 and 10, respectively. The layout of the control points are 

illustrated as red and blue points in Figure 6 (b). The design variables are given at the control 

points vertically symmetric in the ranges of [-1, 1] for red points and [0, 1] for blue points, 

and the range of the weights for the Helmholtz equation is set to [0, 0.4]. Thus, the number of 

the design variables is 20 in Case 2. 

 
 

(a) Design domain (b) Layout of control points 
Figure 6: Geometry definition of a double pipe (Cases 2) 

3.2.2. Results 

In this case, 386 initial sample points satisfying the connectivity from the inlet to the outlet 

are used to construct the Kriging model. The Kriging model is updated 14 times. This case 
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has two differences from Case 1. First, since the Reynolds number in this case is higher than 

that in Case 1, flow separation occurs easily and several vortices are generated. Since these 

vortices affect heat transfer significantly, the shapes of islands inside the channels cannot be 

designed as arbitrarily as in Case 1. In Case 1, the flow channels with one or more islands 

have high temperature. In Case 2, on the other hand, putting islands arbitrarily does not 

always lead to high temperature. Second, since flow separation is a significant factor to 

increase temperature, the wall roughness and islands’ shape are required to be smoothed by 

the Helmholtz weights whereas these weights are almost set to 0 in Case 1. It is important to 

note that the Helmholtz weights enable GA to explore efficiently because the design space is 

so complex that many details which do not contribute to the improvement of heat transfer are 

not removed during the optimization if the flow channels are represented only by the Laplace 

equation. 

Figure 7 shows representative flow channels in the additional samples. Also in this case, 

several flow channels, each of which has similar objective function values but with different 

topology, are found as the local optima. However, in this case, as the number of islands 

increases, the objective function value also increases as shown in Table 2. In particular, the 

global optimum has much better objective function values compared with other local optima. 

As stated above, flow separation is a significant factor in a heat transfer problem, and we can 

confirm that the flow is not separated around the islands of the global optimum shown in 

Figure 7 (c). This result suggests that there is a dominant topology which shows high 

temperature. In this case, the present representation method always keeps the outer boundary 

of the flow channels smooth and lets GA explore efficient topology in the flow channels.  

  
(a) 1

st
 sample  (b) 6

th
 sample 

 

 

(c) 11
th

 sample (global optimum)  
Figure 7: Temperature distributions of the representative flow channels in the additional samples. (Case 2) 

 Temperature 

(a) 1
st
 sample  0.1913 

(b) 6
th

 sample 0.2423 

(c) 11
th

 sample 0.2798 

Table 2: Objective function values of the representative flow channels in the additional samples (Case 2). 
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4 MULTI-OBJECTIVE OPTIMIZATION PROBLEM 

Finally, two cases of multi-objective optimization problem to minimize pressure loss and 

maximize heat transfer of flow channels are considered. Minimizing pressure loss ∆𝑝 written 

in Eq. (9) is considered as the second objective function. 

∆𝑝 = (
1

2
𝜌𝑢2 + 𝑝)

𝑖𝑛
− (

1

2
𝜌𝑢2 + 𝑝)

𝑜𝑢𝑡
 (9) 

Two cases employ the same geometry of the design domain, velocity, pressure, 

temperature boundary conditions, and mesh resolution as Cases 1 and 2. Cases 3 and 4 

employ the same combinations of dimensionless numbers as Cases 1 and 2, respectively. 

There are a number of non-dominated solutions, which are not worse than any other solu-

tion regarding all objective functions, in a multi-objective optimization problem whereas there 

is only one optimal solution in a single-objective optimization problem. Thus, it is important 

to ensure the diversity of the solutions in GA and capture the trade-off among objective func-

tions. Hence, it should be careful to introduce a threshold of the pressure loss while keeping 

the diversity of the solutions in GA. However, without a threshold, initial sample points in-

cluding huge pressure loss are used to construct the Kriging model, which may make the es-

timation accuracy of the Kriging model worse. Since the width of those flow channels is very 

small, these flow channels can be regarded as unconnected. Moreover, the bulk mean temper-

ature of such unconnected or nearly unconnected flow channels is evaluated to be 0 in Cases 1 

and 2. Thus, such solutions are hardly able to be the non-dominated solutions, and it will not 

lose the diversity of solutions even if such solutions are removed from initial sample points. 

Multi-objective optimization employs several additional sample points every time the Kriging 

model is updated whereas a single-objective optimization employs one additional sample 

point for every update. This study performs cluster analysis using the k-means method [28] to 

select representative sample points from many non-dominated solutions obtained by maximiz-

ing the EI value of each objective function on the Kriging model. In both cases stated below, 

4 additional sample points are chosen for every update. 

4.1 Single pipe (Case 3) 

4.1.1. Problem definition 

As the first example, a single pipe illustrated in Figure 4 (a) is considered. This case em-

ploys the same dimensionless numbers and the layout of control points as Case 1. 

4.1.2. Results 

In this case, 275 initial sample points satisfying the connectivity from the inlet to the outlet 

are used to construct the Kriging model. In this case, a threshold of the pressure loss is intro-

duced and set to be 20. Since the value range of the objective function of pressure loss is so 

wide that the log transformed pressure loss is approximated by the Kriging model whereas the 

temperature is approximated directly. Figure 8 plots of the initial sample points (blue), the 

non-dominated solutions obtained after the 19
th

 update of the Kriging model using the present 

method (red), and the non-dominated solutions obtained after the 19
th

 update reported in [12] 

(green) in the objective space. The non-dominated solutions in the 19
th

 update can be classi-

fied into 3 groups according to their characteristics. 

First, in the yellow group, the flow channels have low pressure loss and low bulk mean 

temperature. These flow channels do not include any solid island inside the channels. 
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Second, all solutions in the blue group have one island and all but one solutions in the pur-

ple group have one island in the channel. Thus, the solutions in these two groups have the 

same characteristic with respect to their topology whereas the solutions reported in the previ-

ous study [12] can be classified based on their topology (i.e. the number of the solid islands in 

a channel). We classify the solutions in the blue and purple group based on the shape of the 

island in the channel. The island of the solutions in the blue group is a small round or stream-

lined. On the other hand, the island of the solutions in the purple group is a large round or 

blunt body. As illustrated in Figure 8, the channel with a streamlined island can improve its 

temperature whereas the pressure loss does not increase drastically compared with the channel 

with a round island. Four solutions in the purple group have a weak trade-off between two 

objective functions; they have almost the same bulk mean temperature to the optimum found 

in Case 1 whereas the pressure loss gets larger in proportion to the size of the island. This re-

sult indicates that the bulk mean temperature reaches its upper limit thermodynamically in 

these 4 solutions. This result indicates that the heat transfer is saturated and the pressure loss 

increases monotonically at this point, that is, the blue group is important from an engineering 

standpoint. 

Since this case employs very low Reynolds number, the effect of the streamlined island 

which is expected to prevent flow separation does not appear clearly and the non-dominated 

front itself is not improved compared with that of the previous study [12]. However, the 

streamlined shapes show their capability to improve heat transfer and prevent the pressure 

loss getting worse drastically. Thus, the present method is promising to solve the problems 

with complex flow phenomena such as flow separation and indicates the possibility of design-

ing a flow channel satisfying both high temperature and low pressure loss. 

 

Figure 8: The solution set in the multi-objective problem (Case 3) 

4.2 Double pipe (Case 4)  

4.2.1. Problem definition 

Finally, a multi-objective optimization problem of a double pipe illustrated in Figure 6 (a) 

is considered. This case employs the same dimensionless numbers and the layout of control 

points as Case 2. 
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4.2.2. Results 

In this case, the initial sample points of the Kriging model are formed from 446 sample 

points satisfying the connectivity from the inlet to the outlet generated randomly and the 

global optimum of the single-objective optimization (Case 2). Hence, the number of the initial 

sample points is 447 in total. In this case, a threshold of the pressure loss is set to be 13. As 

well as Case 3, the log transformed pressure loss is approximated by the Kriging model 

whereas the temperature is approximated directly. Figure 9 plots the initial sample points 

(blue), the non-dominated solutions obtained after the 10
th

 update of the Kriging model with 

the global optimum in the initial sample points (green), and the non-dominated solutions ob-

tained after the 11
th

 update without the global optimum in the initial sample points (red) in the 

objective space. As Figure 9 shows, the global optimum of the single-objective optimization 

facilitates GA to explore the non-dominated solutions that balance two objective functions. 

In this case, low pressure loss can be achieved easily. As stated in Case 2, if the flow does 

not separate from an island put in a channel, the heat transfer performance does not worsen 

severely. It is obvious that the pressure loss gets larger if the flow separates in the channel. 

Thus, we anticipate that we can design a flow channel balancing both objective functions if 

the islands put in a channel can avoid flow separation. As shown in Figure 9, the red solutions 

(they are dominated solutions inherently since the true non-dominated solutions are green 

points) show improvement on heat transfer depending on the shape of the solid-fluid interface. 

Comparing two red solutions in Figure 9, we find that the backward shape of the left one is 

convex so that it can prevent flow separation whereas the backward of right one is flat. Thus, 

the left solution can balance two objective function whereas the pressure loss of the right one 

becomes larger despite its temperature is high since the solid-fluid interface is longer than that 

of the left one. However, as the green points in the blue circle indicate, two objective func-

tions can be more improved if the backward is separated into two isolated islands. Flow sepa-

ration does not occur in all of the green solutions and the values of the objective functions 

depend on the sizes of the backward islands; starting from ellipses (low pressure loss and low 

temperature), the backward islands become larger and transform into the same shape with the 

global optimum of the single-objective optimization in the channel with the highest tempera-

ture. 

Thus, the proposed representation method enables to represent various shapes that contrib-

ute to improve both objective functions concurrently and GA reveals a dominant topology sat-

isfying both objective functions. 

 

Figure 9: The solution set in the multi-objective problem (Case 4) 
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5 CONCLUSIONS  

Topology optimization employing a Kriging-assisted GA was conducted in flow channel 

design problems that maximize heat transfer and/or minimize pressure loss using a novel level 

set representation approach. 

In the single-objective optimization problems to maximize the bulk mean temperature, two 

cases with different layouts and dimensionless numbers were conducted. The GA found not 

only the optimal shape, but also several shapes that have quite similar objective function 

values but with different topologies from each other. In both cases, the objective function of 

temperature seems to be a multi-modal function and putting a solid island in a fluid region 

and increasing the length of the solid-fluid interface have significant effects to increase the 

temperature. However, in the case at the high Reynolds number, the flow separation severely 

affects heat transfer performance and the shape of islands should be considered so as not to 

provoke flow separation. The proposed representation method was able to represent various 

shapes which improve heat transfer and facilitated efficient exploration of GA in the complex 

design space. 

Finally, considering minimizing pressure loss as the second objective function, multi-

objective optimization problems were conducted in the same layout and numerical conditions 

with those of each case in the single-objective optimization problems. As a result, it was re-

vealed that the size and the shape of a solid island put in a flow channel are the most im-

portant factors to increase the temperature and determine the pressure loss for both cases. 

Because the proposed representation method is able to represent streamlined shape, we could 

design flow channels with relatively large island without flow separation. Those flow chan-

nels with streamlined island were found as non-dominated solutions by GA. These solutions 

indicate that the proposed representation method is expected to help us design the flow chan-

nels that satisfy high temperature and low pressure loss at the same time. 

Therefore, the proposed representation method and heuristic approach showed its capabil-

ity to design promising flow channels and to explore global optima for both single-objective 

and multi-objective topology optimization in flow problems more efficiently. 
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Abstract. The paper deals with a phase field model for formulation and solution of the topol-
ogy optimization problems of bodies in unilateral contact consisting in the normal contact stress
minimization. The contact problem with Tresca friction is governed by the system of elasticity
equations with inequality type boundary conditions. The structural optimization problem con-
sists in finding such material distribution within design domain to minimize the normal contact
stress along the boundary of the body. The original structural optimization problem is refor-
mulated in terms of material density function. Moreover the original cost functional is regular-
ized using also surface and bulk energy terms. These terms allow to control global perimeter
constraint and the occurence of the intermediate solution values. Using Lagrange multiplier
approach the derivative of the regularized cost functional with respect to the control variable is
calculated. The neccessary optimality condition is formulated in the form of Allen-Cahn gradi-
ent flow equation. The optimal topology is obtained as the steady state of the phase transition
governed by this equation. This equation is discretized using finite difference and finite element
methods. Numerical examples are provided.
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1 INTRODUCTION

The paper deals with the topology optimization for an elastic body in unilateral contact with
a rigid foundation. This optimization problem consists in finding such topology of the domain
occupied by the body and/or the shape of its boundary that the normal contact stress along the
boundary of the body is minimized. Many successful methods have been proposed to analyze
and to solve numerically topology optimization problems, including Simple Isotropic Material
Penalization method and Evolutionary Structural Optimization approach, topology derivative
method or different level set methods [1, 6, 7, 11, 19, 15].

In this paper phase field approach [4, 5, 6, 8, 17, 18] is proposed to regularize two phase
topology optimization problem for unilateral elastic contact system and to solve it numerically.
Material density function is a variable subject to optimization. This approach consists in us-
ing Ginzburg-Landau free energy term [8, 14, 17, 18, 19] as the regularization term rather than
the perimeter constraint term. Although the proposed regularization for topology optimization
of contact problems is more complicated than the perimeter one it has advantages comparing
to the standard one. The derivative formula of the cost functional with respect to the material
density function is calculated and is employed to formulate a necessary optimality condition
for the topology optimization problem. This necessary optimality condition takes the form of
the generalized Allen–Cahn equation rather than Cahn–Hilliard equation as in authors previous
paper [10]. The derivative of the cost functional appears in the right hand side of these equa-
tion. Moreover the cost functional derivative is employed to calculate a descent direction in the
numerical algorithm. Finite difference and finite element methods are used as the approxima-
tion methods. Implementation details are introduced. Numerical examples are provided and
discussed.

2 PROBLEM FORMULATION

Consider deformations of an elastic body occupying two – dimensional domainΩ with the
smooth boundaryΓ (see Fig. 1). AssumeΩ ⊂ D whereD is a bounded smooth hold – all
subset ofR2. The body is subject to body forcesf(x) = (f1(x), f2(x)), x ∈ Ω. Moreover,
surface tractionsp(x) = (p1(x), p2(x)), x ∈ Γ, are applied to a portionΓ1 of the boundary
Γ. We assume, that the body is clamped along the portionΓ0 of the boundaryΓ, and that the
contact conditions are prescribed on the portionΓ2, whereΓi ∩ Γj = ∅, i 6= j, i, j = 0, 1, 2,
Γ = Γ̄0 ∪ Γ̄1 ∪ Γ̄2.

Let ρ = ρ(x) : Ω → R denote the material density function at any generic pointx in a design
domainΩ. It is a phase field variable taking value close to 1 in the presence of material, while
ρ = 0 corresponds to regions ofΩ where the material is absent, i.e. there is a void. In the phase
field approach the interface between material and void is described by a diffusive interfacial
layer of a thickness proportional to a small lenght scale parameterǫ > 0 and at the interface
the phase fieldρ rapidly but smoothly changes its value [6]. We require that0 ≤ ρ ≤ 1. The
ρ values outside this range do not seem to correspond to admissible material distributions. The
elastic tensorA of the material body is assumed to be a function depending on density function
ρ:

A = g(ρ)A0, A0 = {aijkl}
2

i,j,k,l=1
(1)

andg(ρ) is a suitable chosen function [2, 4, 6, 15]. We denote byu = (u1, u2), u = u(x),
x ∈ Ω, the displacement of the body and byσ(x) = {σij(u(x))}, i, j = 1, 2, the stress field in
the body. Consider elastic bodies obeying Hooke’s law, i.e., forx ∈ Ω andi, j, k, l = 1, 2

σij(u(x)) = g(ρ)aijkl(x)ekl(u(x)). (2)
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Figure 1: Initial domainΩ.

We use here and throughout the paper the summation convention over repeated indices [9]. The
strainekl(u(x)), k, l = 1, 2, is defined by:

ekl(u(x)) =
1

2
(uk,l(x) + ul,k(x)), (3)

whereuk,l(x) =
∂uk(x)

∂xl
. The stress fieldσ satisfies the system of equations in the domainΩ [9]

− σij(x),j = fi(x) x ∈ Ω, i, j = 1, 2, (4)

whereσij(x),j = ∂σij(x)

∂xj
, i, j = 1, 2. The following boundary conditions are imposed on the

boundary∂Ω

ui(x) = 0 on Γ0, i = 1, 2, (5)

σij(x)nj = pi on Γ1, i, j = 1, 2, (6)

uN ≤ 0, σN ≤ 0, uNσN = 0 onΓ2, (7)

| σT |≤ 1, uTσT+ | uT |= 0 onΓ2, (8)

wheren = (n1, n2) is the unit outward versor to the boundaryΓ. HereuN = uini andσN =
σijninj , i, j = 1, 2, represent the normal components of displacementu and stressσ, respec-
tively. The tangential components of displacementu and stressσ are given by(uT )i = ui−uNni

and(σT )i = σijnj − σNni, i, j = 1, 2, respectively.| uT | denotes the Euclidean norm inR2 of
the tangent vectoruT .
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2.1 Structural Optimization Problem

Before formulating a structural optimization problem for (4)-(8) let us introduce the setUad

of admissible domains. This set has the form

Uad = {Ω : E ⊂ Ω ⊂ D ⊂ R2 : Ω is Lipschitz continuous,

V ol(Ω)− V olgiv ≤ 0, V ol(Ω) =
∫

Ω

ρ(x)dx.}, (9)

whereE ⊂ R2 is a given domain such thatΩ as well as all perturbations of it satisfyE ⊂ Ω.
The constantconst1 > 0 is assumed to exist. The setUad is assumed to be nonempty. The
constantV olgiv = const0 > 0 is given. For the shape optimization prpblem for system (4)-(8)
the optimized domainΩ is assumed to satisfy equality volume condition, i.e., (9) is assumed to
be satisfied as equality. In a case of topology optimizationV olgiv is assumed to be the initial
domain volume and (9) is satisfied in the formV ol(Ω) = rfrV ol

giv with rfr ∈ (0, 1) [15].
Recall from [11, 12] the cost functional approximating the normal contact stress on the contact
boundary

Jη(u(Ω)) =
∫

Γ2

σN (u)ηN(x)ds, (10)

depending on the auxiliary given bounded functionη(x) ∈Mst. The auxiliary setMst = {η =
(η1, η2) ∈ [H1(D)]2 : ηi ≤ 0 onD, i = 1, 2, ‖ η ‖[H1(D)]2 ≤ 1}. FunctionsσN andηN are
the normal components of the stress fieldσ corresponding to a solutionu satisfying system (4)
- (8) and the functionη, respectively. The cost functional 10) approximates the normal contact
stress and is associated with the elastic energy functional [9]. Consider the following structural
optimization problem:for a given functionη ∈Mst, find a domainΩ⋆ ∈ Uad such that

Jη(u(Ω
⋆)) = min

Ω∈Uad

Jη(u(Ω)). (11)

Adding to (9) a perimeter constraintPD(Ω) ≤ const1, wherePD(Ω) =
∫

Γ
dx is a perimeter of

a domainΩ in D [5, 11, 16] andconst1 > 0 is a given constant the existence of an optimal
domainΩ⋆ ∈ Uad to the problem (11) is ensured (see [4, 5, 16]).

3 PHASE FIELD BASED TOPOLOGY OPTIMIZATION PROBLEM

Let us introduce the regularized cost functionalJ(ρ, u) in the form:

J(ρ, u) = Jη(u) + E(ρ), (12)

where the functionalJη(u) is given by (10). The Ginzburg-Landau free energy functionalE(ρ)
is expressed as

E(ρ) =
∫

Ω

ψ(ρ)dΩ, ψ(ρ) =
γǫ

2
| ∇ρ |2 +

γ

ǫ
ψB(ρ), (13)

whereǫ > 0 is a constant,γ > 0 is a parameter related to the interfacial energy density. Function
ψB(ρ) = ρ2(1 − ρ2) is a double-well potential [10] which characterizes the two phases [2, 6].
The structural optimization problem (11) takes the form:find ρ⋆ ∈ Uρ

ad such that

J(ρ⋆, u⋆) = min
ρ∈U

ρ

ad

J(ρ, u), (14)

whereu⋆ = u(ρ⋆) denotes a solution to the state system (4)-(8) depending onρ⋆ andUρ
ad = {ρ :

V ol(Ω) ≤ V olgiv} denotes the set of admissible material density functions.
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In order to compute the first variation of the cost functional (12) we apply a formal Lagrangian
approach combined with Allen–Cahn approach [2]. Let us introduce the LagrangianL(ρ) =
L(ρ, u, λ, pa, qa, µ):

L(ρ, u, λ, pa, qa, µ) = Jη(u) + E(ρ) +
∫

Ω

g(ρ)aijkleij(u)ekl(p
a)dx− (15)

∫

Ω

fip
a
i dx−

∫

Γ1

pip
a
i ds+

∫

Γ2

λpaTds+
∫

Γ2

qauTds+ µ(
∫

Ω

ρ(x)dx− V olgiv),

where(pa, qa) ∈ K1 × Λ1 denotes an adjoint state defined as follows:
∫

Ω

g(ρ)aijkleij(η + pa)ekl(ϕ)dx+
∫

Γ2

qaϕTds = 0 ∀ϕ ∈ K1, (16)

and ∫

Γ2

ζ(paT + ηT )ds = 0 ∀ζ ∈ Λ1. (17)

The setsK1 andΛ1 are given by

K1 = {ξ ∈ Vsp : ξN = 0 onAst }, (18)

Λ1 = {ζ ∈ Λ : ζ(x) = 0 onB1 ∪ B2 ∪ B
+

1 ∪ B+

2 }, (19)

while the coincidence setAst = {x ∈ Γ2 : uN + v = 0}. MoreoverB1 = {x ∈ Γ2 : λ(x) =
−1}, B2 = {x ∈ Γ2 : λ(x) = +1}, B̃i = {x ∈ Bi : uN(x) + v = 0}, i = 1, 2, B+

i = Bi \ B̃i,
i = 1, 2. The derivative of the LagrangianL with rescpect toρ has the form:

∫

Ω

∂J

∂ρ
(ρ, u)ζdx =

∫

Ω

∂L

∂ρ
(ρ, u, λ, pa, qa, µ)ζdx =

∫

Ω

[γǫ∇ρ · ∇ζ +
γ

ǫ
ψ′
B(ρ)ζ + µζ ]dx+

∫

Ω

[g′(ρ)aijkleij(uǫ)ekl(p
a + η)− f(pa + η)]ζdx, ∀ζ ∈ H1(Ω) (20)

Using (20) we formulate a modified Allen-Cahn equation with constant mobility function as a
gradient flow dynamic problem in an artificial time variable. It leads to a pseudo time stepping
approach. This problem is as follows:find sufficiently regular(ρ, u, λ, pa, qa, µ) satisfying (4)-
(8), (16)-(17) as well as

∂ρ

∂t
= ϕE(ρ) in Ω, ∀t ∈ [0, T ), (21)

∇ρ · n = 0 on ∂Ω, ∀t ∈ [0, T ), (22)

ρ(0, x) = ρ0(x) in Ω, t = 0. (23)

where the potential functionϕE is given by

ϕE = −γǫ△ ρ+
γ

ǫ
ψ′
B(ρ) + µ−

g′(ρ)aijkleij(uǫ)ekl(p
a + η)− f(pa + η), a.e. in Ω. (24)

The necessary optimality condition to optimization problem (14) has the form: if(ρ⋆, u⋆, λ⋆,
pa⋆, qa⋆, µ⋆) is an optimal solution to structural optimization problem (14) than it satisfies (4)-
(8), (16)-(17) and (21)-(24).
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4 NUMERICAL RESULTS

The discretized structural optimization problem (14) is solved numerically. Time derivatives
are approximated by the forward finite difference. Piecewise constant and piecewise linear finite
element method is used as disretization method in space variables. The derivative of the double
well potential is linearized with respect toρ. Primal-dual active set method has been used to
solve state and adjoint systems (4)-(8) and (16)-(17). Biconjugate gradient method has been
used to solve (21)-(23). The algorithms are programmed in Matlab enviroment. As an example
a body occupying 2D domain

Ω = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ 0 < v(x1) ≤ x2 ≤ 4}, (25)

is considered. The boundaryΓ of the domainΩ is divided into three pieces

Γ0 = {(x1, x2) ∈ R2 : x1 = 0, 8 ∧ 0 < v(x1) ≤ x2 ≤ 4},

Γ1 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ x2 = 4}, (26)

Γ2 = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ 8 ∧ v(x1) = x2}.

The domainΩ and the boundaryΓ2 depend on the functionv. The initial position of the
boundaryΓ2 is given as in Fig. 1. The computations are carried out for the elastic body charac-
terized by the Poisson’s ratioν = 0.29, the Young modulusE = 2.1 · 1011N/m2. The body is
loaded by boundary tractionp1 = 0, p2 = −5.6 · 106N alongΓ1, body forcesfi = 0, i = 1, 2.
Auxiliary function η is selected as piecewise constant (or linear) onD and is aproximated by
a piecewise constant (or bilinear) functions. The computational domainD = [0, 8] × [0, 4] is
selected. DomainD is discretized with a fixed rectangular mesh of 80× 40. Other parame-
ters are:ǫ = 0.02, γ = 1, T = 0.200. Following [17] g(ρ) = ρ

1+exp(−40ρ)
+ gǫ, gǫ = 0.02,

ψB(ρ) = ρ2(1− ρ)2( 1

10
exp(15(1/2− ρ)2) + 1).

Fig. 2 presents the optimal domain obtained by solving structural optimization problem (14)
in the computational domainD using the optimality condition (21)-(24). The areas with low
values of density function appear in the central part of the body and near the fixed edges. The
obtained normal contact stress is almost constant along the optimal shape boundary and has
been significantly reduced comparing to the initial one (see Fig. 3).

5 CONCLUSIONS

The structural optimization problem for elastic contact problem with the prescribed friction
is solved numerically in the paper. Obtained numerical results indicate that the proposed nu-
merical algorithm allows for significant improvements of the structure from one iteration to
the next. Phase field approach based on the Allen-Cahn equation is flexible and can be easily
combined with material density field. In this sense this approach follows SIMP method. On
the other hand this approach can be also coupled with other physical fields allowing to consider
different topology optimization problems.
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[12] A. Myśliński, Radial Basis Function Level Set Method for Structural Optimization,Con-
trol and Cybernetics, 39(3), 627–645, 2010.
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Abstract. This paper studies cable-stayed bridges (CBSs), with special focus on the initial 
force distributions in cables during construction phases. An algorithm for the optimal design 
of the  pre-tensioning sequence of cables is presented. A procedure for the optimization of ca-
ble forces is developed, according to a given objective function. Particular attention is given 
to the choice of the parameters to be optimized, and numeric examples are provided. The 
proposed method is employed to study the At Tannumah bridge in Basrah, Iraq; and is suita-
ble for the optimization of the pre-tensioning sequence of arbitrary cable-stayed bridges. 
We show in the rest of the paper that an initial design (named S0 configuration) that does not 
include any pre-tensioning forces in cables can lead to a highly non uniform bending moment 
distribution over the deck; which is not ideal for an optimal structure. Fort that reason we 
develop an “optimal design” (named Sd configuration), that corresponds to pre-tensioning 
forces inducing an “optimal” bending moment distribution over the deck. 
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1 INTRODUCTION 

The construction of cable-stayed bridges is characterized by a series of phases in which 
geometry, boundaries, and loads vary significantly, causing changes in the state of stress [1-9]. 
The optimization of the construction process via the regulation of the initial forces in cables is 
important for the optimal control of the whole structural behavior [10-16]. One of the most 
common problems dealing with cable-stayed bridges concerns the computing of the initial 
cable forces and the pre-tensioning sequence, needed to obtain the designed configuration 
[17-20]. An optimal pre-tensioning sequence is useful for the control of the state of stress and 
strain during and after the construction phases. This question is faced in literature with several 
approaches [8,9,14], and is nowadays an open issue. In fact, there aren’t closed form analyti-
cal solutions that allow the computing of the pre-tensioning sequence given a final design 
configuration. Only iterative algorithms are available [8,9,14], but such approaches require 
several cable tightening operations that cause technological, structural, and economic prob-
lems.  

The absence of  closed form solutions to this problem is due to the large number of param-
eters needed to characterize the cable stress distribution in CSBs. In fact, the structural behav-
ior of CSBs depends on geometry, statics, material properties, construction process, and 
technology. The development of tools that allow the control of the behavior of these structures 
is therefore an open issue.  

The present work deals with the formulation of procedure for the optimization of cable pre-
tensioning forces that is suitable for any kind of CSBs. The proposed approach allows for the 
optimization of the bending moment distribution in the deck under suitable values of the pre-
tensioning forces. We employ the “influence matrix method” [18] to compute the optimal pre-
tensioning sequence that guarantee the achievement of the designed bending moment distribu-
tion (BMD) which is statically equivalent to another target distribution.       

The procedure belongs to the “force equilibrium methods” [11], acting directly on the in-
ternal forces and indirectly on the elastic deformations. The proposed procedure is suitable for 
any construction sequence, and can be generalized to account for time-dependent phenomena 
[21]. 

2 DESCRIPTION OF THE CASE STUDY 
The At Tannumah Bridge (ATB) has been designed by Studio “De Miranda Associati”, 

Milan, Italy and it is a part of a highway viaduct that connects the city center of Basra to the 
area of At Tannumah, Iraq, passing over the Shatt al Arab River.  

The bridge concept include a semi-fan, central suspended span and self-supported cable-
stayed system. In the longitudinal direction, the bridge is symmetric with respect to the mid-
span, and it include two towers and two set of cables. The deck is made of three spans, the 
central one of 150 m and two lateral ones of 75 m each. The deck is obtained assembly semi-
precast elements with length of 12.50 m each. The towers are made of pre-built sections of 
reinforced high-strength concrete (class C45/55 according to the Eurocode 2 [22]). The deck 
is made of steel welded beams (class S355 [22]) and reinforced concrete sections (a concrete 
slab of class C25/30 [22], 26 cm thick). The connection between the concrete slab and the 
steel beams is made through metallic bolts. The cables have a total diameter of 22 cm and are 
made of a set of 110 braided steel wires with diameter of 16 mm each.  

Fig. 1 shows different views of the ATB, while Fig. 2 illustrates the layout of the structural 
model that we employed to describe such a bridge. The elastic problem of the CSB model in 
Fig. 2 has been solved on assuming linear elastic response of all the bridge elements, through 
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the numerical algorithm that is detailed in [16]. We refer the reader to [16] for the mechanical 
and geometric properties of all the bridge elements. 

 
(a) 

  
(b) (c) 

Figure 1: The At Tannumah Bridge: (a) top view, (b) 3d view, (c) cross sectional [16]  
(courtesy of Studio “De Miranda Associati”, Milan, Italy). 

 

Figure 2: Bridge model. 

Hereafter, we name “initial” (Fig. 3a) the bridge model S0 that corresponds to assuming ze-
ro pre-tensioning forces in the cables (bridge unstressed under zero external loads). We shall 
see in the next section that such a model induces a highly non uniform moment distribution 
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over the deck, which is not ideal for an optimal use of the material (assuming uniform cross 
section of the deck along the span). 

We instead name “optimal design” (Fig. 3b) the realization Sd of the bridge model in Fig. 2 
that corresponds to pre-tensioning forces inducing a bending moment distribution over the 
deck identical to that of a low-stiffness deck model under zero pre-tensioning (“optimal” 
bending moment distribution). It is shown in [16] that such a bending moment distribution is 
nearly uniform over the span, determining an optimized use of the material composing the 
deck, which is assumed to have uniform cross-section. It is worth noting that the bridge model 
S0, accounts for self-weight, external loads and the major dynamic effects (such as, e.g., wind 
and fluttering). The proposed procedure allows to obtain a target bending moment distribution, 
through the application of a self-equilibrated state of stress induced by an optimal cable pre-
tensioning. As a matter of fact, our final goal is to play with the pre-tensioning forces of the 
cables of the model in Fig. 2, in order to achieve such the above, optimal bending moment 
distribution on the ATB. 

A

B

C
D

C1 C3 C5 C7 C9 C11
C2C4C6C8C10C12

 
(a) 

A

B

C
D

C1 C3 C5 C7 C9 C11
C2C4C6C8C10C12

 
(b) 

Figure 3: (a) initial bridge model S0, (b) optimal bridge model Sd. The dashed thick line 
indicate a low stiffness deck. 

3 NUMERICAL RESULTS FOR INITIAL AND OPTIMAL DESIGN MODELS 
Figs. 4 and 5 show the bending moment and cable force distributions for the initial and op-

timal bridge models defined in the previous section. It is worth noting that the bending mo-
ment distribution of the initial model (M0) is rather non uniform along the deck, featuring a 
pick value in correspondence of the deck-pier junction that is more than 5 times larger than 
the moment at the middle of the span (Fig. 4a). In the same model, the axial force carried by 
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the most stressed cable (cable # 7) is 3.28 times larger than the axial force carried by cable # 1 
(Fig. 4b). 

The bending moment distribution (Md) and the cable force distribution of the optimal de-
sign model are shown in Fig. 5a-b. We observe that Md shows a much more uniform distribu-
tion over the span as compared to M0 (Fig. 4a). The cable force distribution also shows a more 
uniform profile as compared to that of the initial model, featuring a maximum cable force (in 
cable # 9) that is 1.96 times larger than the force carried by cable # 1. 

 

 
(a) 

 
(b) 

Figure 4: (a) bending moment and (b) normalized cable forces (divided by the axial 
force carried by cable # 1) for the initial model. 

We recall that M0 was computed on the real model of the ATB prescribing zero pre-
tensioning forces in all cables. Such moment distribution resembles that of a cantilever beam 
under uniform transverse loading, on the initial portions of the two deck branches departing 
from the central pier (Fig. 4a). The Md bending moment distribution was instead computed on 
a fictitious bridge model with a low stiffness deck [16]. Such moment distribution resembles 
that of a multi-support continuous beam under uniform transverse loading, always over the 
initial portions of the deck departing from the pier (Fig. 5a). 
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(a) 

 
(b) 

Figure 5: (a) bending moment and (b) normalized cable forces (divided by the axial force carried by cable # 1)  
for the optimal model. 

4 OPTIMAL PRE-TENSIONING DESIGN 
The present section is devoted to the formulation of a pre-tensioning design of the ATB mod-
el, which ensures that the bending moment distribution over the deck corresponds to Md (Fig. 
5a). Let denote the vector collecting the pre-tensioning forces of all cables (n 
= 12). By repeatedly solving elastic problems of the bridge model in Fig. 2, we compute the 
axial force carried by the j-th cable when the i-th cable is subject to a unit axial force (Si sys-
tem). Let dij denote such a force coefficient and let D denote the n by n influence matrix col-
lecting all such entries [16]. We are interested in solving the following linear problem [23]: 

 DT X = ΔT (1) 

where  is the vector with current entry , tdi and t0i respec-
tively denoting the forces in the i-th cable in correspondence of the optimal design and in the 
initial models. The algebraic system of equations (1) is obtained by solving the n+2 elastic 
systems S0, Sd, S1, …, Sn. Its solution allows us to determine the pre-tensioning forces to be 

MAX MIN
KNm KNm

217,14 -180,20
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applied to the different cables in order to achieve the target bending moment distribution Md 
(Fig. 5a). 

5 CONCLUSIONS 
We have presented an approach to the optimal pre-tensioning design of cable-stayed bridg-

es that is aimed at achieving a target bending moment distribution over the deck. Such a de-
sign approach  allows the designers to recover from construction errors that could 
compromise the structural safety of the bridge.  

The proposed methodology is based on the matrix of influence method, and relies on the 
determination of the cable forces on n+2 elastic models, n denoting the total number of cables.  
It can be applied in correspondence with any construction phase and can be easily generalized 
to account time dependent phenomena due, e.g., to material viscosity [21], and/or fracture 
damage [24]. Such a bridge design technique can also be applied to prestressed concrete struc-
tures, arch bridges with suspended decks, and all prestressable  structures [25]-[31]. Another 
field of application of the influence matrix approach proposed in the present work regards the 
study of the optimal state of prestress of tensile reinforcements of existing masonry struc-
tures[32]-[35]. 
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Abstract. This paper proposes a method to solve discrete size optimization problems of frame
structures to global optimality. Global optimality is guaranteed by reformulating the optimiza-
tion problem as a mixed-integer linear program (MILP) and solving it with the branch-and-
bound method. The presented mixed variable formulation extends the existing mixed variable
formulation for size and topology optimization of truss structures. The MILP is obtained by
adopting the simultaneous analysis and design approach. The variables consist of binary deci-
sion variables to select a profile section from the catalog, and state variables representing the
member end forces. The equilibrium equations and member stiffness relations are included as
constraints. The displacement and stress constraints are formulated such that for each member
limit values are imposed at predefined locations along the member. The proposed method is
applied to a three-bay three-story frame.
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1 Introduction

In structural optimization, the problem formulation has a critical role as it imposes restric-
tions on the methods that can be used to solve the problem and it determines the applicability
of the solution for the structural designer. If the principles of design, fabrication and econ-
omy [1] are followed, the problem formulation should contain as many requirements of these
aspects as possible such that the need for post-processing the solution is minimized. On the
other hand, incorporating all the requirements of the design codes, manufacturing practices and
the economy of the structure into the problem as well-behaving (e.g. smooth) functions is very
difficult in general, and enforcing them tend to make the problem intractable for most solution
methods. Thus, it is fair to say that formulating an optimization problem is a compromise be-
tween meeting the needs of the structural designer and the capabilities of contemporary solution
procedures.

For practical optimization of frame structures, the member profiles have to be chosen from
a catalog of commercially available alternatives. When this feature is coupled with conven-
tional formulations based on elastic structural analysis, the problem is not only nonlinear [2],
but it also contains discrete design variables. The resulting mixed-integer nonlinear program
(MINLP) can be treated by several optimization methods that have been proposed in the lit-
erature on discrete structural design of frames (for reviews, see [3, 4, 5, 6]). However, these
methods have in common that they cannot guarantee that the global optimum is found.

In a detailed review, Arora [6] discusses various methods for structural optimization with dis-
crete variables. These include branch-and-bound for nonlinear problems, sequential lineariza-
tion, dynamic rounding-off, penalty approach and various stochastic methods, among others.
Some of the more recent approaches include the discrete Lagrangian-based algorithm [7], and
a scheme based on the optimality criteria method [8].

Currently, evolutionary algorithms are widely used for solving discrete frame optimization
problems. These methods include simulated annealing [9], genetic algorithms [10, 11], ant
colony optimization [12], firefly algorithm [13], artificial bee colony algorithm [14], and particle
swarm optimization [15]. The general idea is to explore the design space in a random fashion,
thereby using information collected from previous analyses to gradually move towards a better
performing design. Evolutionary algorithms owe their popularity to the fact that they are easy
to understand and to implement. They can cope with discrete parameters and are able to take
into account complex constraints. However, evolutionary algorithms converge slowly, involve
algorithmic parameters that require careful tuning, and global optimality cannot be guaranteed
since no conclusive convergence checks can be made.

This paper presents a method for global discrete size optimization of frame structures. The
adopted approach is to reformulate the optimization problem into a mixed-integer linear pro-
gram (MILP). In the classical approach for structural optimization the nested analysis and de-
sign (NAND) approach is employed [16]: in every iteration a finite element analysis is per-
formed in order to obtain the state variables (the structural nodal displacements and the member
end forces). In order to facilitate the reformulation of the optimization problem as an MILP,
the simultaneous analysis and design (SAND) approach is adopted [16] in this study: the state
variables are considered as additional design variables and the state equations (the equilibrium
equations and member stiffness relations) are enforced by means of additional constraints. In
addition, a set of binary decision variables is introduced for each member of the structure to
select a profile from the profile section catalog. The obtained MILP can be solved to global
optimality with well-established algorithms such as branch-and-bound methods.
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The MILP formulation approach has originally been proposed by Grossmann et al. [17] for
discrete size optimization problems and is extended by Rasmussen et al. [18] for truss topology
design problems. Mela [19] included member strength and buckling constraints specified by
the Eurocode in the truss topology design problem. Van Mellaert et al. [20] included both the
member and the joint constraints for size optimization of statically determinate trusses.

The formulation approach proposed in this paper differs from the formulation for truss op-
timization problems. In the formulation for truss structures, the variables consist of the binary
decision variables, the displacement, and the normal forces. The internal resistance constraints
are imposed by limiting the normal force of the member and displacement constraints are im-
posed by limiting the nodal displacements. For frame structures, the normal forces are replaced
with the internal member end forces, including bending moments and shear forces. The pro-
posed approach to take into account the member resistance and displacement constraints makes
it possible to limit the relevant displacement components and stresses at several predefined lo-
cations of the members. These displacement and stress constraints are evaluated in a number of
points using shape functions that interpolate the nodal displacements in order to calculate the
stresses and displacements at the predefined locations of the members.

The paper is organized as follows. In section 2, the mixed-integer linear program of frame
optimization problems is introduced: the design variables as well as the constraints are de-
scribed. In section 3, the method is applied to a three-bay three-story frame.

2 Mixed variable formulation

In this section, the mixed integer linear program reformulation for frame structures is de-
scribed. The design variables as well as the constraints of the optimization problem are intro-
duced.

The proposed formulation is written for plane frames with prismatic members analysed by
linear elastic theory. For simplicity, it is assumed that all members are made of the same ma-
terial. Moreover, only a single loading condition is considered, but the formulation is easily
extended to multiple loading conditions. The joints are assumed to be rigid, although hinged
connections can be incorporated in the formulation as well.

Consider a frame structure defined bynm members andnn nodes withndof degrees of
freedom. The number of profile alternatives isns. Denote byM = {1, 2, . . . , nm} and
C = {1, 2, . . . , ns} the index sets for members and profiles. Each member may have its own set
of profile alternatives. The index set of profiles of memberi is denoted byCi ⊆ C.

2.1 Design variables

The design variables include a vector with binary decision variablesy, a vector with continu-
ous nodal displacement variablesu, and a vector with continuous force variablesq. The binary
variables select a profile from the set of available alternatives. For each memberi, profile j is
selected when the corresponding variableyij = 1. Profilej is not selected for memberi when
the corresponding variableyij = 0. The force variables represent the member end forces. This
means that for each memberi and for each sectionj the force variables are represented by the
normal end forcesN1,ij andN2,ij , the shear end forcesV1,ij andV2,ij, and the bending moment
end forcesM1,ij andM2,ij as shown in figure 1. The member end forces for each memberi and
for each sectionj are collected in the vectorqij :

qij =
[
N1,ij V1,ij M1,ij N2,ij V2,ij M2,ij

]T
(1)
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Figure 1: Member end forcesqij .

The vector with the design variablesx is given by:

x =
[
yT uT qT

]T
, y ∈ B

nb,u ∈ R
ndof,q ∈ R

6nb (2)

The total number of binary decision variables is denoted bynb =
∑nm

i=1
nsi, wherenm is the

total number of members in the structure, andnsi is the total number of available sections for
memberi. The total number of degrees of freedom is denoted byndof. The total number of
force variables is6nb. The total number of design variables is calculated asndv = ndof + 7nb.

2.2 MILP

The mixed-integer linear program for frame structures is given by equations (3) to (9):

min
x

∑

i∈M

∑

j∈Ci

cijyij (3)

such that
∑

j∈Ci

yij = 1 ∀ i ∈ M (4)

∑

i∈M

∑

j∈Ci

LT
i T

T
i qij = f (5)

(1− yij)
¯
q′
ij 6 KijTiLiu− qij 6 (1− yij)q̄

′
ij ∀ i ∈ M, ∀ j ∈ Ci

(6)

¯
q′
ijyij 6 qij 6 q̄′

ijyij ∀ i ∈ M, ∀ j ∈ Ci
(7)

¯
d′
ij + (

¯
dij −

¯
d′
ij)yij 6 NiTiLiu+ d̃ij 6 d̄′

ij + (d̄ij − d̄′
ij)yij ∀ i ∈ M, ∀ j ∈ Ci

(8)

¯
s′ij + (

¯
sij −

¯
s′ij)yij 6 BijTiLiu+ s̃ij 6 s̄′ij + (s̄ij − s̄′ij)yij ∀ i ∈ M, ∀ j ∈ Ci

(9)

The objective function is given by equation (3). The subsequent equations are the constraints
of the optimization problem. Equation (4) represents the profile selection. The equilibrium
equations and the member stiffness relations are given by equation (5) and (6) respectively.
Equation (7) ensures that the member forces are zero when profilej is not selected for member
i. The displacements at predefined locations of memberi are limited by the constraints given
by equation (8). The stresses at predefined locations of memberi are limited by the constraints
given by equation (9). In the following subsections the details of deriving these equations are
described.

It is possible to account for multiple load cases by extending the MILP with additional nodal
displacement and force variables for each load case and additional constraints: the constraints
given by equation (5) to (9) are repeated for each load case considering the appropriate nodal
displacement and forces variables [19]. In this paper, only one load case is assumed.

3398



R. Van Mellaert, K. Mela, T. Tiainen, M. Heinisuo, G. Lombaertand M. Schevenels

2.3 Objective function

The objective function is given by equation (3):

min
x

∑

i∈M

∑

j∈Ci

cijyij

wherecij is the cost of profilej for memberi. When the total weight of the structure is mini-
mized, the cost of profilej for memberi is defined ascij = ρLiAij , whereρ is the density of the
material,Li is the length of memberi, andAij is the section area of sectionj for memberi. In
this paper a single material is used, but multiple materials can be adopted with the formulation.

2.4 Selection constraints

The constraint given by equation (4) ensures that a single sectionj is chosen from the catalog
Ci for memberi.

∑

j∈Ci

yij = 1 ∀ i ∈ M

2.5 Equilibrium equations

The nodal equilibrium is imposed by the equality constraints given by equation (5):
∑

i∈M

∑

j∈Ci

LT
i T

T
i qij = f

whereLi is a6 × ndof binary location matrix that maps the element degrees of freedom to the
system degrees of freedom,Ti is a6×6 transformation matrix that accounts for the orientation
of the element [21], andf is thendof×1 nodal load vector. Element loads are taken into account
as equivalent nodal loads in the nodal load vectorf .

2.6 Member stiffness relations

In addition to nodal equilibrium, the material law and compatibility conditions are needed
in structural analysis. For trusses, Hooke’s law and compatibility conditions can be written as a
single equation, because the normal force is the only stress resultant appearing in the members
[18]. As frame members have three (6 in 3D) stress resultants in each node, altogether six (12 in
3D) force-displacement relations are needed. Thus, the relation between the member end forces
and the nodal displacements can be written as:

qij = KijTiLiuyij ∀ i ∈ M, ∀ j ∈ Ci (10)

whereKij is the element stiffness matrix:

Kij =
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whereE is the Young’s modulus of the material,Li is the length of memberi, andAij andIij
are the section area and second moment of area of profilej for memberi, respectively.

Equation (10) ensures that the force variablesqij become zero when profilej is not selected
for memberi (yij = 0) andqij = KijTiLiu when profilej is selected for memberi (yij = 1).

In a regular finite element analysis, the global stiffness matrixK is assembled by replacing
qij in equation (5) with the expression given by equation (10). The resulting equilibrium equa-
tion can not be reformulated as a linear system of equations in terms of the design variables
since the global stiffness matrix depends on the binary decision variables. Therefore, the linear
nodal equilibrium equation (5) and the member stiffness relation equation (10) are adopted as
separate constraints.

The member stiffness relation in equation (10) is nonlinear in terms of the design variables
but can be equivalently reformulated as a set of linear inequality constraints by introducing
artificial upper and lower bounds (big-M) [18] as equation (6):

(1− yij)
¯
q′
ij 6 KijTiLiu− qij 6 (1− yij)q̄

′
ij ∀ i ∈ M, ∀ j ∈ Ci

In this equation, the force variables become equal toqij = KijTiLiu when profilej is selected
for memberi (yij = 1). When profilej is not selected for memberi (yij = 0), the force
variables do not become zero but are bounded byKijTiLiu− q̄′

ij 6 qij 6 KijTiLiu−
¯
q′
ij . In

order to ensure that the force variables become zero when profilej is not selected for member
i, an additional constraint given by equation (7) is introduced:

¯
q′
ijyij 6 qij 6 q̄′

ijyij ∀ i ∈ M, ∀ j ∈ Ci

The artificial upper and lower boundsq̄′
ij and

¯
q′
ij ensure feasibility when profilej is not selected

for memberi and are calculated as follows [22]:

¯
q′
ij = min

u

KijTiLiu (11)

s.t. u 6 u 6 u

q̄′
ij = max

u

KijTiLiu (12)

s.t. u 6 u 6 u

whereu andu are the prescribed minimum and maximum allowed nodal displacements, re-
spectively. Note that equations (12) and (13) are linear optimization problems with bound
constraints, that can be solved without effort [22].

2.7 Displacements along elements

For truss structures, the loads are applied to the nodes and the normal forces remain constant
along the members. For each member, the internal resistance constraints can therefore be im-
posed by limiting the normal force of the member and displacement constraints can be imposed
by limiting the nodal displacements. For frame structures, the internal forces may vary along
the members and element loads (e.g. distributed loads) or bending moments at the end of the
member can cause large deflections along the member. Consequently, the internal resistance
and the displacements have to be checked at multiple locations along the member. In a standard
finite element analysis, a possible strategy is to refine the finite element mesh by dividing the
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members in multiple elements in order to obtain the forces anddisplacements at a certain loca-
tion of the members. In the MILP reformulation the introduction of multiple elements not only
leads to additional continuous force variables, but also to additional equilibrium equations and
member stiffness relation constraints which have to be taken into account. The optimization
problem thus becomes large when this approach is adopted.

In this subsection, an approach is proposed to limit the relevant displacement components
at predefined locations of the members without the introduction of extra elements by refining
the finite element mesh. These displacement constraints are imposed using shape functions
that interpolate the nodal displacements in order to calculate the displacements at predefined
locations of the members. In the following section, a similar approach is proposed in order to
limit the relevant internal stresses at predefined locations of the members.

Figure 2: Local displacements

The displacements in the local coordinate system as defined in figure 2 at locationx of
memberi are calculated as:

uij(x) = Nu
i (x)TiLiu+ ũij(x) (13)

vij(x) = Nv
i (x)TiLiu+ ṽij(x) (14)

ϕij(x) = N
ϕ
i (x)TiLiu+ ϕ̃ij(x) (15)

where the locationx is defined along the local x-axis of the member and can have a minimum
value of 0 representing the first end of memberi, and a maximum value ofLi representing the
second end of memberi. uij(x), vij(x) andϕij(x) are respectively the displacement along the
local x-axis, the displacement along the local y-axis and the rotation at locationx of memberi
for profilej as shown in figure 2, and̃uij(x), ṽij(x) andϕ̃ij(x) are the displacements at location
x of memberi for profilej for the case of the beam with clamped-clamped boundary conditions
subjected to the element loads . The shape function vectorsNu

i (x), N
v
i (x) andNϕ

i (x) are given
by:

Nu
i (x) =

[
1− x

Li
0 0 x

Li
0 0

]
(16)

Nv
i (x) =

[

0
[

1− 3x2

L2

i

+ 2x3

L3

i

] [

x
(

1− x
Li

)2
]

0
[
3x2

L2

i

− 2x3

L3

i

] [

x
(

− x
Li

+ x2

L2

i

)] ]

(17)

N
ϕ
i (x) =

[

0
[
−6x

L2

i

+ 6x2

L3

i

] [

1− 4x
Li

+ 3x2

L2

i

]

0
[
6x

L2

i

− 6x2

L3

i

] [
−2x
Li

+ 3x2

L2

i

] ]

(18)

The relevant displacement componentsuij, vij and/orϕij of elementi with sectionj at the
output locationsxk of interest are collected in a vectordij . For example, if the transverse
displacementvi of elementi must be checked at the locationsx1, x2, andx3, the vectordij is
given by:

dij =





vij(x1)
vij(x2)
vij(x3)



 (19)
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This vector is obtained as follows:

dij = NiTiLiu+ d̃ij (20)

whereNi is in this case composed as:

Ni =





Nv
i (x1)

Nv
i (x2)

Nv
i (x3)



 (21)

andd̃ij as:

d̃ij =





ṽij(x1)
ṽij(x2)
ṽij(x3)



 (22)

In order to limit the relevant displacement components at all predefined locations of member
i the following constraints are introduced:

¯
d′
ij + (

¯
dij −

¯
d′
ij)yij 6 NiTiLiu+ d̃ij 6 d̄′

ij + (d̄ij − d̄′
ij)yij ∀ i ∈ M, ∀ j ∈ Ci (23)

where
¯
dij andd̄ij are the prescribed minimum and maximum allowed value of displacements,

respectively, and
¯
d′
ij and d̄′

ij are artificial lower and upper bounds, respectively, in order to
ensure feasibility when profilej is not selected for memberi. When profilej is selected for
memberi (yij = 1) equation (23) becomes

¯
dij 6 NiTiLiu + d̃ij 6 d̄ij and the relevant

displacement components are limited. When profilej is not selected for memberi (yij = 0)
equation (23) reduces to

¯
d′
ij 6 NiTiLiu+ d̃ij 6 d̄′

ij . The lower bounds
¯
d′
ij and upper bounds

d̄′
ij are calculated as:

¯
d′
ij = min

u

NiTiLiu+ d̃ij (24)

s.t. u 6 u 6 u

d̄′
ij = max

u

NiTiLiu+ d̃ij (25)

s.t. u 6 u 6 u

whereu andu are the minimum and maximum allowed nodal displacements, respectively.
When only nodal displacements are limited, the constraints given by equation (23) can be

substituted by the following constraints:

u 6 u 6 u (26)

2.8 Stresses

The resistance of cross-sections subjected to shear forces, normal forces, and bending mo-
ments must be checked at predefined locations of the members. For elastic design, the resistance
constraints can be written in terms of stresses as:

σmin 6 σt,ij (x) 6 σmax (27)

σmin 6 σb,ij (x) 6 σmax (28)

τmin 6 τij (x) 6 τmax (29)
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Figure 3: Internal forces of memberi for profilej at locationx

whereσt,ij (x), σb,ij (x), andτij(x) are the normal stress at the top, the normal stress at the
bottom and the maximum shear stress of memberi for profilej at locationx. These stresses are
calculated as

σt,ij(x) =
Nij(x)

Aij

+
Mij(x)

Wt,ij
(30)

σb,ij(x) =
Nij(x)

Aij

−
Mij(x)

Wb,ij
(31)

τij(x) =
Vij(x)Sij

Iijbij
(32)

whereWt,ij is the section modulus at the top,Wb,ij is the section modulus at the bottom,Sij is
the first moment of area,Iij is the second moment of area, andbij is the width of the profile
at the point where the maximum shear stress occurs.Nij(x), Vij(x), andMij(x) represent,
respectively, the normal force, shear force, and bending moment at locationx as given by figure
3. For plastic design, similar constraints related to the stress resultants can be formulated.

The internal stresses at locationx of memberi for profile j are calculated as:

σt,ij(x) = Bσt
ij(x)TiLiu+ σ̃t,ij(x) (33)

σb,ij(x) = B
σb
ij (x)TiLiu+ σ̃b,ij(x) (34)

τij(x) = Bτ
ij(x)TiLiu+ τ̃ij(x) (35)

whereσ̃t,ij(x), σ̃b,ij(x) andτ̃ij(x) are the stresses of the beam with clamped-clamped boundary
conditions subjected to the element loads at locationx of memberi for profile j. They are
calculated as:

σ̃t,ij(x) =
Ñi(x)

Aij

+
M̃i(x)

Wt,ij
(36)

σ̃b,ij(x) =
Ñi(x)

Aij

−
M̃i(x)

Wb,ij
(37)

τ̃ij(x) =
Ṽi(x)Sij

Iijbij
(38)

whereÑi(x), Ṽi(x) andM̃i(x) are respectively the normal forces, shear forces and bending
moments of the beam with clamped-clamped boundary conditions subjected to the element
loads at locationx of memberi. Starting from the given displacementsu the stresses can be
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calculated using the vectorsBσt
i (x), B

σb
i (x) andBτ

i (x):

Bσt
ij(x) =

[

− E
Li

6EIij

L2

iWt,ij
−

12xEIij

L3

iWt,ij

4EIij

LiWt,ij
−

6xEIij

L2

iWt,ij

E
Li

−
6EIij

L2

iWt,ij
+

12xEIij

L3

iWt,ij

2EIij

LiWt,ij
−

6xEIij

L2

iWt,ij

]

(39)

B
σb
ij (x) =

[

− E
Li

−
6EIij

L2

iWb,ij
+

12xEIij

L3

iWb,ij
−

4EIij

LiWb,ij
+

6xEIij

L2

iWb,ij

E
Li

6EIij

L2

iWb,ij
−

12xEIij

L3

iWb,ij
−

2EIij

LiWb,ij
+

6xEIij

L2

iWb,ij

]

(40)

Bτ
ij(x) =

[

0 −
12ESij

L3

i bij
−

6ESij

L2

i bij
0

12ESij

L3

i bij
−

6ESij

L2

i bij

]

(41)

The relevant stress componentsσt,ij, σb,ij and/orτij of elementi with sectionj at the selected
output locationsxk are collected in a vectorsij . For example, if the normal stress at the top of
elementi must be checked at the locationsx1, x2, andx3, the vectorsij is given by:

sij =





σt,ij(x1)
σt,ij(x2)
σt,ij(x3)



 (42)

This vector is obtained as follows:

sij = BijTiLiu+ s̃ij (43)

whereBij is in this case composed as:

Bij =





Bσt
ij(x1)

Bσt
ij(x2)

Bσt
ij(x3)



 (44)

ands̃ij as:

s̃ij =





σ̃t,ij(x1)
σ̃t,ij(x2)
σ̃t,ij(x3)



 (45)

The internal resistance constraints read as:

¯
s′ij + (

¯
sij −

¯
s′ij)yij 6 BijTiLiu+ s̃ij 6 s̄′ij + (s̄ij − s̄′ij)yij ∀ i ∈ M, ∀ j ∈ Ci (46)

wheres̃ij is a vector containing the selected stress components at the predefined locations of the
beam with clamped-clamped boundary conditions subjected to the element loads of memberi
for profile j,

¯
sij and s̄ij are the prescribed minimum and maximum allowed stresses, and

¯
s′ij

ands̄′ij are artificial lower and upper bounds in order to ensure feasibility when profilej is not
selected for memberi, calculated similarly to equations (24) and (25).

3404



R. Van Mellaert, K. Mela, T. Tiainen, M. Heinisuo, G. Lombaertand M. Schevenels

3 Three-bay three-story frame example problem

3.1 Problem description

Figure 4: Three-bay three-story frame

Figure 4 shows a three-bay three-story frame structure with twenty-one members. The height
of each story ish = 3.5 m, the width of each bay isw = 6 m, the value of the horizontal load
is F = 22.05 kN, and the value of the distributed vertical load isp = 50.1 kN/m. The members
are subdivided in seven groups: the profiles of all beams are the same, and for each story the
profiles of the outer columns, and the profiles of the inner columns are the same.

The objective of the optimization problem is to minimize the weight of the structure. In order
to reduce the computation time, a limited set of available profiles is used: the profile sections
have to be chosen from a HEA catalog, but the range is limited from HEA 100 to HEA 400,
meaning 15 alternatives. The Young’s modulus of the material is210 GPa, the material density
is 7850 kg/m3, and the yield strength of the material isfy = 235 MPa. The maximum allowed
normal stress isfy = 235MPa, and the maximum allowed shear stress isfy/

√
3 = 136MPa. For

each member, all stress components are limited at three equidistant locationsx1 = 0, x2 = Li/2,
andx3 = Li. For each column, the interstory drift△u is limited byh/300 = 0.0117 m. For
each beam, the vertical deflection is limited at locationx1 = Li/2 by w/200 = 0.03 m.

The minimum weight problem is given by equations (3) to (9). The total number of members
is nm = 21, and for each member the number of available profiles isns = 15, resulting in
nb = 315 binary decision variables. The number of force variables is6nb = 1890, and the
number of degrees of freedom isndof = 36.

3.2 Results

The MILP consists of 2241 design variables, 13791 constraints, and 61105 nonzeros in the
constraint coefficient matrix. The number of design combinations is157 = 171 × 106. There
are 21 equality constraints to ensure that only one profile is selected for each member (given
by equation (4)), 36 nodal equilibrium equality constraints (5), 3780 member stiffness relation
inequality constraints (6), 3780 force inequality constraints (7), 270 deflection constraints (8),
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5670 stress inequality constraints (9), and 210 grouping constraints. The interstory drift con-
straints are imposed by limiting the difference of the horizontal nodal displacements at the top
and bottom of each column. Consequently, there are 24 interstory drift constraints. The MILP is
solved by the software Gurobi 6.0.2 [23] on a computer with an Intel Core i7-5600U processor
(2.6 GHz clock frequency) and 8 GB RAM. The feasibility tolerance is set to10−9, the integer
feasibility tolerance is set to10−9, and the optimality gap is set to5 × 10−3. The optimization
problem is solved in 74781 seconds or 21 hours, and 1764305 nodes of the branch-and-bound
tree are explored. The optimum design is given in figure 5. The total weight of the structure is
6131.87 kg.

Figure 5: Optimal design

4 Conclusion

A method is proposed for the discrete size optimization of frames to global optimality. The
optimization problem is reformulated as a mixed-integer linear program and solved with the
branch-and-bound method in order to guarantee global optimality. The design variables con-
sist of binary decision variables, continuous displacements, and continuous member end force
variables. The equilibrium of the structure is imposed by nodal equilibrium constraints. The
relation between the forces and the displacements is given by the member stiffness relation
constraints. The relevant displacement components as well as the internal stresses are limited
at several predefined locations by interpolating the nodal displacements using shape functions.

In this paper, only member resistance constraints and displacement constraints are consid-
ered. It is hard to consider all relevant code constraints, since not all constraints can be refor-
mulated as linear constraints. Member stability constraints are therefore not taken into account.
More research is needed to develop a fast optimization method that can take all relevant code
constraints into account and that can solve discrete optimization problems to global optimality.
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Abstract. Building design can be supported effectively by computer-aided design exploration.
This paper investigates optimisation based on a mixed-integer super-structure representation of
the search space of building spatial designs. It can take into account parametric as well as topo-
logical variations. In the suggested super-structure – the so-called supercube representation –
discrete and continuous variables determine the existence, respectively, dimensioning of spaces
of the building spatial design. Constraints are formulated as closed form equations and can be
used to numerically assess the feasibility of designs. A population-based constraint-handling
evolutionary strategy is developed. In the constraint handling repair and penalty methods are
combined in a domain specific way. The method is tested on different search space sizes and
first promising results are reported.
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1 INTRODUCTION

The use of automated search for finding optimal buildings with respect to various criteria,
such as, e.g. structural strength, and stiffness; and energy performance will be an important
research topic in the 21st century. Many physical phenomena can be modelled and studied by
computer simulations, e.g., mechanical stress, heat transport, and light radiation. However, via
these means, search for improvement is still widely limited to a trial and error approach. New
research is required for enabling the search in larger design spaces.

This paper is about the foundations of such research. Namely, it will address the question
how to represent a search space for optimisation and how search methods can navigate this
design space in search for better designs. For this, global optimisation methods for large search
spaces, such as evolutionary algorithms, will be regarded here, for across various engineering
domains they have shown their potential to discover new, often unexpected design solutions. A
method that can take into account structural as well as continuous variables will be proposed.
Moreover, it is discussed how to handle constraints on discrete and continuous variables. Both,
repair and penalty methods are used and it is investigated how often constraints are violated
in stochastic search. The results on building spatial designs of small and moderate size are
promising and provide interesting indications on how to plan future research.

The paper is structured as follows: In Section 2 the problem of building design is introduced
as well as a review of related work. The basic outline of the optimisation algorithm is provided
in Section 3. In Section 4 the search space, objective functions and constraints are discussed in
more detail. Then in Section 5 the coupling of optimisation and constraint handling is discussed
and the setup of experiments used for validating the approach. An in-depth discussion of results
is presented in Section 6. In Section 7 a summary of the main results is provided and directions
for future work are indicated.

2 BUILDING DESIGN

Building design is traditionally performed by architects and engineers who create solutions
for discipline specific design problems. These solutions are nowadays usually assessed by and
modified in accordance with design analysis tools. Such tools are for example finite element
methods (FEM), to simulate structural performance or computational fluid dynamics (CFD) to
simulate simulate heat, air, and moisture problems. The division created by the different dis-
ciplines within the field also calls for tools that allow engineers within different disciplines to
cooperate. Examples are computer aided design (CAD) that is used to create and share designs.
However, currently, building information modelling (BIM) is on the rise. BIM is a method that
uses data management in order to dynamically share information with other disciplines. This
allows engineers to – among other things – take other disciplines into account in the early de-
sign phase. The early design phase is important for optimal building designs, because decisions
in the conceptual design stage often affect performances across all disciplines. A single disci-
plinary design may therefore lead to a sub-optimal multi-disciplinary design. Optimisation in
the built environment is mostly performed by parametrising building components, e.g. instal-
lation type, construction type, material type, dimensions or shapes. Software tools for building
optimisation purposes have been developed: Palonen et al. [1] give an overview and present
their own tool. In the tool of Palonen, design variables of a building design can be selected
for optimisation, an optimisation strategy can be selected thereafter. Although these tools can
improve and alter a designs appearance greatly, they cannot lead to new designs (e.g. a new win-
dow cannot appear). Very recently, advances in early design optimisation are made: Hofmeyer
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& Davila Delgado [2] for example use a design process inspired optimisation approach to op-
timise a building spatial design for the structural performance of its related structural design.
Attia et al. [3] present software that gives information about building physics performances
during early design stages. Hopfe et al. [4] use statistical sensitivity analysis to predict the
impact of design variables on the optimality of a building design. The analysis by Hopfe et
al. is interesting for early design optimisation as the impact of each design variable in distinct
design stages can be investigated.

Here it is tried to perform building optimisation for early stage building spatial design us-
ing a new super-structure design space representation. A building spatial design is here merely
a layout of building spaces that can be rearranged and resized for optimal performance. Op-
timisation methods are investigated for two different objective functions on the design space:
Structural performance, measured by minimal compliance, and building physics, measured by
minimal outside surface area, are selected for the optimisation objectives. These disciplines are
selected because they are known to be dependent on the building spatial design. It is intended
to use a RC-network to analyse building heat-balance in the future, but for the sake of develop-
ing the optimisation strategy presented here only the minimal surface area is taken as objective
function. Details on the setup of the analysis are deferred to Section 5.

3 OPTIMISATION

Evolutionary algorithms subsume different algorithms that mimic natural evolution, in order
to find improved or optimised technological designs [5]. Population-based evolutionary algo-
rithms generally work according to a basic loop structure – the so-called generational loop. It
starts after an initialisation phase where an initial population of individuals (solution candidates)
is generated and evaluated. In the evolutionary loop first a ranking among individuals accord-
ing to their fitness (evaluation results) is established. The following step is to select the parents
to generate an offspring population. In this step the ranking of the population might be taken
into account, although in Evolution Strategies – an important EA variant – parent individuals
are chosen randomly. From the selected parent individuals λ offspring individuals are created.
Recombination is applied to allow parts of the genome from multiple parents to together from
a new genome. In order to introduce new, possibly not previously considered, information into
the genome, random perturbations are applied through mutation of the newly produced genome.
When applicable, this is followed by constraint evaluation, where invalid individuals may ei-
ther be repaired, penalised or discarded. Finally, the offspring population is evaluated on the
objective function and a new parent population is produced.

The specific evolutionary algorithm type chosen in this paper is the (µ+ λ)-Evolution Strat-
egy. Evolution Strategies (ESs) were developed by Ingo Rechenberg and Hans-Paul Schwefel at
the TU Berlin in the 60s and are especially well suited for solving engineering design problems
[6]. They are interesting for this work, as they can deal with discrete as well as with continuous
design variables, as outlined in Li et al. [7]. In Figure 1 the main loop of a (µ + λ)-ES is
summarised. Basically, the population (multiset) of individuals is used as a template to gen-
erate the offspring population M of size λ and from the combination of parents and offspring
the best individuals are selected as the parents of the next round. The initialisation, mutation
and recombination operators are chosen in a domain specific way, as will be discussed in more
detail in Section 5. For a more detailed discussion on evolution strategies and their properties
the reader is referred to [5] and [8].
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1. Initialise Population P0 ∈ S
2. Evaluate P0

3. t→ 0

4. While (Termination criterion is not satisfied)

5. t→ t+ 1

6. Ct = Randomly select λ pairs of individuals from Pt−1

7. Rt = {recombine(c, c′)|(c, c′) ∈ Ct}
8. Mt = {mutate(r)| r ∈ Rt}
9. Evaluate Mt

10. Pt = Select µ best individuals from Mt ∪ Pt−1

11. End While

12. Return best individual in Pt

Figure 1: (µ+ λ)-Evolution Strategy.

4 PROBLEM

One important task before optimisation can be used is to formulate a search space. In this
work, it is also intended to use parameter optimisation to optimise the building design. This
makes it necessary to encode the existence or non-existence of spaces by discrete variables.
Moreover the connectivity of spaces – the topology of the building spatial design – is encoded
by discrete variables. In contrast, the sizing of the spaces is encoded by continuous variables.

In the following, the supercube representation of building spatial designs will be used. It
can encode a large search space of building spatial designs by a fixed size vector of discrete
and continuous variables. This makes it easy to apply mixed-integer optimisation algorithms
directly for optimisation, as will be exemplified by using a mixed-integer evolution strategy
later in this work.

The supercube representation has recently been introduced in [9]. It is here assumed a
building spatial design consists of maximally Nspaces spaces that can be seen as mapped to
a Nw×Nd×Nh 3D rectangular (cuboid) grid, consisting of Nw×Nd×Nh cells. Here Nw, Nd

and Nh are the number of subdivisions in width, depth and respectively height. An example
of a supercube grid is shown in Figure 2. The size of the cells is determined by the dimen-
sioning variables wi, dj and hk for the width, depth and respectively height of the cells. Here,
i ∈ {1, . . . , Nw}, j ∈ {1, . . . , Nd} and k ∈ {1, . . . , Nk}. The building spatial design is rep-
resented by binary variables b`i,j,k where i, j, k are again the indices to the width, depth and
respectively height and ` refers to the different spaces. If b`i,j,k = 1 this means that the cell with
indices i, j, k is part of space `, otherwise this is not the case. Not all configurations of cells
make sense from a building spatial design perspective. Constraints will therefore be formulated
to restrict the design space to reasonable solutions.

In summary the following variables will be subject to optimisation:

Discrete variables: (all binary)

b`i,j,k, i ∈ {1, . . . , Nw}, j ∈ {1, . . . , Nd}, k ∈ {1, . . . , Nh}, and ` ∈ {1, . . . , Nspaces}
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h1

h2

hNh

w1 w2 wNw

d1

d2

dNd

b`1,1,1

b`2,1,3

Figure 2: Grid used in the supercube representation.

Continuous variables:

wi, i ∈ {1, . . . , Nw}, dj, j ∈ {1, . . . , Nd}, and hk, k ∈ {1, . . . , Nh}

4.1 Constraints on the discrete variables

In the following four types of topology constraints are introduced, see also [9]. To avoid
overlap of spaces every cell can belong to at most one space. This will be enforced by the
following constraint in Equation 1.

∀i,j,k
Nspaces∑
`=1

b`i,j,k ≤ 1 (1)

Spaces should have the form of a cuboid (3D rectangle). To enforce this constraint one can
first extend the supercube grid by adding a layer of cells with binary variables equal to zero
around it (Equation 2).

∀` : ∀i,j,k ∈ {0, . . . , Nw + 1} × {0, . . . , Nd + 1} × {0, . . . , Nh + 1} :
i = 0 ∨ j = 0 ∨ k = 0 ∨ i = Nw + 1 ∨ j = Nd + 1 ∨ k = Nh + 1⇒ b`i,j,k = 0

(2)

Moreover a i, j beam is defined as a set of cells that share the same i, j index. Accordingly
j, k and i, k beams are defined. For all i, j beams and all spaces ` transitions from zero to
one (Equation 3) should always occur at the same position and transitions from one to zero
(Equation 4) for space ` should also always occur at the same position. The same holds for j, k
and i, k beams (not in equations here).

∀` : ∀i1,j1,i2,j2 :

((
Nh∑
k=1

k
(
1− b`i1,j1,k−1

)
b`i1,j1,k

)
−

(
Nh∑
k=1

k
(
1− b`i2,j2,k−1

)
b`i2,j2,k

))
(

Nh∑
k=1

b`i1,j1,k

)(
Nh∑
k=1

b`i2,j2,k

)
= 0

(3)
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∀` : ∀i1,j1,i2,j2 :

((
Nh∑
k=1

kb`i1,j1,k
(
1− b`i1,j1,k+1

))
−

(
Nh∑
k=1

kb`i2,j2,k
(
1− b`i2,j2,k+1

)))
(

Nh∑
k=1

b`i1,j1,k

)(
Nh∑
k=1

b`i2,j2,k

)
= 0

(4)

Moreover, to ensure connectedness (if the previous two equations also hold) of the cells
of a space ` all beams (in all directions) should have at most one transition from zero to one
(Equation 5).

∀` :

∀i,j :
Nh∑
k=0

(
1− b`i,j,k

)
b`i,j,k+1 ≤ 1 ∀i,k :

Nd∑
j=0

(
1− b`i,j,k

)
b`i,j+1,k ≤ 1

∀j,k :
Nw∑
i=0

(
1− b`i,j,k

)
b`i+1,j,k ≤ 1

(5)

Building spatial designs normally stand on the ground. This is difficult to check by a simple
equation if vertical gaps are allowed in the spatial design. Therefore it is suggested to enforce
a no vertical gaps constraint as well. As a result of this constraint it is not possible to describe
structures with cantilevers, overhangs or archways. The no vertical gaps constraint could be
abandoned if one is willing to use more complex procedures to check constraints. These con-
straints are simultaneously enforced by disallowing transitions from zero to one for i, j beams.
Let bi,j,k be the outcome of a logical OR of all ` bits belonging to cell i, j, k. In equations:
∀i,j,k : bi,j,k = sgn(

∑Nspaces

`=1 b`i,j,k), where the sgn() may be omitted if the no-overlap constraint
(Equation 1) is satisfied. If Equation 6 holds, the building spatial design has no vertical gaps
and stands on the ground.

∀i,j :

(
Nh−1∑
k=1

(1− bi,j,k) bi,j,k+1

)
= 0 (6)

The number of described spaces is kept constant. This is achieved by ensuring every space
is described by at least one cell (Equation 7).

∀` :
Nw∑
i=1

Nd∑
j=1

Nh∑
k=1

b`i,j,k ≥ 1 (7)

4.2 Constraints on the continuous variables

In the design of buildings the total volume V0 of the building is could be provided as a con-
straint. To exclude inactive cells (not part of any building space) from the volume computation
here bi,j,k is again taken to be the result of a logical OR over all ` bits of a cell i, j, k. This yields
the equality constraint in Equation 8 below:

Nw∑
i=1

Nd∑
j=1

Nh∑
k=1

bi,j,kwidjhk = V0 (8)
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In addition, all continuous variables should be positive or taken from a range of positive
values.

4.3 Objective function

Optimisation is performed with respect to two objective functions from two different disci-
plines: Minimum compliance, which relates to structural design performance, and total outer
surface area, which relates to energy performance.

The structural design performance is assessed by first providing the building spatial design
with a building structural design. This is carried out by applying a so-called structural grammar
on each building space. The grammar selected here adds four walls (t = 150mm), with a slab on
top (t = 150mm), all made of concrete (elasticity modulus: E = 30000N/mm2 and Poisson’s
ratio: v = 0.3). The building spatial design is then loaded with a live load on each floor surface
(1.8kN/m2) and wind loads on each outside surface (1.0kN/m2 for pressure, 0.5kN/m2 for
suction and 0.4kN/m2 for shear) from eight general directions (N, N/W, W, etc.). After the
transfer of the loads to the building structural design and meshing of the structure, finite element
analyses are carried out to find the total compliance for all loads together. Detailed information
can be found in the paper by Hofmeyer & Davila Delgado [2]. In summary the first optimisation
task is to minimise the total compliance SC subject to the given constraints.

The total surface area objective can be computed for the supercube representation as fol-
lows. Note that for this computation it is required that the building spatial design contains no
cantilevers or archways, this is ensured by the no vertical gaps constraint previously described
with Equation 6. Additionally the computation requires a layer cells with their binary variables
equal to zero around the supercube (Equation 2).

Every ray through the supercube in width and depth measures the number of changes from
zero to one and then multiplies this number of changes by the area of the fixed indices and
then by two to take into account both the entry and exit points. In case of the height direction
the multiplication by two is omitted, because for the height direction the connection with the
ground layer is not counted as surface area. Since there are no vertical gaps, the height direction
is essentially the sum of areas of rays where space exists. The total sum SA := Sh + Sd + Sw

of Equations 9, 10 and 11 below is then the total surface area.

Sh =
Nw∑
i=1

Nd∑
j=1

((
Nh+1∑
k=1

(1− bi,j,k−1) bi,j,k

)
widj

)
(9)

Sd =
Nw∑
i=1

Nh∑
k=1

(
2

(
Nd+1∑
j=1

(1− bi,j−1,k) bi,j,k

)
wihk

)
(10)

Sw =

Nd∑
j=1

Nh∑
k=1

(
2

(
Nw+1∑
i=1

(1− bi−1,j,k) bi,j,k

)
djhk

)
(11)

In summary the second optimisation task is to minimise the surface area SA subject to the
given constraints.

5 OPTIMISATION METHOD SETUP

Next, a description follows of how the earlier introduced (µ + λ)-ES is customised for the
optimisation based on the supercube representation, including the handling of constraints.
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Figure 3: Optimisation outline.

The optimisation procedure is outlined in Figure 3. For convenience three definitions are
introduced, the number of cells: Ncells := Nw×Nd×Nh, the number of continuous parameters:
Ncont := Nw + Nd + Nh, and the total number of dimensions: Ndims := Ncont + Ncells ×
Nspaces. The process starts by initialising the parent population of size µ = 20. Here continuous
parameters (x1, . . . , xNcont) are initialised to a uniformly random value in [lb = 1.5, . . . , ub =
9.9], and the binary parameters (xNcont+1, . . . , xNdims

) to one with probability 1/Ncells or zero
otherwise. Step sizes of the continuous parameters are initialised to 0.1. Following this the
volume of all new individuals is repaired to be within 1% of the desired volume 23 × Ncells

(a detailed description follows after this outline). In order to check constraints the continuous
parameters are then converted to millimetres (multiply by 2000). In case any constraints are
violated either a single penalty value of pen = 999, 999, 999 is output or a penalty value equal
to pen + CV − 1 based on the number of constraint violations CV ∈ 1, . . . , 5 is output as
objective value. Five constraints are considered for the value of CV : All spaces exist, no-
overlap, cuboid shape, connected cuboid and no vertical gaps. When no constraints are violated
the objective value is computed and output, either surface area in square metres or compliance
in Newton metres. For the initialisation round λ = 100 offspring are produced immediately, all
later iterations first make a selection of the µ best (lowest objective value) individuals from the
µ+λ individuals (parents+offspring). For every to be produced offspring individual two parents
are selected (possibly the same twice) uniformly at random. Using these two parents, crossover
is applied to produce a new individual, which is then mutated, and finally repaired if it exceeds
the bounds. This is done by Modified Interval Bounds Treatment, where for parameters the
previously defined lb and ub parameters are used and for the step sizes bounds lbs = 0.01 and
ubs = ub×0.1 are used. Intermediate crossover, taking the mean value of the parents, is applied
to the continuous parameters as well as their corresponding step sizes. Gaussian mutation with
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individual step sizes is applied to the continuous parameters. Their step sizes are mutated by
the local learning rate τ1 = 1/

√
2
√
Ndims and global learning rate τ2 = 1/

√
2×Ndims as in

Li et al. [7]. Implementation wise a global value g1 is drawn from a Gaussian distribution
g1 = G(0, 1) for every individual. For every parameter separately a second value g2 = G(0, 1)
and third value g3 = G(0, 1) are drawn. The step size s of a parameter is then mutated as:
s′ = s × exp(g1 × τ2 + g2 × τ1). The newly mutated step size is then used to mutate its
corresponding parameter x as: x′ = x+ g3× s′. Binary parameters apply crossover by copying
the value from one of the parents, chosen uniformly at random for each bit. Binary parameters
are mutated by flipping each bit with a probability of 1/(Ncells × Nspaces). Following this the
volume of the new offspring individuals is repaired and the loop repeats until the desired number
of evaluations is reached. Note that here evaluations are counted based on the number of valid
(non-constraint violating) solutions.

A detailed description of volume repair follows. When a newly created individual does not
satisfy the volume constraint in Equation 8 its volume is repaired, which is done by scaling
the continuous parameters. The desired total volume V0 is defined for each experiment. The
current total volume Vc is simply the outcome of the left-hand side of Equation 8. These two
values allow for the computation of a factor α = V0/Vc. The desired volume is then reached by
multiplying the continuous parameters by the cubic root of α as shown in Equation 12. Note
that this should only be done for active cells in the supercube (cells occupied by at least one
building space) since as defined before inactive cells do not contribute to the volume. As a result
of the creation process (recombination, mutation) of new individuals and the described volume
repair, continuous parameters of individuals may end up exceeding their lower bound lb or upper
bound ub. To correct for this, parameters exceeding the lower bound are set to the lower bound,
parameters exceeding the upper bound are multiplied by 0.95 until they are within the bound.
Clearly the corrections for the bounds affect the volume. Therefore the volume repair and bound
corrections are iteratively solved up to 26 times until both requirements are satisfied. When
this number of corrections is insufficient for any of the individuals the optimisation process is
stopped and considered as unsuccessful. This did not occur in the later presented experiments,
the likelihood of this occurring depends on the chosen bounds and the desired volume.

∀i : wi = 3
√
αwi ∀j : dj = 3

√
αdj ∀k : hk = 3

√
αhk (12)

Based on the described optimisation outline a number of experiments have been carried out.
Namely, individual optimisation of both the surface area and the compliance using a single
penalty value is used to test how well the proposed supercube description works in practice.
Moreover, this will set a baseline for the objective value of both functions. In addition a com-
parison is made to individual optimisation of the same objectives when using a penalty based
on the number of constraint violations. This comparison aims to provide some first insights into
constraint handling for this heavily constrained problem.

All experiments are conducted with an evaluation budget of 1000, for six different configura-
tions. A supercube of size two (2× 2× 2 cells) with one, three and five spaces, and a supercube
of size three (3× 3× 3 cells), also with one, three and five spaces. After generating one million
candidate solutions the optimisation is stopped, even if 1000 valid candidates are not yet found.

6 RESULTS

First experiments with a simple, single penalty, constraint handling technique are reported
as shown in Figures 4 and 5. Here infeasible solutions are penalised by a constant penalty that
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is higher than all objective function values of feasible solutions. For each plot mean values for
different numbers of spaces are shown. Different problem configurations are denoted by four
numbers. For instance ’1234’ would refer to a configuration with a width of one, depth of two
and height of three cells, and describing four spaces. Five runs of the optimisation process are
performed for every configuration.
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Figure 4: Mean convergence of the compliance for all completed runs (maximum of five) of single penalty 222x
and 333x configurations, for one, three and five spaces. 2225 and 3333 completed 3 of 5 runs and 3335 completed 0
of 5 runs. All incomplete runs did not find any valid spatial designs. All not specifically mentioned configurations
completed all five runs.
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Figure 5: Mean convergence of the surface area for completed runs (maximum of five) of single penalty 222x
and 333x configurations, for one, three and five spaces. 2225 completed 2 of 5 runs, 3333 completed 3 of 5 runs
and 3335 completed 0 of 5 runs. All incomplete runs did not find any valid spatial designs. All not specifically
mentioned configurations completed all five runs.

The results in Figure 4 show convergence plots for the compliance objective. After a rapid
decrease in the function value during the first few hundred evaluations the optimisation process
tends to stagnate. Configurations 2225, 3333 and 3335 did not find any valid solutions in all
of their runs. Namely configurations 2225 and 3333 both completed three of the five runs and
configuration 3335 completed none of the five runs. Mean convergence values in the plots are
computed over the completed runs, that is, runs that found 1000 feasible solutions. For surface
area similar results were found as shown in Figure 5. Here too, some configurations did not
complete all their runs, respectively configurations 2225, 3333 and 3335 completed two, three
and zero runs.
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For the ease of discussion the constraints are summarised here with a reference to the relevant
equations. Existence, all spaces exist, i.e. they are described by at least one cell (Equation 7).
No-overlap, each cell belongs to no more than one space (Equation 1). Cuboid shape, the
cells describing a space together form a cuboid shape, possibly with voids (Equations 3 and
4). Connected cuboid, given the cuboid shape constraint holds, all cells forming a space are
connected and form a cuboid without voids (Equation 5). No vertical gaps, all cells are either
on the ground level, or have an active cell on the level below them (Equation 6). Note that for
some problem configurations certain constraints are always satisfied, these are indicated as not
applicable (N/A).

Table 1 shows the ratios of constraint violations for every configuration and constraint type
for the minimal compliance objective with a single penalty value. For small supercube sizes the
existence constraint poses no problem. The no-overlap constraint depends on the ratio between
the number of spaces and the number of cells. The probability of constraint violation for the
3333 and 3335 configurations is extremely high (0.999218016 and 0.999294014), making it
impractical to search. The remaining three constraints show a similar pattern to the no-overlap
constraint. The constraint violations of the surface area in Table 2 show a largely similar be-
haviour, with a large portion of the constraints occurring with high probabilities. Constraint
violation appears to be a major problem for this approach.

Configuration Existence No-overlap Cuboid
shape

Connected
cuboid

No vertical
gaps

2221 0.072030329 N/A 0.430918281 N/A 0.350463353
2223 0.148770246 0.373125375 0.528494301 N/A 0.393521296
2225 0.197997775 0.610956619 0.565072303 N/A 0.482480534
3331 0.014877790 N/A 0.590860786 0.160821821 0.501239816
3333 0.000360993 0.999218016 0.999928001 0.999147017 0.999986000
3335 0.816557669 0.999294014 0.999885002 0.999008020 0.999954001

Table 1: Mean constraint violation probability over five
runs for minimal compliance optimisation with a single
penalty value for various problem configurations.

Configuration Existence No-overlap Cuboid
shape

Connected
cuboid

No vertical
gaps

2221 0.054300608 N/A 0.477410947 N/A 0.288010426
2223 0.176321781 0.433341766 0.589931697 N/A 0.348343031
2225 0.021001580 0.999803004 0.999840003 N/A 0.998622028
3331 0.040989160 N/A 0.525406504 0.168021680 0.483739837
3333 0.080888636 0.195670749 0.656508117 0.158074623 0.558245514
3335 0.816465671 0.999535009 0.999898002 0.999337013 0.999976001

Table 2: Mean constraint violation probability over five
runs for surface area optimisation with a single penalty
value for various problem configurations.

To remedy this problem a graduated penalty function was created. It penalises based on the
number of constraints that are violated. This allows evolutionary search to gradually correct
bits and find feasible solutions faster. Clearly Figures 6 and 7 show the success of this strategy
where all runs converge and it is now possible to deal with bigger grid sizes (e.g. 3335).
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Figure 6: Mean convergence of the minimal compliance optimisation with constraint penalties based on the number
of violations for five runs of 222x and 333x configurations, for one, three and five spaces.

In terms of constraint violations it is observed that penalising based on the number of violated
constraints vastly improves the chance of finding valid solutions, as shown in Tables 3 and 4.

3419



Koen van der Blom, Sjonnie Boonstra, Hèrm Hofmeyer and Michael T. M. Emmerich
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Figure 7: Mean convergence of the surface area optimisation with constraint penalties based on the number of
violations for five runs of 222x and 333x configurations, for one, three and five spaces.

Where with a single penalty a significant number of constraints were violated with probabilities
above 80% this is now reduced to a single case. Only the existence constraint remains a major
problem, and even this is only true for the largest configuration (3335). Even so, many other
constraint violations still occur around 50% of the time, and clearly these would benefit from
further improvement as well.

Configuration Existence No-overlap Cuboid
shape

Connected
cuboid

No vertical
gaps

2221 0.066305819 N/A 0.423545332 N/A 0.328371673
2223 0.156955204 0.322667565 0.467497474 N/A 0.313910408
2225 0.305234899 0.484563758 0.455570470 N/A 0.334228188
3331 0.013302295 N/A 0.605919521 0.119388094 0.518789491
3333 0.143656716 0.112873134 0.559701493 0.078358209 0.456778607
3335 0.840781999 0.154225102 0.462875022 0.082638026 0.422732114

Table 3: Mean constraint violation probability with
penalties based on the number of violations over five
runs for minimal compliance optimisation for various
problem configurations.

Configuration Existence No-overlap Cuboid
shape

Connected
cuboid

No vertical
gaps

2221 0.063636365 N/A 0.501581028 N/A 0.269960474
2223 0.144760533 0.320849838 0.453366943 N/A 0.142599928
2225 0.197621226 0.532174443 0.471790170 N/A 0.365965233
3331 0.063481457 N/A 0.521550284 0.105913799 0.467758102
3333 0.142694064 0.146689498 0.582191781 0.099029680 0.469463470
3335 0.859725404 0.193019717 0.495911166 0.101861297 0.420656555

Table 4: Mean constraint violation probability with
penalties based on the number of violations over five
runs for surface area optimisation for various problem
configurations.

The example results of some building spatial designs are given here, it was observed that dif-
ferent configurations resulted in different spatial designs. There is a clear distinction between
the results from minimal compliance optimisation (Figure 8) and those of surface area optimi-
sation (Figure 9). Surface area optimisation leads to compact cuboid, or near cuboid, shapes,
as might be expected. Minimal compliance optimisation on the other hand produces a variety
of shapes. The similarity between both 2225 configurations is striking, but probably the result
of the limited variety of space arrangements within an order two supercupe. On the other hand,
little use is made of the extra space in the 333x configurations. For the 3333 configurations this
may be explained by the availability of only three spaces; there is a limited number of valid
building spatial designs that can make use of the larger number of cells with only three spaces.
Note that while it is possible to produce spaces consisting of a large number of cells, reaching
such a situation becomes increasingly difficult with the number of cells while also satisfying the
constraints. For example the largest space in the 3335 configuration for surface area optimisa-
tion (Figure 9d) consists of just two cells. This is likely to play a role in the limited use of space
for both the 3333 and 3335 configurations. These frequent issues with constraints complicate
exploring all feasible solutions in the search space, in particular transitions between different
feasible parts of the search space are challenging when many moves end up in infeasible parts
of the search space.
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(a) 2223 (b) 2225 (c) 3333 (d) 3335

Figure 8: Examples of output spatial designs of compliance optimisation.

(a) 2223 (b) 2225 (c) 3333
(d) 3335

Figure 9: Examples of output spatial designs of surface area optimisation.

7 DISCUSSION

A newly described optimisation outline for building spatial designs in early stages of building
design has been shown to make effective use of a mixed-integer super-structure representation.
The optimisation process was shown to converge for both small and medium sized building
spatial designs for two individual objectives, compliance and surface area. Moreover, different
constraint handling techniques were applied to significantly improve the ability to traverse a
search space in search of valid designs. Both repair procedures and graded penalties were used.
Altogether these results form a promising first step in multi-disciplinary design optimisation.

A problem that was encountered is that different runs found different topologies. A possible
explanation is that transitions from one feasible subspace to another are very unlikely. In future
work this should be addressed by global optimisation strategies such as niching [10]. Another
issue is that even the largest problem configurations considered here are not very large com-
pared to most practical building spatial designs. Given a significant portion of the constraints
are violated with frequencies in the 40 to 50% range and in the worst cases over 80%, even
when using the multi-penalty approach, it is clear that for larger designs more effective con-
straint handling methods have to be introduced.

Acknowledgements: The authors gratefully acknowledge the financing of this project by the
Dutch STW via project 13596 (Excellent Buildings via Forefront MDO, Lowest Energy Use,
Optimal Spatial and Structural Performance).
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Abstract. A thin elastic multilayered plate consisting of alternating hard and soft isotropic
layers is studied. One of the face planes is subject to a normal pressure and the other face
plane is free. A formula for the deflection of an infinite plate under a doubly periodic external
force is delivered using asymptotic expansions. This formula is also applied for a rectangular
plate with Navier boundary conditions on its edges. The maximal deflection is accepted as
a measure of the plate stiffness. The purpose of the present paper is to obtain an expression for
the plate deflection and find an optimal distribution of hard and soft layers assuming that their
total thicknesses are given. The Monte Carlo method is used for finding the optimal distribution
of layers.
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1 INTRODUCTION

The 2D classical equation for a plate was obtained by Sophie Germain in 1808 with the
purpose of explaining Chladni figures. The equation of a plate bending can be obtained on the
basis of the Kirchhoff–Love (KL) hypotheses [1, 2]. The more involved and sometimes more
exact equation, which takes into account the transversal shear, follows from the Timoshenko–
Reissner (TR) hypotheses [3, 4].

The 2D models of plates and shells are chiefly based on the 3D equations of the theory of
elasticity. The methods of unknown functions expansions in series of Legendre polynomials in
the thickness direction were used in [5, 6]. Numerous investigations [7–9] were devoted to the
derivation of 2D equations by using asymptotic expansions in power series in the small param-
eter µ = h/L, which is equal to the dimensionless plate thickness (h and L are, respectively,
the thickness and the typical wave length in the tangential directions). A different approach
[10,11] rests on the direct derivation of 2D equations of plates and shells without referring to
a 3D media. An account of general problems of the plates theory may be found in the books
[12–14].

The present paper is concerned with a thin plate of constant thickness made of a linearly
elastic material that is transversally isotropic and heterogeneous in the thickness direction. For
a transversally isotropic material the accepted simplification [15], for which a 3D system of
sixth order of the theory of elasticity splits into systems of second and fourth orders, is possible.
Asymptotic expansions in powers of the small thickness parameter µ are constructed, the bend-
ing equation of second-order accuracy (the SA model) is obtained. The origin of this paper is
the paper [16], in which an isotropic homogeneous plate is studied, and the paper [8], in which
a heterogeneous plate is briefly examined. For a multi-layer plate with alternating hard and soft
layers, an explicit formula based on the SA model for the maximum deflection is delivered.
The results of the SA model are compared with the KL classical model and also with the exact
numerical solution. The ratio η = E2/E1 of the soft and hard Young moduli changes in a very
wide range (0.0001 ≤ η ≤ 1).

The aforementioned formula is obtained for an infinite in the tangential directions plate sub-
ject to a doubly periodic external load. After employing the Fourier expansions this formula is
applied to a rectangular plate with the Navier boundary conditions.

For a multi-layer plate with alternating hard and soft layers, the distribution of layer thick-
nesses, which gives the maximum bending stiffness, is found. Here it is assumed that the
summary thicknesses of the hard and of the soft layers are given. This problem is attacked by
the Monte Carlo method. For a very small ratio η of elastic moduli, the three-layer plate with
the soft layer lying between two hard layers was found not to be optimal. In this case, the plate
with the maximum bending stiffness is multi-layered one with the number of layers n > 3.

2 EQUILIBRIUM EQUATIONS AND THEIR SIMPLIFICATION

Consider the linear bending problem of a thin plate made of a transversally isotropic hetero-
geneous material. The 3D equilibrium equations are

∂σij

∂xj

+ fi = 0, i, j = 1, 2, 3, 0 ≤ x3 = z ≤ h, (1)

where xj are the Cartesian coordinates, fi are the projections of the external load intensity, the
summation being carried out over repeating subscripts.
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The stresses σij are related to the strains εij as follows:

σ11 = E11ε11 + E12ε22 + E13ε33, σ12 = G12ε12,

σ22 = E12ε11 + E11ε22 + E13ε33, σ13 = G13ε13,

σ33 = E13ε11 + E13ε22 + E33ε33, σ23 = G13ε23,

ε11 =
∂u1

∂x1

, ε12 =
∂u1

∂x2

+
∂u2

∂x1

, etc.

(2)

Here, E11 = E12 + 2G12, ui are deflections. The elastic moduli Eij, Gij are independent of the
tangential coordinates x1, x2, but they may depend on the transversal coordinate x3 = z. For
functionally gradient materials the moduli are continuous functions in z, and for multi-layered
plates they are piecewise continuous functions.

For an isotropic material

E11=E33=
E(1− ν)

(1+ν)(1−2ν)
, E12=E13=

Eν

(1+ν)(1−2ν)
, G12=G13=G =

E

2(1+ν)
, (3)

where E and ν are the Young’s modulus and the Poisson ratio, respectively.
We set the homogeneous boundary conditions on the face planes z = 0 and z = h

σi3 = 0, i = 1, 2, 3. (4)

If the surface forces are given, then they are included in the body forces by using the Dirac
delta-function.

Introduce new unknown functions u, v, σ, τ as

u =
∂u1

∂x1

+
∂u2

∂x2

, v =
∂u1

∂x2

− ∂u2

∂x1

,

σ =
∂σ13

∂x1

+
∂σ23

∂x2

, τ =
∂σ13

∂x2

− ∂σ23

∂x1

.

(5)

For a transversally isotropic material the system (1), (2) is split into two subsystems [15]:

∂τ

∂z
+G12∆v +m1 = 0, τ = G13

∂v

∂z
, ∆ =

∂2

∂x2
1

+
∂2

∂x2
2

, m1 =
∂f1
∂x2

− ∂f2
∂x1

; (6)

σ33 = E13u+ E33
∂w

∂z
, σ = G13

(
∂u

∂z
+∆w

)
, w = u3,

∂σ

∂z
+ E0∆u+

E13

E33

∆σ33 +m = 0,
∂σ33

∂z
+ σ + f3 = 0, m =

∂f1
∂x1

+
∂f2
∂x2

,

(7)

with

E0 = E11 −
E2

13

E33

=
E

1− ν2
.

System (6) of the second differential order in z describes the boundary layer and will not be
studied here.

The fourth order system (7) describes the plate bending. The 2D plate model is obtained here
by using asymptotic expansions in powers of the small parameter µ = h/L [8,17].
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We introduce the dimensionless variables (denoted with hats)

{u1, u2, w, z} = h{û1, û2, ŵ, ẑ}, {x1, x2} = L{x̂1, x̂2}, u = µû,

{σij, σ, Eij, Gij, E0} = E∗{σ̂ij, σ̂, Êij, Ĝij, c0}, fi =
E∗

h
f̂i, E∗ =

1

h

∫ h

0
E0(z)dz,

(8)

and rewrite system (7) in the dimensionless form

∂ŵ

∂ẑ
= −µcν û+ c3σ̂33,

∂û

∂ẑ
= −µ∆̂ŵ + cgσ̂,

∂σ̂

∂ẑ
= Y3(ẑ) = −µ2c0∆̂û− µcν∆̂σ̂33 − m̂,

∂σ̂33

∂ẑ
= Y4(ẑ) = −µσ̂ − f̂3, 0 ≤ ẑ ≤ 1,

(9)
with

cν =
E13

E33

=
ν

1− ν
, c3 =

E∗

E33

, cg =
E∗

G13

,

σ̂ =
∂σ̂13

∂x̂1

+
∂σ̂23

∂x̂2

, m̂ =
∂f̂1
∂x̂1

+
∂f̂2
∂x̂2

, ∆̂ =
∂2

∂x̂2
1

+
∂2

∂x̂2
2

.

(10)

Here, L is the typical value of the wave length in the tangential directions, and E∗ is the average
value of the modulus E0. The dimensionless coefficients c0, cν , cg, c3 are the given functions of
ẑ. From the boundary conditions (4) we get

σ̂ = σ̂33 = 0 at ẑ = 0 and ẑ = 1. (11)

In what follows, the hat sign will be omitted.

3 ASYMPTOTIC SOLUTION OF THE BOUNDARY VALUE PROBLEM (9), (11)

Assume that the dimensionless external forces f3, m are of the order of unity. Then the
orders of the unknown functions are

σ33 = O(1), σ = O(µ−1), u = O(µ−3), w = O(µ−4). (12)

The right-hand sides of Eqs. (9) are small, and the method of iterations [10,18] is used. To
construct the solution of second-order accuracy we seek it as

w = µ−4w0+µ−2w2, u = µ−3u0+µ−1u2, σ = µ−1σ0+µσ2, σ33 = σ33,0+µ2σ33,2. (13)

The arbitrary functions w0(x1, x2) and u0(x1, x2) appear after the integration in z of the first
two equations (9). These functions are found from the compatibility conditions of the remaining
two equations (9) and the boundary conditions (11) [17]

⟨Y3(z)⟩ = 0, ⟨Y4(z)⟩ = 0, ⟨Z(z)⟩ ≡
∫ 1

0
Z(z)dz. (14)

In the zero approximation we get

w0 = w0(x1, x2), u0 = (a− z)∆2w0, a = ⟨zc0(z)⟩ ,

σ0 = φ1(z)∆
2w0

0, φ1(z) =
∫ z

0
c0(z)(z − a)dz,

D∆2w0 = F3, D = ⟨(z − a)2c0(z)⟩ , F3 = ⟨f3(z)⟩ ,

σ33,0 = −F3

D
φ2 − φ3, φ2(z) =

∫ z

0
φ1(z)dz, φ3(x1, x2, z) =

∫ z

0
f3(x1, x2, z)dz,

(15)
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where z = a is the position of the plate neutral layer, D is the bending stiffness of a plate
with the variable elastic moduli, F3 is the full transversal force. The equation D∆2w0 = F3

corresponds to the classical KL model.
In the second approximation the solution is more unwieldy. Here, we give only the function

w2, which depends on z. At z = 0 it satisfies the equation

D∆2w2(0) = A∆F3 +N(∆f3)−M, A = Ag − Aν , (16)

where

N(∆f3) =
∫ 1

0
cν(z)(a− z)

(∫ z

0
∆f3dz1

)
dz, M =

∫ 1

0
(a− z)m(z)dz,

Ag =
1

D

∫ 1

0
c0(z)(z − a)

∫ z

0
cg(z1)

∫ z1

0
c0(z2)(z2 − a)dz2dz1dz,

Aν =
1

D

∫ 1

0
(z − a)

∫ z

0

∫ z1

0
(cν(z)c0(z2) + c0(z)cν(z2)) (z2 − a)dz2dz1dz.

(17)

The full deflection of the reference plane z = 0 satisfies the equation

Dµ4∆2w(0) = F3 + µ2(A∆F3 + L(∆f3)−M) +O(µ4), (18)

in which the coefficients D and A depend of the elastic moduli distribution in the plate thickness,
the summands L(∆f3) and M depend on the distribution of external transversal and tangential
loads, respectively. The summands Ag and Aν take into account the transversal shear and the
Poisson’s strains, respectively.

The full deflection w(z) of the arbitrary plane z is expressed through w(0) as

w(z) = w(0) + µ2∆w(0)
∫ z

0
cν(z)(z − a)dz. (19)

4 MULTILAYERED PLATE UNDER A NORMAL PRESSURE

Consider a multi-layered plate with hard and soft isotropic homogeneous layers under a nor-
mal pressure F3 acting on the plane z = 0. In this case, in Eq. (18) L(∆f3) = ⟨cν(a− z)⟩∆F3

and M = 0, and so Eq. (18) assumes the form

Dµ4∆2w(0) = F3 + µ2A1∆F3, A1 = A+
∫ 1

0
cν(z)(z − a)dz. (20)

If the plate is homogeneous one-layered, then the elastic moduli c0, cg, cν are constant, and
so the integrals in (17) can be taken, and so in Eq. (20) we have

Dµ4∆2w(0) = F3 + µ2A1∆F3, A1 =
2cν − cg

10
= −1

5
, D =

1

12
. (21)

Using the neutral plane z = 1/2 as a reference one due to Eq. (19) we get

Dµ4∆2w(1/2) = F3 + µ2A2∆F3, A2 =
3cν − 4cg

40
=

3ν − 8

40(1− ν)
. (22)

This value A2 was obtained in [16] and was repeated in [8].
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Consider a plate of thickness h consisting of n = 2n0 + 1 homogeneous isotropic layers of
thickness hk, k = 1, 2, ..., n (h =

∑
hk). Let E1, ν1 and E2, ν2 (E2/E1 ≤ 1) be the Young’s

moduli and the Poisson ratios of hard layers with odd numbers and of soft layers with even
numbers, respectively. We set

z0 = 0, zk =
k∑

i=1

hi, k = 1, . . . , n. (23)

The elastic moduli are known to be piecewise functions in z, and so we put

ek =
E1

1− ν2
1

, ck =
ν1

1− ν1
, gk =

E1

2(1 + ν1)
, k is odd,

ek =
E2

1− ν2
2

, ck =
ν2

1− ν2
, gk =

E2

2(1 + ν2)
, k is even.

(24)

Calculating the integrals in Eqs. (15) and (17) we find the coordinate z = a of the neutral
layer, the bending stiffness D according to the KL model, and the coefficients Ag and Aν in
Eqs. (17) as follows:

a =
1

2

n∑
k=1

ek(z
2
k − z2k−1)

(
n∑

k=1

ekhk

)−1

, D =
1

3

n∑
k=1

ek(ẑ
3
k − ẑ3k−1), ẑk = zk − a,

Ag =
1

D

n∑
k=1

(
ekf1k
2

(ẑ2k − ẑ2k−1) +
f2k
3gk

(ẑ3k − ẑ3k−1) +
ek
30gk

(ẑ5k − ẑ5k−1)

)
,

Aν=
1

D

n∑
k=1

(
ekf

c
3k+ckf

e
3k

2
(ẑ2k−ẑ2k−1)+(ckf

e
4k+ekf

c
4k)(ẑ

3
k−ẑ3k−1)+

ekck
15

(ẑ5k−ẑ5k−1)

)
,

(25)

where

f1k =
k−1∑
i=1

(
f2ihi

gi
+

ei
6gi

(ẑ3i − ẑ3i−1)

)
− f2khk

gk
− ek

6gk
ẑ3k,

f2k =
1

2

k−1∑
i=1

ei(ẑ
2
i − ẑ2i−1)−

1

2
ekẑ

2
k,

f e
3k =

k−1∑
i=1

(
f e
4ihi +

ei
6
(ẑ3i − ẑ3i−1)

)
− f e

4khk −
ek
6
ẑ3k,

f e
4k =

1

2

k−1∑
i=1

ei(ẑ
2
i − ẑ2i−1)−

1

2
ekẑ

2
k, (e → c).

(26)

Here, (e → c) means that the similar formulae also hold for the moduli ck.
Assume, at first, that the plate is infinite (−∞ < x1, x2 < ∞), and consider a dou-

bly periodic normal pressure F3 = F 0
3 sin r1x1 sin r2x2. Then the deflection W (x1, x2, z) =

W (z) sin r1x1 sin r2x2 is also doubly periodic. We rewrite Eq. (20) as

Dr4W (0) = (1− r2A1)F
0
3 , (27)

where

A1 = Ag − Aν −
1

2

n∑
k=1

ck(ẑ
2
k − ẑ2k−1), r2 = r21 + r22, (28)
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and the coefficients D, Aν , Ag are given in Eqs. (25).
In the dimensionless form (with hats)

W (0) = hw(0), D = h3D̂, A1 = h2Â1, µ = rh (29)

Equation (27) gives the deflection of the second-order accuracy (SA)

w(0)SA = wKL(1− µ2Â1), wKL =
F 0
3 h

µ4D̂
, (30)

where wKL is the deflection in the KL model.
A comparison of the expressions µ = rh and µ = h/L leads to the conclusion that in this

problem the typical wave length L should be taken as

L =
1

r
=

1√
r21 + r22

. (31)

To discuss the errors of the approximate expressions (30) for wKL and w(0)SA we require
some numerical examples. We consider a multi-layered plate with n = 11 layers and h = 1,
ν1 = ν2 = 0.3, F 0

3 = 1, and take hk = 1/18, Ek = 1, k = 2i − 1, i=1,. . . ,6, for the hard
layers, and hk = 2/15, Ek = η, k = 2i, i = 1, . . . , 5, for the soft layers. Such a plate will
be referred to as a plate with uniform thickness distribution. We take two values of the relative
thickness parameter: µ = 0.3776 and µ = 0.2221. The ratio η = E2/E1 of the elastic moduli
will vary in the range 0.0001 ≤ η ≤ 1. We compare the approximate values (30) with the exact
value we found by numerical solution of Eqs. (9). The results are given in Table 1. Columns
2–4 correspond to µ = 0.3776, and columns 5–7, to µ = 0.2221.

1 2 3 4 5 6 7
η we wKL/we wSA/we we wKL/we wSA/we

1.0 553 0.9717 0.9994 4529 0.9902 0.9999
0.31 936 0.9539 0.9992 7578 0.9837 0.9999
0.1 1270 0.8899 0.9985 9830 0.9532 0.9998
0.031 1684 0.7322 0.9975 11587 0.8882 0.9996
0.01 2700 0.4703 0.9987 14723 0.7198 0.9998
0.0031 5746 0.2231 1.0110 23692 0.4510 1.0036
0.001 14258 0.0800 1.0441 51150 0.2098 1.0192
0.00031 41793 0.0308 1.1156 134232 0.0800 1.0557
0.0001 110822 0.0116 1.3054 374835 0.0287 1.1337

Table 1: Error of the approximate models for some values of η with µ = 0.3776 and µ = 0.2221.

The relative error of the KL and SA models is found by comparing the results in columns
3,4,6,7 with one. The exactness of the KL model is of first asymptotical order with respect
to µ, and it is acceptable for applications only for 0.1 ≤ η ≤ 1. The SA model of second
asymptotical order may be used in the very wide range 0.001 ≤ η ≤ 1. For 0.1 ≤ η ≤ 1 the SA
model is essentially more exact than the TR model. For 0.0001 ≤ η ≤ 0.001 the 2D models are
unacceptable.

The errors of the 2D models decrease simultaneously with the thickness parameter µ. This
follows from the comparison of columns 3 and 6, and also of columns 4 and 7.
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5 DEFLECTION OF A RECTANGULAR MULTILAYERED PLATE

Consider a rectangular multi-layer plate with 0 ≤ x1 ≤ a1, 0 ≤ x2 ≤ a2, 0 ≤ z ≤ h
(Fig. 1). In the previous sections the boundary conditions at the plate edges were either not
imposed or a plate was assumed to be infinite in the tangential directions. Now the following
variant of boundary conditions will be accepted:

u2 = w = σ11 = 0 at x1 = 0, x1 = a1,

u1 = w = σ22 = 0 at x2 = 0, x2 = a2,
(32)

(the so-called Navier conditions) and

σ13 = σ23 = 0, σ33 = −F 0
3 at z = 0; σ13 = σ23 = σ33 = 0 at z = h. (33)

Fig. 1. A plate.

The functions

u1(x1, x2, z) = r1m u(z) cos(r1mx1) sin(r2nx2),

u2(x1, x2, z) = r2n u(z) sin(r1mx1) cos(r2nx2), r1m=
mπ

a1
, r2n=

nπ

a2
, m, n=1, 2, . . . ,

w(x1, x2, z) = w(z) sin(r1mx1) sin(r2nx2),
(34)

satisfy the boundary conditions (32). The boundary layer does not appear, because
v = ∂u2/∂x1 − ∂u1/∂x2 ≡ 0 (see Eqs. (5)).

Eq. (30) for the deflection is delivered for a doubly periodic external force
F3 = F 0

3 sin(r1x1) sin(r2x2) with µ = h
√
r21 + r22. To use Eq. (30) for a constant force F3

in the rectangle 0 ≤ x1 ≤ a1, 0 ≤ x2 ≤ a2 we expand it in a double Fourier series

F3 = F3

∑
m,n=1,3,...

16

mnπ2
sin(r1mx1) sin(r2nx2), (35)

and apply Eq. (30) to the each summand of (35). In this case

µ = µmn = h

√(
mπ

a1

)2

+
(
nπ

a2

)2

, m, n = 1, 2, . . . (36)

and so the full deflection is

w(x1, x2, 0) =
F3

D

∑
m,n=1,3,...

Cmn sin(r1mx1) sin(r2nx2), Cmn =
16 (1− µ2

mnA1)

mnπ2µ4
mn

, (37)
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where D and A1 are given in (25) and (28), respectively. The similar expression is valid for the
deflection of the opposite face plane w(x1, x2, h). In this case, the constant A1 in Eq. (37) needs
to be replaced by A = Ag − Aν .

The deflection of the line x2 = a2/2, z = 0 and the maximum deflection at z = 0 are,
respectively,

w(x1, a2/2, 0) =
F3

D

∞∑
k=0

B2k+1 sin(r1,2k+1x1), B2k+1 =
∞∑
j=0

(−1)jC2k+1,2j+1,

w(a1/2, a2/2, 0) =
F3

D
A0, A0 =

∞∑
k,j=0

(−1)k+jC2k+1,2j+1 =
∞∑
k=0

(−1)kB2k+1.

(38)

All the series in (37) and (38) converge rapidly, the summands with C11 are much larger than
the remaining summands (see Table 4).

As an example, we consider a multi-layer square plate with n = 11 and with the same data
as in Section 4. We assume in addition that a1 = a2 = 20, and so µ = µ11 = 0.2221. For
various values of η = E2/E1, the first coefficients C2k+1,2j+1, B2k+1, and A0 are given in Table
2.

η C11 C13 C33 C15 C35 C55 B1 B3 B5 A0

1 4528 191 62 31 19 10 4368 160 22 4230
0.1 9828 463 164 89 58 32 9454 388 63 9129

0.01 14720 1255 593 383 282 183 13848 1045 284 13087
0.001 52134 8717 4737 3251 2475 1675 46668 6455 2451 42669

Table 2: Coefficients C2k+1,2j+1, B2k+1, and A0 for various values η.

The amplitude of deflection is proportional to A0; it essentially depends on the ratio η (see
Table 2), but the deflection mode depends slightly on η and is close to the function sin(πx1/a1)
(see Fig. 2).

200

w

w
max

x
1

h=0.001

h=0.01

h=0.1

h=1

Figure 1: Deflection modes for various values of the ratio η of the Young moduli.
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6 OPTIMAL DISTRIBUTION OF THE LAYER THICKNESSES

Consider a multilayer plate with the alternating hard and soft layers. Let the entire number
of layers be n = 2n0 + 1 with n0 + 1 layers and n0 soft layers. We set

hh =
n0∑
k=0

h2k+1, hs =
n0∑
k=1

h2k, h = hh + hs, (39)

where hh and hs are the summary thicknesses of the hard and of the soft layers, respectively.
Assume that the values hh, hs, also the elastic moduli of hard and of soft layers, and the thick-
ness parameter µ are given. We seek the distribution of the layer thicknesses hk satisfying
Eqs. (39), for which the plate bending stiffness is maximum. As the bending stiffness we accept
the inverse value the maximum deflection f(h1, h2, . . . , hn) = w(0)SA (see Eq. (30)).

In most cases a three-layer plate with

n = 3, h1 = h3 = hh/2, h2 = hs (40)

has the maximum stiffness. But if the ratio η of elastic moduli is very small, then the other
distribution of thicknesses may lead to the maximum stiffness. Here we investigate this problem
in details for the fixed values µ = 0.3776, ν1 = ν2 = 0.3, for two changing parameters η and
s = hh/h, and for n ≤ 11 (without loss of generality we may take E1 = 1 and h = 1). The small
parameter µ = 0.3776 corresponds, in partial, to a rectangular plate with a1 = 10, a2 = 15.

To find the thickness distribution corresponding to the maximum stiffness for the fixed values
η and s, we seek the minimum of function f(hk) = f(h1, h2, . . . , hn) in hk satisfying Eqs. (39).
To find h0

k that delivers the minimum to the function f(hk) we use the Monte Carlo method in
combination with the method of iterations [18]. Thanks to Eqs. (39) the point hk moves in the
space Rn−2. Let h(i)

k be some point. We next seek the next point h(i+1)
k for which

f(h
(i+1)
k ) < f(h

(i)
k ) (41)

as follows. We put h∗
k = max{0, h(i)

k + ξk}, where ξk are the uniformly distributed numbers in
[−ε, ε] (for example, ε = 0.01). Then we normalize the values h∗

k according to Eqs. (39)

h∗∗
2i+1 =

s h∗
2i+1∑5

i=0 h
∗
2i+1

, h∗∗
2i =

(1− s)h∗
2i∑5

i=1 h
∗
2i

. (42)

If f(h∗∗
k ) < f(h

(i)
k ), then we take h

(i+1)
k = h∗∗

k . Otherwise, we repeat the previous step with
different random numbers ξk.

As the initial distribution we take h
(1)
1 = h

(1)
11 = s/2, h

(1)
6 = (1 − s), assuming that the rest

of h(1)
k is 0. Calculations show that it is enough to make 106 steps.

The curve tn Fig. 3 divides the plane (s, η) of the problem parameters into two parts; in one
of which the three-layer plate has maximum stiffness.

Consider in more detail the case s = 1/3, µ = 0.3776 with various values of the parameter η.
For η > η∗ = 0.0122 the three-layered plate (40) has maximal bending stiffness. In Table 3 for
various η the minimal deflection, Wo, as found by the algorithm described above, is compared
with the deflection, Wu, of a plate with the uniform thickness distribution (see Section 4) and
with the deflection, W3, of the three-layered plate (40). For η > η∗ the three-layered plate is
optimal, W3 = Wo. For η < 0.006 the stiffness of a plate with uniform thickness distribution is
larger than the stiffness of a three-layer plate, Wu < W3.
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Figure 2: The plane (s, η) for µ = 0.3776.

η uniform, Wu three-layered, W3 optimal, Wo

0.001 15617 17812 11539
0.002 8446 9286 7815
0.005 4139 4170 4007
0.01 2697 2464 2458
0.0122 2434 2155 2155
0.02 1962 1607 1607
0.1 1268 901 901
0.5 785 663 663

Table 3: Comparison of the stiffness parameters for various multilayer plates with µ = 0.3776, s = 1/3.

In Table 4 the optimal distribution of thicknesses for s = 1/3, µ = 0.3776, and for four
values of η is presented. The thicknesses of soft layers are shown in italic. For η = 0.01 the
distribution is symmetric with respect to the mid-plane. With smaller η the distribution is not
symmetric. The resulting asymmetry can be accounted for by the fact that the value Wo is the
deflection of the plane z = 0 to which the external force is applied. At η = 0.001 the optimal
plate degenerates to a three-layer plate with very dissimilar distribution of layers.

η h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

0.01 0.149 0.192 0.007 0.099 0.010 0.081 0.010 0.099 0.007 0.192 0.149
0.005 0.094 0.212 0.025 0.090 0.048 0.063 0.047 0.090 0.025 0.211 0.095
0.002 0.030 0.255 0.024 0.075 0.213 0.039 0.027 0.083 0.011 0.215 0.029
0.001 0.331 0.667 0.002 − − − − − − − −

Table 4: Distribution of thicknesses of the optimal plate with s = 1/3, µ = 0.3776.

The similar results also hold for a rectangular plate with the Navier boundary conditions,
because the first summand in the expression for w(x1, a2/2, 0) in Eq. (38) is much larger than
the rest summands.

The results of Section 6 are approximate, since they are based on the approximate equa-
tion (30). The error in Eq. (30) is estimated in Section 4 (see Table 1). The exact results may be
obtained by numerical solution of Eqs. (9). But for the large number of iterations this approach
takes a long time, though the result is almost the same.
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7 CONCLUSIONS

• A two-dimensional linear model of second-order accuracy (SA) is used for analysis of a
thin multi-layer plate bending.

• The formula for an infinite plate deflection subject to a doubly periodic external force is
obtained. This formula is applied to a rectangular multi-layer plate with alternating hard
and soft layers and with the Navier boundary conditions.

• The plate deflection depends on the distribution of thicknesses of hard and soft layers.

• The problem of the optimal distribution, which gives the maximum bending stiffness, is
attacked using the Monte Carlo method.

• For a very small ratio η of the elastic moduli the three-layer plate with the soft layer lying
between two hard layers was found not to be optimal. In this case, the plate with the
maximum bending stiffness is the multi-layered one with the number of layers n > 3.

• The plate with n = 11 layers is examined.
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Abstract. Optimisation algorithms used to automatically size structural members commonly
involve stress constraints to avoid material failure. Therefore the cost of optimisation grows
rapidly as the number of structural members is increased due to the corresponding increase in
the number of constraints. In this work, an efficient method for large scale stress constrained
structural sizing optimisation problems is proposed. A convex, separable, and scalable approx-
imation for stress constraints which splits the approximation into a local fully stressed term
and a global load distribution term is introduced. Predictor-corrector interior point method,
an excellent option for large scale optimization problem, is chosen to solve the approximate
subproblems. The core idea in this work is to achieve computational efficiency in the optimiza-
tion procedure by avoiding the construction and the solution of the Schur complement system
generated by the interior point method. Avoiding the Schur complement, and explicit sensitiv-
ity analysis, eliminates the high cost of solving stress constrained problems within the interior
point optimisation. This is achieved using the preconditioned conjugate gradient method, and
a new preconditioner is proposed specifically for stress constrained problems. The proposed
method is applied to a number of beam sizing problems. Numerical results show that optimal
complexity is achieved by the algorithm, the computational cost being linearly proportional to
the number of sizing variables.
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1 INTRODUCTION

Optimisation methods have been extensively used to size structural components [1][2][3]
[4][5][6] — mostly in a finite element environment. The use of optimisation algorithms allows
for automated sizing and for a more thorough search of the design space leading more effi-
cient structures. Strength constraints, which define the failure limits for the structure, have to
be satisfied in every part of the structure during the sizing optimization. This is enforced nu-
merically by applying strength constraints per finite element. For a large and complex structure
with hundreds of thousands of degree of freedom, the computational cost of strength constraints
becomes prohibitive for large scale optimization problems.

One simple optimization algorithm to handle stress constraints is the fully stressed method
[7]. However, it turns out that the fully stressed design is not the minimum-weight design for
statically indeterminate structures [8] and works well only with discrete structures. From then
on, the structure optimization based on optimality condition starts to be investigated. In 1974,
by introducing stress approximations, L.A. Schmit and B. Farshi [9] first achieve a significant
improvement in computational efficiency of sizing optimization. Different approximation meth-
ods have been investigated thereafter [10][11][12][13][14][15]. Higher order approximations,
even though they demonstrate high accuracy, are complicated when calculating the coefficients
for higher order terms. After numerous attempts, first order and diagonal second order ap-
proximation are regarded as good options when both accuracy and computational complexity
have been taken into account [10][14][16]. Therefore, they are commonly applied in structural
optimization.

Interior point method stands out among gradient-based algorithms because of its robustness
and efficiency. The convergence rate of interior point method is not sensitive to the size of
optimization problem. Originally proposed for linear programming, it has been extended to dif-
ferent types of problems. Boggs et al.[17] use interior point method to solve sequential quadratic
programming (SQP) for large scale nonlinear programming problems. Robert and David[18]
extend the method to solve nonconvex nonlinear programming, and show the robustness and
efficiency of the method. In [19], Mehrotra has shown that by the predictor-corrector pattern,
the number of iterations decreases further to solve linear programming problem. By employ-
ing a Taylor polynomial of second order to approximate a primal-dual trajectory, Mehrotra[20]
successfully improve the efficiency of the algorithm. Andersen, Roos and Terlaky[21], utilize
Mehrotra’s predictor-corrector interior point method to solve large-scale sparse conic quadratic
optimization problems robustly and efficiently. Zillober[22] demonstrates the advantages of
predictor-corrector interior point method over the dual approach in solving large scale nonlin-
ear programming with applications to structural optimisation problems.

The Preconditioned Conjugate Gradient (PCG) method is an efficient iterative technique
for the solution of large sets linear equations. This iterative method converges rapidly if the
preconditioner manages to reduce the condition number of coefficient matrix or when a good
initial guess is available. Schmit [23] employes the PCG to solve finite element method in
structural optimization and discuss the potential parallel computation of the method. Another
advantage of PCG is that the coefficient matrix does not need to be stored explicitly. This
property will help greatly to save computational effort in the proposed algorithm.

The objective of this paper is to demonstrate an efficient optimization method to optimize
statically indeterminate beam structures. The method is designed to be fast for typical sizing
scenarios under stress constraints. The computational complexity of of the algorithm is reduced
from approximately cubic dependence on the number of elements to approximately linear de-
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pendence.
The structure in this paper is outlined as follows: In Section 2 the framework of the conven-

tional optimization approach for stress constrained problems is described. A brief description
of the Finite Element model, successive convex approximations for stress constraints, and sen-
sitivity analysis is given. The predictor-corrector interior point method used in this paper is also
described and the computational complexity of the conventional approach estimated. Section
3 introduces an efficient and cheap preconditioner to solve the dense linear system generated
by the interior point method. The matrix-vector multiplications needed by the PCG method are
reduced to an implicit sensitivity analysis leading to a reduction in the computational cost of
sensitivity analysis . Two numerical examples will be used to demonstrate the efficiency of the
optimization method in Section 4. Finally, Section 5 provides the conclusions.

2 Formulation

Before describing the proposed method, an overview of the optimisation process, stress ap-
proximation, sensitivity analysis and the iterative optimization is given in this section. The
purpose is to familiarise the reader with the relevant concepts and formulations first, and to
identify the computational bottlenecks in the procedure.

The, more or less, standard approach in structural optimisation is to use successive convex
and separable approximations. The optimisation starts at a given design point, convex separable
approximations of all involved response are constructed based on sensitivity information, then
the approximate subproblem based on the approximations is solved to find the next design iter-
ate. The procedure is repeated until a suitable convergence tolerance is achieved. The solution
of the convex subproblem itself is obtained using an iterative convex optimisation technique.
In this work, an predictor-corrector interior point method is used. The various elements of the
procedure are explained in more details in the following sections.

2.1 Successive Convex Approximation Method

In this section, a cheap and efficient convex approximation for stress constraints is described.
Vanderplaats [12, 13] has shown that, approximating the internal forces first as a linear function
of the design variables, is more accurate than approximating the stress constraints directly. In
this approach, the linear approximations are used to calculate the internal forces from which the
stresses and hence the failure constraint(s) (e.g., von Mises stress) may be calculated. However,
these so-called force approximations are not necessarily separable or convex. The motivation
for the present research is to design a high quality approximation method which overcomes this
disadvantage.

The basic idea is to use a zeroth order force approximation rather than a first order approxi-
mation. This zeroth order approximation is then corrected to attain first order accuracy by the
addition of linear terms.

The model problem is an Euler-Bernoulli beam designed for minimum volume under ma-
terial failure constraints. For simplicity a rectangular cross section, width w and height h, is
considered. Furthermore, either only the width or only the height would be used as a design
variable which is denoted by x. The stress constraint takes the form,

|σ|
σall
− 1 ≤ 0 (1)

where σall is the allowable normal stress, and the normal stress σ is related to the intermediate
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internal force M , representing the bending, moment by,

σ =
|M |h

2I
, (2)

where I is the moment of inertia of the cross section given by

I =
wh3

12
. (3)

The continuous problem would be solved using methods of the calculus of variations. The
numerical treatment starts by discretising the beam using n finite elements. Each element is
assigned a design variable. The stress constraint for the ith element may be written as a function
of Mi and the design variables,

ri(Mi, xi) = ± 6Mi

σallwih2i
≤ 1., xi = wi or hi, i = 1, 2, . . . n (4)

Note that the bending moment in any given element is generally a function of all the design
variables Mi = Mi(x). The volume of the beam is the integral over the length of the cross
sectional area wh.

Let the current design iterate be denoted by xk. The proposed approximation then takes the
form,

ri ≈
b
(k)
i

xqi
+

n∑
j=1

A
(k)
ji (xj − x(k)j ). (5)

For width optimisation q = 1 and b(k)i = 6|M (k)
i |�σallh2, while for height optimisation q = 2

and b(k)i = 6|M (k)
i |�σallw. The first term represents the zeroth order force approximation for

the stress constraint. This first term would be exact only for statically determinate structures
where the bending moment is independent of the design variables. The second term provides a
linear correction and represents the effect of load redistribution present in statically indetermi-
nate structures. The coefficients A(k)

ji are obtained by matching the derivatives of the approx-
imation Eq.(5) with respect to design variables G(xk) to the derivative values obtained from
sensitivity analysis Ge at the approximation point xk.

G(xk) = Gs(xk) + A(k) (6)
Ge(xk) = G(xk) (7)

Where,

Ge(xk) =


∂r1
∂x1

∂r2
∂x1

· · · ∂rn
∂x1

∂r1
∂x2

∂r2
∂x2

· · · ∂rn
∂x2...

... · · · ...
∂r1
∂xn

∂r2
∂xn

· · · ∂rn
∂xn


∣∣∣∣
xk

(8)

Gs(xk) =


− qb

(k)
1

xq+1
1

0 · · · 0

0 − qb
(k)
2

xq+1
2

· · · 0

...
... . . . ...

0 0 · · · − qb
(k)
n

xq+1
n

 (9)
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Therefore the coefficient A(k) is,

A(k) = Ge(xk)− Gs(xk) (10)

The proposed stress approximation here is thus convex and separable.
For the case under consideration, the volume of the beam is an exact linear function of the

design variables. Thus, the objective function may be written as,

V =
n∑

i=1

cixi. (11)

2.2 Sensitivity Analysis

Sensitivity analysis is required first to provide the gradient of the objective and constraints in
gradient-based optimisation. Then the gradient is employed to guide the optimisation method
in the optimisation procedure, which pushes the design variables towards the optimal solution
in the feasible domain. The well-established and efficient way to calculate sensitivity is through
the Finite Element Method (FEM) which estimates the mechanical response of structures.

Consequently, FEM is employed to analyse structures and provide information required by
the proposed optimization method. Due to the ease-to-implement and powerful capability of
FEM to analyse complex structures, it ensures the propose to solve real engineering problems
in the very beginning. According to minimum total potential energy principal, we can come to
the equation for static analysis:

Ku = f (12)

where K is the global stiffness matrix attained by assembling stiffness matrix of each element
according to their degree of freedom. u is the global displacement of each node. f is the external
force loaded on the structure.

Before we get the internal force for ith element in finite element method, the displacement
corresponding to the DOF of ith element in local coordinate system should be obtained first by,

ũi = Tiu (13)

Here, Ti is the transformation matrix which transfer the displacement of the ith element from
global coordinate to local element coordinate system.

The equation for the internal force, i.e., the bending moment in this case, is,

Mi = D(xi)Biũi. (14)

Here, D(xi) is the material stiffness, Bi is the strain-displacement matrix, and ui contains the
nodal degrees of freedom connected to the ith element. In the case of beams under pure bending
Di for the ith element is scalar given by the bending stiffnessEI(xi), and the strain-displacement
matrix Bi reduced a row vector relating the average curvature to the nodal degrees of freedom.

Substituting Eq. (13) into Eq. (14), the sensitivity of the beding moment Mi with respect to
the design variable xj is given by,

∂Mi

∂xj
=
∂Di

∂xi
δijBiTiui + zTi

∂ui

∂xj
(15)

where δij is Kronecker’s delta, and zi = TT
i B

T
i D

T
i .
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There are two common methods to proceed with the sensitivity analysis: the direct method
and the adjoint method [24].

The direct method starts from the assembled finite element equations,

K(x)u = f , (16)

where K is the assembled stiffness matrix, u the vector of degrees of freedom and f is the vector
of external forces.

Differentiating Eq.(16),

K
∂u

∂xj
=

∂f

∂xj
− ∂K

∂xj
u, (17)

The solution to Eq.(17) allows the computation of the derivative of the displacements with
respect to every design variable.

The adjoint method attempts to avoid the explicit calculation of the displacement derivatives.
To this end, the vector zi is pseudo-load, and the following adjoint system is introduced,

K ti = zi. (18)

Then the sensitivity of the bending moments is given by,

∂Mi

∂xj
=
∂Di

∂xi
δijBiTiui − tTi

∂K

∂xj
u (19)

The derivatives of the bending moment in all elements then follows from Eq.(15). The
derivatives of the stress constraint itself are then easily computed as follows,

∂ri
∂xj

=
∂ri
∂xi

∣∣∣∣
Mi

δij +
∂ri
∂Mi

∣∣∣∣
xi

∂Mi

∂xj
(20)

Using the direct method, Eq.(17) has to be solved once for each design variable. By contrast,
Eq. (18) for the adjoint method needs to be solved only as many times as there are stress
constraints.

2.3 Predictor-Corrector Interior Point Method

The predictor-corrector interior point method is a good option for large scale optimization
problems because of its great efficiency [25]. In this paper, the interior point method is therefore
employed in structural optimisation. In interior point methods a logarithmic penalty is used to
enforce the constraints. The penalty parameter is then driven towards zero to obtain the optimal
solution. At each step of optimisation Newton’s method is used to update primal and dual
(Lagrange multiplier) variables. The predictor corrector method of Mehrotra[20] is used to
accelerate convergence.

When minimizing the volume of a beam with stress and design variables constrained, the
problem can be formulated as follows.

objective:

Min:f0(x) =
n∑

i=1

xihili (21)
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subject to:

fi(x) ≤ σall i = 1 . . . m, m is the number of stress constraints

xlj ≤ xj ≤ xuj j = 1 . . . n, n is the number of design variables

In this paper, m = n for the beam structure. xi and li are the thickness and the length of the
ith beam, respectively. xlj and xuj are the lower bound and upper bounds of the design variable.
Since we confine the optimization problem to be sizing optimization, xlj > 0.

The Lagrangian function of the problem is

L(x, s,ys, su,yu, sl,yl) =f0 + (ys)T (f(x) + s) + (yu)T (x− x + su) + (yl)T (x− x + sl)

− µ
n∑

i=1

ln si − µ
n∑

i=1

ln sui − µ
n∑

i=1

ln sli

(22)

f0: normalized objective function; f(x): normalized stress constraints (stress: fi(x) =
sgn(σi)σi/σallow−1, i = 1 . . . n); s: the slack of the stress constraints which transform inequal-
ity constraints stress constraints into equality constraints; su,sl: the slack of the design variables
with respect to the upper bound and lower bound which transform inequality constraints of de-
sign variables into equality constraints; ys: Lagrange multipliers of the stress constraints; yu,yl:
the Lagrange multipliers of the design variable with respect to the upper bound and the lower
bound respectively; x: upper bound of the design variables (xi = xui ); x: lower bound of the
design variables (xi = xli); µ: penalty parameter.

According to Karush-Kuhn-Tucker conditions, a set of equations will be:

∂L

∂x
= ∇f(x) + G(x) · ys + yu − yl = 0 (23)

∂L

∂yl
= x− x + sl = 0 (24)

∂L

∂yu
= x− x + su = 0 (25)

∂L

∂ys
= f(x) + s = 0 (26)

∂L

∂s
= Ys · s− µ · e = 0 (27)

∂L

∂su
= Yu · su − µ · e = 0 (28)

∂L

∂sl
= Yl · sl − µ · e = 0 (29)

Here G(x) is the gradient of the stress approximation (Eq.(5)); eT =

n︷ ︸︸ ︷
[1, 1, . . . , 1]; Ys =

diag(ys1, · · · , ysn); Yu and Yl are similar.
In order to solve the above equations, Newton’s method is employed. Then a linear system
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of the subproblem is obtained:

G(x) ·∆ys + H(x) · ys ·∆x + ∆yu −∆yl = −∇f − G(x) · ys − yu + yl (30)

−∆x + ∆sl = x− x− sl (31)
∆x + ∆su = x− x− su (32)

GT (x)∆x + ∆s = −f(x)− s (33)
S ·∆ys + Ys ·∆s = µ · e− Ys · s (34)

Su ·∆yu + Yu ·∆su = µ · e− Yu · su (35)

Sl ·∆yl + Yl ·∆sl = µ · e− Yl · sl (36)

Here H(x) are the Hessian matrixs of the stress approximation with respect to the design
variables. Since the approximation is separable, H(x) · ys is diagonal matrix which is very
cheap to obtain as shown in [22]. To signify the right hand side of the equations above, we
have: 

fx
fyl
fyu
fys
fs
fsu
fsl


=



−∇f − G(x) · ys − yu + yl

x− x− sl

x− x− su

−f(x)− s
µ · e− Ys · s
µ · e− Yu · su
µ · e− Yl · sl


(37)

From Eq.(32) and Eq.(35), we can get:

∆su = fys − GT (x)∆x (38)
∆yu = (Su)−1 · (fsu − Yu ·∆su) (39)

From Eq.(31) and Eq.(36), we can get:

∆sl = fyl + ∆x (40)

∆yl = (Sl)−1 · (fsl − Yl · (fyl + ∆x)) (41)

From Eq.(33), we can get:
∆s = fys − GT (x) ·∆x (42)

Substitute ∆su into ∆yu and ∆sl into ∆yl, then substitute ∆yu and ∆yl into Eq.(30) yields:

G(x) ·∆ys + H(x) · ys ·∆x + Yu · (Su)−1 ·∆x + Yl · (Sl)−1 ·∆x = fsysx (43)

fsysx = fx − (Su)−1 · fsu + Y u · (Su)−1 · fyu + (Sl)−1 · fsl − Y l · (Sl)−1 · fyl

with Eq.(34) substituting into Eq.(33) it comes to:

GT (x) ·∆x + (Ys)−1 · (fs − S ·∆ys) = fys (44)

Combining Eq.(43) and Eq.(44) we can get the final equation of the subproblem with only
∆ys:

[(Ys)−1 · S + GT (x) · C−1 · G(x)]∆ys = f (45)
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Here, C = H(x) · ys + Y u · (Su)−1 + Yl · (Sl)−1

Since all these three parts are diagonal matrix, C is a diagonal matrix.

f = −fys + (Ys)−1 · fs + GT (x) · C−1 · fsysx (46)

From Eq.(45) we can get ∆ys. Back substitute it into Eq.(30 – 36) we can get: ∆x, ∆su,
∆s, ∆sl, ∆yu, and ∆yl.

Algorithm 1 Algorithm of Predictor-Corrector Interior Point Method
1: Set k = 1, initialize the parameters µ,x, su, sl, s,ys, yu, yl.
2: while dgap ≥ tol do . stop if duality gap < tol
3: Update Eq.(45) by setting µ = 0
4: µ(k+1) ← solve Eq.(45) in predictor step
5: Update Eq.(45) by setting µ = µ(k+1)

6: x, s,ys, su,yu, sl,yl ← solve Eq.(45) in corrector step
7: Update d(k+1)

8: end while

• Initialize the variables (Line 1) in the predictor-corrector interior point method:

Set the design variables x a set of feasible design. Make su = x, sl = x, s = 1,
µ = 1/(dim(ys) + 2dim(x)), ys = µ/s, yu = µ/su, yl = µ/sl.

dim(x) is the length of vector x; dim(ys) is the length of vector ys

• The way to calculate penalty parameter µ (Line 4) in predictor step is as follows:

First we solve Eq.(45) with µ = 0, where we get slacks (∆s, ∆su, ∆sl) and Lagrange
multipliers (∆ys, ∆yu, ∆yl). Then we update the duality gap by,

d gap(k+1) = (s+ δprimal ·∆s)T · (ys + δdual ·∆ys) + (su + δprimal ·∆su)T · (yu + δdual ·
∆yu) + (sl + δprimal ·∆sl)T · (yl + δdual ·∆yl)

Meanwhile we calculate the current duality gap by,

d gapk = sT · ys + (su)T · yu + (sl)T · yl

The penalty parameter is obtained by,

µ(k+1) = min{max((d gap(k+1)/d gapk)2, 0.1), 1} · µk

• Update the design variables, Lagrange multipliers and slacks in Line 6:

x = x + δprimal ·∆x; s = s + δprimal ·∆s;

su = su + δprimal ·∆su; sl = sl + δprimal ·∆sl;

ys = ys + δdual ·∆ys; yu = yu + δdual ·∆yu;

yl = yl + δdual ·∆yl;

The way to obtain δprimal, δdual in the previous steps are all based on the following rule:
δprimal = 0.95 ·min{max{−sli/δsli},max{−si/δsi},max{−sui /δsui }, 0.95}
δdual = 0.95 ·min{max{−yli/δyli},max{−yui /δyui },max{−ysi /δysi }, 0.95}
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2.4 Computational Complexity

The computational complexity of a numerical method is directly relevant to the efficiency of
the method. In sizing optimization, the computationally expensive operations are FEM analysis,
stress sensitivity analysis and iterative optimization with the interior point method. For a nu-
merical structure, the number of elements and/or nodes is denoted by n. The order of magnitude
of each of these operations will be estimated as a function of n.

Since the stiffness matrix for FEM analysis is a symmetric and positive definite equation, the
Cholesky decomposition is employed to save computational effort. The computational work for
Cholesky decomposition of the finite element equations is:

O(nm2)

wherem is the bandwidth of the equations. For the beam problem under consideration the num-
ber of neighbours for each node is fixed and the bandwidth is constant, thus the computational
cost for FEM is,

C1 = O(n),

the computational cost for FEM analysis is linear with respect to the number of elements in the
numerical model.

For stress sensitivity analysis, the most expensive part is to solve the Eq.(18) for the ad-
joint displacements. This stiffness matrix is the same as that for equilibrium equation in FEM
analysis. The order of computational effort for each adjoint calculation is therefore O(n). Nev-
ertheless, in a beam structure with n elements, the number of stress constraints is n. Therefore
Eq.(18) is solved n times to get Ge. The computational work for stress sensitivity analysis is:

C2 = O(n2)

The number of iteration inside the interior point method does not vary much when the size
of optimization problem increases. The largest cost in each interior point iteration is the con-
struction and solution of the system of equations Eq.(45) repeated here,

[(Ys)−1S + GT (x)C−1G(x)]∆ys = f

Since Ys and S are diagonal, the cost to obtain Y−1s S is O(n). The cost to obtain GT (x)C−1G(x)
is O(n3) because of the cost of full matrix multiplication. The solution of Eq.(45) can be
obtained using Cholesky decomposition. The matrix is full, thus the computational cost is
O(n3). As a result, the computational complexity of the interior point method is,

C3 = O(n3)

Since the number of iterations for the method of successive approximations (successive op-
timization) is almost independent of the problem size. The computational complexity for the
entire optimisation is dominated by the interior point method and would be,

C = O(n3)

Consequently reducing the computational complexity of the optimisation should start by ad-
dressing the cost of Eq.(45). If this is reduced, the second target would be reducing the cost of
the adjoint sensitivity analysis. The main contribution of the paper is in reducing both of them
to O(n) operations.
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3 Numerical Improvements

Since the computational work for the above optimisation method increases sharply while
the size of optimisation increases. Methods to reduce the computational complexity of the
optimisation procedure will be introduced in this section.

The first priority is to accelerating the iterative optimisation which dominates the overall
computational cost. In the proposed method, to alleviate the main cost for the iterative op-
timisation, the preconditioned conjugate gradient method (PCG) is used to solve system of
equations Eq.(45) for the dual variables. The PCG is an efficient solver for large scale linear
equations. The storage of the full coefficient matrix is not require as well. Therefore the cost
for the matrix matrix multiplication in building the coefficient matrix of Eq.(45) is avoided.
Additionally, since the efficiency of the method is crucially dependent on the quality of the pre-
conditioner, a diagonal preconditioner based on the concept of fully stressed design is proposed
for the optimisation problem in Section 3.1. This is an optimal preconditioner from the point
of view of the computational cost of using the preconditioner for one step (O(n)). Numerical
results (Section 4) will confirm that it is also optimal from the point of view of the number of
the PCG iterations.

The PCG method requires the ability to form the matrix-vector product of the coefficient
matrix with an arbitrary vector. To avoid having to explicitly construct the gradient matrix G,
a method is proposed to merge the stress sensitivity analysis into the optimisation procedure,
which leads to an implicit sensitivity analysis as shown in Section 3.2. Thus, the computational
cost of sensitivity analysis is significantly reduced by creating an direct inline link between
the FEM and the optimiser. With the implicit sensitivity analysis, the most expensive cost,
the production of the gradient matrix and an arbitrary vector, in the PCG can be accordingly
reduced to O(n). Combined with PCG and the interior point method, the entire optimisation
cost are finally reduced toO(n) fromO(n3). The proposed method therefore achieves powerful
computational savings for large scale optimisation problems.

3.1 Preconditioner for Conjugate Gradient Method

The efficiency of the PCG depends greatly on the effectiveness of the preconditioner. A pre-
conditioner M is a matrix that approximates the coefficient matrix of the equations to be solved.
It is important to make sure that the preconditioner is cheap to invert and can effectively re-
duce the condition number of the preconditioned coefficient matrix. In this section, an effective
preconditioner for the subproblem Eq.(45) satisfying the two requirements is developed.

Let us recap the system of equations in Eq.(45),[
(Ys)−1S + GTC−1G

]
∆y = f . (47)

The gradient matrix G is, in general, a fully populated dense matrix. Thus the coefficient matrix
is also dense. From Eq.(5), the gradient matrix G takes the form,

G = Gs(x) + A(k), (48)

Where Gs is a diagonal matrix containing the gradient of the statically determinate part of the
stress approximation. A(k) is the gradient matrix of the linear part representing load redistri-
bution. As we have derived in Section 2.1, A(k) is a full matrix for statically indeterminate
structures. It is expensive to obtain because of the calculation procedure to obtain Ge(xk).

However to create a cheap preconditioner the following approximation is invoked,

G ≈ Gs. (49)
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Physically this is to assume that the effect of load redistribution is negligible. In other words,
that the internal loads in the structure are frozen at the value at the latest design point. With
these assumption the preconditioner takes the form,

M = (Ys)−1S + GT
s C
−1Gs, (50)

where M is a diagonal matrix which is easy to invert. The effectiveness of the preconditioner in
terms of the condition number cannot be demonstrated theoretically but will be assessed in the
numerical experiments in Section 4.

3.2 Implicit Sensitivity Analysis

While solving the subproblem (Eq.(45)) with the PCG iteratively in the interior point method,
it requires the forming of products of the coefficient matrix of Eq.(45) by an arbitrary vector v,[

(Ys)−1S + GT (x)C−1G(x)
]
v. (51)

The first term of the coefficient matrix, (Ys)−1S is diagonal and forming products of the form
wf = (Ys)−1S · v is cheap (O(n)).

However, the second term, for G ·v and GT ·v, is extremely expensive for the large scale op-
timisation problems because of the computational work to obtain the gradient matrix G. As we
have shown the cost to form stress sensitivity Ge, which forms part of G, increases quadratically
when n increases in Section 2.4. Therefore we attempts to avoid the cost of calculating the gra-
dient matrix G explicitly before the optimisation starts. Instead we merge the gradient matrix
inside the interior point method by substituting the derivative of stress approximation Eq.(5)
into G · v, GT · v directly. This forms an implicit sensitivity analysis which will be described
below.

The product ws = GTC−1G · v can be computed in three steps.

w1 = G(x)v,

w2 = C−1w1, (52)

ws = GT (x)w2.

The matrix C is diagonal, hence the matrix vector product involving it is O(n). Thus the cost
is dominated by products of the form Gv and GTv. Note that the matrix G(x) contains the
gradients of the stress approximations at the current iterate of the interior point method which
is different from the gradient matrix evaluated at the approximation point G(xk) (Ge(xk)). Re-
calling the decomposition of G(x), Eq.(6) and Eq.(10), G is expressed as,

G(x) = Gs(x)− Gs(xk) + G(xk). (53)

Noting that Gs(x) and Gs(xk) are diagonal and cheap to explicitly construct and store, then the
cost is dominated by products of the form G(xk) ·v and GT (xk) ·v. The purpose of this section
is to show that these products may be formed without the explicit calculation and storage of the
matrix G(xk) and in O(n) operations.

To compute G(xk) · v start from Eq.(20) for the stress sensitivity to obtain,

G(xk) · v =


∑

i (DiBiTi) vi(−K−1) ∂K
∂x1

u∑
i (DiBiTi) vi(−K−1) ∂K

∂x2
u

...∑
i (DiBiTi) vi(−K−1) ∂K

∂xn
u


∣∣∣∣
xk

(54)
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The first part
∑

i (DiBiTi) vi(−K−1) is the same in each term of the above equation. Since the
stiffness matrix K is symmetric, this term can be obtained by the adjoint method.

Kt = z, (55)

where, z =
∑

i (DiBiTi)
T vi is the dummy load.

The final equation becomes,

G(xk) · v =


tT ∂K

∂x1
u

tT ∂K
∂x2

u
...

tT ∂K
∂xn

u


∣∣∣∣
xk

(56)

The number nonzero elements in ∂K
∂xi

depends on the number of degrees of freedom of the
element which is a small fixed number. Hence, ∂K

∂xi
u has a fixed cost to compute. Therefore the

most expensive cost for the above equation is the solution of the adjoint system. The computa-
tional cost correspondingly is O(n) to evaluate G(xk) · v once.

Next calculating GT (xk) · v is considered.

GT (xk) · v =


(D1B1T1) (−K−1)

∑
i vi

∂K
∂xi

u

(D2B2T2) (−K−1)
∑

i vi
∂K
∂xi

u
...

(DnBnTn) (−K−1)
∑

i vi
∂K
∂xi

u


∣∣∣∣
xk

(57)

It is important to notice (−K−1)
∑

i vi
∂K
∂xi

u is the same in each component of the vector. Ac-
tually, we may consider the scalar vi as the perturbation of design variable xi. Consequently we
can assemble the

∑
i vi

∂K
∂xi

into a single matrix ∆K. (−K−1)
∑

i vi
∂K
∂xi

u is actually (−K−1)∆Ku.
Then by reanalysis method [24],

∆Ku + K∆u = 0, (58)

from which the displacement increment ∆u may be calculated.
Consequently, Eq.(57) is estimating ∆ri = DiBiTi∆u:

GT (xk) · v =


∆r1
∆r2

...
∆rn


∣∣∣∣
xk

(59)

The most expensive part in this computation is to inverse the stiffness matrix K which the
computational cost is O(n). In this method, we need to inverse K only once in the reanalysis
method Eq.(58) to obtain Eq.(59). Therefore the computational work is O(n) to calculate GT ·v
once.

Both the cost for G · v and GT · v is O(n) now. By contrast, previously we have to repeat n
times to inverse K in adjoint method to get stress sensitivity first and then to complete gradient
matrix G(x). The computational work is O((n)2). Therefore the cost to get G ·v and GT ·v has
been decreased effectively.

In the procedure to set up the subproblem and stress approximate, the implicit sensitivity
analysis procedure mentioned above can also be applied when G(x) ·v or G(x)T ·v are required.
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The explicit stress sensitivity analysis which is a very expensive part is successfully re-
moved inside the optimisation framework. The structure of the proposed method are simpli-
fied to only FEM and iterative optimisation with the implicit sensitivity analysis. Rather than
completely separated, the FEM and the iterative optimisation are linked by the reanalysis and
adjoint method in the implicit sensitivity analysis. Inside the optimisation, adjoint method and
the reanalysis employ the stiffness matrix of FEM to update the Lagrange multipliers and de-
sign variables, the stress approximation updates the mechanical responses (u, σ) by reanalysis
method with the updated design.

3.3 Summary of the Optimization Algorithm

The computational cost of the iterative optimisation has been efficiently reduced by the PCG
with the proposed preconditioner. Meanwhile, the computational efficiency for the sensitivity
analysis has also been improved by the implicit sensitivity analysis. Therefore the entire opti-
misation procedure can be accelerated. In this subsection, the overall optimisation algorithm is
summarised.

The outermost loop has the design point changed according to the method of successive
approximations.

Algorithm 2 Algorithm for the proposed optimisation method
1: Initialize the design variable x0

2: while vol ≥ tol do . stop if the volume variation tol
3: Finite element analysis Eq. (12)
4: Update x← the solution of predictor-corrector interior point method . see Section 2.3
5: end while

In the proposed optimisation method, there are only two main operations, the FEM and
the iterative optimisation. The procedure iterates until the relative change of the volume of
the structure is smaller than the predefined tolerance. The explicit sensitivity analysis module is
removed from the optimisation procedure. The solution of the approximate subproblem remains
the same as in Section 2.3. The only difference is that the PCG method is employed to solve the
system of equations in Eq. (45) iteratively in the predictor and corrector steps of the algorithm.
Since no explicit gradient matrix is available in the proposed method, the implicit sensitivity
analysis is deployed every iteration step in the interior point method (Eqs. (56) and (59)).

The number of iteration steps for both the interior point method and PCG is small and not
influenced by the size of optimization problems [20][25]. The computational cost for the opti-
misation will be reduced significantly.

In the next section, the computational complexity of the proposed method will be demon-
strated.

3.4 Computational Complexity for the Efficient Optimization Method

The computational complexity of the proposed efficient optimization method will be anal-
ysed in this section to estimate how much improvement can be obtained. The most expensive
parts in the optimisation module are the implicit sensitivity analysis and the PCG iterations.

For the implicit sensitivity analysis, the most expensive cost is for the reanalysis method and
the adjoint method (Eq. (56,59)). Thus the cost of implicit sensitivity analyses is,

C ′2 = O(n),
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per iteration.
In the PCG, since the full coefficient matrix is not required, the computational work (O(n3))

for the matrix matrix product is saved. The most costly part is the use of implicit sensitivity
analysis, already discussed, and the inversion of the preconditioner. Since the preconditioner is
a diagonal matrix then the cost of one PCG iteration is,

C ′3 = O(n).

The number of iteration steps for both the interior point method and the PCG is small and
is assumed not to depend on the size of optimization problem. Therefore, the total number of
iterations of the PCG method niter � n when n is large enough. The computational cost for
the complete optimisation is therefore O(n). The proposed method, successfully reduces the
computational complexity for stress constrained optimization problems from O(n3) to O(n).

4 Computational Result

In this section, two numerical cases will be utilized to show how much do we achieve with
the proposed method. The target structures are statically indeterminate beams. In both cases,
we repeat the optimization procedure with increasing number of elements in FEM model. All
tests are implemented on an DEll pc with 8.0 GB installed memory, Intel Core i5-4670 CPU
@ 3.40 GHz 3.40 GHz. The CPU time for the second test optimization procedure is recorded
and compared between the original method and the proposed method in this paper. The numer-
ical cases show that the proposed method not only produce feasible optimal solution but also
successfully decreases the CPU time of optimization procedure by one order.

4.1 Two-span Continuous Beam

We employ the proposed method to complete two numerical cases. The first numerical case
is the two-span continuous beam in Figure 1. The width w in the rectangular cross-section
A-A is the design variable while the height h of the cross-section is fixed in the optimization
problem. In this numerical case, apart from the stress constraints, the displacement in y direction
at 7370mm is also constrained apart from the stress constraints and the lower and upper bound
of the design variables.

The optimization problem is defined as:

Objective:

Min:f0(w) = h
n∑

i=1

liwi (60)

subject to:

fi(w) ≤ σall i = 1 . . . n, n is the number of stress constraints
wl ≤ wi ≤ wu i = 1 . . . n, n is the number of design variables

ucon(w) ≤ ua ucon(w) is the displacement at 7370mm from the left

The parameters of the optimization problem is listed in Table 1.
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Table 1: Parameters of Two-span continuous beam

Young’s Modulus E = 20Gpa
Allowable stress σall = 5Mpa

Allowable displacement/span ratio r = 1/3500
Initial design width ti = 1000mm

Minimum width tl = 100mm
Maximum width tu = 1000mm
Distributed load p1 = 35KN/m, p2 = 25KN/m

Figure 1: Two-span Continuous Beam

In this optimisation, the relative error of PCG is errPCG = 1e−4, the tolerance of duality gap
is told = 1e−5, the tolerance of the volume variation is tolv = 1e−3. The optimal solution of the
width is shown in Figure 2. It keeps at the minimum where both stress and the displacements
constraints are not active. Then compared with Figure 34, the width of the beam at 1272mm
and 4000mm increases because of the active of stress constraints. Then the width of the beam
increases again at 7334mm. However the increment of width in this part is due to the active of
displacement constraints as demonstrated in Figure 5.

Figure 2: The width along the length of the optimal beam
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Figure 3: the bending moment in the optimal beam

Figure 4: the normal stress on the top of the optimal beam
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Figure 5: the displacement of the optimal beam

The volume of the beam decreases during the optimization as shown in Figure 6. It drops
rapidly in the first three steps before it converges at eighth steps.

Figure 6: The volume of the beam in each iteration

4.2 Hollow Beam Structure

In this case, the design variables are the thickness t of the hollow beam shown in Figure 7.
The left edge of the beam is fixed and the right edge is simply supported. Uniform distributed
load is applied on the top. While design the beam with minimum volume of material, the stress
within each element is constrained and the design variables are confined within the predefined
range. The optimization model is defined:
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Objective:

Min:f0(t) = S

n∑
i=1

liti S is the perimeter of the cross-section area (61)

subject to:

fi(t) ≤ σall i = 1 . . . n, n is the number of stress constraints
tl ≤ ti ≤ tu i = 1 . . . n, n is the number of design variables

Figure 7: Hollow Beam Structure

The optimization starts with uniform thickness distribution. The parameters of the optimiza-
tion problem is listed in Table 2

Table 2: Parameters of hollow beam structure

Young’s Modulus E = 200Gpa
Allowable stress σall = 172.36Mpa

Initial design thickness ti = 20mm
Minimum thickness tl = 3mm
Maximum thickness tu = 20mm

Distributed load p = 40N/mm

In this case, the relative error of PCG is errPCG = 1e−4, the tolerance of duality gap is
told = 1e−5, the tolerance of the volume variation is tolv = 1e−3. The optimal thickness along
the length of the beam is depicted in Figure 8. It first decreases from 16.7mm from the left edge
to 3mm at around 1000mm. Then it increases to 7.2mm at around 2600mm before it reduces
to 3mm again.

The internal force of the beam, i.e., the bending moment here, is illustrated in Figure 9. On
the left edge, it reaches −9.31 × 107Nmm, then it increases to 0Nmm and then reaches the
4× 107Nmm at about 2500mm. It goes back to 0Nmm again on the right edge.

Therefore the distribution of the thickness matches the trend of bending moment to confine
the stress. From Figure 10, which shows the normal stress on the top edge of the beam along
the length, the normal stress reaches the allowable value where the stress constraints are active.

3454



Zhi Hong, Mostafa M. Abdalla

Figure 8: thickness along the length of the optimal beam

Figure 9: the bending moment in the optimal beam
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Figure 10: the normal stress on the top of the optimal beam

The variation of the volume during optimization is shown in Figure 11. The volume drops
rapidly in the first two loops. It takes merely 6 steps in total to converge to the optimal solution.

In this case, we record the number of iteration steps in the PCG, the interior point method
and the entire optimisation when the structure is discretised by different number of elements.
We start the procedure from 20 elements and double the number of elements each time. From
Figure 12, there is no obvious change for the number of steps in the entire optimization itera-
tion, the interior point and the PCG when the number of elements increases from 20 to 10240.
The number of steps for the PCG is the averaged total number of the PCG iterations per interior
point method step. The CPU time for the optimization procedure with the original method and
the proposed method is portrayed in Figure 13. The dashed line in the figure demonstrates the
linear trend between the CPU time and the number of elements. As we can see from the figure,
the trend of the solid line is almost parallel to the dashed line. It proves that computational
complexity for the whole procedure has been decreased from more than O(n2) to O(n). There-
fore great efficiency is achieved by the proposed method is for large scale stress constrained
optimization.
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Figure 11: The volume of the beam in each iteration

Figure 12: the Number of steps for entire optimization,interior point method and PCG
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Figure 13: the log-log form of the CPU time vs number of elements for the optimization with
original method and the proposed method

5 Conclusion

An efficient method for large-scale beam sizing under stress constraints is introduced in this
paper. A novel successive convex stress approximation which is homogenous and separable
is described first. This proposed approximation not only provides sufficient accuracy but also
makes the subproblem cheap to build in the optimisation module.

The PCG is employed to enhance the efficiency of solving the subproblem in the optimisation
module for the large scale optimisation problems. An effective preconditioner based on the fully
stressed concept is introduced. Numerical test in Section 4.2 proves that the PCG converges
only a few steps to solve the linear equation with the proposed preconditioner.

An efficient implicit sensitivity analysis method is proposed in this method to replace the ex-
pensive sensitivity analysis by the adjoint method. The structure of the optimisation framework
therefore is simplified to only FEM analysis and iterative optimisation with the interior point
method. The computational effort for sensitivity related calculation has been decreased from
O(n2) to O(n).

The implicit sensitivity analysis is deployed each time the gradient matrix G is required in
the iterative optimisation procedure. Since the total number of iterations of the PCG method in
the interior point method is niter � n when n is large enough. The computational cost for the
entire optimisation drops from O(n3) to O(n).

Great efficiency for stress constrained large scale optimisation is achieved with the proposed
method. Numerical tests have validated the conclusion from the theoretical analysis of com-
putational complexity. For the future research, the method is supposed to be extended to plate
elements to strength the problem solving capacity of the proposed method.
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Abstract. In order to reduce environmental ground vibration due to railway traffic, mitigation
measures at the source, the transmission path and the receiver can be applied. Mitigation
measures on the transmission path are particularly appealing in situations with existing track
and buildings. In this contribution, the optimal design of stiff wave barriers is considered.

Up to now, wall barriers with a rectangular cross section have mostly been studied. However,
current construction methods of wave barriers provide a wide flexibility in design geometry.
Therefore further improvement is feasible. Topology optimization is used to discover novel,
improved design geometries.

Stiffer material is inserted into a design domain located between the source and a building.
The objective is to minimize the amount of stiffer material in the design domain while satisfying
the required vibration criteria in the building. The optimization problem is solved using a
gradient based method and the adjoint method is used to enable an efficient calculation of the
sensitivities.

In this way, an optimal geometry is determined that considerably reduces the required amount
of stiffer material. Topology optimized stiff wave barriers are therefore effective in reducing vi-
bration levels, outperforming the rectangular wave barriers. The design contains, however,
small features, making it sensitive to geometric imperfections, and a worst case robust opti-
mization is applied. The resulting smaller sensitivity with respect to geometric imperfections
also ensures that a posteriori design simplifications have a minimal impact on the barriers
performance.
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1 INTRODUCTION

Railway induced vibrations may lead to the malfunctioning of sensitive equipment, discom-
fort and structural damage at high vibration levels. Furthermore, noise can be re-radiated from
floors and walls. This paper focuses on malfunctioning of sensitive equipment. Extensive re-
search is performed to search for effective vibration mitigation measures. Three categories of
mitigation measures are distinguished, namely at the source [1], the transmission path [2, 3]
and the receiver [4]. These refer respectively to the railway track, the soil and the building.
The present work considers wave barriers to hinder ground vibration propagation from source
to receiver.

Currently, only a limited number of simple design geometries for mitigation measures have
been investigated. However, current flexibility in construction methods, such as jet grouting,
provides opportunities for further improvement. To discover novel design geometries, topol-
ogy optimization is applied. Topology optimization, originally developed for static mechanical
problems, is used for a variety of applications, including problems governed by wave propaga-
tion [5]. Examples include electromagnetic, elastomagnetic and acoustic applications, such as
photonic crystal waveguide designs [6], designs of phononic band-gap materials [7] and noise
barriers [8].

This study uses topology optimization to design barriers impeding elastodynamic wave trans-
mission. Wave barrier effectiveness is quantified by comparing the calculated one-third octave
band velocity spectra in specific receiver points in the building to generic vibration criteria for
sensitive equipment [9]. Since full control of the built geometry is difficult in the construction
of underground structures, the optimized design should be robust with respect to geometrical
imperfections [10]. A worst case approach is applied to improve the robustness of the de-
sign [11, 12]. The resulting designs can be used to realize simplified design solutions, which
are suited for construction and are robust with respect to geometric imperfections.

The paper starts with the introduction of the optimization problem and a brief review of the
topology optimization approach. Next, results for optimized wave barriers are discussed. Fi-
nally, the sensitivity to geometric imperfections is analyzed and a simplified design is presented.

2 PROBLEM DESCRIPTION AND METHODOLOGY

2.1 Problem description

The considered problem is shown in figure 1 and consists of a building located at the surface
of a homogeneous elastic halfspace, representing the soil. The soil (subscript ‘1’, as abbrevia-
tion for material 1) has a mass densityρ1 of 2000 kg/m3, a longitudinal wave velocityCp1 of
400m/s, and a shear wave velocityCs1 of 200m/s. The building (subscript ‘bu’) is a four-
storey frame consisting of four floors and two spans, with a total widthwbu of 12m and a total
heighthbu of 12m. The thickness of the wallstbu,w is equal to0.25m, while the thickness of
the slabstbu,s is equal to0.20m. The walls and slabs are made of reinforced concrete with a
mass densityρbu of 2500 kg/m3, a Young’s modulusEbu of 30GPa, and a Poisson’s ratioνbu
of 0.25.

The halfspace is excited at the surface by a vertical load at a distance of25m from the
building. A line load with a uniform spectrum in the frequency range between4Hz and8Hz is
applied. The problem can be modeled as a two-dimensional problem and is shown in figure 2.
The aim is to reduce the vibration levels at specific receiver points in the building, in this case
on the first floor in the span closest to the source. A horizontal receiver is considered in the
middle of the floor, while two vertical receivers are considered at one fourth and in the middle
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Figure 1: Semi-infinite halfspace excited at the surface close to a building.

of the floor span.
To reduce the vibration levels in these receiver points, a design domain with dimensions

8 × 20m2 is considered in the elastic halfspace, located between the source and the building.
In this design domain a second stiffer material is introduced. This material (subscript ‘2’) has a
mass densityρ2 of 2000 kg/m3, a longitudinal wave velocityCp2 of 950m/s, and a shear wave
velocityCs2 of 550m/s.

The elastodynamic problem is solved using the finite element method with two-dimensional
four-node elements in plane strain. For the mesh, an element size of0.25m is used, correspond-
ing to ten elements per shear wavelengthλs1 at a frequency of 80Hz, the upper limit considered
in this paper. In the design domain, however, the mesh size is reduced to0.125m to achieve
a design with sufficient detail. The building is modeled using beam elements adapted to plane
strain with an element size of0.25m. The finite element equilibrium equations are written as:

K̂û = p̂ (1)

wherep̂ is the load vector,̂u is the displacement vector, and̂K is the dynamic stiffness matrix,
which depends on the frequencyω. At the boundaries of the finite element mesh, appropriate
radiation boundary conditions have to prevent spurious wave reflections. The Perfectly Matched
Layers (PML) of Harari and Albocher [13] are applied.

The one-third octave band velocity spectra are computed from the velocity spectra in the
frequency domain:

v̂RMS
m,i =

√
√
√
√ 1

Nf

Nf∑

n=1

|v̂m,n,i|
2 (2)

whereNf is the number of frequencies in the one-third octave band with indexm andi is the
position of the receiver. This can be expressed as follows (sincev̂m,n,i = iωûm,n,i with i the
imaginary unit):

v̂RMS
m,i =

√
√
√
√ 1

Nf

Nf∑

n=1

ω2
m,n |ûm,n,i|

2 =

√
√
√
√ 1

Nf

Nf∑

n=1

ω2
m,nû

H
m,nLiûm,n (3)

whereLi is a sparse selection matrix, equal to one at the diagonal element corresponding to the
degree of freedom of receiveri.
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Figure 2: The two-dimensional optimization problem.

2.2 Topology optimization

Topology optimization [5] is used to optimally distribute the stiffer material in the design
domain. The material distribution is parameterized using element densitiesρ̄e for each element
e in the design domain. The valuēρe = 0 corresponds to the properties of the homogeneous
halfspace, while the valuēρe = 1 corresponds to the properties of the stiffer material. Us-
ing a continuous interpolation of the densities between0 and1 makes it possible to solve the
optimization problem with a gradient based method.

A Solid Isotropic Material with Penalization (SIMP) interpolation [14, 15] is used to inter-
polate the material propertiesα:

α = α1 + ρ̄pe (α2 − α1) (4)

whereα1 andα2 are the properties of the original and stiffer material, respectively. The penal-
ization factorp ≥ 1 avoids so-called gray designs with intermediate densities. A valuep = 1 is
used for the mass densityρ while p = 3 is used for the constrained modulusρC2

p and the shear
modulusρC2

s .
The (physical) element densities̄ρe are obtained from the design variablesρe of the opti-

mization problem by applying a projection filter [16]:

ρ̄e =
tanh (βη) + tanh (β(ρ̃e − η))

tanh (βη) + tanh (β(1− η))
(5)

with β a sharpness parameter, controlling the smoothness of the projection,η the projection
threshold, and̃ρe the intermediate densities obtained from:

ρ̃e =

∑N

i=1 weiviρi
∑N

i=1weivi
(6)
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wherevi is the volume of elementi and the weightwei = max (R − rei) depends on the filter
radiusR and the center-to-center distancerei between the elementse andi. In the present work,
the filter radius is taken to beR = 6 elements or1.5m, the projection threshold value is set
to η = 0.5 and the sharpness parameterβ has an initial value equal to1 and is continuously
increased (multiplied by a factor 1.0116)such that the value of32 is reached after 300 iterations.

2.3 Optimization problem

To quantify the effectiveness of the wave barriers, the calculated one-third octave band ve-
locity spectra are compared with generic vibration criteria (VC) for sensitive equipment [9].
These criteria are specified in terms of the maximum allowable RMS velocity in the one-third
octave bands between 4 and 80 Hz, as shown in figure 3a. The VC criteria impose less stringent
vibration limits in the frequency range between 4 to 8 Hz, where the limit is that of constant
acceleration instead of constant velocity.
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Figure 3: (a) Gordon’s generic vibration criteria for sensitive equipment [9] and (b) the weight-
ing functionwm proportional to the VC curves.

The aim is to reduce the vibration levels to meet the intended vibration criteria. However,
since there is a cost in the amount of material that is stiffened, the volume of the wave barrier
is minimized. The problem is reformulated as a minimization problem, where the volume is
minimized and constraints are set on the vibration levels:

min
ρe

N∑

e=1

veρ̄e

s. t. v̂RMS
m,i (ρ̄e) ≤ wms, m = 1 · · ·Nband

i = 1 · · ·NL

0 ≤ ρe ≤ 1, e = 1 · · ·Ne

(7)

with Nband the number of one-third octave bands considered,NL the number of receiver points
andNe the number of elements in the design domain. The values is the maximum allowable
RMS velocity in the one-third octave bands between8Hz and 80Hz, for example equal to
12.5µm/s for VC-C. The functionwm provides a correction for the one-third octave bands
between4Hz and8Hz, as is shown in figure 3b.
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The optimization problem is solved using the method of movingasymptotes (MMA) [17].
Since this method is gradient-based, the derivatives of the objective function have to be calcu-
lated. The sensitivities are calculated using the chain rule:

∂vRMS
m,i

∂ρ̄e
=

1

2NfvRMS
m,i

Nf∑

n=1

ω2
m,n

∂
[
ûH
m,nLiûm,n

]

∂ρ̄e
(8)

To efficiently calculate the derivative of the squared displacement modulusûH
m,nLiûm,n to

the physical densities̄ρe, the adjoint method is used (see [5, p. 17]), resulting in:

∂
[
ûH
m,nLiûm,n

]

∂ρ̄e
= 2Re

{

λ
T
m,n,i

∂K̂m,n

∂ρ̄e
ûm,n

}

(9)

where the vectorλm,n,i is computed from the adjoint equation, which can be written in the
following simplified form:

K̂m,nλm,n,i = −

(

∂
[
ûH
m,nLiûm,n

]

∂ûm,n

)T

= −Liû
∗
m,n (10)

3 OPTIMIZATION RESULTS

To show the effectiveness of a rectangular wave barrier, the influence of its thickness is
analyzed. The rectangular wave barrier has a depth of8m and is located in the design domain
as close as possible to the source, implying that the left boundary of the wave barrier is at
a distance of2.5m from the source as follows from figure 2. The thickness is varied from
0m to 20m, corresponding to the homogeneous halfspace and a fully filled design domain,
respectively. This is done in steps of0.5m.
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Figure 4: (a) Influence of the thickness of a rectangular wave barrier with a depth of8m on the
maximum RMS velocity and (b) the maximum one-third octave band RMS spectra of the ve-
locity at the receivers for the original homogeneous halfspace (black) and after the introduction
of a rectangular wave barrier with a depth of8m and an optimal thickness of7m (blue).

Figure 4a shows the maximum RMS velocity for the different calculated thicknesses. It is
clear that the problem is not convex, and has a global minimum around a thickness of7m in the
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range considered. Figure 4b compares the one-third octave band RMS spectra of the velocity
for the homogeneous halfspace and the rectangular wave barrier with the optimal thickness of
7m. The rectangular wave barrier provides a considerable reduction for the one-third octave
bands with a center frequency higher than12.5Hz, where vibration levels are reduced with a
factor larger than 2 as compared to the homogeneous halfspace. However, if the VC-C criterion
is aimed for, this cannot be achieved by placing a rectangular wave barrier. Moreover, the area
of the cross section of the wave barrier leading to the optimal reduction is rather large, namely
8m× 7m = 56m2.

To overcome these limitations, the topology optimization problem in Eq. (7) is solved, where
the volume is minimized and constraints are imposed on the vibration levels to meet the VC-
C criterion. This is done by settings equal to12.5µm/s. The optimized design is shown in
figure 5a. The design has a total cross sectional area equal to6.8% of the design domain, or
10.9m2 in total.
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Figure 5: (a) Topology optimized design, (b) rectangular design with a depth of8m and the
same volume as the optimized design, and (c) the maximum one-third octave band RMS spec-
tra of the velocity at the receivers for the original homogeneous halfspace (black), after the
introduction of the rectangular design in (b) (blue), and after the introduction of the optimal
design in (a) (red).

In the optimized design of figure 5a, stiffer material is introduced in three main areas: (1)
an inclined plate at the top left, (2) a horizontal plate at the surface, and (3) a horizontal plate
at the bottom. The incoming waves are partly reflected by the stiffer material, partly redirected
downwards into the soil by the inclined top part (1), and partly guided through the horizontal
top part (2). At frequencies around50Hz, a part of the waves redirected into the soil is reflected
by the bottom part (3) and destructively interferes with the waves transmitted by the top part.

As the objective is to minimize the volume of the wave barrier, this optimized design is
compared with a rectangular wave barrier with a depth of8m and the same volume as the
optimized design. This rectangular design is shown in figure 5b. The maximum one-third
octave band RMS spectra of the velocity at the receivers is compared for the two designs and
for the homogeneous halfspace in figure 5c. For the homogeneous halfspace, the VC-B criterion
is visibly exceeded, and only the VC-A criterion is met. Also for the rectangular design, the
VC-B criterion is (slightly) exceeded in the one-third octave band with a center frequency of
16Hz. The optimized design, however, does not exceed the VC-C criterion, as was imposed

3467



Cédric Van hoorickx, Mattias Schevenels, and Geert Lombaert

by the constraints. Therefore, the optimized design is not only cost efficient when compared to
rectangular wave barriers, but is also more effective in reducing the vibration levels.

4 GEOMETRIC IMPERFECTIONS

The optimized design in figure 5a may be very sensitive to deviations in the geometry. The in-
fluence of geometric deviations can be modeled by varying the projection thresholdη in Eq. (5),
as explained in Wang et al. [12].

Figure 6 shows the influence of the projection thresholdη for the optimized design in fig-
ure 5a. For low values of the projection threshold, for exampleη = 0.25, the projection of the
filtered densities to the physical densities also includes lower values, increasing the dimensions
of the stiffer material; these designs are called dilated. For high values of the projection thresh-
old, for exampleη = 0.75, the projection of the filtered densities to the physical densities only
includes the higher values, decreasing the dimensions of the stiffer material; these designs are
called eroded.
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Figure 6: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c) eroded (η = 0.75) ver-
sion of the optimized design and (d) the influence of the projection thresholdη on the maximum
RMS velocity over the one-third octave bands.

Figure 6d shows that decreasing the projection threshold for example fromη = 0.5 to η =
0.25 leads to a small reduction of the maximum RMS velocity over the one-third octave bands.
However, increasing the projection threshold for example fromη = 0.5 to η = 0.75 largely
increases the maximum RMS velocity. As can be seen by comparing figures 6b and 6c, the
optimized design contains only very small features which are removed when increasing the
projection threshold. As a result, almost no stiffer material is left in the design domain and the
performance is close to that of the homogeneous halfspace.

To obtain a design which is less sensitive to this type of geometric imperfections, a robust
topology optimization approach is used. A worst case formulation is adopted where the worst
performance of some (extreme) cases is optimized. Because of the smoothness of the curve

3468



Cédric Van hoorickx, Mattias Schevenels, and Geert Lombaert

in figure 6d, good results are expected when optimizing the worst performance of only three
designs with different projection thresholds (ηd = 0.25, ηi = 0.5, andηe = 0.75). The robust
optimization problem is then formulated as follows:

min
ρe

N∑

e=1

veρ̄e
(
ηi
)

s. t. v̂RMS
m,i (ρ̄e (η

q)) ≤ wms, m = 1 · · ·Nband

i = 1 · · ·NL

q = [d, i, e]
0 ≤ ρe ≤ 1, e = 1 · · ·Ne

(11)

where constraints are added for the dilated and eroded design.
The resulting dilated, intermediate and eroded design are shown in figure 7. Again, decreas-

ing the projection threshold leads to a dilated design and increasing the projection threshold
leads to an eroded design. However, as can be seen in figure 7d, the maximum RMS velocity
does not exceed the VC-C criterion in the target interval[0.25, 0.75]. The volume, however, has
increased as compared with the deterministic optimized design in figure 5a. The robust design
has a total cross sectional area equal to13.1% of the design domain or20.9m2.
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Figure 7: The (a) dilated (η = 0.25), (b) intermediate (η = 0.5), and (c) eroded (η = 0.75)
version of the robust design and (d) the influence of the projection thresholdη on the maximum
RMS velocity over the one-third octave bands.

The performance of the intermediate robust design is compared in figure 8 with a rectangular
wave barrier with a depth of8m and the same volume as the robust optimized design. While
in the original halfspace, only the VC-A criterion was met, the rectangular design just meets
the VC-B criterion and the optimized design meets the VC-C criterion, as was imposed by the
constraints in Eq. (11).

For practical buildability considerations, it may be desirable to simplify the design in fig-
ure 8a. Since it is robust to thickness variation, simplifying the geometry is not expected to
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Figure 8: (a) Robust topology optimized design, (b) rectangular design with a depth of8m
and the same volume as the robust design, and (c) the maximum one-third octave band RMS
spectra of the velocity at the receivers for the original homogeneous halfspace (black), after
the introduction of the rectangular design in (b) (blue), and after the introduction of the robust
design in (a) (red).
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Figure 9: (a) Simplified design, (b) rectangular design with a depth of8m and the same volume
as the simplified design, and (c) the maximum one-third octave band RMS spectra of the veloc-
ity at the receivers for the original homogeneous halfspace (black), after the introduction of the
rectangular design in (b) (blue), and after the introduction of the simplified design in (a) (red).

significantly affect the design performance. By intuitively positioning a simplified shape with
straight edges at the location where the stiffer material is concentrated in the optimized design,
the design in figure 9a is obtained. This simplified design has approximately the same volume
as the robust design (a cross sectional area of20.9m2) and the performance is similar, as can be
seen in figure 9c. The VC-C criterion is still met.

5 CONCLUSION

In this paper, topology optimization is used to design wave barriers for the reduction of elas-
todynamic wave transmission. The wave barriers are located between the source, for example
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a railway track, and the receivers, located in a building nearthe track. The volume of the wave
barriers is minimized while the vibration levels have to meet stringent vibration criteria.

It is shown that rectangular wave barriers in the considered design domain are not able to
meet the predefined vibration criteria. However, topology optimization leads to designs which
not only meet the vibration criteria, but also need a low amount of material. The resulting design
therefore outperforms the rectangular wave barrier.

Since the optimized design contains many small features, it is sensitive to geometric im-
perfections. A worst case approach is adopted. A larger amount of material is needed, but
the resulting design is robust with respect to geometric imperfections, making it possible to
simplify the topology with almost no deterioration of performance. The resulting design is
buildable, cost efficient and effective in reducing vibration levels.
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Abstract. Multiobjective formulations are realistic models for many complex engineering op-

timization problems [1]. In a construction project, there are two main factors, such as project 

duration and project cost. The activity duration is a function of resources (i.e. crew size, 

equipments and materials) availability. On the other hand, resources demand direct costs. 

Therefore, the relationship between project time and direct cost of each activity is a monoto-

nously decreasing curve. It means if activity duration is compressed then that leads to an in-

crease in resources and so that direct costs. But, project indirect costs increase with the 

project duration. In general, for a project, the total cost is the sum of direct and indirect costs 

and exists an optimum duration for the least cost. Hence, relationship between project time 

and cost is trade-off [2]. 

There are two general approaches to multiple-objective optimization. One is to combine the 

individual objective functions into a single composite function. Determination of a single ob-

jective is possible with methods such as utility theory, weighted sum method, etc., but the 

problem lies in the correct selection of the weights or utility functions to characterize the de-

cision-makers preferences [1]. 

The main difficulty with the single composite function is selecting a weight vector for each 

run. To overcome this drawback a GA based-approach to solving the time-cost optimization 

problem has been proposed. The idea is transforming weights in the objective function by 

genes obtained from the genetic algorithm for each run. 

The present approach provides a powerful alternative for the solution of the time-cost con-

struction project scheduling problems when compared against others approaches including 

evolutionary algorithms. 
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1 INTRODUCTION 

The time and cost are usually two objectives which are often tradeoff in project practices. 
When the construction time is shortened, the project cost should be added. The main objective 
of construction project management is to execute the project within the anticipated time while 
satisfying the minimum cost. 

Several approaches to solve the time-cost optimization (TCO) problem have been proposed 
in the last years: mathematical, heuristic and search methods. 

Several mathematical models such as linear programming (Hendrickson and Au [5]; Pag-
noni [3]), integer programming, or dynamic programming (Robinson [8]; P. De et al. [23]) 
and LP/IP hybrid (Liu et al. [20]; Burns et al. [25]) and Meyer and Shaffer [27] use mixed in-
teger programming. However, for large number of activity in network and complex problem, 
integer programming needs a lot of computation effort (Feng et al. [6]).  

Heuristic algorithms are not considered to be in the category of optimization methods. 
They are algorithms developed to find an acceptable near optimum solution. Heuristic me-
thods are usually algorithms easy to understand which can be applied to larger problems and 
typically provide acceptable solutions (Hegazy [26]). However, they have lack mathematical 
consistency and accuracy and are specific to certain instances of the problem (Fondahl [19]; 
Siemens [22]) are some of the research studies that have utilized heuristic methods for solving 
TCO problems. 

Some researchers have tried to introduce evolutionary algorithms to find global optima 
such as genetic algorithm (GA) (Feng et al. [6]; Gen and Cheng [21]; Zheng et al. [10]; Zheng 
and Ng [9]; Mendes [16, 18] and Parveen and Saha [32]) the particle swarm optimization al-
gorithm (Yang [10]), ant colony optimization (ACO) (Xiong and Kuang [28]; Ng and Zhang 
[24]; Afshar et al. [2]) and harmony search (HS) (Geem [29]). In this paper, the optimal time 
and cost generated by the GA techniques are compared with those produced by other tech-
niques through some problems obtained from literature. 

This paper is organized as follows. Section 2 describes the multiobjective optimization 
problem. Section 3 presents the approach. The case study and results are presented in Section 
4. Finally, conclusions and future work are outlined in Section 5. 

2 MULTIOBJECTIVE OPTIMIZATION 

Multiobjective optimization deals with solving optimization problems which involve mul-
tiple objectives. We can say that there are two types of methods for solving problems with 
multi-objective optimization: the classical methods and methods based on evolutionary algo-
rithms. 

The disadvantages of the classical methods are shown in [31]: 

• Only one non-dominated solution is obtained by each execution of the algorithm. It 
means that in order to get a set of solutions, it should be run many times. 

• Some of them require some kind of information of the problem treated. 

• Some of them are sensitive to the shape of the Pareto frontier, so in non-convex 
ones, they cannot find solutions. 

• The dispersion of the founded Pareto solutions depends on the efficiency of the 
monocriteria optimizator. 

• In problems that contain stochasticities, classical methods are not appropriate. 

• Problems with discrete domain cannot be solved by classical methods, neither in 
the multiobjective case. Consequently, the problem treated in the present article, 
discrete, could not be solved by this kind of methods. 
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All this disadvantages are overcome with evolutionary multiobjective methods such as ge-
netic algorithms (MOGA) [30]. 

With evolutionary algorithms being used for single-objective optimization for over two 
decades, the incorporation of more than one objective in the fitness function has finally gained 
popularity in the research [33]. 

The approach presented in this paper is based on a random key based genetic algorithm to 
perform its optimization process, so this approach aims to stipulate multiple search directions 
at each generation without using any additional parameters. 

2.1 Linear Combination of Weights 

The classical approach to solve a multi-objective optimization problem is to assign a 

weight wi to each normalized objective function
' ( )iz x  so that the problem is converted to a 

single objective problem with a scalar objective function as follows [35]: 
 

 ' ' '

1 1 2 2min * ( ) * ( ) ... * ( )n nz w z x w z x w z x= + + +  (1) 

where
' ( )iz x is the normalized objective function of ( )iz x  and 1iwΣ = . The main difficul-

ty with this approach is selecting a weight vector for each run. 

2.2 Linear Combination of Genes 

Linear Combination of Weights also called the weighted sum method (WSM) is the sim-
plest approach and probably the most widely used classical method. This method scalarizes 
the set of objectives into a single objective by multiplying each objective with a user supplied 
weight. 

Based on the WSM idea, this paper proposes a linear combination of genes where
' ( )iz x is 

the normalized objective function of ( )iz x , with the following formulation: 

 ' ' '

1 1 2 2min * ( ) * ( ) ... * ( )n nz gene z x gene z x gene z x= + + +  (2) 

where
' ( )iz x is the normalized objective function of ( )iz x and 0 ,igene n< <∑ each genei 

is randomly generated for individual solution x during the selection phase at each generation.  

3 THE GA-BASED APPROACH 

The approach combines a genetic algorithm, a schedule generation scheme and a local 
search procedure. The genetic algorithm is responsible for evolving the chromosomes which 
represent the priorities of the activities, delay times and objective function. 

For each chromosome the following four phases are applied [16]: 
 

1) Transition parameters - this phase is responsible for the process transition between 
first level and second level; 

2) Schedule parameters - this phase is responsible for transforming the chromosome 
supplied by the genetic algorithm into the priorities of the activities and delay time; 

3) Schedule generation - this phase makes use of the priorities and the delay time and 
constructs schedules; 

4) Schedule improvement - this phase makes use of a local search procedure to im-
prove the solution obtained in the schedule generation phase. 
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This study considers both project cost and time. For effective time-cost optimization the 
approach proposes an objective function with the following formulation: 

 
max

' '

1 max min

( )

( )
t t

time

t t

Z Z
Z Z

Z Z

−
= =

−
 (3) 
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' '
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t

c c

Z Z
Z Z
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−
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−
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and finally: 

 
max max

max min max min

( ) ( )
min ( )

( ) ( )
t t c c

t c

t t c c

Z Z Z Z
f x Gene Gene

Z Z Z Z

− −
= +

− −
 (5) 

where, 
 

max

cZ  = maximal value for total cost in the current chromosome;  
max

tZ  = maximal value for time in the current chromosome;  
min

cZ  = minimal value for total cost in the initial population; 
min

tZ  = minimal value for time in the initial population; 

cZ     = represents the total cost of the xth solution in current chromosome; 

tZ     = represents the time of the xth solution in current chromosome. 

3.1 GA-Decoding  

Each chromosome represents a solution to the problem and it is encoded as a vector of ran-
dom keys (random numbers). Each solution encoded as initial chromosome (first level) is 
made of 2+mn+n genes where n is the number of activities and m is the number of execution 
modes, see Figure 1 [16, 18].  
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Figure 1: Chromosome structure. 
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To decode each chromosome a schedule generation scheme (SGS) based on the idea of pa-
rameterized active schedules is applied [11, 14, 16]. This type of schedule consists of sche-
dules in which no resource is kept idle for more than a predefined period if it could start 
processing some activity [16] and employs operators described in [15, 16]. 

3.2 Evolutionary Strategy 

The GA based-approach uses an evolutionary strategy identical to the one proposed by 
Goldberg [7]. To breed good solutions, the population is operated by a genetic algorithm. 
There are many variations of genetic algorithms obtained by altering the reproduction, cros-
sover, and mutation operators.  

In this approach reproduction is accomplished by first copying some of the best individuals 
from one generation to the next, in what is called an elitist strategy.  

The fitness proportionate selection, also known as roulette-wheel selection, is the genetic 
operator for selecting potentially useful solutions for reproduction. The characteristic of the 
roulette wheel selection is stochastic sampling. 

The fitness value is used to associate a probability of selection with each individual chro-
mosome. If fi is the fitness of individual i in the population, its probability of being selected is,     

 

1

, 1,...,i
i N

i

i

f
p i n

f
=

= =

∑
 (6) 

  A roulette wheel model is established to represent the survival probabilities for all the in-
dividuals in the population. Then the roulette wheel is rotated for several times. 

After selecting, crossover may proceed in two steps. First, members of the newly selected 
(reproduced) chromosomes in the mating pool are mated at random. Second, each pair of 
chromosomes undergoes crossover as follows: an integer position k along the chromosome is 
selected uniformly at random between 1 and the chromosome length l. Two new chromo-
somes are created swapping all the genes between k+1 and l, see Mendes [17]. 

The mutation operator preserves diversification in the search.  This operator is applied to 
each offspring in the population with a predetermined probability. We assume that the proba-
bility of the mutation in this paper is 5% [17].  

4 CASE STUDY 

The GA based-approach is to minimize the project overall time and cost and RKTCO is 
applied in the case study of a project of eighteen activities originally introduced by Feng et al. 
[6], see Figure 2. The activity relationship for the model project consists of 18 activities and 
three modes of construction for each activity and their associated time and cost are presented 
in [6, 16]. Indirect cost rate was $1000/day. 

The Table 1 shows the results for several mathematical and evolutionary-based methods. 
The algorithm RKTCO obtains better solution than the other GA-based approaches. Further-
more, the algorithm RKTCO reaches the optimal solution quickly, i.e., in five seconds. 

The results of the RKTCO illustrates that evolutionary methods based on genetic algo-
rithms can obtain the better solutions and in very reasonable computational time.  

Based on Feng et al. [6] five new problems are generated: three experiments using the pa-
rallel expansion of the 18-activity problem and two using the serial expansion. The parallel 
and serial problems consisting of 36, 54 and 180 activities are described in Golzarpoor [4].  
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Figure 2: Project network of original problem with eighteen activities [6]. 

 
 
  

Approaches Description Deviation** 

 

Criteria Calculation 

Time  Time Cost ($) 

Optimal Solution - 0% 110 216,270 - 

Excel Solver* Easy-to-use mathematical 

optimization tool 
18% 110 254,620 2 min. 

Risk Solver Platform Standard 

SLGRG Nonlinear* 

Risk analysis, simulation, and 

optimization tools 
0% 110 216,270 1.5 min. 

Risk Solver Platform Standard 

Large-scale GRG Solver* 

Risk analysis, simulation, and 

optimization tools 
0% 110 216,270 1.5 min. 

TCT Optimization Using Evolver 

(includes an evolutionary 

engine)* 

GA-based optimization tool 

effective in optimizing complex 

and large-scale models 

10% 110 238,070 30 min. 

Risk Solver Platform Standard 

Evolutionary Solver* 

Risk analysis, simulation, and 

optimization tools 
27% 110 275,320 18 min. 

Optimization Results using 

CPLEX CP Optimizer* 

A solver for optimization based 

on constraint programming 

technique 

0% 110 216,270 9 min. 

Constraint Programming method 

using IBM ILOG Optimization 

Studio* 

Constraint Programming 

method 0% 110 216,270 9 min. 

This paper (RKTCO) GA-based 0% 110 216,270 

5 sec. 
for 50 

generations 

* Reported by Golzarpoor [4] **Percentage of deviation of the result from optimal solution 

Table 1: Results for Project of 18 activities. 

Table 2 shows the results for Project of 36 activities (parallel expansion). The Table 2 
shows that the results of the RKTCO are the best when compared with the other methods re-
ported by Golzarpoor [4]. 
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Approaches Description Deviation** 

 

Criteria Calculation 

Time  Time Cost ($) 

Optimal Solution - 0% 110 322,540 - 

Excel Solver* Easy-to-use mathematical 

optimization tool 
27% 110 409,840 5 min 

Risk Solver Platform Standard 

SLGRG Nonlinear* 

Risk analysis, simulation, and 

optimization tools 
20% 110 385,890 14 min 

Risk Solver Platform Standard Large-

scale GRG Solver* 

Risk analysis, simulation, and 

optimization tools 
18% 110 379,990 18 min 

TCT Optimization Using Evolver 

(includes an evolutionary engine)* 

GA-based optimization tool 

effective in optimizing 

complex and large-scale 

models 

16% 109 373,790 30 min 

Risk Solver Platform Standard 

Evolutionary Solver* 

Risk analysis, simulation, and 

optimization tools 
36% 110 438,440 15 min 

Optimization Results using CPLEX 

CP Optimizer* 

A solver for optimization 

based on constraint 

programming technique 

0% 110 322,540 10 min 

Constraint Programming method 

using IBM ILOG Optimization 

Studio* 

Constraint Programming 

method 0% 110 322,540 10 min 

This paper (RKTCO) GA-based 0% 110 322,540 
12 sec. 

50generations 

* Reported by Golzarpoor [3] **Percentage of deviation of the result from optimal solution 

Table 2: Results for Project of 36 activities (parallel expansion). 

Table 3 shows the results for Project of 36 activities (serial expansion). The RKTCO presents the 
best results when compared with the other methods reported by Golzarpoor [4].  

Approaches Description Deviation** 

 

Criteria Calculation 

Time  Time Cost ($) 

Optimal Solution - 0% 220 432,540 - 

Excel Solver* Easy-to-use mathematical 

optimization tool 
0% 220 433,094 30 min 

Risk Solver Platform Standard 

SLGRG Nonlinear* 

Risk analysis, simulation, and 

optimization tools 
11% 220 478,549 30 min 

Risk Solver Platform Standard 

Large-scale GRG Solver* 

Risk analysis, simulation, and 

optimization tools 
19% 220 513,369 30 min 

TCT Optimization Using Evolver 

(includes an evolutionary engine)* 

GA-based optimization tool 

effective in optimizing complex 

and large-scale models 

12% 220 484,640 30 min 

Risk Solver Platform Standard 

Evolutionary Solver* 

Risk analysis, simulation, and 

optimization tools 
31% 219 566,640 1 min 

Optimization Results using CPLEX 

CP Optimizer* 

A solver for optimization based 

on constraint programming 

technique 

0% 220 432,540 10 min 

Constraint Programming method 

using IBM ILOG Optimization 

Studio* 

Constraint Programming method 

0% 220 432,540 10 min 

This paper (RKTCO) GA-based 0% 220 432,540 
12 sec. 

50generations 

* Reported by Golzarpoor [4] **Percentage of deviation of the result from optimal solution 

Table 3: Results for Project of 36 activities (serial expansion). 
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Table 4 shows the results for Project of 54 activities (parallel expansion) and the results of the 
RKTCO are the best when compared with the other methods reported by Golzarpoor [4]. 

 

Approaches Description Deviation** 

 

Criteria Calculation 

Time  Time Cost ($) 

Optimal Solution - 0% 110 428,810 - 

Excel Solver* Easy-to-use mathematical optimization tool 42% 110 607,435 30 min 

Risk Solver Platform 

Standard SLGRG Nonlinear* 

Risk analysis, simulation, and optimization 

tools 
6% 110 454,198 26 min 

Risk Solver Platform 

Standard Large-scale GRG 

Solver* 

Risk analysis, simulation, and optimization 

tools 6% 110 454,198 26 min 

TCT Optimization Using 

Evolver (includes 

evolutionary engine)* 

GA-based optimization tool effective in 

optimizing complex and large-scale models 17% 110 500,610 30 min 

Risk Solver Platform 

Standard Evolutionary 

Solver* 

Risk analysis, simulation, and optimization 

tools 44% 110 618,260 1 min 

Optimization Results using 

CPLEX CP Optimizer* 

A solver for optimization based on constraint 

programming technique 
0% 110 428,810 10 min 

Constraint Programming 

method using IBM ILOG 

Optimization Studio* 

Constraint Programming method 

0% 110 428,810 10 min 

This paper (RKTCO) GA-based 0% 110 428,810 
14 sec. 

50generations 

* Reported by Golzarpoor [4] **Percentage of deviation of the result from optimal solution 

Table 4: Results for Project of 54 activities (parallel expansion). 

Table 5 shows the results for Project of 54 activities (serial expansion). The RKTCO presents the 
best results when compared with the other methods reported by Golzarpoor [4].  

Approaches Description Deviation** 

 

Criteria Calculation 

Time  Time Cost ($) 

Optimal Solution - 0% 330 648,810 - 

Excel Solver* Easy-to-use mathematical 

optimization tool 
19% 330 769,460 13 min 

Risk Solver Platform Standard 

SLGRG Nonlinear* 

Risk analysis, simulation, and 

optimization tools 
8% 330 698,851 30 min 

Risk Solver Platform Standard 

Large-scale GRG Solver* 

Risk analysis, simulation, and 

optimization tools 
10% 330 714,551 30 min 

TCT Optimization Using Evolver 

(includes an evolutionary engine)* 

GA-based optimization tool 

effective in optimizing complex 

and large-scale models 

8% 330 700,410 30 min 

Risk Solver Platform Standard 

Evolutionary Solver* 

Risk analysis, simulation, and 

optimization tools 
57% 330 1.018,260 1 min 

Optimization Results using CPLEX 

CP Optimizer* 

A solver for optimization based 

on constraint programming 

technique 

0% 330 648,810 10 min 

Constraint Programming method 

using IBM ILOG Optimization 

Studio* 

Constraint Programming 

method 0% 330 648,810 10 min 

This paper (RKTCO) GA-based 0% 330 648,810 
15 sec. 

50generations 

* Reported by Golzarpoor [4] **Percentage of deviation of the result from optimal solution 

Table 5: Results for Project of 54 activities (serial expansion). 
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Table 6 shows the results for Project of 180 activities (parallel expansion). The RKTCO 
presents the best results when compared with the other methods reported by Golzarpoor [4].  

 
Approaches Description Deviation** 

 

Criteria Calculation 

Time  Time Cost ($) 

Optimal Solution - 0% 110 1.172,700 - 

Excel Solver* Easy-to-use mathematical 

optimization tool 
N/A Too many variable cells 

Risk Solver Platform Standard 

SLGRG Nonlinear* 

Risk analysis, simulation, and 

optimization tools 
14% 110 1.336,900 30 min. 

Risk Solver Platform Standard 

Large-scale GRG Solver* 

Risk analysis, simulation, and 

optimization tools 
35% 110 1.583,095 30 min. 

TCT Optimization Using Evolver 

(includes an evolutionary engine)* 

GA-based optimization tool 

effective in optimizing complex 

and large-scale models 

54% 109 1.801,700 21 min. 

Risk Solver Platform Standard 

Evolutionary Solver* 

Risk analysis, simulation, and 

optimization tools 
54% 110 1.807,000 21 min. 

Optimization Results using CPLEX 

CP Optimizer* 

A solver for optimization based 

on constraint programming 

technique 

0% 110 1.172,700 13 min 

Constraint Programming method 

using IBM ILOG Optimization 

Studio* 

Constraint Programming method 

0% 110 1.172,700 13 min 

This paper (RKTCO) GA-based 0% 110 1.172,700 

180 sec. 
for 1000 

generations 

* Reported by Golzarpoor [4] **Percentage of deviation of the result from optimal solution 

Table 6: Results for Project of 180 activities (parallel expansion). 

From the above results it is clear that no algorithm dominates RKTCO. The CPLEX CP 
optimizer and Constraint Programming method using IBM ILOG Optimization Studio seems 
to have similar performance, but with higher computational time than RKTCO. 

The proposed RKTVO has the best performance between all evolutionary–based algo-
rithms (EA). 

The time necessary by RKTCO to obtain the optimal solution is highly promising and 
shows that a good implementation can be critical to the success of the genetic algorithms. 

This computational experience has been performed on a computer with an Intel Core 2 
Duo CPU T7250 @2.33 GHz and 1,95 GB of RAM. The algorithm proposed in this work has 
been coded in VBA under Microsoft Windows NT. 

5 CONCLUSIONS AND FURTHER RESEARCH 

A new GA based-approach to solving the time-cost optimization for construction projects 
has been proposed. The project activities have various construction modes, which reflect dif-
ferent ways of performing the activity, each mode having a different impact on the duration 
and cost of the project. The present approach provides an attractive alternative for the solution 
of the construction multi-objective optimization problems. The developments made in this 
paper provide guidelines for designing and implementing practical GA applications in the civ-
il engineering domain and gives to construction managers a tool to balance critical construc-
tion resources in the competitive construction industry. 

Further research can be extended to others multiobjective problems with relationships be-
tween cost, time and quality in the construction industry. 
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Abstract. Strutted sheet pile wall represents an economic commonly used solution for vertic-
al or near vertical deep excavation, when open cuts with side slopes are not applicable.   It is 
mainly used to minimize/ control ground deformations to ensure safety of adjacent structures. 
Thus, the strutted sheet pile wall design process should present elements with sufficient 
strength/ stiffness to resist the lateral earth pressure without losing the economic advantage. 
Although the choice of strut and wall configuration is very precise and sensitive process to 
optimize the design, it still depends on empirical formulas and designers’ experience. Appli-
cation of optimization to this process can bring out some scientific based design rules. 

In this research, a heuristic optimization technique, Genetic Algorithms, is applied to the 
strutted sheet pile wall design. The optimization process aims to minimize the construction 
cost expressed with elements dimensions considering both deformation and stress constraints 
for the ground soil and construction material. The Genetic Algorithms technique is combined 
with Finite Element Analysis to find the optimal values for the design variables (strut cross 
section and position and sheet pile wall thickness and embedded depth) for different soft soil 
types. Results can be used to draw a map for the design process. 
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1 INTRODUCTION 
Development projects in urban congested areas such as transportation tunnels, under-

ground parking garages, basements and utilities…etc. necessitate the use of the underground 
space and hence the use of side support systems to retain their deep excavations.  

Generally, excavation support systems for deep excavations consist of two main compo-
nents: a wall, and its supporting measures. Walls supporting deep excavations may be classi-
fied into the following three major categories according to the form of supporting measures 
provided for them: (1) Cantilevered wall (usually for relatively shallow excavation); (2) Strut-
ted/braced wall; and (3) Tied-back or anchored wall.  

Many factors affect the excavation-induced deformations such as: wall stiffness, stiffness 
of supporting measures, ground conditions, groundwater condition and control measures, ex-
cavation depth, construction sequences and workmanship. Strutted sheet pile wall represents 
an economic commonly used solution for vertical or near vertical deep excavation as it mini-
mizes ground deformations to ensure safety of adjacent structures. Design optimization of 
strutted wall systems will have a significant impact on cost especially for infrastructure 
projects with deep excavation. 

In 1981, Mana & Clough made few trials on the impact of one effective design parameter 
in an attempt to reach a better design for the strutted sheet pile wall [1]. They showed that in-
creasing the stiffness of the strut/anchor/raker reduces the deformation 40% as shown in Fig-
ure 1.  

 
Figure 1. The effect of the strut stiffness on the maximum lateral deformation of the wall and the maximum set-

tlement [1]. 

Recently, in 2012, Chowdhury, Deb, and Sengupta carried out a parametric study (16 de-
sign cases of diaphragm wall systems with different strut arrangements) to investigate the in-
fluence of different design parameters, such as strut stiffness, wall thickness, strut 
arrangement and the embedded depth of the wall on strut force, maximum moment developed 
in the wall, maximum lateral displacement of the wall, and maximum vertical displacement of 
ground surface. The parametric study was used to derive a design guideline to optimize the 
side support system. It was observed that, for a particular wall thickness and strut stiffness, 
different strut arrangements produced different results for maximum strut force, maximum 
moment, maximum horizontal wall displacement, and maximum vertical ground surface dis-
placement [2]. 

A real optimization process cannot be performed for such problem through deterministic 
search methods. The calculus based analytical methods depend on the existence of mathemat-
ical formula and continues functions to express the studied problems, which are not available 
in this case. Application of enumerative search method shall consume a very long time to 
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reach the optimal solution, regarding the large search space [3]. Thus, stochastic search me-
thods shall be more efficient in such optimization problem. This research aims to demonstrate 
how a heuristic optimization technique, Genetic Algorithms, can be applied to reach an op-
timal or a quasi optimal solution with reasonable computation cost.  

2 GENETIC ALGORITHMS 
Genetic Algorithms (GAs) are search and optimization procedures that are motivated by 

the principles of natural genetics and natural selection. They are also referred to as stochastic 
optimization techniques different from usual mathematical programming [4]. Being consi-
dered as stochastic methods, the GAs do not need specific information to guide the search, and 
require only an evaluation of the objective function value for each decision variable set in or-
der to proceed. They typically work with a coding of the decision variables, not with the deci-
sion variables themselves. They search simultaneously using a population of decision variable 
sets, not a single set of decision variables [5]. 

As in a biological system submitted to external constraints, the fittest members of the pop-
ulation are selected to survive and given better chances of reproducing and transmitting part 
of their genetic heritage to the next generation. A new population is then created by recombi-
nation of parental genes. It is expected that some members of this new population will have 
acquired the best characteristics of both parents and, being better adapted to the environmen-
tal conditions, will provide an improved solution to the considered problem. After it has re-
placed the original population, the new group is submitted to the same evaluation procedure, 
and later generates its own offsprings. The process is repeated many times, until elite mem-
bers of a given generation share the same genetic heritage. These members, who are often 
quite different from their ancestors, possess genetic information that corresponds to the best 
solution to the optimization problem [6]. 

3 OPTIMIZATION PROBLEM DESCRIPTION 
The optimization problem addressed herein is to find out the optimal wall embedded depth, 

sheet wall section and struts number, section and positions those lead to pre-specified safe lat-
eral deformation during excavation and acceptable induced stresses in soil and structural ele-
ments to have minimum system cost. Figure 2 shows a half section for the structural system 
and geometrical variables considered.  

 
Figure 2: Problem layout and geometrical variables. 
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Hence, the objective function can be stated as:  

find X kR∈ to 
minimize f (X) 

subject to gi (X) ≤  0, i= 1, 2, . . . , n and 
L U
j jX X , 1,2,...........,X j k≤ ≤ =  

where X is the vector of design variables; f (X) is the objective function; gi(X) is the per-
formance constraints; and L

jX  and U
jX  refer to the lower and upper bounds on the design va-

riables respectively. The objective function here is the weight of the system and can be 
expressed as: 

min ( )s w w s s sW L S L S Nγ= +           (1) 

where sγ  is steel density, wL  is the sheet wall total length, wS  is the sheet wall cross-
sectional area, sL  is the strut length, sS  is the strut cross-sectional area and sN  is the struts 
number. 

3.1 Design Variables 
Six design variables are considered in this optimization problem: 
1) Sheet pile wall section: the section is selected from 8 different alternatives shown in 

Table 1 [7]. 
2) Sheet pile wall embedded depth: a range from 0.6 L to 1.3 L, where L is the excavation 

depth, with 0.1 L step is examined. 
3) Strut section: 8 different pipes from Egyptian standard steel sections, shown in Table 2, 

are selected. 
4) Upper strut position: 4 different alternative positions for upper strut are considered; at 1, 

2, 3 or 4 m depth from ground surface. 
5) Middle strut existence/position: this one has an optional existence with 3 alternative 

positions; at 5, 6 or 7 m from ground surface. 
6) Lower strut existence: it has an optional existence at a certain position; 8 m from 

ground surface. So, it is a yes/no variable. 
 

Section 
No. 

Section 
Name 

Width 
(mm) 

Height 
(mm) 

Back thick-
ness (mm) 

Web thick-
ness (mm) 

Inertia 
(cm4/m) 

1 Larssen 600 600 150 10.0 9.9 4050 
2 Larssen 601  600 310  8.0 6.8 12245 
3 Larssen 602  600 310  8.7 8.4 13640 
4 Larssen 603  600 310  10.2 8.5 19375 
5 Larssen 604 600 380 10.5 9.2 31675 
6 Larssen 605  600 420 13.0 9.2 43890 
7 Larssen 606  600 435 14.9 9.4 55900 
8 Larssen 607  600 452 19.5 10.8 73900 

 
Table 1: Alternative sections for sheet pile wall. 
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Section 
No. Pipe No. Diameter 

(mm) 
Thickness 
(mm) 

Area 
(cm2) 

Radius of 
gyration (cm) 

1 325 325 8 79.7 11.2 
2 325 325 10  99.0 11.1 
3 368 368 8  90.5 12.7 
4 368 368 10  112.0 12.7 
5 419 419 10 128.0 14.5 
6 419 419 12 153.0 14.4 
7 529 529 9 147.0 18.4 
8 529 529 10 163.0 18.4 

 
Table 2: Alternative sections for struts pipes. 

3.2 Constraints 
The performance constraints include concern for two types of safety conditions: 
1) Stress condition: the induced stresses in soil, sheet wall and struts, including buckling 

effect in struts, should be within allowable limits. 

1 0, 1, 2,........i i allg i mσ σ= − ≤ =| |     (2) 

2) Deformation condition: lateral displacements in sheet wall during excavation should 
not exceed the pre-specified limit (0.005 L = 5 cm). 

2 0, 1, 2,........i i allg i m= ∆ −∆ ≤ =| |         (3) 

4 NUMERICAL MODELING  
In this paper, conventional numerical model with plane-strain analysis is used. Figure 3 

shows the finite elements mesh used for simulation with close views for excavation area be-
fore and after excavation. 

 
Figure 3: Finite elements simulation mesh. 

 

 
Before excavation 

 
After excavation 
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For the modeling process in the Finite Element program, FINAL package [8], the soil me-
dia is modeled using six-node linearly varying strain triangular finite elements (L.S.T), the 
sheet pile wall is presented by six-node beam elements (Beam6) and the strut is modeled by 
two-node link member (Beam2).  Ground water is presented with its net lateral load. A half-
section mesh is used in the analysis to reduce computation time. Sufficient mesh depth and 
width, to model soil infinite body, are used. For boundary condition, vertical and horizontal 
movements are prevented at the bottom of the model while only the horizontal movements are 
prevented at both sides. 

4.1 Geotechnical Parameters 
Two different soil types are examined, in two different models, in order to check the im-

pact of soil parameter on optimal values. Characteristic and mechanical properties for these 
soil types are given in Tables 3 and 4. 
 

Density 19 kN/m3 
Elastic Modulus 20 MPa 
Poisson Ratio 0.3 

Angle of Internal Friction 35 o 
Cohesive Strength 0 kPa 

 

Table 3: Mechanical properties for sandy soil. 

 
Density 20 kN/m3 

Elastic Modulus 15 MPa 
Poisson Ratio 0.45 

Angle of Internal Friction 0 o 
Cohesive Strength 50 kPa 

 

Table 4: Mechanical properties for clayey soil. 

5 COMPUTATION PROCEDURE  

5.1 Enumerative Search Process 
The main target, for current research, is to check the feasibility and efficiency of GAs ap-

plication in the studied geotechnical problem. So, an enumerative search process was per-
formed to investigate all possible solutions to find the global optimal solution and the 
associated design parameters. For each soil type, the search space was divided to four equal 
parts. Four moderate speed PCs run continuously for about 48 hours to finish this automated 
search process. Tables 5 and 6 summarize the search results. 

 
 Sandy Soil Clayey Soil 
Number of safe solutions 10629 11206 
Number of unsafe solutions 5755 5178 
Maximum safe weight (ton/m) 6.472 6.472 
Minimum safe weight [optimal value] (ton/m)  1.872 1.759 

 

Table 5: Enumerative search general statistics. 
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 Sandy Soil Clayey Soil 
Sheet pile wall section Larssen 602 Larssen 601 
Sheet pile wall embedded depth 0.6 L = 6 m 0.6 L = 6 m 
Strut section Pipe 325 (section 1) Pipe 325 (section 1) 
Upper strut position 4 m from ground surface 4 m from ground surface 
Middle strut existence/position None None 
Lower strut existence None None 

 

Table 6: Global optimal solution. 

5.2 Optimization Process 
According to the assumed alternatives for every variable, the total number of possible solu-

tions (chromosomes) = 8*8*8*4*4*2 = 16384, for each soil. An initial population of 8 chro-
mosomes is considered. Each individual is sent to the FINAL package to check the stresses in 
structural elements and lateral displacement and compare them with the allowable values. Un-
safe solutions get penalty function; their evaluation value (system total weight) is multiplied 
by 10. Then, all solutions are encoded to binary form to facilitate the application of mating 
operators. Genetic Algorithm’s mating operators are crossover and mutation. Each two solu-
tions are mated together to produce two children solutions. Like their parents, produced solu-
tions have to be checked. Unsafe produced solutions, also, get the penalty function. Both 
parents and children solutions are collected in one pool and sorted in an ascending order. The 
last 8 solutions are discarded and the first 8 solutions form the parents’ population for the next 
generation. Processing optimization operators and repeating them through generated popula-
tion leads to convergence toward global optimum. 

The termination criteria is defined with limited number of generations; 200 generations. 
During these generations production, the GAs computer program explores about 1600 solution 
which is less than 10% of the search space. Difficulty of having optimal or quasi optimal so-
lution increases as convergence rate increases. Thus, the mutation probability is increased 
from 20% in the first 100 generations to 40% in the second 100 generations. Figure 4 shows 
the structural overall weight progression through generations for different analysis times. 

 
Figure 4: Overall system weight progression through generations. 
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In different analysis times, the program managed to find the global optimal or a quasi op-
timal solution (less than 7% higher than optimal system weight) before termination. The anal-
ysis consumes 18 hours on a moderate computer specifications (Core2 Duo processor, 2.0 
GHz speed and 2GB RAM).  

6 CONCLUSIONS  

• GAs have proven to be successful in the presented optimization problem. 

• Despite the large search space, the program managed to reach the optimal or near optimal 
solution in reasonable time and iterations number. 

• Increasing the mutation probability did not help enhancing the progression. 

• Repeating the application for different soil and geometric conditions can draw a map for 
this design process. 
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Abstract. The use of evolutionary algorithms has been enhanced in recent years for solving 
real engineering problems, where the requirements of intense computational calculations are 
needed, especially when computational engineering simulations are involved (use of finite 
element method, boundary element method, etc). The coupling of game-theory concepts in 
evolutionary algorithms has been a recent line of research which could enhance the efficiency 
of the optimum design procedure and the quality of the design solutions achieved. They have 
been applied in several fields of engineering and sciences, mainly, in aeronautical and struc-
tural engineering (e.g: in computational fluid dynamics and solid mechanics problems). 
Among them, Nash-evolutionary algorithms (Nash-EAs) have been recently applied in the 
single-objective reconstruction inverse design problem in structural engineering (aiming to 
obtain the structure whose maximum stresses match those stresses considered as references), 
with successful speed-up of the structural optimum search. Several test cases of different 
search space size bar structures are handled here, with bar sized structures up to 105 bar el-
ements. Particularly, frames -bar structures with rigid nodes where bending moment and 
shear effort should also be taken into consideration- are handled here. Influence of the struc-
tural size in the comparative performance of Nash-EAs will be investigated and tested. The 
performance of Nash-EAs improves significantly the one of the standard panmictic evolution-
ary algorithms. According to the results shown here, this advantage is greater when the prob-
lem size increases. 
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1 INTRODUCTION 
Evolutionary algorithms have been successfully spread their use among computational en-

gineering applications for optimum design in the last decades (see e.g.: [1,2,3,4]). Among the 
strategies to increase the efficiency of those algorithms, parallelization and hybridization with 
game theory concepts have been proven useful. Particularly, the use of Nash-Evolutionary 
Algorithms (Nash-EAs) has been demonstrated as acceleration tools increasing convergence 
speed and/or quality of solutions in computational mechanics applications [5]. In this work, a 
study of performance of Nash-EAs versus standard panmictic EAs is developed, considering 
two structural test cases of different sizes in the reconstruction inverse problem, and compar-
ing the influence of the number of bars (size of the problem search space).  

In section 2, Nash EAs are described; the reconstruction inverse structural problem han-
dled is explained in section 3, and the frame structural test cases are detailed and justified in 
section 4. This paper continues with the results and discussion in section 5, and finalizes with 
the conclusions in section 6. 

2 NASH – EVOLUTIONARY ALGORITHMS 
Nash-EAs were introduced in Sefrioui and Periaux [6] for solving computational fluid dy-

namics problems. They are based in hybridizing the mathematical concepts of Nash equilib-
rium (Nash, 1950-51) [7,8] (competitive game theory where players maximize their payoffs 
while taking into account the strategies of their competitors) in the evolutionary search: A set 
of subpopulations co-evolve simultaneously each of which deals only with a partition of the 
search variables. These subpopulations interact to evolve towards the equilibrium; when deal-
ing with a single objective problem, a virtual Nash game approach has been applied in inverse 
shape optimization computational fluid dynamics and computational solid mechanics prob-
lems as an improvement technique versus the standard panmictic evolutionary algorithms. 
This approach has been successfully applied in the case of inverse problems where the fitness 
function objective is a sum of separable terms (such as the case of many shape optimization 
problems) [9,10].  

3 STRUCTURAL PROBLEM 
The aim of the structural reconstruction problem is to achieve the structure which fits most 

the maximum reference stresses. The optimum structural bar design is defined as a design in 
which some allocation of every bar in the structure has a maximum stress value as accurately 
equal as the maximum reference stress for that bar. Equation (1) shows the fitness function 
(FF) to be minimized (reconstruction problem). 

                                           


 
Nbars

i
RiMAXiMAXFunctionFitness

1

2)(        (1) 

where σMAX-i is the maximum calculated stress and σMAX-Ri the maximum reference stress, in 
bar i. A null value of the fitness function in the reconstruction problem means a perfect match 
of stresses, and a location of the aimed structural design. 

4 TEST CASES 

4.1 Test Case 1: 55 bar sized frame structure 
A fifty-five bar sized frame structural test case [11] is shown in figure 1, particularly the 

case of discrete cross-section type variables is handled here. The frame structure of reference 
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considered is the one corresponding to IPE330 cross section type in all beams (being the 
search space an interval between IPE080 and IPE500) and HEB450 cross section type in all 
columns (being the search space an interval between HEB100 and HEB450). Details about 
the corresponding maximum stress in each bar are available in [12]. 

A two player (two subpopulations) splitting territory approach will be used. Two Domain 
Decomposition (DD) player territories are tested in section 5. The distribution of bars in every 
case are shown as follows in figure 2 (black and cyan colors indicate membership to each ter-
ritory, respectively): a Bottom-Up DD and a Left-Right DD. Territories divide the variable 
search space in two subsets of 27 and 28 bars. 

 
Figure 1: Computational domain, boundary conditions and loadings available in [11], 55 bar sized. 

Left‐Right Domain Decomposition Nash‐EAs  Bottom‐Up Domain Decomposition Nash‐EAs 

  

Figure 2: Nash EAs domain decompositions, 55 bar sized structure. 

4.2 Test Case 2: 105 bar sized frame structure 
This test case is designed purposely to study the influence of problem size in the perform-

ance of Nash-EAs versus panmictic EA. A one-hundred-five bar sized frame structural test 
case is shown in figure 3, particularly the case of discrete cross-section type variables is han-
dled here. This test case is an horizontal extension of the one shown in section 4.1, with iden-
tical computational domain, boundary conditions and loadings, as well as identical cross 
section search space.  
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Also in this extended test case, a two player (two subpopulations) splitting territory ap-
proach will be used. Two Domain Decomposition (DD) player territories are tested in section 
5. The distribution of bars in every case are shown as follows in figure 4 (black and cyan col-
ors indicate membership to each territory, respectively): a Bottom-Up DD and a Left-Right 
DD. Territories divide the variable search space in two subsets of 52 and 53 bars. 

 

 
Figure 3: Computational domain, boundary conditions and loadings as in Figure 1, 105 bar sized (horizontal ex-

tension of test case 1). 

Left‐Right Domain Decomposition Nash‐EAs 

 

Bottom‐Up Domain Decomposition Nash‐EAs 

 

Figure 4: Nash EAs domain decompositions, 105 bar sized structure. 
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5 RESULTS AND DISCUSSION 

5.1 Test Case 1: 55 bar sized frame structure 
A population size of 80 individuals, with uniform crossover, gray codification and 0.4% 

mutation rate are used in a set of 30 independent executions of the three evolutionary algo-
rithms tested: standard panmictic EA, Nash-EAs with left-right partition and Nash-EAs with 
bottom-up partition. The stopping criterion is set as maximum number of fitness evaluations 
equal to 2.105. 

Figure 5 shows the final average number of fitness evaluations versus the standard devia-
tion of fitness evaluations of those executions of the three algorithms required to achieve the 
optimum (null) solution (all the three EAs were able to reach the optimum in all the runs in 
this first test case, as shown in table 1). Convergence curves of the evolution of the average, 
best and standard deviation values of the fitness function value are shown in figures 6, 7 and 8, 
respectively. 

 
Figure 5: Panmictic EA and Nash-EAs Results - Fitness Evaluations required to obtain the optimum design out 

of 30 independent runs. 
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Figure 6: Average Convergence; Nash-EAs versus Panmictic EA; 55 bar sized test case 

 

Figure 7: Best Convergence; Nash-EAs versus Panmictic EA; 55 bar sized test case 
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Figure 8: Standard Deviation Convergence; Nash-EAs versus Panmictic EA; 55 bar sized test case 

Algorithm 

Average 
Number   
Fitness   

Evaluations 

Standard   
Deviation     

Fitness   
Evaluations 

Best Value 
Fitness    

Evaluations 

Worst Value 
Fitness   

Evaluations 

Success 
Rate 

Panmictic EA 40458 5258.8 33698 57488 30 / 30 
Nash-EAs Left-Right Player 1 12781 1528.7 10688 18098 30 / 30 
Nash-EAs Left-Right Player 2 12742  1536.8  10688 18098 30 / 30 
Nash-EAs Bottom-Up Player 1 12638 1496.9  10298 16538 30 / 30 
Nash-EAs Bottom-Up Player 2 12664 1452.0 9908 16538 30 / 30 

Table 1: Final Results (over 30 independent runs, after a maximum number of 2.105 fitness evaluations), 55 bar 
sized test case. 

5.2 Test Case 2: 105 bar sized frame structure 
A population size of 150 individuals, with uniform crossover, gray codification and 0.4% 

mutation rate are used in a set of 30 independent executions of the three evolutionary algo-
rithms tested: standard panmictic EA, Nash-EAs with left-right partition and Nash-EAs with 
bottom-up partition. The stopping criterion is set as maximum number of fitness evaluations 
equal to 2.106. 

Table 2 shows the final average, standard deviation, best and worst number of fitness 
evaluations of those executions of the three algorithms required to achieve the optimum (null) 
solution, expressed as the success rate. The two Nash-EAs were able to reach the optimum in 
all the runs in this second test case, while the panmictic EA was completely unsuccessful (no 
execution was able to achieve the optimum. Convergence curves of the evolution of the aver-
age (figure 9 and zoomed figure 10), best (figure 11 and zoomed figure 12) and standard de-
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viation values (figure 13 and zoomed figure 14) of the fitness function value are shown in the 
aforementioned figures, respectively. 

 
Figure 9: Average Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case 

 
Figure 10: Average Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case (Zoomed figure 9) 
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Figure 11: Best Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case 

 
Figure 12: Best Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case (Zoomed figure 11) 
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Figure 13: Standard Deviation Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case 

 
Figure 14: Standard Deviation Convergence; Nash-EAs versus Panmictic EA; 105 bar sized test case 

(Zoomed figure 13) 
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Algorithm 

Average 
Number   
Fitness   

Evaluations 

Standard   
Deviation     

Fitness   
Evaluations 

Best Value 
Fitness    

Evaluations 

Worst Value 
Fitness   

Evaluations 

Success 
Rate 

Panmictic EA Not reached Not available Not reached Not reached 0 / 30 
Nash-EAs Left-Right Player 1 84559.3 16617.1 65418 136458 30 / 30 
Nash-EAs Left-Right Player 2 84658.0 16546.9 62458 136458 30 / 30 
Nash-EAs Bottom-Up Player 1 73114.0 7472.6 59498 89098 30 / 30 
Nash-EAs Bottom-Up Player 2 72916.7 7555.6 56538 89098 30 / 30 

Table 2: Final Results (over 30 independent runs, after a maximum number of 2.106 fitness evaluations), 105 bar 
sized test case. 

5.3 Discussion 
In the smaller size test case (first one), both panmictic and Nash-EAs were equally able to 

reach the optimum solution consistently in all the executions. Nevertheless, Nash-EAs were 
much faster than panmictic EA (see table 1 and figures 6 to 8). Between the Nash-EAs Left-
Right domain decomposition and the Nasb-EAs Bottom-Up domain decomposition, results 
are slightly better in the latter. 

In the bigger size test case (second one), only Nash-EAs were able to reach the optimum 
solution consistently in all the executions. On the contrary, the panmictic EA was completely 
unsuccessful. Also Nash-EAs were much faster than panmictic EA (see table 2 and figures 9 
to 14). Between the Nash-EAs Left-Right domain decomposition and the Nasb-EAs Bottom-
Up domain decomposition, results are slightly better in the latter, fact that is shared with the 
first test case. 

CONCLUSIONS 
Results obtained through a reconstruction inverse problem in structural frames have evi-

denced that the advantage of use and efficiency of Nash-EAs versus standard panmictic EAs 
is greater when higher size search spaces are involved. Here particularly, two search space 
sizes were compared: 55 and 105 bar sized problems, which correspond to discrete search 
spaces of 2220 and 2420, respectively. Robustness of the search has remained unaffected in 
Nash-EAs, while seriously affected in panmictic EAs. 
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Abstract. The need for cost-efficient seismic design in limited time has led to the development 

of automated structural optimization methodologies. Genetic Algorithms (GA) belong to the 

class of stochastic, nature-inspired heuristic optimization algorithms. GA can be easily imple-

mented and applied to advanced structural problems since they don’t require use of gradients 

of cost or constraints functions. Furthermore, they are able to identify global optima as opposed 

to local optimum solutions. Early efforts to optimise seismic design of concrete structures were 

based on traditional seismic design code approaches. The last two decades, performance- and 

deformation-based seismic design methodologies have emerged. These methodologies provide 

enhanced structural damage control for different earthquake intensities reducing both eco-

nomic losses and human casualties. Lately, a fully-fledged performance- and deformation-

based design methodology has been incorporated in the fib Model Code for Concrete Structures 

MC2010, which is meant to serve as a guidance document for future design codes of concrete 

structures. To the best of author’s knowledge, there exists no study investigating optimum seis-

mic design solutions in accordance with MC2010. The aim of this study is to develop a GA-

based seismic design optimization framework for reinforced concrete frames in accordance 

with the provisions of both Eurocode 8 (EC8) and MC2010. Application of this framework to 

reinforced concrete frames is conducted and comparisons of the optimum solutions obtained 

by the two seismic design guidelines are made. The advantages and disadvantages of the two 

seismic design methodologies, in the context of structural optimization, are highlighted and 

discussed. 
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1 INTRODUCTION 

The need for improved control of structural damage for different levels of seismic action has 

led to the development of performance-based seismic design. Performance-based seismic de-

sign is a transparent and direct design framework that requires a set of performance levels to be 

met for different levels of seismic hazard. Performance levels are related to the level of struc-

tural damage of the structure, which in turn is directly related to structural member deformations 

and/or inter-story drifts. 

The new fib Model Code 2010 (MC2010) includes a fully-fledged performance-based seis-

mic design and assessment methodology for various levels of seismic hazard (fib 2010, Fardis 

2013). MC2010 will serve as a basis for future codes for concrete structures. 

In MC2010, each performance limit state corresponds to a specific physical condition of the 

structure and it is expressed in terms of deformation limits of the structural members providing 

direct control of allowable seismic damage. The levels of seismic hazard are identified by their 

annual probability of being exceeded. Seismic actions are specified in terms of acceleration 

time-histories of the ground motion components. The reference method for determining seismic 

demands is the most rigorous inelastic response history analysis with step-by-step integration 

of the equation of motion in the time domain (Fardis 2013). 

Extensive research has been conducted over the past decades on optimum seismic design of 

structures (Fragiadakis and Lagaros 2011). However, only a small part of this research has been 

dedicated to reinforced concrete structures. This can be partially attributed to the complex na-

ture and detailing of reinforced concrete structures that increases significantly the number of 

design variables (Sarma and Adeli 1998). 

The number of research studies on optimization of performance and deformation-based seis-

mic design of reinforced concrete structures is limited. Ganzerli et al. (2000) were the first, to 

the best of the author’s knowledge, to consider seismic optimization with performance-based 

constraints. Chan and Zou (2004) examined optimum seismic design of reinforced concrete 

frames by employing optimality criteria approach. Lagaros and Papadrakakis (2007) compared 

the provisions of EC8 for seismic analysis of 3D reinforced concrete structures with a perfor-

mance-based seismic design methodology in the framework of multi-objective optimization. 

Fragiadakis and Papadrakakis (2008) presented a performance-based optimum seismic design 

methodology for reinforced concrete frames based on nonlinear time history analyses. Inter-

story drifts were used as performance criteria. Gencturk (2013) investigated performance-based 

seismic design optimization of reinforced concrete and reinforced engineered cementitious 

composites (ECC) frames, by using Taboo Search optimization algorithm.  

It can be concluded from the above, that no study has been conducted so far on optimization 

of reinforced concrete frames in accordance with MC2010 seismic design provisions. To ad-

dress this gap, this study presents optimum seismic design solutions of reinforced concrete 

frames obtained by MC2010 and compares them with optimum designs following EC8 (CEN 

2004) guidelines. To serve this goal, a general computational optimization framework for rein-

forced concrete frames is developed that makes use of a genetic algorithm able to track global 

optima of complex problems with discrete design variables. 

2 OPTIMIZATION OF REINFORCED CONCRETE FRAMES 

2.1 Optimization framework 

In optimization problem formulations, the goal is to minimize an objective function C(x) 

subject to m number of constraints gj(x)≤0 (j=1 to m). A design solution is represented by the 
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design vector x, which contains n number of independent design variables xi (i=1 to n). In de-

terministic structural seismic design optimization, the objective function C(x) is typically the 

initial cost of the structure. Constraints gj are either related to engineering demand parameters 

(EDP) (e.g. forces, displacements, rotations, drifts, etc.) or to detailing rules set by design codes 

and construction practice. To realistically represent construction practice, design variables xi 

typically take values from discrete sets of values Di=(di1, di2, …, diki), where dip (p=1 to ki) is 

the p-th possible discrete value of design variable xi and ki is the number of allowable discrete 

values of xi. For reinforced concrete structures, design variables are generally related to concrete 

section dimensions and steel reinforcement.  

2.2 Genetic algorithm (GA) 

Genetic Algorithm (GA) (Holland 1975) belongs to the class of stochastic, nature-inspired 

heuristic algorithms. It is based on Darwin’s theory of natural selection and evolution. Genetic 

algorithm can be easily implemented and applied to advanced optimization problems since it 

doesn’t require use of gradients of cost or constraints functions. Furthermore, it is able to iden-

tify global optima as opposed to local optimum solutions.  

The GA iteratively modifies populations (generations) of individuals in order to evolve to-

ward an optimum solution. An individual x (genome) represents a candidate solution to the 

optimization problem. The values of the design variables xi (i=1 to n) forming each individual 

are called genes. Furthermore, the objective function of each individual is known as fitness 

function. The best fitness value of a generation is the smallest fitness value of all individuals of 

the generation. In order to create the next population, the genetic algorithm selects certain indi-

viduals in the current population (parents) and uses them to create individuals in the next gen-

eration (children).  

In this study, the mixed integer GA as implemented in MATLAB-R2015a (MathWorks 2015) 

is employed. This algorithm can handle both continuous and discrete design variables. The al-

gorithm is able to account for nonlinear constraints by using the penalty function approach. The 

genetic algorithm in this study is terminated when one of the following stopping criteria is met: 

i) Number of generations exceeds a pre-specified maximum number of generations.

ii) The mean relative variation of the best fitness value does not exceed a pre-specified tol-

erance over a pre-specified number of generations. 

2.3 Design variables 

As shown in Fig. 1, design variables are separated in column and beam section design vari-

able sub-vectors. Assembly of these sub-vectors forms the design variables vector x.  

Column design variable sub-vectors are the heights hc and widths bc of the column sections, 

the diameters dbc and numbers of main bars per side nc, assumed the same for all column section 

sides for simplicity, the diameters dbwc, spacings sc and numbers of legs nwc of transverse rein-

forcement assumed again the same in both column section directions for simplification pur-

poses. 

Beam design variable sub-vectors are the heights hb and widths bb of the beam sections, the 

diameters dbt and numbers of main bars of the top sides ntb, the diameters dbb and numbers of 

main bars of the bottom sides nbb, the diameters dbwb, spacings sb and numbers of legs nwb of 

transverse reinforcement parallel to beam section heights. 
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Figure 1: Design variables: a) column sections, b) beam sections 

2.4 Objective function 

In this study, the objective function C(x) is the initial or construction cost of the reinforced 

concrete frames. The construction cost consists of the cost of the materials and the cost of the 

formwork of beam and column members. The following unit costs are assumed for concrete: 

100Euros/m3, steel: 1Euro/kg and formwork: 15Euros/m2. 

2.5 Design constraints 

In seismic design of reinforced concrete frames, constraints gj(x) are either related to engi-

neering demand parameters (EDP) (e.g. forces, displacements, rotations, drifts, etc.) or to de-

tailing rules set by design codes and construction practice. In the first case, an EDP must remain 

below a limit value EDPcap. This type of constraints can be written in the following normalized 

form 

𝐸𝐷𝑃 ≤ 𝐸𝐷𝑃𝑐𝑎𝑝 →
𝐸𝐷𝑃

𝐸𝐷𝑃𝑐𝑎𝑝
− 1 ≤ 0 (1) 

Regarding detailing requirements, the constraints can be expressed in terms of structural 

design parameters SDP. It is noted that a SDP can be a design variable itself (e.g. column height, 

main bar diameter) or a simple function of the design variables like the volumetric ratios of 

steel reinforcement.  

In some cases, it is required that a SDP remains lower than or equal to a maximum value 

SDPmax. This category of constraints is written in the following general form: 

𝑆𝐷𝑃 ≤ 𝑆𝐷𝑃𝑚𝑎𝑥 →
𝑆𝐷𝑃

𝑆𝐷𝑃𝑚𝑎𝑥
− 1 ≤ 0  (2) 

In other cases, it is required that a SDP is greater than or equal to a minimum value SDPmin. 

The latter family of constraints is expressed in the normalized form shown below: 

𝑆𝐷𝑃 ≥ 𝑆𝐷𝑃𝑚𝑖𝑛 →
𝑆𝐷𝑃𝑚𝑖𝑛

𝑆𝐷𝑃
− 1 ≤ 0  (3) 
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3 OPTIMUM DESIGN ACCORDING TO EUROCODE 2 

Prior to designing for seismic actions, RC frames must be designed to resist dead and live 

loads. Eurocode 2 (EC2 – CEN 2004) provisions are applied in this study for designing against 

static loads. EC2 provisions consist of a number of detailing rules and a number of requirements 

related to EDPs.  

Regarding detailing rules, design constraints of minimum volumetric ratio of longitudinal 

reinforcement, minimum diameter of longitudinal and transverse reinforcement, minimum dis-

tance between two longitudinal steel bars and minimum volumetric ratio of transverse rein-

forcement are expressed in the general form of Eq. (3). On the other hand, constraints of the 

maximum volumetric ratio of longitudinal reinforcement, maximum spacing of shear reinforce-

ment and maximum distance of unrestrained next to restrained main bars of columns are written 

in the form of Eq. (2). 

For the ULS, EDPs are member forces (moments and shear forces) derived by linear elastic 

analysis for the following load combination, where Gk represents the characteristic value of the 

permanent action and Qk stands for the characteristic value of the variable action. 

𝑆𝑑 = 1.35𝐺𝑘 + 1.50𝑄𝑘 (4) 

EDPs constraints are written in the general form of Eq. (1), where capacities Rd are derived 

by using characteristic material strengths divided by partial safety factors equal to γc=1.50 for 

concrete and γs=1.15 for reinforcing steel. For bending moments of column members, moment 

capacities are calculated for the axial load demand of the load combination under examination. 

For beam deflections, the limiting span to depth ratio approach is used herein ensuring that 

deflections are limited to span/250. Moreover, crack control is achieved by limiting maximum 

bar size or spacing. 

4 OPTIMUM SEISMIC DESIGN ACCORDING TO EUROCODE 8 

Seismic design according to EC8 can be performed either without provisions for energy 

dissipation and ductility (Ductility Class Low – DCL) or with provisions for energy dissipation 

and ductility (Ductility Classes Medium and High – DCM and DCH). DCM and DCH differ in 

the levels of lateral strength and allowable inelastic response. DCH allows for further reductions 

in seismic forces, but requires more demanding prescriptive rules for increasing ductility ca-

pacities than DCM. 

For DCL, all seismic EDPs are calculated from the seismic load combination shown below, 

where design seismic actions Ed are calculated by the design response spectrum that is derived 

from the elastic response spectrum reduced by the behaviour factor q. 𝜓2 is the quasi-perma-

nent load combination coefficient of the variable action. Reference analysis method of EC8 is 

the modal response spectrum analysis. However, for regular buildings with unimportant higher 

modes the linear elastic lateral force method can also be applied. 

𝑆𝐸𝑑 = 𝐺𝑘 + 𝜓2 · 𝑄𝑘 + 𝐸𝑑 (5) 

For DCM and DCH, first the dissipative zones of structural members (typically located at 

the ends) are designed in bending under the seismic design load combination. Next, capacity 

design principles are forced to ensure ductile structural response. In particular, column sections 
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are designed in bending following the strong column – weak beam capacity rule to prevent soft 

storey failure mechanisms. Moreover, capacity design in shear is applied to beam and column 

members and joints to preclude brittle shear failures.  

In addition to the above, RC frames are checked for a ‘frequent’ earthquake with 10% prob-

ability of exceedance in 10 years (10/10) to satisfy the Damage Limitation (DL) limit state. 

Checks verify that interstorey drifts developed for the ‘frequent’ earthquake are less than limit 

values depending on the type of non-structural elements (e.g. 1% for non-structural elements 

that don’t interfere with structural response).  

P-delta (2nd order) effects are considered at the i storey level with calculating ratio 𝜃𝑖from

Eq. (6). In this equation, 𝑁𝑡𝑜𝑡
𝑖  and 𝑉𝑡𝑜𝑡

𝑖  are the total vertical and shear load at the storey respec-

tively, ∆𝛿𝑖is interstorey drift and 𝐻𝑖is storey height. It is required that 𝜃𝑖never exceeds 0.2.

Furthermore, if 𝜃𝑖exceeds 0.1 then 2nd order effects are taken into account by multiplying 1st

order effects by the magnification factor 1/(1-𝜃𝑖).

𝜃𝑖 =
𝑁𝑡𝑜𝑡

𝑖 ⋅∆𝛿𝑖

𝑉𝑡𝑜𝑡
𝑖 ⋅𝐻𝑖 (6) 

All previous requirements are regarded as EDPs constraints and are included in the optimi-

zation problem in the general form of Eq. (1). The EDPs are member bending moments and 

shear forces, interstorey drifts and 𝜃𝑖 ratios. Apart from EDPs constraints and EC2 detailing

rules, DCM and DCH necessitate additional or stricter detailing rules in the critical regions to 

accommodate local ductility demands.  

The additional column constraints of minimum cross-section sides, minimum volumetric 

ratio of longitudinal reinforcement, minimum diameter of transverse reinforcement, minimum 

number of bars per side, and minimum confinement of transverse reinforcement in critical re-

gions are expressed in the general form of Eq. (3). The same holds for the additional beam 

constraints in critical regions such as minimum volumetric ratio of longitudinal reinforcement, 

minimum longitudinal bar diameter for DCH, minimum bottom reinforcement at the supports 

and minimum longitudinal bar diameters crossing interior or exterior joints.  

On the other hand, the more demanding column constraints in critical regions for maximum 

spacing between restrained main bars and spacing of transverse reinforcement are formulated 

in accordance with Eq. (2). The same holds for the beam constraints of maximum longitudinal 

reinforcement volumetric ratio and spacing of transverse reinforcement in the locations of the 

critical regions. 

5 OPTIMUM SEISMIC DESIGN ACCORDING TO FIB MODEL CODE 2010 

fib MC2010 adopts a fully-fledged performance-based seismic design methodology (Fardis 

2013). The code employs deformation limits, which are directly related to seismic damage, in 

order to verify 4 district Limit States. The Operational (OP) and Immediate Use (IU) Limit 

States are related to serviceability of structures, whilst the Life Safety (LS) and Collapse Pre-

vention (CP) are related to loss of lives and structural collapse (Ultimate Limit States ULS). 

Limit States are checked for different levels of Seismic Hazard. Deformation limits controlling 

Limit States and corresponding levels of Seismic Hazard recommended by fib MC2010 for 

ordinary structures are listed in Table 1 (Fardis 2013). 

The verification of Limit States entails comparisons of chord rotation demands θEd at mem-

ber ends with yield chord rotations θy at the same locations for the OP Limit State and twice θy
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for the IU Limit State. Furthermore, the two ULS are checked by comparing the plastic part of 

chord rotation demands at member ends θpl
Ed with characteristic values (lower 5% percentile) 

of the cyclic ultimate plastic hinge rotation capacities θpl
uk  divided by a factor of γ*R=1.35 for 

the LS Limit State and with θpl
uk without safety factor for the CP Limit State.  

Limit State Seismic Hazard Deformation Limit 

Operational (OP) 
Frequent with 70% probability of 

exceedance in 50 years (70/50) 
Mean value of θy 

Immediate Use (IU) 
Occasional with 40% probability 

of exceedance in 50 years (40/50) 
Mean value of θy may be 

exceeded by a factor of 2.0 

Life Safety (LS) 
Rare with 10% probability of ex-

ceedance in 50 years (10/50) 

Safety factor γ*R of 1.35 

against θpl
u,k

Collapse Prevention (CP) 
Very rare with 2% probability of 

exceedance in 50 years (2/50) 
θpl

u,k capacity may be

reached (γ*R =1) 

Table 1: Limit States, Seismic Hazard levels and Deformation Limits recommended by fib MC2010 for ordinary 

structures. 

It is recommended (Fardis 2013) that for beams and rectangular columns with ribbed bars 

yield chord rotation θy is taken from the following equation, where 𝜑𝑦is end section yield cur-

vature, Ls the shear span of the member on the side of the end section, z is lever arm of end 

section, ascr is a coefficient equal to 1 if shear cracking precedes flexural yielding or equal to 0 

if not, h is end section height, dbl and fyl diameter and yield strength of longitudinal reinforce-

ment (MPa) and fc member concrete strength in MPa. 

𝜃𝑦 =
𝜑𝑦(𝐿𝑠+𝑎𝑠𝑐𝑟⋅𝑧)

3
+ 0.0014 ⋅ (1 +

1.5ℎ

𝐿𝑠
) +

𝜑𝑦𝑑𝑏𝐿𝑓𝑦𝑙

8√𝑓𝑐
(7) 

Furthermore, characteristic ultimate plastic hinge rotation capacity θpl
u,k is derived by the 

respective mean value θpl
um divided by safety factor γRd. When θpl

u,m is calculated by the follow-

ing empirical relationship γRd can be taken equal to 1.75. 

𝜃𝑢𝑚
𝑝𝑙

= 0.0143 ⋅ 0.25𝑣 ⋅ 𝑓𝑐
0.2 ⋅ (

max(0.01;𝜔2)

max(0.01;𝜔1)
)

0.3
⋅ (min (9;

𝐿𝑠

ℎ
))

0.35
⋅ 25

(
𝑎𝜌𝑤𝑓𝑦𝑤

𝑓𝑐
)

(8) 

In Eq. (8), 𝜔1 and 𝜔2 are mechanical ratios of reinforcement in tension and compression 

zone respectively, 𝑣 is normalized axial load ratio, 𝑎 is confinement effectiveness factor and 

𝜌𝑤and 𝑓𝑦𝑤 are volumetric ratio and yield strength of transverse reinforcement. It is noted that

Eq. (8) is recommended for rectangular beams and columns with ductile steel reinforcement 

and without diagonal reinforcement. 

In addition to chord rotation checks, brittle shear failures are checked in terms of internal 

shear force demands VEd and design shear force capacities VRd. VRd outside plastic hinge regions 

is calculated as for static loadings. Inside plastic hinge regions, fib MC2010 specifies a strut 

inclination of 45o when plastic rotation θpl exceeds 2·θy and 21.8o for elastic response (θpl=0). 

Interpolation is allowed for intermediate values of θpl. 

3511



Panagiotis E. Mergos 

The reference analysis method of fib MC2010 is nonlinear response history analysis with 

step-by-step integration of motion equations in the time domain. The finite element model ap-

plied should use realistic estimates of the effective elastic stiffness of concrete members EIeff. 

It is recommended in MC2010 that EIeff of concrete members is taken by the following rela-

tionship, where My represents member end section yield moment and the other parameters have 

been defined previously. 

𝐸𝐼𝑒𝑓𝑓 =
𝑀𝑦𝐿𝑠

3𝜃𝑦
(9) 

Lumped plasticity finite elements with bilinear moment-rotation hysteretic models and real-

istic rules for stiffness degradation during unloading and reloading may be employed to model 

inelastic response of reinforced concrete members. 

It is worth noting that when conducting nonlinear analysis both types of seismic demands 

(i.e. deformations and forces) are obtained directly by the analytical solution without additional 

considerations for brittle modes of failure (i.e. capacity design principles).  

It is also important to clarify that no additional prescriptive rules, like detailing rules set by 

EC8 for DCM and DCH, need to be applied when designing in accordance with MC2010 apart 

from the detailing rules required for designing against static loads. 

In MC2010, seismic actions are represented by acceleration time-histories of the ground 

motions. At least seven ground motions are required to use average response values. All accel-

eration time histories should be scaled such that their elastic response spectrum is not lower 

than 90% of the target response spectrum for periods ranging between 0.2·T to T, where T is 

the fundamental period of the structure. As it will be shown later in this study, this requirement 

set by MC2010 can be very onerous and may lead to important increases in the structural cost. 

It is reminded that EC8 specifies that the mean spectrum of the set of ground motions and not 

all spectra shouldn’t be less than 90% of the target response spectrum in the same range of 

periods. It is also noted that prior to designing, T is not known and cannot be estimated with 

accuracy because it depends on steel reinforcement which affects members’ yield moments My 

and consequently effective elastic stiffness EIeff as defined in Eq. (9). 

6 OPTIMUM SEISMIC DESIGN CASE STUDY 

In this section, application of the optimum seismic design methodologies described previ-

ously to a simple portal RC plane frame is presented. The frame is of ordinary importance, 

located in a region of high seismicity and rests on soil class B according to the classification of 

EC8. The frame is designed for 0.16g, 0.24g and 0.36g peak ground acceleration values for the 

10/50 seismic hazard level in order to examine the influence of the level of seismicity on the 

optimum seismic design solutions. The elastic (target) response spectrum with 5% damping of 

EC8 determined for these specifications and 0.24g peak ground acceleration is shown in Fig. 2. 

Peak ground accelerations for the other seismic hazard levels of MC2010 objectives are cal-

culated by multiplying by the importance factor γI given by the following equation proposed in 

EC8-Part 1, where PL is the target probability of exceedance in 50 years and PLR is the reference 

probability of exceedance in 50 years (=10%). 

𝛾𝐼 = (
𝑃𝐿

𝑃𝐿𝑅
)

−1/3
(10) 
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The portal frame is designed following the provisions of EC8 for all three ductility classes 

(i.e. DCL, DCM and DCH) and in accordance with MC2010. In the latter case and in order to 

evaluate the influence of ground motions selection two different cases are examined. In the first 

case, designated as THA, the frames are designed for a set of 7 scaled ground motion records 

satisfying EC8-Part 1 recommendations as described in the previous section. In the second case, 

designated as THB, the frames are designed for a set of 7 scaled ground motion records satis-

fying following MC2010 specifications.  

Figure 2a presents the scaled and mean elastic spectra with 5% damping of the set of 7 

ground motions selected and scaled following EC8 provisions. Selection and scaling was 

achieved by employing computer program REXEL (Iervolino et al. 2009). Because the funda-

mental period of the structures is unknown prior to their design it was decided to match the 

mean and target spectrum for periods between 0.1s and 4s in order to capture most possible 

solutions. The selected ground motion records are all recorded on soil type B and have magni-

tude Mw>5.5. It is evident that the mean spectrum follows very closely the target spectrum.  

No computer tools exist for selecting record sets according to MC2010 guidelines. To serve 

this goal, in this study, a simplified procedure is applied. All records of the European Strong 

Motion Database (Ambraseys et al. 2004) on soil type B with Mw>5.5 are scaled so that their 

scaled 5% damping spectra are not less than 90% of the target spectrum in periods range be-

tween 0.1s and 4s. The scaled spectra are later ranked in accordance with their “goodness-of-

fit” to the target spectrum as quantified by the normalized root-mean-square-error (Katsanos 

and Sextos 2013). The first 7 ground motions comprise the set of records used herein. Figure 

2b presents the scaled and mean elastic spectra with 5% damping of the set of 7 ground motions 

selected and scaled following MC2010. It can be seen that the mean spectrum importantly ex-

ceeds the target spectrum leading to serious overestimation of seismic demands. Obviously, 

more advanced selection methods can produce closer mean and target spectra. This set is used 

herein simply to illustrate the importance of ground motion selection on the optimum design 

cost of RC frames.   

Figure 2: Elastic spectra with 5% damping for ground motion sets selected and scaled in accordance with a) 

EC8, b) MC2010 

For the optimum designs, it is assumed that section dimensions hc, bc, hb, bb take values from 

the following discrete set: (0.25m; 0.30m; 0.40m; … ; 1.0m). Furthermore, longitudinal bars 

dbc, dbb, and dbt are defined in the following discrete values set: (12mm; 16mm; 20mm; 25mm). 

Transversal bars dbwc, and dbwb take values from: (8mm; 10mm; 12mm). Transverse reinforce-

ment spacing sc and/or sb may take the following values: (0.1m; 0.15m; 0.20m; 0.25m; 0.30m). 
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Finally, numbers of main bars nc, ntb, nbb and legs of shear reinforcement nwc and nwb may take 

any integer value greater than one. 

The portal reinforced concrete frame optimally designed herein is shown in Figure 3. The 

span of the frame is 4m and the height 3m. Concrete C25/30 and reinforcing steel B500C in 

accordance with EC2 specifications are used. Concrete cover is assumed to be 30mm. Vertical 

symmetric concentrated loads are applied at the column locations equal to 120.0kN for the per-

manent and 80.0kN for the live loading. Storey mass for the seismic combination is 29.4t. 

The frame consists of two columns C1 and C2 and one beam B1. Due to symmetry, it is 

assumed that C1 and C2 have exactly the same sections and reinforcement. Concrete members 

are represented by three sections. Two at the ends to represent critical regions and one to rep-

resent the rest part of the element. Due to construction reasons, it is assumed that all sections 

have the same longitudinal reinforcement. Furthermore, it is assumed because of symmetry that 

member end sections have the same transverse steel reinforcement. Thus, the same sections are 

assumed for member ends. Intermediate and end sections differ in the spacing of transverse 

reinforcement in order to account for the additional requirements in the member critical regions. 

In total, 18 (8 for columns and 10 for the beam) independent design variables are used in this 

problem.  

The results presented in the following were obtained by running GA with populations of 75 

individuals. Iterations were terminated when the mean relative variation of the best fitness value 

was negligible for 100 generations. MATLAB-R2015a default options were used for GA oper-

ations. Furthermore, a significant number of different GA runs for each design solution were 

conducted and the minimum cost obtained is reported herein. 

Figure 3: Example portal frame 

Figure 4 presents optimization histories of the designs obtained by MC2010 methodology for the 

THA ground motion set and the three design peak ground accelerations. It can be seen that, as expected, 

optimum cost increases as design accelerations increase. 

Figure 5 compares optimum costs obtained by all seismic design methodologies for the three 

design peak ground accelerations of the 10/50 seismic hazard level. It can be seen that in all 

cases costs increase as design accelerations increase. Designs according to EC8 DCL and DCM 

yield similar costs for all design PGA values. On the other, DCH yields significantly increased 

costs. This occurred because of the enhanced detailing rules of this ductility class and the dis-

crete design variable sets assumed in this study. This observation shows the influence of detail-

ing requirements on the final costs of reinforced concrete structures. 
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Figure 4: Optimization histories of designs obtained by MC2010 methodology for THA ground motion set and 

three different design PGAs for the 10/50 seismic hazard level 

Furthermore, the direct comparison of optimum costs obtained by MC2010 methodology for 

the THA and THB ground motion sets shows the importance of the applied accelerograms set. 

For 0.16g PGA both solutions yield same optimum costs. This is because the design in this case 

is controlled by minimum detailing requirements. However, for larger seismicity levels the in-

crease in cost by selecting a ground motion data set in accordance with MC2010 provisions is 

very important. 

It is also evident that designs obtained by the MC2010 for both ground motion sets (THA 

and THB) drive to significantly reduced design costs for the low 0.16g and moderate 0.24g 

design accelerations. The MC2010 design with THA motion set yields slightly smaller cost 

than the EC8 designs according to DCL and DCM approaches for 0.36g. However, the same 

design methodology with the THB motion set drives to significantly greater design costs than 

all EC8 designs obtained for 0.36g.  

Figure 6 presents MC2010 checks of rotation demand constraints for the THA ground mo-

tion set and for all Limit States performed for the optimum solutions obtained by all design 

methodologies for 0.36g. Column sections locations are defined by the column member number 

(e.g. C1) and a letter designating the location of the section in the member (i.e. B=bottom and 

T=top). Similarly, beam sections are defined by the beam member number (e.g. B1) and a letter 

designating the location of the section in the member (i.e. L=left and R=right). Limit States are 

written with the acronyms shown in Table 1.  

It can be concluded that all design solutions perform rather well. DCM and DCH designs do 

not satisfy beam rotation constraints for the OP Limit State. It is recalled that EC8 does not 

have any provisions for the OP Limit State. Furthermore, it can be seen that the MC2010 design 

for THA motion set marginally satisfies beam and column rotation constraints at the OP Limit 

State and column rotation constraints at the CP Limit State. This shows that these where the 

controlling (active) constraints of this design. It is also evident that MC2010 design for THB 

motion satisfies all constraints with a high level of conservatism. 
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Figure 5: Optimum costs obtained by different design methodologies and design PGAs for the 10/50 seismic 

hazard level. 

Figure 6: MC2010 rotation constraints of beam and column section optimum solutions obtained by different de-

sign methodologies for 0.36g 10/50 seismic hazard PGA. 

7 CONCLUSIONS 

 The new fib Model Code 2010 (MC2010) includes a fully-fledged performance-based seis-

mic design and assessment methodology for various levels of seismic hazard. MC2010

will serve as a basis for future codes for concrete structures.

 The reference analysis method of fib MC2010 is nonlinear response history analysis with

step-by-step integration of motion equations in the time domain. Due to the complexity of

this approach, genetic algorithms are well suited to this design methodology since they

don’t require use of gradients of cost or constraints functions. Furthermore, they are able

to identify global optima as opposed to local optimum solutions.

 This study presents optimum seismic design solutions of a portal reinforced concrete frame

obtained by MC2010 and compares them with optimum designs following EC8 (CEN

2004) guidelines for all three ductility classes. The frame is designed for three different

peak ground accelerations (0.16g, 0.24g and 0.36g) for the 10/50 seismic hazard level.
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 It is found that the construction cost increases with the level of peak ground acceleration

for all seismic design methodologies.

 The MC2010 seismic design methodology may lead to serious cost savings for low seis-

micity levels. However, for high design peak ground accelerations MC2010 and EC8 yield

similar optimum costs.

 The selection of the ground motion records set plays an important role on the optimum

design costs obtained by the MC2010 approach. If the MC2010 prescriptions are used the

design costs increase importantly with respect to the selection of a set of ground motions

following EC8 guidelines.

 EC8 optimum design solutions do not satisfy rotation demand constraints set by MC2010

for the OP limit state. This can be attributed to the fact that no explicit provisions exist in

EC8 to address this limit state.

REFERENCES 

[1] fib, Model Code 2010. Bulletins Nos. 65/66, Federation Internationale du Beton, Lau-

sanne, 2012. 

[2] M.N. Fardis, Performance- and displacemenent-based seismic design and assessment of 

concrete structures in fib Model Code 2010. Structural Concrete, 14, 215-229, 2013. 

[3] M. Fragiadakis, N.D. Lagaros, An overview to structural seismic design optimization 

frameworks. Computers and Structures, 89, 1155-1165, 2011. 

[4] K.C. Sarma, H. Adeli, Cost optimization of concrete structures. Journal of Structural En-

gineering ASCE, 124, 570-578, 1998. 

[5] S. Ganzerli, C.P. Pantelides, L.D. Reaveley, Performance-based design using structural 

optimization.  Earthquake Engineering and Structural Dynamics, 29, 1677-1690, 2000. 

[6] C.M. Chan, X.K. Zou, Elastic and inelastic drift performance optimization for reinforced 

concrete buildings under earthquake loads. Earthquake Engineering and Structural Dy-

namics, 33, 929–950, 2004.  

[7] N.D. Lagaros, M. Papadrakakis, Seismic design of RC structures: A critical assessment 

in the framework of multi-objective optimization. Earthquake Engineering and Struc-

tural Dynamics, 36, 1623-1639, 2007. 

[8] M. Fragiadakis, M. Papadrakakis, Performance-based optimum seismic design of rein-

forced concrete structures. Earthquake Engineering and Structural Dynamic, 37, 825-

844, 2008. 

[9] B. Gencturk, Life-cycle cost assessment of RC and ECC frames using structural optimi-

zation. Earthquake Engineering and Structural Dynamics, 42, 61-79, 2013. 

[10] CEN, Eurocode 8: Design of structures for earthquake resistance. Part 1: General rules, seismic 

actions and rules for buildings. European Standard EN 1998-1, Brussels, Belgium, 2004. 

[11] J. Holland, Adaptation in natural and artificial systems. Ann Arbor, MI, USA: University 

of Michigan Press, 1975. 

[12] MathWorks, MATLAB R2015a – Global Optimization Toolbox. The MathWorks Inc., 

Natick, MA, USA, 2000. 

3517



Panagiotis E. Mergos 

[13] CEN, Eurocode 2: Design of concrete structures. Part 1-1: General rules and rules for buildings. 

European Standard EN 1992-1-1, Brussels, Belgium, 2004. 

[14] I. Iervolino, C. Galasso, E. Cosenza, REXEL: computer aided record selection for code-based 

seismic structural analysis. Bulletin of Earthquake Engineering, 8, 339-362, 2009. 

[15] N.N. Ambraseys, J. Douglas, D. Rinaldis, et al., Dissemination of European Strong Motion Data. 

Vol. 2, Engineering and Physical Sciences Research Council, UK, 2004. 

[16] E.I. Katsanos, A.G. Sextos, An integrated software environment for structure-specific earthquake 

ground motion selection. Advances in Engineering Software, 58, 70-85, 2013. 

3518



ECCOMAS Congress 2016 

 VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 
Crete Island, Greece, 5–10 June 2016 

CALIBRATION OF THE NUMERICAL MODEL OF A STAND IN 

DRAGÃO STADIUM BASED ON GENETIC ALGORITMS 

Jorge Leite1, Diogo Ribeiro*2, Hugo Marques3, Rui Calçada4 

1 Polytechnic of Porto, School of Engineering 

Rua Dr. António Bernardino de Almeida, 431 | 4249-015 Porto 

1130177@isep.ipp.pt 

2 CONSTRUCT-LESE 

Polytechnic of Porto, School of Engineering 

Rua Dr. António Bernardino de Almeida, 431 | 4249-015 Porto 

drr@isep.ipp.pt 

3 GEG 

Gabinete de Estruturas e Geotecnia 

Rua Justino Teixeira, Centro de Campanhã, Bloco A, Piso 3, Esc.307 | 4300-273 Porto 

hmarques@geg.pt 

4 CONSTRUCT-LESE 

University of Porto, Faculty of Engineering 

Rua Dr. Roberto Frias, s/n | 4200-465 Porto 

ruiabc@fe.up.pt 

Keywords: stand, seating deck units, numerical modelling, dynamic test, model calibration, 

genetic algorithm. 

Abstract. This paper is focused on the experimental calibration of the numerical model of a 

stand in Dragão stadium based in genetic algorithms. A finite element numerical model of a 

group of seating deck units including the connections between them and the connections with 

the stands, was developed. Also a dynamic test was performed in the South stand in order to 

characterize the local dynamic properties of a group of seating deck units, particularly its nat-

ural frequencies, modal configurations and damping coefficients. The experimental calibration 

of the numerical model was performed using an iterative method based on a genetic algorithm. 

The stability of a significant number of parameters, considering different initial populations, 

proved the robustness of the adopted algorithm in the scope of the optimization of the numerical 

model. Also the calibration results demonstrate a very good agreement between numerical and 

experimental modal responses and a significant improvement of the numerical model before 

calibration. 
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1 INTRODUCTION 

In recent years, the organization of sport events of international scale, especially in European 

countries, has launched new challenges in terms of rehabilitation and reconstruction of the ex-

isting football stadiums and in some cases, the construction of new stadiums. 

The need to reduce the obstacles in front of the public forced the stadiums to be built using 

larger span and slender structural elements. This situation took the structures to be more sus-

ceptible to resonance phenomena, especially due to the proximity between the frequencies as-

sociated with the synchronized movements of the public with the natural frequencies of 

vibration of the structure [1]. 

The new functional requirements of sports facilities, especially those associated with the 

safety and comfort of spectators, have led to a growing interest of researchers for the study of 

dynamic effects induced by the public in this type of structures [1]. These studies usually in-

volve performing dynamic tests and the development of numerical finite element models to 

support decision and typically calibrated based on experimental data [1]. 

In this context it should be noted the experimental studies carried out by Littler et al. [2] at 

Twickenham Stadium (United Kingdom), by Pavic and Reynolds [3] in the stadium of Bradford 

(United Kingdom) and Cigada et al. [4] at Giuseppe Meazza Stadium (Italy), and involving 

measuring the vertical acceleration of the stands, with and without spectators, using a perma-

nent monitoring system. The results of these studies have revealed the importance of the pres-

ence of spectators for the dynamic properties of the stands, in particular the values of vibration 

frequencies and damping coefficients. 

Most experimental studies have mainly focused on the global analysis of the dynamic be-

havior of the stands, neglecting the characterization of local vibration modes associated with 

seating deck units. Of the few studies identified it is important to point the work of Marques et 

al. [5] and Marovic et al. [6], which despite focusing on the evaluation of the dynamic response 

values of the seating deck units during sport events, they did not include the identification of 

its local modal parameters. 

From the works developed by Lima Avila and Doz [7], Saudi et al. [8], Marques [5] and 

others, experimental modal information is used for calibration of numerical finite element mod-

els of the stands. The calibrated models have proved to be especially useful in the study of 

reinforcement interventions [8], in the design of vibration control systems [5], identification of 

structural damage [7] and for simulation of load scenarios different from those normally acting 

with the structure in normal operation. 

This article focuses on the experimental calibration of a numerical model of seating deck 

units of Dragão Stadium. For this purpose, it is developed a numerical finite element model that 

aims to study the dynamic behavior of a seating deck unit and considers the influence of its 

connection with neighboring seating deck units. It is also performed the experimental charac-

terization of a series of seating deck units of the south stand of Dragão stadium, in order to 

identify its local dynamic properties, particularly natural frequencies, mode shapes and damp-

ing coefficients. Finally, automatic calibration of the numerical model was performed using an 

iterative method based on genetic algorithms, which uses a computational interface between 

three programs (Autodesk Robot, Excel and Matlab), allowing the inclusion of a conventional 

structural calculation program in an optimization flow through specific API routines. 

2 DRAGÃO STADIUM 

Dragão stadium is located in the city of Porto (Portugal) and was built on the occasion of the 

European Football Championship in 2004. The stadium has a capacity of 50092 spectators and 
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comprises four stands: south, west, north and east (Figure 1a). The north and south stands con-

sist of a single level, while the east and west stands consist of two levels, one lower and one 

upper. 

Each stand is divided into structurally independent bodies separated by joints. The structure 

of each body of the stand is formed by a set of frames, spaced by 8.1 m, at the interior perimeter, 

and 10.5 m on the perimeter of the periphery. The seating deck units are supported by the raker 

beams that integrate these frames. 

  
a) b) 

Figure 1: Dragão stadium: a) global view; b) stands plan. 

The seating deck units of the lower stands are T-shaped prefabricated elements in reinforced 

concrete (Figure 2). The seating deck units are formed by a horizontal plate of thickness equal 

to 0.10 m and width equal to 0.80 m, which supports on a vertical rib with 0.15 m thickness and 

variable height between 0.48 m and 0.63 m, depending on the position of the seating deck unit 

in the stand frames. 

 

Figure 2: Seating deck units of Dragão stadium (lower stands). 

In radial direction, the connection between the seating deck units is guaranteed, in an alter-

nating solution, by rigid connections by means of 3 metal connectors type M20, and flexible 

connections through EPDM rubber pads. Towards its perimeter each seating deck unit is sepa-

rated from neighbors by joints.  

Each seating deck unit is supported in raker beams by means of a clamping device consisting 

of a steel angle L100×100×10 which is connected to the vertical seating deck unit rib and to the 

beam frame by means of two steel connectors type M12. Between the base of the rib of the 

seating deck unit and the stand beam there is a neoprene pad with 15 mm thick. 
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3 NUMERICAL MODEL 

3.1 Description  

The numerical finite element model of the seating deck units of the stands of Dragão stadium 

was developed using the commercial software Autodesk Robot Structural Analysis [9] (Figure 

3a).  

The numerical model comprises a set of 10 consecutive seating deck units, located on the 

south stand inside the area identified in Figure 1b, and aims the characterization of the local 

dynamic behavior of seat deck unit of row 14 considering the influence of its connection with 

neighboring seating deck units. 

The horizontal plates and ribs of seating deck units in addition to the steel angle of the sup-

ports, were modeled by shell finite elements, while the remaining elements, in particular the 

steel connectors and the elastic supports between seating deck units and between the seating 

deck units and the stand frame, were modeled using beam finite elements. In Figure 3b is illus-

trated in detail the modeling of the links between seating deck units and between the seating 

deck units and the stand frame. 

In the numerical model all the structural elements that constitute the seating deck units, were 

reproduced, in accordance with the design information. For simplicity all seating deck units 

were modeled with a span equal to 8.22 m corresponding to the span of the seating deck unit of 

row 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: FE numerical model: a) global view, b) detail of modeling of the links between seating deck units and 

between the seating deck units and the stand 

3.2 Geometrical and mechanical properties 

Table 1 presents the most relevant geometric and mechanical parameters adopted in the nu-

merical model of seating deck units, including its name, the value adopted and respective units. 

In addition, the upper and lower limits that will be used later in the calibration phase of the 

numerical model are also indicated. 
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Table 1: Geometrical and mechanical parameters of the numerical model of the seating deck units. 

Parameters 
 

Unit 
Adopted 

value 

Limits 

 Lower Upper 

Ec Elasticity modulus of concrete 
 

GPa 32.2 28.0 36.0 

c Concrete density 
 

kN/m3 25 -- -- 

EM20 

Elasticity modulus of steel in 

M20 connectors between seating 

deck units 

 

GPa 210 150 250 

ES,0 

Elasticity modulus of steel con-

nectors between seating deck 

units and stand beams 

Other rows 

GPa 210 150 250 

ES,13L Row 13 (left) 

ES,13R Row 13 (right) 

ES,14L Row 14 (left) 

ES,14R Row 14 (right) 

ES,15L Row 15 (left) 

ES,15R Row 15 (right) 

EEPDM 

Elasticity modulus of EPDM rub-

ber pads between seating deck 

units 

 

MPa 50 0 150 

EN,0 

Elasticity modulus of neoprene 

layer between seating deck units 

and stand beams 

Other rows 

MPa 50 0 150 

EN,13L Row 13 (left) 

EN,13R Row 13 (right) 

EN,14L Row 14 (left) 

EN,14R Row 14 (right) 

EN,15L Row 15 (left) 

EN,15R Row 15 (right) 

 

The value adopted for the elasticity modulus of concrete was defined on the basis of the 

results of a concrete ultrasonic test, since there was no design information about its mechanical 

properties. The results of this test allowed to estimate an average value of the dynamic elasticity 

modulus of concrete equal to 32.2 GPa with a coefficient of variation of 3.0%. The variation in 

this parameter limits were, however, extended to meet the fact that the ultrasonic test has been 

performed on a limited number of seating deck units due to accessibility constraints for the 

remaining seating deck units. 

The definition of variation limits of the elasticity modulus of steel of the connectors between 

seating deck units and between the seating deck units and the stand beams allowed to meet 

some singularities observed in situ, in particular the use of a larger number of connectors than 

those provided in the design stage, the use of connectors of different diameter of the specified 

in design, and the loss of connection stiffness due to poor filling of the holes with a chemical 

component. 

The definition of the limits of variation of the elasticity modulus of EPDM rubber pads and 

neoprene, in the connection between seating deck units and between the seating deck units and 

the stand beams, respectively, also allowed to meet situations observed in situ, namely, the 

deterioration or inexistence of supports, and the use of elastic supports in different materials of 

the specified design. 

In the case of the elasticity modulus of steel of the connectors between the seating deck units 

and the stand beams, and the elasticity modulus of neoprene, distinct characteristics are defined 

for the supports located to the left and right on seating deck units 13, 14 and 15, and other 

seating deck units. 
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3.3 Numerical modal parameters 

Figure 4 shows the values of the vibration frequencies of the main local modes of the seating 

deck units and the corresponding mode shapes obtained from the numerical model developed 

based on the adopted values of parameters listed in Table 1. Modes 1 and 5 essentially involve 

bending movements of the seating deck units. Modes 2, 3 and 4 mainly involve torsional move-

ments of the seating deck units. In the mode shapes were only represented the seating deck units 

of rows 13, 14 and 15. 

 

  
Mode 1 – f = 12.15 Hz Mode 2 – f = 18.57 Hz 

  
Mode 3 – f = 20.66 Hz Mode 4 – f = 23.32 Hz 

 
Mode 5 – f = 30.71 Hz 

Figure 4: Numerical modal parameters. 

4 DYNAMIC TEST 

4.1 Description 

The dynamic test aimed to identify the modal properties of the seating deck units, especially 

its natural frequencies and local vibration modes and the respective damping coefficients. 

3524



Jorge Leite, Diogo Ribeiro, Hugo Marques, Rui Calçada 

The test was conducted using a technique with fixed reference points and mobile measure-

ment points, involving the use of 16 high sensitivity piezoelectric accelerometers, PCB 393B12 

model. The accelerations were measured in the vertical (z) and radial (y) directions in a total of 

49 measurement points located in the seating deck units of rows 8, 13, 14, 15, 18 and 28 of 

south stand.  

Figure 5a illustrates the position of the accelerometers in the seating deck units. The ends of 

the seating deck units of rows 8, 14, 18 and 28 were instrumented in the vertical direction, in 

order to identify eventually global movements associated with the stand frames. In turn, the 

seating deck units of rows 13, 14 and 15 were instrumented in the vertical and radial directions 

in order to characterize the local movements of the seating deck units. 

 

 

 

a)  b)  

  

c)  d)  

Figure 5: Dynamic test: a) measurement points (global view); b) measurement points of rows 13, 14 and 15; c) 

accelerometers; d) external excitation. 

The reference transducers were located on the seating deck units of rows 13, 14 and 15 in 

positions 1, 2, 3, 4 and 5 (Figure 5b). Data acquisition was performed using NI cDAQ-9172 

system, using four NI 9234 modules for IEPE type accelerometers. The time series were ac-

quired with a duration of 5 minutes, with a sampling frequency of 2048 Hz, further decimated 
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at a frequency equal to 256 Hz. The connection of accelerometers to seating deck units was 

performed by means of metallic plates and angles bonded to the concrete surface (Figure 5c). 

The test took place under an external excitation ensured by the action of a group of individ-

uals who performed jumps and walked randomly over time (Figure 5d). 

4.2 Modal parameters identification 

The identification of modal parameters was performed by the application of the Enhanced 

version of Frequency Domain Decomposition method (EFDD) using the commercial software 

ARTeMIS [10]. 

Figure 6 show the curves of the average and normalized singular values of spectral density 

matrices of all experimental setups, obtained by the EFDD method. Five local vibration modes 

associated with the seating deck units in correspondence with the 5 peaks indicated in the curve 

of the first singular value, were identified. 

 

Figure 6: EFDD method: average and normalized singular values of spectral density matrices. 

In Figure 7 are shown the mean values of natural frequencies and corresponding local modes 

of vibration of the seating deck units. The analysis of the modal configurations allows to iden-

tify movements associated with bending and twisting of the seating deck units with very good 

definition. In these modes of vibration the movements of the stand frames are negligible. Modes 

2 and 3 are distinguished by the fact that the movement of the seating deck unit of row 14 

involves transverse and vertical bending, respectively. The values of the damping coefficients 

vary between 1.11% and 2.53%. 
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Mode 1 – f = 12.15 Hz 

 = 2.53 % 

Mode 2 – f = 20.68 Hz 

 = 1.36 % 

 
 

Mode 3 – f = 24.06 Hz 

 = 1.26 % 

Mode 4 – f = 26.01 Hz 

 = 1.26 % 

 

Mode 5 – f = 40.35 Hz 

 = 1.11 % 

Figure 7: Experimental modal parameters. 
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5 CALIBRATION  

The calibration of the numerical model of the seating deck units was based on the results of 

the dynamic test and involved performing a sensitivity analysis and an optimization based on 

genetic algorithms. 

5.1 Methodology 

Figure 8 presents a flowchart illustrating the iterative process of the numerical model cali-

bration based on a genetic algorithm and involving the use of three softwares: Autodesk Robot 

[9], Excel [11] and Matlab [12]. A detailed explanation of the proposed methodology is pre-

sented in reference [13]. 

In the present work some improvements to the tool developed by Ribeiro et al. [13] which 

allowed to improve its versatility and computational efficiency, were introduced, in particular: 

i) the possibility of performing the numerical modeling of the structure in a conventional auto-

matic structural calculation software, in this case Autodesk Robot; ii) the implementation of 

API routines from Robot software, in Excel environment, that enable an efficient interconnec-

tion of the numerical model to the optimization algorithm, namely for the extraction of numer-

ical modal parameters, from Robot to Matlab, and for the introduction of new set of values of 

numerical parameters, from Matlab to Robot, and iii) the application of genetic algorithms 

based on existing routines of Matlab software. 

 

Figure 8: Flowchart of the calibration methodology of the numerical model. 

5.2 Sensitivity analysis 

The sensitivity analysis aims identifying the parameters that most influence the responses of 

seating deck units, particularly the natural frequencies and vibration modes, and which will be 

later included in the optimization phase. 

Figure 9 shows the results of the sensitivity analysis using a Spearman correlation coeffi-

cients matrix [14]. The sensitivity analysis was performed using a stochastic sampling tech-

nique based on 1000 samples generated by Latin Hypercube method. The correlation 

coefficients situated in the range [-0.20; +0.20] were excluded from the graphical representation. 
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Figure 9: Spearman correlation matrix. 

The correlation matrix shows that the elasticity modulus of concrete (Ec), elasticity modulus of 

steel in M20 connectors between seating deck units (EM20), elasticity modulus of EPDM rubber 

pads between seating deck units (EEPDM) and elasticity modulus of neoprene (EN) of almost all 

the seating rows, are the parameters that most influence the modal responses. 

5.3 Optimization 

The optimization phase aimed to obtain the values of the numerical parameters that minimize 

the differences between the numerical and experimental modal parameters, and involves the 

definition of an objective function and the application of an optimization technique based on a 

genetic algorithm. 

The objective function (f) comprises two terms, one related with the residuals of the vibration 

frequencies and other related with the residuals of MAC values: 

𝑓 = 𝑎∑
|𝑓𝑖

𝑒𝑥𝑝
− 𝑓𝑖

𝑛𝑢𝑚|

𝑓𝑖
𝑒𝑥𝑝

5

𝑖=1

+ 𝑏∑|𝑀𝐴𝐶(𝑖
𝑒𝑥𝑝

,𝑖
𝑛𝑢𝑚) − 1|

5

𝑖=1

 (1) 

where fi
exp and fi

num are the experimental and numerical frequencies for mode i, i
exp and i

num 

are the vectors containing the experimental and numerical modal information regarding mode 

i, and a and b are weighting factors of the terms of the objective function assumed, in this 

situation, equal to 1.0. 
The optimization model involves 9 numerical parameters and 10 modal results. The genetic 

algorithm was based on an initial population of 30 individuals and 100 generations, in a total 

of 3000 individuals. The initial population was randomly generated by Latin Hypercube 

method. In this algorithm was defined a number of elites equal to 1, a replacement rate equal to 

5% and a crossing rate of 50%. 

In Figure 10 are presented the ratios of the values of each numerical parameter in relation to 

the limits given in Table 1 for the independent optimization runs GA1 to GA4. A ratio of 0% 

means that parameter coincides with the lower limit and a ratio of 100% means that coincides 

with the upper limit. The global parameters and parameters related to the interfaces between 
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the seating deck units are shown in Figure 10a, with the correspondent values indicated in 

brackets. The parameters of the interfaces of the seating deck units to stand beams are shown 

in Figure 10b. 

 

a) 

 

b) 

Figure 10: Values of numerical parameters obtained for optimization runs GA1 to GA4: a) global parameters and 

parameters of the interfaces between the seating deck units; b) parameters of the interfaces between seating deck 

units and stand beams. 

The results help identifying as that the most sensitive parameter, the elasticity modulus of 

neoprene layer between seating deck units and stand beams of the other rows (EN), which is the 

one exhibiting the lower variations, close to 3%. The elasticity modulus of EPDM rubber pads 

between seating deck units (EEPDM) also has lower variations, in the order of 3%, possibly due 

to the fact that it has correlation with several modal responses. For the elasticity modulus of 

concrete (Ec) and the elasticity modulus of steel in M20 connectors between seating deck units 

(EM20), which are less sensitive to the responses, estimates have higher variations and near 25%. 

Regarding elasticity modulus of neoprene layer between seating deck unit and stand beams 

of row 13, at left (EN13L) and right sides (EN13R), the estimates show variations with opposite 

trend, that is, the increased stiffness of the left support is normally associated with a decreased 
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stiffness of the right support and vice-versa. The same applies to the elasticity modulus of neo-

prene layer between seating deck unit and stand beams of row 14, at left (EN14L) and right sides 

(EN14R). This should be related to the fact that there are different combinations of these sets of 

parameters that lead to the same solution in terms of the optimization problem. 

Figure 11a presents the experimental and numerical values of vibration frequencies before 

and after calibration, indicating the values of errors of numerical and experimental vibration 

frequencies, with reference to the values of the experimental frequencies. The numerical results 

after calibration refer to the optimization run GA3, which was the case that led to the lowest 

residue of the objective function. Figure 11b shows the MAC values before and after calibration. 

The average error of the frequencies decreased from 11.8% before calibration to 2.4% after 

calibration. The average value of the MAC parameter increased from 0.795 before calibration 

to 0.911 after calibration. 

 

a) 

 

b) 

Figure 11: Correlation analysis of experimental and numerical modal parameters: a) frequencies of vibration; b) 

MAC values. 

6 CONCLUSIONS  

This article focused on the experimental calibration of a numerical model of seating deck 

units of Dragão stadium. 

The three dimensional finite element numerical model includes a series of 10 consecutive 

seating deck units. In the modeling special attention was given to the link between the seating 

deck units as well as the connection of the seating deck units to the stand beams. 
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The dynamic test carried out on a series of seating deck units of the south stand of the sta-

dium allowed the identification of five local vibration modes, mainly involving coupled bend-

ing and torsion movements of the seating deck units, with frequencies ranged between 12.15 Hz 

and 40.36 Hz. 

The results of the optimization of the numerical model of the seating deck units demonstrated 

a very good approximation with experimental results and a significant improvement in relation 

to the numerical model before calibration. On the other hand, the genetic algorithm allowed to 

obtain sufficiently stable estimates of a significant number of parameters, considering different 

initial populations, proving its efficiency and robustness. 

The analysis of the values of numerical parameters after calibration allowed to established 

that: i) the optimal value of the elasticity modulus of steel in M20 connectors between seating 

deck units approached the upper limit, reflecting, possibly, a more effective link between the 

seating deck units in relation to the planned design; ii) the values of elasticity modulus of neo-

prene layer between seating deck units and stand beams have very different values depending 

on the seat deck unit and position on the seat deck unit, which corroborates the evidences of a 

visual inspection carried out in situ, which in some situations found the absence of supports, 

and in other situations the existence of supports performed with materials and thicknesses dif-

ferent from those specified in design; iii) the optimal value of the elasticity modulus of concrete 

approached its lower bound, standing in the range between 28.6 GPa and 30.6 GPa. 

As future developments the authors intend to carry out the validation of the numerical model 

of seating deck units under the action of controlled movements of public based on dynamic 

analysis that include public-structure interaction and taking into account eventual nonlinearities 

of the dynamic system. For this purpose, it is planned to carry out a dynamic test under public 

action with the measurement of the forces applied by individuals and the responses in terms of 

accelerations of seating deck units. 
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CNRS UMR 7641, Université Paris-Saclay, 91128 Palaiseau, France

e-mail: gregoire.allaire@polytechnique.fr

Keywords: Materials, homogenization, topology optimization, level-set.

Abstract. Architectured materials are promising to reach extreme properties and ultimately ad-
dress issues related to lightweight or non conventional properties for bulk materials (eg. high
specific rigidity, extremal conductivity or auxetism (negative Poisson’s ratio)) [1]. A very effi-
cient way to obtain optimal forms is via inverse homogenization, i.e. using shape and topology
optimization techniques in order to achieve target material properties [2].

A great number of publications has been devoted to the design of isotropic materials with
extreme properties. Isotropy is usually prescribed via a combination of symmetric planes and
penalization techniques, which are quite delicate to handle in an optimization framework.

In this work, we present an approach for the design of isotropic multi-materials with extremal
conductivity via laminate geometries, consisting in anisotropic phases [3]. More specifically,
we design composites with extremal conductivity using rank-1 laminates, composed by two or-
thotropic phases along parallel layers. The second phase is obtained by a 90-degree rotation of
the first one, while their volume fractions are explicitly chosen so that the laminate is isotropic.
The orthotropic phases are considered to have their own periodic micro-structure, composed
by multiple phases. By optimally distributing the different phases in a periodic cell, we can
achieve the Hashin-Shtrikman bounds for the isotropic laminate. We present examples in two
dimensions using the level-set method for shape and topology optimization [4].
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1 INTRODUCTION

Designing materials with prescribed or extremal properties is of great interest in material
science. Combining the different attributes of materials in nature, e.g. by designing properly
their microstructure, one can create novel materials with mechanical properties that are not met
by any material in nature alone (extreme conductivity, auxetism, etc.). This class of materials is
frequently reffered to as architectured or hybrid materials [5, 6].

Among the different methodologies proposed for their design [7], the geometric approach has
recently started attracting again the interest of reseachers and manufacturers. This is mainly due
to the recent advances in additive manufacturing, which have rendered possible the realization
of such materials, broadening the perspectives to fill the holes in the material property maps [7].
In this approach, the microstructure of the hybrid material, composed by multiple phases or one
phase and void, is designed by specifying the exact configuration of its consituents in a periodic
unit cell.

Beyond analytical solutions, based mainly on the experience and intuition of researchers
[1], numerical methods for the design of architectured materials have been presented long ago.
Using the theory of periodic homogenization [8, 9], it amounts to formulate an optimization
problem where the homogenized coefficients appear and the design variables are chosen to
describe the geometry and connectivity of the microstructure’s shape [10, 11, 2, 12].

Among the different possibilities, the design of isotropic materials is of particular interest
[13, 2, 14]. For such materials, explicit bounds for their effective homogenized properties have
been derived and are used for validating the efficiency of the numerical methods to provide
morphologies with extremal properties. However, ensuring numerically the isotropy of the
microstructure is a computationally tedious task and often leads to complicated geometries.
It is of interest to search for methods able to produce simpler geometries and requiring less
numerical effort for imposing the isotropy conditions.

In this work, we propose to design isotropic architectured materials with extremal conduc-
tivity, using a two-scale approach [3, 15]. The isotropic material at the macroscale (scale 1)
disposes a microstructure (scale ε), composed of periodic rank-1 laminates. The two materials
forming the laminate are assumed orthotropic and to have their own microstructure (scale ε2).
More specifically, the second material is obtained from the first via a 90o rotation, while their
volume fraction at the scale ε is explicitly defined so that the global material is isotropic. The
microstructure of the orthotropic materials is composed by one or mutliple phases, optimally
distributed in a periodic unit cell such that the global laminate achieves the Hashin-Shtrikman
bounds. Using the level-set method for Topology Optimization (T.O.) [4, 16], we present two-
dimensional examples of microstructures achieving extremal conductivity.

2 SETTING OF THE PROBLEM

2.1 Two-scale approach

We search to design macroscopically isotropic materials with extreme conductivity coef-
ficients. As aforementioned, the macroscopic material (see Figure 1,right) is assumed to be
composed of periodic rank-1 laminates (see Figure 1,middle), with period ε << 1. The lami-
nate is formed by arranging two orthotropic phases in proportions f and 1− f correspondingly.
The conductivity tensor of the first phase, in proportion f (see Figure 1,middle in orange colour)
reads

A0 =

(
α 0
0 β

)
, α, β > 0, (1)
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while the one of the second phase, in proportion 1 − f (see Figure 1,middle in blue colour),
denoted A90, is derived by rotating A0 by 90o, i.e.

A90 =

(
β 0
0 α

)
= ΠtA0Π, where Π =

(
0 1
−1 0

)
. (2)

The effective (homogenized) conductivity tensor A∗ of the material at the macroscale reads

A∗ =

(
A∗11 0
0 A∗22

)
, (3)

where its coefficients A∗11,A∗22 are analytically expressed as functions of f, α, β using classical
lamination formulas [17, 18], as

A∗(f, α, β) =

( (
f
α

+ 1−f
β

)−1

0

0 fβ + (1− f)α

)
. (4)

One can then easily verify that choosing the proportion of mixture f equal to

f = f(α, β) =

√
αβ − α
β − α

, (5)

the homogenized tensorA∗ becomes isotropic (A∗11 = A∗22). In the particular case where α = β,
the laminate is isotropic independently of f . In this case, one can choose f as the limit of (5)
when α→ β, that is f = 0.5.

Remark 2.1. The above method is generalized in three dimensions using rank-2 laminates
constructed as in [3].

Until now, we have considered the coefficients of the conductivity tensor A0 to be constants.
Assuming that the orthotropic material, used as constituent for the rank-1 laminate, disposes its
own periodic microstructure at a scale ε2 << ε (see Figure 1,left), we search to optimally dis-
tribute one or multiple phases in a periodic unit cell Y in order to achieve extremal conductivity
for the homogenized global conductivity matrix A∗(f, α, β). Therefore, the conductivity tensor
A0 and the global conductivity tensor A∗ now read

A0 =

(
A0

11(Ω) 0
0 A0

22(Ω)

)
, A0

11(Ω), A0
22(Ω) > 0,

and
A∗(f, A0

11(Ω), A0
11(Ω)) ≡ A∗(f,Ω).

2.2 Optimization problem

For the sake of simplicity, we present the case where the unit cell Y is filled by a single
phase, occupying a domain Ω ⊂ Y . The extension to multiple phases has been thoroughly
presented in [19, 20].

Furthermore, we assume that the scale ε2 << ε << 1 remains sufficiently large compared
to the atomistic scale, in order for the framework of continuum mechanics to remain valid for
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rank-1 laminate

Final multi-scale material design

scale ε2 scale ε scale 1

Figure 1: Two-scale approach for designing isotropic homogenized media.

our analysis. Then, the homogenized coefficients of the tensor A0(Ω) are calculated using the
formula

A0
ii =

∫
Y

A(y) (ei +∇ywi(y)) (ei +∇ywi(y)) dy, (6)

where wi (i = 1, 2) are solutions of the cell problems (see section 7.2.2 in [18]){
−divy (A(y)(ei +∇ywi(y))) = 0 in Y

y → wi(y) Y-periodic, (7)

ei are vectors of the canonical Euclidean basis and A(y) denotes the conductivity tensor of the
consituent phases at y ∈ Y .

In order to design isotropic materials with extreme conductivity coefficients A∗(f,Ω), for a
certain volume fraction of the consituent material, one can solve the optimization problem

min
Ω

J(Ω) = ±tr(A∗(f,Ω)) = ± (A∗11(f,Ω) + A∗22(f,Ω))

s.t. : A∗11(f,Ω) = A∗22(f,Ω)

V (Ω) = α|Y |, α ∈ (0, 1),

(8)

where the “+” and “-” signs correspond to design for minimal and maximal conductivity corre-
spondingly.

3 TOPOLOGY OPTIMIZATION FRAMEWORK

In the framework of structural optimization, Topology Optimization refers to a form-finding
method where the design variables are chosen to describe the shape and the connectivity of the
structure. In general, a T.O. method is characterized by two main choices:

• a method to describe the shape and

• a method to evolve the shape during the optimization process.

Among the variety of T.O. developed during the last decades [21], we favor a geometric ap-
proach using the level-set method for the shape description, coupled with a shape sensitivity
analysis for the shape advection [4]. The basic characteristics of the method are briefly pre-
sented in the following of this Section.
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3.1 Level-set method

The level-set method, developped by Osher and Sethian [22], uses an implicit representation
of an evolving front as the zero level-set of an auxiliary function φ. More precisely, assuming
that the domain Ω of interest is a subset of a big working domain D, the level-set representation
of Ω can be defined as (see Figure 2)

φ(x) = 0 ↔ x ∈ ∂Ω ∩D,
φ(x) < 0 ↔ x ∈ Ω,
φ(x) > 0 ↔ x ∈

(
D \ Ω

)
,

(9)

A great benefit of the level-set representation for T.O. consists in performing topological

φ=0

domain represented by the level-set

Figure 2: Level-set function representing a two-dimensional domain (in black).

changes with great ease and robustness, contrary to other methods using a parametrization for
the shape description. Moreover, multiple phases can be described in a natural way [19, 23].
Defining n level-set functions in the same design domain and combining their values, one can
describe up tom = 2n different materials (see Figure 3). The advection of a front (shape bound-

DΦ

Φ Φ
Φ

1

4

3

2

φ < 0
φ > 0

1

2

φ < 0
φ < 0

1

2

φ > 0
φ < 0

1

2

φ > 0
φ > 0

1

2

Figure 3: Multiphase representation in the level-set framework.

ary) with a velocity V (x), normal to the shape boundary, is described in the level-set framework
by introducing a pseudo-time, t ∈ R+, and solving the well-known Hamilton-Jacobi transport
equation:

∂φ

∂t
+ V (x)|∇φ| = 0, (10)

using an explicit second order upwind scheme [24], [25].
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3.2 Shape sensitivity approach

In T.O. the velocity field V (x) used for the shape evolution is chosen so that the objective
function gets iteratively reduced. To employ a gradient-based optimization method, one needs
to compute a derivative for the functionals involved in the optimization problem with respect
to changes of the optimization parameters. However, no such parameters are a priori defined
in the level-set framework. In [4], the authors proposed to derive such a descent direction via
a classical shape sensitivity analysis. In this method, which dates back to Hadamard, a notion
of shape derivative, i.e. a derivative of a functional with respect to variations of the shape in a
direction θ(x) = V (x)n(x), can be defined as follows [18, 26].

Starting from a domain Ω, one considers perturbations by a smooth enough vector field θ(x),
such that the new domain, Ωθ, is described by (see Figure 4):

Ωθ =
(
Id+ θ

)
Ω.

Then, the shape derivative J ′(Ω)(θ) of the functional J(Ω) in a direction θ(x) is obtained

∂(Ω(Id + θ)) ∂Ω

D

Ω

Figure 4: Perturbation of the domain Ω via a vector field θ(x).

through an asymptotic expansion formula of the type:

J
(
(Id+ θ)Ω

)
= J(Ω) + J ′(Ω)(θ) + o(θ), with lim

θ→0

|o(θ)|
‖θ‖

= 0 .

Once calculated, a descent direction can be found by advecting the shape in the direction θ =
−tJ ′(Ω), t > 0. For the new shape Ωt = ( Id + tθ) Ω, if V 6= 0, one can formally write:

J (Ωt) = J (Ω)− t(J ′(Ω))2 +O(t2) < J (Ω) ,

which guarantees a descent direction for small positive t.

3.3 SHAPE DERIVATIVE

In this section, we compute a shape derivative for the objective function J(Ω) defined in (8).
The isotropy constraint is treated by choosing f to satisfy the relation (5).

The shape derivative of J(Ω) reads

J ′(Ω)(θ) =
2∑
i=1

±∂A
∗
ii

∂Ω
(θ)

=
2∑
i=1

[
2∑
j=1

± ∂A
∗
ii

∂A0
jj

∂A0
jj

∂Ω
(θ)± ∂A∗ii

∂f

∂f

∂A0
jj

∂A0
jj

∂Ω
(θ)

]
,

(11)
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where
∂A∗11

∂A0
11

=
(A0

22)2f

(A0
22f + (1− f)A0

11)2
,

∂A∗11

∂A0
22

=
(A0

11)2(1− f)

(A0
22f + (1− f)A0

11)2

∂A∗22

∂A0
11

= (1− f) ,
∂A∗22

∂A0
22

= f

∂A∗11

∂f
=
−A0

11A
0
22(A0

22 − A0
11)

(A0
22f + (1− f)A0

11)2
,

∂A∗22

∂f
= A0

22 − A0
11

∂f

∂A0
11

=
A0

22(
√
A0

11 −
√
A0

22)2

2
√
A0

11A
0
22(A0

22 − A0
11)2

,
∂f

∂A0
22

=
−A0

11(
√
A0

11 −
√
A0

22)2

2
√
A0

11A
0
22(A0

22 − A0
11)2

and the shape derivative of the homogenized coefficients
∂A0

jj

∂Ω
(θ) are provided by the expres-

sion (see [27, 12])

∂A0
jj

∂Ω
(θ) =

∫
∂Ω

θ(x) · n(x) [A(x) (ej +∇ywj(x)) (ej +∇ywj(x))] dx.

4 NUMERICAL RESULTS

In order to test the efficiency of the proposed methodology and algorithm, we compare our
results with the Hashin-Shtrikman (HS) bounds [28, 29] for extremal conductivity coefficients
of isotropic composites, using multiple isotropic phases. The lower (λlHS) and upper (λuHS) HS
bounds read

λlHS = −min
i

(λi) +

∑
i

Vi
λi + min

j
(λj)

−1

(12)

and

λuHS = −max
i

(λi) +

∑
i

Vi
λi + max

j
(λj)

−1

, (13)

where Vi, λi the volume fraction and the thermal conductivity of the ith phase, respectively.
For all our numerical results, we discretize both the level-set advection equation (10) and the

cell problem (7) on a regular grid. For the cell problem Q1 finite elements have been used. The
optimization problem (8) is solved using an SLP method.

4.1 Bi-material composites for minimal conductivity

In the first example, we design composites with minimal conductivity using two isotropic
phases 1 and 2, with conductivity λ1 = 1 and λ2 = 10 respectively. Material 1 (in black
colour) occupies domain Ω, while material 2 (in white colour) occupies the complementary of
the periodic unit cell Y \ Ω. The optimization problem reads

min
Ω

J(Ω) = tr(A∗(f,Ω)) = (A∗11(f,Ω) + A∗22(f,Ω))

s.t. : A∗11(f,Ω) = A∗22(f,Ω)

V (Ω) = 0.5|Y |.

(14)
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The HS lower bound for this case equals λlHS = 2.385.
In Figure 5 we see two optimized shapes (right column) for two different initializations (left

column). For the first result (upper row), the homogenized conductivity coefficients A∗ii equal
2.588, while the volume fraction of laminate A0 equals f = 0.5. For the second result (lower
row), the homogenized conductivity coefficients A∗ii equal 2.433 and the volume fraction of
laminate A0 equals f = 0.506.

As expected, in both results the less conductive material (in black) “encapsulates” the highly
conductive phase (in white), leading to a composite with effective conductivity close to the HS
bounds.

Figure 5: Bi-material design for minimal conductivity; initializations (left) and resulting optimal shapes (right).

4.2 Three-phase composites for maximal conductivity

In the second example, we design composites with maximal conductivity using three isotropic
phases 1, 2 and 3, with conductivity λ1 = 10, λ2 = 2 and λ3 = 1. Materials 1 and 2, in red
and white colour respectively, occupy domains Ω1 and Ω2, while material 3 (in blue colour)
occupies the complementary of the periodic unit cell. The optimization problem reads

min
Ωi

J(Ωi) = −tr(A∗(f,Ωi)) = − (A∗11(f,Ωi) + A∗22(f,Ωi))

s.t. : A∗11(f,Ωi) = A∗22(f,Ωi)

V (Ωi) = Vi, i = 1, 2, 3.

(15)

In Figure 6, we show different optimized shapes for various combinations of volume frac-
tions for the three constitutive phases. The values of the homogenized coefficients appear in
Table 1 and are compared both with the upper HS bounds λuHS , as well as with results obtained
by Zhou et al. in [29].
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vol1

vol3

0.2 0.3 0.4

0.2

0.3

0.4

vol1 vol2,4 vol3
Figure 6: Initialization (left) and optimized shapes (right) for different volume fractions in the unit periodic cell Y .

Case V1 V3 λ1 λ2 λ3 λuHS λZhou A∗ii
a 0.2 0.2 10 2 1 2.791 — 2.803
b 0.2 0.3 10 2 1 2.668 — 2.671
c 0.2 0.4 10 2 1 2.548 2.501 2.554
d 0.3 0.2 10 2 1 3.360 — 3.367
e 0.3 0.3 10 2 1 3.226 — 3.241
f 0.3 0.4 10 2 1 3.095 — 3.110
g 0.4 0.2 10 2 1 3.983 3.903 4.017
h 0.4 0.3 10 2 1 3.836 — 3.857
i 0.4 0.4 10 2 1 3.693 — 3.716

Table 1: Results of the optimized shapes of Figure 6.

Remark 4.1. We shall note that the overpass of the HS bounds that appears in Table 1 is purely
numerical. In fact, using the multi-material setting in [19], the volume of each phase is cal-
culated approximatively, using the same smooth interpolation functions as for the mechanical
properties. Reducing the interpolation width, the results converge to the HS bounds.

As expected, starting from different initializations, one may obtain different optimized shapes.
In Figure 7(right), we show the optimized shape for the case (c) in Table 1, starting from the
initialization shown in Figure 7(left). The value of the homogenized coefficients is similar to
Table 1(c) and equals 2.580. Similarly, starting from different initializations for the case (g)
in Table 1, the optimized shapes are shown in Figure 8, where a repetition of the same pattern
is observed. For all the results of this section, a cubic symmetry is observed, which leads to a
volume fraction of f = 0.5 for the laminate A0 at scale ε.

5 CONCLUSION

A novel method, at least to our knowledge, for the design of isotropic composites using
T.O. has been proposed, based on a two-scale approach. The method has been applied for the
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Figure 7: Initialization (left) and optimized shapes (right) for the case (c) in Table 1, starting from a different
initialization.

Figure 8: Initializations (left) and optimized shapes (right) for the case (g) in Table 1, starting from a different
initializations.

design of architectured multi-materials with extremal conductivity, using the level-set method
for Topology Optimization. The obtained results are very close to the HS bounds. Future work
shall include three-dimensional results as well as the elasticity framework, aiming to obtain
extremal micro-structures with simpler geometry.
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Abstract. Graphene sheets (GSs) have been proposed to be a base material for nanoelectro-

mechanical systems (NEMS) because of their excellent mechanical and electrical behaviors. 

In this work, we carry out shape optimization of GSs to enhance their dynamic behaviors. Ac-

cording to the Tersoff-Brenner force field theory and a link between molecular mechanics and 

solid mechanics of C-C bond, we model GSs as continuum frame structures at first. Then, we 

optimize the shape of the atomistic finite element models based on a developed free-form op-

timization method for frame structures. In this optimization process, we use the fundamental 

frequency as objective function and maximize it under a volume constraint and considering 

repeated eigenvalue problem. We assume each equivalent continuum beam to vary in the off-

axis direction to the centroidal axis, and derive the shape gradient functions for determining 

the optimal design velocity field. According to the derived optimal design velocity field, the 

shape optimization of GSs can be carried out without shape parametrization. The numerical 

results show that, the fundamental frequency of GSs can be significantly enhanced after shape 

optimization, which would be helpful for applying GSs in NEMS. 
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1 INTRODUCTION 

Vibrational properties of graphene sheets (GSs) deserve to be studied, because they may 

contribute to the application of GSs as NEMS resonators. Up to now, various continuum me-

chanical models have been proposed to study the vibration modes of GSs, such as frame 

structure model, shell/plate model, and beam model [1-4]. Shape optimization is a procedure 

to improve or enhance the performance of the structure by changing design parameters. Re-

cently, the shape of GSs can be controlled by an external electric field [5] or chemically modi-

fying the adherence of GSs on metal [6]. Hence, shape optimization of GSs can make an 

effective role to improve their mechanical behaviors.  

In our previous work, we adopted the molecular mechanics (MM) method to construct the 

continuum frame work and carried out the shape optimum design of GSs in terms of the com-

pliance minimization problem based on a free-form optimization method for frame structures 

[7]. In the present work, we extend this optimization method to the fundamental frequency 

maximization problem of GSs, and make shape optimum design of GSs. 

We arrange this study as following. In section 2, we introduce the MM method for con-

structing the frame structures of GSs. In section 3, we develop a free-form shape optimization 

method for frame structures and introduce the shape optimization process for shape design of 

GSs. In section 4, using the developed shape optimization process, we carry out two examples 

to obtain the optimal shapes of GSs. At last, we remark conclusions in section 5. 

2 SHAPE OPTIMIZATION OF GRAPHENE SHEETS 

2.1 Governing equation  

We introduce the MM method for modeling frame structure of GSs at first. In MM method, 

the forces between two individual atoms are depicted as continuum beam elements. We as-

sume an equivalent C-C beam with a circular cross-section of diameter d and initial length 

1.42 Å. According to the Tersoff-Brenner force field theory [8] and a link between molecular 

and solid mechanics of C-C bond, we derive the Young’s modulus Eb, shear modulus Gb and 

diameter d as [9]: 

2

4

l
b

k l
E

k
, 

2

28

l
b

k k l
G

k
, 4

l

k
d

k
                                                 (1) 

where kl = 93800 kcal/mol/nm
2
, kθ = 126 kcal/mol/rad

2
, and kτ = 40 kcal/mol/rad

2
 are obtained 

by fitting to the structural and vibrational frequency data on small molecular fragments [10]. 

 

Figure 1: Shape variation of graphene sheets. 

3547



Jin-Xing Shi and Masatoshi Shimoda 

 

As shown in Fig. 2, a frame structure of GS with a bounded domain 3   consists of 

Timoshenko beams 1,2,. ., . ,j j N  , where  is a set of positive real numbers and N is the 

number of beams. The notations 1 2 3( , , )x x x  and 1 2 3( , , )X X X  indicate the local coordinate 

system in terms of a Timoshenko beam and the global coordinate system, respectively.  

    3 2

1 2 3 1 2 3, ,j j j j j j j j jx ,x ,x x x A x S       , j j jA S    , j j jA S     (2) 

where ,jS  j  and j  express the centroidal axis, circumference surface and whole domain 

of member j, respectively. jA  and jA  are the cross section and its circumference of mem-

ber j, respectively. The subscript j shall be omitted to avoid the complexity of expression in 

the sequel. 1,2,3{ }w i iw   and 1,2,3{ }i i   are the displacement vector and rotation vector in 

the 1 2 3, ,x x x  directions of the local coordinate system, respectively. Then, the weak form gov-

erning equation of the eigenfrequency in terms of ( ) ( )( , )w θ
r r can be expressed as 

              ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , ,w θ w θ w θ w θ w θ w θ
r r r r r r ra b U U          (3) 

where 
( )(·) r

 denotes the eigenvector of r th natural frequency mode and ( )r denotes its ei-

genvalue (the square of the r th natural frequency). The notation ( )  expresses a variation, 

and U is the admissible function space, in which the given constraint conditions of ( , )w   are 

satisfied. In the frame structure of GSs as shown in Fig. 2, due to the domain variation V  (de-

sign velocity field) in the out-of-plane direction, the initial domain j and a centroidal axis 
jS  of member j become j

s  and j

sS , respectively. The subscript s expresses the iteration his-

tory of the domain variation. Moreover, the bilinear form (·,·)a  and (·,·)b are the rigidity item 

and inertia item, respectively.  

2.2 Fundamental frequency maximization problem  

The free-form optimization method for frame structures is adopted to maximize the natural 

frequency of GSs, and is formulated as 

Given                                                                                               (4) 

Find                      V                                                                            (5) 

that minimizes    
(1)                                                                         (6) 

subject to     Eq. (3) and  
1

ˆ
j

N

S
j

M AdS M


 
  
 
                             (7) 

where M and M̂  are the volume of a GS and its constraint value, respectively. 

Letting ( , )w   and Λ  denote the Lagrange multipliers for the governing equation and vol-

ume constraint, respectively, the Lagrange functional L associated with the fundamental fre-

quency maximization problem can be expressed as 

 
         

      

(1) (1) (1) (1) (1) (1)

(1) (1)

, , , , , , , ,

ˆ, ,  ,

w θ w θ w θ w θ

w θ w θ

L b

a M M

Λ

Λ

    

         
       (8) 

The material derivative L  of the Lagrange functional is derived as 
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(1) (1) (1) (1) (1) (1)

(1) (1) (1) (1) (1) (1) (1)

, , , 1 , , ,

, , , (( , ), ( , )) (( , ), ( , ))

ˆ , ,  Λ

w θ w θ w θ w θ

w θ w θ w θ w θ w θ w

n V V

L b b

b a a

M M G C

 





   

     

   

        (9) 

where  ( )n GG   expresses the shape gradient function (i.e., sensitivity function), which is a 

coefficient function in terms of V . n is the outward unit normal vector on the circumference  

surface  or a unit normal vector on the centroidal axis S. The notations ( )  and ( )  are the 

shape derivative and the material derivative with respect to the domain variation, respectively. 

The optimum conditions of the Lagrange functional L with respect to (1) (1)( , )w θ , ( , )w  , 

and Λ  are shown as  

           (1) (1) (1) (1) (1), , , , , , , ,w θ w θ w θ w θ w θa b   U                          (10) 

           (1) (1) (1) (1) (1) (1) (1), , , , , , ,w θ w,θ w θ w θ w θa b   U                       (11) 

                   (1) (1), , , 1w θ w θb                                                    (12) 

 ˆΛ 0M M   ˆ 0M M   Λ 0                                            (13) 

When the optimality conditions are satisfied, considering the self-adjoint relationship 
(1) (1)( , ) ( , )w θ w  , we get 

 1 2

1

,n V V n V n V n
j

N

1 2 0
S

j

L G G G G dS


                                   (14) 

where the shape gradient functions 1G , 2G , and 0G  are applied in the free-form optimization 

method for frame structures of GSs to determine the optimal design velocity field V. 

2.3 Free-form optimization method and repeated eigenvalue problem  

The free-form optimization method for frame structures was proposed by Shimoda [11]. In 

this method, the negative shape gradient function (= ) G nG  is applied as a distributed force 

in the off-axis direction to the centroidal axis of a fictitious-elastic frame structure under a 

Robin condition (spring constant  ). This makes it possible both to reduce the objective 

functional and to maintain smoothness, i.e., mesh regularity, simultaneously. The optimal 

shape variation, or the optimal design velocity field V  is determined as the displacement field 

in this pseudo-elastic frame analysis, and the obtained V is used to update the shape. This 

analysis is called velocity analysis. The governing equation of the velocity analysis is shown 

as  

              , , , , , , , ,  , ,  ,V w V n n w n w w Va G C C                 (15) 

          
6

1

1 2 3 1 2 3, , , , , satisfy Dirichlet condition for shape variationC V V V H S       (16) 

In design problems where convexity is assured, this relationship definitely reduces the La-

grange functional in the process of updating the shape of GSs using the design velocity field 
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V determined from Eq. (15). The shape optimization process for frame structure of GSs is 

constructed by repeating the vibration analysis, calculation of the shape gradient functions, 

velocity analysis, and shape updating. The vibration analysis and velocity analysis are carried 

out using a standard commercial FEM code. 

We also consider the repeated eigenvalue problem in this study. When the repeated eigen-

value problem happens, we change the objective and constraint functions to the summation 

forms as shown in the first term of the right side of Eq. (17). The notation  ( 2)r   denotes the 

multiplicity of the repeated eigenvalues. The occurrence of repeated eigenvalue is judged with 

a tolerance  , and we set 
(1)0.02

0{  

 in the present work. 

 

(1) (1) ( ) ( ) (1) (1) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

(( , ), , ( , ), ( , ) , ( , ), )

ˆ(( , ), ( , )) (( , ), ( , )) ( )

w w w w

w w w w

r r r r

r
k k k k k k k k k k

k

L

b a M M 




     

   

   
   (17) 

In an analogous way, the shape gradient functions should be replaced as 

     
( ) ( )

1 1 2 2

1 1

,     
r r

k k

k k

G G G G
 

                                                  (18) 

3 OPTIMIZATION RESULTS OF GRAPHENE SHEETS 

In order to evaluate the shape optimization process of GSs for enhancing their fundamental 

frequency, we carry out two numerical examples to optimize the shape of a graphene nanorib-

bon (GNR) and an irregular GS. The volume constraint is set to be initial1.005ˆM MM  , 

where initialM  is the initial volume of GSs. It should be noted that the constraint conditions are 

set as 1 (x1 direction), 2 (x2 direction), 3 (x3 direction), 4 (θ1 direction), 5 (θ2 direction) and 6 

(θ3 direction) in the present work. 

3.1 Shape optimization of a graphene nanoribbon 

 

Figure 2: Shape optimization of a graphene nanoribbon. 

In the first example, we design the shape a GNR shown in Fig. 2 with 510 carbon atoms 

and 724 equivalent C-C beams. As shown in Fig. 2 (a) and (b), two ends of the GNR are con-
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strained in 123456 in both of the vibration analysis and the velocity analysis. Furthermore, to 

assure that all carbon atoms are varied in the X3 direction, all of the remained nodes in veloci-

ty analysis are constrained in 12. We carry out shape optimization of the GNR by using the 

developed shape optimization process, and show the optimal shape and the iteration history in 

Fig. 2 (c) and (d), respectively. With respect to the optimal shape shown in Fig. 2 (c), the 

middle of the GNR becomes convex to enhance its fundamental frequency, and the optimal 

shape of the GNR is smooth, which is a feature of the free-form shape optimization method. 

In the iteration history shown in Fig. 2 (d), the fundamental frequency (mode 1) is enhanced 

smoothly while satisfying the volume constraint initial1.005ˆM MM  , and the repeated ei-

genvalue problem occurs from the 22th iteration. This shape optimization process converges 

at the 39th iteration, and the fundamental natural frequency (mode 1) is enhanced to 31.15 

times to the initial shape. 

3.2 Shape optimization of an irregular graphene sheet 

 

Figure 3: Shape optimization of an irregular graphene sheet. 

We design an irregular GS shown in Fig. 3 containing 3194 carbon atoms and 4636 

equivalent C-C beams in the example 2. We show the constraint condition of the vibration 

analysis and the velocity analysis in Fig. 3 (a) and (b), respectively. Using the proposed shape 

optimization process, the optimal shape of the GS is shown in Fig.3 (c). From the iteration 

history shown in Fig. 3 (d), the repeated eigenvalue problem does not occurs in this example, 

and the fundamental frequency of the GS is enhanced to 15.45 times to the initial shape in the 

26th iteration, while the volume constraint is satisfied. 

4 CONCLUSIONS  

In this work, we developed a shape optimization system of GSs for the fundamental fre-

quency maximization problem. At first, based on the MM method, GSs were modeled as 

frame structures composed of Timoshenko beams. Next, the fundamental frequency maximi-

zation problem of the frame structure of GSs was formulated. We adopted the free-form shape 

optimization method for frame structures to achieve the optimal shapes of GSs. This method 

has advantages that the optimal shapes of GSs could be determined smoothly and without re-

quiring shape design parameterization. The objective of the shape optimization process was to 

maximize the fundamental frequency of GSs under the volume constrain. We also considered 
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the repeated eigenvalue problem in the present work. Two design examples were carried out 

to confirm the effectiveness of the developed shape optimization process, and the results 

showed that the obtained optimal shapes in both of the two design examples were smooth and 

the fundamental frequency of each example was enhanced significantly. 
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Abstract. This paper introduces a new implicit function based method for topology optimiza-
tion that can: obtain solutions with smooth boundaries, be solved using standard mathemati-
cal programming methods and reduce the number of design variables. Using implicit 
functions for topology optimization is attractive because the solutions have clearly defined, 
smooth boundaries. Most current methods use the zero level-set of the implicit function to de-
fine the boundary. The implicit function is then modified during optimization to move the 
boundary location and connectivity. The new approach proposed in this paper abandons the 
zero level-set idea and instead uses a fixed signed-distance implicit function. The definition of 
the boundary from the fixed implicit function is then modified during optimization. This is 
achieved by using a cutting surface and defining the boundary as the intersection of the cut-
ting surface and signed-distance function. The cutting surface is parameterized and the pa-
rameters become the design variables during optimization. Thus, the optimization problem 
can be solved using mathematical programming and the number of parameters used to define 
the cutting surface is less than the number of elements in the analysis mesh. The new method 
is demonstrated using minimization of compliance, minimization of volume and complaint 
mechanism problems. The results show that the method can obtain good solutions to well-
known problems with smooth, clearly defined boundaries and that this can be achieved using 
significantly fewer design variables compared with element-based methods. 
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1 INTRODUCTION 
The goal of structural topology optimization is to simultaneously optimize the size, shape 

and layout (or topology) of a structure. One benefit of this approach, compared with size or 
shape optimization, is that more efficient designs can be obtained because the optimizer is not 
constrained by a pre-determined layout. 

Many topology optimization methods have emerged over the past 30 years, which have 
been successfully applied to many applications [1, 2]. There are two main categories of 
method: those using element-wise design variables, such as the Solid Isotropic Material with 
Penalization method [3] and Evolutionary Structural Optimization [4], and those using the 
zero-level set of an implicit functions to represent the boundary [5]. 

Topology optimization using an implicit function has several advantages over element-
based methods, such as solutions with smooth boundaries and avoiding some numerical arti-
facts, such as checkerboard patterns [5]. Several methods have been developed to exploit 
these desirable qualities for topology optimization. Some methods use shape derivatives to 
move the implicit boundary by solving a PDE, such as the conventional level-set and phase-
field methods [6, 7]. These approaches often converge slowly, and can require special tech-
niques for solving constrained optimization problems [8]. An alternative approach is to pa-
rameterize the implicit function such that the problem can be solved using mathematical 
programming. This is attractive because advanced algorithms for efficiently solving con-
strained optimization problems can be employed. Some existing implicit function parameter-
ization methods include, radial basis functions [9], geometric shapes [10], Fourier series [11] 
and finite element shape functions [12]. Also, projection methods offer similar features [13], 
as the solutions can have smooth boundaries and the problem can be solved using mathemati-
cal programming. 

Another potential benefit of using parameterized implicit functions for topology optimiza-
tion is that the number of design variables may be reduced, compared with methods using 
element-wise deign variables. This is because the design variables are not tied to the finite 
element discretization used for structural analysis. Reducing the number of variables reduces 
the problem size, which may result in faster convergence. Furthermore, as the number of de-
sign variables decreases optimizers that use full Hessians to speed up convergence, such as 
IPOPT, become more viable [14]. These advantages are particularly useful for large 3D prob-
lems, where a typical element-based method can use 106 (or more) design variables [15]. 

In this paper a new idea for using implicit functions for topology optimization is explored. 
The idea combines a signed-distance implicit function with a cutting surface. The cutting sur-
face is parameterized and the parameters then become the design variables. The new method 
is introduced in Section 2, with numerical implementation issues discussed in Section 3, fol-
lowed by examples in Section 4 and then conclusions. 

2 CUTTING SURFACE PARAMETERIZATION 
First, an initial design is chosen and mapped onto a design domain using an implicit 

signed-distance function, where the boundary is the zero level-set and a positive value indi-
cates a point inside the structure, Figure 1. The structure is then defined by the scalar value of 
an implicit function:  

 

€ 

φ x( ) < 0
φ x( ) = 0
φ x( ) ≥ 0

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 ,  
,
,

x ∉Ω
x ∈Γ
x ∈Ω

 (1) 
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where φ (x) is the implicit function, x is a point in the design domain (ΩD), Ω and Γ are the 
structural domain and boundary, respectively. 

 

 

Figure1. a) Original structure, b) Contours of the signed distance function. 

Another way to interpret this representation of the structure is that the boundary is the 
zero-level set of a higher dimensional implicit function. Therefore, we can say that the bound-
ary is the intersection of a plane (defined by all points where φ = 0) and the implicit function 
surface in the higher dimension. This is shown in Figure 2a for the 2D structure in Figure 1. 
To change the position of the structural boundary we can fix the position of the intersecting 
plane and change the implicit function, which is approach in most level-set topology optimi-
zation methods [5]. Alternatively, we could change the position of the intersecting plane. This 
second approach is demonstrated in Figure 2b, where the intersecting plane has been moved, 
resulting in the structural boundary moving position, as shown in Figure 2c. 

 

 

Figure 2. a) Implicit function surface with zero level-set contour, b) new position of the inter-
secting plane, resulting in a change of the structural boundary, c) comparison of structure 

boundaries: zero level-set (black) and new position of intersecting plane (blue). 
The aim of this paper is to create a topology optimization method that exploits the moving 

intersecting plane mechanism for changing the position and connectivity of the structural 
boundary. The position of a plane in 3D can be described by 3 variables and we could proceed 
to develop an optimization method for 2D structures that uses just 3 variables. However, the 
design space would be very limited and thus this approach is not practical. 

To provide more design freedom, the intersecting plane is replaced by a cutting surface 
that is defined in the higher dimension. Therefore, the method introduced in this paper uses 
two scalar valued functions: the implicit signed-distance function of the initial structure, α (x), 
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and the cutting surface, β (x). The boundary of the structure is then defined by the set of 
points where the value of the signed-distance function equals the value of the cutting surface. 
Alternatively, the structural boundary is defined as the zero level-set of the implicit scalar-
valued function that is the sum of the signed-distance and cutting surface functions. Thus, the 
definition of φ (x) in Eq. (1) can be written as: 

 

€ 

φ x( ) = α x( ) + β x( )  (2) 

The definition of the cutting surface is parameterized and the parameters become the de-
sign variables during optimization. There are several possible methods to parameterize the 
cutting surface, such as radial basis functions, polynomials or spline functions. In this paper, 
the cutting surface is parameterized using finite element shape functions, which is detailed in 
the next section. 

During optimization, the signed-distance function remains fixed and the structure boundary 
changes position (and possibly connectivity) as the parameters of the cutting surface change. 
However, the design space is then limited by the current signed-distance function. Therefore, 
once an optimal cutting surface has been found for the current signed-distance function, a new 
signed-distance function is generated from the boundary of the current structure. The optimal 
cutting surface for the new signed-distance function is then found. This leads to an optimiza-
tion method with an inner and outer loop. The aim of inner loop is to find the optimal cutting 
surface for the current signed-distance function. The outer loop then generates a new signed-
distance function from the new structural boundary (as defined by the old signed-distance 
function and optimal cutting surface). At the start of the inner loop, the cutting surface is ini-
tialized as: β (x) = 0 (identical to the zero level-set), so that the structure boundary is the same 
as the optimum found by the previous inner loop (or initial structure). 

In this paper, the inner loop optimization problem is solved by efficient gradient-based 
mathematical programming methods. Therefore, at least the first order derivatives of the ob-
jective and constraint functions need to be computed. It is usually most efficient to use ana-
lytical derivatives. Thus, an expression for the derivatives in terms of the cutting surface 
parameters is required. Structural quantities of interest can often be stated as integrals of a 
functional over the design domain, for example, compliance:  

 

€ 

C u,φ α,β b( )( )( ) = c u,x( )⋅ H φ x,α,β b( )( )( )dxΩD
∫  (3) 

where C(u, φ) is the total compliance of the structure, u is the displacement vector, c(u, x) is 
the dot product of the stress and strain tensors at point x, b is a vector of the cutting surface 
parameters (the design variables) and H(φ) is the Heaviside function:  

 

€ 

H φ( ) =
1 φ ≥ 0
0 φ < 0
⎧ 
⎨ 
⎩ 

 (4) 

To compute the integral in Eq. (3) numerically the design domain is usually discretized using 
finite elements:  

 

€ 

C u,φ α,β b( )( )( ) = c ue,g( )
g=1

M e

∑
e=1

N

∑ ⋅ H φ αe,g,βe,g b( )( )( )⋅ we,g  (5) 

where N is the total number of elements, Me is the number of integration points for element e 
and we,g is an integration point weight. Taking the derivative of Eq. (5) with respect to design 
variable bi , gives:  
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€ 

dC
dbi

=
∂c ue,g( )
∂ue,g

⋅
∂ue,g
∂bi

⋅ H φe,g( ) + c ue,g( )⋅
∂H φe,g( )
∂φe,g

⋅
∂φe,g βe,g( )
∂βe,g

⋅
∂βe,g
∂bi

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ g=1

M e

∑
e=1

N

∑ ⋅ we,g  (6) 

Therefore, the derivative of the compliance function (and many functions of interest in struc-
tural design) requires the derivative of the Heaviside function with respect to the implicit 
function, which is the Dirac delta function:  

 

€ 

∂H φ( )
∂φ

= δ φ( ) =
1 φ = 0
0 else
⎧ 
⎨ 
⎩ 

 (7) 

Therefore, the derivative in Eq. (6) is discontinuous and only non-zero at the boundary of 
the structure (where φ = 0). Thus, only integration points that lie exactly on the boundary will 
contribute to the derivative. The discontinuous nature of the derivatives using the exact 
Heaviside approach, Eq. (7), makes it difficult for gradient-based optimizers to find a solution. 
To avoid this problem, the Heaviside function can be approximated with a smooth function 
and this is the approach used in this paper. The choice of smoothed Heaviside function and 
inner loop optimization are discussed in Section 3. 

3 NUMERICAL IMPLEMENTATION 

3.1 Cutting surface parameterization 
The proposed method uses two meshes that cover the design domain: one to discretize the 

cutting surface (cutting surface mesh) and one to perform the finite element analysis (analysis 
mesh), as shown in Figure 3. 

 

 

Figure 3. a) Analysis mesh using 200 Q4 elements, b) Cutting surface mesh using Q9 ele-
ments and mesh ratio 5 (45 design variables), c) cutting surface mesh with mesh ratio 10 (15 

design variables). 

The value of β (x) is defined at nodes in the cutting surface mesh and interpolated using poly-
nomial shape functions. The nodal values of β (x) are then the design variables b. The implicit 
function, φ , and signed-distance function, α , are discretized on the analysis mesh. Values of 
φ  at analysis element integration points are obtained by interpolating φ using the analysis 
element shape functions. Equation (2) can be written in terms of the discretized variables:  
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€ 

φ = α +A⋅ b (8) 

where φ  and α  are vectors of the discretized implicit and signed-distance functions, respec-
tively, and A is a coefficient matrix that maps the cutting surface values to the nodes of the 
analysis mesh. This matrix remains constant during optimization and is only computed once.  

Typically, the analysis and cutting surface meshes are different and there are advantages to 
decoupling the analysis discretization and design parameterization, such as reducing the num-
ber of design variables [16]. If the same mesh is used for both analysis and cutting surface, 
then A is the identity matrix and the method resembles one using nodal design variables. To 
reduce the number of design variables, the cutting surface mesh uses fewer elements than the 
analysis mesh. To aid future discussion, the ratio of analysis elements to cutting surface ele-
ments in one direction is called the “mesh ratio.” 

In this paper, 4 node bilinear elements (Q4) are used to discretize the analysis mesh and 
second order polynomial elements with 9 terms (Q9) are used to discretize the cutting surface, 
Figure 3. Thus, in this case, a mesh ratio of 2 results in A becoming the identity matrix. 

Finally, the signed-distance function is computed before the start of each inner loop using 
the fast marching method developed by Adalsteinsson and Sethian [17]. 

3.2 Smoothed Heaviside function 

In this paper a polynomial function is used to approximate the Heaviside function [026]:  

 

€ 

H φ( ) =

ρmin

3 1− ρmin( )
4

φ
Δ
−
φ 3

3Δ3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

1+ ρmin

2
1

 ,  
 ,  
 ,  

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

φ < −Δ

−Δ ≤ φ < Δ

φ ≥ Δ

 (9) 

where Δ is the smoothing length of the approximation and ρmin is a parameter that defines the 
stiffness of the void region, in a similar way to the minimum density value in an element-
based topology optimization method. 

One of the benefits of using an implicit function for topology optimization, compared with 
element-based methods, is that the solution has smooth, well-defined boundaries. However, 
this is partially lost when using a smoothed Heaviside function, as the boundary becomes ef-
fectively blurred over the smoothing length [5]. To counter this, two strategies are proposed. 
Firstly a small smoothing length is used throughout the optimization, ideally smaller than the 
element edge length in the analysis mesh. However, this strategy may cause convergence 
problems with some examples, especially those that have a small volume ratio. Thus, a sec-
ond strategy is proposed where the optimization starts with a large smoothing length that is 
then reduced each time the outer loop convergences. The optimization continues until a con-
verged solution using a lower limit of the smoothing length is obtained. This strategy is simi-
lar to continuation techniques used in density-based element methods to reduce the number of 
grey elements [3]. 

3.3 Inner loop optimization problem 

The inner loop optimization problem can be stated as:  

 

  

€ 

Minimize :
b

f φ b( )( )
Subject to : gi φ b( )( ) ≤ 0 , i =1!m
                  bmin ≤ b ≤ bmax

 (10) 
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where f (φ) is the objective function, gi (φ) the constraint functions, m the total number of con-
straints, bmin and bmax are the side limits on the design variables.  

The solution to the inner loop problem is affected by the choice of optimizer, design vari-
able side limits and convergence criteria. In this paper the inner loop problem is solved using 
the method of moving asymptotes, as implemented in the package NLOPT [18]. The side lim-
its are defined from the maximum and minimum signed-distance values of the current struc-
ture, with considerations for the boundary of the design domain, ΓD , and fixed, non-
designable regions within the design domain, Ωfixed . First, a parameter is obtained from the 
discrete values of the signed-distance function: 

 

€ 

ˆ α = max min max α i{ },−min α i{ }{ },  2h⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (11) 

The side limits for a design variable are then defined as:  

 

€ 

bi,min =
0 if bi ∈Ω fixed

− ˆ α else
⎧ 
⎨ 
⎩ 

       bi,max =
−φi if bi ∈ΓD
ˆ α else

⎧ 
⎨ 
⎩ 

 (12) 

Three convergence criteria are used for the inner loop: the maximum number of iterations, 
the relative change of the objective function and relative change of the design variables. The 
relative change criteria are both set to 10-3 and the maximum number of iterations to 10. The 
inner loop stops when any of these criteria are met. The criteria are intentionally slack, as this 
reduces the number of inner loop iterations spent fine tuning the structure, whereas quicker 
progress is often made by obtaining an approximate solution and generating a new signed-
distance function for the next inner loop. 

4 EXAMPLES 

4.1 Minimization of compliance 
First, the method introduced in this paper is used to solve two classic problems. The objec-

tive is to minimize compliance, with an upper limit on the total volume. The first problem is a 
cantilever, ratio 2:1, shown in Figure 4a, with volume constraint set to 50% of the design do-
main. The second is a Michell arch, shown in Figure 4b, with a volume constraint of 40%. 
The grey areas show fixed regions within the design domain. For both examples, the material 
properties are Young’s modulus 1.0 and Poisson’s ratio 0.3, and the load magnitude is 10 
units. The initial design for both examples is shown in Figure 4c. The parameters for the 
smoothed Heaviside, Eq. 9, are: Δ = 0.25h and ρmin = 10-6. Both examples use an analysis 
mesh composed of 160 × 80 unit sized plane stress elements. They are solved using different 
cutting surface meshes, defined by mesh ratios: 5, 10 and 20. This corresponds to problems 
with: 2145, 561 and 153 design variables, respectively. 

The solutions for the cantilever are shown in Figure 5 and the solutions for the Michell 
arch are shown in Figure 6. The topologies and general shapes of the solutions compare well 
with the known analytical solutions and the solutions obtained using other methods [3, 8, 19]. 
For the cantilever, the solution using a mesh ratio of 5 is more topologically complex than the 
other solutions that use fewer cutting mesh elements. The compliance values for the three so-
lutions are 5985, 6040 and 6131, for mesh ratios 5, 10 and 20, respectively. Thus, the objec-
tive value increases with a decrease in the number of design variables (or number of cutting 
surface elements). In this case using 153 design variables returns a compliance value 2.4% 
higher than the solution obtained using 2145 design variables. Also, for the mesh ratio 20 so-
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lution, some parts of the structure boundary are not as straight as the boundaries of the other 
two solutions. 

For the Michell arch, the topology of the main structural members is the same for all three 
solutions. The compliance values are 1095, 1090 and 1128, for mesh ratios 5, 10 and 20, re-
spectively. Thus, there is a 3.5% increase in compliance for the mesh ratio 20 solution, com-
pared with the mesh ratio 10 solution. Again, parts of the boundary for the mesh ratio 20 
solution are not straight, which contributes to the increase in compliance. 

Overall, these two examples demonstrate that the proposed method can obtain solutions to 
well-known compliance minimization problems. Also, there is a limit to how far the design 
space can be reduced (by reducing the number of cutting mesh elements), before the objective 
value and quality of the boundary become significantly affected. Note that, for these examples, 
a mesh ratio of 10 uses 23 times less design variables than the number of analysis mesh ele-
ments. 

 

 
Figure 4. Examples. a) Cantilever, b) Michell arch, c) Initial design. 

 

 
Figure 5. Cantilever minimization of compliance solutions. a) Mesh ratio 5, 

b) mesh ratio 10, c) mesh ratio 20. 
 

 
Figure 6. a) Michell arch minimization of compliance solutions a) Mesh ratio 5, 

b) mesh ratio 10, c) mesh ratio 20. 
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4.2 Minimization of volume 
The two examples used in the previous section for compliance minimization and now 

solved for the complimentary problem: minimization of volume, subject to an upper limit on 
compliance. For the cantilever, the upper limit is 6000 units and for the Michell arch the limit 
is 1100 units. These limits are approximately the optimal compliance values obtained in the 
previous section. Again, both problems are solved using different cutting surface meshes, de-
fined by mesh ratios: 5, 10 and 20. All other parameters are the same as the previous section. 

The solutions for the cantilever are shown in Figure 7 and the solutions for the Michell 
arch are shown in Figure 8. In all cases, a feasible solution is obtained. For the cantilever, the 
final volume values are 6353, 6454 and 6838, for mesh ratios 5, 10 and 20, respectively. Thus, 
there is a 7.6% increase in volume for the mesh ratio 20 solution, compared with the mesh 
ratio 5 solution. A similar trend is observed for the Michell arch, where the volume values are 
5085, 5313 and 5597 for mesh ratios 5, 10 and 20, respectively. In this case the volume in-
crease is 10.1%. The percentage increase in objective value is higher than that observed for 
the compliance minimization problems. This is perhaps because the compliance constraint is 
nonlinear and thus poses a more difficult problem to solve than one with a linear volume con-
straint. Again, the quality and definition of the boundary decreases as the number of design 
variables decreases. 

 

 
Figure 7. Cantilever minimization of volume solutions. a) Mesh ratio 5, 

b) mesh ratio 10, c) mesh ratio 20. 
 

 
Figure 8. a) Michell arch minimization of volume solutions a) Mesh ratio 5, 

b) mesh ratio 10, c) mesh ratio 20. 
 

4.3 Compliant mechanism 

The new method is now used to solve an inverter compliant mechanism problem [14], as 
shown in Figure 9a. The objective is to maximize the output displacement, which is defined 
as positive in the opposite direction to the input force, with an upper limit on the total volume, 
set to 15% of the design domain. The material properties are Young’s modulus 100.0 and 
Poisson’s ratio 0.3, and the input load magnitude is 10 units. The stiffness of the input and 
output springs are: kin = 0.001, kout = 1.0. The initial design is shown in Figure 9b. The design 
domain is discretized using 160 × 160 plane stress elements, with element edge length 0.5. 

For this example, a continuation strategy is used to adapt the smoothing length during op-
timization (as discussed in Section 3.2). The initial value is Δ = 2h and the lower limit is 
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0.25h, where h is the analysis mesh grid spacing. The smoothing length is halved each time 
the outer loop convergences. The value of ρmin = 10-2. 

The solutions for mesh ratios 5 and 10 (4225 and 1089 design variables, respectively) are 
shown in Figure 10. These correspond well with solutions for similar problems obtained using 
other methods [3, 20, 21]. The output displacement values are 1.37 and 1.25, for mesh ratios 5 
and 10 respectively. Both solutions have the same topology, with small differences in shape. 
This is particularly noticeable near the input and output locations, where the mesh ratio 5 so-
lution uses very thin structural members to create compliant hinges, whereas the hinges for 
the mesh ratio 10 solution are thicker. This difference results in the 9.8% increase in output 
displacement for mesh ratio 5, compared with mesh ratio 10. However, this increase is partly 
obtained by exploiting the numerical discretization, where a very compliant hinge is created 
around one node in the analysis mesh [22]. It would be interesting to add minimum length 
scale control to the proposed method to avoid this issue. The problem was also solved using a 
mesh ratio of 20. The solution was feasible (the volume constraint was met), but there was no 
physical link between the input and output locations, so it is not a practical design. 
 

 
Figure 9. a) Inverter example, b) Inverter initial design. 

 

 
Figure 10. Inverter solutions. a) Mesh ratio 5, b) mesh ratio 10. 

 

5 CONCLUSIONS 

A new topology optimization method is proposed that uses an implicit signed-distance 
function and cutting surface, where the structure boundary is defined by their intersection. 
During optimization, the implicit function is fixed and the cutting surface modified to change 
the position and connectivity of the boundary. The cutting surface is parameterized using fi-
nite element shape functions and the nodal values become the design variables during optimi-
zation. The analysis and cutting surface meshes are different, where the cutting surface mesh 
uses fewer elements than the analysis mesh, thus reducing the number of design variables 
compared with a method using element-wise design variables. A critical aspect of the new 
method is the use of a smoothed Heaviside function for integrating the structural analysis ma-
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trices. This approach avoids the discontinuous derivatives associated with an exact Heaviside 
approach. The benefits of the new method are that: solutions have clear, smooth boundaries, 
efficient mathematical programming methods can be employed and the number of design 
variables is reduced. 

The new method is demonstrated by solving well-known minimization of compliance, 
minimization of volume and complaint mechanism problems. In each case, feasible, smooth 
boundary solutions are obtained that agree well with solutions obtained using other methods. 
However, there is a limit to how far the number of design variables can be reduced before the 
objective value and quality of the boundary become significantly affected. Despite this, good 
solutions to all problems are obtained using a number of design variables around 23 times 
fewer than the number of elements used for analysis. 
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Abstract. This work applies the topology optimization technique to an acoustic-structure cou-

pled system with periodic geometry constraint in order to obtain the optimal layout of the de-

sign domain for the minimization of the pressure frequency response in the acoustic fluid. The 

displacement-pressure formulation (u–p) is used for the finite element analysis of the coupled 

system and external harmonic excitations are applied in the system. The design domain of the 

coupled system is considered to be composed of identical unit cells. A periodic geometry con-

straint is applied in the design domain considering the fluid-structure interaction and the ob-

jective function. Appling the modified bi-directional evolutionary structural optimization 

(BESO) technique to the system, the design domain is evolving towards the optimal topology 

of the unit cells through removing/adding material accordingly to the sensitivity analysis. The 

influence of the total number of unit cells composing the periodic structure and the aspect ra-

tio of the unit cells are investigated in the minimization of the objective function. In order to 

show the capability and efficiency of the proposed formulation, two acoustic-structure sys-

tems are optimized for several cell configurations, different aspect ratios of the periodic unit 

cells and excitation frequencies. 
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1 INTRODUCTION 

In recent years, the optimization of multiphysics systems has been considered in several 

areas of the computational engineering. Concerning the acoustic-structure systems, the mini-

mization of the pressure frequency response in a region of the fluid domain could be particu-

larly important for engineering problems like noise reduction in interior of rooms, in 

passenger compartments of automobile, airplane, etc. Different topology optimization ap-

proaches, [1, 2, 3, 4, 5, 6, 7, 8], have been developed in the last decades and can be used to 

obtain a better performance of multiphysics systems. 

The frequency response problems in multiphysics system have been investigated using dif-

ferent approaches for circumvent the difficulty of optimize systems having more than one ma-

terial domain [9, 10, 11, 12].  

Extending the traditional bi-directional evolutionary structural optimization (BESO) meth-

od to a three phases system (structure, fluid end void) and using the displacement-pressure 

formulation (u–p) for the finite element analysis of the coupled system, the problem concern-

ing the interface between the domains during the optimization process have been studied [13, 

14, 15]. Due the characteristics of the u-p formulation and the evolutionary optimization tech-

nique, the coupled system during the optimization procedure does not present intermediate 

densities of structure, thus, all phases, solid, void and fluid, as well as the interface between 

the domains are explicitly defined. 

Concerning the optimization involving periodic structures, the topology optimization has 

been applied to find optimal design of the periodic cells using the based density approach, [16, 

17] and more recently with the evolutionary technique, [18, 19, 20], considering static and 

dynamic problems.  

Recently, the topology optimization using BESO technique was applied to minimize the 

frequency response considering the pressure [21] and displacement [22] for a range of fre-

quency of excitation.  

This work uses the modified BESO to fluid-structure coupled system to optimize acoustic-

structure problems where the design domain is subject to a periodic constraint. The analysis of 

the system is carried out using the displacement-pressure formulation (u–p), where the solid 

domain is governed by the elasticity equation and the acoustic fluid domain by Helmholtz 

equation. The surface-coupling integral are used to fully coupled the domains. 

This paper is organized as follows: Section 2 presents the acoustic-structure formulation 

used and the finite element modeling of the coupled system. In Section 3, the topology opti-

mization problem for the pressure frequency response minimization is developed and the sen-

sitivity analysis is carried out considering the periodicity of the unit cells in the design domain. 

Section 4 shows some numerical results reached using the proposed methodology. Finally, 

conclusions are drawn in Section 5. 

2 ACOUSTIC-STRUCTURE INTERACTION  

The fluid-structure interaction considered in this work is represented generically in Fig. 1, 

where s  is the structure domain; f  is the fluid acoustic domain and sf represents the in-

terface between the domains.  

All boundary conditions and the external force are also represented in Fig. 1. A detailed 

description about the formulation of the system can be found in the [21].  
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Figure 1 – Generic coupled fluid-structure system. 

2.1 Equilibrium equations and boundary conditions  

Considering the structural domain composed of a homogeneous and isotropic material and 

under a small linear deformation, the linear elastodynamic equation can be used to describe 

the continuum medium: 

 
2

2
0   in   s

s s s
t




   


u
σ  (1) 

where sσ is the divergence of the Cauchy stress tensor; su is the displacement vector field 

and s  is the mass density. The subscript s denotes to structural variables. 

The boundary conditions considered in the structural domain, Fig. 1, is the displacement 

constraint 

 0   in    s sd u  (2) 

the prescribed external load, sf , applied in the structure 

    in   s s s sc σ n f  (3) 

and the pressure force produced by the fluid and transmitted to the structure at the interface 

between the domains 

    in   s s f f sfp σ n n  (4) 

The fluid medium can be described using the wave equation, assuming the fluid to be in-

viscid, irrotational and in a small translation: 
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where fp  represents the acoustic pressure scalar field and 0c  is the constant speed of sound 

in the fluid.  

In the fluid acoustic domain, the boundary conditions considered, Fig. 1, is the prescribed 

pressure, fp , in the fluid 

 i   n   f f fdp p   (6) 

the rigid wall boundary condition 

 0   in   f f frp  n  (7) 
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and the kinematic compatibility of the normal displacements at the interface of the fluid and 

structural domains 
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where f is the mass density of the fluid medium. Them, the stated boundary value problem 

for acoustic-structure interaction is find su and fp  that satisfy the equations [1] - [8]. 

2.2 Finite element discretization  

The finite element discretization of the system is reached through taking the weak form of 

the boundary value problem and applying the Galerking method in the weighted residual ap-

proximation, [23]. Considering the presented coupled system of equations, the finite element 

matrices are written as follows 
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where sK  and sM  are the stiffness and mass matrices of the structural domain; fK  and fM  

are the stiffness and mass matrices of the fluid domain; f  is the nodal vector of the external 

forces applied to structure; sfL is the coupling matrix at the interface between the domains; 

sN  and fN  are the shape functions for the structural and fluid domains, respectively. 

Letting   be the harmonic excitation frequency of the system, the coupled fluid-structure 

system can be described in terms of the finite element matrices as: 
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where su and fp are the nodal approximation of the frequency response of displacement and 

pressure, respectively. 

3 EVOLUTIONARY OPTIMIZATION WITH PERIODIC CONSTRAINT 

This work aims to find the optimum layout of the periodic unit cells in the design domain 

in order to minimize the pressure frequency response in an acoustic-structure coupled system. 

Following is presented the mathematical approach of the problem and the optimization proce-

dure used in this work. 
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3.1 Optimization problem 

A periodic system is exemplified in Fig. 2; in this generic 2D representation, the system is 

divided into 1 2m m m  equal unit cells. 1m unit cells in horizontal direction and 2m unit cell 

in vertical direction, a cell mode of 1 2m m . The sensitivity number in the optimization prob-

lem is given in terms of the design variable ,i jx , where the subscript i  is related to cell num-

ber and the subscript j  refers to element number in the unit cell. 

 

 

Figure 2 – Coupled system with the design domain composed of 8m  identical unit cells, in the cell mode

1 2 4 2m m   , with 4 unit cells along the horizontal direction and 2 unit cells along the vertical direction. 

The optimization problem proposed here for minimizing the pressure frequency response 

for a periodic system can be stated as 

 

Minimize: | |fp   (16) 
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where | |fp  is the mean pressure frequency response in a point or area of the fluid domain; Eq. 

17 refers to the equilibrium equation of the coupled system; fV  is final prescribed volume 

fraction of the structural part in the design domain; iV  the volume fraction of the ith unit cell; 

,i jv is the volume fraction of the jth element in the ith unit cell, n is the total number of ele-

ments in the unit cell and ,i jx  is the design variable with 1 for structural elements and 0 for 

void or fluid elements. Due the periodic constraint, the design variable is enforced to have the 

same value for elements with the same position in the unit cell as indicate in Eq. 20. 
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3.2 Sensitivity analysis 

Following the evolutionary optimization procedure, the sensitivity number of each element 

based on the objective function should be evaluated for all elements in the design domain. 

Then, the elements are ranked according to the they efficiency. To obtain this efficiency of 

each element, the equilibrium equation, Eq. 17, should be derived with respect to the design 

variable, ,i jx , for each element. 
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(22) 

Based on [22]; introducing the location vector to identify de degree of freedom for the 

minimization of the frequency response, neglecting the alteration in fluid global matrices due 

the structural element remove, the Eq. 22 can be rewritten as 
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where ku is the frequency response in the specific degree of freedom of interesting to mini-

mize and 
,s ku is frequency response of the structural domain when only a unitary load is ap-

plied in the kth degree of freedom.  

Appling the material interpolation proposed by [24], the sensitivity number, from Eq. 23, 

to minimize the proposed objective function can be state as 
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where the superscripts ,i j  indicate that the matrices and vector are in the elemental level. p is 

the penalty exponent factor. Following the soft-kill procedure, the design variable is 1 for the 

structure elements and minx for the void or fluid elements, in this work the 8

min 10x  . 

Due the imposed periodicity of the unit cells, the elements should be removed/added at the 

same time in the same position of the unit cells. In this way, the updating of the unit cell de-

sign can be done choosing a representative unit cell. And the sensitive number of the jth ele-

ment in the representative unit cell is calculated as the overall sensitivity number of all jth 

elements from the other unit cells with the same position. 

 ,

1

m

j i j

i

 


  (25) 

where j is elemental sensitivity number of the representative unit cell, which can be choose 

from any unit cell once all unit cells are identical. 

3.3 Filtering and sensitivity history  

In order to prevent the instability during the topology optimization a number of strategy 

can be applied. A heuristic procedure that helps to avoid checkerboard patterns is filtering the 

elemental sensitivity number found by Eq. 25, [8]. A spatial linear filter is used here based on 
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the procedure shown in [8]. Due the periodicity unit cells in the design domain the filter 

scheme can be applied only at the representative unit cell. 

The filtering procedure starts calculating the nodal sensitivity number, n

l , which is the 

averaging of the sensitivity number of all connected element at the node. Then, the nodal sen-

sitivity numbers are used to calculate the elemental smoothed sensitivity numbers, s

j , using a 

circular (for 2D, or spherical for 3D) sub-domain defined by a radius minr  and centered at the 

elements center. Finally, for each element, the nodes inside the element sub-domain have their 

nodal sensitivity numbers averaged into the element as follows 
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where nod  is the total number of nodes inside the sub-main; ( )ljw r  is the linear weight factor 

defined as  

 min( )    ( 1,  2, , )lj ljw r r r l nod    (27) 

where ljr  is the distance between the jth element centre and the node l . 

Helping in the convergence and stability of the optimization procedure [25], a history aver-

aging of the sensitivities is implemented and the final sensitivity elemental number, f

j , for 

the representative cell can be calculated as follows 
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where m is the current iteration number. 

3.4 Convergence criteria 

After reached the final prescribed volume, the optimization procedure evolves until the 

convergence of the objective function. The prescribed error tolerance to define the conver-

gence of the objective function is defined as [25] 
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 where ( )m

fp  is the value of the objective function in the mth iteration and N is the number of 

iterations involved in the convergence error estimation. 

4 NUMERICAL RESULTS 

The structural optimization of two acoustic-structure systems are presented in this section 

considering the periodicity of the design domain and applying the formulation developed in 

the previous sections. In the finite element discretization of the systems, the four-node quadri-

lateral elements are used for the both domains.  
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4.1 Example 1  

In this example, the formulation proposed in this work is applied to a coupled acoustic-

structure system shown in Fig. 3 for minimization of the acoustic pressure. Simulating a rotat-

ing machine, like rotary engine, turbine, electric motor, etc., a distributed harmonic load is 

applied to a clamped structure as presented in Fig. 3. The optimization procedure aims to min-

imize the acoustic pressure response in the point outP  generated by the vibration of the struc-

ture in the frequency of 50 Hz .  

The structural domain is divided in two parts, the design domain which is considered com-

posed by periodic unit cells and the non-design domain which is fixed and will not be modi-

fied during the optimization procedure. The non-design domain is shown in black in Fig. 3.  

         

 

Figure 3 - Coupled system under a harmonic loading in the structure domain for minimization of the acoustic 

pressure at the top of the acoustic domain. 

The follow material properties are adopted for the structural domain: Young’s modulus 

200 GPaE  , Poisson’s ratio 0.3   and density 
37700 kg/m  . For the acoustic fluid 

domain, the air properties are considered: density 
31.2 kg/m   and the speed of sound 

343 m/sc  . The volume of the structural domain is kept constant during the optimization 

procedure. Four different cell modes configuration of the initial periodic design are optimized, 

4 x 1, 8 x 2, 12 x 3 and 16 x 4. For a fair comparison of the unit cell final topology, the unit 

cell for all configuration has a mesh of 140 x 140 elements.  

The BESO parameters [8] used are: 0.02ER  , 0.02Ar  , 0.005  , 5N   and 3p  . 

For all cell mode configurations, the filter radius is defined as 1/10 of the side length of the 

unit cell. The initial and final volume fraction of the design domain is defined as 

0.55f iV V  .  

Figure 4 shows the pressure distribution for the initial configurations of the system and for 

the optimized design domain considering the frequency excitation of 50 Hz . The sensitivity 

number distribution in the optimized unit cell is also shown in Fig. 4 for all configurations of 

the periodic structure. The unit cell final topology converges for a symmetric pattern as the 

number of unit cell increases in horizontal and vertical directions. For the cell modes 12 x 3 

and 16 x 4 the optimized unit cells show only a slight difference in the distribution of the ma-

terial and can be considered as the converged pattern.  
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Cell mode Initial system Optimized system Optimized unit cell 

4x1 

  

 

8x2 

  

 

12x3 

  

 

16x4 

  

 

Figure 4 – Pressure distribution for the initial guess design and for the optimized configurations considering four 

different cell modes: 4 x 1, 8 x 2, 12 x 3 and 16 x 4. Evolution of the optimized unit cell for different cell modes. 

The history of the objective function during the evolutionary optimization can be seen in 

Fig. 5 for all cases analyzed. The volume of the unit cell is kept constant for all cases during 

the optimization. Smooth convergences are observed for all configurations studied, the objec-

tive function curves do not present any peaks or discontinuities, the small value of the param-

eter Ar  assure that only a small percentage of the structural material will be swapped in each 

iteration on the unit cells. The maximum number of iteration needed to satisfied to conver-

gence criteria was 34 in the first case. 
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Cell mode 4 x 1 

 
Cell mode 8 x 2 

 
Cell mode 12 x 3 

 
Cell mode 16 x 4 

Figure 5 – Evolutionary histories of the objective function, the acoustic pressure in the point outP , for the four 

different cell modes analyzed. 

A new periodic unit cell is considered to be studied in the same coupled system for mini-

mizing the acoustic pressure. The design domain is considered to be composed of periodic 

unit cell with the ratio length/high equal to 2. The same materials properties and the BESO 

parameters for the previous analyses are used. Figure 6 shows initials and optimized topolo-

gies of the periodic system with the new unit cell, 4 cell modes are presented 2 x 1, 4 x 2, 6 x 

3 and 8 x 4. For all cases the mesh of the unit cell is discretized with 200 x 100 elements. 

Cell mode Initial system Optimized system Optimized unit cell 

2 x 1 

  

 

4 x 2 
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6 x 3 

  

 

8 x 4 

  

 

Figure 6 – Initial guess design and optimized final topologies of the coupled system considering four different 

cell modes: 2 x 1, 4 x 2, 6 x 3 and 8 x 4. Optimized unit cell for different configuration of the design domain.  

The convergence of the unit cell to pattern is observed for the cell mode 6 x 3 and 8 x 4 

and is expected to be repeated in cell modes with higher number of cells. Figure 7 presents the 

history of the objective function in the optimization procedure for all cell modes investigated. 

The volume of the unit cell is kept constant during the optimization, 0.65f iV V  . 

 
Cell mode 2 x 1 

 
Cell mode 4 x 2 

 
Cell mode 6 x 3 

 
Cell mode 8 x 4 

Figure 7 – Evolutionary histories of the objective function for the different cell modes analyzed with the new 

unit cell aspect ratio. 
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Can be observed in Fig. 7, that the number of iteration needed to reach the convergence 

criteria is decreasing with the increase of the number of periodic cells. 

The topology optimization of system is now explored for a higher frequency of excitation. 

Instead of the frequency of 50 Hz previous analyzed, now a frequency of 350 Hz is taking in-

to account to the optimization of the periodic design domain of the coupled system showed in 

Fig. 3. The cell mode of 32 unit cells (4 x 8) is used to build the design domain. The same 

previous material properties and BESO parameters are applied in this investigation. The initial 

guess design of the unit cell start with a structural volume fraction of 0.5, however, the void 

area in the unit cell is fill with acoustic fluid. In this way, the couple system presents now on-

ly two phases, acoustic fluid or structure material in all stages of the optimization procedure. 

Figure 8 presents the initial and final topologies of the coupled system considering the op-

timization for the frequency of 350 Hz. The pressure distributions in the acoustic domain and 

in the design domain for both initial and final topologies. The vibration operational modes are 

presented considering the initial and the optimized system. 

 Initial system Optimized system 

(a) 

  

 Initial guess design Optimized guess design 

(b) 

  

 Initial unit cell Optimized unit cell 

(c) 

  

Figure 8 – Topology optimization of the couple acoustic-structure system considering the frequency of 350 Hz: 

(a) Pressure distribution on the acoustic domain for the initial and the optimized system; (b) Frequency response 

of displacement and pressure distributions in the design domain; (c) Sensitivity number distribution in the initial 

guess design and in the optimized unit cell. 

The system frequency response, mean acoustic pressure, in the point outP  is show in Fig. 9 

for initial system and for the optimized system. The response of the system indicates a signifi-

cant reduction of the acoustic pressure in the point outP  for the frequency range of (0 380) Hz. 
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Figure 9 – Frequency response in the 
outP  in the acoustic domain considering the initial and the optimized design 

of the coupled system. 

4.2 Example 2 

The optimization of a coupled acoustic-structure system composed of two acoustic cavities 

separated by a structural domain is investigated in this example. As shown in Fig. 10, a har-

monic pressure is imposed in the first acoustic cavity, inP , and transmitted to the second cavi-

ty by the vibration of the clamped structure. The optimization procedure aims to minimize the 

pressure in the second cavity in the point outP . The boundary conditions and geometric dimen-

sions of the system are also shown in Fig. 10. The excitation frequency of the system is 

50f  Hz. The whole structural part is considered to be the design domain and its composed 

of periodic unit cells. A number of cell modes is investigated in order to obtain a convergent 

pattern of the unit cell. In all configurations, each unit cell is squared and discretized using 

200 x 200 elements.  

 

Figure 10 – Acoustic-structure system with a harmonic imposed pressure, inP , for minimize of the acoustic pres-

sure at specific point, outP , in the other cavity. 

The acoustic fluid has the follow properties: density 1.2  kg/m3 and the speed of sound 

343c  m/s. The design domain material has Young’s modulus 100E  MPa, Poisson’s ratio 

0.3   and density 100  kg/m3. 
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The BESO parameters used are: 0.02ER  , 0.02Ar  , 0.01  , 5N   and 3p  . For all 

cell mode configurations, the filter radius is defined as 6% of the side length of the unit cell. 

The optimization is performed with a constant volume fraction of the design domain

0.40f iV V  . 

Three different cell modes are investigated in order to obtain the convergence of the unit 

cell.  Figure 11 presents the pressure distribution in the acoustic cavities and inside unit cells 

in the design domain for cases analyzed, cell modes 1 x 4, 2 x 8 and 3 x 12. 

The optimized unit cells for the cell modes 2 x 8 and 3 x 12 are similar with one a slender 

variation of the topology. 

The sensitivity number distribution in the optimized unit cell is also shown in Fig. 11 for 

all configurations of the periodic structure. The unit cell final topology converges for a sym-

metric pattern as the number of unit cell increases in horizontal and vertical directions. For the 

cell modes 2 x 8 and 3 x 12 the optimized unit cells show only a slender difference in the dis-

tribution of the material and can be considered as the converged pattern. 

Cell 

mode 
Initial system Optimized system Initial unit cell 

Optimized unit 

cell 

1x4 

  

  

2x8 

  

  

3x12 

    

  

Figure 11 - Initial guess design and optimized final topologies of the fluid-structure system considering different 

cell modes: 1 x 4, 2 x 8 and 3 x 12. Initial and optimized unit cell for three cell modes different configurations. 

Evolutionary history of the topology for the unit cell optimization is presented in Fig. 12 

considering the first cell mode configuration 1 x 4. 
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Initial guess design 

 

Iteration 10 

 

Iteration 20 

 

Iteration 30 

 

Iteration 40 

 

Iteration 58 

Figure 12 – Sensitivity number distribution on the evolutionary history of topology for the cell mode 1 x 4 case. 

Smoothed convergences of the objective function are observed in Fig. 13 for all cell modes.  

The cell mode configuration 1 x 4 needed the highest number of iteration to satisfied the con-

vergent criteria, 58 iterations.  The initial and final objective function for the cell modes 1 x 4, 

2 x 8 and 3 x 12 are 
2(0.787 0.014) 10  Pa, 

2(0. 0.0 ) 0211 16 1   Pa and 
2(0. 0.0 ) 0170 16 1  

Pa, respectively. The cell mode 1 x 4 shows the best performance in this case. The configura-

tion with more number of periodic unit cells, 3 x 12, required the lowest number of iterations 

in order to converge, 45 iterations. 

 
Cell mode 1 x 4 

 
Cell mode 2 x 8 

 
Cell mode 3 x 12 

Figure 13 – Evolutionary histories of the objective function for all three cell modes of the design domain. The 

constant structural volume fraction of 0.4 for all cases during the optimization procedure. 
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The frequency response of the objective function, the mean acoustic pressure at point outP , 

is presented in Fig. 14 considering the initial and the optimized coupled system. The frequen-

cy of interesting in the optimization procedure, 50 Hz, is indicated with the red line. Can be 

seen that the first natural frequency of the system increased from 60 to 185 Hz, approximately, 

as a consequence of the optimization process. The objective function decreased not only in the 

specific frequency, but in the range of (0 140) Hz. 

 

 

Figure 14 – Frequency response considering the acoustic pressure in the point 
outP  for the initial and the opti-

mized design of the coupled acoustic-structure system. 

5 CONCLUSIONS  

A topology optimization methodology of periodic acoustic-structure systems has been pre-

sented in this work. The pressure frequency response is defined as the objective function in 

the optimization formulation. Two examples exploring different aspects of the proposed 

methodology are presented. The following conclusions are drawn: 

 The proposed optimization procedure can effectively minimize the pressure frequency 

response in the acoustic domain of coupled acoustic-structure systems. 

 A periodic geometry constraint has been implemented for the optimization of the coupled 

systems to obtain periodic unit cells in the design domain. 

 Considering the unit cell composed of structural or void areas or composed of fluid and 

structural material, the minimization of the objective function and the convergence of the 

unit cell to a pattern have been reached in all analyzed examples. 

 Analyzing systems with several different cell modes, the value of the objective function 

and the optimal topology tend to converge as the total number of periodic unit cell grows. 

In the cases studied, at least three unit cells in each direction is need to obtain the con-

vergence of the unit cell topology. 

 The minimum values of the objective function in the analyzed cases have been found for 

the configurations with the lowest numbers of unit cells. Nevertheless, the configurations 

with higher numbers of unit cells could be more versatile and have lower cost to con-

struct using additive manufacturing once the unit cell topology have converged to a pat-

tern. 
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Abstract. The use of Phononic Crystals (PnC) in suspended structures and microstructures, 
such as plates and slabs, has gained a lot of attention in the past years for the wide range of 
feasible applications (acoustic waveguides, acoustic insulation, acoustic cloaking) and for the 
easy fabrication technique. Since the performance of the device is related to the band of fre-
quencies reflected by the PnC and since this band (called bandgap) depends on the geometric 
and material properties of the fundamental unit cell of the PnC, a useful tool for the design of 
those structures is topology optimization. This paper is focused on a novel and fast engineer-
ing use of Bidirectional Evolutionary Structural Optimization for the definition of the optimal 
hole configuration in air-solid PnC. The technique adopted finds the optimal shape of the 
hole in less than 20 iterations, and it is easy implemented in a 2D plane strain Matlab finite 
element solver. 
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1 INTRODUCTION 
Phononic Crystals (PnCs) gained lots of attention over the past several years, owing to 

their versatility and wide spectrum of applications: acoustic isolation, noise suppression, vi-
bration attenuation, acoustic waveguides, acoustic super-lenses, negative refraction and 
acoustic cloaking [1],[2].  

This paper is focused on the use of PnCs in “unreleased” resonators [3], which overcome 
many challenges faced by traditional MEMS resonators, including non-linearity, power han-
dling, residual stresses and yield [4]. PnCs are represented by periodic media, which exhibit 
bandgaps, i.e. bounded frequency regions for which the propagation of sound waves through 
the crystal is impeded. The central frequency and the size of the bandgap basically depend on 
the materials employed in PnCs and on the shape of the unit cell.  

Most of the abovementioned applications will significantly benefit from PnCs with larger 
bandgap. For this reason, it is highly desirable to optimize the shape of a PnC unit cell, in or-
der to obtain the largest bandgap while complying with manufacturability constraints.  

The present paper aims at the achievement of the best shape for the gallium nitride (GaN) 
solid-hole PnC unit cell, producing the largest possible phononic bandgap around a given cen-
ter frequency.  

The procedure starts from a given geometry, endowed with a certain bandgap, and pro-
ceeds with an automatic shape optimization algorithm in order to evolve this geometry into an 
optimal one for maximum bandgap around the requested central frequency. Several research 
groups have treated the topological optimization of PnCs, e.g. by using the SIMP approach 
and the MMA algorithm [5], genetic algorithm [6]–[8]. In this work, we consider the applica-
tion of Bidirectional Evolutionary Structural Optimization (BESO) that was previously ap-
plied for Photonic Crystals [9] and is now used for the first time in the solid-hole PnCs with 
an engineering perspective. The algorithm is able to modify the shape by adding and remov-
ing elements, using the FEM-based sensitivity analysis for the acoustic wave frequency.  

The proposed optimization algorithm can successfully obtain the optimal topology in less 
than 20 iterations: the optimization process involves a 500% gain with respect to the initial 
bandgap.  

The optimal dimensionless bandgap depends only on the hole’s shape and on the ratio be-
tween elastic constants of the material. Attention is paid to the robustness of the achieved so-
lution, in view of the construction tolerances, which might alter the optimality of the real 
device.  

2 FINITE ELEMENT PROBLEM FORMULATION 
PnC structures are periodic structures generally composed of two or more elastic material 

phases, solid or fluid. The theoretical framework is wave propagation in elastic inhomogene-
ous media, and it is governed by the following elasto-dynamic equations [10], [11]: 
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where ρ is the material density, λ and µ are Lamé’s coefficients, ux, uy, uz the cartesian com-
ponents of the displacement vector. 

The case study analyzed in this paper is referred to PnC slabs composed of air-solid phase 
materials, it is possible to assume some simplifications such that: 

• the material parameters ρ, λ and µ depend only on the x and y (in-plane) coordinates: 
( , )x yρ ρ= , ( , )x yλ λ= , ( , )x yµ µ= ; 

• being the thickness of the slab small compared to the in-plane dimensions, plane strain 
hypothesis can be exploited: [ , , ] /T

x y zu u u z∂ ∂ = 0 , 0zu = . 

Due to the previous hypotheses, the elasto-dynamic problem (1) can be formulated as: 
2
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where the only unknowns are ux = ux (r, k, t), uy = uy (r, k, t), where r = [x, y]T is the vector of 
coordinates in the plane, k = [kx, ky]T is the plane wave number vector, t  is the time. 

In the frequency domain, the equations (2) become: 
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ρ ω µ λ λ µ

ρ ω µ λ λ µ

∂ ∂   ∂ ∂∂ ∂
− = + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂   ∂ ∂∂ ∂
− = + + + +   ∂ ∂ ∂ ∂ ∂ ∂   

   (3) 

where ω  is the angular frequency, ux = ux (r, k), uy = uy (r, k) are no more function of time. 
Due to the periodicity of the PnC, it’s possible to study the elasto-dynamic problem refer-

ring to the single cell only, exploiting the Floquet-Bloch theorem [12]: 

( , ) ( )
( , ) ( )

i
x x x

i
y y y

u u u e
u u u e

= =

= =

kr

kr

r k r
r k r

     (4) 

In the literature, there are two approaches to introduce (4) in the problem under investiga-
tion: 

• direct substitution in (3) and proceed to the weak formulation of the equations and the 
finite element (FE) discretization ([5],[10],[11]); 

• first weak formulation (as usual for elasto-dynamic problems), then FE discretization, 
and at the end enforce the equations (4) as periodic boundary conditions 
([13],[14],[15]). 

Being the aim of this work the implementation of a topology optimization technique, it is 
more suitable to refer to the second approach since in this way the assembly of the general 
mass and stiffness matrices of the problem is not depending on the wave vector k  and there-
fore it is done only once for each k vector. 

It is possible to discretize the weak form of equations (3) into finite elements, being the in-
plane displacements expressed like: 
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r k
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where el  is the index for the elements of the mesh, j  is the index for the nodes of each ele-
ment, Nj are the shape functions for the quadrilateral plane element: 1,2,3,4j = , el

x ju  and el
y ju  

are the components of the displacement of each node of an element. 
The linear quadrilateral element has been chosen and, in particular, a square FE shape in 

order to build a regular grid of elements over the unit cell: in this way the algorithm of topo-
logical optimization is easily implemented, dealing with each element as a “pixel” that can be 
switched between fill and void. Being the aim of this work the optimization of a solid/air PnC 
the finite element formulation is such that the only elements that contribute to the matrices are 
the solid elements: the air domain is not considered. 

The FE discretization (5) of equations (3) yields the governing FE governing equation: 

 
2( , )( ) ( , ) 0

( , ) [ ( , ), ( , ),... j 1, 2..N ]

T

T
j x j y nodesu u

ω− =

= =

u k r K M u k r
u k r k r k r

   (6) 

where K  and M  are the assembled global stiffness and mass matrices that do not depend on 
k, u (k, r) is the global vector of unknowns containing in order the x and y components of 
each node displacement. 

In order to formulate the complete FE problem, some suitable boundary conditions must be 
defined together with equations (6): 

• free boundary condition is applied to the boundary elements of the solid domain in the 
interface with air domain; 

• periodic boundary conditions are defined after reordering the nodes of the mesh as 
shown in Figure 1. 

 

 
Figure 1: FE grid with nodes identified by color and type with respect to periodicity boundary conditions. 

 Γ  stands for boundary, T for Top , B  for Bottom, L  for Left, R  for Right, , N  for Internal.  
The nodes of different types identified with the same color are related by the bc. 
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By means of this organization, it is possible to define the periodic boundary conditions in a 
matrix form: 
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where the symbol | denotes “on the boundary”, and ∆x and ∆y denote the offset between the 
coordinates of the nodes in x and y direction, respectively. 

Equation (7) can be rewritten as: 

( , ) ( , ) ( )=u k r T k r u r      (8) 

where ( ) | , | , | , |
N B L BL

TT T T T
Γ Γ Γ Γ =  u r u u u u  that collects only independent displacements. 

Substituting equation (8)  in equation (6): 
2( ) ( , )( ) ( , ) ( ) 0T H ω− =u r T k r K M T k r u r     (9) 

where H stands for Hermitian transpose.  
The following problem matrices are Hermitian: 

( , )( ) ( , )
( , )( ) ( , )

H

H

=

=

K T k r K T k r
M T k r M T k r





    (10) 

Introducing (10) in (9) one obtains: 
2( )( ) ( ) 0T ω− =u r K M u r 

      (11) 

Equation (11) must be solved in order to find eigenvalues 2
nω , eigenvectors ( )nu r  and the 

associated dispersion relation at varying k . 
To obtain a good description of the dynamic behavior of the PnC for all the possible k  

vectors in the k  space (plane), it is possible to choose a limited number of k vectors, discre-
tizing the boundary of the first irreducible Brillouin zone [16]. In Figure 2, the rectangle in k  
space is the first Brillouin zone. Due to the square symmetry of the unit cell, it is possible to 
focus the attention only on the colored triangle (first irreducible Brillouin zone). It is claimed 
then from many authors that from the engineering point of view the maximum and minimum 
points of the bandgap can be determined only focusing the attention on the k vectors along 
the boundary of the First Irreducible Brillouin zone, following the path indicated in Figure 3. 
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Figure 2: Material and reciprocal space, First Brillouin Zone. 

 

Figure 3: Dispersion Diagram for k-vector in the First Irreducible Brillouin Zone. 

3 OPTIMIZATION PROBLEM FORMULATION  

3.1 Objective function  
The aim of this work is to find the optimal topology that maximizes an existing bandgap 

around a certain central frequency for solid/air PnC. 
The objective function of this optimization is the bandgap width normalized with respect to 

the central frequency of the bandgap: 
2 22 1

2 2 2
1

min ( , ) max ( , )( )max ( ) 2
( ) min ( , ) max ( , )

n n

centr n n

bg
ω ωω

ω ω ω
+

+

 −∆ = = +  

k k

ρ
k k

k ρ k ρρρ
ρ k ρ k ρ

   (12) 

where ρ is a vector with length equal to number of elements containing the densities of each 
element, and n  is the number of the bottom eigenvalue that defined the bandgap analyzed. 
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It is important to notice that in this work, for engineering purposes, the densities in the vec-
tor ρ = {ρe, e = 1, …, Nelements} can only assume the values of 0 or 1. No interpolation be-
tween the two values is considered, the element could be “alive” (taken into account in the FE 
formulation) or “dead” (part of the air domain that is not considered in the FE formulation). 

3.2 Sensitivity analysis  
The goal is to capture how much the bandgap varies switching on/off each single element, 

this is a well-suited problem for the Evolutionary Structural Optimization framework, since 
the answer can be derived analytically [17]. 

It is possible to define each eigenvalue of the problem as follows: 

2 n
n

n
T

n n n
T

n n n

k
m

k
m

ω =

=

=

u Ku
u Mu

            (13) 

where kn is the modal stiffness, mn is the modal mass and n n=u Tu  is the eigenvector. 
The sensitivity with respect to the variables is: 

2
2 2

2

( ) ( )1 1 1 T T
n n n n n n n n n n

n n
e n e n e n e e n e e

k k m k m
m m m m

ω ω ω
ρ ρ ρ ρ ρ ρ ρ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − = − = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

u Ku u Mu      (14) 

Assuming that modifying only few elements the shape of the eigenvector will not change 
significantly: 

0n

eρ
∂

≈
∂
u       (15) 

equation (14) becomes: 
2

2 2( ) ( )1 1T T
Tn n n n n

n n n n
e n e e n e em m

ω ω ω
ρ ρ ρ ρ ρ

   ∂ ∂ ∂ ∂ ∂
= − = −   ∂ ∂ ∂ ∂ ∂   

u Ku u Mu K Mu u    (16) 

from which it is clear how the change of the density of a single element can contribute to the 
change of the modulus of each eigenvalue by means of a combination of kinetic and potential 
energy.  

It is possible to define a parameter representing the sensitivity obtained: 

21e T
n n n n

n e em
α ω

ρ ρ
 ∂ ∂

= − ∂ ∂ 

K Mu u     (17) 

By examining equation (17), it is clear that in order to increase the modulus of 2
nω  it is 

necessary to set: 

 0eρ =  for | 0e
ne α >      (18) 

Since the optimization problem defined in (12) involves both the upper and the lower ex-
trema of the bandgap, it is necessary to define also the sensitivity for the upper eigenvalue of 
the bandgap: 
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n e em
α ω

ρ ρ+ + + +
+
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= − ∂ ∂ 

K Mu u     (19) 

By means of (17), (18) and (19) the sensitivity number referred to the bandgap width is: 

( , 1) 1
e e e
bg n n n nα α α+ += −     (20) 

The Evolutionary Structural Optimization technique is such that the change in the density 
is only possible in one direction, i.e. from one phase material to the other one and not the vice 
versa. 

A slight modification is the so-called Bidirectional ESO technique that allows both “direc-
tions” of change of the element density depending on the ( , 1)α +

e
bg n n  value. In order to correctly 

implement the technique it is important to notice that: 

1

1
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0
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elements

N
e
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e
N

e
n

e
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α

=

+
=

=

=

∑

∑
     (21) 

It is important to notice that in order to obtain a feasible design the general periodic struc-
ture must not have regions with suspended material, therefore this constraint must be added to 
the optimization algorithm. 

Another important issue regards the numerical implementation: easily these kinds of algo-
rithms end up with checkerboard topology, and the particular implementation for solid/air 
phases can lead to suspended regions of material. In order to avoid such effects, a filtering 
subroutine is introduced in the algorithm. 

3.3 Optimization algorithm 
Following the path of reasoning introduced in the previous section, equation (18), the core 

of the algorithm is: 

( , 1)

( , 1)

| 0 [for elements to be "killed"]

| 0 [for elements to be "activated"]

0 for

1 for

α

α

ρ

ρ
+

+

>

<

=

=

e

e

e
bg n n

e
bg n n

e

e
    (22) 

In this work, n  is chosen at the beginning of the optimization procedure corresponding to 
the eigenvalue that defines the bottom boundary for the bandgap.  

During the optimization procedure the value of n  may change from the starting one but the 
bandgap will always be centered around the desired frequency. 

A general observation is mandatory in relation to (22): since the optimization concerns sol-
id-air PnCs and the air domain is treated by eliminating the related degrees of freedom from 
the matrix formulation, it is not possible to define the densities in the hole. Therefore, the al-
gorithm is built so that the densities of the elements in the material domain in the neighbor-
hood of the hole define which elements to “live” in the hole itself. 

The optimization scheme is described in the next Figure 4. 
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Figure 4: Optimization algorithm. 

The parameters governing each BESO optimization iteration (see Figure 4) are: 

• dnlines maximum number of lines of elements near to the hole to be “killed”  
• lnlines  maximum number of lines of elements in the hole to be “activated”  
• dnelem  maximum number of elements to be “killed”     
• lnelem  maximum number of elements to be “activated”     
• dthr   threshold for elements to be “killed”, 0dthr >      
• lthr    threshold for elements to be “activated”, 0lthr <      

where d  stands for “dying” and l  stands for “living”. 
At each iteration, elements to be “killed” are: 

( , 1) within   and { | , }d e d d d
bg n ne thr nlines nelemα += >e     (23) 

At each iteration, elements to be “activated” are: 

( , 1){ |  is near withi to , | n   and , }l e l d d l
new new bg n n newe e e e thr nlines nelem e nlinesα += < ∈e  (24) 

4 NUMERICAL EXAMPLE  
In this section, the optimization procedure is illustrated starting from the well-known circle 

topology shown in Figure 5. This topology presents a complete bandgap in the 2D plane strain 
case. The parameters for the BESO optimization are set as: 

• 2 :1dnlines =   
• 2 :1lnlines =    
• 400dnelem =      
• 400lnelem =      
• 0.20 : 0.75 dthr =  normalized w.r.t. the max absolute value of the selected elements  
• 0.05lthr = −         normalized w.r.t. the max absolute value of the selected elements  
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Figure 5: Material distribution for the PnC unit cell starting topology.  

The hole has a circular shape of diameter 0.8 a, with a unit cell characteristic dimension (here 5.5a mµ= ).  
The unit cell is discretized in 100x100 Q4 square FE. 

It is worth to notice that the optimum engineering topology is found after 13 iterations, see 
Figure 6. From the starting iteration, it is possible to identify the final shape following the 
highlighted elements that will be removed and added (see Figure 7). The bandgap in relative 
terms w.r.t. the center frequency increases from 14% to 89%, as shown in Figure 8. 

 

 
Figure 6: Material distribution for the PnC unit cell optimal topology, after 13 iterations. 

 
Figure 7: Distributions of ( , 1)

e
bg n nα + : dying elements on left figure, living elements on right figure.  
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Figure 8: Comparison between dispersion relation diagrams corresponding to: 

 starting topology (bg,rel=14%) on the left and optimal topology (bg,rel=89%) on the right.  

The dimensionless frequency is calculated as follows:  
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λ µ
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=

+
=

     (25) 

The optimal topology of Figure 6 can be generalized also to different materials: it is only a 
matter of ratios between the elastic and the mass properties. In particular, assuming that the 
Poisson ratio varies between 0.2 and 0.3 the only important parameter is the square root of the 
ratio between the elastic Young Modulus and the density. 

5 SENSITIVITY TO FABRICATION IMPRECISIONS 
An important aspect of this work is the sensitivity with respect to fabrication imprecisions: 

the optimal bandgap must not be too sensitive with respect to little shape variation. 
In order to prove that this optimal shape is “stable”, the same optimization algorithm has 

been used “against” the optimal shape itself, choosing the BESO parameters to simulate the 
fabrication imprecisions.  

This choice has been done starting from the element-mesh size and then deciding how 
many lines of material of the optimal shape could have been removed from a fabrication im-
precision, namely two lines.  

This information is set as parameter in the BESO algorithm, that chooses in a couple of it-
erations the worst fabrication imprecision possible in order to destroy the bandgap. Figure 9 
shows the results of the analyses: owing to the fabrication imprecision, the bandgap is re-
duced to 77%, instead of its optimal value 89%. 

6 CONCLUSIONS 
In this work is described a new topology optimization procedure to find the optimal 

bandgap for solid/air phononic crystals. 
First, the formulation is described in terms of finite element method, in particular the 2D 

plane strain simplification. Then the optimization procedure and algorithm are introduced, 
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focusing on the novelty of Bidirectional Evolutionary Structural Optimization applied to the 
air domain. 

 
Figure 9: Results of sensitivity to fabrication process reversing the optimization algorithm: 

 resulting topology on the left and related bandgap (bg,rel=77%) on the right. 

A numerical example is then illustrated, with starting topology defined as the well known 
circle-hole, that presents a bandgap of 14% and the optimal topology is derived with 90% 
bandgap. 

This result can be extended to different materials: due to the fact that the “internal” phase 
is not considered the bandgap is mostly influenced by the shape of the hole and material pa-
rameter ratios. 

In the last section, a sensitivity analysis is introduced in order to show that the optimal 
shape is “stable” with respect to fabrication imprecisions: the optimization algorithm is forced 
“against” the optimal topology itself in order to destroy the bandgap. The result is a decrease 
of the bandgap from 89% to 77%, which is still a good result. 
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Abstract. The French Aerospace Lab (ONERA) and Japan Aerospace Exploration Agency 
(JAXA) conducted a collaborative research on low-boom and low-drag design of small size 
supersonic aircraft including engine integration perspective. In this collaborative research, 
the validation of low-boom design tools, the optimization study on engine position consider-
ing aerodynamics, acoustic, and propulsion performances, and the low-boom design of pro-
pulsion-airframe integrated (PAI) configuration were performed. In this paper, obtained 
results are summarized and the low-boom design of PAI configuration is focused on, because 
the sonic boom loudness is raised by the engine integration. The applied low-boom design 
tool is based on the free-form deformation and the equivalent area with consideration of the 
change of lift distribution due to deformations. Results show that the sonic boom loudness of 
PAI configuration can be reduced to almost the same loudness of glider configuration without 
engine by the horizontal tail optimization. 
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1 INTRODUCTION 

Research activities to realize environmental-friendly supersonic aircrafts are conducted all 
over the world [1, 2]. The major environmental constraint is the sonic boom. Pressure waves 
caused by objects flying at supersonic speed are integrated with each other during the propa-
gation to the ground and finally coalesce into two shock waves called N wave, causing loud 
noise on the ground. The Concorde was prohibited from flying supersonically overland due to 
the sonic boom. Currently, ICAO (International Civil Aviation Organization) is trying to es-
tablish regulations on the sonic boom loudness and to set the threshold to allow overland su-
personic flight, which accelerates research activities to realize low-boom as well as low-drag 
performances [3, 5]. Other environmental constraints are originated from the engine. They are 
the airport noise and the emission such as NOx and CO2. Reducing these environmental bur-
dens depends largely on the engine itself. For instance, large bypass ratio decreases the engine 
exhaust velocity at take-off and improves the specific fuel consumption, which results in re-
duction of airport noise and emission. On the other hand, large bypass ratio increases engine 
weight and drag caused by the nacelle, which has negative impact on the emission. In addition, 
shock waves caused by the propulsion system potentially affect the low-boom performance. 
Thus, the engine should be considered in terms of integration with airframe. Based on the 
above discussions, the low-boom and low-drag design including engine integration perspec-
tive is the key to realize environmental-friendly supersonic aircrafts. 

Japan Aerospace Exploration Agency (JAXA) conducted the flight experiment to demon-
strate the low-boom design using axisymmetric bodies [6], and recorded the low-boom signa-
ture that can be used as the validation data for low-boom design tools. The French Aerospace 
Lab (ONERA) has experience of low-boom design through HISAC project. In order to inte-
grate their experiences, ONERA and JAXA conducted the collaborative research on the low-
boom and low-drag design including engine integration perspective from 2011 to 2016. The 
reference aircraft and its specifications are shown in Fig. 1. In this paper, obtained results are 
summarized and the low-boom design of propulsion-airframe integrated configuration is fo-
cused on. 
 

Specification

Length 53 m

Weight 60 ~ 70 ton

Cruise Speed 1.6 Mach

Range 3500 nm

Payload 36 ~ 50 passengers
 

Figure 1: Small size supersonic transport. 

2 OVERVIEW OF COLLABORATIVE RESEARCH 

In the collaborative research, the glider geometry designed by JAXA is used as the refer-
ence glider (Fig. 2). Design conditions are Mach number of 1.6 and lift coefficient of 0.15. 
The sonic boom signature of this glider shows double shock waves at front and aft booms (Fig. 
2), which contributes to the low-boom performance. Here, the reflection factor on the ground 
is 1.9. In this research, ONERA is mainly in charge of the low-boom design based on the 
equivalent area. JAXA is mainly in charge of the engine integration. Work packages (WP) are 
shown in Fig. 3. WP1 is ONERA’s activity, and low-boom design tools are validated using 
the experimental data acquired in the D-SEND#1 flight test conducted by JAXA [6]. WP2 is 
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JAXA’s activity, and the engine integration is examined in terms of aerodynamics, acoustic, 
and propulsion perspectives. WP3 is conducted collaboratively by ONERA and JAXA to per-
form the low-boom and low-drag design including engine integration. Results are summarized 
in the following sections. 
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Figure 2: Reference glider and sonic boom signature. 
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Figure 3: Work packages. 

2.1 WP1: Sonic boom assessment 

2.1.1. Sonic boom physics  

Sonic boom signals are impulsive, high amplitude sound signals felt by a static observer at 
ground level. Sonic booms are the results of the nonlinear propagation through the atmos-
phere, down to the ground, of shock waves and pressure disturbances generated by supersoni-
cally travelling air vehicles such as aircraft, missiles or artillery projectiles [7]. The 
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displacement imposed by the supersonic vehicle to the air particles along its trajectory in its 
close vicinity are accompanied by pressure perturbations which radiate in all directions away 
from the vehicle along the three dimensional characteristics planes of the supersonic flow. A 
fraction of this pressure disturbances directed downward will eventually reach the ground af-
ter travelling through the atmosphere. During their propagation, the shape of the time signal 
associated to these pressure perturbations evolves under the competing non-linear and dissipa-
tive effects (Fig. 4). The non-linear effects tend to generate steep shocks through coalescence 
of successive pressure perturbations. On the contrary, the different dissipative effects, domi-
nated by molecular relaxation phenomena, tend to thicken and dissipate shocks. 
 

Ground signatureGround signature

Mid-fieldMid-field

Near-field:
Sonic-boom sources

 
Figure 4: Sonic boom physics. 

2.1.2. Methods and tools for calculating sonic boom 

Simulating the sonic boom is an intricate task involving complex physical phenomena and 
very different scales. An accurate modeling of sonic boom first requires an adequate predic-
tion of its sources, the aerodynamic pressure disturbances generated by the aircraft in its close 
vicinity. In this region, the aerodynamic flow is governed by the non-linear Euler equations 
and includes three-dimensional features with scales proportional to the aircraft length. There-
fore CFD methods are perfectly suited and necessary to predict these near-field aerodynamic 
perturbations giving birth to the sonic boom. Because the prediction of the sonic boom re-
quires propagating the pressure signal from the aircraft down to the ground over tens of kilo-
meters, i.e. several hundreds of the aircraft length, conventional CFD methods are inadequate 
to perform this long distance propagation. They would require a tremendous number of mesh 
points and would eventually fail to capture important effect occurring during the propagation 
(such as the molecular relaxation). Therefore, a specific acoustic code is necessary to carry 
out this long distance propagation of the sonic boom signal through the standard atmosphere 
that is stratified and include temperature and density evolution with altitude. 

The ONERA sonic boom prediction methodology is based on a three-layer approach, as il-
lustrated in Fig. 5. Layer 1 corresponds to the near-field aerodynamic flow prediction with 
CFD. Layer 3 is the atmospheric propagation of the sonic boom with an acoustic code, while 
layer 2 ensures a natural matching between the near-field aerodynamic data and the native 
inputs of the acoustic code. 
 

Layer 1: Near field aerodynamic calculation by CFD 

First, the pressure perturbations in the close vicinity of the aircraft flying in supersonic cruise 
condition, which are the origin of the sonic boom, are calculated by solving the three-
dimensional steady Euler equations. The ONERA elsA [8] or Cedre [9] CFD softwares are 
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used to perform these calculations. To obtain an accurate evaluation of the near-field aerody-
namic pressure perturbations, a specific care must be given to the quality of the CFD mesh 
which must have characteristics adapted to the flow physics of these perturbations travelling 
along flow characteristics. The computational domain of this CFD calculation typically ex-
tends between twice and four times the aircraft length around the aircraft. 
 

Layer 2: Multipole matching method 

The CFD-aerodynamic pressure field is extracted on a cylinder surrounding the aircraft, 
aligned with the flow direction, whose radius is a user-specified parameter varying between 
one half to one body length. The pressure perturbations on this cylinder are then post-
processed using the multipole decomposition method originally introduced by Plotkin and 
Page [11] and applied by Salah El Din [12]. This decomposition method proceeds through a 
development of the near field pressure signature on the cylinder according to the azimuth var-
iable θ. Thereby, it allows to rebuild a Whitham function equivalent, at long distance, to the 
pressure perturbation generated by the aircraft, while cumulating the diffraction effects asso-
ciated to the non-axisymmetrical near-field flow. The ground signature computed from this 
equivalent rebuilt Whitham function is observed to converge much faster with the matching 
distance between the CFD and the acoustic theory (i.e. the radius of the cylinder) than the 
ground signature from a direct CFD/acoustic would match. This justifies the use of this sec-
ond layer which, further to provide a theoretically correct near-field/far-field match, greatly 
reduces the CFD grid size needed for the near field computation, saving significant computing 
time. 
 

Layer 3: Atmospheric non-linear acoustic propagation method 

Finally, the ground signature is computed by propagating the near-field aerodynamic pressure 
perturbations matched by the multipole decomposition method (layer 2) using the acoustic 
propagation code TRAPS [13]. The TRAPS code is a dedicated sonic boom propagation code 
based on the inviscid non-linear acoustic theory. It uses a ray-tracing approach to account for 
the refraction phenomena occurring during the propagation through a stratified atmosphere 
with vertical temperature and density gradients and to evaluate the extent of the “primary car-
pet”, i.e. the width of the corridor underneath the aircraft trajectory directly affected by sonic 
boom. Along each acoustic ray, the Whitham theory (first order correction to the linear super-
sonic theory) is used to predict the evolution of the shape of the sonic boom pressure signal. 

Multipoles
matching method  

Near-field
calculation

(CFD - elsA)  

Atmospheric
Propagation 

(TRAPS)

 
Figure 5: Three-layer sonic-boom prediction methodology. 
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2.1.3. Validation of the numerical sonic boom prediction tools  

The sonic boom prediction tools used by ONERA have been validated using the JAXA D-
SEND#1 experimental data [14]. These experiments consisted in a vertically drop test of two 
different models from a balloon high altitude: an N-Wave Model (NWM) and a Low-Boom 
Model (LBM) were tested (Fig. 6). During these drop tests, sonic booms have been measured 
at different locations including two microphones, one at ground level and the second at about 
1km altitude, just above atmospherically turbulent boundary layer (Fig. 7). 

The exact “flight” conditions of the model during its drop at the time when it generated the 
registered sonic boom signal on ground were determined through an analysis of the trajectory 
data using an inverse ray-tracing procedure. The near field aerodynamic signatures generated 
by both models in the previously identified flight conditions (Mach, altitude) were then com-
puted using CFD calculations performed with the [9] software and mesh adaptations per-
formed with INRIA mesh adaptation tool FEFLOA [10]. The sonic boom has then been 
computed at ground level using the methods and tools described in the previous section and 
the results compared to the D-SEND#1 tests data (Fig. 8). 
 

   
Figure 6: D-SEND#1 models geometry: conventional N-wave signature model (left) and low-boom flat top 

model (right). 

 
Figure 7: Schematic of JAXA D-SEND#1 drop tests sonic boom propagation: vertical descending trajectory of 
the model and oblique acoustic ray pointing downward; Position of the two microphones measuring the sonic 

boom at ground level and immediately above turbulent atmospheric boundary layer. 
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Figure 8: Validation of numerical sonic boom prediction tools using the JAXA D-SEND#1 experimental test 

results for the Low-boom model. 

2.2 WP2: PAI assessment 

In WP2, the engine integration is examined in terms of low-boom and low-drag [15, 16]. 
Supersonic engines generally tend to have smaller bypass ratio than subsonic engines, and 
increase airport noise. In this study, the engine specification was optimized to maximize the 
range performance while the engine exhaust velocity is constrained to be less than the speci-
fied value that can satisfy ICAO regulation (chapter 4). As a result, the bypass ratio and the 
fan diameter become 3.4 and 1.7 m, respectively. The inlet/nacelle geometry is designed 
based on the optimized engine specification and is integrated with the reference glider shown 
in Fig. 2. The design space of engine position is determined in this integration (Fig. 9), and 
response surfaces of lift-to-drag ratio and sonic boom loudness are constructed by the Euler 
analysis. Moreover, the engine position affects the propulsion performance such as inlet pres-
sure recovery, thrust, and specific fuel consumption, which in turn affects the range perfor-
mance. Thus, the inlet pressure recovery evaluated by the Navier-Stokes analysis is added to 
objective functions of response surfaces. These three objective functions are evaluated at the 
design lift coefficient (0.15). Response surfaces of side-body engines are shown in Fig. 10 as 
a typical example. There are 9 samples denoted by 01 ~ 09 in Fig. 10. Response surfaces are 
initially constructed by samples 01 ~ 08. Sample 09 is added considering the convergence of 
nondominated front in the optimization of engine position performed in WP3. Each axis in 
Fig. 10 is non-dimensionalized by the range of design space, that is, 0 corresponds to xmin and 
zmin, and 1 corresponds to xmax and zmax. The sonic boom loudness is evaluated in terms of the 
Stevens Perceived Level Mark VII (PL), and the difference of PL from that of the reference 
glider (97.1 dB) is the objective function. The inlet pressure recovery is the ratio of total pres-
sure at engine fan face to total pressure of uniform flow. According to Fig. 10, the position of 
maximum lift-to-drag ratio and the position of minimum sonic boom loudness come close to 
each other, thus, the side-body engine can realize good compromise between low-boom and 
low-drag. On the other hand, the inlet pressure recovery is low at the position of maximum 
lift-to-drag ratio, which indicates the necessity of further investigation considering the propul-
sion performance. Therefore, the optimization in terms of low-boom and range performance 
including propulsion performance is conducted and is described in WP3. 
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Over-wing

Under-wing

Side-body

X

Y

Engine position
(Xmin, Ymin) Engine position

(Xmax, Ymax)

Design space of engine position

Engine position
(Xmin, Zmin)

Engine position
(Xmax, Zmax)

Z

 
 

Figure 9: Design space of engine position. 

 
Over- and under-wing Side-body 
Xmin 28.514 m Xmin 28.514 m 
Xmax 41.508 m Xmax 41.508 m 
Ymin 2.756 m Zmin 1.908 m 
Ymax 6.306 m Zmax 2.332 m 

 

Table 1: Design space of engine position. 
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Figure 10: Response surfaces of side-body engine. 

2.3 WP3: Low-boom/Low-drag Supersonic Aircraft MDO 

Work package 3 includes the low-boom design of the reference glider that was conducted 
by ONERA and the optimization of engine position using response surfaces in WP2 that was 
conducted by JAXA. The low-boom design of engine-airframe integrated configuration based 
on results obtained here is described in the next chapter.  

 
Aero-boom optimization of a supersonic glider configuration 
A sonic boom minimization process of the initial wing-body-tail (glider) configuration has 

been performed by ONERA. This has been done using a two-step approach: 
1. First, an inverse design approach, AIDA [4], implementing the Jones-Seebass-

Darden shaped sonic boom theory, has been used to generate the minimum sonic 
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boom equivalent area ruling corresponding to the JAXA small supersonic aircraft 
characteristics (Mach number, fuselage length, weight, wing position, …); 

2. Then, starting from the actual geometry of the initial glider configuration, a free-
form deformation approach has been used to modify the actual fuselage geometry 
in order to reach the target equivalent area distribution issued from step 1). This 
was done through a numerical optimization process that used the vertical displace-
ment of the different control points of the free-form lattice embedding the fuselage 
geometry as design parameter (Fig. 11). In this optimization process, only the im-
pact of the geometry modifications on the equivalent area distribution due to vol-
ume was evaluated (the contribution of lift to the equivalent area was assumed to be 
constant). 

The results of this design process applied to the glider configuration are shown in Fig. 12. 
The front part of the equivalent area was successfully mapped to the target one obtained by 
inverse design with AIDA module [4]. This enables to obtain a ground sonic boom whose 
front part resembles the target flat top signal even if it includes a succession of small shocks. 
The aft part of the signature was not significantly modified due to a limited design freedom 
(the control box was defined in order to keep the tail geometry unchanged). 

 

 
Figure 11: Free-form deformation control lattice used to optimize the fuselage geometry in order to reach the 

target equivalent area distribution that provides optimal sonic boom signature. 
 

 
Figure 12: Left: initial, optimized and target equivalent area distribution. Right: ground propagated sonic boom 

signals corresponding to the initial glider, optimized glider and target optimal (flat-top) sonic boom. 
 
Latter, such a similar design procedure using a free-form deformation parameterization and 

a target equivalent area distribution was reapplied to the complete aircraft geometry including 
propulsion system (Fig. 13). 
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Figure 13: Application of a free form deformation based optimization process to reduce the sonic boom of the 

aircraft configuration with propulsion system. 
 

Propulsive system optimization with sonic boom minimization criteria 
The optimization of engine position is based on the response surfaces obtained in WP2 

(Fig. 10) [16], which means that the glider geometry is fixed at the reference glider geometry 
and that the glider optimization tool mentioned above is not applied. In this optimization, two 
objective functions are set. One is the sonic boom loudness that is obtained directly from the 
response surface. The other is the range performance that is evaluated by the Breguet range 
equation using the lift-to-drag ratio and the specific fuel consumption that includes the per-
formance degradation caused by the inlet pressure recovery. The nondominated front is shown 
in Fig. 14. 
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 (a) Nondominated front with respect to sonic boom and range.                      (b) Sonic boom signature. 

Figure 14: Optimization of engine position. 

The under-wing engines realize large lift-to-drag ratio thanks to the compression lift produced 
by the nacelle shock wave, and realize large inlet pressure recovery because the stream line 
under the wing is nearly parallel to the inlet axis. Thus, the under-wing engines realize better 
range performance. However, the nacelle shock wave propagates to the ground and causes 
louder sonic boom. The over-wing engines show the best low-boom performance by shielding 
the nacelle shock wave by the wing upper surface, but the cross-flow over the wing degrades 
the inlet pressure recovery. Smaller lift-to-drag ratio due to the negative lift caused by the na-
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celle shock wave along with low inlet pressure recovery leads to low range performance. The 
side-body engines overcome drawbacks mentioned above. The nacelle shock wave acts 
around the trailing edge of the wing, which reduces the wing pressure drag and prevents the 
nacelle shock wave from propagating to the ground. Thus, the low-boom and low-drag are 
realized at the same time. The inlet pressure recovery is relatively low due to the thick bound-
ary layer on the fuselage; however, the side-body engines show better compromise between 
low-boom and long-range. 

 
Results mentioned above are integrated, in other words, the glider optimization tool is ap-

plied to the side-body engine in order to realize further low-boom performance. The optimiza-
tion results are described in the next section. 

3 AFT BOOM SUPPRESSION BY HORIZONTAL TAIL OPTIMIZATION 

Prior to the low-boom design, the sample 06 of side-body engine denoted by SB06 (Fig. 
14) is slightly modified in order to reduce the wave drag. The engine position of modified 
SB06 denoted by PAI (propulsion-airframe integrated) configuration is almost the same as 
that of SB06, moved rearward and upward by 0.5% and 0.2% of fuselage length, respectively. 
The engine nozzle of SB06 is tangential to the fuselage at its exit. On the other hand, the part 
of engine nozzle (7% of the nozzle exit diameter) of PAI configuration is buried into the fuse-
lage, and the wave drag is reduced due to the reduction of fuselage volume. The PAI configu-
ration has larger lift-to-drag ratio by 3.2% than SB06. The PAI configuration and SB06 show 
almost the same sonic boom signature (Fig. 14), causing louder sonic boom than the reference 
glider due to the single shock wave at the aft boom. The engine nacelle produces negative lift, 
and the angle of attack is increased to meet design lift coefficient. As a result, the expansion 
over the wing is enhanced and the peak negative pressure at the aft boom is increased. Anoth-
er reason to the louder aft boom is the expansion wave at the rear part of the nacelle. The 
shock wave at the leading edge of the horizontal tail plays an important role in fragmenting 
the aft boom into double shock waves. In the PAI configuration, the leading edge shock wave 
is weakened by the expansion wave originated from the nacelle (Fig. 15), and pressure waves 
coalesce into single shock wave at the aft boom. As shown in Fig. 14, over-wing engines real-
izing quieter sonic boom than side-body engines also show the single shock wave at the aft 
boom. These results indicate the importance of the aft boom suppression of propulsion-
airframe integrated configurations. Thus, the low-boom design of the PAI configuration is 
conducted by applying the glider optimization tool described in WP3. 

Equivalent area distributions of reference glider and PAI configuration are shown in Fig. 
16. Both configurations have the peak value of equivalent area at x of around 60 m. This peak 
is made up by the shock wave and expansion wave of the horizontal tail. The aft boom of the 
reference glider is fragmented into double shock waves by the shock and expansion waves 
corresponding to the front and rear parts of the peak, respectively. This fragmentation is the 
key to reduce the aft boom loudness. In the PAI configuration, the shock wave is weakened 
by the expansion wave generated at the rear part of the nacelle as described above, which 
lowers the peak and degrades low-boom performance. To suppress the aft boom of the PAI 
configuration, the target equivalent area distribution with higher peak is determined (Fig. 16), 
and the profile of the horizontal tail that is originally the biconvex is optimized by free-form 
deformation (FFD) to meet the target. 

In this optimization study, the low-boom design tool applied in WP3 is updated to consider 
the change of lift distribution, because the horizontal tail has impact on the lift. In this update, 
the change of lift caused by the deformation of horizontal tail is evaluated by the simple 
method, that is, the conical flow theory and the Prandtl-Meyer expansion. Firstly, the horizon-
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tal tail surface is divided into triangle panels, and the angle between the panel and uniform 
flow is calculated for each panel. When the panel is facing the uniform flow, the pressure co-
efficient is evaluated by the conical flow theory. Otherwise, the pressure coefficient is evalu-
ated by the Prandtl-Meyer expansion. After the deformation, the pressure coefficient is 
evaluated in the same manner, and the difference of the pressure coefficient due to the defor-
mation gives the change of lift. The flow diagram of the updated tool is shown in Fig. 17. The 
horizontal tail is deformed by FFD and the volume component of equivalent area (AE_vol) is 
calculated. Then, the difference of the pressure coefficient is evaluated and the lift component 
of equivalent area (AE_lift) is calculated. The sum of AE_vol and AE_lift gives the equiva-
lent area (AE), and FFD is iterated until the AE meets the target equivalent area (AE_target). 
After the iteration, the Euler analysis is conducted for the optimized shape to evaluate the 
low-boom performance. 
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Figure 15: Pressure contour plot around nacelle.               Figure 16: Equivalent area distribution. 
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Figure 17: Flow diagram of horizontal tail optimization.              Figure 18: Free form deformation. 

In FFD optimization, the rectangular parallelepiped control box is set to enclose the hori-
zontal tail (Fig. 18). Numbers of control points are 6 in the x direction, 5 in the y direction, 
and 2 in the z direction. Design variables are the displacement of control points in the z direc-
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tion, except for the control points on the symmetric surface (i.e., y=0). In order to check the 
convergence, the difference of equivalent area from the target is calculated at 81 sections be-
tween x of 56.0475 m and 61.3475 m where the equivalent area is affected by the horizontal 
tail deformation. The root mean square of these differences is the objective function (F). In 
this optimization, the drag increment due to the deformation is added to the objective function 
in order to realize both low-boom and low-drag (Eq. 1).  

   D

N

i

C
N

F 







 



10AE_targetAE
1

5.0

1

2
ii  (1) 

Here, N is the number of sections where the difference of equivalent area from the target is 
calculated and is 81 as described above. The objective function is minimized by the optimizer 
based on the genetic algorithm. The constraint function is not defined, however, the lift coef-
ficient is implicitly constrained to be unchanged, because AE_target has the same equivalent 
area at the tail end (at x=63 m) as the PAI configuration. 

As a result of the optimization, the root tail-section has larger thickness to chord ratio and 
larger incidence angle (Fig. 19), causing larger lift and stronger shock wave. At the tip section, 
the incidence angle becomes smaller to cancel the lift increment at the root section, because 
lift coefficient is implicitly fixed at design CL (0.15). The Euler analysis of the optimized 
shape shows that the lift coefficient of horizontal tail is changed by only 0.2%, which demon-
strates the effectiveness of simplified method in the evaluation of lift change. Thanks to these 
changes of horizontal tail profile, the peak value of equivalent area is raised to meet the target 
(Fig. 20), and the aft boom is successfully fragmented into double shock waves (Fig. 21). The 
aft boom loudness, which is evaluated using the pressure signature where the pressure is nega-
tive, is reduced by 4.5 dB. The overall loudness is reduced by 2.9 dB. On the other hand, the 
drag is increased by 3 drag count mainly due to the thicker profile at the root section, though 
the smaller incident angle at the tip section contributes to the drag reduction. The nondomi-
nated front with respect to lift-to-drag ratio and sonic boom loudness obtained in WP3 is 
shown in Fig. 22. In this figure, the PAI configuration and the optimized shape are added. The 
reduction of lift-to-drag ratio is 1.8%. Though the optimization without the drag increment in 
the objective function (Eq. 1) is not performed, the nondominated front with respect to low-
boom and low-drag is expected to be obtained by changing the scale factor of drag increment 
(10 in this study). As for the sonic boom loudness, it is largely reduced to almost the same 
level of the reference glider, which indicates the effectiveness of the low-boom design tool. 
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Figure 19: Optimized profile of horizontal tail.                 Figure 20: Optimized equivalent area distribution. 
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Figure 21: Optimized sonic boom signature. 
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Figure 22: Nondominated front with respect to sonic boom and lift-to-drag ratio. 

4 CONCLUSION 

The low-boom and low-drag design of small size supersonic aircraft including engine inte-
gration perspective was conducted collaboratively by ONERA and JAXA. The validation of 
the numerical sonic boom prediction methodologies implemented at JAXA and ONERA has 
first been conducted using the experimental results of the D-SEND#1 drop test. This valida-
tion exercise showed an excellent code-to-code comparison and a good prediction of the ex-
perimentally measured sonic booms. These sonic boom prediction tools were then used in a 
numerical optimization process to improve the low boom characteristics of a initial glider air-
craft configuration. Regarding the engine integration, the side-body engine out of three engine 
layouts (i.e., over-wing, under-wing, and side-body engines) showed the best compromise be-
tween low-boom and low-drag by utilizing the nacelle shock wave. The engine integration has 
large impact on the sonic boom loudness especially at the aft boom showing a single shock 
wave, even when the engine is mounted on side-body. The equivalent area distribution re-
vealed the importance of the shock wave generated at the horizontal tail in reducing the aft 
boom loudness. Thus, the profile of horizontal tail was optimized to meet the target equivalent 
area distribution that was determined to realize double shock waves at the aft boom. The low-
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boom design tool with consideration of the change of lift distribution successfully fragmented 
the aft boom into double shock waves by strengthening the leading edge shock wave at hori-
zontal tail. The optimized shape realizes almost the same sonic boom loudness as the refer-
ence glider, which indicates the effectiveness of the low-boom design tool. 
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Abstract. New facility for experimental and computational studies of sonic boom from air-
craft is designed and manufactured in TsAGI. The equipment was mounted in supersonic wind 
tunnel with 0.6×0.6 m2 cross section. Tests were performed at Mach numbers 1.75, 2.0 and 
2.25 with the use of two different models, the first being the cone-cylinder body and the sec-
ond is the simplified supersonic airplane configuration with the triangle wing. The method 
implies the application of fluorescent pressure-sensitive paints for measurements of pressure 
distribution in the near field of the model. The experimental facility was designed using mod-
ern CFD approaches. Pressure distributions obtained in the near field of the model using the 
experimental method are compared with numerical simulations based on the software pack-
age ANSYS CFX. This comparison enables to estimate the possibilities of both the experiment 
and numerical simulation in prediction of the shock waves formation in the near-field of the 
disturbed flow. 
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1 INTRODUCTION 
The problem of the sonic boom influence on people and the environment became acute at 

the beginning of the 70th of the last century when the Soviet Tu-144 and the British-French 
“Concord” supersonic jets appeared in the sky. Flights of the civil passenger aircrafts with 
their regularity and proximity to big cities leads the sonic boom problem into the focus of in-
terest. The opinion of its low importance and far-fetched nature was quickly replaced by anxi-
ety and introduction of restrictive measures [1]. 

In the USA, the Federal Aviation Agency (FAA) prohibited flights of aircrafts at the super-
sonic speeds over the populated areas. The flights of aircrafts which can generate the sonic 
boom approaching the USA territory were also forbidden. In France and the UK such restric-
tions were not introduced at the state level, but the airlines did not allow flights with the sonic 
boom creation over the densely populated regions of these countries.  

In the Soviet Union after the beginning of Tu-144 aircraft exploitation the state standard 
(GOST 23552-79) was introduced which allowed the flights of the supersonic commercial 
aircrafts over the populated regions. The sonic boom level of 90 Pa ±20 Pa in the real atmos-
phere conditions was pointed out as acceptable one.  

 After certain weakening of interest to the supersonic transport in the 80th due to its eco-
nomical inefficiency, at the beginning of the 90th leading aviation countries and companies 
developed the investigations of possibility and expediency of creation of the second genera-
tion supersonic transport (SST-2). The topicality of this task is not decreasing nowadays. Spe-
cial interest is shown in the small-size supersonic business jets (SSBJ) with the mass of 40 to 
60 tons.  

 The aviation community closely approached to practical realization of the idea to create a 
new type of the airplane. Researches in this direction are made by “Lockheed-Martin” and 
“Gulfstream” companies in the USA, and by “Dassault Aviation” in the EU. In Russia such 
projects are supported by Sukhoi and Tupolev leading aviation design bureaus in cooperation 
with Central Aerohydrodynamic Institute (TsAGI) and Central Institute of Aviation Motors 
(CIAM).  

 Toughening of ecological demands to future generation of the aviation transport implies 
first of all the solution of the sonic boom problem for supersonic civil aviation. The  Interna-
tional Civil Aviation Organization (ICAO) ordered airlines to avoid unacceptable situations 
for people with the sonic boom (ICAO resolution A33-7, 1998) and requested the ICAO 
Council to take action to achieve an international agreement about measuring the sonic boom, 
quantitative and qualitative definition of the expression "unacceptable situation for the popu-
lation" and establish appropriate limits (ICAO resolution A38-18, 2013).  

Since the requirements to aircraft configurations for reducing sonic boom and for increas-
ing the aerodynamic quality are in contradiction, so for configurations with reduced level of 
sonic boom the problems occur to ensure acceptable aerodynamic characteristics and, conse-
quently, economic efficiency of the aircraft. 

Theoretical analysis of the phenomenon of sonic boom has now reached a sufficiently high 
level. In particular, in TsAGI algorithms and computer programs are developed on the basis 
of which formulated recommendations for the formation of the SST configurations of differ-
ent classes with a reduced level of sonic boom. The redistribution of the fuselage thickness, 
the deformation of its axis and different V-shape of the wing root and tip parts are used [2].  

2 METHODS OF EXPERIMENTAL STUDIES OF THE SONIC BOOM  
At present, in view of the difficulties in direct numerical simulation of the sonic boom 

phenomena, the calculation is based on an integrated approach. This approach consists in de-
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fining the parameters of disturbed flow in near field region using numerical methods based on 
integrating Euler equations or Reynolds-averaged Navier-Stokes (RANS) equations, and then 
calculating the parameters of the sonic boom at greater distances from the aircraft using the 
quasilinear theory [3]. When performing such calculations, a number of problems appear as-
sociated with both the description of the complex geometry of the aircraft and long computa-
tional domain (hundreds of plane lengths), where levels of disturbed pressure vary by several 
orders of magnitude. In this regard, the selection of complex configuration that provides low 
level of sonic boom and acceptable aerodynamic efficiency should go hand in hand with ex-
perimental research aimed at obtaining more reliable information.   

Full information about the parameters of the sonic boom wave generated in the real atmos-
phere, may be provided by the flight experiment. However, at the stage of research on the 
formation of the aircraft configuration, flight tests are extremely expensive, and their results 
are heavily dependent on atmospheric conditions, precision of the flight regimes simulation 
and other factors, and the information obtained is limited to existing types of aircrafts.  

Wind tunnels (WT) allow simulate with good accuracy the appearance of waves of sonic 
boom that provides the opportunity to explore:  

− the influence of the body shape and flow regime;  
− the influence of the lift force;   
− the influence of spatial effects;   
− the influence of flow non-uniformity;   
− the interaction of shock waves;   
− minimization of the sonic boom. 

3 SONIC BOOM SIMULATION IN THE WIND TUNNELS  
The possibility of modeling in WT the area of disturbed flow generated by a model of the 

aircraft, are determined by the transverse dimensions of the test section and the characteristic 
dimensions of the model. The size of this area (height) is determined by the similarity pa-
rameter, equal to the ratio of the realized model distance from the measuring base (H) to the 
length (or diameter) of model - K = Н/L. The size of the near field is about the length of the 
aircraft (K ~ L). The far zone, where the profile shape of the perturbed pressure acoustic 
shock wave is transformed into N-shaped wave, and the parameters are changed virtually as-
ymptotic is implemented at distances corresponding to hundreds lengths of the aircraft. The 
middle zone, being intermediate between the near and far zones, is characterized by the pres-
ence of the intermediate shock waves generated by the aircraft layout basic elements, such as 
wing consoles and nacelles. When the model length L = 0.1 m, even for implementing the re-
moval coefficient K = 100  the transverse dimension of the supersonic flow should be 10 m, 
which indicates a limited ability of the sonic boom modeling in existing WT.  

3.1 Experimental and computational method of the sonic boom modeling 
The combined experimental and computational method allowing to determine full dis-

turbed flow field generated by the supersonic airplane was developed in ITAM SB RAS  
[4, 5].  

The method is based on measurement of the flow characteristics in the near field of the 
model mounted in the wind tunnel test section, and then calculating the evolution of the 
measured pressure profiles at the long distances considering 2D or 3D character of flow [6].  

Experimental part is based on modeling of the sonic boom near zone in the WT of small 
dimensions T-313 (0.6 × 0.6 m) and T-325 (0.2 × 0.2 m) with relatively large models. In this 
case, the disturbed pressure measurements near model are performed either with a special 
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plate with array of pressure taps, or using the measuring probe in a dynamic mode (i.e. during 
continuous movement of the model relative to the probe).  

 
3.2 Implementation and development of experimental and computational method of 

the sonic boom modeling in TsAGI wind tunnels 
 
TsAGI assumes the introduction and development of the experimental-computational 

method of the sonic boom modeling in large industrial wind tunnels. At the first phase, this 
method is expected to be introduced into T-113 WT (similar to ITAM T-313).  

For this purpose, the bench for implementation of the experimental and computational 
method of the sonic boom studying was designed and mounted in T-113 wind tunnel. As stat-
ed above, for the static pressure field measuring in similar situation ITAM specialists used the 
coordinate mechanism with a probe or a special plate with pressure taps rows. In TsAGI the 
static pressure fields on the measuring plate surface were measured using the fluorescent pres-
sure transducers (pressure-sensitive paints, PSP). Application of the PSP method should in 
principle ensure the acquisition of continuous pressure distribution on the control surface in 
the near-field of the model, calculation of Zhilin's integral [7] on its basis and definition of the 
sonic boom wave profile at large distances using the quasi-linear theory. Yu. L. Zhilin 
showed that the desired asymptotically-remote solution at the certain assumptions may be as-
sociated with the near-field integral over a surface S2, placed at a relatively small distance 
from the airplane (about 0.1-0.5 of its length, Figure 1).  

The surface enveloping the control volume (Figure 1) is as follows. The surface S1 is a 
boundary between the disturbed and undisturbed flow (Mach cone), S2 plane is parallel to the 
x axis is located under the tested body without touching it. On this plane the isolated segment 
AB is outlined with points A and B lying on the intersection of plane S2 and surface S1. Planes 
S3 and S4 are the envelopes of the inverse Mach cones emanating from the segment AB.  

 
Figure 1: Control volume of the supersonic flow over the airccraft configuration. 

In the case when the plane S2 and the segment AB are perpendicular to the axis of y, for the 
direction "straight down", Zhilin's integral gives the following expression for calculation of 
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Here x0 — coordinate of the point of intersection of the S3 with the axis x; u and v are com-
ponents of the vector of the perturbed velocity along the axes x and y, 1М2   . For an 
arbitrary direction the coordinate system (x, y, z) may be selected so that the plane S2 and the 
segment АВ are perpendicular to the axis y.  

An important feature of the formula (1) is that at the fixed position of the plane S3 it is pos-
sible to change the distance of the plane S2 from the x-axis. For example, we can place this 
plane at a sufficient distance from the body so that the provisions of the linear theory would 
be valid (R  0.3...0.5 L), but at the same time a lot closer than it is required to establish the 
asymptotic behavior of the solution (R  3...5 L).  

PSP-method is based on the phenomenon of quenching of the organic luminophors lumi-
nescence by air oxygen. For implementing the method, the studied surface is covered with 
special paint which is a thin layer of polymer permeable to oxygen and containing molecules 
of the luminophor. The luminophor is excited by light of appropriate wavelength and then the 
luminescence intensity or the life time of excited molecules is measured. The luminescence 
intensity and lifetime is inversely proportional to the pressure. To control the accuracy of the 
PSP-method the measuring plate has a row of pressure taps in the central section. 

The designing of the test bench in T-113 wind tunnel was carried out with the assistance of 
modern software tools of computational fluid dynamics. The main goal of mathematical mod-
eling was to predict the flow structure in the near field of the model and calculate the distribu-
tions of the overpressure generated on the measuring plate. The simulation was carried out 
using the software ANSYS CFX [8] (TSAGI license No. 501024), based on solving the Rey-
nolds-averaged Navier-Stokes equations. 

The shock waves propagating from the model fall on the plate interact with the boundary 
layer and generate reflected shock waves. There is a complex three-dimensional flow pattern 
and interaction of shock waves with the boundary layer on the measuring plate and with each 
other. In order to adequately resolve the most important (from the physical point of view) 
phenomena, in the regions of interaction between shock waves and boundary layer on the 
plate surface the construction of appropriate mesh is required. An example of such a computa-
tional mesh is shown in Figure 2, [9]. 

 

  
Figure 2: View of the spatial structure of the computational mesh in the symmetry plane and on plate surface 

for modeling the propagation of shock waves on the plate 
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The results of mathematical modeling were also used for comparison with the experimental 
data. Comparison with the experimental pressure distribution on the measuring plate mounted 
at a certain distance from the model in the WT test section, allows for evaluating the possibil-
ity of experiment and numerical simulation in predicting the formation of shock waves in the 
near zone of disturbed flow. 

In the supersonic T-113 wind tunnel selected for testing a new technique there is no optical 
windows on the top and bottom walls of the test section and the PSP method has never been 
used here. Existing side-wall widows designed for Toepler device, do not pass ultraviolet ra-
diation required for the excitation of the PSP. It was decided to use PSP, which is excited by 
soft ultraviolet radiation passing through the side windows of the WT. This sensor was in-
vented and widely used in the USA [10] (in Russia is not patented). 

For fluorescence excitation the LED illuminator was used, and the luminescence was regis-
tered by two CCD cameras "VIDEOSCAN-V2-285/P1-33" with multiple exposure mode. 
Two cameras are needed to measure the lifetime of the luminescence. At the time of meas-
urement LED illuminator flashed for 100 s with a period of 220 s (4.54 kHz), while one 
camera has been accumulating the light intensity of the coating during the flash (first 50 s), 
and the second after the flash for 110 s. 

The experimental studies were carried out both without models in the test section of WT 
and with two generating near-field models representing a schematized supersonic delta-wing 
plane and the axisymmetric cone-cylinder configuration. The tests were conducted at three 
Mach numbers: M = 2.0, 2.25 and 1.75. The scheme of the model and the measuring plate ar-
rangement in the WT test section is shown in Figure 3.  

 

 
Figure 3: Experimental equipment in TsAGI T-113 WT. 

The comparison of calculated and measured (using the PSP-method) pressure coefficient 
distributions on the measuring plate when the shock waves are generated by the delta-wing 
plane model at M = 2 are shown in Figure 4. 

CCD-
camera 

Model 

Measuring plate
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Figure 4: Pressure coefficient distributions over the measuring plate generated by the delta-wing plane model 

at М = 2: CFD prediction (a), PSP-measurements (b). 

As can be seen from the above data, the position of the shock waves arriving at the measur-
ing plate from the model agrees well with the CFD results. 

Pressure perturbations registered by the control plate when testing models contain distur-
bances of an empty WT. To improve the results of pressure distribution measurements on the 
control plate, the background distributions obtained in empty WT are subtracted from the ini-
tial data. Then, on the basis of the Zhilin's integral [7], the derivative of the cross section area 
of equivalent body of revolution and pressure coefficient at the middle cross section of the 
measuring plate is calculated. The procedure of subtraction of "background" values of the 
pressure coefficient distribution registered by the measuring plate in empty WT, can signifi-
cantly improve the final pressure distribution and the derivative of the cross section area of 
equivalent body of revolution. These results are used further to determine the intensity of the 
sonic boom wave on the ground. 

Sonic boom can be calculated using as the derivative of the cross-section area of the equiv-
alent body of revolution dS/dx and the pressure distribution in the initial sound wave, however, 
the calculation with the use of dS/dx should give a more accurate result. 
Red color in Figure 5 shows the distribution obtained from the numerical solution of the Euler 
equations. 

Comparison of the results obtained by numerical methods with the experimental data of the 
first tests allows us to make conclusions about the prospects of the PSP-method in the studies 
of the near-field of aircraft models in the supersonic wind tunnel. At the same time, the analy-
sis of the experimental results and their processing to obtain the source data in the form of de-
rivative of area of the equivalent body of revolution showed the following: 

1) In the WT tests without models, high level of the background disturbances is detected. 
Sometimes these disturbances are of the same order of magnitude as the values, induced by 
the shock generators (configurations "wing-body" and "cone-cylinder").  

2) Flow disturbances, generated by tested configurations ("wing-body" and "cone-
cylinder") may be effectively refined by means of subtraction of the corresponding back-
ground pressure coefficient field.  

3) In further research on determination of initial data for solution of the sonic boom prob-
lem it is necessary to improve the accuracy of the pressure coefficient measurements. 
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4) For further studies some geometrical parameters should be changed, for example, it is 
necessary to place the measuring plate closer to the model. This should lead to higher levels 
of induced perturbations, reduce the impact of side effects on the edges of the plate and to en-
sure more uniform flow on it.  

 
Figure 5: Distribution of the derivative of the cross-section area of equivalent body of revolution used for the 

sonic boom prediction (a), and the shock wave signature (b). 

4 CONCLUSIONS  

 On the basis of numerical simulation results, the test bench for sonic boom studies is de-
signed and assembled in TsAGI T-113 WT. New test bench should allow for realization 
of experimental and computational method of the sonic boom prediction.  

 For measurements of the static pressure distributions in the model near-field (on the 
measuring plate surface) the pressure-sensitive paints (PSP) method is used. Application 
of the PSP method should in principle ensure the acquisition of continuous pressure dis-
tribution on the control surface in the near-field of the model, calculation of Zhilin's inte-
gral on its basis and definition of the sonic boom wave profile at large distances using the 
quasi-linear theory.  

 In the WT tests without models, high level of the background disturbances is detected on 
the measuring plate surface. Sometimes these disturbances are of the same order of mag-
nitude as the values, induced by the shock generators (configurations "wing-body" and 
"cone-cylinder").  

 Flow disturbances, generated by tested configurations ("wing-body" and "cone-cylinder") 
may be effectively refined by means of subtraction of the corresponding background 
pressure coefficient field. 

 In further research on determination of initial data for solution of the sonic boom prob-
lem it is necessary to improve the accuracy of the pressure coefficient measurements. 
Recommendations are drawn for changes in some geometric parameters of the test bench. 
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Abstract.  The determination of the global optimized (GO) shape of a flying configuration 

(FC), leads to an enlarged variational problem with free boundaries. An own developed evo-

lutionary iterative optimum-optimorum (OO) strategy was developed in order to solve this 

problem. The GO shape of the FC is chosen among a class of elitary FCs. A lower limit 

hypersurface of the drag functional as function of the similarity parameters of the planforms 

of elitary FCs of the class is used and the elitary FC, which coresponds to the minimum of 

this hypersurface is, in the same time, the GO shape of the class. The iterative OO strategy 

uses, in its first step of iteration, analytical start solutions for the determination of the inviscid 

GO shape of FC, as surrogate model. The OO strategy and own developed software were 

used for the determination of inviscid GO shapes of three surrogate models, namely of 

ADELA (a delta wing alone) and of FADET I and FADET II, (two fully-integrated wing-

fuselage configurations). These surrogate GO models were optimized with respect of inviscid 

minimum drag, respectively, at cruising Mach numbers  0.3,2.2,2M
 
 . Further, the fric-

tion drag coefficients of the surrogate models are computed by using own developed hybrid 

solutions for the Navier-Stokes PDEs and are checked for the structure point of view. The it-

erative OO strategy uses, up its second step of iteration, the total drag as new functional  and 

the analytical start solutions are replaced with Navier-Stokes solutions. A  GO shape of a 

space vehicle model, in form of CATAMARAN II, which is optimized with respect of minimum 

drag, at Mach number  0.3M
 
 , is proposed. It can be usefull for the design of performant 

sub-orbital space vehicles and for UAVs,  It flies shock free, without sonic boom interference, 

has a reinforced structure and presents a high value of  ./ DL        
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1 INTRODUCTION 

   The exploration of the space has taken a tremenduous development. The new scientifical research 

and the high technical performances make some dream of humans being a reality. At the same time 

more business, scientists and tourist travelers are interested to have faster intercontinental aircraft and 

to observe the earth during aerospace voyages. New cosmodromes are constructed and suborbital 

flights are planned by Virgin company,  in order to respond to this increasing travel interest and to re-

alize cheaper travels by increasing the number of passengers and by building more economic and eco-

logic acceptable supersonic transport aircraft (STA) and low earth orbit (LEO) space vehicles. The 

main aim of the design of GO shapes of supersonic FCs is to use them to increase the aerodynamic 

performances of aircraft and space vehicles.  

    The classic optimization of the shape of a FC consists in the determination of its surface of FC wuth 

fixed planform in order to reach a minimum drag at cruise. Such classic optimized shapes of FCs are 

here called elitary FCs.  The shape of FC is GO if its camber, twist and thickness distributions and 

also the similarity parameters of its planform are simultaneously optimized in order to reach a mini-

mum drag, at a chosen cruising Mach number. The determination of the GO shape of FC leads to an 

enlarged variational problem with free boundaries, which needs a special mathematical treatment. The 

own developed optimum-optimorum (OO) and iterative optimum-optimorum (IOO) theories are spe-

cial strategies for the determination of the GO shape of the FC, inside of a class of elitary FCs, which 

satisfy some common properties, as in  [1-4].  

2 DETERMINATION OF THE INVISCID GLOBAL OPTIMIZED SHAPE OF A  

SURROGATE MODEL 

    Let us firstly consider an integrated wing-fuselage FC with arbitrary camber, twist and 

thickness distributions, which is flying at the cruising Mach number 
M .  Dimensionless co-

ordinates are used for the computation of the distributions of velocity's components: 
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    Further, integrated wing-fuselage FCs are considered, namely, for which the mean surface 

is continuous and the thickness distributions on the wing and on the fuselage are different and 

along the junction lines wing-fuselage they have the same tangent planes. The downwashes 

on the thin and thick-symmetrical components of the integrated FCs, w  and  w , 'w  (on the 

wing and on the fuselage of FCs) are supposed to be expressed in form of superposition of 

homogeneous polynoms with arbitrary coefficients, namely: 
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The  coefficients of the downwashes  and  the similarity  parameter B   ( 11 / h   , 

12  MB  ) ,  of the planform of the wing are the free parameters of the optimization and  

11,, h   are the   dimensionless span, the half-span and the depth of the planform of the del-

ta wing.  The quotient of the similarity parameters of the wing and of the fuselage, which de-

pend on the purpose of the FC, is supposed constant.  If the principle of minimal singularities 

(which fulfill the jumps of the velocity's components) and the hydrodynamic analogy of Cara-

foli are used, the following expressions for the axial disturbances of the thin and of the thick- 
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symmetrical components of the integrated wing-fuselage FC with subsonic leading edges are 

obtained, as in [1]: 
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    The lift and the pitching moment coefficients of the integrated wing-fuselage FCs, comput-

ed with the hyperbolic potential theory, are the following: 
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The inviscid drag coefficients of the thin, thick-symmetrical and thick, lifting FCs with re-

tracted flaps are quadratic forms with respect of the downwashes coefficients : 
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     The hyperbolic integrated solutions for the axial disturbance velocity given in (3a,b) are 

used as start solutions for the determination of the inviscid GO shape of the wing-fuselage 

FC, which is of minimum drag at cruising Mach number. The free parameters of the optimiza-

tion are the coefficients of the downwashes  ,w
  

w  and 'w   and also the similarity para-

meters of the planforms of the wing and of the fuselage.  Further it is supposed that the quo-

tient of these similarity parameters, which is determined for the purpose of the FC, is consid-

ered constant.  
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    The constraints of the inviscid GO shape's design are: the given lift, pitching moment and  
the Kutta condition along the subsonic leading edges of the thin FC component (in order to 

cancel the induced drag at cruise and to suppress the transversal contournement of the flow 

around the leading edges, in order to increase the lift) and the given relative volumes of the 

wing and of the fuselage zone, the cancellation of thickness along the leading edges and the 

new introduced integration conditions along the junction lines between the wing and fuselage 

zone of the thick-symmetrical FC component (in order to avoid the detachment of the flow 

along these lines).  According to the optimum-optimorum strategy, the GO shape of the FC is 

searched among the elitary FCs with the same area of their planforms which belong to the 

same class of FCs. The class is defined by the common properties of the elitary FCs, which 

belong to this class. The similarity parameter   of the planform of FC is sequentially varied 

and a lower limit-line of the inviscid drag functional of elitary FCs, as function of this similar-

ity parameter  , is obtained.  For FCs with subsonic leading edges, is: 0 <   < 1 .  The posi-

tion of the minimum of this limit-line gives the optimal value of the similarity parameter 

opt   and the corresponding elitary FC is, at the same time, the GO FC of the class. 

The author has used the OO strategy for the determination of the GO shapes  of  three 

models, namely, ADELA (a wing alone) and FADET I and FADET II (two fully-integrated 

wing-fuselage FCs), which are of minimum drag  at , respectively,  cruising Mach numbers 

.3;2.2;2M
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1a,b The Global Optimized Model FADET II 
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Fig. 2a,b The Agreement of the Theoretical Determined Lift and  Pitching Moment Coefficients of the   Global 

Optimized Model FADET II with the Experimental Results 

 

 

           

 

 

Fig. 3a-c Comparison of Theoretical and Experimental 

Determined Pressure Coefficients on the Central Longitu-   

dinal Cut of the Global Optimized Model FADET II , at 

the Angles of Attack  8,0,8
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    In the (Figs. 1a,b) are  presented two views of the GO shape of the fully-integrated  Model 

FADET II. It was measured in the trisonic wind tunnel of DLR-Cologne, in the frame of re-    

search projects of the author, sponsored by the DFG. The comparisons of theoretical and ex-

perimental-correlated values of the lift and pitching moment coefficients of all these models 

were in very good agreements with the experimental results.  In the (Fig. 2a,b)  are presented 

these agreements  for the lift and pitching moment coefficients  of  the model FADETt II with 

subsonic leading edges at moderate angles of attack, as exemplification. 

  In the (Fig3a-c) are presented the agreements between the theoretical predicted and the 

measured pressure coefficients along the central longitudinal cut of the model FADET II at 

moderate angles of attack   8,0,8   . 

 

3    HYBRID SOLUTIONS FOR THE THREE-DIMENSIONAL COMPRESSIBLE 

NAVIER–STOKES LAYER 

      The new developed, hybrid, meshless solutions  for the boundary value problems of the 

PDEs of the Navier-Stokes layer, proposed here, use the hyperbolic potential solutions of the 

flow on the same FC twice, namely: at the NSL's edge (instead of parallel flow used by 

Prandtl in his boundary layer theory) and in the structure of the velocity's components, which 

are expressed inside the NSL, as products between the corresponding potential velocity's 

components with polynoms with arbitrary coefficients, versus a spectral variable. These co-

efficients are used to satisfy the NSL's PDEs, in an arbitrary chosen number of points. Let us 

firstly introduce a spectral variable: 
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    The proposed forms for the hybrid numerical solutions of the velocity's components are , as 

in [1-4],  the following: 
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    The here introduced logarithmic density function lnR  and the absolute temperature 

T are the following: 
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     The pressure  p  is computed by using the physical equation of perfect gas and, for the vis-

cosity   , an exponential law is used 
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The free coefficients iiii rwvu ,,, and it are used to satisfy the NSL's PDEs in some chosen 

points.  If the hybrid forms for the velocity's components (7a-c) are introduced in the continui-

ty's PDE and the collocation method is used, the coefficients ir are determined only as func- 
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tions of the coefficients of the velocity's components, by  solving a linear algebraic system  

and the coefficients it  satisfy the PDE of absolute temperature and are also obtained only as 

functions of the coefficients of the velocity's components by solving of a transcendental alge-

braic system. A splitting of the NSL's PDEs is obtained and the physical entities are expressed 

only as function of the spectral coefficients of the velocities components and can be easy up-

dated in an iterative process. A speed up of computation time is obtained. The coefficients of 

velocity's components are determined by using the impulse PDEs, which are iteratively solved, 

as in [1-4]. 

     The hybrid solutions for the NSL presented here are reinforced  numerical solutions, which 

present important analytical properties, namely: they have correct last behaviors, they have 

correct jumps  due to the singularities located only along the singular lines (like the junction 

lines wing-fuselage and the subsonic leading edges of the wing of the FC ) obtained  accord-

ing to the principle of minimal singularities which fulfil the jumps and the singularities are 

balanced, they are accurate because the partial derivatives of velocity’s components can be 

exactly computed, they are split due to the use of the logarithmic density function and there-

fore they produce a speed up of the computation time, they fulfil automatically the non-slip 

condition on the FCs surface, they are matched with the outer potential flow and for moderate 

perturbations, they are reduced to the potential solutions at the NSL’s edge and they do not 

need interface. Additionally, for hyperbolic PDEs the boundary condition on its characteristic 

surface is automatically fulfilled.  

    The hybrid solutions of the NSL's PDEs are useful for the computation of the friction drag 

coefficient of the FC. The skin friction coefficient at the wall takes the form: 
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     The friction drag coefficient and the total drag of the FC, with arbitrary camber, twist and 

thickness distributions are: 
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      These hybrid NSL's solutions are also used for the viscous design of the GO shape of FC. 

 

3 THE ITERATIVE OPTIMUM-OPTIMORUM STRATEGY 

    The viscous iterative OO theory of the author is proposed for the viscous determination of 

the GO shape of the FC in order to present a total minimum drag at cruising Mach number. 

The viscous iterative OO strategy uses the inviscid hyperbolic potential solutions as start solu-

tions and the inviscid GO shape of these FCs as surrogate models, only in its first step of iter-

ation. An intermediate computational checking of this inviscid GO shape of the FC is made 

with own hybrid solvers, for the three-dimensional compressible NSL. The friction drag coef-

ficient )( f

dC of the FC is computed and the inviscid GO shape is checked also for the structure 

point of view. A weak interaction aerodynamics-structure is proposed. Additional or modified 

constraints, introduced in order to control the camber, twist and thickness distributions of the 

GO shape, for structure reasons, are here proposed.  In the second step of optimization, the 

predicted inviscid GO shape of the FC is corrected by including these additional constraints in 
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the variational problem and of the friction drag coefficient in the drag functional. The chart 

flow of the iterative OO strategy is given in the (Fig. 4).   

 

   

 
 
                                            4. The Iterative Optimum-Optimorum Strategy 

 

4 THE PROPOSED AEROSPACE VEHICLE MODEL FOR LEO  

The main aim of the design of new GO shapes of supersonic FCs is to use  them to increase 

the  aerodynamic performances of supersonic transport aircraft (STA) and of low earth orbit 

(LEO) space vehicles  and to build new supersonic FCs , which are more economical and eco-

logical acceptable.   

The proposed GO shape of Catamaran II with respect of minimum drag, at cruising Mach 

number  3M  is presented in (Fig. 5). It has twin fuselages, partially embedded in the 

thickness of the GO FCs.  

    

 
                              

                                    Fig. 5 GO Shape of Catamaran II  

 

The following benefits are expected by using such GO shapes of FCs: 

- Due to the global optimization with respect of minimum drag the GO shape are economical, 

chiper for passengers and produce less polution; 

3628



 

 

______________________________________A. Nastase___________________________________________ 

 

 

 

 

Due to the premises and of judicious choose of constraints it fly shock free, has no sonic 

boom interference and has  more stiffness. 
 

5 CONCLUSIONS  

The Catamaran II can be used also as sources of inspirations for the shapes of the future new gene-

ration of aerospace vehicles for sub-orbital flights and for UAVS. 

    The Catamaran II has some advantages, when it is compared with the FCs with one, central, non-

integrated fuselage, carrying the same number of passengers, at the same cruising Mach number: 

•   it flies with a shock-free surface; 

•   it has no sonic boom interference because it flies with one characteristic surface (the classical FCs 

with one central non-integrated fuselage flies with two shock surfaces, one produced at the frontal part 

of the fuselage and the other at the roots of the wing and in their intersection zones, the sonic boom 

interference occurs); 

•  it has a better structural stiffness and increased lateral  stability; because instead of one long fuse-

lage there are two twin fuselages embedded in the wing, with half length; 

•  it needs less trim because the weight is better distributed and the pressure center and the center of 

gravity points are closer together; 

•  it has a higher L/D, due to global optimization, full integration, of flattened form and due to the ful-

filling of the Kutta condition along its subsonic leading edges, which avoids the leading edges con-

tournements, which cancels the induced drag, destroys the leading edge vortices and increases the 

lift, not only at cruise, but also for large ranges of Mach numbers and angles of attack.  

  The proposed GO shapes of supersonic FCs look like birds in gliding flight!  
                   

   REFERENCES 

 
  [1]   A. Nastase,  Computation of Supersonic Flow over Flying Configurations, Elsevier, Oxford, UK, 2008  

 

  [2]   A. Nastase,   Evolutionary, Iterative Optimum-Optimorum Theory, INCAS Bulletin, Vol. 2, Number 4, 

           Bucharest, Romania pp. 153-161 (2010)  

 

  [3]   A.  Nastase,  Multipoint and Iterative Aerodynamical Global Shape's Optimization, Proceedings of Evolu-

tionary and Deterministic Methods for Design, Optimization and Control of Eurogen 2011, Paper 30 , 

CIRA, Italy  (2011). 

  [4]   A. Nastase,  Hybrid Navier-Stokes Solutions for Aerodynamical, Global Optimal Shape's Design,  Pro-

ceedings of  International Conference EngOpt,  Paper 750, Rio de Janeiro, Brazil, (2008). 

 

 

3629



ECCOMAS Congress 2016 

 VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 
Crete Island, Greece, 5–10  June 2016 

SHAPE IDENTIFICATION ANALYSIS OF CAVITY                                  

IN RESIN STRUCTURE BASED ON                                                                 

THERMAL NONDESTRUCTIVE TESTING METHOD 

K. Maruoka1, T. Kurahashi2, and T. Iyama3 

1 Graduate School of Nagaoka University of Technology 

1603-1 Kamitomioka, Nagaoka, Niigata, Japan 

e-mail: s133075@stn.nagaokaut.ac.jp 

2 Nagaoka University of technology 

1603-1 Kamitomioka, Nagaoka, Niigata, Japan 

e-mail: Kurahashi@mech.nagaokaut.ac.jp 

3 Nagaoka National College of Technology 

888 Nishikatakai, Nagaoka, Niigata, Japan 

e-mail:  iyama@nagaok-ct.ac.jp 

Keywords: Shape identification analysis, Thermal nondestructive testing method, Finite ele-

ment method, Adjoint variable method, Gaussian filter. 

Abstract. The shape identification analysis is carried out to obtain the unknown defects 

shape in the structure based on the finite element and the adjoint variable methods. In this 

study, the test piece including the known defect shape is employed to solve the shape identifi-

cation problem. In addition, we present the shape identification problem of cavity in resin test 

piece made by 3D printer using the observed temperature on the test piece surface. It is 

known that the temperature on top of the test piece is not uniformly distributed, if there are 

cavities in the test piece. Furthermore, according to practical experiment, it has been con-

firmed that the characteristic of the temperature distribution depends on cavities size. The 

thermal physical constants, i.e., the thermal conductivity and the convection coefficient, are 

identified for the model of the test piece including a cavity based on the experimental data, 

and the shape identification analysis is carried out. In the numerical analysis, the finite ele-

ment method is applied to simulate the temperature distribution in the test piece, and the ad-

joint variable method is employed to identify the cavity shape.
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1 INTRODUCTION 

Thermal testing method is known as a kind of non-destructive testing for estimating corro-

sion in structures in fields of civil and mechanical engineering. This testing method is intend-

ed to find out existence of defects by thermal image of thermography. In addition, it has the 

advantage that can give defect inspection through the positon of surfaces. An example of a 

thermal image of the top surface of test piece having a cavity which is heated from the lower 

surface is shown in Figure 1. Then outer and inner test piece have different temperatures, be-

ing able to estimate that the test piece has a defect. However there are some cases too difficult 

to find out defects, depending on the size and depth of the defects. On the other hand, by ap-

plying a thermal testing method, studies to identify the defect shape by inverse analysis meth-

od from time history of temperature [1, 2] is carried out. In previous studies, it is concluded 

that the corrosion shape of the concrete can be identified if assuming the initial corrosion 

shape as appropriate. In the fields of optimal control problems, the study about reduction of 

convergence for performance function [3, 4]. 

In this study, we use the resin structure created by 3D printer such that the shape of cavity 

is freely changed. The purpose of this study is to identify the cavity shape based on the in-

verse analysis, and to carry out the improvement of the treatment in computation of the shape 

identification. 

 

Figure 1: Heat image 

2 EXPERIMENT BY THERMAL NONDESTRUCTIVE TESTING METHOD 

2.1 Measurement situation  

The photo of experiment is shown in Figure 2, and the drawing of test piece used this study 

is shown in Figure 3 (a). The sample has been made of ABS resin and created by 3D printer. 

Then a test piece with a cavity having a thickness of 10mm and a test piece without cavity are 

also created. Pair of test pieces (15mm thickness cavity, no cavity) are set on hot plate, heated 

up for 1200 seconds, and thermal observation at two observation points on the surface with a 

thermocouple is carried out every 10 seconds. Observation point is placed on the upper sur-

face of the thick point (Point A) and thin portion (Point B) of the cavity thickness (See Figure 

3(b)). 

2.2 Observational result  

The measured temperature history at Point A and Point B is shown in Figure 4 (a) and (b). 

As a result, without relation to presence or absence of the cavity, there are no big difference in 

temperature history observed at Point B. However, in Point A, it is confirmed a tendency that 
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Figure 2: Photo of observation 

 
(a) Drawing of the test piece                          (b) Observation point 

Figure 3: Detail of the test piece 

the temperature of the test piece with a cavity increases more than the test piece without a 

cavity at the same time. This is considered to effect due to the influence of heat transfer from 

the air which is heated in the cavity. Similar experiment are also carried out using a test piece 

with a cavity having a thickness of 10mm. The temperature history measured at Point A and 

Point B is shown in Figure 5 (a) and (b). From the results, it is found that the temperature dif-

ference at Point A is small compared the case with a test piece cavity thickness 15mm. Thus, 

the thickness of the cavity difference, it can be seen that the result is a difference in the tem-

perature history at the test piece surface. 

3 SHAPE IDENTIFICATION ANALYSIS  

Using thermal properties found out previous chapter, the shape identification analysis is 

carried out. Initial shape model is given as including the cavity thickness 13mm, we set target 

shape as cavity thickness 15mm. 

3.1 State equation  

Formulation in the shape identification analysis is described below. In this study, the whole 

domain of the test piece is denoted as Ω. Then temperature distribution   satisfies heat transfer  
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(a)At Point A                                                                 (b) At Point B 

Figure 4: Time history of temperature of resin surface (1) 

         
(a)At Point A                                                                 (b) At Point B 

Figure 5: Time history of temperature of resin surface (2) 

equation shown in Equation (1). For the heat transfer equation, initial condition and boundary 

condition are defined as Equations (2).  
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where ρ, c, κ, ni, h1, h2, inf  and 
cav  denote density, specific heat, thermal conductivity, unit 

normal vector, heat transfer coefficient of inside cavity, heat transfer coefficient of outside 

surface, surrounding temperature, temperature inside cavity. Γ1 means lower surface, Γ2 

means outside surfaces, and Γ3 means surface of cavity (See Figure 6). 

3.2 Performance function 

To evaluate computed temperature history, following performance function is defined. 
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Figure 6: Boundary definition of the test piece 

where tf, R, and
obs   mean heating termination time (Total time), weight diagonal matrix, ob-

served temperature. 

3.3 Lagrangian function 

Applying adjoint variable λ, following Lagrangian function is obtained to minimize perfor-

mance function [6, 7]. The adjoint variable method is one of the minimization technique of 

the performance function, and is suitable for the inverse problems such that a lot of unknown 

parameters should be solved. 
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First variation which is necessary condition that Lagrangian function become minimization is 

shown in equation (5). Stationary condition is given as condition that each terms equal zero. 
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where xi indicates transplantable nodes. 

3.4 Finite element equation 

Shape function for four-node tetrahedral element is introduced into state equation to discre-

tize the state equation spatially with Galerkin method. In addition, the equation is discretized 

in time based the Crank-Nicolson method. The finite element equation is shown in equation 

(6). 

 eeeee inTH  　　}{}]{[}]{c[M  e    (6) 

In equation (6), [Me], [He], and {Te} indicate: 

    dM T

eee e
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    dH T

ieiee e
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32

 (9) 

where q means thermal flow late. Superposing finite element equation for individual domain, 

such equation can be represented as equation (10). 
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3.5 Adjoint equation 

From the first variation of the Lagrangian function, following adjoint equation and condi-

tions are obtained. This equation manifests oneself as adjoint problem to calculate λ. 
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3.6 Gradient vector of the Lagrangian function 

Final term in equation (5) can be calculated with adjoint variable as following equation: 
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Nodal positions are updated with gradient vector. In this method, the update of the coordinate on 

cavity surface and the re-evaluation of the temperature difference at observation points are 

iteratively carried out according to steepest descent method [7]. 

3.7 Computational condition 

The finite element model of the test piece is shown in Figure 7. The model is composed four-node 

tetrahedral element. Total number of nodes are 1460, and total number of elements are 5552. The 

computational conditions are referred to experiment and given as Table 1. Thermal properties for the 

test piece is given as shown in Table 2 considering the thing which the ABS resin is not filled enough 

as shown in Figure 8. The observational data at Point A in the previous experiment (See Figure 4 (a)) 

is employed as observed temperature. In addition, the time history of temperature on the hot plate and 

temperature within the cavity as boundary conditions are shown in Figure 9 (a) and (b). 

 

 

Figure 7: Finite element model 
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Total number of nodes 

Total number of elements  

Total time tf, sec 

Time increment Δt, sec 

Time step 

Convergence criterion ε 

1460 

5552 

600 

10 

60 

10-6 

 

Table 1: Computational condition. 

 Density ρ 

 

Kg/m3 

Specific heat c 

 

J/(kg℃) 

Thermal conductivity κ 

 

W/(m2℃) 

Heat transfer coefficient h 

Outside surface 

W/(m2℃) 

 

 

Cavity 

W/(m2℃) 

ABS 750 1386 0.1354 10.0 7.0 

 

Table 2: Example of the construction of one table. 

 

Figure 8: Cross-section of test piece 

       
(a) On the hot plate                                                            (b) In the cavity 

Figure 9: Time history of temperature of resin surface 

3.8 Computational result 

Figure 10 (a) shows identified shape of the cavity and Figure 10 (b) shows variation of normalized 

performance function per iteration number. Final iteration number is 18, performance function is about 

0.55 when converting initial performance function into 1. However surface of the cavity becomes un-

dulation, targeted shape as 15mm thickness cavity cannot be obtained. 
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(a) The shape of the cavity at the final iteration                      (b) Variation of performance function 

Figure 10: Computational results (1) 

4 SMOOTHING PROCESS 

 The smoothing process for gradient vector is introduced to modify the oscillation of the 

gradient vector with respect to coordinate on cavity surface. For the smoothing method, 

Gaussian filter [8] is employed. Looking at the surface of the cavity as two-dimensional sur-

face, the gradient vector is smoothed. 

4.1 Gaussian filter 

Gaussian filter is a kind of the smoothing filter for the field of graphics. In smoothing method with 

Gaussian filter input of weighting parameter, value of the target nodes is determined by value of all 

nodes on the same plane. And the Gaussian filter has the advantage that the extent of the smoothing 

process is adjustable with the parameter σ. The weighting parameter in Gaussian filter [9] is defined as 

following equation: 
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where x and y is the distance of x-axial distance and y-axial distance between the target node 

and referenced node. The weighting parameter becomes large value if the distance is short. 

The parameter σ which is comparable to the variance in Gaussian distribution determines flat-

tening of the distribution. In addition, as the summation of the weighting parameter for the 

target node becomes 1, we multiply the weighting parameter by the summation. The 

weighting parameter for node m to node n is shown in following equation: 
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where cx means the number of nodes on the surface, x(m) and y(m) mean x-coordinate and y-

coordinate of the node m. Then smoothed gradient vector is computed, the calculating formula 

is represented as following matrix form: 
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4.2 Shape identification introducing Gaussian filter 

In the Gaussian filter, the parameter σ is given as 20, and the shape identification analysis is carried 

out. The identified shape of the cavity is shown in Figure 11 (a). The surface of the cavity is smoother 

than the result without smoothing process in previous section. As the variation of performance func-

tion, in the case using Gaussian filter, number of iteration is larger and performance function is lower 

(See Figure 11(b)). It is confirmed that the temperature comes closer to observed value by applying 

smoothing process. 

    

(a) The shape of the cavity at the final iteration                      (b) Variation of performance function 

Figure 11: Computational results (2) 

5 CONCLUSIONS  

In this study, the shape identification problem of the cavity in the structure based thermal 

testing method is carried out. The test piece including a cavity that the shape is variable 

made by 3D printer is heated from undersurface and the temperature is observed. The 

shape identification analysis, based the finite element method for four-node tetrahedral 

element and adjoint variable method, discretizing equations spatially and temporally with 

Galerkin method and Crank-Nicolson method, is carried out. In the identification process, 

Gaussian filter is employed to smooth the movement of nodes. The results in this study 

are shown below. 

 When the test piece is heated from lower surface, the temperature of the test piece includ-

ing a cavity is higher than the one without cavity at the same observation point and time, 

the temperature at face just above the cavity is especially high. 

 The temperature history of the test piece on heating changes depending on the cavity size, 

the temperature becomes highly as the cavity is larger. 
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 Using Gaussian filter and smoothing gradient vector, the identified shape of the cavity is 

smoother than the result without smoothing process, and calculated temperature comes 

closer to observed temperature. 
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Abstract. This work describes the design and installation of a permanent system for the 

structural monitoring of Palazzo Lombardia Building in Milano. This is one of the high rise 

buildings (162 m tall) built in Milano in the last few years and is actually the seat for the re-

gional government.  A dynamic testing of the building was performed during the construction, 

highlighting the main vibration frequencies and the associated mode shapes. Now that the 

building is fully operational the public administration asked for the installation of a monitor-

ing system in order to satisfy the following requirements: (i) monitoring the evolution of the 

dynamic parameters identified during the previous testing phase, (ii )monitoring the vibration 

to assess comfort and serviceability against the wind, (iii) monitoring the static behavior of 

Core 1 (tallest tower), (iv) having a continuous monitoring to capture exceptional events 

To this aim a continuous monitoring system was developed relying on high sensitivity pie-

zo-accelerometers, low-noise high stability clinometers and a wind measurement station. The 

system has been installed and is fully operational since the end of October 2015. The system 

is described in details in this paper and the first results in terms of vibration and static behav-

ior evolution are presented. Starting from these data a continuous modal parameter extrac-

tion will be developed and implemented. 
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1 INTRODUCTION 

In the last few years a number of high rise buildings have been built in the center of the 

Italian city of Milano completely changing the city skyline. Among them the Palazzo Lom-

bardia was the first to be built and is the current seat for the regional government.  

Due to the building strategic relevance, a number of dynamic tests have been performed at 

the end of the construction phase in order to assess the structure dynamic behavior and update 

the FE model to seismic resistance purposes [1,2,3]. After these tests the first principal vibra-

tion modes and their associated mode shapes are known and set the base for the planned long 

term monitoring of the structure.  

As other important buildings in town [4,5,6], the public administration asked for a continu-

ous monitoring system in order to be able to detect and prevent possible problems in terms of 

comfort and structural failures, and to be able to assess the structural status after exceptional 

events such as earthquakes.  

In order to fulfill the request, and after all the bureaucratic issues were accomplished, a 

permanent monitoring system has been designed, installed and is now running in the building. 

The main aims of the system are: 

• Monitoring the evolution of the dynamic parameters identified during the previous 

testing phase 

• Monitoring the vibration to assess comfort and serviceability against the wind 

• Monitoring the static behavior of Core 1 (tallest tower) 

• Having a continuous monitoring to capture exceptional events 

The idea is to exploit the data that will be available to set-up a health monitoring procedure 

of the core 1 structure [7,8].  

In this paper, after a brief description of the building structure is shown, the monitoring 

system layout is presented in terms of sensors and data acquisition/storage devices. In the last 

section the first results coming from the monitoring system are presented. 

2 STRUCTURE DESCRIPTION 

The “Palazzo Lombardia” building is the first in a series of high rise buildings which have 

been built in Milano in the last years. It is the current seat for the Regional Government and 

offices and therefore considered of strategic relevance. The complex is made up of five lower 

buildings (about 40m high, called Cores 2, 3, 4, 5 and 6), surrounding the high-rise Tower 

(Core 1), which scored, at the time of construction, the new height record in Italy. The com-

plex sinuous interweaving strands recall the mountains, valleys, and rivers of the Lombardia 

region.  

The curvilinear shapes of the buildings, while having a very strong aesthetical impact, are 

also strongly reflected in the irregular plan-wise configuration of the complex, which, at its 

center, defines an inner covered public ‘plaza’(Piazza Lombardia), having an area of about 

4200 m
2
, covered by a steel truss system supporting transparent Texlon ETFE (ethylene-co-

tetrafluoroethylene) cushions. In Figure 1, the six buildings, or Cores (1-6), making up the 

complex are visible. 
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Figure 1 Palazzo Lombardia: the whole complex 

The structural system is entirely made up of reinforced concrete load bearing elements, ex-

cept for the Auditorium area in Core 4 and the ‘Velarium’ on top of Core 1, a three-storey 

high belvedere area to be used for official public purposes and rented for private events. For 

these two parts structural steel was employed. The monitoring system will be dedicated to the 

Core 1 structure (tallest tower) in the initial phase with the idea of possibly expanding it to the 

remaining sub-structures. 

3 GENERAL SPECIFICATIONS OF THE MONITORING SYSTEM 

As stated in the introduction, the monitoring system should be capable of handling both 

dynamic vibration signals and static variables, as well as of the wind conditions. To this aim, 

high reliable low noise sensors have been selected and a well-known already tested and em-

ployed solution has been implemented for data acquisition[5]. 

3.1 Selected sensors 

The chosen sensors had to fulfill all the requirements which were proposed to Regione 

Lombardia, formerly the work committer. In order to be able to monitor vibration comfort 

levels against wind serviceability [11][12] and perform operational modal analysis identifica-

tions [9][10] very high sensitivity low noise accelerometers had to be employed. Moreover, 

the building first natural frequency is around 0.3 Hz [1][3], thus posing problems both on the 

sensor choice and the data acquisition hardware.  

On the other hand, the selected tilt sensors had to provide long term stability and a certified 

temperature sensitivity in order to guarantee reliability to the static measurements. 

As a cabled solutions have been chosen (synchronized wireless measurements were not 

considered affordable on such a high building) the sensor types were chosen in order to mini-

mize the needed cabling.  

According to all the above stated needs, the following sensors were chosen: 

 Accelerometers: PCB 393B31 Piezo units, which have proven to have a very low 

noise floor level and guarantee good frequency response down to 0.1 Hz, having a 

0.5 g full scale value. 

3642



M. Berardengo, S. Manzoni, M. Vanali, A. Cigada 

 Clinometers: ±5° Singer TS servo clinometers with extended temperature calibra-

tion. High reliability sensors with a frequency response up to 3 Hz, which is enough 

to cover the building first frequencies 

 Wind speed/direction: Anemometer NESA ANS-VV1-A + ANS-DVE-A (potenti-

ometric wind direction), with a 50 m/s full scale value. 

Al the installed sensors are connected through custom built connection boxes and multipo-

lar shielded cables to the data acquisition device. Sensor positions are described in the next 

section. 

3.2 Sensor positioning 

To the aim of identifying at least the first three vibration modes of the structure (2 bending 

modes and the 3
rd

 torsional one [1][3]) and according to the commitment request, a total num-

ber of 24 piezo accelerometers have been installed at five different levels of the Core 1 tower. 

Figure 2 shows the instrumented floors and the different sensors that are installed. 

 

Figure 2 Sensor positions in the building 

As can be noticed in Figure 2, sensors are placed starting from the top steel structure “Ve-

lario”, to the last underground basement (B3 floor). Floor 39 has no sensors and only a couple 

of connection boxes are installed there in order to facilitate system maintenance. 

Sensor position at each flor is depicted in Figure 3 for floors 37/30/09. The B3 and Velario 

floors are instrumented with sensors in the core area. 

Clinometers are placed at all instrumented levels on the concrete core in order to detect ro-

tations around the X and Y axes. 
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Figure 3 Sensor positions on floor 37/30/09, on floor B3 and on the “Velario” only the Core sensors are in-

stalled. 

According to the sensor positions illustrated in Figure 3, it is possible to identify and dis-

tinguish the two principal bending modes and the first torsional one. It will also be possible to 

study the higher modes and compare them with what was identified during the validation test-

ing at the end of the construction phase [1][3]. 

Accelerometers at level B3 will provide information in case of seismic events on the earth-

quake strength at the building foundations and therefore to evaluate the overall structural am-

plification. Clinometers at the same level will be used to track deformations on the building 

foundations.  

All sensors are directly cabled to the data acquisition system described in the next section. 

3.3 Data acquisition and storage 

The data acquisition and storage system was designed in order to guarantee continuous 

functioning 24hours/7days-per-week . In order to fulfill the design needs the system is split 

into 2 independent units: 

 Data acquisition unit with a local storage capability on floor 30 

 Data storage and visualization on floor B1 

The data acquisition device is a National Instrument C-RIO unit, in charge of measuring 

the acceleration and inclination signals together with the wind information and assemble them 

in 10-minutes-long data files which are then stored locally. The accelerometers are powered 

and conditioned using PCB ICP power units able to guarantee a low cut-off frequency below 

0.1 Hz. 

All accelerometers signals are converted using 24 bits simultaneous conversion and built-

in anti-aliasing filters. Clinometers and wind data are sampled using 16 bit converters. The 

analog to digital sampling frequency is 2000 Hz, which is then digitally down-sampled 8 

times to 250 Hz. 

In Figure 4 it is possible to see some pictures of the data acquisition cabinet placed at the 

30
th
 floor.  
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Figure 4 Data acquisition cabinet at floor 30: whole view (left), CRIO and IEPE conditioner (right) 

Every time a new data file is stored on the local unit, the system automatically transfers it 

via Ethernet to the storage unit at floor B3. In case of an Ethernet failure, the local system can 

store up to two days of data in order not to lose any critical event. System power is assured by 

the building preferential line that guarantees continuous power supply to all critical systems. 

The storage unit at floor B1 is a common server grade PC with raid data storage and a 

software that periodically check system functionality and, every time a new data file is found, 

process it to extract some synthetic data. At the moment, all raw data are stored on the B1 

floor unit, but in the future a selection of the raw data to be stored is planned based on the ac-

celeration RMS values and wind speed values. 

 

 
a) 

 
b) 

Figure 5 Screenshot of the data storage and visualization Software. a) Main Screen, b) Resume of the last ten 

minutes and wind induced vibrations 
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Among the synthetic information given by the software, it is worth citing a the vibration 

RMS magnitude of floor 37 in the frequency range of wind induced vibrations [11] that gives 

an immediate feedback of possible wind serviceability problems, and the average value of all 

clinometers sensors in the last ten minutes and their evolution in the last 48 hours. 

The system is running since 19 October 2015 and the first data together with some analysis 

are presented in the next section. 

4 FIRST DATA 

As previously stated, the system was started on the 19
th
 of October 2015 and is running 

continuously since then. The first data coming from the system are shown here. 

Figure 6 shows the average value evolution of all clinometers since October 19
th
 (the zero 

value was set at the first valid file that was measured).  

 

Figure 6 Clinometers average values up to 31/01/2016 

As can be noticed in Figure 6 two main signal family are present. The first one (IB3,I30, 

I37) which shows few oscillations and a constant trend, the second one (I09, IV) that shows 

wide intraday oscillations.  

 

Figure 7 Two-days zoom of clinometers average value 
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The difference is highlighted in Figure 7 where the clinometers average value evolution 

over two days is shown. In order to verify and understand this behavior, a temperature sensor 

has been installed at floors 09 and 30, close to the clinometers. Measurements showed that the 

higher oscillations experienced at floor 09 are strictly linked to the local temperature and the 

same applies for clinometers at the “Velario” level, which are outside the building. 

The overall variability is around 0.01 ° and the trend will be kept under observation in or-

der to quantify the one-year thermal cycle of the building. 

According to what was stated at the beginning, acceleration measurement are taken to the 

aim of identifying continuously the building modal parameters and to provide information on 

the vibration serviceability against the wind induced vibrations. 

Figure 8 shows the power spectral densities (PSD) measured during a windy day at level 

37. The three main vibration modes (1 weak axis flexural, 2 Strong axis flexural, 3 Torsion) 

are put into evidence by the blue arrows. 

 

Figure 8 Power Spectral densities at floor 37, 37CXY core accelerations, 37EXY extremity accelerations 

The main frequency values and the associated mode shapes are in a very good agreement 

to the ones found during forced testing [1][3]. Figure 9 shows the same day PSDs in Y direc-

tion at different levels on the core. 

 

Figure 9 PSD core accelerations at different levels 
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Vibration levels shown in Figure 9 are increasing from level B3 (bottom) to level 37 (top) 

of the building in accordance to the expected mode shapes. This measurement will be the in-

put data to an automated modal extraction procedure which will provide synthetic information 

on the building dynamics [13]. 

As for the wind induced vibrations, the most critical levels are the highest ones. In 

Figure 10 the RMS accelerations measured at floor 37 and B3 on the core are shown together 

with the wind speed. It is noticed that the measured accelerations increase as the wind speed 

raises even if the reached levels are far below the comfort limits [11][12]. 

 

 
a) 

 
b) 

Figure 10 Windy day, a) RMS accelerations on floor 37, b) “Anemometro”, measuring the wind speed 

The filtered RMS value, averaged on 10 minutes and in the 0.1-1 Hz frequency band, at 

floor 37 is continuously computed and displayed as one of the synthetic data from the pro-

gram running on the PC at floor B1 (Figure 11), so that any increase in this level is immedi-

ately evident. 

 

Figure 11 Singular event on November 17th 2015 

Figure 11 also shows an anomalous increment in the structural vibration measured at floor 

37, occurred on November 17
th

 2015 around 08.20am hours. This event was not related to the 

wind or other specific local episodes (e.g. works and/or maintenance operations at the floor). 
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It was then decided to investigate better this RMS peak. At first it was found that the same 

peak could be experienced in the structural frequency range at all building levels, including 

the B3 (basement level). The only remarkable event that happened in that time frame was the 

earthquake in the Greek Ionic coast as can be seen in Figure 12, where the web page of the 

Istituto Nazionale di Geofisica e Vulcanologia (INGV) reports the event (green arrow). 

 

Figure 12 Web page of INGV reporting the Greek Earthquake on Novembre 17th. 

We contacted the INGV in the person of Dr. Paolo Augliera and he confirmed that very 

low frequency shock waves travel very far during earthquakes and they are used to seismic 

prediction purposes [14]. 

We computed the acceleration PSD during the event and compared it to the usual one; the 

results are shown in Figure 13. A noticeable increase in the vibration levels below 1 Hz is ex-

perienced during the earthquake (terremoto). 

 

Figure 13 PSD at level B3, normal activity VS Terremoto (Earthquake) of November 17th. 
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It is noticed that the frequency range involved in this activity is completely out of those 

considered in NTC08 (technical construction recommendation) [15] for the Milano area 

which is highlighted in red in Figure 13. 

Other similar events have been experienced and recorded since then, proving the system 

capability to evidence any peculiar situation occurring to the building. 

5 CONCLUSION 

In this paper the permanent monitoring system for “Palazzo Lombardia” design an installa-

tion has been described. The system aims have been illustrated and explained and the instru-

ments chosen to fulfill them have been described. The data acquisition set-up that was 

designed to guarantee continuous measurements and analysis of the data was presented and 

finally a first glance to measured data has been given. 

First results showed the system capability to follow the building static and dynamic evolu-

tion and therefore to provide a valid database for future health monitoring. Moreover, the sys-

tem proved to be capable to put into evidence a number of unusual events linked to 

earthquakes which occurred far away from the building location. 
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Abstract. A new inverse problem formulation based on the compliance error functional is
presented. The proposed formulation permits the derivation of an explicit expression for the
Lagrange multipliers. Thus, the computation of the Lagrange multipliers does not require the
solution of the computationally intensive adjoint system of equations. This enables the com-
putation of the first order derivative information at the expense of just one model evaluation.
Leading to significant speedups for large-scale, gradient-based inverse problems.

Second, if second order optimization algorithms are available, Newton’s method can be ap-
plied to the first order necessary optimality conditions. Newton’s method relies on second order
derivative information to compute descent directions during optimization. This paper presents
two Hessian formulations based on the compliance error functional. The first formulation relies
on the mathematical properties of the compliance error functional to compute the application
of the trial step to the analytical Hessian at the expense of one model evaluation per Newton
iteration. The second formulation is based on a Gauss-Newton approximation to the Hessian.
The Gauss-Newton approximation further speedups analysis since the second order derivative
information is computed without performing additional model evaluations during the Newton
iterations.

Third, examples in heat transfer are presented to demonstrate the effectiveness of the compli-
ance error functional. The compliance error minimization formulation is compared against the
data misfit minimization formulation. Results will show that the compliance error minimization
formulation outperforms the data misfit formulation.
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1 INTRODUCTION

This paper investigates the problem of large-scale parameter estimation, i.e. inverse problem,
in the context of a particular problem: determining the thermal conductivity properties of a
region of interest given an ‘observed’ temperature field. Specifically, a new inverse problem
formulation based on the compliance error functional is presented. A general inverse problem
framework for the application of first and second order optimization algorithms is presented,
The proposed framework enables the implementation of the compliance error minimization
formulation to many applications of interests in science and engineering.

Multiple inverse problem techniques have been proposed in the literature for the solution
of inverse problems. For instance, many researchers have applied data misfit error functionals
for the solution of inverse problems in many physics settings [1, 2, 3, 4]. The objective of
data misfit functional is to characterize the parameter of interest by minimizing the discrepancy
between the simulation and the experimental data (target/observed data). An alternative to data
misfit functionals is the modified error in the constitutive equation (MECE) functional. The
objective of the MECE functional is to characterize the parameter of interests by minimizing
the discrepancy in the constitutive equations [5, 6, 7, 8, 9, 10, 11, 12]. This formulation leads
to a coupled system of equations that is solved for any new set of materiel parameters.

Allix et al. [13] performed several numerical studies that demonstrated that the MECE
functional improved the convexity of the objective function. Furthermore, Gockenbach et al.
[14, 15, 16] showed that the energy norm term of the MECE functional is convex for elliptic
boundary value problems when full field measurements are available. However, in a subse-
quent study, Gockenbach [17] showed that inverse problem formulations based on energy norm
minimization can lead to inaccurate estimates if the ‘observed’ data is corrupted. Moreover,
he showed that the data misfit functional was less sensitive to data corruption than the energy
norm functional. Lastly, the virtual field method (VFM) is a recent inverse problem technique
developed for extracting constitutive parameters from full-field measurements [18]. The VFM
combines the principle of virtual work with kinematically admissible virtual fields, which are
computed a-priori, to characterize the constitutive parameters. The choice of the kinematically
admissible virtual field is key in order to improve the performance of the VFM. Thus, most
research is focus on improving the predictive reliability of the kinematically admissible virtual
fields [19].

In this work, a new inverse problem formulation based on the compliance error functional is
presented. The main advantage of the compliance error functional is that it enables the compu-
tation of the Lagrange multipliers, and thus the first order derivative information, at the expense
of just one model evaluation. Thus, the calculation of the Lagrange multipliers does not re-
quire the solution of the computationally intensive adjoint system of equations. This leads to
significant speedups for large-scale, gradient-based inverse problems since the gradient compu-
tation is only based on forward model evaluations. The proposed formulation also simplifies
implementation in production software since only forward model evaluations are needed during
optimization.

If second order optimization algorithms are available, Newton’s method can be applied to
the first order necessary optimality conditions. Newton’s method relies on second order deriva-
tive information to compute descent directions during optimization. If the data misfit functional
is used, two model evaluations are required per Newton iteration to compute the second order
derivative information. This paper presents two Hessian formulations based on the compliance
error functional. The first formulation relies on the mathematical properties of the compliance
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error functional to reduce the number of model evaluations from two to one without sacrific-
ing accuracy. Consequently, substantial speedups are gained. The second formulation relies
on a Gauss-Newton Hessian approximation based on the compliance error functional to fur-
ther speedup the Newton solver. By using a Gauss-Newton approximation, the second order
derivative information is computed without performing additional model evaluations during the
Newton iterations. Results will demonstrate that the compliance error functional leads to sub-
stantial speedups over the the data misfit functional.

This paper is organized as follows: Section 2 presents the general first and second order
inverse problem formulations for the compliance error and data misfit functionals. Furthermore,
the respective general inverse problem solution framework is presented for both formulations.
Section 3 presents an inverse problem example in heat transfer to showcase the performance
of the compliance error functional. Finally, Section 4 provides concluding remarks and future
research directions.

2 FORMULATION

2.1 Inverse problem

Let Ω ⊆ Rd, d ∈ {1, 2, 3} denote the computational domain with boundary ∂Ω. Lets now
define the Lebesgue space H = L2(Ω;Rn) of measurable and square intregrable functions en-
dowed with inner product 〈φ, ψ〉H =

∫
Ω
φψ for φ, ψ ∈ H and norm ‖φ‖H = 〈φ, φ〉1/2H . Lets also

define finite dimensional spaces U = {span{φa}Aa=1 |φ ∈ H} ⊂ U , Z = {span{ψb}Bb=1 |ψ ∈
H} ⊂ Z, and Y = {span{χc}Cc=1 |χ ∈ H} ⊂ Y . This enables then the following finite dimen-
sional approximations for the state, control, and Lagrange multipliers u =

∑A
a ũ

aφa | ũ ∈ R,
z =

∑B
b z̃

bψb | z̃ ∈ R, and v =
∑C

c ṽ
cχc | ṽ ∈ R, respectively.

Lets now define a general parameter estimation (inverse) problem as

min
(u,z)∈U×Z

J(u, z)

s.t.
g(u, z) = 0,

(1)

where u and z respectively denote the state and control variables, J(u, z) : U×Z→ R denotes
the objective function and g(u, z) : U×Z→ Y denotes the equality constraint (physics model).

The implicit function theorem admits the definition of a solution operator u : Z → U such
that {(u(z), z) | z ∈ Z} = {(u, z) ∈ U × Z | J(u, z) = 0}. This enables the redefinition of
Equation 1 as

min
z∈Z

J(u(z), z), (2)

where the solution operator u(z) is obtained by solving g(u(z), z) = 0. This formulation
is commonly known as the reduced-space formulation for partial differential equation (PDE)
constrained optimization.

Finally, lets assume that the objective function and equality constraint are given by

J(u(z), z) =
β

2
‖〈u(z),A(z)u(z)〉H − 〈û,A(z)û〉H‖2

H + R(z), (3)

g(u(z), z) = A(z)u− f = 0, (4)
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where A(z) : Z → U × U is a non-singular, self-adjoint linear operator, R(z) : Z → R is a
regularization functional, f ∈ Y is an external force and û ∈ Ω̂ ⊂ Ω denotes measured data.
This formulation will be referred as the compliance error minimization (CEM) formulation.

2.2 First order formulation

2.2.1 Data misfit functional

Lets define the Lagrangian functional L : U× Z× Y→ R for Equation 2 as

L(u(z), z,v) = J(u(z), z) + 〈v, g(u(z), z)〉Y∗,Y, (5)

where v denotes the Lagrange multipliers and Y∗ is the dual space of Y. The data misfit objec-
tive function is given by

J(u(z), z) =
1

2
‖u(z)− û‖2

H. (6)

The equality constraint g(u(z), z) is given by Equation 4. If z? ∈ Z is a local solution of
Equation 2; then, there exists a set of Lagrange multipliers v? ∈ Y such that the first order
necessary optimality conditions are satisfied at z?.

The first order necessary optimality conditions are given by

Lu(u(z), z,v) = Ju(u(z), z) + gu(u(z), z)∗v = 0 (7)

Lz(u(z), z,v) = Jz(u(z), z) + gz(u(z), z)∗v = 0, (8)

where the subscripts u and z respectively denote derivatives with respect to the state and control
variables. The Lagrange multipliers are computed by solving

v = −(gu(u(z), z)∗)−1Ju(u(z), z). (9)

Substituting Equation 9 into Equation 8 yields a reduced gradient operator of the form

∇J(u(z), z) = Jz(u(z), z) + gz(u(z), z)∗[−(gu(u(z), z)∗)−1Ju(u(z), z)]. (10)

At each optimization iteration, the following sequence of steps are performed to compute the
reduced gradient operator and minimize the objective function:

1. Solve equality g(u(z), z) = 0 for u ∈ U;

2. Solve gu(u(z), z)∗v = −Ju(u(z), z) for v ∈ Y;

3. Compute the reduced gradient operator defined in Equation 10;

4. Compute descent direction s ∈ Z and set zk+1 = zk + γsk, γ ∈ R.

This sequence of steps are necessary to solve an inverse problem based on the data misfit func-
tional [20].
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2.2.2 Compliance error functional

Assume that the objective function and equality constraint for the parameter estimation prob-
lem defined in Equation 2 are given by Equations 3 and 4, respectively. Then, the first order
derivative operators gu(u, z)∗ and Ju(u, z) are given by

gu(u(z), z)∗ = A(z)∗ (11)

and

Ju(u(z), z) = αA(z)u, (12)

where

α = 2(〈u(z),A(z)u(z)〉H − 〈û,A(z)û〉H). (13)

Recall that A(z) is assumed to be a non-singular, self-adjoint linear operator. Thus, an
explicit expression for the Lagrange multipliers can be derived by substituting Equations 11
and 12 into Equation 9. After substitution, the Lagrange multipliers are given by

v = −αβA(z)−1(A(z)u(z)) = −αβIu(z) = −αβu(z), (14)

where I denotes the identity linear operator. Substituting Equation 14 into Equation 10 gives a
reduced gradient operator of the form

∇zJ(u(z), z) = Jz(u(z), z)− αβ〈u(z), gz(u(z), z)∗〉. (15)

Notice that the adjoint problem defined in Equation 9 is not solved to compute the Lagrange
multipliers, which should speedup the optimization problem.

At each optimization iteration, the following sequence of steps are performed to compute the
reduced gradient operator and minimize the compliance error objective function:

1. Solve equality g(u(z), z) = 0 for u ∈ U;

2. Compute Lagrange multipliers v = −αβu(z);

3. Compute the reduced gradient operator given by Equation 15.

4. Compute descent direction s ∈ Z and set zk+1 = zk + γsk, γ ∈ R.

In addition to the speedups gained due to the omission of the adjoint model evaluations during
optimization, the CEM formulation facilitates implementation since it only relies on forward
model evaluations to compute the reduced gradient operator.

2.3 Second order formulation

2.3.1 Data misfit functional

If second order derivative optimization algorithms are available, Newton’s method can be
applied to the first order necessary optimality conditions. Let κ ∈ R∗+ and δz ∈ Z, if z? ∈ Z
satisfy the first order necessary optimality conditions and

〈δz,∇2J(u(z?)z?)δz〉 ≥ κ‖δz‖2
H ∀ δz ∈ ker gz(u(z?), z?),
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the second-order sufficient condition is satisfied at z?. Furthermore, z? is a strict local minimum
of Equation 2.

The application of the trial step δz to the Hessian operator is given by

∇2J(u(z), z)δz = Lzu(u(z), z,v)δu + Lzz(u(z), z,v)δz + Lzv(u(z), z,v)δv, (16)

for δu ∈ U and δv ∈ Y. Notice that δu and δv are necessary to compute the application of
the trial step to the Hessian operator. Thus, explicit expressions for δu and δv are necessary to
calculate Equation 16.

Let g(u(z), z) = 0 ∀ z ∈ Z. Then, gz(u(z), z)δz = 0 ∀ (z, δz) ∈ Z× Z, where

gz(u(z), z)δz = gu(u(z), z)δu + gz(u(z), z)δz = 0 (17)

and δu ≡ uz(z)δz. Solving Equation 17 for δu gives

δu = −gu(u(z), z)−1gz(u(z), z)δz. (18)

Next, an explicit expression is derived for δv. By definition, Lu(û(z), z,v) = 0 ∀ (u, z,v) ∈
U× Z× Y; thus, the derivative of Lu(û(z), z,v) in the direction of δz gives

Luu(u(z), z,v)δu + Luz(u(z), z,v)δz + Luv(u(z), z,v)δv = 0, (19)

∀ (z, δu, δz, δv) ∈ Z× U× Z× Y. Solving Equation 19 for δv gives

δv = −Luv(u(z), z,v)−1[Luu(u(z), z,v)δu + Luz(u(z), z,v)δz], (20)

where

Luv(u(z), z,v) = gu(u(z), z)∗ (21)

Luu(u(z), z,v) = Juu(u(z), z) + guu(u(z), z)∗v (22)

Luz(u(z), z,v) = Juz(u(z), z) + guz(u(z), z)∗v. (23)

The following sequence of steps are performed to compute the application of the trial step
δz to the analytical Hessian operator at each Newton iteration:

1. Solve gu(u(z), z)δu = −gz(u(z), z)δz for δu ∈ U

2. Solve gu(u(z), z)∗δv = −[Luu(u(z), z,v)δu + Luz(u(z), z,v)δz] for δv ∈ Y

3. Compute the application of the trial step to the reduced Hessian operator

∇2J(u(z), z)δz = Lzu(u(z), z,v)δu + Lzz(u(z), z,v)δz + Lzv(u(z), z,v)δv, (24)

where Lzv(u(z), z,v) = gz(û(z), z)∗.

Notice that the data misfit functional requires two model evaluations per Newton iteration to
compute the application of the trial step to the analytical Hessian operator.
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2.3.2 Compliance error functional: analytical Hessian

Assume that the objective function and equality constraint are given by Equations 3 and 4,
respectively. Then, the second order derivative operators Luv(u(z), z,v), Luu(u(z), z,v), and
Luz(u(z), z,v) are given by

Luv(u(z), z,v) = A(z)∗ (25)

Luu(u(z), z,v) = 2β[αA(z)δu + 2A(z)u(z)〈u(z),A(z)δu〉H] (26)

Luz(u(z), z,v) = 2β[α(Az(z)δz)u(z) + γA(z)u(z)] + (A(z)∗v)δu, (27)

where

γ = 〈u(z), (Az(z)δz)u(z)〉H − 〈û, (Az(z)δz)û〉H (28)

Recall that A(z) is a non-singular, self-adjoint linear operator. This enables the derivation
of an explicit expression for δv by substituting Equations 14, 25, 26 and 27 into Equation 20.
After simplification, δv is given by

δv = −2β[αδu + 2u(z)〈u(z),A(z)δu)〉H + γu(z)], (29)

where δu is given by Equation 18.
To compute the application of the trial step to the analytical Hessian operator, the second

order derivative operators Lzu(u(z), z,v), Lzz(u(z), z,v) and Lzv(u(z), z,v) are required.
These second order derivative operators are explicitly given by

Lzu(u(z), z,v) = 2β[(Az(z)u(z))u(z)− (Az(z)û)û] (30)

Lzz(u(z), z,v) = βγ[(Az(z)u(z))u(z)− (Az(z)û)û] + Rzz(z) (31)

Lzv(u(z), z,v) = −2β[α(Az(z)u(z))δu + 2(Az(z)u(z))u(z)〈u(z),A(z)δu〉H
+ γ(Az(z)u(z))u(z)],

(32)

where Equations 14 and 29 were used to derived and simplified Equations 30 and 32.
An explicit expression for the application of the trial step to the analytical Hessian operator

is obtained by substituting Equations 30-32 into Equation 24. After some simplifications, the
application of the trial step to the analytical Hessian operator is given by

∇2J(u(z), z)δz = −2β[(Az(z)u(z))u(z) + (Az(z)û)û]〈u(z),A(z)δu〉
− βγ[(Az(z)u(z))u(z) + (Az(z)û)û] + Rzz(z)δz

− 2βα(Az(z)u(z))δu.

(33)

Therefore, the following sequence of steps are necessary to compute the application of the trial
step δz to the analytical Hessian operator per Newton iteration:

1. Solve gu(u(z), z)δu = −gz(u(z), z)δz for δu ∈ U

2. Compute∇2J(u(z), z)δz as defined by Equation 33.

The proposed compliance error minimization formulation enables the calculation of the sec-
ond order derivative information at the expense of one model evaluation per Newton iteration.
Contrary, the data misfit formulation presented in Section 2.3.1 requires two model evaluations
per Newton iteration. Thus, significant speedups are possible with the CEM formulation by
omitting one model evaluation per Newton iteration.
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2.3.3 Compliance error functional: Gauss-Newton Hessian

To circumvent the additional computational demands associated with computing Equation
33, a Gauss-Newton Hessian formulation based on the compliance error functional is consid-
ered. Lets define the application of the trial step to the Gauss-Newton Hessian as

∇2J(u(z), z)δz ≡ Lzz(u(z), z,v)δz = [Jzz(u(z), z) + gzz(u(z), z)∗v]δz. (34)

Notice that the derivative operators Lzu(u(z), z,v)δu and Lzv(u(z), z,v)δv are omitted in
Equation 34 since these nonlinear terms vanish. Thus, the solution of Equation 18 is not neces-
sary to compute the application of the trail step to the Gauss-Newton Hessian during the Newton
iterations. Results will demonstrate that the Gauss-Newton Hessian approximation based on the
compliance error functional can lead to significant speedups without hindering solution accu-
racy.

3 EXAMPLE IN HEAT TRANSFER

The Intrepid PDE discretization package from Trilinos [21] was used to build the finite el-
ement models. The direct solver routine from MATLAB [22] scientific package were used to
solve the linear system of equations in this numerical study. The optimization algorithms in this
work were implemented in C++ and used to generate the results presented herein [23]. Read-
ers are encourage to explore other optimization library of their preference [22, 24, 25, 26, 27].
Finally, all calculations were performed on a Linux workstation with a 2.93 GHz Intel(R) Core
Xeon(R) processor and 24 GB of RAM.

To synthesize the ‘observed’ temperature field, a finer grid with 80,000 triangles was used to
generate the experimental temperature field. The experimental temperature field was then pro-
jected onto a computational grid 20,000. This was done to avoid using the same computational
mesh used to generate the ‘observed’ temperature field during optimization. Different levels of
random Gaussian noise were also considered, ∆ ∼ N(0, σ̂) in order to test the tolerance of the
proposed formulation to corrupt data. A Gaussian distributed set of random numbers has 65%,
95%, and 99.7% certainty of respectively being within one, two, and three standard deviations
from the mean. Lets thus assume that the Gaussian random noise generated to test the compli-
ance error minimization formulation is 95% certain of being within θ% of the actual data. Then,
the perturbation applied to the ‘observed’ temperature field is scaled from interval (−2σ̂, 2σ̂) to
(−θ%, θ%). This produces a perturbation parameter of the form εθ = 1

2
( θ

100
) [28]. Therefore,

the corrupt data was generated as follows

ûθi = ui(1 + εθi ), for i = 1, . . . , nu (35)

where θ ∈ Θ = {1%, 3%, 5%} and nu denotes the number of states.
Finally, the compliance error minimization formulation was compared against data misfit

formulation. The objective was to highlight the effectiveness of the CEM formulation versus a
common inverse problem formulation strategy. For completeness, the corresponding first and
second order derivative operators for the data misfit functional are defined herein

Ju(u(z), z) = β(u(z)− û) (36)

Juu(u(z), z)δu = βδu (37)

Jz(u(z), z) = Jzu(u(z), z)δu = Juz(u(z), z)δz = Jzz(u(z), z)δz = 0 (38)
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3.1 Problem formulation

Lets consider the following parameter estimation (inverse) problem in heat transfer

min
z∈Ẑ

β

2
‖〈u,A(z)u〉H − 〈û,A(z)û〉H‖2

H + R(z)

s.t.
A(z)u = f(x) in Ω

u = 0 on ∂Ω,

(39)

where Ẑ = {z ∈ Z : L ≤ z ≤ U }. Here, L denotes the control lower bounds and U
denotes the control upper bounds. For a steady-state heat equation, z is the coefficient of thermal
conductivity, u is the temperature field, û ∈ Ωm ⊆ Ω are the temperature measurements. f(x)
is a heat source given by

f(x) = A ∗ sin(ωx) cos(ωx), (40)

where A ∈ R is a given amplitude, ω ∈ R denotes angular frequency and x ∈ Ω denotes a posi-
tion is space. A(z) : Z→ U× U is a linear operator that depends on the coefficient of thermal
conductivity and β ∈ R+ denotes a penalty parameter. The finite dimensional approximations
for the state, control, and Lagrange multipliers were previously defined in Section 2.1.

3.1.1 Regularization

The regularization functional R(z) : Z→ R in Equation 39 is given by

R(z) =
ζ

2θ
(〈∇z,∇z〉H + ν)θ, (41)

where θ = −1/2, 0 < ν ≤ 1 and 0 < ζ ≤ 1. In this work, the regularization functional
in Equation 41 was preferred over Tikhonov regularization due to its ability to capture sharp
discontinuities in inverse problems settings. The interested reader is referred to [29] and explore
other regularization methodologies that can be applied for inverse problems.

3.1.2 Helmholtz filter

The aim of this section is to present the Helmholtz filter as an alternative to regulariza-
tion methods, e.g. Equation 41. Regularization functionals are often (if not always) explicitly
incorporated into the objective function to solve ill-posed inverse problems. The purpose of reg-
ularization functionals is to penalize the objective function and enhance the smoothness of the
control field. Thus, bounding the objective function and preventing undesired data overfitting.

Instead of just applying a regularization functional, e.g. Equation 41, to solve the inverse
problem in Equation 39, a Helmholtz PDE filter is also employed to filter the optimal control
computed using the CEM formulation. Helmholtz PDE filters have been successfully used in
topology optimization to avoid numerical artifacts and enhance the design’s smoothness and
boundary description [30]. The filtered control is computed by applying a convolution operator
to the optimal control. However, instead of explicitly defining the convolution integral, the
filtered control can be defined implicitly as the solution of the following Helmholtz PDE

−r2∇2z̃ + z̃ = z, (42)
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with Neumann boundary conditions

∂z̃

∂n
= 0. (43)

The parameter r denotes a given filter length scale and z̃ is the filtered control, which was set to
1

3×103
for this study. As x/r → ∞, the filtering effect on the optimal control is reduced. Thus,

larger values of r minimize the filtering effect on the optimal control.
In this work, the discretized Helmholtz PDE is solved after optimization. Contrary, we

could have eliminated the regularization functional from Equation 39 and solved the discretized
Helmholtz PDE every time a new set of trial controls was computed by the optimization algo-
rithm. However, this would have increased the computational demands of the problem. Further-
more, preliminary results performed as part of this study did not justify this approach. The qual-
ity of the solution obtained by applying the filter during optimization did not improve greatly
compared to the quality obtained by applying the filter after optimization.

3.2 Optimality conditions

The Lagrangian functional L : U× Ẑ×Y→ R for the inverse problem defined in Equation
39 is given by

L(u, z,v) =
β

2
‖〈u,A(z)u〉H − 〈û,A(z)û〉H‖2

H + R(z) + 〈v,A(z)u− f〉Y∗,Y. (44)

The first order necessary optimality conditions for Equation 44 are given by

Lu(u, z,v) = αβA(z)u + A(z)v = 0 (45)

Lz(u, z,v) = αβ[(Az(z)u)u + (Az(z)û)û] + Rz(z) + (Az(z)u)v = 0, (46)

where α is given by Equation 13. The first order derivative operator Rz(z) : Ẑ→ Z is given by

Rz(z) =
ζ

2
(θ − 1)(〈∇z,∇z〉H + ν2)θ−1Bz, (47)

where

B =

∫
Ω

∇ψ∇ψ dΩ. (48)

If A(z) is a non-singular, self-adjoint linear operator, the Lagrange multipliers for an inverse
problem in heat transfer are given by Equation 14. Substituting Equation 14 into Equation 46
yields the following gradient operator

∇J(u(z), z) = −αβ[(Az(z)u)u + (Az(z)û)û] + Rz(z). (49)

Notice, as previously demonstrated in Section 2, that the computation of Equation 49 does not
require the solution of the adjoint system of equations.

If second order optimization algorithms are available, Newton’s method can be applied to the
first order necessary optimality conditions. The following derivative operators are then required
to compute the application of the trial step to the analytical Hessian operator

gz(u(z), z)δz = (Az(z)δz)u (50)
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gu(u(z), z)δu = A(z)δu (51)

gz(u(z), z)∗δz = (Az(z)∗v)u (52)

gu(u(z), z)∗δu = A(z)∗v (53)

guu(u(z), z)∗δu = 0 (54)

guz(u(z), z)∗δz = (Az(z)∗δz)v (55)

gzz(u(z), z)∗δu = 0 (56)

gzu(u(z), z)∗δu = (Az(z)∗v)δu (57)

Juu(u(z), z)δu = 2β[αA(z)δu + 2〈u,A(z)δu〉HA(z)u] (58)

Juz(u(z), z)δz = 2β[α(Az(z)δz)u + γA(z)u] (59)

Jzz(u(z), z)δz = γβ[(Az(z)u)u− (Az(z)û)û] + Rzz(z)δz (60)

Jzu(u(z), z)δu = 2β[α(Az(z)u)δu + ((Az(z)u)u− (Az(z)û)û)〈u,A(z)δu〉H], (61)

where γ is given by Equation 28 and the Lagrange multipliers v are given by Equation 14.
Finally, the second order derivative operator Rzz(z) is given by

Rzz(z) =
ζ

2
((θ − 1)(〈∇z,∇z〉H + ν2)θ−2)〈∇z,∇z〉HB + (〈∇z,∇z〉H + ν2)θ−1B. (62)

Substituting Equations 50-61 into Equation 24 yields the application of the trial step to the
analytical Hessian, as defined in Equation 33. However, if the Gauss-Newton Hessian is applied,
the application of the trial step to the Gauss-Newton Hessian operator is then given by

∇2J(u(z), z)δz = γβ[(Az(z)u)u− (Az(z)û)û] + Rzz(z)δz, (63)

where Rzz(z) is given by Equation 62.
Finally, the discretized Helmholtz equation is given by

rBẑ + Mẑ = z, (64)

where

M =

∫
Ω

ψψ dΩ. (65)

and B is defined by Equation 48.
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Figure 1: Target thermal conductivity field.

3.3 Results: full-field temperature field

The compliance error minimization and the data misfit formulations were applied to the
inverse problem defined in Equation 39. The amplitude for the heat source was set to 1 × 102

and the angular frequency was set to 4π and 16π for the numerical studies performed with
the data misfit and compliance error functionals, respectively. The target thermal conductivity
field is shown in Figure 1. The thermal conductivity coefficients lower and upper bounds were
respectively set to 0.01 and 1.0 during optimization. The regularization parameter ζ was set to
1.0 for all the numerical studies performed herein. To quantify the computational efficacy of
the compliance error functional, the corresponding speedups are computed, where

S =
CPUDMF

CPUCEM
. (66)

In Equation 66, CPU denotes central processing unit time, DMF denotes data misfit functional
and CEM denotes compliance error minimization.

3.3.1 First order formulation

The Perry-Shanno nonlinear conjugate gradient was used to solve the inverse problem in
heat transfer [31, 32]. The optimization algorithm stopped when J(u(z), z)k, ‖∇zJ(u(z), z)k‖
or ‖sk‖ was below a predefined tolerance of 1 × 10−4. A backtracking line search with cubic
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Noise DMF CEM S
0% 132.7 1.08 122.87
1% 132.25 1.15 119.35
3% 103.18 1.07 96.43
5% 63.2 1.19 53.11

Table 1: CPU time (seconds) and corresponding speedups obtained using the Perry-Shanno
nonlinear conjugate gradient algorithm.

step interpolation was applied to enhance the global convergence capability of the nonlinear
conjugate gradient algorithm. The line search contraction parameter was set to 0.5 and the step
lower bound was set to 1 × 10−5. Furthermore, the maximum number of line search iterations
was set to 5.

The regularization parameters used for the numerical studies based on the data misfit func-
tional were (ζ, ν) = (5× 10−4, 1× 10−4) for θ = {0%, 1%} and (ζ, ν) = (5× 10−3, 1× 10−4)
for θ = {3%, 5%}. Contrary, the regularization parameters used for all the numerical studies
based on the CEM formulation were (ζ, ν) = (1× 10−8, 1× 10−8).

Table 1 shows the central processing unit times obtained for the numerical studies that are
based on first order derivative information. Regardless of the noise level, the compliance error
formulation produced noticeable speedups over the data misfit formulation. Clearly, the CEM
formulation outperforms the data misfit formulation. Figure 2 shows that the CEM strategy
required less than 10 optimization iterations to converged to an optimal and feasible solution
in all the numerical studies. Contrary, the data misfit formulation strategy needed over 1000
iterations to meet the convergence criteria. Figure 2 also shows the objective function values
produced by Perry-Shanno nonlinear conjugate gradient algorithm. The reader can clearly ap-
preciate that the compliance error functional produced faster convergence rates than the data
misfit functional, regardless of the level of corruption in the data.

Figure 3 shows the optimal thermal conductivity field computed using the data misfit func-
tional and the Perry-Shanno nonlinear conjugate gradient algorithm. The thermal conductivity
field was accurately approximated for all noise levels. However, the solution obtained with the
data misfit functional was sensitive to higher noise levels. Figure 4 shows the optimal thermal
conductivity field computed using the compliance error functional and the Perry-Shanno non-
linear conjugate gradient algorithm. The compliance error minimization formulation yielded
accurate thermal conductivity fields regardless of the noise levels. However, the CEM strategy
produced non-optimal thermal conductivity fields were the Dirichlet and Neumann boundary
conditions were applied. More research is needed to understand why these inaccuracies are
obtained around areas were Dirichlet or Neumann boundary conditions are applied.

3.3.2 Second order formulation

A dogleg trust region inexact Newton algorithm [33] was used to solve the inverse problem
defined in Equation 39 when second order derivative information was available. The optimiza-
tion algorithm once more stopped when one of the following stopping criterion was satisfied:
J(u(z), z)k < 1 × 10−4, ‖∇zJ(u(z), z)k‖ < 1 × 10−4 or ‖sk‖ < 1 × 10−4. The trust region
contraction and expansion parameters were respectively set to 0.5 and 2. The maximum number
of trust region sub-problem iterations was set to 5 and the minimum ratio between the actual
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Figure 2: Objective function values computed by the Perry-Shanno nonlinear conjugate gradient
algorithm.
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(a) 0% Noise (b) 1% Noise

(c) 3% Noise (d) 5% Noise

Figure 3: Optimal thermal conductivity field computed using the first order data misfit formu-
lation strategy and the Perry-Shanno nonlinear conjugate gradient algorithm.
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(a) 0% Noise (b) 1% Noise

(c) 3% Noise (d) 5% Noise

Figure 4: Optimal thermal conductivity field computed using the first order compliance error
minimization formulation and the Perry-Shanno nonlinear conjugate gradient algorithm.
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Noise DMF CEM-AH CEM-GN S-AH S-GN
0% 123.64 8.18 5.37 15.11 23.02
1% 192.42 7.98 4.61 24.11 41.74
3% 211.29 8.06 6.07 26.21 34.81
5% 91.76 8.08 5.06 11.36 18.13

Table 2: CPU time (seconds) and corresponding speedups obtained with the dogleg trust region
inexact Newton algorithm. Here, AH and GN respectively denote analytical and Gauss-Newton
Hessians.

and predicted reduction was set to 0.2.
The regularization parameters used for the numerical studies based on the data misfit func-

tional were (ζ, ν) = (1×10−3, 1×10−3) for θ = {0%, 1%, 3%} and (ζ, ν) = (5×10−3, 1×10−3)
for θ = 5%. Once more, the regularization parameters used for all the numerical studies based
on the compliance error functional were (ζ, ν) = (1× 10−8, 1× 10−8).

Table 2 shows the CPU times gathered for the numerical studies done with the dogleg trust
region inexact Newton algorithm. The results on Table 2 once more show that the compliance
error minimization formulation produced significant speedups over the data misfit formulation.
However, the CPU times obtained with the CEM formulation and the second order optimization
algorithm were higher than those obtained with the first order optimization algorithm. There-
fore, the second order derivative information did not enable additional speedups. However,
these results are specific to the parameter estimation problem in heat transfer and more studies
are necessary to further understand the possible benefits of the second order compliance error
formulation. Lets recall that an effective preconditioning strategy could be applied to improve
the performance of the Newton algorithm and reduce the number of Newton iterations. How-
ever, this was outside the scope of this study.

Figure 5 displays the objective function values computed using the dogleg trust region in-
exact Newton algorithm. Once more, the compliance error minimization formulations required
less than 10 optimization iterations to converged to an optimal solution. Contrary, the data mis-
fit formulation required over 50 optimization iterations (in some cases over 100 iterations) to
meet one of the convergence criterion. However, why the CPU times produced by the second
order optimization algorithm using the data misfit functional are greater than those produced by
the first order optimization algorithm? These results can be counterintuitive to the reader since
the numerical studies based on the first order data misfit formulation needed more iterations to
converge to an optimal solution. The reader should recall that second order optimization algo-
rithms require at least 4 model evaluations (2 for the gradient and 2 for the Hessian calculation)
per optimization iteration. Furthermore, every Newton iteration requires 2 model evaluations
to compute trial descent direction. Hence, regardless of the fact that the trust region Newton
algorithm needed less optimization iterations to converge, the number of model evaluations
will always dominate CPU time. This further motivates future research to enable an effective
preconditioning strategy for the compliance error minimization formulation.

The same argument can be applied to the second order CEM formulation based on the full
Hessian since at least 2 model evaluations (1 for the gradient and 1 for the Hessian calculation)
are performed per iteration to compute a new control field. Hence, the higher CPU times seen
on Table 2. Next, lets consider the CEM formulation based on the Gauss-Newton Hessian. This
formulation only needs one model evaluation per optimization iteration. Thus, why the CPU
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Figure 5: Objective function values computed using the dogleg trust region inexact Newton
algorithm.

times are not closer/similar to the CPU times observed for the first order CEM formulation? In
all our numerical studies, the optimization algorithm required several trust region sub-problem
iterations to compute a trial control that met the predefined ratio between the actual and the pre-
dicted reduction. Contrary, the first order CEM formulation did not need additional line search
iterations to compute a descent direction that produced an optimal/feasible trial control. There-
fore, less model evaluations were performed during optimization; thus, reducing computational
demands.

Figure 5 also shows the convergence rates for the second order formulations. Notice that the
CEM formulations displayed faster convergence rates than the second order data misfit formula-
tion, similar to the results shown in Section 3.3.1. However, the convergence rates for the second
order data misfit formulation displayed faster convergence rates near the optimal/feasible point.
This was expected since Newton algorithms are expected to converge quadratically near the
optimal/feasible point.

Finally, Figure 6 shows the optimal thermal conductivity field computed using the second
order data misfit formulation for all noise levels. Results demonstrate that the second order
data misfit formulation produced optimal thermal conductivity fields. However, once more
the results show that the optimal solutions were sensitive to corruption in the data. Figures 7
and 8 show the optimal thermal conductivity field computed using the second order CEM for-
mulations based on the analytical and Gauss-Newton Hessians, respectively. Both approaches
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(a) 0% Noise (b) 1% Noise

(c) 3% Noise (d) 5% Noise

Figure 6: Optimal thermal conductivity field computed using the second order data misfit for-
mulation and the inexact dogleg trust region Newton algorithm.

accurately characterized the location and the shape of the thermal conductivity field of interest.
However, the magnitude of the thermal conductivity field inside the heterogeneous conductiv-
ity field was overestimated. Furthermore, the compliance error minimization formulation once
more produced non-optimal thermal conductivity values around the regions were Dirichlet and
Neumann boundary conditions were applied. These results further highlight the need for more
research to eliminate the numerical artifacts computed around these regions. However, the
significant speedups observed with the compliance error minimization formulations motivate
future research to continue improving the proposed inverse problem formulation.

4 CONCLUSIONS

This paper presented a new formulation for inverse problems based on the compliance error
functional. The compliance error functional enabled the computation of the Lagrange multipli-
ers at the expense of just one model evaluation. Thus, the calculation of the Lagrange multipliers
does not require the solution of the computationally intensive adjoint problem. This, leads to
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(a) 0% Noise (b) 1% Noise

(c) 3% Noise (d) 5% Noise

Figure 7: Optimal thermal conductivity field computed using the second order compliance error
minimization formulation based on the analytical Hessian and the inexact dogleg trust region
Newton algorithm.
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(a) 0% Noise (b) 1% Noise

(c) 3% Noise (d) 5% Noise

Figure 8: Optimal thermal conductivity field computed using the second order compliance error
minimization formulation based on the Gauss-Newton Hessian and the inexact dogleg trust
region Newton algorithm.

3672



Miguel A. Aguiló

significant speedups since the gradient operator can be computed at the expense of one model
evaluation per optimization iteration. Furthermore, the implementation of the CEM formulation
in production finite element software is greatly simplified since the propose formulation only
requires forward model evaluations to compute the gradient. Therefore, the implementation of
the adjoint system of equations is not necessary to solve the inverse problem. Likewise, com-
puting the application of the trial step to the analytical Hessian operator is greatly simplified
since only one additional model evaluation is requires. This also leads to significant speedups
when second order optimization algorithms and the CEM formulation are applied to solve the
inverse problem.

This paper also presented a Gauss-Newton Hessian formulation based on the compliance er-
ror functional that effectively approximates the analytical Hessian during optimization. By ap-
plying the Gauss-Newton Hessian, optimal results were recovered, while reducing the compu-
tational cost associated with evaluating the analytical Hessian. Furthermore, the Gauss-Newton
Hessian approximation further reduced the computational demands of the inverse problem.
However, results suggested that the first order CEM formulation was computationally more
effective than the second order CEM formulation. Therefore, the second order CEM formula-
tions did not provide additional computational benefits over the first order CEM formulation.
However, more research is needed since the second order CEM formulations can be combined
with an effective preconditioning strategy to improve accuracy and computational efficacy.

Results also showed that the data misfit formulation produced better results around the re-
gions were Dirichlet and Neumann boundary conditions were applied. The compliance error
functional produce perceivable numerical artifacts near these regions. However, the interior
thermal conductivity fields computed with the first and second order CEM formulations were
accurate. It was also observed that the second order CEM formulations were inclined to over-
estimate the thermal conductivity field around the heterogeneous thermal conductivity region.
Future research will focus on exploring alternate inverse problem formulations to improve the
CEM strategy, without losing its computational advantages. Finally, it was observed in this
study that compliance error minimization formulation was less sensitive to corruption in the
experimental data.

Overall, the results obtained with the compliance error minimization formulation are encour-
aging due to the significant speedups produced during optimization. Furthermore, the first and
second order CEM formulation yield accurate thermal conductivity fields. Although their is
room for improvements, the gains in speed are substantial and thus motivate future research to
continue improving the efficacy of the proposed inverse problem formulation.
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Abstract. Crack initiation and propagation conditions during a double cantilever beam test 
under constant rate loading are investigated. Elastic-plastic cohesive zone model is consid-
ered to represent the interface separation law. A finite difference model is derived to evaluate 
the applied force versus specimen opening evolution. Cohesive zone model parameters effect 
on energy release rate is investigated to evaluate the ability of measuring protocol based on 
J-integral approach for cohesive zone model identification. Confidence intervals of these es-
timated parameters are evaluated rigorously considering reasonable assumption on numeri-
cal simulation conditions regarding experimental one, with nonlinear optimization algorithm.
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1 INTRODUCTION 

Cohesive zone models are now extensively used for evaluating the failure conditions of 
interfaces in laminates or bonded joints. They allow evaluating the development of cohesive 
stresses along the crack propagation path and are relevant for analysis of both crack nuclea-
tion and propagation conditions under monotonous loading. More advanced models are now 
proposed to deal with fatigue, creep or ageing damage of the interface so that more complex 
loading configuration can be analysed for the structure itself. Today, these models have been 
studied extensively from a theoretical and numerical point of view and several contributions 
have been proposed to compare the influence of the chosen CZM on failure load prediction 
for example.  

Indeed, the CZM are still generally identified rather than measured so that the interface 
separation law shape is still chosen an empirical manner based on expected global behaviour. 
Bilinear shape is chosen for brittle like behaviour and trapezoidal shape when ductile behav-
iour is expected. This approach is clearly not appropriate and some efforts have been devoted 
to the development of specialized experimental techniques for measuring a precise manner the 
interface separation law (viz. cohesive stress versus displacement jump across the interface). 
These characterization protocols make use of new specimen geometry or loading system or 
using standard specimens utilize new analysis techniques. In the following we will concen-
trate on such new development and focus on the identification of CZM under mode I loading 
configuration with the Double Cantilever Beam (DCB) test. The traditional technique for 
“measuring” interface separation law from DCB crack propagation experiment generally con-
sists in identifying the parameters of the CZM using numerical fitting procedure using the 
global applied force versus opening displacement evolution. Such protocol generally results in 
poor sensitivity on the global shape of the interface separation but allows precise evaluation 
of the interface fracture energy. Recently several attempts have been made to implement the 
digital image correlation (DIC) technique for more precise evaluation of the CZM. The side of 
the specimen is observed to measure the surface displacement of both adherents in the vicinity 
of the crack tip. It is expected that more numerous experiment data will improve the global 
sensitivity of the CZM and crack tip position identification. More original and sophisticated 
protocols have also been proposed such as the J (θ) method which is based on clever deriva-
tion of the J integral and direct measurement of the crack tip opening displacement and spec-
imen end rotation. With this protocol no assumption concerning the CZM shape is required 
and the J (θ) method effectively provide direct estimate of the interface separation law which 
can be implemented also under mixed mode condition. Similar evaluations have been also 
obtained by using the effective crack length method leading to a more straightforward evalua-
tion of the CZM. Finally, the use of strain gages for monitoring the development of damage 
along an interface in bonded joint or laminate have been recommended for a long time since 
such measurement seems to provide easy implementation and high sensitivity to damage de-
tection. However, only recently, a direct CZM reconstruction scheme from backface strain 
monitoring during crack propagation experimental have been proposed while classical CZM 
identification procedure are generally used. However, direct CZM reconstruction methods are 
generally limited to simple monotonous loading configurations, direct evaluation of interface 
separation law under stationary, fatigue or environmental coupling still appears difficult at 
this step.  

However, some works have been conducted for cohesive zone model parameters sensitiv-
ity and identification. Alfano and Fugiuele [1] have compared experimental data from mode-I 
crack test of adhesively bonded joints, with those obtained by modeling adhesive layer with 
exponential intrinsic cohesive zone model, bi-linear and trapezoidal. A good agreement be-
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tween experiments and simulation has been obtained and show that energy release rate is the 
only influencing parameter during propagation phase. They also show that bi-linear and expo-
nential laws well reproduce the primer phase behavior, while trapezoidal law overestimates 
peak force at which propagation appears. Although critical energy release rate and maximum 
cohesive laws stress are often seen as most important parameters towards model outputs, 
Waas and Gustafson [2] concluded with kriging method that, maximum cohesive law stress 
does not significantly influence model outputs for crack tests like double cantilever beam and 
end notched flexure type. In addition, several authors have proposed cohesive zone model 
identification methods. Two approaches are worth noting: the first known as direct which 
makes no assumptions about law's shape, the second called indirect, imposing law's shape 
whose parameters are calibrated by minimizing a cost function that measure metric between 
numerical and experimental observations. In the first case, Sorensen and Jacobsen [3] have 
adopted Li and Ward [4] approach to successfully measure cohesive zone law by deriving en-
ergy release rate J with respect to the CTOD. For the second approach, Valoroso and Sessa [5] 
identify a posteriori an exponential law whose parameters are re-calibrated compared to ex-
perimental data. It should be noted that formulation of cohesive zone model mentioned above 
is made such that damage is embedded in that it corresponds to stiffness variations. They are 
used for materials with elastic/elastic-plastic time independent behavior. Here we focus on 
such material type. 

In this article the crack initiation and propagation during double cantilever beam test un-
der monotonous loading is simulated considering elastic perfectly plastic interface separation 
law. The classical force versus opening displacement curves are evaluated and compared with 
a theoretically derived form. Additionally the specimen end rotation and crack tip opening 
displacement as required by the J (θ) technique is conducted too. The sensitivity of J (θ) ex-
perimental techniques to the CZM parameters is evaluated and reconstruction of the CZM 
with the various techniques is conducted.  

2 ELASTIC PLASTIC COHESIVE ZONE MODEL 

Cohesive zone model consist of an interface phenomenological law represented by a rela-
tionship between cohesive stress and displacements jump at the bonding line. First models 
were derived by Barenblatt [6] and Dudgale [7] in 60’s and since then, many models were 
proposed for fatigue, ageing and complex loads. Here we focus on an elastic-plastic cohesive 
zone model used as interface law for initiation and crack propagation during a mode-I fracture 
between to substrates assembled by structural adhesive e.g. for the double cantilever beam test. 

Figure 1 Elastic Perfectly Plastic cohesive zone model 
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      In figure 1 is illustrated a perfect elastic-plastic cohesive zone model. This model, as its 
name suggests, can be divided in two parts: elastic and plastic. The elastic part is character-
ized by two parameters	���� and	�� linked by the initial stiffness	��, and the second part de-
pends on���� and strain at break����. According to strain partition principle, total strain
can be written as the sum of an elastic reversible instantaneous part, and a second one where 
all dissipation processes are embedded. Here, we consider that this dissipation is provided by 
plastic phenomena. In addition, in order to take into account damage evolution, Kachanov 
damage evolution is used in term of mechanical property deterioration. Then, damage is rep-
resented here, by the secant stiffness decreasing at each load step. Concerning energy aspects, 
cohesive zone model formulations are made such that, the critical energy release rate		
 is
equal to the area under the law curve. 

G� = � σ�ε�dε
	����

�

In our case, the energy can be partitioned into elastic and plastic energy such that		
 =	� + 	�. In table 1 is represented quantities defined above and their formulation.

3 DCB MODELING USING ELASTIC-PLASTIC COHESIVE LAW 

Double cantilever beam test is the common one to measure fracture energy in adhesively 
bonded joints. It sample consist of two adherents assembled by adhesive and loaded in order 
to initiate and propagate cracks. Standards like ASTM D5528 and ISO 25217, provides dif-
ferent data reduction techniques to compute fracture energy. 

Parameters Formulation Definition 

w - Width 
t� - Thickness 
E� - Young modulus 

k� wE�
t�

Initial stiffness 

G 1
2σ#�$ε Elastic energy 

G% σ#�$�ε# − ε � Plastic energy 

G� G + G% Critical energy 

Table 1 Parameters definition for elastic-plastic cohesive zone model 

      Many works have been proposed to model the double cantilever beam test with cohesive 
zone model as interface law and most of them use the finite element method. In this present, 
sample symmetry allows to consider only a half width and Winkler based modeling is used to 
derive constitutive equations. For this purpose, double cantilever beam sample is considered 
as beam lying on non-linear springs. 
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Figure 2 Double Cantilever Beam test specimen illustration 

 Timoshenko beam kinematics is used and springs follow a perfect elastic-plastic cohesive 
law. Then, cohesive stress can be seen as foundation reaction force due to opening load at the 
end-beam load point. In addition, the length of the bonded part is	' − (� and the two slabs
located at specimen right end are left unbounded over a distance equal to(� and considered as
the initial crack length. 

3.1 Constitutive equations 

Specimen deformation is evaluated at each step of the experiment by solving local beam 
equilibrium and constitutive equations as presented below: 

)*
)$ + T = 0
dTdx & wσ  0 

M  EI )0)$
T  κGS 3)4)$& φ6 

      Where	7,	8,		9 and : are bending moment, shear force, rotation and displacement respec-
tively. Here � is the local stress defined by cohesive law presented in Section 2. Its expres-
sions depend on local secant stiffness	;∗ expand as below: 

χ∗ 
>?
@
?A
B�C� 	if	σ F σ#�$
G4 	if	t�ε H v H t�ε#�$
0	 	if	v J 	 t�ε#�$

 

1 

2 

3 

4 

5 
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      Combining equations (1) and (2) on one hand, and equations (2), (3) and (4) in the other, 
the driven equations for double cantilever beam test modeling obtained are expressed as fol-
lows : 
 

)K*
)$K +wχ∗v = 0 

 )K4)$K − *BL− MN∗OPQ v = 0 

3.2 Numerical resolution and algorithmic aspects  

 Normal displacements along beam and opening force at beam right end is conducted by 
solving equations (6) and (7) which are a PDE system with bending moment and displace-
ments as unknown variables.	χ∗ is computed at each step using expressions and conditions in 
(5). Concerning resolution method, a finite difference method is used to approximate first and 
second derivatives: for first derivatives, a backward scheme is used and for second derivatives, 
a centered second order scheme. Then, at spatial coordinate RS  and	RSTU = RS + ΔR , 
where	ΔR is the spatial step one, can write: 
 

WM(x) v(x)X = Y WMZ vZX											if	x = 	 xZ
WMZTU vZTUX													if	x = 	 xZ + Δx 

 
      Equations (6) and (7) can be rewritten as:  
 MZ[U − 2MZ +MZTU +wdx\χ∗vZ = 0 
 − )$KBL MZ − ]2 + M)$KN∗OPQ ^ vZ + vZ[U + vZTU = 0 

 
      On can remark that (9) and (10) can be resume in a matrix system as follow: 
 

_1 00 1					
−2 wdx\χ∗
−dx\EI −`2 + wdx\χ∗κGS a					1 00 1b

cd
dd
deMZ[UvZ[UMZvZMZTUvZTU fg

gg
gh = 3006 

 
      Concerning boundary conditions at beam right side, an imposed displacement is applied 
and for beam left side, beam on elastic foundation conditions type is adopted. Defining a 
compliance matrix as C, relation between normal displacements and rotation firstly, and shear 
force and bending moment in second, can be expressed according to degree of freedom allow 
in our configuration. Then, we obtain: 
 3vφ6 = iC4k C4kC0k C0*l 3TM6 

 

6 

7 

8 

9 

10 
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      Below is illustrated the generic algorithmic scheme that was developed for double cantile-
ver beam test using cohesive zone model as interface law. Three computations level appears 
depending on which part of the code is activated. Level 0 is related to raw data, level 1 to loop 
initiation, level 2 when the code operates inside the loop and finally level 3 when the stopping 
rule allows getting out the loop. 
 

 
 

Figure 3 Algorithmic scheme for DCB experiment modeling 

4 NUMERICAL RESULTS 

 In this section, are shown numerical results obtained from a double cantilever test simula-
tion using an elastic perfectly plastic cohesive zone model as interfacial behavior for adhesive 
layer. We consider Aluminum substrate as Timoshenko beam with 70e9 Young modulus, 0.3 
Poisson ratio and 200 mm length. In addition, a 30 mm initial crack length is defined and the 
specimen is 10 mm thick and 15 mm of width. For the cohesive zone model, three parameters 
are taken into account: Young modulus	E� , maximum local	σ#�$  stress and strain at 
break	ε#�$. Initial values are respectively set to 2GPa, 50MPa and 6.85%. Opening force P 
and opening displacement Δ at the specimen right end are computed, as energy release rate J 
using J-integral formula and apparent crack length. Finally, a constant rate displacement load 
is applied at specimen right end in order to charge it in Mode-I for initiation and crack propa-
gation. Results are compared to analytical formula provided by single beam theory approach. 
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Figure 4 Opening force versus Opening displacement 

 In Figure 4 is shown the opening force according to the opening displacement load. The 
curve presents three different parts. The first one is linear and is referring to fast processes 
like those of elastic behavior and can be related to cohesive zone model elastic part. The se-
cond one is characterized by the loss of linearity and corresponds to the plastic part of the 
CZM. And the last part is related to the crack propagation. For this last, an analytical formula 
derived from single beam theory allow to relate P and	Δ using simple beam theory (Eq. 11),
the curve provided by this formula is illustrated by the cyan dotted lines and perfectly match 
our P (Δ) crack propagation evolution.

P = ]nBLo ^
U/n �wG��q/n U

√∆

Figure 5 Energy release rate J according to Opening displacement 

11 

3683



First A. Author, Second B. Author and Third C. Author 

 

 Figure 5 shows three parts also, and they are related to same processes as for P (Δ) evolu-
tion. However, a point has to be made concerning the propagation part. In fact, we assume in 
this paper a stationary propagation which induced a constant energy release rate during this 
phase and equal to the area under the cohesive zone model which should be an assumption 
made when loading speed is low. On can also remark that J becomes constant at Δ = 0.5mm 
and at this value in Figure 4, the force reached his maximum value	P#�$ = 1.1	kN. Such facts 
that can be seen as crack propagation criteria. In Figure 6 is represented the same quantity J 
plotted in terms of crack opening displacement	δ, only crack initiation phase is represented 
because of during propagation phase, we assume that J is constant. According to J-integral 
approach theory, J is written as path independent contour integral as:  

 

J  zσ. dδ
{

 

 
 Then, according to cohesive zone model shape, we can mention two essential parts of J 

(δ� evolution. In fact, the first part of CZM is the elastic one represented by an affine curve, 
then its integral should be a parabolic type curve, as we see in Figure 6 first phase. Using the 
same idea, CZM plastic is constant then its integral is a line as illustrated below. In conclusion, 
the modeling strategy used here by considering DCB specimen as Timoshenko beam lying on 
elastic perfectly plastic foundation through a Winkler type approach shows good agreement 
between analytical result provided by J-Integral approach and his computed evolution. The 
same accuracy can be found on crack propagation phase on Figure 4, where numerical results 
perfectly matched the theoretical evolution. 

 

 
 

Figure 6 Energy release rate J according to Crack Opening Displacement 
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5 COHESIVE ZONE MODEL IDENTIFICATION 

5.1      Sensitivity analysis  

Sensitivity analysis in order to quantify how CZM parameters affect J (δ) evolution is con-
ducted. For this, as influence indicator, we use gradient of J according to parameters and a 
weight factor is affected to each gradient in order to avoid units and scale gap as shown in Eq. 
12. However, regarding to curve partitioning aspects discussed above, it’s convenient to com-
pute these quantities, first for the elastic part and second for the plastic phase. Such approach 
is chosen to facilitate cohesive zone model parameters identification, when coupling between 
parameters can be negligible or inexistent. 

 

 
 

Figure 7 CZM parameters sensitivity index with J (|) evolution 
 η~ = %���

�����%î  
 
      Where, �� and �� are respectively parameters initial values and corresponding J values. 
Parameters p1, p2, p3 and p4 corresponds respectively to	��, ����,	��, and ����. We can see 
as shown in Figure 7 that adhesive thickness and Young modulus are the most important pa-
rameters in the elastic part. Nonetheless, we can also assume that adhesive thickness can be 
accurately measured and then his influence could be neglected. Young modulus is then the 
only driving parameter during the elastic phase as it could be expected. But sensitivity in plas-
tic zone shows that p2, p3 and p4 have an influence on J response and a coupling between 
them should be taken into account. In this article, only p2 and p4 e.g. ���� and ���� taken 
separately are considered.  

5.2       CZM parameters confidence interval 

Cohesive zone model parameters identification is performed using minimization of a cost 
function with Levenberg-Marquardt algorithm in elastic and plastic part. Young modulus is 
identified in the first one and maximum stress and critical opening strain in the later. For this, 
synthetized experimental data are built by adding to simulated ones Gaussian noise with 
standard deviation of 10. In addition, random CZM parameters values are injected as seed for 
the model and asymptotic standard deviation is computed when convergence rule is satisfied.  
Parameters convergence and residuals evolution are provided in Figure 8, 9 and 10. Ratio be-
tween standard deviation and fitted parameters are reported in Table 2. 

 

12 
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Parameters 

 ��/���� (%) 

Ea ���� ���� 
27.51 

8.86 

8.93 

 

 
Table 2 Parameters ratio: standard deviation obtained over fitted values  

 

 
 

Figure 8 Young modulus identification 
 
 

 
 

Figure 9 Maximum stress identification 
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Figure 10 Strain at break stress identification 
 

6 CONCLUSIONS 

      Crack initiation and propagation conditions during a double cantilever beam test under 
constant rate loading were investigated. Elastic-plastic cohesive zone model was considered 
to represent the interface separation law. A finite difference model was derived to evaluate the 
applied force versus specimen opening evolution and the parameters effect on energy release 
rate based on J-integral approach. Asymptotic standard deviation obtained from an optimiza-
tion process, provide tight confidence interval. Since J could be measure with three parame-
ters which is force, quantifiable with the traction machine and cross section rotation 
measurable with inclinometers, a cohesive zone model could be obtain using J first derivative 
according to crack opening displacement. The latter is also accessible from digital image cor-
relation.  
Future works must be devoted to more sophisticated sensitivity index estimation like those 
stochastic for example, and a comparison with experimental data in order to validate such 
model.
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Abstract. Advances in additive manufacturing (AM) allow economical production of compon-
ents with unprecedented geometric complexity. This offers exciting opportunities for innovative
designs, and particularly topology optimization has been identified as a key technique to fully
exploit the capabilities of AM. However, also AM involves manufacturing restrictions, such as
limitations on the inclination of overhanging parts. To deal with this problem, either sacri-
ficial supporting structures can be added during the process, or only self-supporting designs
can be considered. Both approaches have disadvantages, as support structures add material
and post-processing costs, while demanding exclusively self-supporting designs may impose
strong restrictions on achievable performance. With current methods, designers are limited to
a choice between these two extremes. To open up a wider range of designs, this paper presents
and demonstrates a topology optimization formulation that allows the designer to find trade-off
solutions between design performance and support structure costs, considering both printing
and removal costs.
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1 INTRODUCTION

Additive manufacturing (AM) processes such as Selective Laser Melting (SLM) or Electron
Beam Melting (EBM) allow economic fabrication of metal components with unprecedented
geometric complexity [1]. This offers exciting opportunities for innovative designs, and par-
ticularly topology optimization (TO) has been identified as a key technique to fully exploit
the capabilities of AM [2, 3, 4]. However, there are still geometric restrictions that must be
taken into account. An important restriction that applies to popular powder-bed processes such
as SLM and EBM, is that the inclination of printable overhanging parts with respect to the
build plate is limited. This limitation is associated with a critical overhang angle, that typically
amounts to 45◦ [5, 6].

Current practice is to first generate an optimized design using TO, and to subsequently find
a part orientation that meets the overhang restriction. However, complex parts often lack a
fully printable orientation. In that case, either the part must be modified, or sacrificial support
structures must be printed together with the part itself (see Fig. 1(a)), and removed afterwards.
The first option reduces part optimality, while the latter adds material and machining costs. A
more preferable approach would be to include the AM restrictions in the TO process, making
the subsequent steps unnecessary.

As a remedy, authors have explored the idea to e.g. optimize the addition of supporting
structures, that become permanent parts of the final component [7]. Unfortunately this affects
its optimality. Others have taken steps to identify overhang angles already during optimization,
in order to generate fully self-supporting optimized designs [8, 9]. Still it was found that the
previously published methods leave room for the optimization process to produce inadmissable
structures.

To address this problem, this contribution first summarizes our approach to include the crit-
ical overhang angle restriction in the TO process. This approach utilizes a simplified AM fab-
rication model, that is applied in every TO iteration to transform a blueprint design layout into
an as-printed part [10, 11]. The AM model is defined in a continuous, differentiable way, and
sensitivities of the modeled AM operation can be computed efficiently. Applying TO including
this AM fabrication model results in optimized designs that are fully printable, and rigorously
comply with the overhang angle limitation. The necessary design modifications however may
result in performance reduction compared to freely optimized parts, as illustrated by Fig. 1(b).

In the outlined approach, designers do not have an option to exercise control over the trade-
off between performance reduction and support structure costs, which is restrictive. Building
on the mentioned AM fabrication model, we therefore propose a TO problem formulation that
allows for the simultaneous design of the actual part and the support structures required for its

a) Unrestrained design b) Self-supporting design c) Trade-off design

Figure 1: Schematic ‘Design for AM’ options: a) parts optimized without considering AM restrictions typically
require additional support material, b) fully self-supporting designs may show reduced performance / higher mass,
c) the method proposed in this paper finds a compromise solution that balances part performance and support costs.
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Figure 2: Definition of 3D AM filter, assuming the z-direction as the build direction. The green region S(i,j,k)

denotes the supporting region of a red element at position (i, j, k) in a mesh. When insufficient printed material is
present in this region, element (i, j, k) cannot be printed.

fabrication. The designer can specify costs associated to the printing of added support mater-
ial, as well as costs for the machining effort required to remove a given amount of supports.
Depending on these costs, the optimization finds the best trade-off between reduction in per-
formance due to part adaptation, and added costs related to support structures (Fig. 1(c)). This
allows for a controllable, rational approach to TO for AM, that enables the designer to find
optimal designs in terms of cost and performance.

In the following, Section 2 introduces the AM fabrication model and the proposed trade-off
formulation, followed by several 3D numerical examples in Section 3 and concluding remarks
in Section 4.

2 FORMULATION

2.1 Printable volume detection

In order to detect which parts of a design require additional support, an operation is needed
to identify the printable part of a given design layout. This is achieved by applying a simplified
AM process simulation, that determines which parts of a layer are printable given the printable
parts of the underlying layer. We distinguish two interrelated density values per element: a
blueprint density b, expressing the material layout specified by the optimizer, and a printed
density p, indicating the actually printable structure. The following subsections summarize the
definition of this AM filter and its sensitivity analysis, for a more in-depth discussion the reader
is referred to [10, 11].

2.1.1 AM filter definition

The simplified AM process model is defined on a structured grid, as depicted in Fig. 2. An
element at position (i, j, k) is associated with a support region S(i,j,k), consisting of the element
directly underneath and its four neighbours. The maximum printed density in S(i,j,k) determines
the maximum printable density it can support. Mathematically this is expressed by:

p(i,j,k) = min
(
b(i,j,k),max(p ∈ S(i,j,k))

)
. (1)

By definition, the base layer (k = 1) is fully supported by the baseplate and thus fully printable:
p(∗,∗,1) ≡ b(∗,∗,1). In all subsequent layers, Eq. 1 is applied by sweeping through the domain
in the build direction. In order to make this operation continuously differentiable, the min and
max operators are replaced by smooth approximations s̆ and ŝ. Further details are given in [10].

3691



Matthijs Langelaar

2.1.2 Sensitivity analysis under AM filter

A response f is evaluated on the printed part p, which is indirectly defined by b, i.e.
f = f(p(b)). Sensitivities ∂f/∂p are readily obtained, e.g. using adjoint sensitivity analysis.
For gradient-based optimization, sensitivities in terms of b are required, which can be computed
by:

∂f

∂b
=

∂f

∂p

∂p

∂b
=

∂f

∂p
Jpb (2)

The Jacobian Jpb is not sparse and unattractive to compute in full, from a numerical point
of view. Instead, we opt for an adjoint formulation. Using the AM filter definition pk =
s̆(bk, ŝ(pk−1)), where k is a layer index, it is found that, for layers k > 1:

∂f

∂bk

= λT
k

∂s̆

∂bk

, (3)

λT
k =

∂f

∂pk

+ λT
k+1

∂s̆

∂pk

for 1 < k < n, (4)

λT
n =

∂f

∂pn

, (5)

with n indicating the number of layers. For the base layer, simply ∂f/∂b1 = ∂f/∂p1. Eqs. 3-5
are inexpensive to evaluate, by sweeping layerwise through the domain from the top layer back
to the base.

2.2 Cost/performance trade-off

2.2.1 Problem formulation

The described AM filter rigorously eliminates designs that require support structures for
overhanging sections from the design space. However, imposing these restrictions generally
results in lower performance. In many cases designers may instead seek a trade-off solution,
where the added costs of support material and its removal are balanced against a smaller re-
duction in performance. This can be achieved using the AM filter introduced in Section 2.1.1,
by considering the blueprint design as a combination of the actual part and additional support
structures. To do so, we introduce two new design fields: d representing the density distribution
of the actual design, and s indicating the distribution of support material in the domain. The
blueprint design then consists of the union of d and s, which can be approximated as:

b(i,j,k) = ŝ
(
d(i,j,k), s(i,j,k)

)
. (6)

Next, this blueprint field is processed by the AM filter, producing an as-printed geometry p(b).
This however consists of regions that are only included as support material, and regions that be-
long to the actual component. The component field c can be extracted by taking the intersection
with the actual design d, i.e.:

c(i,j,k) = s̆
(
p(i,j,k)(b), d(i,j,k)

)
. (7)

Performance is evaluated on the component geometry c. Moreover, the amount of support
material follows from s, and we assume the support removal effort to be proportional to a
measure of the part-support interface. The latter is given by the intersection between d and s,
i.e.:

i(i,j,k) = s̆
(
d(i,j,k), s(i,j,k)

)
. (8)
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A density filter is used, hence some overlap exists between d and s, which allows this definition
to be used. To summarize, the formulation now involves two fields controlled by the optimizer:
the actual design d and the supports s. In addition, we have defined a blueprint design for the
printer b, the printed geometry p, the component c and the support/part interface i. Note that
other choices are possible, e.g. the actually printed support geometry could be defined similar
to c. The present formulation was chosen for its relative simplicity.

This leads to the following optimization problem:

min
d,s

f(c) + csVs(s) + crVi(d, s)

s.t. gi(c) ≤ 0 (9)
0 ≤ {d, s} ≤ 1.

Here f denotes the component performance indicator to be optimized, cs and cr are cost factors
related to the amount of support material and removal costs, respectively, and gi are certain
constraints imposed on the component. Vs and Vi denote the volume of support material and
support-component interface regions as defined by Eq. 8, relative to the design domain. By
choosing the cost factors adequately in relation to the performance, different trade-off designs
can be generated. For very high cost factors, the design tends towards a fully printable geometry
without any support material. However, that result is easier to achieve by applying the AM filter
to d only, and omitting the support variables. The benefit of this refined formulation is that
trade-off solutions can be found, where some support material is used in those places, where
further design adaptation would result in undesirable performance reductions. The influence of
different choices of cs and cr is demonstrated using numerical examples in Section 3.

2.2.2 Sensitivity analysis

The responses involved in Eq. 9 in part depend on the component performance. The compon-
ent geometry is obtained from the actual design combined with the printed part (Eq. 7), which
itself results from the blueprint design, given by the actual design field and the support mater-
ial: gi(c(p(b(d, s))),d). Given these dependencies, the design sensitivities of the responses
involved in Eq. 9 follow from application of the chain rule as:
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The individual derivatives follow from the expressions given in Section 2.2.1 and derivatives of
the chosen smooth approximations s̆ and ŝ. The term expressing the dependence of the printed
part with respect to the blueprint design, ∂p/∂b, is not computed in full: instead the more
efficient adjoint sensitivity transformation given by Eqs. 3-5 is applied.
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Figure 3: Cantilever beam test case used in numerical compliance minimization tests. The design domain is
meshed with 150×50×50 elements, and a load of 1000 N is distributed over the right front edge. The z-direction
is chosen as build direction.

3 NUMERICAL EXAMPLES

3.1 Test case

In this paper, to demonstrate the additional freedom that the proposed trade-off formula-
tion offers to the designer, we consider a cantilever beam optimized for minimum compliance,
as depicted in Fig. 3. We assume that the orientation of the part has been specified a priori,
and deliberately choose an orientation that is not favorable for the design, in order to clearly
demonstrate the trade-off solutions the optimization process must find. Note that in real ap-
plications, part orientations are also often predetermined, due to demands on surface quality,
post-processing operations, chamber size or costs (build height).

We solve the classical compliance minimization problem, under a 50% volume constraint,
using the formulation given by Eq. 9. The problem is solved for different combinations of
support- and removal costs cs and cr. Cube-shaped trilinear isoparametric finite elemens have
been used, and the optimization has been performed using the Method of Moving Asymptotes
[12]. Density filtering was used to define the d and s fields from the fundamental optimization
variables, with a filter radius of 1.5 times the element edge length. 3D results are depicted by
their isosurface, extracted at a density level 0.3.

3.2 Results

3.2.1 Reference designs

First we consider two extreme cases as reference designs: the unrestrained case, where no
AM restrictions are applied (cost factors set to zero), and the fully self-supporting case (cost
factors set to 103). This corresponds to the cases illustrated in Fig. 1(a) and (b). To interpret the
cost factors, note that the numerical magnitude of the optimal compliance is around 25.

The obtained designs are depicted in Fig. 4. Note the presence of ample amounts of support
material in Fig. 4(a), even coinciding with the actual component material. There is no driving
force for the optimizer to be economical with support structures, hence they appear all through-
out the domain. In contrast, the case with costly supports results in a fully self-supporting
design, with no support structures at all (Fig. 4(b)). The compliance of the unrestrained case is
Cu = 25.55, and that of the fully self-supporting case Css = 27.63. Requiring the entire part to
meet the AM restrictions has worsened its compliance performance for this problem by 8%.
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a) Unrestrained design b) Fully self-supporting design

Figure 4: Cantilever beam designs obtained in compliance minimization using either a) no AM restrictions or
b) requiring the final design to meet the overhang restrictions everywhere, in full and cutaway view. Sacrificial
support material is depicted in green, the actual component in white. The part is viewed from below the baseplate,
in the printing direction.
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a) cs = 10, cr = 0 (no removal costs) b) cs = 0, cr = 10 (no support material costs)

Figure 5: Beam designs obtained considering either a) no removal costs, or b) no support material costs. Sacrificial
support material is depicted in green, and the actual component in white, opaque and semi-transparent. The part is
viewed from below the baseplate, in the printing direction.

3.2.2 Trade-off designs

Next we present various results that illustrate trends of the effect of the cost factors on the
obtained designs. At the moment we have no access to realistic cost calculations, hence the
focus of this study is purely on determining if the formulation has the intended characteristics.
First, we consider the support and removal costs separately. Although they have different units,
both are set numerically to 10.0 with their counterpart equal to zero. Resulting designs are
depicted in Fig. 5.

The amount of support material employed by the optimizer is less than that when no costs
were associated to its usage (Fig. 4(a)); instead, it is applied more sparingly to specific loc-
ations where the costs of either support material or interfaces balances with the gain or loss
in performance. Especially in the plots with transparent component geometry in Fig. 5 it is
seen that also a difference exists between restricting material usage or interface area: Fig. 5(b)
clearly contains more support material. In terms of compliance, the cr = 0 case is close to
the fully self-supporting case Css, while the cs = 0 case does slightly better: 7% higher than
Cu, which corresponds to the higher support material usage seen for this design. Note that the
chosen cases are not directly comparable: the cost factor 10.0 has a different meaning when
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a) cs = 0.1, cr = 1 b) cs = 0.5, cr = 5 c) cs = 2.5, cr = 25

Figure 6: Beam designs obtained considering various levels of support and removal costs. Sacrificial support
material is depicted in green, and the actual component in white, opaque and semi-transparent. The part is viewed
from below the baseplate, in the printing direction (top row) and from above towards the baseplate (bottom row).

applied to volume or area. Nevertheless, the observed trends confirm that this formulation is
able to distinguish different cost aspects.

Next, the ratio between support material and removal costs is fixed to 1:10, and different cost
levels are considered. Results are depicted in Fig. 6. It is seen that changing the cost factors
leads to adjustments in the optimized design, with the employed amount of support material
decreasing with increasing costs.

Relative compliances of these three cases are 1.6%, 3.5% and 4.6% worse than the unres-
trained design (Cu, Fig. 4(a)), but all clearly better than forcing the design to be fully self-
supporting, which yielded an 8% performance drop (Css, Fig. 4(b)). This is as expected: adding
more severe restrictions leads to further reductions in achievable performance. Note also that
the support material layout as seen in the transparent plots shown in Fig. 6 is optimized in the
process as well: to limit the amount of sacrificial material, branches are formed that merge to-
gether to form a connection to the baseplate. In the present model, no stiffness requirements
are taken into account for the support structures, but the problem formulation can in principle
be extended with constraints related to the printed geometry field p as well.

4 DISCUSSION AND CONCLUSIONS

A new formulation that enables designers to find trade-off solutions when using topology
optimization for additive manufacturing has been presented. It builds on a filter-based proced-
ure to create exclusively self-supporting designs. While effective, for practical applications,
a less restrictive approach that can find a rational compromise between part performance and
production costs is often desired.

The presented formulation, employing a simple cost model considering support structure
volume and removal costs, generates fully printable combinations of component and support
geometry. As expected, optimized part performance decreased as support and removal costs
increased. When applying realistic cost factors, this allows designers to properly balance per-
formance and costs. The cost model itself is simple and should be seen as a placeholder for more
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refined cost models for specific processes. Also, an important limitation is that the present pro-
cedure does not account for the accessibility of the interfaces that require machining for support
removal. Even enclosed voids may occur in the designs. Therefore, engineering judgement is
still necessary to evaluate the proposed solutions.

The examples confirm that enforcing full compliance with the AM process’ overhang lim-
itations comes at a cost in terms of part performance. In this case, the maximum difference
amounted only to 8%, and in fact other part orientations do not result in performance reductions
[11]. The examples are however only intended to illustrate the principle, that in general restric-
tions often reduce performance, and that the presented cost-based formulation offers a way to
find a compromise.

The current method assumes a fixed part orientation, while in reality freedom may exist
to reorient the part. This can be included in the present formulation by considering multiple
optimizations with different orientations. However, this directly increases the computational
effort, hence also here engineering insight in the selection of suitable orientations is required.
Substantial gains or losses can result from part orientation choices, and including this aspect in
the optimization is considered an important topic for future work.
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Abstract. This work falls within the scope of topology optimization procedures and additive
manufacturing technologies. In recent years the topology optimization has become a perfect
tool  to  maximize  the  potential  and  freedom  that  these  revolutionary  manufacturing
technologies offer, allowing to conceive designs that utilize available resources optimally.
However,  there  are  still  many  theoretical  and  practical  issues  regarding  automatic
integration of both technologies. This investigation aims to advance in this line of research,
where algorithms that provide the ability to control and minimize support structures will be
developed. These scaffold structures are usually necessary when additive manufacturing is
used to construct the geometries obtained after the optimization process. The algorithms to be
implemented in this project would offer the possibility to control the formation of scaffold
structure  and  minimize  them  when  necessary.  For  this  purpose,  this  introductory  paper
discusses the effect of different parameters and restrictions that may have an influence on the
formation  of  scaffold  structures  and are  eventually  involved  in  the  topology  optimization
process.  Considered parameters  include  the  filter  radius  applied  for  mesh independency,
penalization factor in the SIMP power law and the perimeter constrain. These strategies are
frequently used to assure existence of solutions and mesh independent 0-1 designs, when a
high degree of  complexity  is  usually  undesired for  traditional  manufacturing.  This  paper
discusses the effect of these parameters on the length and inclination of members present in
the optimum topologies. The requirement for several Additive Manufacturing processes to use
support structures for large overhangs provides justification for investigating additional and
specific methods for including this measure into the optimization process. In this line of work
the authors will also propose a new approach to evaluate the global angle and overhang of a
topology  with  intermediate  densities,  which  can  be  incorporated  as  a  manufacturing
constraint into the topology optimization process in order to explicitly specify the amount of
support structures desired in the final solution.
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1. INTRODUCTION

In  past  years,  and  due  to  factors  such  as  limitations  on  accessible  manufacturing
technologies, difficulty for interpreting results,… topology optimization has not been used
beyond theoretical arguments, and it was when techniques like penalization methods (SIMP,
…), mesh independent filter… were developed that topology optimization began to sprout on
the industry.

The tendency back then, due to the limitations that manufacturing technologies seemed to
have at that time, was to simplified the optimum design using penalizations methods, filters,
… Hence, despite of being close, the resulting geometry wasn´t the optimal.

 

(a) (b)

Figure 1: Differences between a Real Optimum (a) and a Simplified Optimum (b)

The  complexity  of  the  structure  used  to  be  a  problem and  many  authors  worked  on
analysing it by using filter and different parameters [1]

Now  the  situation  is  quite  the  opposite.  The  introduction  of  the  modern  additive
manufacturing technologies has enforced the usage of topology optimization in the design
process, as combining both one can fully exploit the capabilities of each of them. However,
that  combination presents a critic  point  as although the comparatively lack of limitations,
additive manufacturing technologies posses one weak point which is commonly known as the
overhang problem. This means that during the manufacturing process curling/warping may
appear  due  to  high  temperature  gradients.  These  situations  are  conditioned  by the  angel
(relative to the structure’s  growing direction)  of inclination  of the member  and its  length
(perpendicular projection to the structure’s growing direction).

In order to face these problems, but never to avoid them, what it’s been commonly done is
to introduce scaffold structures. Nevertheless, the introduction of these structures supposes an
increment of needed initial raw material and hence an increment of economic cost as well as
an increment on manufacturing time (there are needed some processes to put and remove
them),  contamination… The current tendency then is to develop methods that  are able to
avoid  these  structures.  These  methods  should  include  the  overhang  constraint  into  the
topology optimization process.

Anyway, some authors [2] have already mentioned that increasing the complexity of the
structure  may  help  obtaining  scaffold  structure  free  geometries  as  the  more  complex  a
geometry is, more and shorter members are created and they can have a similar behavior to
scaffold  structures.  Consequently,  if  the  complexity  of  the structure  can  be controlled  by
controlling the typical parameters of the topology optimization problem, it may help reducing
the amount of scaffold structures and may make more affordable the additive manufacturing
process.

As it is been already mentioned, the overhang problem is conditioned by the length and
inclination of the member and by increasing the complexity of the structure we are directly
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controlling one of these parameters, the length, and as will be explained later on, minor length
equals a minor problem. An example of the mentioned is shown in figure 2.

(a) (b)

Figure 2: Differences between a complex geometry (a) and simpler geometry (b) for the same structural
problem

While image 2(a) shows an structure with a good amount of thin and short elements with
appropriate inclination (respect to a vertical growing direction) to be manufacture by additive
methods with probably no scaffold structures, image 2(b) shows a simpler geometry where
members’ inclination will be problematic and hence scaffold structures would be needed.

This  paper  seeks  to  present  the  effects  of  the  typical  topology  optimization  problem
parameters over the complexity of the geometry and it will  be proposed a technique with
which  the  probability/necessity  of  an  structure  for  needing  scaffold  structures  can  be
calculated.

2. PROPERTIES OF A MEMBER

Before going in any farther detail, the properties of structural members are presented.

2.1. Inclination, Ω.

The inclination is a critical factor in the fulfillment of the overhang constraint, but it does
not influence directly on the complexity of the global geometry. The inclination is measured
always respect to the structural growing direction. This is represented by the vector  r. The
inclination is a relative angle and is named Ω.

Figure 3: Inclination of a member

Regarding the restriction, problems begin to appear for relative angles greater than 45º,
which is considered the theoretical limiting angle, but some authors [2] propose a penalization
for  the  combination  of  the  inclination  and  the  length  of  the  member,  considering  the
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combined  effect  critical  for  the  fulfillment  of  the  constraint.  This  gives  an  idea  of  the
important effect that complexity casts over the problem.

2.2. Length, δ.

The length, δ, is relevant in the fulfillment of the constraint and it influences directly on the
complexity of the structure. Low values of δ suppose greater amount of members, therefore a
structure with more and thinner members which ends being a more complex structure.

Figure 4: Length of a member

This parameter, δ, also affects the thickness of the members (high value of δ = high value
of d).

2.3. Thickness, d.

The thickness, d, does not influence the complexity non the constraint, as the constraint is
not mechanic but thermal.

Figure 5: Thickness of a member

3. EFFECTS OF THE OPTIMIZATION PARAMETERS

In this section there are going to be shown the effects of the typical parameters of the
topology  optimization  over  the  complexity  of  the  final  geometry.  Considered  parameters
include the filter radius applied for mesh independency, objective volume and the perimeter
constraint.

For filters, since their introduction, they have always been used to avoid the generation of
checkerboard-like  problems  due  to  the  introduction  of  penalization  processes  such as  the
SIMP method. Filters tend to concentrate material where a predisposition for this exists, but
always  inside  a  region  controlled  by  the  value  of  the  filter  radius,  rmin.  However,
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concentrating material means to simplify the geometry, so the bigger the filtering radius is the
simpler the geometry will became. Figure 6 shows this effect.

(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 6: Effect of the filter radius on geometry’s complexity. (a) Discrete variables. 90x60 elements. V*=0.3,
(a1) rmin=1.5, (a2) rmin=2.5. (b) Continuous variables. 90x60 elements. V*=0.5, (b1) rmin=1.05 and (b2)

rmin=1.25. (c) Discrete variables. 150x50 elements. V*=0.3, (c1) rmin=1.5, (c2) rmin=3.5.

Figures (a1), (a2), (b1) and (b2) show the effects of varying the values of the filter radius
on  a  typical  cantilever  beam optimization  problem,  for  discrete  and  continuum variables
respectively. For both cases the lower value of the filter results in a more complex geometry.
From figures (a1) and (a2) in can be appreciated, as it was explained before, that the more
complex geometry is more suitable (for a vertical growing direction).

In the other hand, figures (c1) and (c2), although for lower filter radius the geometry is
more complex, it is not more suitable (for a vertical growing direction) as some members’
relative inclination is greater than the theoretical limit of 45º.

As it can be extracted from this examples there is a clear effect of the filter radius on the
final complexity of the structure, but there cannot be established a concrete pattern that could
be applied on any geometry and problem. In general terms, low values of the filter radius
result in more and thinner members, increasing then the complexity of the geometry but not
always resulting in a more suitable geometry for additive manufacturing.

The to be accomplished volume also has a direct effect on the member inclination. The
need  for  occupying  the  same  space  with  more  material  supposes,  in  general,  that  the
inclination of the members will vary due to the increase of member thickness. Figure 7 shows
this effect.
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(a) (b) (c)

Figure 7: Effect of the objective volume on the member inclination. Continum variables. 90x60 elements .(a)
V*=0.3, (b) V*=0.5, (c) V*=0.65. Rmin=3.5.

From (a) to (c), it can be appreciated how member inclination changes as objective volume
increases. Inclination of the boundary elements is what really matters, and it is seen that the
greater the final perimeter is, que greater the inclination it is.

In the case of the perimeter, its control is one of the proposed methods for controlling de 
complexity of the structures. This method was proposed by [3] and its initial objective was to 
substitute the filtering processes and to reduce/control the complexity of the final geometry. In order to
do so, an upper bound was written for the perimeter, reducing this way the number of members and 
holes. In the the contrary is made and a lower bound is written so that a great amount of members are 
obtained increasing like that the final complexity of the geometry.

(a) (b)

Figure 8: Effect of the objective perimeter. Continum variables. 90x30 elements .V*=0.5, rmin=1.2. (a) P=626,
(b) P=800.

In figure 8 it can be appreciated the optimum structure (a) and the optimum structure with
a  greater  perimeter  constraint  (b).  It  is  easily  seen the  increase  of  the  complexity  of  the
geometry  when  increasing  the  perimeter,  and  this  happens  because  the  perimeter  is  the
longitudinal  measure  of  every  structural  boundary,  therefore  increasing  the  perimeter
increases the amount of holes and members of the final geometry. That way, members that
will work as natural scaffold structures can be created avoiding thermal problems and also
external scaffold structures.

It can be appreciated how every of the parameters has its own effects on the complexity of
a geometry,  and hence,  on the suitability of the structure to be manufactured  by additive
manufacturing technologies. Besides, the parameters are connected among them as one affects
the other (i.e: the greater the objective volume is, the greater could the perimeter become and
more members could be created).

4. THE PROPABILITY FOR THAT A STRUCTURE NEEDS SCAFFOLD
STRUCTURES, Ω.

Now that the effect of the different parameters over the complexity of a geometry is been
explained, a method for obtaining the probability for that a structure needs scaffold structures
is presented, regardless the value of the different parameters. The method presented in this
paper is based on discrete variables, but the aim is to develop an universal method.
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The objective is to find a number that can describe in which amount the overhang constraint is
violated, or what is the same, the probability for that scaffold structures are needed. The 
process starts calculating variable gradients for 3x3 mask placed with center on the center of 
every element. These gradients will be calculated in the vector vcg, where vcg is the direction 
vector from the geometric center of the mask to its center of gravity. This method is known as
SUSAN (Smallest Univalue Segment Assimilating Nucleus) and was developed as a method 
for locating boundaries [4, 5].

vcg=(xcg,ycg)

(1)

Figure 9: Physical meaning of vector vcg

4.1. Properties of vector vcg.

 The vector vcg always points to the material. This property is usefull for defining
and distinguishing the conflictive boundaries.

 In the case of continuum variables, the module of  vcg will indicate if there is a
boundary or not. The value of the module indicates how fast the variable varies in
the direction of the vector (the maximum variation direction), hence, a high value
of the module indicates that the existence of a boundary can be consider in that
point.

High |vcg| = Boundary (drastic variation of the design variable)

Once vcg is obtained, we must know if there will be any manufacturing problem, and for
that the growing direction of the structure must be defined. This direction is represented by
the vector r which is defined by the designer.

r (designer defined) = (xr, yr) (2)

Now  and  for  every  3x3  mask  the  angular  deviation  of  vcg towards  r is  calculated.
Summing these angels of deviation the number Ω is obtained, and every component of this
number (the one of every mask) is called Ωe.

Ωe = deviation(r, vcg) (3)

 (4)

Figure 10: Physical meaning of Ω and Ωe
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where m is the number of masks. Ω represents the probability for that a structure will need
scaffold structures.

A typical  situation  in  any topology optimization  problem can be  described as  follows
where problematic boundaries are painted in yellow.

Figure 11: A typical situation in any topology optimization problem

In order to know if a boundary is critic we will use one of the components of its vector vcg
and compare it with the correspondent of  r. In this case we use the component ycg. As the
vector  always points the center of gravity, if the component ycg has the same sign as the
component yr of vector r, that boundary will be conflictive.

ycg/yr < 0 -------- No problem

ycg/yr ≥ 0 -------- Conflictive boundary (5)

Then, in order to safe efforts, only in the case where ycg/yr ≥ 0 we will proceed to calculate
the deviation between the vectors vcg and r.

However, despite of being in the previous situation, the constraint is only (theoretically)
violated if the relative angle y inferior to 45º, so it is helpful to relativize Ωe just to sum only
in the cases where the constraint is really violated. Then,

Ωo= deviation(r,vcg) – β (6)

where  β is a parameter that represents the limit angle (45º in theory). As it‘s been mentioned, the
overhang constraint is also affected by the member length, so we will let the designer defining the
limit value for the angle from what the constraint will be considered violated. This way, 

If Ωo < 0 -------- The constraint is violated. + 1 

If Ωo ≥ 0 -------- The constraint is not violated. + 0 

Then, and remembering (4),

(7)
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This way, Ω represents not only the probability of needing scaffold structures or the amount that
the constraint is violated, but also the number of conflictive elements. A high value of Ω means that
there  are  so  much  elements  that  cannot  meet  the  constraint  and  therefore  that  there  is  a  high
probability of needing some scaffold structures. Nevertheless, knowing Ω does not mean that we are
capable of eluding scaffold structures, but it allows the designer to know more information about the
amount of necessity for them.

Another question is posed now and it is how to obtain a good interpretation of the number
Ω.  It’s  been  explained  that  a  high  value  of  Ω  means  great  violation  of  the  constraint,  but  no
information can be obtained beyond that.  El  objective of the authors is to detect  and identify the
boundary of every member y to be able to control their orientation, but this is presented as future
work.  [5]  proposed  a  problem for  minimizing  the  deviation  Ωe,  but  the  results  didn’t  show any
structural reliability, therefore the authors propose the development of new methods and techniques.

For having a correct interpretation of Ω a normalization parameter is needed, and that will be
the perimeter, P. This way we can distinguish among cases that a priori possess similar value of Ω. For
example, a structure with high value of Ω and a low value of the perimeter is a great problem due to
the low amount of members  and great amount of conflictive elements, but a structure with the same
number Ω but high perimeter value, is a less critical situation. It is more critical a situation with a low
number of holes (members) where vectors r and vcg will have the same direction in many continuum
occasions creating thick members perpendicular to r, that one with a lot of little holes in it. For this
reason, we define Ω as follows,

(8)

Having this information, the interpretation of Ω becomes easier and more effective.

                        

Figure 12: Representation of some examples

(a) (b) (c) (d)

(a)
(b)

(c)
(d)

m
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5. CONCLUSIONS

 Every typical parameter of the topology optimization problem has some effect on the
complexity of the final geometry.

 Low values of the filter radius increase the complexity of the final topology, but the more
complex design is not always the most suitable for additive manufacturing construction.

 Same geometry with different  objective volume fraction can became non-suitable  for
additive  manufacturing  construction.  As objective  volume grows,  member  inclination
tends to become more critical, specially in the boundaries.

 Objective perimeter shows the greatest effect on the complexity. Higher perimeters help
creating more, shorter and thinner members. This effect can help avoiding the need for
scaffold structures as the structure can become self-supporting.

 The  number  Ω represents  the  probability  for  that  a  structure  will  need  of  scaffold
structures  to  avoid overhang constraint  and be self-supporting.  This  information  may
help the designer interpreting how much the constraint is violated and evaluating the
quality of the structure.

 The perimeter helps with the normalization of  Ω. This parameter helps differentiating
among cases with a priori the same value of Ω, giving more detailed and precise information.
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Abstract. In most additive manufacturing technologies, support structures are required to
sustain overhanging surfaces. These additional structures have negative effects on both pro-
cessing time and material consumption. Moreover, additional post-processing effort is required
for their removal. Therefore, reducing the use of the supports would have a beneficial impact
on the overall manufacturing process.

An optimization procedure aiming at the optimal placement (and design) of the supports in
additive manufacturing should include the intrinsic time-dependent nature of the process. More
precisely, it should take into account not only the final configuration, but all the intermediate
shapes that are obtained during the additive process. As a consequence, we believe that it is
necessary to go beyond standard topology optimization methods, where typically only the final
shape is optimized.

The model proposed in this work relies on the solution of a time-dependent minimal compli-
ance problem based on the classical Solid Isotropic Material with Penalization (SIMP) method.
In particular, we first introduce a continuous optimization problem with the state equation de-
fined as the time-integral of a linear elasticity problem on a space-time domain. The objective
functional is given by the mean compliance over a time interval. The optimality conditions for
this optimization problem are then derived and a fixed-point algorithm is introduced for the
iterative computation of the optimal solution.

Numerical examples showing the differences between a standard SIMP method, which only
optimizes the shape at the final time, and the proposed time-dependent approach are presented
and discussed.

3711



M. Bruggi, N. Parolini, F. Regazzoni and M. Verani

1 INTRODUCTION

Additive manufacturing, also known as 3D printing, is widely used to create prototypes from
digital models. Successive layers of material are laid down by a three–dimensional printer under
computer control. In most additive manufacturing technologies, support structures are required
to sustain overhanging surfaces. Up to now, not any shape or geometry can be printed in real
time, because of the need for providing a suitable set of supports when synthesizing the three–
dimensional object. Support structures remarkably affect not only the processing times but
also the material consumption. Therefore, their rational use would greatly improve the overall
process of 3D printing.

Powerful numerical tools that go under the name of methods of topology optimization are
rapidly developing in many branches of engineering to find optimal layouts that maximize any
kind of performance, see [1]. The classical formulation searches for the distribution of the avail-
able amount of isotropic material such that the so–called compliance (twice the elastic strain
energy computed at equilibrium) is minimized. A suitable interpolation depending on the local
values of the unknown density field penalizes the mechanical properties of the elastic body to
achieve 0–1 solutions, see e.g. the well–known SIMP (Solid Isotropic Material with Penaliza-
tion) [2]. Methods of mathematical programming are adopted to solve the arising minimization
problem, see [3], generally resorting to the adoption of the finite element method to solve the
equilibrium equation and compute the objective function and its sensitivity with respect to the
design variables.

Additive manufacturing is a fertile area of research for topology optimization. According to
the recent and comprehensive contribution in [4], additive manufacturing fills the gap between
topology optimization and application, since any computed optimal design can be printed with
minimal limitations on its complexity. Among the others, [5] investigates the issues and oppor-
tunities for the application of topology optimization for 3D printing, addressing the production
of meso–scale structures to cope with intermediated density regions, whereas [6] copes with the
multiple–material topology optimization of compliant mechanisms created via 3D printing.

Topology optimization can be used not only to generate optimal objects to be printed via
additive manufacturing, but even to optimize support structures. An optimization procedure
aiming at the optimal placement (and design) of the supports in additive manufacturing should
include the inherent time–dependent nature of the process. More precisely, it should account
not only for the final configuration, but also for all the intermediate shapes that are handled
during the printing.

Goal of this work is to propose a new approach to this problem, resorting to the solution of a
time–dependent minimal compliance formulation based on the classical SIMP. More precisely,
a continuous optimization problem adopting a state equation defined as the time–integral of
a linear elasticity problem on a space–time domain is formulated. The objective function is
given by the time-averaged compliance, whereas the optimality conditions for this optimization
problem are derived and a fixed-point algorithm is introduced for the iterative computation
of the optimal solution. The discretization of the optimization problem is finally obtained by
considering n intermediate time instants (ti) (and the corresponding spatial domains Ω(ti)) and
solving a sequence of linear elasticity problems on Ω(ti) with the finite element method.

The outline of the paper is as follows. Sections 2 and 3 define the topology optimization
problem to design the supports of a 3D printed object having mean minimum compliance over
a time interval, in the continuous and discrete form respectively. Section 4 provides numerical
examples showing the differences between a standard SIMP method, which only optimizes the
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Figure 1: a) Reference space domain. b) Space domain relative to time t. Ω(t) is located below the dotted line,
corresponding to the height v0t).

shape at the final time, and the proposed time–dependent approach. Section 5 provides final
remarks on the presented preliminary simulations and outlines the ongoing research.

2 THE OPTIMIZATION PROBLEM

The objective of this work is to define a topology optimization problem to design the supports
S of a 3D printed object O so that the manufactured item (i.e. O ∪ S) exhibits the minimum
mean compliance over a given time interval I = [0, T ], being T the duration of the production
process. To achieve this goal, we will first introduce a suitable time-dependent domain together
with a linear elasticity state problem governing the displacement u(t) of the manufactured item
at each time-instant t.

Let us consider an hold-all cylindrical space domain Ω = E × (0, h) ⊂ Rd−1 × R, with
d = 2, 3 and E a subset of Rd−1. Each point in Ω reads as x = (x∗, y), where x∗ denotes the
planar component while y is the vertical one. Once the printing process is complete, i.e. for
t = T , the target object O will occupy a certain subset Ω1 ⊂ Ω, while for t < T it will occupy
intermediate configurations Ω1(t) such that Ω1(t) ⊂ Ω. In view of the above discussion, the
value h represents the height of the object at the final time T . For future use, we also introduce
the subdomain Ω0 ⊂ Ω identifying the region where a priori the user does not want to introduce
any support. Next, we introduce a time-dependent domain Ω(t) that changes during the additive
manufacturing process and represents the region where the 3D printer can add material (either
belonging to the object or to the supports). We assume that Ω(t) grows in the direction given
by the coordinate y with constant velocity v0, i.e. Ω(t) = {(x∗, y) ∈ E × (0, y) : 0 < y < v0t}.
Accordingly, we have Ω1(t) = Ω(t) ∩ Ω1 (see Figure 1). Clearly, at the final time T = h/v0,
we have Ω(T ) = Ω and Ω1(T ) = Ω1.

Now, we describe the topology optimization problem which will be instrumental to optimally
place the supports of the target object to be printed. The first step is to introduce the design
variable which describes the material distribution. As it is common in topology optimization, it
is introduced as a non-dimensional density distribution ρ̃. More specifically, in our framework
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we define the set of admissible densities as follows

Uad =
{
ρ̃(x) ∈ L2(Ω) : ρ̃ ≥ ρ̃min a.e. in Ω, (1a)

ρ̃ ≤ 1 a.e. in Ω, (1b)
ρ̃ = ρ̃min a.e. in Ω0, (1c)
ρ̃ = 1 a.e. in Ω1, (1d)∫

Ω

ρ̃ dx ≤ C
}
. (1e)

The density ρ̃ is bounded between ρ̃min and 1. The region where ρ̃ = 1 identifies the subdomain
occupied by the material (either the object to be printed or the supports), while ρ̃ = ρ̃min
identifies the empty region. Clearly, in the region Ω1 occupied by the target objectO the density
is a priori fixed at one. Moreover ρ̃ is subject to the volume constraint

∫
Ω
ρ̃ dx ≤ C, where C

represents the total amount of material available for the printing process.
Let ΓD ⊂ ∂Ω be the portion of the boundary where the object is anchored (usually the

bottom of space the domain). We require that, at each time instant t, the state variable u(t) is
the solution of the following linear elasticity problem on Ω(t) written in weak for

aρ̃(u,v; t) = l(v; t) ∀v ∈ H1
0,ΓD

(Ω) a.e. t ∈ [0, T ], (2)

where we have introduced the bilinear form

aρ̃(u,v; t) =

∫
Ω(t)

E(ρ̃(x))∇su : ∇sv dx (3)

and the linear functional
l(v; t) =

∫
Ω1(t)

ρ0g · v dx, (4)

being E the elasticity tensor, ∇s = ∇+∇T

2
the symmetric gradient, ρ0 the mass density of the

material used by the printer and g the gravity acceleration.
The particular choice of the linear functional l amounts to assuming that the printed object

is subject to an external load represented by the weight of the target object only (i.e. we are
assuming negligible the contributions of the supports).

In the original SIMP method [2], the intermediate density values are penalized through the
interpolation scheme E(ρ̃(x)) = ρ̃(x)pE0 (where E0 is the elasticity tensor of the considered
material). The lower bound ρ̃min is required to avoid singularities in the elasticity problem. A
modified version of the power law approach was proposed in [8]:

E(ρ̃(x)) = Ẽρ̃(x)E0 , (5)

Ẽρ̃(x) = Ẽmin + ρ̃(x)p(1− Ẽmin) (6)

and 0 ≤ ρ̃ ≤ 1. In this work, we will consider a hybrid formulation, by using (6) with 0 <
ρ̃min ≤ ρ̃ ≤ 1, so that we can recover the original formulation by setting Ẽmin = 0, and the
modified version by setting ρ̃min = 0.
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2.1 The continuous optimization problem

Now, we are ready to introduce our optimization problem. In particular, we ask that the
unknown optimal density distribution of the supports minimizes the mean compliance of the
printed object over the time interval I . Thus, we consider the following objective functional:

J (ρ̃) =
1

T

∫ T

0

l(u(t); t) dt, (7)

where, for given density distribution ρ̃, the function u(t) solves the state equation (2) at each
time t. Thus, the minimum mean compliance problem reads:

min
ρ̃∈Uad

J (ρ̃)

s.t.
1

T

∫ T

0

∫
Ω(t)

Ẽρ̃(x)E0∇su(t) : ∇sv(t) dx dt =
1

T

∫ T

0

l(v; t) dt ∀v ∈ V
(8)

It is possible to analyze the continuous time-dependent optimization problem (8), recasting
the pointwise-in-time formulation (2) in an equivalent integral-in-time formulation. In this way
the evolutionary problem can be addressed by employing well known solution methods for
the classical SIMP problem, such as OC, MMA and CONLIN, see [1]. The analysis will be
presented in [9].

3 DISCRETIZATION OF THE PROBLEM

In this section, we introduce the discretization of the problem (2) and we derive the dis-
crete counterpart of the optimization problem (8) that will be solved using the OC (Optimality
Conditions) method.

3.1 Finite-element space discretization

At the generic time instant t, we consider a computational grid Th(t) partitioning the domain
Ω(t) and we denote with Xh(t) the continuous linear finite element space defined on Th(t). We
introduce the finite element space of functions compatible with the boundary conditions:

Vh(t) =

{
uh ∈ Xh(t) s.t. uh = 0 on ΓD

}
. (9)

Let {ϕj}
Nh(t)
j=1 be a basis of Vh(t), where Nh(t) is the dimension of the space. The space

discretization of state equation (2) at time t reads:

find uh(t) ∈ Vh(t) s.t.
aρ̃(uh,vh; t) = l(vh; t) ∀vh ∈ Vh(t).

(10)

By writing uh(t) as linear combination of elements of the basis

uh(x, t) =

Nh(t)∑
j=1

uj(t)ϕj, (11)

we get the Galerkin approximation associated to time t:

AtUt = Ft (12)

where
[At]ij = aρ̃(ϕj,ϕi; t), [Ut]j = uj(t), [Ft]i = l(ϕi; t). (13)
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3.2 Discretization in time

We consider a uniform subdivision of the time domain I and we solve the linear system (12)
at the N time instants tn = nT/N, n = 1, . . . , N . The collection of vectors {Ut0 , . . .UtN} is
the full discretization of the state variable u over the time interval I . For the sake of simplicity,
we consider a structured grid with a vertical discretization such that the grid Th on the full space
domain Ω can be split into the N horizontal layers E × [v0tn−1, v0tn] for n = 1, . . . N . Under
this hypothesis, given Th and a basis {ϕj}j∈V of the finite element space Vh defined on Th, we
can recover Vh(t) as the space generated by the subset of {ϕj}j∈V of functions whose support
has non-empty intersection with Ω(tn).

When multiple layers (N > 1) are used in the computation of the optimal time-averaged
compliance, the resulting approach will be referred to as multi-layer approach. Otherwise,
for N = 1 we recover the standard minimal compliance optimization that we will refer to as
single-layer approach.

3.3 Full discretization

Let Ke be a generic element of the mesh Th, with index e ∈ B. We denote with B0 and
B1 the sets of indexes of elements belonging to Ω0 and Ω1, respectively. The subset of mesh
elements contained in the domain Ω(tn) is denoted as Bn ⊂ B. Moreover, let ne indicate the
value of the smallest time step such that the element Ke belongs to Ω(tn) and let Ve be the set
of indexes of degrees of freedom associated with the element e. Thus the following relations
hold: ⋃

e∈B

Ke = Ω,⋃
e∈Bn

Ke = Ω(tn),

e ∈ Bn ⇐⇒ n ≥ ne.

(14)

We remark that the finite element approximation ρh of the density is piecewise constant over
the triangulation Th, while the state variable u is discretized by continuous in space (with basis
{ϕj}j∈V ) piecewise constant in time finite elements, i.e.

ρh(x) =
∑
e∈B

ρ̃e1Ke(x),

uh(x, t) =
N∑
n=1

∑
j∈V

unjϕj(x)1(tn−1,tn](t).

(15)

We define

Ke
ij =

∫
Ke

E0∇sϕi : ∇sϕj dx,

f ei =

∫
Ke

ρ0g ·ϕi dx,

(16)

and the following SIMP interpolation holds:

Ẽ(ρ̃e) = Ẽmin + ρ̃pe(1− Ẽmin). (17)
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Finally, the constraint (1e) reads as follows:∑
e∈B

|Ke|ρ̃e ≤ C. (18)

In view of the above discussion, the discrete counterpart of the minimization problem (8)
reads as follows:

min
ρ̃e

1

N

N∑
n=1

∑
e∈Bn

1B1(e)
∑
i∈Ve

f ei u
n
i

s.t.
1

N

N∑
n=1

∑
e∈Bn

Ẽ(ρ̃e)
∑
i,j∈Ve

Ke
iju

n
i v

n
j

=
1

N

N∑
n=1

∑
e∈Bn

1B1(e)
∑
i∈Ve

f ei v
n
i ∀{vni }i∈Vn=1,...,N ⊂ R∑

e∈B

|Ke|ρ̃e ≤ C

ρ̃min ≤ ρ̃e ≤ 1 ∀e ∈ B
ρ̃e = ρ̃min ∀e ∈ B0

ρ̃e = 1 ∀e ∈ B1.

(19)

The Lagrangian function for the discretized problem is defined as follows:

L =
1

N

N∑
n=1

∑
e∈Bn

1B1(e)
∑
i∈Ve

f ei u
n
i −

1

N

N∑
n=1

∑
e∈Bn

(
Ẽ(ρ̃e)

∑
i,j∈Ve

Ke
iju

n
i u

n
j − 1B1(e)

∑
i∈Ve

f ei u
n
i

)
+ Λ

(∑
e∈B

|Ke|ρ̃e − C
)

+
∑
e∈B

λ+
e

(
ρ̃e − 1

)
+
∑
e∈B

λ−e
(
ρ̃min − ρ̃e

)
.

(20)

where Λ is the Lagrangian multiplier for the constraint (1e), λ+
e for the constraint (1b) and λ−e

for (1a). The constraints (1c) are (1d) are not plugged in the Lagrangian, but will be considered
later by projecting the solution on the space Uad in (24).

If we derive the Lagrangian with respect to the state variable we get the discrete version of
adjoint equation, while deriving with respect to the design variables ρ̃e we get:

∂L
∂ρ̃e

(ξ) =
∑
e∈B

[
− 1

N

N∑
n=ne

(
pρ̃p−1

e (1− Ẽmin)
∑
i,j∈Ve

Ke
iju

n
i u

n
j

)
+ Λ|Ke|+ λ+

e − λ−e

]
ξ. (21)

By defining

Ψe =
1

N |Ke|

N∑
n=ne

(
pρ̃p−1

e (1− Ẽmin)
∑
i,j∈Ve

Ke
iju

n
i u

n
j

)
(22)

we get the optimality conditions for the discretized problem which reads as follows
Ψe = Λ if ρ̃min < ρ̃e < 1

Ψe ≤ Λ if ρ̃e = ρ̃min

Ψe ≥ Λ if ρ̃e = 1.

(23)
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3.4 A fixed point algorithm

Based on (23), it is possible to derive an Optimality Condition (OC) method that computes
a sequence {ρ̃Ke } approximating ρ̃e by resorting to the following fixed-point algorithm: for
K ≥ 1

ρ̃K+1
e =



ρ̃min if e ∈ B0

1 if e ∈ B1

max {(1− ζ)ρ̃Ke , ρ̃min} if ρ̃Ke (QK
e )η ≤ max {(1− ζ)ρ̃Ke , ρ̃min}, e /∈ (B1 ∪B0)

min {(1 + ζ)ρ̃Ke , 1} if ρ̃Ke (QK
e )η ≥ min {(1 + ζ)ρ̃Ke , 1}, e /∈ (B1 ∪B0)

ρ̃Ke (QK
e )iη elsewhere

(24)
where QK

e = ΨK
e /Λ

K .
Since the space integral of updated density is a continuous non decreasing function of the

multiplier Λ, its updated value ΛK can be computed by employing a bisection algorithm. The
variable ζ is a move limit, and η is a tuning parameter. Both values can be adjusted to improve
efficiency of the algorithm. Typical values are respectively 0.1 and 0.5. In the actual implemen-
tation some filtering procedure must be taken into account to get a well-posed problem, see e.g.
[7].

3.5 Description of the algorithm

In this section, we briefly summarize the different steps required to apply the proposed
methodology, from the pre-processing needed to setup the simulation to the actual optimiza-
tion loop.

1. Pre-processing

• Choose a cylindric reference space domain Ω and identify sub-domains Ω0 and Ω1.

• Subdivide time interval [0, T ] in N time steps.

• Build a spatial mesh Th on Ω, fine enough to describe the geometrical details of
the sub-domains Ω0 and Ω1 and conforming with the horizontal layers at y =
v0t1, . . . , v0tN .

• Build the finite element space Vh with its basis functions.

• Choose an initial design for the variables ρ̃e (for instance a uniform distribution).

2. Optimization

• For each time step tn, compute the displacement field with the current value of the
design variable (see (12)).

• Compute for each mesh element the value of Ψe according to (22).

• Compute the current value of ΛK by bisection.

• Update the design variables ρ̃e as in (24).

• Repeal until a stopping criterion is satisfied.
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4 NUMERICAL RESULTS

In this section we present some numerical test cases to assess the properties of the proposed
topology optimization scheme for the design of support structures. In particular, we will high-
light the differences between the solution obtained with the proposed multi-layer approach min-
imizing the mean compliance during the printing process and the one obtained from a standard
single-layer minimal compliance problem for the whole object.

4.1 Test case 1

In the first test case we consider a self-supporting structure defined by an inclined tapered
beam with the thinner extreme joint to the ground and the thicker extreme supported by a vertical
pillar (in black in Fig 2). The domain is Ω = (0, 1) × (0, 0.5) and the prescribed active region
Ω \ Ω0 ∪ Ω1 (where the supports can be placed) is the area below the structure (in grey in Fig.
2). Both the object and the supports are made of thermoplastic polyurethane with ρ0 = 1.1 · 103

Kg/m3 and E = 3 ·107 Pa. The optimization was performed on three different mesh resolutions
(50×25, 100×50, 200×100) using a sensitivity filter with a fixed filter size of 0.2 (independent
of the mesh size). The results obtained using a standard single-layer approach for the final object
shape are reported in Fig. 3 (left), while the results of the proposed multi-layer using 25 time
intervals are reported in Fig. 3 (right).

First, we note that in both approaches the main features of the solution are captured even
with a coarse grid and the solution is robust as the space resolution is increased. However,
position and size of the supports generated by the two approaches are different. In particular,
for the multi-layer approach the supports are shifted on the right and thickened in order to
reduce the compliance in the first phases of the printing process when the tapered beam is not
yet self-supporting.

In order to better understand the reasons behind the difference between the optimal solutions
obtained with the two approaches, we have evaluated, for the two configurations, the history of
the compliance during the printing process by solving a sequence of 50 linear elasticity prob-
lems, each one at a different time instant belonging to the time interval I . The results presented
in Fig. 4 clearly show that the shape optimized using the multi-layer approach guarantees a
significant reduction of the compliance over a large portion of the time interval considered. Ob-
viously, the value of the compliance at the final time is lower for the single-layer approach since
in this case the compliance at t = T is exactly the functional that is minimized.

Figure 2: Computational domain for test case 1
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Figure 3: Results of test case 1: single-layer minimization (left), multi-layer minimization (right). Increasing mesh
resolution from top to bottom.

Figure 4: Time-evolution of the compliance for the two configurations obtained by the single-layer (solid line) and
multi-layer (dashed-line) approaches in test case 1.
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4.2 Test case 2

In the second test case, with the aim of precisely identifying the conditions under which
our novel approach is more appropriate than the standard one, we continue the analysis of
the differences between the single-layer compliance minimization and the multi-layer mean
compliance minimization (on 25 time instants). We consider the two structures (squared and
rounded) displayed in black in Fig. 5 which are fixed on the ground. The domain is Ω =
(0, 1) × (0, 0.25) and the prescribed active region where the support can be added is identified
by the grey region below the structure. The material properties and filtering procedure are the
same as for test case 1.

Figure 5: Computational domains for test case 2: squared structure (left) and rounded structure (right)

Let us first consider the squared structure and compare the results of the support optimization
obtained by using the single-layer or the multi-layer approach (see Fig. 6). Differently from
the previous test case, here the optimal supports obtained by the two approaches are almost
identical. This is not surprising, due to the particular geometry of the squared structure. Indeed,
only the last few layers give a significant contribution to the mean compliance, so that the
functionals to be minimized by the two approaches are quite similar.

Figure 6: Results of test case 2 (squared structure): single-layer minimization (left), multi-layer minimization
(right). Increasing mesh resolution from top to bottom.

Remarkably, when the rounded structure is considered, the two approaches lead to optimal
solutions which are very different as displayed in Fig. 7. Here a double tree-like structure for
the single-layer approach and a pillar structure for the multi-layer approach are obtained. In
the latter case, at the early stages of the printing process, two overhanging structures need to be
supported and this fact drives the optimization towards a structure composed by six supporting
structures distributed non-uniformly along the domain width.
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Figure 7: Results of test case 2 (rounded structure): single-layer minimization (left), multi-layer minimization
(right). Increasing mesh resolution from top to bottom.

5 CONCLUSIONS

We have presented a new topology optimization algorithm for time-dependent linear elastic-
ity problems. The algorithm has been devised for facing the time-dependent nature of additive
manufacturing processes, with the aim of computing the optimal material distribution which
minimizes the mean compliance over a time interval.

The algorithm has been derived applying the Optimality Condition framework to the time-
dependent elasticity problem leading to the introduction of a fixed-point iterative scheme.

Numerical tests have been performed with the aim of investigating the properties of the
proposed approach. Moreover, a detailed comparison with the standard minimal compliance
optimization has been carried out. The results show that our method is reliable in handling
situations typical in additive manufacturing where overhangs appear in the early stages of the
printing process aiming at the production of self-sustained structures.
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Abstract. A new approach to topology optimization is presented that is based on the mini-
mization of the input/output transfer function H∞ norm. Additionally, by properly selecting
input and output vector, the approach is recognized to minimize an entirely new definition of
frequency–based dynamic compliance. The method is applied to viscoelastic systems in plane
strain conditions that are investigated by using the Arnold–Winther finite–element resorting to
a generalized solid phenomenological model. Preliminary indications on how to address the
actual manufacturability of the optimal specimen are eventually outlined.
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1 INTRODUCTION

Research on topology optimization of dynamic response dates back to the nineties and was
at that time mostly intended as eigenvalue optimization [1] within a general max–min strategy
that aims at maximizing the lowest eigenvalues and the like. The maximization of single and
multiple eigenfrequencies and relevant band–gaps for vibrating structures is addressed in [2]
whereas a similar problem for Euler–Bernoulli beams has been proposed in [3]. More recently
methods for the optimal design of forced beams and continua in dynamic regime have been pre-
sented that may be roughly grouped into two main categories: approaches that make use of the
dynamic compliance concept, see [4],[5] and [6] among others, and frequency domain methods
that are investigated in [7], [8] and [9] just to mention a few.
Focus of this paper is on the proposal of a new frequency–based topology optimization strategy
for dynamic structures that aims at the minimization of the input/output transfer function H∞–
norm. The distinctive feature of the proposed approach is that it seems to represent the natural
extension to dynamics of by now classical methods for static topology optimization, [10]. Fur-
thermore, by a proper selection of system input and output vectors, a new concept of frequency–
domain compliance for dynamic systems is gathered and ready for topology optimization. Cru-
cial for the success of the proposed methodology is the development of a semi–analytic formula
for computing the gradient of theH∞ norm with respect to the design parameter vector (element
densities) that represents an extension of the formula presented in [11]. The proposed topology
optimization strategy is quite general and may be actually applied to any kind of dynamical
system in state–space (or equivalently transfer–function) form such as standard elastic systems
whose state–space vector encompasses displacements and velocities. However, for this paper
sake a new class of linear 2D viscoelastic systems is considered along the path suggested in
[12] that uses a weak–symmetry stress finite–element as opposed to what is done herein where
the truly–element proposed in [13] is adopted. By using velocities (instead of displacements)
as kinematic variables, the state vector of the resulting dynamical system includes velocities
themselves and stresses and this makes the numerical analysis peculiar with respect to more
classical elastic idealizations. The same class of viscoelastic systems was investigated in [14]
wherein the the focus of the design was on stress–constraints and incompressibility.
Eventually, a few considerations on the extensions needed by the formulation to comply with
additive manufacturing requirements are highlighted, mainly following the general framework
proposed by Sigmund and coworkers in [15] and [16]. As to optimal design of viscoelastic
materials exhibiting extreme properties, reference is made to [17]. Numerical investigations on
minimum compliance problems are presented and discussed to validate the general framework.

2 A NEWH∞-NORM FRAMEWORK FOR TOPOLOGY OPTIMIZATION

2.1 (Descriptor) state space (D)SS and transfer function TF repsentations

The class of dynamical systems to be investigated herein may be given the time domain
descriptor state-space format {

Eẋ = Ax + Bw
z = Cx

, (1)

or Laplace domain, transfer–function representation

Z = G(s)W , where: G(s) = C(sE −A)−1B, (2)
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where x, z and w are the state, output and load vectors respectively, E is (an extended version
of) the mass matrix, A is the structural state matrix, B a topological matrix distributing the
loads to the degrees–of–freedom, C the output matrix that basically selects the components of
the state vector whose response need be optimized, and Z and W the Laplace transforms of z
andw, respectively. It is assumed that matricesE andA depend on a design-variable vector p,
i.e. in explicit form one writes

E = E(p), A = A(p). (3)

2.2 H∞ norm definition and physical meaning

A systematic exposition of the H∞ norm concept is beyond the scopes of this paper and
reference is made to [18] for a in-depth treatment including applications to robust control of
uncertain dynamical systems. The transfer–function representation of Equation 2 is referred
to but all the reasoning applies to the state–space form of Equation 1 as well. To start with
we consider the simpler case of a single–input/single–output system (that may be however be
characterized by a multidimensional state vector x). The H∞ norm of a single–input/single–
output (SISO) linear system with given transfer functionG(s) is defined as the peak gain of the
frequency response, i.e.

||G||∞ = sup
ω
|G(iω)|. (4)

Recalling that |G(iω)| is the factor by which the amplitude of a sinusoidal input with angular
frequency ω is magnified by the system, it is seen that the H∞ norm is a measure of the largest
factor by which any sinusoid is magnified by the system. In this respect the H∞ norm of a
dynamical system represents the natural extension to dynamics of static response measures in
that it gives the analyst the maximum system response all over the frequency range in the spirit
of Fourier analysis. Switching now to multi–input/multi–output (MIMO) systems, theH∞ norm
is the peak gain across all input/output channels. For an n×m transfer function matrixG(s), a
natural way to achieve this is to introduce the maximum gain of G(iω) at the frequency ω. Let
b = [v1, . . . , vm]T ∈ Cm be a complex–valued vector with Euclidean norm

||b||2 =
(
|v1|2 + · · ·+ |vm|2

)1/2
. (5)

The maximum gain ofG at frequency ω may be written as

||G(iω)|| = max
b

{
||G(iω)b||2
||b||2

: b 6= 0, b ∈ Cm

}
= max

b
{||G(iω)b||2 : ||b||2 = 1, b ∈ Cm}.

(6)

Finally, the H∞ norm of the transfer function matrixG(s) is defined as

||G||∞ = sup
ω
||G(iω)||. (7)

One may further show that the matrix norm ||G(iω)|| is equal to the maximum singular value
σ(G(iω)) of the matrixG(iω). Therefore, the H∞ norm may also be written as

||G||∞ = sup
ω
σ(G(iω)). (8)

3726



Paolo Venini, Marco Pingaro, Carlo Cinquini

A few approaches for computing the H∞–norm of a dynamical system are available in the
literature, see e.g. [18], whose analysis is beyond the scopes of this paper. It suffices here
to say that a few methods have been tested within the MATLAB [19] based code developed
for the numerical simulations to be presented next that displayed comparable performance in
terms of accuracy and speed. The MATLAB functions getPeakGain and hinfnorm have
been actually used that, for a given dynamical system saved in descriptor state-space (dss) or
transfer–function (tf) formats, return its H∞ norm and the frequency ω at which the peak gain
takes place that are needed for the computation of the relevant gradient vector ∂||G||∞

∂p
.

2.3 The abstract topology optimization problem

The abstract topology optimization problem dealt with hereinafter may therefore be written
as 

min
p
F (p) = ||G(iω,p)||∞

s.t. G(iω,p) = C(iωE(p)−A(p))−1B
V (p) ≤ Vmax

0 ≤ p ≤ 1

(9)

where 93 is a global volume constraint and 94 is the usual limitation on the element densities p.
As to practical topology optimization problems that fit the above framework the following are
worth mentioning:

1. minimization of the displacement response at selected points of the structure. With ref-
erence to Equation 12, this may be achieved by selecting a Boolean C matrix whose
unitary entries are such that the product Cx extracts from the state vector x those only
components of the response the designer wants to be minimized;

2. minimization of the stress response at selected points of the structure. When using a
mixed finite element approximation method, the goal is achieved with the very same
technique as for displacement response since stresses σ belong to the state vector x as
well. Furthermore, when a mixed finite element approach is adopted the output vector
z may include both displacements and stresses so as to end up with an optimal structure
with respect to kinematic and static quantities at the same time;

3. minimization of (a new concept of) dynamic compliance. Dynamic compliance has re-
cently received much attention by the engineering community [5]. The classical static
concept of compliance is typically extended to dynamics by choosing an objective func-
tions that is the integral average over a finite time interval of the product of the loads
times dual (in virtual work sense) displacements. In the spirit of the proposed approach,
a new concept of dynamic compliance is introduced herein that is suitable for numerical
investigations. Reference is again made to Equation 12 that provides the system output
vector in the form z = Cx. By considering a single–output system (in which case C is
a single–line vector) whose entries are the load intensities Fi positioned at the same en-
tries as the dual displacements ui, one gets a single–output of type z = Cx =

∑
i Fiui,

i.e. the system dynamic compliance C . By this selection of matrix C one may then get
a topologically optimal structure that minimizes the system compliance over the entire
frequency range of the acting loads.
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2.4 Computing the gradient
∂||G(iω,p)||∞

∂p

Computing the H∞–norm sensitivity of a transfer function matrix with respect to a plant pa-
rameter may be shown to be quite an hard task that, at least in principle, may be accomplished
via a finite–difference approximation as long as the system does not depend on too many param-
eters, as is unfortunately the case for a structure undergoing topology optimization. To make
the optimization procedure feasible, a fast and reliable semi–analytical approach is therefore
necessary for the numerical procedure to convergence (herein we use the Method of Moving
Asymptotes [20]). Not many algorithms are available in the literature and [11] seems to repre-
sent the only contribution on this delicate subject. First of all, the transfer function matrix in
Equation (2) is re-written by posing s = jω, i.e.

G(iω,p) = C (iωE(p)−A(p))−1B. (10)

If now M (p) is any differentiable and invertible matrix, a basic result in matrix differential
calculus allows one to write

∂M−1

∂pj
= −M−1∂M

∂pj
M−1, (11)

that, once applied to (iωE(p)−A(p))−1 in Equation 10, gives

∂G(iω,p)

∂pj
= −C (iωE −A)−1

[
iω
∂E(p)

∂pj
− ∂A(p)

∂pj

]
(iωE −A)−1B . (12)

A singular value decomposition ofG need then be computed that reads

Gk×m = UΣV H (13)

where H denotes the conjugate transpose, and U and V are unitary matrices, i.e. UHU = I ,
V HV = I . The diagonal elements of Σ are called singular values ofGwhereas column vectors
U i ∈ U and V i ∈ V are respectively called left and right singular vectors of G associated to
the singular value σi ∈ Σ:

Σ = diag(σ1, σ2, . . . , σ`), singular values , ` = min(k,m)
U = unitary matrix of left singular vectors
V = unitary matrix of right singular vectors

(14)

The main result arrived at in [11] (actually in the case of standard state–space system for
which E ≡ I) is a rigorous proof of the sensitivity formula that may be shown to be written as

∂||G(iω;p)||∞
∂pi

∣∣∣∣
p=p0

= Real
[
UH

1

∂G(iω,p0)

∂pi
V 1

]
, (15)

where ω is the frequency at which the peak value of the transfer function matrix G is experi-
enced, i.e. the one where the H∞ norm is actually computed.
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2.5 Computational issues on theH∞ norm and its gradient

The computation of the H∞ norm of a complex (MIMO) system with a massive state–vector
x is quite a complicated task that is object of active research by the control community. De-
pending on the complexity of the system, the computation of the H∞ norm may require from
several minutes to half an hour as order of magnitude. However, within a topology optimization
session having the H∞ norm as objective function, one needs to compute the H∞ norm (and
the peak frequency) of a sequence of systems, say Gn(iω,pn) and typically the difference of
the (2)norm of two consecutive design parameters pn and pn+1 is quite small and (under the
obvious hypothesis of continuity with respect to the parameters) such is therefore the difference
between the H∞ norm of the consecutive systems Gn(iω,pn) and Gn+1(iω,pn+1) as well as
that of the peak frequencies ωn and ωn+1. This suggests the following continuation method that
allows a dramatic reduction of the CPU time needed to compute the H∞ norm:

1. For the first two iterations, i.e. n = 1, 2, compute the exact H∞ norms ||G1(iω,p1)||∞,
||G2(iω,p2)||∞ and the relevant peak frequencies ω1 and ω2, e.g. using the resident
Matlab functions getPeakGain or hinfnorm [19];

2. for each subsequent iteration n > 2, set ∆ωn+1 = ωn − ωn−1 and consider the frequency
interval centered on ωn given as In+1 = (ωn− κ∆ωn+1, ωn + κ∆ωn+1), where κ governs
the amplitude of In+1 (κ = 5 has been used in the simulations after a quick trial–and–error
procedure);

3. Sample In+1 with a regular grid of points (50 points are used in the computations to be
presented next) and compute the frequency response of the system for all such points
in the frequency domain. This amounts to a forward dynamic computation that may be
accomplished using the Matlab function freqresp that is far quicker than the actual
computation of ||Gn+1(iω,pn+1)||∞;

4. set ||Gn+1(iω,pn+1)||∞ equal to the maximum over all the sampled points of the absolute
value of the frequency responses returned by freqresp.

It may be useful to check the procedure approximately once every 50 iterations by computing
exactly the H∞ norm and evaluate whether the approximate strategy is stable or not (in the
numerical computations to be presented next, the continuation strategy proposed has proven to
be always stable).

As for the computation of the H∞–norm gradient, reference is made to [21] where a com-
parison between the CPU time needed to get a finite–difference approximation versus using
Equation 15 is performed showing that Equation 15 allows for a CPU time reduction of approx-
imately three orders of magnitude.

3 THE VISCOELASTIC BIDIMENSIONAL SYSTEM UNDER OPTIMIZATION

3.1 Strong form

The viscoelastic model originally introduced in [12] is considered that is based on a stress–
additive decomposition as in Figure 1.
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Figure 1: Standard solid phenomenological model

As usual when adopting Hellinger–Reissner variational principles, compliance tensors relat-
ing strains to stresses are introduced that allow one to write

A0

E

σ̇
0

+ A0

V

σ
0

= ε(v)

A1

E

σ̇
1

= ε(v)
(16)

whereA0

E

andA0

V

are the elastic and viscous compliance tensors of the viscoelastic component,

A1

E

is the elastic compliance tensor that is in parallel with the viscoelastic one and v is the

velocity field. Hereinafter plane strain conditions shall be considered allowing one to write
each compliance tensor in matrix form as

A0,1
E,V =

1 + ν

E0,1
E,V (p)

 1− ν −ν 0
−ν 1− ν 0
0 0 1

 , (17)

where, as usual in topology optimization of isotropic structures, it is assumed that the Young
modulus only depends on the material density p. One should notice that a stress–velocity for-
mulation is being used that presents several advantages over more classical stress–displacement
approaches, including the ease with which dynamic effects may be considered in the analysis.
Therefore, compatibility relations are written in terms of strain velocities as

ε(v) = ∇sv =
1

2

(
∇v +∇vT

)
, (18)

whereas the dynamic equilibrium reads

−ρv̇ + div σ = −ρg. (19)

3.2 Truly–mixed formulation discretized with the Arnold–Winther finite element

By observing that the total stress σ may be additively decomposed as σ = σ
0

+ σ
1
, the

continuous variational formulation of the problem at hand may be obtained by eliminating the
strain tensor ε in Equations 16 and 18, testing the resulting equation by two virtual stress fields
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τ
0
, τ

1
, and the equilibrium equation 19 by a virtual velocity field w, so as to write:

Find (σ
0
, σ

1
, v) ∈ H(div,Ω)×H(div,Ω)× L2(Ω) such that

〈A0

E

σ̇
0
, τ

0
〉 + 〈A0

V

σ
0
, τ

0
〉 + 〈v, div τ

0
〉 = 0

〈A1

E

σ̇
1
, τ

1
〉 + 〈v, div τ

1
〉 = 0

−〈ρv̇, w〉 + 〈div σ
0
, w〉 + 〈div σ

1
, w〉 = 〈ρg, w〉

(20)

∀τ
0
∈ H(div,Ω), ∀τ

1
∈ H(div,Ω), ∀w ∈ L2(Ω).

In more compact form, one may rewrite the governing system in Equation 20 in matrix-vector
notation as usual within the framework of mixed methods, i.e. A0

E(p) 0 0
0 A1

E(p) 0
0 0 −M(p)

 ˙ σ0

σ1

v

+

 A0
V (p) 0 BT

0 0 BT

B B 0

 σ0

σ1

v

 =

 0
0
ρg

 (21)

The triangular Arnold-Winther finite element used in this paper is the lowest–order of the
family of finite elements introduced in the pioneering paper [13]. Figure 2 shows the relevant
degrees of freedom that may be listed as follows. As to the stresses, one should notice that the
symmetry of the stress tensor is imposed strongly so that the components to be approximated
are σ11, σ22, σ12 and one ends up with 24 degrees of freedom:

- the 3 components of the stress tensor σ11, σ22, σ12 at each vertex of the triangle (9 dofs);

- the moments of order zero and one of the traction vector σ · n along each edge of the
triangle (12 dofs);

- the average of the the components of the stress tensor over the triangle, i.e.
∫
T
σ11,

∫
T
σ22,∫

T
σ12, (3 dofs).

As to the velocity vector v, a standard element–wise linear globally discontinuous approxima-
tion is adopted.

3.3 Recovering the state–space and transfer function formats

The state–space or transfer–function format of Equations 1 or 2 may be recovered by intro-
ducing the state vector

x =

 σ0

σ1

v

 , (22)

and the structural matrices

E(p) =

 A0
E(p) 0 0
0 A1

E(p) 0
0 0 −M(p)

 , A(p) = −

 A0
V (p) 0 BT

0 0 BT

B B 0

 . (23)
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Figure 2: Arnold-Winther DOFS

As to the loading term Bw, an explicit formulation should be derived on a case by case basis
but a sufficiently general possibility is to pose

w =

 0
0
ρg

 , B =

 0 0 0
0 0 0
0 0 I

 . (24)

As to the dependence of stiffness and mass density on the design variables, as usual in topol-
ogy optimization, each element is given a (mathematical) density p ∈ [0, 1] that is used within
a SIMP approach [10] so as the following interpolations are considered

E(p) = Emin + pq(Efull − Emin) (25)
ρ(p) = ρmin + p(ρfull − ρmin),

where the exponent q is set equal to 3 as usual and Equation 251 applies to elastic and viscous
phases of the material described by the standard model in Figure 1.

4 ADDRESSING THE MANUFACTURABILITY ISSUE

Manufacturability of the designed specimen is addressed via the three–field density approach
for which reference is made to [15] for a comprehensive exposition and [16] for the physical
meaning of the three involved densities within standard micro/nano lithography manufacturing
processes. Many similarities of these approaches may be found with the findings of Guest and
co–workers, see [22] for single–phase projection and [23] for multiple phase projection. The
three density fields entering the formulation originate a chain like density transformation that
reads [15]

p p̃ ̂̃p, (26)

where p is the bounded mathematical density, p̃(p) is the filtered density typically obtained from
p by a convolution–type filter (to avoid checkerboarding among other undesirable effects) and̂̃p is the projected density that allows to remove grey regions that unavoidably affect the filtered
density p̃ and to impose a minimum length scale to the specimen to be designed and possibly
manufactured.
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4.1 Density and Heaviside projection filters

A density filter is first used to switch from the mathematical density p to the intermediate
density p̃e of the generic element e that reads

p̃e =
1∑

i∈Ne

Hei

∑
i∈Ne

Heipi, (27)

where Ne is the set of all elements whose center–to-center distance ∆(e, i) from element e is
less than the prescribed filter radius rmin and the weighting factor Hei is defined as

Hei = max(0, rmin −∆(e, i)). (28)

For this paper sake only the solid phase is then projected. To this goal, the Heaviside projection
filter ̂̃p(p̃) =

{
1 if p̃ > 0
0 if p̃ = 0

(29)

is relaxed to gain differentiability and the following filter is actually used [22, 15]

̂̃p = 1− e−βp̃ + p̃e−β, (30)

where β = 0 means no filtering and for β →∞ the Heaviside filter is recovered. As suggested
in [23, 24], a continuation method is actually implemented that starts with a low value of β that
is increased along with the iterations to impose the Heaviside filtering conditions on the final
design.

4.2 The modified topology optimization problem

After the mathematical density p is filtered (p̃) and projected (̂̃p), the (formally) new H∞
topology optimization problem reads

min
p
F (p) = ||G(iω,p)||∞

s.t. G(iω,p) = C(iωE(p)−A(p))−1B

V
(̂̃p) ≤ Vmax

0 ≤ p ≤ 1

(31)

The sensitivity of the H∞ norm with respect to the design densities ̂̃p is computed using the
formula in Equation 15 whereas the chain rule is used to compute gradients with respect to the
initial mathematical densities p, i.e.

∂F

∂p
=
∂F

∂̂̃p ∂
̂̃p
∂p̃

∂p̃

∂p
, (32)

where
∂p̃e
∂pj

=
1∑

i∈Ne

Hei

Hej,
∂̂̃pe
∂p̃e

= βe−βp̃e + e−β. (33)
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4.3 Assessing the quality of the design

The quality of the design should be assessed with respect to the following two parameters:

1. the first one is of course the value of the objective function to be minimized, i.e. the H∞
norm for this paper sake;

2. secondly, to check the effectiveness of the proposed strategy to cope with manufactura-
bility issues, the following gray indicator shall be evaluated [15]

M =

N∑
i=1

4̂̃p(1− ̂̃p)
N

, (34)

where N is the dimension of vector ̂̃p, i.e. the number of elements, and the lower M the
better.

5 Numerical study

The bidimensional structure Figure 3 in plane strain conditions is considered with physi-
cal properties as in Table 1. A Single-Input Single-Output (SISO) realization is investigated
imposing that the two loads FA and FB are acting simultaneously with the same (normalized)
intensity whereas by properly choosing the topological matrixC (Equation 1), the output vector
z (Equation 1) is given as

z = C = FAvA + FBvB, (35)

i.e. the the output represents the (time derivative of the) dynamic compliance exploited all over
the frequency range thanks to the H∞–norm concept.

Figure 3: The bidimensional structure under optimization

Due to the symmetry of the system, only the left half is investigated by using 96× 48 square
cells further subdivided into 4 Arnold–Winther finite elements each. As to the overall volume
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E0
E [Mpa] E0

V [MPa s] E1
E [MPa] ρ0 [kg/m3]

2 0.2 2 10

Table 1: Material properties of the adopted viscoelastic material

constraint, the maximum volume Vmax is set to 40% of the total volume. As to the continuation
method to update the value of the parameter β characterizing the projection filter (Equation 30),
an initial value β = 2 is considered and doubled then every 25 iterations.

Figure 4 shows the MMA performance toward the minimization of ||G(iω,p)||∞. Two
issues are worth mentioning at this regard:

• the overall convergence path is not monotonic and remarkable oscillations take place for
iterations between the 20th and the 40th;

• when the value of β is updated the objective function decreases for that very same it-
eration than increases and a decreasing path shows up until β is further updated. Such
(smaller) oscillatory behavior should not be attributed to the MMA algorithm but to a vol-
ume constraint violation due to the fact that the projection filter is not volume–preserving.
This violation could be prevented by a proper scaling of the filter but for this paper sake
it was chosen to use the projection filter as is, and let the MMA algorithm take care of the
volume constraint.

Figure 4: MMA convergence path
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Figure 5 shows the optimal topology for the problem at hand (the right part was drawn by
symmetry with respect to the mid vertical axis). Basically no grey regions were experienced
and the grey indicator in Equation 34 was found to be 0.0075 and no sharp corners show up
as to the solid phase. As to the void phase, no remedy was implemented but the adoption of a
multiple phase projection strategy in the spirit of [23] is currently under development.

Figure 5: Optimal structure at convergence

Figure 6 shows a comparison between the frequency response functions for the initial uni-
form structure and the optimal topology at convergence. The peak gain, i.e. ||C ||∞, is reduced
to about one fifth of its initial value as one may also check by looking at Figure 4 that should
be considered quite a remarkable performance.

Figure 6: Frequency response functions - Optimal vs initial uniform structure
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6 CONCLUSIONS

A new approach to topology optimization of dynamical systems has been introduced that is
based on the minimization of theH∞ norm of the input/output transfer function. The framework
is abstract enough to include multiple loads as well as multi–output objectives with basically no
modifications. Such generality is also enjoyed by the specific dynamical systems object of op-
timization as long as its governing equations fit a (descriptor) state–space or transfer–function
format. For this paper sake a viscoelastic bi–dimensional system in plane strain conditions has
been considered obeying a viscoelastic constitutive law and the truly–mixed Arnold–Winther
finite element has been used for the spatial discretization. Eventually, the issue of manufactura-
bility of the design has been addressed using the three–field density representation approach
[15, 22]. Extensions to more complex geometries and load conditions are currently under de-
velopment that include three–dimensional systems and multiple–phase filtering techniques [23].
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Abstract. Iso-XFEM is an evolutionary based topology optimization method for generating 

high resolution topology optimised solutions using isolines/isosurfaces of a structural perfor-

mance criterion and eXtended Finite Element Method (XFEM). The conventional approach 

for topology design of structures includes the use of a density based topology optimization 

method, such as SIMP, to find the optimal density distribution within the design domain, and 

thresholding the densities at an arbitrary value to obtain the design boundary. This will then 

require additional post-processing, such as smoothing and shape optimization, to generate a 

manufaturable design with smooth and clearly defined boundaries. In the proposed method, 

the use of XFEM with isoline/isosurface based boundary representation enables generation of 

topology solutions represented with smooth boundaries which can be straight away translated 

to a triangular surface file format, for instance STL format, in order to direct to manufacture. 

From analysis point of view, this allows the use of a coarser mesh during the optimization 

process to achieve a smooth solution, while this omits/significantly reduces the post pro-

cessing required before manufacturing. The aim of this paper is to extend the Iso-XFEM 

method to include multiple loading cases and acceleration loading. Different 2D and 3D test 

cases are employed to show the effectiveness of the method.
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1 INTRODUCTION 

Topology optimization aims to find the best possible layout for a structure within a speci-

fied design domain under a set of loads and boundary conditions. There has been a significant 

interest in topology optimization methods and applications over the last three decades starting 

from groundbreaking paper of Bendsøe and Kikuchi (1988) introducing homogenization 

method [1]. Other methods including Solid Isotropic Material with Penalization (SIMP) [2,3], 

Evolutionary Structural Optimization (ESO) [4,5], level set method [6,7] and genetic algo-

rithms [8] were introduced after that. Although many of the proposed topology optimization 

algorithms have been developed and been applied on several problems, such as Michelle-type 

structures and cantilever beams with rectangular domains, there has been less attention on ap-

plying these algorithms on 3D real-life structures and real loading scenarios. In some cases 

the mathematical complexity or the size of the FE design domain doesn’t allow the algorithm 

to be properly implemented. OptiStruct (Altair Engineering Inc.) is an example of software 

designed to enable the SIMP method of topology optimization to be applied to real compo-

nents. Other software such as Nastran (MSC Software) and Abaqus FEA (Dassault Systèmes) 

also have option to apply similar density-based approaches to find the solution to topology 

optimization problems. Although the topology optimization modules of these software appli-

cations are being widely used for research and engineering purposes, a drawback of the densi-

ty-based approaches (and many other element-based approaches) is that they cannot provide a 

clear and smooth representation of the design boundaries in converged topologies. This issue 

brings difficulties in interpreting the solutions, combining them with CAD and manufacturing 

the topologies. Therefore the solutions usually need post-processing, reanalysing and shape 

optimization before manufacturing. 

Iso-XFEM was developed in a previous study to address the issues related to the boundary 

representation of the topology [9,10,11]. The idea was to use a simple evolutionary based op-

timization algorithm (similar to BESO) while improving the boundary representation by im-

plementing isoline/isosurface approach during the optimization. An XFEM integration 

scheme was also used to increase the accuracy of FE solutions near the design boundary. The 

method was successfully applied to 2D and 3D structures with complex design domain [11], 

and the results showed a significant improvement in boundary representation and structural 

performance of the solutions over the conventional BESO. The aim of this paper is to extend 

the Iso-XFEM method into problems with multiple load cases and acceleration loading. In the 

next sections, an overview of the Iso-XFEM method followed by two examples of stiffness 

design using this method is presented. Then the extension of the method into optimization of 

structures under multiple load cases and acceleration loading with a few examples of each is 

presented.  

2 AN OVERVIEW OF ISO-XFEM METHOD 

The main three elements of the Iso-XFEM method include isoline/isosurface approach to 

represent the design boundary, XFEM to calculate the elemental sensitivities (a structural per-

formance criterion) near the boundary, and an evolutionary based optimization algorithm. 

These three elements are explained in this section.  

2.1 Isoline/isosurface approach 

Isolines/isosurfaces are the lines/surfaces that represent the points of a constant value, 

named the isovalue, in a 2D/3D space. In structural optimization applications [9,11,12,13], the 

boundaries are defined by the intersection of the structural performance (SP) distribution with 

a minimum level of performance (MLP), which is typically increasing during the optimization 
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process. Figure 1(a) shows a 2D fixed grid design domain discretized with a 30x30 mesh, 

where the intersection of strain energy density (SED) distribution as a structural performance 

criterion with a minimum level of SED gives the design boundary. The relative performance, 

α, is defined as:  

 α = SP - MLP (1) 

The design domain can be partitioned into void phase, boundary and solid phase, with re-

spect to the values of relative performance:  

  (2) 

Figures 1(b) & 1(c) show how the design space, D, from figure 1(a) is partitioned into DS, ∂DS 

and DV using the relative performance function α(x), distributed over the design space. 

 
 

 

Figur 1: (a) Boundary representation using isolines of a structural performance function (SED in here). The 

intersection of SP distribution with MLP defines the current state of the boundary. (b) Implicit representation of 

a 2D design space and the structure’s geometry using relative structural performance. (c) Design space decom-

posed into solid region ( ), void region ( ) and boundary ( ). 
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2.2 XFEM 

By implementing the above isoline/isosurface approach, the design boundary is superim-

posed on the fixed grid finite elements, making three groups of elements in the FE design 

space: solid elements, void elements, and boundary elements (the elements which lie on the 

boundary). The contribution of solid and void elements to the FE framework could simply be 

considered by assigning solid and void (very weak) material properties to those elements, re-

spectively. In the case of boundary elements, in order to accurately represent the design 

boundary whilst avoiding expensive remeshing operations, an XFEM approach can be em-

ployed. XFEM approximation space for modeling holes and inclusions is given by [14]: 

  (3) 

where Ni(x) are the classical shape functions associated to the nodal degrees of freedom, ui. 

The value of the Heaviside function H(x) is equal to 1 for the nodes and regions in the solid 

part of the design and switches to 0 for nodes and regions in the void part of the design do-

main. This XFEM scheme was realized by dividing the solid domain of the boundary ele-

ments into sub-triangles (in 2D problems as shown in figure 2(a)) or sub-tetrahedra (in 3D 

problems as shown in figure 2(b)), and then performing numerical integration over solid tri-

angles/tetrahedra using Gauss quadrature method.  

 

 

Figure 2: XFEM interation scheme. (a) solid domain of 2D boundary elments are devided into sub-triangles. 

(b) Solid domain of 3D boundary elements are devided into sub-tetrahedra. 
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2.3 Evolutionary based optimization method 

The optimization algorithm used in the Iso-XFEM method is evolutionary based, i.e. based 

on the simple assumption that the optimized solution can be achieved by gradually removing 

the inefficient material from the design domain. However, unlike Evolutionary Structural Op-

timization (ESO) in which the material removal is carried out at an elemental level, in this ap-

proach the optimization operates at a global level of structural performance by the use of 

isoline/isosurface design approach. An appropriate performance criterion is used to character-

ize the efficiency of material usage in the design domain. Material is then removed from low 

relative performance regions (x; α(x)<0) and redistributed to the high relative performance 

regions (x; α(x)>0). The target volume of the design for the current iteration needs to be cal-

culated before any region is added to or removed from the structure. The target volume of the 

design for the current iteration is given by  

  (4) 

where ER is the volume evolution rate and V
c
 is the specified volume constraint. Once the tar-

get volume of the current iteration is found, the minimum level of performance which gives 

this volume needs to be identified. This could be achieved through an iterative process, for 

instance by defining upper and lower bands for MLP (which are equal to the maximum and 

minimum SP in first iteration, respectively), finding the volumes corresponding to the upper 

and lower bands, averaging and updating the upper and lower bands until the difference be-

tween the volumes corresponding to the upper and lower bands is smaller than a minimum 

value.   

3 EXAMPLES OF STIFFNESS DESIGN USING ISO-XFEM 

3.1 A comparison study 

By employing Iso-XFEM method for topology optimization, we would expect to achieve 

solutions with smoother boundary than those obtained using conventional element based 

methods, for instance SIMP and BESO [9,11]. If a density based method, like SIMP, is em-

ployed for topology optimization, there is a need to threshold at an arbitrary density to 

achieve a discrete solution. However this could result in reducing the optimality of the solu-

tion. The aim of this test case was to investigate the optimality of Iso-XFEM solution for a 

benchmark problem and compare it with the solution obtained from a commercial software 

after thresholding densities.  

To address this, Iso-XFEM was used to solve topology optimization problem for the canti-

lever structure shown in figure 3(a) using 40×20×2 hexahedral elements. Material properties 

were Young modulus E = 1, and Poisson’s ratio ν = 0.3. To minimize compliance, strain en-

ergy density was used as structural performance criterion. A volume evolution rate of ER = 

0.02 was used. The solution converged after 40 evolutionary iterations (figure 3(b)). The same 

starting mesh was used to solve the cantilever problem using Optistruct, as shown in figure 4. 

Figure 4(a) is Optistruct solution (optimal density distribution) without implementing mini-

mum member size constraint. It can be seen that the design boundary is not clearly defined as 

the solution is represented with intermediate relative densities. Figure 4(b) shows the densities 

thresholded in relative density of 0.5 which results to a solution with approximately the same 

volume as the prescribed volume constraint. However, it can be seen that thresholding the 

densities resulted in an unfeasible design as the structure has lost its members’ connectivity. It 

is possible to preserve members’ connectivity by thresholding at a lower density. However, 
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this would result in a solution with a higher volume than the volume constraint, which re-

quires further optimization and post-processing.  

      
(a)                                                                           (b) 

Figure 3: (a) Design domain and boundary conditions (b) Iso-XFEM solution. 

 

Figure 4: (a) Optistruct solution of cantilever structure without applying minimum member size constraint, and 

(b) densities of this solution thresholded at isovalue of 0.5. (c) Optistruct solution with minimum member size 

constraint, and (d) densities of this solution thresholded at isovalue of 0.5. 

In order to have a near 0/1 solution and prevent the loss of members’ connectivity after 

thresholding the densities, a minimum member size of 2×element size was applied, resulting 

in the solution shown in figure 4(c). It can be seen that this is a near 0/1 solution and the 

members’ connectivity is well defined, however, with rough boundaries. Figure 4(d) shows 
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the solution obtained by thresholding the densities of the solution shown in figure 4(c). The 

densities were thresholded at isovalue of 0.5, resulting in the same volume as the prescribed 

volume constraint, thus, enabling the comparison of all solutions with the Iso-XFEM solution, 

shown in 3(b).   

To quantify the optimality of the Optistruct and Iso-XFEM solutions, the strain energy of 

the solutions has been measured by performing FEA on the solutions, as presented in table 1.  

It can be seen that the design obtained by thresholding densities of optistruct solution has a 

higher value of objective than Optistruct solutions with/without minimum member size con-

straint. This is because the design obtained by thresholding the densities of a topology opti-

mised solution, is not an optimised solution anymore, and will require additional shape 

optimization and further post-processing until it becomes an optimised manufacturable design. 

However, it can be seen that the strain energy of the Iso-XFEM solution is lower than the oth-

er three designs, indicating that the Iso-XFEM solution is a more optimal solution compared 

to the Optistruct solutions before/after thresholding the densities. The results of this experi-

ment clearly show that although thresholding the densities can improve the boundary repre-

sentation, it can reduce the optimality of the solutions. 

 
Different solutions SE (N.m) 

Optistruct solution without minimum member size constraint (figure 4a) 7.34 

Optistruct solution with minimum member size constraint (figure 4c) 7.17 

Design obtained by thresholding densities of the Optistruct solution, with 

minimum member size constraint (figure 4d) 

7.63 

Iso-XFEM solution (figure 3b) 6.56 

Table 1: Comparison of strain energies of Optistruct and Iso-XFEM solutions 

 

Figure 5: Design domain and boundary conditions of the brake pedal. 

3.2 An industrial test case: a brake pedal 

The method was applied to optimize a brake pedal with the loads and boundary conditions 

shown in figure 5. The objective was to minimize the compliance for the target volume of 

15% of the initial design domain. The material used was Ti-6Al-4V. Due to the symmetry of 

the problem, only half of the structure was considered for the analysis using approximately 
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16000 hexahedral elements. A volume evolution rate of ER = 0.02 was used. The solution 

converged after 90 evolutionary iterations as shown in figure 6(a). Figure 6(b) shows the Iso-

XFEM solution for the brake pedal. It can be seen that despite using a coarse starting mesh, a 

fairly smooth solution has been achieved. Figure 7(a) shows the optimized design after inclu-

sion of all non-design elements fallowed by a few iterations of smoothing.  The part was built 

through Selective Laser Melting (SLM) process using Renishaw AM250 machine, as shown 

in figure 7(b). 

 

 
 

(a) 

 

 
(b) 

 

Figure 6: (a) Evolution histories of objective function (SE) and volume fraction (VF) of the brake pedal (b) 

Iso-XFEM solution (half of the pedal). 
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(c) 

 
(d) 

Figure 7: (a) Final design of the brake pedal after inclusion of all non-design regions (b) the part built using 

SLM process. Support structures will be removed after stress relieving process.  

4 ISO-XFEM FOR MULTIPLE LOAD CASES 

Most real-life structures are subjected to multiple load cases. Moreover, moving loads can 

be simplified to a finite number of load cases acting sequentially along the load path. In the 

case of stiffness optimization, in order to account for all load cases, the objective function can 

be defined as weighted average of mean compliance of all load cases [15]:  

  (5) 

 
where m is the total number of load cases, n is the total number of elements, C is compliance, 

wi is the weighting factor of i
th

 load case, and ve
S
 is the volume of the solid part of the element, 

and V
c
 is the design volume constraint. In this case, the structural performance associated to 

element e can be defined as 
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  (6) 

where ue and ke are the element’s displacement vector and stiffness matrix, respectively, and 

ve is the total volume of the element. 

4.1 Example  

The rectangular plate with the load and boundary conditions shown in figure 8(a) is con-

sidered. The objective was to find the stiffest design for the target volume of 30% of the ini-

tial design domain. Two unit loads were applied on the top edge of the rectangular plate. 

Material properties were Young modulus E= 1, and Poisson’s ratio ν = 0.3. Equal weighting 

factors were assumed for two load cases (w1 = w2 = 0.5). A mesh of 60×30 was used for the 

FE model of the plate. A volume evolution rate of ER = 0.02 was used for the optimization. 

Figures 8(b) and 8(c) compare the topology obtained when the two loads are applied as a 

single load case (8b) with the one obtained from two different load cases (loads in different 

times), (8c). It can be seen that two different topologies have been obtained. However, the so-

lution obtained for the structure under two load cases (figure 8(c)) can be more stable than the 

other solution, since it has converged to a triangulated frame structure which is more stable 

than a trapezoidal frame structure.  Figure 9 shows the Evolution histories of objective func-

tion and volume fraction for the structure under two load cases. It can be seen that a stable 

material removal was carried out through the Iso-XFEM optimization process.  

 
Figure 8: (a) Design domain and boundary conditions of the 2D structure (b) Iso-XFEM solution of the structure 

under a single load case of two unit force (c) Iso-XFEM solution of the structure under two load cases of a unit 

force each. 
 

 

Figure 9: Evolution histories of objective function (SE) and volume fraction (VF) of the rectangular design do-

main subjected to two load cases. 
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5 ISO-XFEM FOR GRAVITY AND ACCELERATION LOADING 

Gravity load is an important consideration in many engineering design applications such as 

deigning civil structures. Other forms of acceleration loading may also exist in a mechanical 

or an aerospace component. Acceleration loading is different from fixed external loading in 

that the applied force includes design dependent acceleration load, requiring the force vector 

F in the FE system to be updated in each optimization iteration. Therefore, we use the same 

objective function as compliance (total strain energy) for stiffness design, and update the nod-

al forces by  

  (7) 

where Fg
j 
is the acceleration force of node j in direction of acceleration g, ρ is the density, and 

k is the number of elements connected to node j. Note that for simplicity, we assumed that 

number of elements connected to a node is equal to the number of nodes of an element (for 

instance for 4-node quadrilateral elements k = 4, and for 8-node hexahedral elements, k = 8). 

5.1 A 2D plate under gravity load  

A simply supported 1 m × 0.5 m plate shown in figure 10(a) is considered. The objective 

was to find minimize the compliance of the plate under gravity load for the target volume 

fraction of 15% of the initial design domain. Material properties were Young modulus of 200 

GPa, Poisson’s ratio of 0.3, and density of 78 kg/m
3
. A mesh of 60×30 was used for the FE 

model of the plate. A volume evolution rate of ER = 0.02 was used for the optimization. Fig-

ure 10(b) shows the converged solution. The results are in agreement with BESO solution in 

[15]. 

 

Figure 10: (a) Design domain and boundary conditions of the 2D structure under gravity load (b) Iso-XFEM 

solution. 

5.2 3D structure under gravity load 

The cuboid design domain shown in figure 11(a) was used as the 3D test case under gravi-

ty load. The structure was simply supported at all four bottom corners. The objective was to 

minimize the compliance of the structure under self-weight for the target volume fraction of 

5% of the initial design domain. Material properties were Young modulus of 200 GPa, Pois-

son’s ratio of 0.3, and density of 78 kg/m
3
. A volume evolution rate of ER = 0.04 was used for 

the optimization. The structure is symmetric in two directions. Therefore only a quarter of the 

design space was considered for FEA using 32×32×40 elements. The final Iso-XFEM solu-

tion is shown in figure 11(b). Figure 11(c) shows the design obtained after mirroring the Iso-
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XFEM solution and converting the solution to STL file format. No further post-

processing/smoothing was performed to generate the design shown in figure 11(c). 

Figure 12 shows the evolution histories of objective function and volume fraction of the 

3D structure under self-weight. It can be seen that the Iso-XFEM material removal process for 

this structure is highly stable. Also, unlike compliance minimization problems for the struc-

tures under external loads where by removing material, the compliance increases, here, the 

material removal resulted in decreasing the compliance. Evidently, this is because the gravity 

load is a design dependent load and by removing material less load was applied to the struc-

ture. 

 

 

Figure 11: (a) Design domain and boundary conditions of the 3D structure under gravity load (b) Iso-XFEM 

solution considering only a quarter of the structure (c) Final design.   
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Figure 12: Evolution histories of objective function (SE) and volume fraction (VF) of the cuboid design domain 

under gravity load. 

6 SUMMARY AND CONCLUSION 

Iso-XFEM is an evolutionary structural optimization method which can be used for shape 

and topology optimization of continuum structures. The use of XFEM with isosurface ap-

proach has enabled achieving high resolution topology optimized solutions which require no 

more or only a little post processing before manufacturing. It was shown that the method is 

capable of optimizing geometrically complex structures, for instance the brake pedal studied 

in this paper.  

In this study, the method was further extended to include topology optimization of struc-

tures subjected to multiple load cases and acceleration loading. It was shown that design for 

multiple load cases can be different from the one for a single load case. The method was also 

found to be stable for optimization of structures under acceleration loading.  

The Iso-XFEM method was found to be a promising method for topology optimization of 

real-life structures with real loading scenarios. The boundary of the solutions is represented 

with triangles (rather than element densities in density based topology optimization methods). 

This makes it straightforward to convert the solutions into STL format for additive manufac-

turing. The amount of post-processing before manufacturing is highly depended to the mesh 

size used in the analysis. Considering the fact that even using a coarse mesh, relatively high 

resolution solutions can be achieved using this method, by taking account the resolution of the 

3D printer before creating FE mesh, the post-processing after topology optimization can be 

avoided and the solutions can be sent directly to additive manufacture.  
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Abstract. A semi-analytical laminate element technique developed for the investigation of
guided wave propagation and diffraction in layered structures with local inhomogeneities is
presented. The approach is based on the use of fundamental solutions for the pristine layered
structure as a basis functions for the scattered field approximation. As an example, its appli-
cation to the investigation of resonance guided wave interaction with deep surface notches in
elastic layer, which gradually change shape from rectangular to elliptical, has been considered
to estimate the effect of notch geometry on resonance frequencies. The obtained numerical re-
sults are validated by the finite element simulation and experimentally confirmed on the basis
of laser Doppler vibrometry.
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1 INTRODUCTION

Active structural health monitoring of plate-like units is commonly based on the propagation
of elastic guided waves (GW) for long distances and their interaction with local inhomogeneities
(defects) of various types [1]. The reflection, refraction and mode conversion phenomena serve
as distinct indications of faults or defects. Computer simulation aims to clarify such a complex
ultrasonic wave motion. General-purpose and specific finite-element computational codes have
proven their efficiency for calculating wave propagation in elastic structures with complex ge-
ometry [2]. At the same time, with lengthy laminate waveguides, analytically based methods,
such as boundary integral equation (BIE) technique and its derivations, e.g., boundary element
method (BEM) or method of fundamental solutions (MFS), may serve as an efficient alternative
[3]. They allow one to reduce the problem’s dimension and obtain the results in a physically
clear form of GW asymptotic expressions.

The laminate element method (LEM) [4] is a kind of boundary element technique specifi-
cally adjusted to simulate the elastodynamic behavior of lengthy layered structures. It is based
on the boundary integral representations of elastic wave fields with the kernels in the form of
fundamental solutions for the intact structure as a whole. Such basis functions called lami-
nate elements (LEs) satisfy identically the governing equations in the sub-layers and interface
boundary conditions among them as well as homogeneous conditions on the exterior plane-
parallel surfaces. Therefore, only the integration over the obstacle’s surface is necessary for the
LE approximation of scattered wave fields.

In the current contribution, we present and discuss the LEM application to the investigation
and parametric analysis of GW resonance phenomena in layered structures with obstacles. The
resonance trapping mode effect [5] is featured by the capturing of incident wave energy and
its prolonged localization in the defect’s vicinity in the form of weakly decaying oscillations at
the resonance frequencies [6]. The latter coincide with the spectral points of the corresponding
boundary value problem (BVP) in the complex frequency plane. These frequencies strongly
depend on the defect’s size, shape and depth, making resonance effects a potentially useful
tool for the enhancement and automation of the monitoring processes. In the calculations, they
are approximated by the roots of the determinant of the linear algebraic system, to which the
original BVP is reduced within the LEM approach.

A LEM based analysis of resonance wave phenomena is demonstrated on the examples of
GW propagation and diffraction in aluminium specimens with surface notches of varying shape.
The evaluated wave patterns and eigenfrequencies are compared with the results of FEM sim-
ulation and experimental data acquired using a contactless laser Doppler vibrometry allowing
refined wave propagation sensing and visualization. The experimental and FEM-based results
confirm the predicted values of resonance frequencies, revealing the trapping mode effect with
a long standing-wave-type oscillation near the obstacles.

2 MATHEMATICAL MODEL

Let us consider a plane-strain time-harmonic oscillationue−iωt, u = {ux, uz}, of a layered
isotropic linear-elastic waveguide of thicknessH governed by the Lamé equations. In the Carte-
sian coordinate systemx = (x, z), the structure occupies the domainD = {|x| < ∞, −H <
z < 0} with surface and/or internal inhomogeneities (Fig. 1). The exterior plane-parallel sur-
facesz = 0 andz = −H are stress-free except, possibly, at a local source zoneΩ to which a
loadq0 is applied. Surface and internal defects are located to the right from this area, and their
boundaries denoted byS are also traction-free.

3754



Evgeny Glushkov, Natalia Glushkova, Artem Eremin and Rolf Lammering

z

xz=0

S S

qe 
-iωt

Ω

z=-H

u
0

u
sc

u
sc

Figure 1: Schematic geometry of the problem.

The interaction of load-induced GWsu0 with obstacles results in the scattered fieldusc.
The total wave fieldu is a sum of the known, i.e., analytically expressed fieldu0 generated
by the source in the pristine layer, and unknown scattered (reflected and transmitted) fieldusc:
u = u0 + usc.

Within the geometry considered, the incident fieldu0(x) can be represented as a path integral
of the inverse Fourier transformF−1

x with respect to the horizontal coordinatex, which is further
reduced to the far-field GW asymptotics using the residue technique:

u0(x) =
1

2π

∫

Γ

K+(α, z)Q0(α)e
−iαxdα ≈

M∑

m=1

am(z)e
iζmx, (1)

am(z) = −iresK+(α, z)Q0(α)|α=−ζm

HereK+(α, z) = Fx[k
+(x)] andQ0(α) = Fx[q0(x)] are Fourier symbols of the waveguide

Green’s matrixk+ and load vector-functionq0; the sign “+” indicates that the traction is applied
to the upper surfacez = 0; M is the number of real polesζm of the Green’s matrixK+(α, z),
the residues from which yield travelling waves. The sum in Eq. 1 is valid for the travelling GWs
propagating to the right from the loading areaΩ; the integration pathΓ bypasses real polesζm
according to the principle of limiting absorption.

Within the indirect BIE formalism, the unknown fieldusc is sought for in terms of2× 2 LE
matrix l(x, ξ) integrated over the defect’s boundaryS together with an unknown source density
c(x):

usc(x) =
∫

S

l(x, ξ)c(ξ)dξ (2)

In contrast to the classical fundamental-matrix solutiong(x − ξ) for an infinite homogeneous
elastic space [3], the matrixl(x, ξ) is derived for the pristine infinite layered structure as a
whole. Their columnslj are displacement vectorsuj(x, ξ) associated with the point sources
δ(x− ξ)ij directed along the coordinate unit vectorsi1 andi3 taken to be parallel to the axes x
and z, respectively;ξ = (ξ1, ξ3) is the point of LE source location.

Being straightforward and computationally efficient, representation (1) inspires to derive the
scattered field (2) in an analogous way. For this purpose the matrixl(x, ξ) is constructed as a
composition of the conventional fundamental solution matrixg(x− ξ) and non-singular matrix
v(x) that accounts for the fields reflected from the external sides of the structure and provides
the required homogeneous boundary conditions at these plane-parallel boundaries:l = g + v.
The matrixv, in its turn, is decomposed into two terms; each of them, being derived via the
Green’s matricesk+ andk− for the considered layer with non-zero stressesq+ andq− at the
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upper and lower sufracesz = 0 andz = −H, respectively. With the tractionsq± caused by the
direct source fieldg(x− ξ), it takes the form::

v(x) =
∫

Γ

[K+(α, z)Q+(α) +K−(α, z)Q−(α)]e−iαxdα (3)

whereQ±(α) = Fx[−Tg(x − ξ)] andT is the matrix of the stress operator for the external
plane-parallel boundaries.

At the next step, the vector factorc(ξ) is discretized the same way as in the BEM, e.g.,
assuming a piecewise constant approximation over S. It gives rise to the following approximate
representation for the scattered field:

usc ≈
N∑

j=1

usc,j, usc,j(x) =
∫

Sj

l(x, ξ)cjdξ = u
inf
sc,j(x) + uc

sc,j(x) (4)

u
inf
sc,j(x) =

∫

Sj

g(x− ξ)cjdξ

HereSj are segments of a polygon approximation of the smooth boundaryS; cj are2 × 1
vectors of unknown constants. The non-singular component of the scattered fielduc

sc,j(x) can
be represented in the way similar to expression (3):

uc
sc,j(x) =

∫

Γ

[K+(α, z)Q+

j (α) +K−(α, z)Q−
j (α)]e

−iαxdα (5)

Q+

j = Fx[−Tuinf
sc,j(x, 0)], Q−

j = Fx[−Tuinf
sc,j(x,−H)]

The derivation of scattered travelling waves is essentially based on the analytical evaluation
of the vector-functionsQ±

j (α). It is achieved using the trick, which is based on the specific
rotation in the Fourier parameter space [7].

The unknown constantsc = (c1, c2, ..., cN) are obtained from the system of linear algebraic
equationsAc = f , which arises from the substitution of relation (3) into the boundary conditions
onS and further implementation of the Galerkin projection scheme. Resonance frequenciesω̂n

of the considered BVP are approximated by the rootsωn of the characteristic equation

∆(ω) = detA(ω) = 0 (6)

This equation is numerically solved using either Müller method (if a good initial guess ofωn is
known in advance) or with the argument principle approach.

3 RESULTS AND DISCUSSION

Recent theoretical and experimental investigations of the GW diffraction by deep rectangular
notches in an elastic waveguide have revealed the trapping mode effect [8, 9]. Mathematically
it is associated with the spectral pointsω̂n = 2πf̂n of the BVP considered that are located in the
complex frequency plane close to the real axis. While in a transient field this effect is featured by
the wave energy localization near the obstacle, in the time-harmonic field it manifests itself in a
strong resonance transmission of the incident wave at the frequenciesfn ≈ Re f̂n. Considering
the pitting corrosion damage detection as a goal, it is of particular practical interest to further
investigate such resonance phenomena for various notch shapes.

As an example, Fig. 2 demonstrates theA0 mode transmission coefficientκ+(f) for various
surface notches. Their shapes vary from the rectangle one (dashed curve No. 1, same as in Ref.
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[8]) to the elliptical form (solid magenta curve No. 6). The coefficientκ+ is introduced as the
ratio of the time-averaged wave energyE+

A carried by theA0 mode behind the obstacle to the
incident wave energyE0: κ+ = E+

A/E0.

100 200 300 400 500
0

0.25
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1

f, kHz
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2 3

4
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6
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3 4 5
6

Figure 2:A0 mode transmission coefficientκ+ vs frequencyf ; curve 1: rectangular notch, 2:p = 8 in Eq. 7,
3: p = 6, 4: p = 5, 5: p = 4, 6: p = 1.

The input parameters for the calculations correspond to the aluminium plate samples used in
the experiments:Y = 70 GPa,ν = 0.34, ρ = 2700 kg/m3; H = 2 mm; the initial obstacle is the
surface sawed rectangular notch (widtha = 2 mm, depthd = 1.76 mm), while the boundaries
of other defects are constructed using the parametric equations

x = a1 cos
p(t), y = b1 sin

p(t), (7)

whereb1 ≡ d and the parametera1 varies to provide the defect’s square equal toa ·d; an elliptic
surface occurs withp = 1.

It is clear from Fig. 2 that though the damage severity (its square and depth) remains the
same, the defect’s shape strongly influences on the peak transmission frequenciesfn. These
frequenciesfn were taken as initial guesses for theω̂n evaluation from Eq. 6. The first two
complex eigenvalues of the considered BVP are summarized in Table 1 (in [kHz]).

Obstacle type f̂1 f̂2 fFEM
1

fFEM
2

rectangular notch 81(1-i0.05) 200(1-i0.03) 81 216
p = 8 82(1-i0.04) 217(1-i0.05) 89 216
p = 6 97(1-i0.05) 246(1-i0.09) 115 255
p = 5 130(1-i0.06) 274(1-i0.14) 140 299
p = 4 182(1-i0.08) 306(1-i0.21) 181 316

elliptical notch 203(1-i0.11) 313(1-i0.27) 199 315

Table 1: The first two complex eigenvalues of the notched plates.

The validity of the obtained natural frequencies for a rectangular notch has been experimen-
tally confirmed on the basis of laser Doppler vibrometry measurements withf exp

1 = 85 kHz and
f exp
2 = 215 kHz [8]. However, the manufacturing of other notch types is not so straightforward

and, therefore, FEM simulation with COMSOL Femlab 5.0 has been also used for the verifi-
cation. For this purpose, following the strategy proposed in Ref. [10], eigenvalues of a finite
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specimen, which is bounded by the defect’s surfaceS from above and by the planez = −H
from below with fixed side edges, are evaluated and summarized in the last two columns of
Table 1, being in a considerable coincidence with the LEM-based results. At the same time, the
FEM simulation does not account for the wave energy outflow to infinity. That is why it yields
only real spectral points (resonance frequenciesfFEM

n ) without imaginary parts that specify the
damping rate of resonance oscillations.

Resonance GW interaction with defects is typically followed by a strong localization of os-
cillations in the vicinity of the obstacle. Examples of such localization are shown in Fig. 3,
depicting spatial distributions of the amplitude|uz(x, z)| of the vertical displacement compo-
nent at the frequenciesfn ≈ Re f̂n for the rectangular and elliptical (p = 1) notches. The
lower images are for the validating FEM results obtained for the aforementioned limited cuts
from the specimens at the corresponding eigenfrequenciesfFEM

1 andfFEM
2 . These eigenforms

uFEM
z (x, z) are very close to the LEM-based obtained ones that are shown in the upper images.

One can notice that in the case of elliptical notch the difference between the oscillation ampli-
tudes inside and outside the defected region is not so contrast as for the rectangular obstacle due
to the sufficiently bigger imaginary part in̂f2.

z
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Figure 3: The patterns of resonance wave localization in the infinite waveguides (top plots) and corresponding
eigenforms of the finite specimens (bottom plots) (dark regions correspond to higher amplitudes).

In the transient GW diffraction, natural frequenciesf̂n pronounce themselves with prolonged
oscillations being localized at the obstacle region (trapping modes) [6]. The duration of such
motion depends on the imaginary part of the corresponding eigenfrequencyδn = 2πImf̂n
through the factorexp(−δnt). Though the real part of̂fn is well approximated by FEM mod-
elling, a LEM-based simulation for the infinite waveguide allows predicting both the resonance
frequency and “quality” through the complete evaluation of complexf̂n.

In order to illustrate the influence ofImf̂n on the transient GW interaction with notches, the
B-scans, which are out-of-plane surface velocityvz(x, t) along thex-axis depicted as functions
of x andt, are shown in Fig. 4. The incident wave packets are generated by a remote surface-
bonded piezoactuator excited with a Hann-modulated five-cycle bursts with central frequencies
fc close to the ones in the first and last rows of Table 1. As expected, in the case of rectangular
defect, an intense and prolonged localization of wave energy at the notch is observed both
theoretically and experimentally [8, 9]. At the same time, the growth ofImf̂n results in fast
attenuation of oscillations in the defected area (two right images in Fig. 4). It is especially
pronounced for the second eigenfrequencyf̂2 of the elliptical notch. The motion at the obstacle
vicinity stops just after the incident wavefield leaves this area.
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Figure 4: Localization of transient oscillations in the obstacle vicinity at the resonance frequency excitation that is
ceased in the last case due to a high damping rate induced by comparatively largeImf̂n.

4 CONCLUSIONS

A semi-analytical LEM-based approach is developed for the investigation of resonance diffrac-
tion of time-harmonic and transient GWs by a deep notch in a metallic plate. It allows revealing
a strong dependence of the specimen’s complex eigenfrequencies on the defect’s shape and to
study the influence of the eigenfrequency imaginary part on the intensity of the trapping mode
effect.

The work is supported by the Russian Foundation for Basic Research (project No. 14-08-
00370) and by the Russian Ministry of Science and Education (project No. 1.189.2014K).
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Abstract. Mechanical guided waves are frequently used to non-destructively test and/or mon-

itor large structures, such pipes. These pipes, which are used to transport fluids, are vulnera-

ble to structure defects, such as corrosion and crack. For mainly economic concerns (save 

time and cost), the areas where defects had occurred are sometimes repaired. The material 

used for reparation is often composites, which cause a hug attenuation of guided waves. This 

attenuation can limit drastically the distance of inspection (i. e. the distance between the 

transducer and the smallest detectable defect). The current work aims to investigate numeri-

cally, through finite element method, the influence of composite reparations on guided waves 

propagation. Various parameters such as the shape of the reparation and the operating fre-

quency are studied. The final purpose of this work is to propose some recommendations on 

guided waves setup to ensure an efficient use of this nondestructive testing technique. 
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1 INTRODUCTION 

The need to pipelines for transporting liquids, gases and any chemically stable substance is 

in continuous increase [1]. The material of most pipelines is Carbone steel. Due to its cost, 

this material is preferred to stainless steel. However, it is much more vulnerable to corrosions. 

In order to save maintenance cost and avoid interrupting production, composite repair (see an 

example given in Figure 1) is used to reinforce the strength of the segments of pipes where 

corrosions had occurred. Using composite repair, in lieu of replacing pipes or at least the 

damaged areas especially when a leak is assessed to be imminent, can yield significant eco-

nomic and environmental benefits [2]. Note that the panel of defect types is large and includes 

internal and external corrosion, external damage such as dents, gouges, and cracks, as well as 

manufacturing defects. The problem is that these defects continue to progress even after repa-

ration, but maybe with lower velocities. Assessment of the evolution of the said defects is not 

a straightforward item since it depends of various factors such as geometry and material char-

acteristics of the repair, the tube as well as the transported fluid, the environmental and opera-

tional conditions. Consequently, the remaining lifetime is unpredictable and so, non-

destructive testing techniques, which should be adequate with this kind of structures, are 

needed.  

 

Figure 1 : Photography of a composite pipe repair example 

Ultrasonic guided waves (UGW) technique seems to be a good candidate to reach this aim 

(i. e. testing periodically this type of structure). Indeed, UGW technique well-adapted for tub-

ular and large structures [3], and showed its efficiency in detecting defects especially in bare 

pipes. The application of UGW technique on composite repaired pipe segments should how-

ever not be trivial because the propagation of these waves is closely linked to the characteris-

tics of the surrounding medium, more particularly the damping. The aim of the project, from 

which the current study is extracted, aimed to study the feasibility of the monitoring of the 

said structure. In other words, is UGW technique able to follow the evolution of the “re-

paired” defect? If a new defect occurs after reparation, is UGW able to detect it?  

The problem of attenuation is accentuated by the lack of other required information such as 

thickness, composite modulus, filler materials, fiber orientation, shape of the repair, etc. The 

aim of this paper is to investigate numerically the influence of the main parameters which are 

the material of the repair, its shape and the frequency of excitation.  

The paper consists of 3 sections except the first one which is the introduction. Section two 

concerns the models built in this study. Section three is devoted to present the main obtained 

results and their discussions. The last section deals with the conclusions gained from this 

work.  
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2 MODELS CONSTRUCTION, AND PROBLEM STATEMENT  

2.1 Model setting 

One among softwares which are available in our laboratory, and which permits to simulate 

complex configurations is Comsol Multiphysics [4], which is based on Finite Element Meth-

od. This software allows simulating wave’s propagation in: 

• two dimensions structures (2D) in Cartesian coordinates,  

• axisymmetric structures (which is 2D, but in cylindrical coordinate), and  

• three dimensions structures (3D) 

In all cases, simulations can be carried out in: 

• frequency domain, or 

• time domain 

A post-processing, based mainly on Fourier Transform, is then used to analyse results in 

the suited domain. There is always preference for 3D simulations for its advantage to mimic 

the true-life phenomenon. However, the models size is too big, which needs high memory 

calculators, and the computing time is large. 2D models (whatever in Cartesian of Cylindrical 

coordinates) are preferred, when it is possible, to overcome this problem. In the present case, 

2D calculation permits obtaining quick access to representative results, as well as the ability 

to run high exciting frequency cases (i. e. small mesh size).  

In the present study,  

• the piping element possesses an axisymmetric geometry, 

• homogeneous material 

• the sensor (to receive waves) is axisymmetric, and 

• the actuator (to generate waves) is axisymmetric. 

Hence, the modelling can be performed in 2D axisymmetric medium. However, we cannot 

use 2D axisymmetric model by exciting the displacement of T(0,1) mode, which is uθ-

displacement component (the radial and axial displacement are null). The 2D axisymmetric 

dimension is defined by these displacements. 

The solution is to build 2D model combined with unique variable wave equation (similar to 

the case of wave propagation in liquid, where the acoustic pressure p is the only variable). 

The plane of propagation is x-y plane, while the only displacement component has distribu-

tion dependent on x and y, but supposed uniform along z. Besides, the material properties 

linked to the shear SH wave (T(0,1) mode in circular tubular structures) should also be care-

fully set, especially those of anisotropic materials (as different elastic matrix component 

should be taken into account for wave propagating in different directions). For this reason, the 

detailed wave equation should be developed to check which parameters should be set to study 

the influence from composite repair. 

2.2 Equations formulation 

Based on the Hooke’s law which can be described by:  

     (1) 

Associated with the law of conservation of momentum, the general wave equation is writ-

ten as below: 

    (2) 
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So for x-y plane SH wave (with z-displacement component) propagating, the wave equa-

tion concerning z displacement component is: 

    (3) 

As it is assumed that it is uniform along z direction, so , the equation can be simplified 

as: 

    (4) 

The nonzero stress components  and  can be calculated with the Hooke’s law, associated 

with material anisotropy. It can be simplified as following:  

     (5) 

So the final wave equation is written as: 

   (6) 

C44 et C55 describe the materials to used hereafter.  

2.3 Results extraction  

We choose to show, as results, the circumferential displacement uθ and its spatial waveform at 

different frequencies. The former gives an immediate idea about the distribution of the dis-

placement through the thickness of the pipe as well as the repair. It is a fictitious C-Scan in 

the axial (z) – radial (r) plan. It is an easy way to show qualitatively the influence of the repair 

on wave’s propagation. The spatial waveforms are however collected in the outer lateral sur-

face to show clearly the uθ displacement amplitude, as shown by Figure 2. Both representa-

tions are complementary. Reflection coefficient will also be plotted.  
 

 

Figure 2 : A not scaled schematic showing the area where the shear displacement uθ is monitored (along the tube 

including the repair/tube interface) 
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3 RESULTS AND DISCUSSIONS  

3.1 Displacement monitoring  

The first model was a bare pipe. This model simulates also a limit case of pipe with repair 

(thickness = 0). The analysis of this case will be revisited afterwards, but for the moment it 

serves to validate the calculations. 

After validating the model, we focus now on the investigation of the T(0,1) mode propa-

gation in repaired pipe. As explained previously the shape of the repair is trapezoidal. To un-

derstand better the effects of this repair on T(0,1), and be able to analyse properly the 

obtained results, we add in first step a steel repair. Note that in this case, we make only one 

change, which is the geometry of the waveguide. The main results are given by Figure 3 and 

Figure 4. 

For the ease of the reader, we recalled the drawing of the repaired tube, as it can be seen in 

Figure 4. The monitored displacement contains 7 regions, which correspond to: 

 (1)  Set of absorbing region, near field and reflected waves by the repair. By com-

parison with the case of the bare pipe, which can be token as benchmark (not shown 

here for the sake of brevity), we can see that: 

o the amplitude is slightly different,  

o the amplitude of the reflected signal is not proportional to the other zones, 

where the displacement amplitude decreases with frequency,  

 This confirms that the current repair caused a reflection but it is not too big. 

Note that reflection coefficient depends at least of: 

 Acoustic impedance of the reflector with regard to that of the main 

waveguide (tube wall in our case), and 

 Reflector shape.  

In the current case, the acoustic impedance doesn’t have any impact, since the 

repair has the same material as the pipe. So, the reflection should be driven on-

ly by the shape, and more particularly by the angle of this conical form (  in 

Figure 3). To verify this ascertainment, we studied the case where the repair is 

rectangular ( ). The correspondent result is not shown here, for the sake 

of brevity. As it can be seen effortlessly, the reflection coefficient is too big, as 

what is expected. The other extreme case is where , which corresponds 

naturally to a bare pipe.  

 (2)  zone of the pipe just before the repair. The displacement amplitude is constant 

in whole this zone. Waves reflection is too weak as explained before, otherwise this 

amplitude should be bigger,  

 (3), (4), and (5)  displacement amplitude at the repaired region. They are lower in 

these zones. However, the transmitted wave amplitude remains almost the same as the 

incident one. In this case, a little energy was reflected. 

The phenomenon of the decrease of the amplitude at these zones can be explained by 

the energy flow density (or Poynting Vector). Indeed, the same energy flow density 

travel in the waveguide (pipe + repair). When the surface increases, the flow decreas-

es.  

 (6)  zone of the pipe just after the repair and just before zone (7). Amplitude dis-

placements are constant along this zone, and approximately equal to that of zone (2). 

This is normal because: 

o waves reflection is quasi-absent, and 

o The medium is non-absorbing.  
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 (7)  absorbing region  

 

Figure 3 : distribution of uθ-displacement, at frequency of excitation = 30 kHz, not-scaled figure. 

 

Figure 4 : uθ-displacement monitored at outer surface of the pipe, for different frequencies (top), and drawing of 

the repaired pipe (bottom). 

Up to this stage of the numerical calculations, the cases studied are: bare pipe and pipe 

with rectangular and trapezoidal repair shapes. Both the pipes and the repair were steel. From 

numerical simulation point of view, the material is not absorbing. So, if there is any attenua-

tion, it should be linked to reflection. Hence, and as it was remarked, the waves reflection by 

the trapezoidal are too weak in front of that caused by the rectangular repair. This was ex-

z 

r 
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plained by the repair shape, which is gradually increased in one case (trapezoidal shape) and 

sudden in the other one (rectangular shape).  

Once these studied are achieved, we spent to investigate the case of viscoelastic composite 

repair. The pipe wall covered by a composite repair will make a bilayer structure. So the rela-

tive wave properties will be changed, such as dispersion and attenuation. Concerning the dis-

persion properties, what will be taken into account are: 

o Cut-off frequency for higher order mode 

o Mode shape affecting the displacement distribution through thickness (of detected 

signal) 

While the attenuation is mainly linked to the viscosity of the composite material, especially 

the resin of the fibre reinforced material. The viscosity can be pretty low or extreme high. 

To understand the influence of the material on T(0,1) waves propagation, and achieve a more 

reliable analysis, the investigation will be performed in two steps: 

i. pure elastic material, that means non-absorbing material but different from 

steel. It is the lower limit of damping (viscosity component = 0),  

ii. viscoelastic material  absorbing material. The damping is supposed equal 

0.15 * 408MPa, which represents high viscosity. 

For the sake of brevity, the obtained results are not shown in the current paper. In the dis-

placement distribution, the maximal amplitude in the elastic case is around 5 times that in the 

viscoelastic case. This argues the expected influence of the viscoelastic material.  

3.2 Reflection coefficient  

The final results are gathered in Figure 5. These results confirm what it was already conclud-

ed previously. As it can be seen: 

 reflections are small in the case of: 

o steel repair with gradually increasing thickness (trapezoidal shape), as well as 

o trapezoidal high damping composite repair, while  

 reflections are large where: 

o the composite repair is purely elastic, even with trapezoidal shape 

o and rectangular steel repair, 

In all cases, reflections vary greatly with the exciting frequency. It can be easily remarked 

where they have large coefficient.  

In conclusion, reflections depend on:  

o material of the repair, 

o shape of the repair,  

o excitation time frequency.  

4 CONCLUSIONS  

A numerical study was performed in healthy waveguide (i. e. without any defect). The aim 

was to investigate the T(0,1) wave mode in a steel pipe coated locally by a composite repair. 

Due to lack of some characteristics of this material, which were needed as input of the built 

models, some assumptions were considered: 

i. pure elastic repair : this is the lower limit of damping, 

ii. viscoelastic repair with high damping. 

iii. for both cases (i and ii), the density was token, basing on the literature, the density was 

token (1000 kg/m3). However, this value depends critically on fiber/matrix ratio, and 

fiber and matrix types.  
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Figure 5 : Reflection coefficient versus frequency for different studied cases : rectangular steel repair, trapezoi-

dal pure elastic repair, trapezoidal steel repair, and trapezoidal high viscoelastic repair.  

The repair material, used in this current study, should be between that described in case (i) 

and in case (ii).  

To help verify the results, additional models were built and run: 

 Bare pipe 

 Pipe with trapezoidal steel repair 

 Pipe with steel repair in rectangular form 

The main conclusions were found concerning the reflection coefficients based on different 

models: 

 For pipe with pure elastic composite repair (case i), the reflection coefficient may be 

big as 1 at some exciting frequencies, 

 For pipe with high viscoelastic composite repair (case ii), there is few reflections. 

The results cited from literature [] are consistent with our results. Note that parameters of this 

study are different from ours, such as: 

 dimensions and the material of the pipe, and  

 dimensions, material and shape of the composite repair. 

Even both studies are achieved with different parameters, the main conclusion is unique and 

common: reflections (and consequently transmitted waves) depend considerably and non-

linearly (as one can think) of the frequency. Reflection coefficient versus the frequency con-

sists of alternating bands: pass-band where the reflected waves are weak and forbidden-band 

where they are large. Attention should be paid to this point, since it impacts the attenuation 

and so, the sensitivity. For future study, it is necessary to have more information about the 

material properties (elastic or viscoelastic), to perform simulation in smaller frequency step if 

need. 
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Abstrat. This proeeding suggests the two-steps shape optimization algorithm improving Hy-

drodynamis stability, by onstruting the existing shape optimization problems Problem 1 and

Problem 2. In Problem 1, a dissipation energy is de�ned as a ost funtion and the stationary

Navier�Stokes problem is used as a main problem. In Problem 2, the maximum value of a real

part of the leading eigenvalues is de�ned as a ost funtion and the stationary Navier�Stokes

problem and its eigenvalue problem are used as main problems. The initial domain is a two

dimensional avity �ow W

0

, where side walls and bottom walls are used as the design bound-

aries as the ost funtions derease. First, Problem 1 is solved to obtain an optimal domainW

1

.

Seond, Problem 2 is demonstrated by using W

1

as the initial domain, and an optimal domain

W

2

is obtained. Finally, eigenvalue problems are solved in W

0

and W

1

, W

2

to depit a linear

neutral urve and spetrum. As a result, it is on�rmed numerially that the ritial Reynolds

numbers are inreased throughout Problem 1 and Problem 2.
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1 INTRODUCTION

This proeeding suggests a shape optimization method improving Hydrodynamis stability

with a regularization tehnique on the initial domain.

A shape optimization problem is generalized as a problem of optimizing the boundary design

of a domain in whih a boundary value problem of partial differential equations is de�ned,

where the domain topology is �xed as that of the initial domain. In this problem, ost funtions

are de�ned as funtionals of the domain and the solution of the boundary value problem. Along

with omputer development, numerial examinations of shape optimization problems have been

onduted. Based on results of these trials, it was noted that the diret appliation of the gradient

method often results in osillating shapes. However, the osillation was able to be suppressed

by redution of the degrees of freedom on the boundary.

Subsequently, it was lear that suh the osillation is aused by a lak of smoothness of the

�rst variation of funtional. To avoid osillation without reduing the degrees of freedom, a

method using the Laplae operator as smoother was proposed by H. Azegami et al. [1℄. This

method was alled the H

1

gradient method. In the H

1

gradient method, domain variation that

minimizes the objetive funtional is obtained as a solution to a boundary value problem of a

linear elasti ontinuum de�ned in the design domain.

In �uid dynamis, E. Katamine et al. [2℄ demonstrated the appliability of the H

1

gradient

method to a shape optimization problem of an isolated body in a domain de�ned the stationary

Navier�Stokes equations as the governing equations. However, in [2℄, the stabilities of �uid

�ows in the initial domain and the optima domain were not disussed. Wherein, T. Nakazawa

[3, 4℄ reported the possibility that the the stability ould be ontrolled by the shape optimization

problem. In partiular, on the two dimensional Cavity �ow W

0

, using the stationary Navier�

Stokes problem as the main problem, the maximizing and minimizing problems of the energy

dissipation an make the ritial Reynolds number inrease and derease, respetively.

Espeially, on an optimal shape W

1

in the ase of the minimizing problem (Problem 1),

�gs. 1 and 2 show stream lines of stationary �ows and a real part of the leading eigenvalue on

W

0

and W

1

at Re = 11500. Fig. 3 depits a linear neutral urve on W

0

and W

1

and a spetrum

at Re = 11500, and it is observed that the minimizing problem an make the ritial Reynolds

number larger.

(a) (b)

Figure 1: Stream lines of (a) stationary �ows and (b) a part of the leading eigenvalue on W

0

at Re= 11500.
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(a) (b)

Figure 2: Stream lines of (a) stationary �ows and (b) a real part of the leading eigenvalue on W

1

at Re= 11500.
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and (b) a spetrum at Re= 11500.
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The results of [3, 4℄ laim that the shape optimization problem might be able to ontrol

Hydrodynamis stability. For the aim to ontrol Hydrodynamis stability more diretly, T.

Nakazawa and H. Azegami [5℄ suggested a new pioneering shape optimization method to make

the disturbanes more stable diretly, in whih the real parts of the eigenvalue is used as the ost

funtion and the stationary Navier-Stokes problem and its eigenvalue problem are de�ned as the

main problems (Problem 2). In [5℄, an initial domain is Poissolle �ow with a sudden expansion,

and the ritial Reynolds number inreases. In this proeeding, Problem 2 is demonstrated on

W

0

and W

1

at Re= 11500 and eah linear stabilities are ompared.

2 Formulation of problem

2.1 Initial Domain

A Cartesian oordinate system is used and a position vetor is generally denoted by x

x

x =
(x,y) ∈ R

2

. An initial domain W

0

=
{
(x,y) ∈ R

2 | ([0,1]× [0,1])
}
is onsidered, and the top

boundary and the wall boundary are set asG

top

= {(x,y) | 0≤ x≤ 1, y= 1} and G
wall

= ¶W\G
top

.

2.2 Domain Variation

Using the initial domain, the domain variation is de�ned in the following way. Let i

i

i+f

f

f :

R
2 → R

2

be a bi-Lipshitz transform and D be the set of f

f

f , where i

i

i denotes identity map-

ping. For a f

f

f ∈ D, let a varied domain W(fff) and boundary G

wall

(fff) be de�ned respetively

as (iii+f

f

f)(W
0

) and (iii+f

f

f)(G
wall

). The funtion spae of the Fréhet derivative with respet to

arbitrary domain variation f

f

f is de�ned as

X =
{
f

f

f ∈ H

1(R2

;R
2) | fff = 0

0

0 on G

top

}
.

The shape derivatives of funtionals are obtained as follows. Let z be a real-valued funtion

of j ∈C

1(D;H2(R2

;R)) and Ñj(fff), and

L(fff ) =
∫

W(fff )
z (j(fff),Ñj(fff))dx.

Using the shape derivative z

′
of z , the shape derivative JL of L is given as

JL(fff ) =

∫

W(fff )
z

′
dx+

∫

G

wall

(fff )
zn

n

n ·yyydg,

where the deformed boundary is denote by G

wall

(fff) = ¶W(fff)\G
top

and where n

n

n denotes an

outward unit normal vetor on the boundary ([1℄ Eq. (18), p.274).

2.3 Main problems

The stationary Navier�Stokes equation and the equation of ontinuity in non-dimensional

form are onsidered, where ( �uuu, �p) ∈ �

U × �

Q denote non dimensional stationary veloity and

pressure and

�

U =
{
�

u

u

u= ( �u, �v) ∈ H

1(W(fff);R2) | �uuu= u

u

u

D

on ¶W(fff)
}
,

�

Q=

{

�q ∈ L

2(W(fff);R) |
∫

W(fff )
�qdx= 0

}

.

4
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The weak form is written as

∫

W(fff )

{

(( �uuu ·ÑÑÑ) �uuu) · �www− �pÑ

Ñ

Ñ · �www+
1

Re

(ÑÑÑ �

u

u

u

T) · (ÑÑÑ �

w

w

w

T)− �qÑ

Ñ

Ñ · �uuu

}

dx= 0,

for all ( �www, �q) ∈ �

W × �

Q, where ( �www, �q) represents trial funtions for veloity �

u

u

u and pressure �p, and

�

W =
{
�

w

w

w ∈ H

1(W(fff);R2) | �www= 0

0

0 on ¶W(fff)
}
.

A set of veloity �elds

¯

u

u

u ∈ ¯

U and pressure p̄ ∈ ¯

Q for the disturbane

¯

U =
{
¯

u

u

u ∈ H

1(W(fff);C2) | ¯uuu= 0

0

0 on ¶W(f)
}
,

¯

Q=

{

q̄ ∈ L

2(W(fff);C) |

∫

W(fff)
q̄dx= 0

}

,

are introdued. Based on the linear stability theory, for an eigenvalue l ∈ C, an eigenvalue

equation in weak form is written as

∫

W(fff)

{

l

¯

u

u

u · ¯www+(( �uuu ·ÑÑÑ) ¯uuu) · ¯www +(( ¯uuu ·ÑÑÑ) �uuu) · ¯www− p̄Ñ

Ñ

Ñ · ¯www +
1

Re

(ÑÑÑ ¯

u

u

u

T) · (ÑÑÑ ¯

w

w

w

T)

−q̄ÑÑÑ · ¯uuu}dx= 0,

for all ( ¯www, q̄) ∈ ¯

W × ¯

Q, where ( ¯www, q̄) represents trial funtions for ¯uuu and p̄, and

¯

W =
{
¯

w

w

w ∈ H

1(W(fff);C2) | ¯www= 0

0

0 on ¶W(fff)
}
.

3 Shape optimization problem

The minimization problem of the maximum value of the real parts of the leading eigenvalues

(Problem 2) is formulated as

FindW

2

that minimizes f = 2Real[l ]

subjet to ( �uuu, �p, ¯uuu, p̄) ∈ �

U× �

Q× ¯

U× ¯

Q suh that Eqs. (1) and (1) ,

where l , ¯uuu depit an eigenvalue and an eigenfuntion for the disturbane with the maximum

value of the real parts of the leading eigenvalues. The shape derivative of the Lagrange funtion

L is evaluated by appliation of the Lagrange multiplier method, where L is written as

L( �uuu, �p, �www, �q,l , ¯uuu, p̄, ¯www, q̄) =

2Real[l ]

−
∫

W(fff )

{

(( �uuu ·ÑÑÑ) �uuu) · �www− �pÑ

Ñ

Ñ · �www+
1

Re

(ÑÑÑ �

u

u

u

T) · (ÑÑÑ �

w

w

w

T)− �qÑ

Ñ

Ñ · �uuu

}

dx

−

∫

W(fff )
{h( �uuu, ¯uuu, p̄, ¯www, q̄)+h( �uuu, ¯uuu, p̄, ¯www, q̄)}dx,

where

h( �uuu, ¯uuu, p̄, ¯www, q̄) = l

¯

u

u

u · ¯www +(( �uuu ·ÑÑÑ) ¯uuu) · ¯www +(( ¯uuu ·ÑÑÑ) �uuu) · ¯www

−p̄Ñ

Ñ

Ñ · ¯www +
e

(ÑÑÑ ¯

u

u

u

T) · (ÑÑÑ ¯

w

w

w

T)− q̄



Ñ

Ñ

Ñ · ¯uuu.
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The shape derivative JL for L is taken to obtain a sensitivity and main problem (Eqs. (1) and

(1)) and its adjoint problems onsidering KKT ondition, and adjoint equations for eq. (1) is

obtained as

∫
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T)

−q̄ÑÑÑ · ¯uuu′
}
dx= 0,

for all ( ¯uuu′, p̄′) ∈ ¯

U× ¯

Q, where (·)′ represents shape derivative. And adjoint equations for eq. (1)

is written as

∫
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′
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[
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u

T

)
¯

w
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)
· �uuu′

]}
dx= 0,

for all ( �uuu′, �p′)∈ �

U× �

Q. Solving these problems, substitute main variables ( �uuu, �p, ¯uuu, p̄) and adjoint
variables ( �www, �q, ¯www, q̄) into JL, JL is redued to

JL=

∫

G

wall

(fff )
Gy

y

y ·nnndg,

where G represents the sensitivity for Problem 2

G=−
1
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(ÑÑÑ �
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′
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]

.

See more detail in Setion 3 of T. Nakazawa and H. Azegami [5℄. For reshaping a domain, H

1

gradient method is used .

4 RESULTS and CONCLUSIONS

Problem 2 is addressed on W

0

and W

1

. Fig. 4 depits ost funtion f with reshaping steps,

and W

real

and W

2

represent f for usingW

0

and W

1

as initial domains. From �g. 4, in the ase of

usingW

0

as an initial domain, f is not dereasing, and on the other hand f usingW

1

as an initial

domain is minimizing. As a result, Problem 1 might regularize a geometrial shape of W

0

for

Problem 2.

Fig. 5 shows stream lines of stationary �ows and a real part of the leading eigenvalue on W

2

at Re = 11500, and �g. 6 a spetrum at Re = 11500. Finally, a linear neutral urve on W

0

and

W

1

, W

2

is shown in �g. 7, from whih it is on�rmed numerially that the ritial Reynolds

numbers are inreased throughout Problem 1 and Problem 2.

By the way, the sensitivity derived in Problem 2 is evaluated by using the only disturbane

with a maximum value of real parts of the leading eigenvalues, and after the seond bifuration,

Problem 2 ignores all the disturbanes exept the most unstable one, whih is not reasonable in

the sense of Hydrodynamis stability. Therefore, it is needed to onstrut a shape optimization

problem onsidering all the unstable disturbanes as one of future works.
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Abstract. Checkpointing is a classical technique to mitigate the overhead of adjoint Al-
gorithmic Differentiation (AD). In the context of source transformation AD with the Store-All
approach, checkpointing reduces the peak memory consumption of the adjoint, at the cost of
duplicate runs of selected pieces of the code. Checkpointing is vital for long run-time codes,
which is the case of most MPI parallel applications. However, the presence of MPI communi-
cations seriously restricts application of checkpointing.
In most attempts to apply checkpointing to adjoint MPI codes (the “popular” approach), a num-
ber of restrictions apply on the form of communications that occur in the checkpointed piece
of code. In many works, these restrictions are not explicit, and an application that does not
respect these restrictions may produce erroneous code.
We propose techniques to apply checkpointing to adjoint MPI codes, that either do not suppose
these restrictions, or explicit them so that the end users can verify their applicability. These
techniques rely on both adapting the snapshot mechanism of checkpointing and on modifying
the behavior of communication calls.
One technique is based on logging the values received, so that the duplicated communications
need not take place. Although this technique completely lifts restrictions on checkpointing MPI
codes, message logging makes it more costly than the popular approach. However, we can
refine this technique to blend message logging and communications duplication whenever it is
possible, so that the refined technique now encompasses the popular approach. We provide el-
ements of proof of correction of our refined technique, i.e. that it preserves the semantics of the
adjoint code and that it doesn’t introduce deadlocks.
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1 INTRODUCTION

Adjoint algorithms, and in particular those obtained through the adjoint mode of Automatic
Differentiation (AD) [1], are probably the most efficient way to obtain the gradient of a numer-
ical simulation. Given a piece of code P , adjoint AD (with the “Store-All” approach) consists
of two successive pieces of code. The first one, the “forward sweep” −→P computes the original
values and stores in memory the overwritten variables needed to compute the gradients. The
second one, the “backward sweep” ←−P , computes the gradients, using the intermediate values
stored as needed. Primarily, i.e. before any form of program optimisation, the adjoint program
is simply −→P followed by a←−P .

Many large-scale computational science applications are parallel programs based on Message-
Passing, implemented for instance by using the MPI message passing library. We will call them
“MPI programs”. MPI programs consist of one or more threads (called ”MPI processes”) that
communicate through message exchanges.

In most attempts to apply checkpointing to adjoint MPI codes (the “popular” approach), a
number of restrictions apply on the form of communications that occur in the checkpointed
piece of code. In many works, these restrictions are not explicit, and an application that does
not respect these restrictions may produce erroneous code.
We propose techniques to apply checkpointing to adjoint MPI codes, that either do not suppose
these restrictions, or explicit them so that the end users can verify their applicability. These
techniques rely on both adapting the snapshot mechanism of checkpointing and on modifying
the behavior of communication calls.

isend
Process1:

send wait recv

Process 2:
recv sendrecv

isend

Process 1:

send wait recv

Process 2:
recv sendrecv

isend
=wait

send 
=recv

wait
=irecv

  
recv 
=send

recv
=send

send
= recv

recv
=send

P⃗P

P

⃗

(a) (b)

Process 1:

Process 2:

Figure 1: (a) Communications graph of an MPI parallel program with two processes. Thin arrows represent
the edges of the communications graph and thick arrows represent the propagation of the original values by the
processes. (b) Communications graph of the corresponding adjoint MPI parallel program. The two thick arrows
in the top represent the forward sweep, propagating the values in the same order as the original program, and the
two thick arrows in the bottom represent the backward sweep, propagating the gradients in the reverse order of the
computation of the original values.
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1.1 Communications graph of adjoint MPI programs

One commonly used model to study message-passing is the communications graph [[2],
pp. 399403], which is a directed graph (see figure 1 (a)) in which the nodes are the MPI
communication calls and the arrows are the dependencies between these calls. For simplicity,
we omit the mpi prefix from subroutine names and omit parameters that are not essential in
our context. Calls may be dependent because they have to be executed in sequence by a same
process, or because they are matching send and recv calls in different processes.

• The arrow from each send to the matching recv (or to the wait of the matching
isend) reflects that the recv (or the wait) cannot complete until the send is done.
Similarly, the arrow from each recv to the matching send (or to the wait of the match-
ing irecv) reflects that the send will block until the recv is done.

• The arrows between two successive MPI calls within the same process reflect the depen-
dency due to the program execution order, i.e. instructions are executed sequentially. In
the sequel, we will not show these arrows.

A central issue for correct MPI programs is to be deadlock free. Deadlocks are cycles in the
communications graph.

There have been several works on the adjoint of MPI parallel programs [3],[4], [5], [6], [7].
When the original code performs an MPI communication call, the adjoint code must perform
another MPI call, which we will call an “adjoint MPI call”.

• For instance the adjoint for a receiving call recv(b) is a send of the corresponding
adjoint value b. In practice, this will write as send(b); b = 0.

• Symmetrically the adjoint for a sending call send(a) performs a receive of the corre-
sponding adjoint value. In practice this will write as recv(tmp); a+ = temp.

This way, the adjoint code will perform a communication of the adjoint value (called “adjoint
communication”) in the opposite direction of the communication of the primal value, which is
what should be done according to the AD model. This creates in←−P a new graph of communi-
cations (see figure 1 (b)), that has the same shape as the communications graph of the original
program, except the inversion of the direction of arrows. This implies that if the communi-
cations graph of the original program is acyclic, then the communications graph of ←−P is also
acyclic. Since −→P is essentially a copy of P with the same communications structure, the com-
munications graphs of−→P and←−P are acyclic if the communications graph of P is acyclic. Since
we observe in addition that there is no communication from −→P to←−P , we conclude that if P is
deadlock free, then P =

−→
P ;
←−
P is also deadlock free.

1.2 Checkpointing

Storing all intermediate values in −→P consumes a lot of memory space. In the case of se-
rial programs, the most popular solution is the “checkpointing” mechanism [8] (see figure 2).
Checkpointing is best described as a transformation applied with respect to a piece of the orig-
inal code (a “checkpointed part”). For instance figure 2 (a) and (b) illustrate checkpointing
applied to the piece C of a code, consequently written as U ;C;D.
On the adjoint code of U ;C;D (see figure 2 (a)), checkpointing C means in the forward sweep
not storing the intermediate values during the execution of C. As a consequence, the backward
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DC

⃗

D⃗C

DC⃗

C

U

U⃗

U

⃗ ⃗

⃗⃗

⃗

C⃗ D⃗U⃗
depth= 0

depth= 1

depth= 2

(a) (b) (c)

Figure 2: (a) A sequential adjoint program without checkpointing. (b) The same adjoint program with check-
pointing applied to the part of code C. The thin arrow reflects that the first execution of the checkpointed code C
does not store the intermediate values in the stack. (c) Application of the checkpointing mechanism on two nested
checkpointed parts. The checkpointed parts are represented by dashed rectangles.

sweep can execute←−D but lacks the stored values necessary to execute←−C . To cope with that, the
code after checkpointing (see figure 2 (b)) runs the checkpointed piece again, this time storing
the intermediate values. The backward sweep can then resume, with ←−C then ←−U . In order to
execute C twice (actually C and later −→C ), one must store (a sufficient part of) the memory state
before C and restore it before←−C . This storage is called a snapshot, which we represent on fig-
ures as a • for taking a snapshot and as a ◦ for restoring it. Taking a snapshot “•” and restoring
it “◦” have the effect of resetting a part of the machine state after “◦” to what it was immedi-
ately before “•”. We will formalize and use this property in the demonstrations that follow. To
summarize, for original code U ;C;D, whose adjoint is −→U ;

−→
C ;
−→
D ;
←−
D ;
←−
C ;
←−
U , checkpointing C

transforms the adjoint into −→U ; •;C;−→D ;
←−
D ; ◦;−→C ;

←−
C ;
←−
U .

The benefit of checkpointing is to reduce the peak size of the stack in which intermediate values
are stored: without checkpointing, this peak size is attained at the end of the forward sweep,
where the stack contains kU ⊕ kC ⊕ kD, where kX is the values stored by code X . In contrast,
the checkpointed code reaches two maximums kU ⊕ kD after −→D and kU ⊕ kC after −→C . The cost
of checkpointing is twofold: the snapshot must be stored, generally on the same stack, but its
size is in general much smaller than kC . The othor part of the cost is that C is executed twice,
thus increasing run time.

1.3 Checkpointing on MPI adjoints

Checkpointing MPI parallel programs is restricted due to MPI communications. In previous
works, the “popular” checkpointing approach has been applied in such a way that a check-
pointed piece of code always contains both ends of each communication it performs. In other
words, no MPI call inside the checkpointed part may communicate with an MPI call which is
outside. Furthermore, non-blocking communication calls and their corresponding waits must
be both inside or both outside of the checkpointed part. This restriction is often not explicitly
mentioned. However, if only one end of a point to point communication is in the checkpointed
part, then the above method will produce erroneous code. Consider the example of figure 3 (a),
in which only the send is contained in the checkpointed part. The checkpointing mechanism
duplicates the checkpointed part and thus duplicates the send. As the matching recv is not
duplicated, the second send is blocked. The same problem arises if only the recv is contained
in the checkpointed part (see figure 3 (b)). The duplicated recv is blocked. Figure 3 (c) shows
the case of a non-blocking communication followed by its wait, and only the wait is con-
tained in the checkpointed part. This code fails because the repeated wait does not correspond
to any pending communication.

We propose techniques that adapt checkpointing to MPI programs with point-to-point com-
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send
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send?

isend wait

wait
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wait

isend
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Process:

(c)

Process 1:

Process 2:

send

recv

recv

send

recv?

Process 2:

Process 1:

recv

send

(b)(a)

Figure 3: Three examples of careless application of checkpointing to MPI programs, leading to wrong code. For
clarity, we separated processes: process 1 on top and process 2 at the bottom. In (a), an adjoint program after
checkpointing a piece of code containing only the send part of point-to-point communication. In (b), an adjoint
program after checkpointing a piece of code containing only the recv part of point-to-point communication. In (c),
an adjoint program after checkpointing a piece of code containing a wait without its corresponding non blocking
routine isend.

munications. These techniques either do not suppose restrictions on the form of communica-
tions that occur in the checkpointed code, or explicit them so that the end user can verify their
applicability. One technique is based on logging the values received, so that the duplicated
communications need not take place. Although this technique completely lifts restrictions on
checkpointing MPI codes, message logging makes it more costly than the popular approach.
However, we can refine this technique to replace message logging with communications du-
plication whenever it is possible, so that the refined technique now encompasses the popular
approach. In section 2, we give a proof framework for correction of checkpointed MPI codes,
that will give some sufficient conditions on the MPI adapted checkpointing technique so that
the checkpointed code is correct. In section 3 , we introduce our MPI adapted checkpointing
technique based on message logging. We prove that this technique respects the assumptions of
section 2 and thus that it preserves the semantics of the adjoint code. In section 3, we show
how this technique may be refined in order to reduce the number of values stored in memory.
We prove that the refinement we propose respects the assumptions of section 2 and thus that it
preserves the semantics of the adjoint code as well.

2 ELEMENTS OF PROOF

We propose adaptations of the checkpointing method to MPI adjoint codes, so that it provably
preserves the semantics of the resulting adjoint code for any choice of the checkpointed part.
To this end, we will first give a proof framework of correction of checkpointed MPI codes,
that relies on some sufficient conditions on the MPI adapted checkpointing method so that the
checkpointed code is correct.

On large codes, checkpointed codes are nested (see figure 2 (c)) , with a nesting level often
as deep as the depth of the call tree. Still, nested checkpointed parts are obtained by repeated
application of the simple pattern described in figure 2 (b). Specifically, checkpointing applies
to any sequence of forward, then backward code (e.g. −→C ;←−C on figure 2 (b)) independently of
the surrounding code. Therefore, it suffices to prove correctness of one elementary application
of checkpointing to obtain correctness for every pattern of nested checkpointed parts.

To compare the semantics of the adjoint codes without and with checkpointing, we define
the effect E of a program P as a function that, given an initial machine state σ, produces a
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new machine state σnew = E(P, σ). The function E describes the semantics of P . It describes
the dependency of the program execution upon all of its inputs and specifies all the program
execution results. The function E is naturally defined on the composition of programs by :
E((P1;P2), σ) = E(P2, E(P1, σ)).

When P is in fact a parallel program, it consists of several processes pi run in parallel. Each
pi may execute point-to-point communication calls. We will define the effect E of one process p.
To this end, we need to specify more precisely the contents of the execution state σ for a given
process, to represent the messages being sent and received by p. We will call “R” the (partly
ordered) collection of messages that will be received (i.e. are expected) during the execution
of p. Therefore R is a part of the state σ which is input to the execution of p, and it will be
consumed by p. It may well be the case that R is in fact not available at the beginning of p. In
real execution, messages will accumulate as they are being sent by other processes. However,
we considerR as a part of the input state σ as it represents the communications that are expected
by p. Symmetrically, we will call “S” the collection of messages that will be sent during the
execution of p. Therefore, S is a part of the state σnew which is output by execution of p and it
is produced by p.
We must adapt the definition of E for the composition of programs accordingly. We explicit the
components of σ as follows. The state σ contains:

• W , the values of variables

• R, the collection of messages expected, or “to be received” by p

• S, the collection of messages emitted by p

With this shape of σ, the form of the semantic function E and the rule of the composition of pro-
grams become more complex. Definition of E on one process p imposes the prefix Rp of R (the
messages to be received) that is required by p and that will be consumed by p. Therefore, the
function E applies pattern matching on its R argument to isolate this “expected” part. Whatever
remains in R is propagated to the output R. Similarly, SP denotes the suffix set of messages
emitted by p, to be added to S. Formally, we will write this as:
E(p, 〈W,RP ⊕R, S〉) = 〈W ′, R, S ⊕ SP 〉
To explicit the rule of code sequence, suppose that p runs pieces of code C and D in sequence,
with C expecting incoming received messages RC and D expecting incoming received mes-
sages RD. Assuming that the effect of C on the state is:
E(C, 〈W,RC ⊕R, S〉) = 〈W ′, R, S ⊕ SC〉
and the effect of D on the state is:
E(D, 〈W ′, RD ⊕R, S〉) = 〈W ′′, R, S ⊕ SD〉,
then C;D expects received messages RC ⊕ RD (for the appropriate concatenation operator ⊕)
and its effect on the state is:
E(C;D, 〈W,RC ⊕RD ⊕R, S〉) = 〈W ′′, R, S ⊕ SC ⊕ SD〉.

Adjoint programs operate on two kinds of variables. On one hand, the variables of the
original primal code are copied in the adjoint code. In the state σ, we will note their values “V ”.
On the other hand, the adjoint code introduces new adjoint variables to hold the derivatives. In
the state σ, we will denote their values “V ”.
Moreover, adjoint computations with the store-all approach use a stack to hold the intermediate
values that are computed and pushed during the forward sweep−→P and that are popped and used
during the backward sweep ←−P . We will denote the stack as “k”. In the sequel, we will use a
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fundamental property of the stack mechanism of AD adjoints, which is that when a piece of
code has the shape −→P ;

←−
P , then the stack is the same before and after this piece of code. To be

complete, the state should also describe the sent and received messages corresponding to adjoint
values (see section 1.1). As these parts of the state play a very minor role in the proofs, we will
omit them. Therefore, we will finally split states σ of a given process as: σ = 〈V, V , k, R, S〉.
For our needs, we formalize some classical semantic properties of adjoint programs. These
properties can be proved in general, but this is beyond the scope of this paper. We will consider
these properties as axioms.

• Any “copied” piece of code X (for instance C) that occurs in the adjoint code operates
only on the primal values V and on the R and S communication sets, but not on V nor on
the stack. Formally, we will write:
E(X, 〈V, V , k, RX ⊕ R, S〉) = 〈Vnew, V , k, R, S ⊕ SX〉, with the output Vnew and SX

depending only on V and on RX .

• Any “forward sweep” piece of code −→X (for instance −→U ,−→C or −→D ) works in the same
manner as the original or copied piece X , except that it also pushes on the stack new
values noted δkX , which only depend on V and RX . Formally, we will write:
E(−→X, 〈V, V , k, RX ⊕R, S〉) = 〈Vnew, V , k ⊕ δkX , R, S ⊕ SX〉

• Any “backward sweep” piece of code←−X (for instance←−U ,←−C or←−D ), on one hand operates
on the adjoint variables V and, on the other hand, uses exactly the top part of the stack
δkX that was pushed by −→X . In the simplest AD model, δkX is used to restore the values
V that were held by the primal variables immediately before the corresponding forward
sweep −→X . There exists a popular improvement in the AD model in which this restoration
is only partial, restoring only a subset of V to their values before −→X . This improvement
(called TBR) guarantees that the non-restored variables have no influence on the follow-
ing adjoint computations and therefore need not be stored. The advantage of TBR is to
reduce the size of the stack. Without loss of generality, we will assume in the sequel that
the full restoration is used, i.e. no TBR is used. With the TBR mechanism, the semantics
of the checkpointed program are preserved at least for the output V so that this proof is
still valid. Formally, we will write:
E(←−X, 〈V, V , k⊕ δkX , R, S〉) = 〈Vnew, V new, k, R, S〉, where Vnew is equal to the value V
before running −→X (which is achieved by using δkX and V ) and V new depends only on V ,
V and δkX .

• A “take snapshot” operation “•” for a checkpointed piece C does not modify V nor V ,
expects no received messages, and produces no sent messages. It adds into the stack
enough values SnpC to permit a later re-execution of the checkpointed part. Formally,
we will write :
E(•, 〈V, V , k, R, S〉) = 〈V, V , k ⊕ SnpC , R, S〉, where SnpC is a subset of the values in
V , thus depending on only V .

• A “restore snapshot” operation “◦” of a checkpointed piece C does not modify V , expects
no received messages and produces no sent messages. It pops from the stack the same set
of values SnpC that the “take snapshot” operation pushed “onto” the stack. This modifies
V so that it holds the same values as before the “take snapshot” operation.
We introduce here the additional assumption that restoring the snapshot may (at least
conceptually) add some messages to the output value of R. In particular:
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Assumption 1. The duplicated recvs in the checkpointed part will produce the same
values as their original calls.

Formally, we will write:
E(◦, 〈V, V , k ⊕ SnpC , R, S〉) = 〈Vnew, V , k, RC ⊕ R, S〉 where Vnew is the same as V
from the state input to the take snapshot.

Our goal is to demonstrate that the checkpointing mechanism preserves the semantics i.e.:

Theorem 1. For any individual process p, for any checkpointed part C of p, (so that p =
{U ;C:D}), for any state σ and for any checkpointing method that respects the Assumption 1:

E({−→U ;
−→
C ;
−→
D ;
←−
D ;
←−
C ;
←−
U }, σ) = E({−→U , •, C,−→D,←−D, ◦,−→C ,←−C ,←−U }, σ)

Proof. We observe that the non-checkpointed adjoint and the checkpointed adjoint share a com-
mon prefix−→U and also share a common suffix←−C ;←−U . Therefore, as far as semantics equivalence
is concerned, it suffices to compare −→C ;

−→
D ;
←−
D with •, C,−→D,←−D, ◦,−→C .

Therefore, we want to show that for any initial state σ0 :

E({−→C ;
−→
D ;
←−
D}, σ0) = E({•, C,

−→
D,
←−
D, ◦,−→C }, σ0)

Since the semantic function E performs pattern matching on the R0 part of its σ0 argument,
and the non-checkpointed code has the shape {−→C ;

−→
D ;
←−
D},R0 matches the patternRC⊕RD⊕R.

Therefore, what we need to show writes as:

E({−→C ;
−→
D ;
←−
D}, 〈V0, V 0, k0, RC ⊕RD ⊕R, S0〉) =

E({•, C,−→D,←−D, ◦,−→C }, 〈V0, V 0, k0, RC ⊕RD ⊕R, S0〉)

We will call σ2, σ3 and σ6 the intermediate states produced by the non-checkpointed code (see

C⃗ D⃗

DC

⃗⃗

D⃗C

DC⃗

C

⃗

⃗

(a) (b)

σ0 σ2

σ3

σ6σ7

σ0 σ1 ' σ2 '
σ3 '

σ4 ' σ5 '
σ6 'σ7 '

U⃗

U

U⃗

U

⃗

⃗

Process: Process:

Figure 4: (a) An adjoint program run by one process. (b) The same adjoint after applying checkpointing to C. The
figures show the locations (times) in the execution for the successive states σi and σ′

i.

figure 4 (a)). Similarly, we call σ′
1, σ

′
2, σ

′
3, σ

′
4, σ

′
5, σ

′
6 the intermediate states of the checkpointed

code (see figure 4 (b)). In other words: σ2 = E(−→C , σ0); σ3 = E(−→D, σ2); σ6 = E(←−D, σ3) and
similarly σ′

1 = E(•, σ0); σ′
2 = E(C, σ′

1); σ
′
3 = E(

−→
D, σ′

2); σ
′
4 = E(

←−
D, σ′

3); σ
′
5 = E(◦, σ′

4);
σ′
6 = E(

−→
C , σ′

5).
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Our goal is to show that σ′
6 = σ6. Considering first the non-checkpointed code, we propagate

the state σ by using the axioms already introduced:

σ2 + E(
−→
C , σ0) = E(−→C , 〈V0, V0, k0, RC ⊕RD ⊕R, S0〉)

= 〈V2, V0, k0 ⊕ δkC , RD ⊕R, S0 ⊕ SC〉

with V2, SC and δkC depending only on V0 and RC

σ3 + E(
−→
D, σ2) = E(−→D, 〈V2, V0, k0 ⊕ δkC , RD ⊕R, S0 ⊕ SC〉)

= 〈V3, V0, k0 ⊕ δkC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉

with V3, SD and δkD depending only on V2 and RD

σ6 + E(
←−
D, σ3) = E(←−D, 〈V3, V0, k0 ⊕ δkC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉)

= 〈V2, V6, k0 ⊕ δkC , R, S0 ⊕ SC ⊕ SD〉

with V2 and V 6 depending only on V3, V0 and δkD

Considering now the checkpointed code, we propagate the state σ′, starting from σ′
0 = σ0 by

using the axioms already introduced:

σ′
1 + E(•, σ0) = E(•, 〈V0, V0, k0, RC ⊕RD ⊕R, S0〉)

The snapshot-taking operation • stores a subset of the original values V0 in the stack “SnpC”.

σ′
1 = 〈V0, V0, k0 ⊕ SnpC , RC ⊕RD ⊕R, S0〉

σ′
2 + E(C, σ′

1) = E(C, 〈V0, V0, k0 ⊕ SnpC , RC ⊕RD ⊕R, S0〉)

The forward sweep of the checkpointed code −→C is essentially a copy of the checkpointed code
C. As the only difference between the two states σ′

1 and σ0 is the stack k and both C and −→C
don’t need the stack during run time (−→C stores values in the stack, but doesn’t use it), the effect
of C on the state σ′

1 produces exactly the same output values V2 and the same collection of sent
values SC as the effect of −→C on the state σ0 .

σ′
2 = 〈V2, V0, k0 ⊕ SnpC , RD ⊕R, S0 ⊕ SC〉

The next step is to run −→D :

σ′
3 + E(

−→
D, σ′

2) = E(−→D, 〈V2, V0, k0 ⊕ SnpC , RD ⊕R, S0 ⊕ SC〉

The output state of −→D uses only the input state’s original values V and received values R. As
V and R are the same in both σ′

2 and σ2, the effect of −→D on the state σ′
2 produces the same

variables values V3, the same collection of messages sent through MPI communications SD and
the same set of values stored in the stack δkD as the effect of of −→D on the state σ2.

σ′
3 = 〈V3, V0, k0 ⊕ SnpC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉
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Then, the backward sweep starts with the backward sweep of D.

σ′
4 + E(

←−
D, σ′

3) = E(←−D, 〈V3, V0, k0 ⊕ SnpC ⊕ δkD, R, S0 ⊕ SC ⊕ SD〉

The output state of ←−D uses only its input state’s original values V , the values of the adjoint
variables V and the values stored in the top of the stack δkD. As V , V and δkD are the same
in both σ′

3 and σ3, the effect of←−D on the state σ′
3 produces exactly the same variables values V2

and the same values of adjoint variables V 6 as the effect of←−D on the state σ3.

σ′
4 = 〈V2, V6, k0 ⊕ SnpC , R, S0 ⊕ SC ⊕ SD〉

σ′
5 + E(◦, σ′

4) = E(◦, 〈V2, V6, k0 ⊕ SnpC , R, S0 ⊕ SC ⊕ SD〉

The snapshot-reading operation ◦ overwrites V2 by restoring the original values V0. According
to Assumption 1, the snapshot-reading ◦ conceptually also restores the collection of values that
have been received during the first execution of the checkpointed part RC .

σ′
5 = 〈V0, V6, k0, RC ⊕R, S0 ⊕ SC ⊕ SD〉

σ′
6 + E(

−→
C , σ′

5) = E(−→C , 〈V0, V6, k0, RC ⊕R, S0 ⊕ SC ⊕ SD〉

The output state after −→C uses only on the input state’s values V and the received values R. As
V and R are the same in both σ′

5 and σ0, the effect of −→C on the state σ′
5 produces the same

original values V2 and the same set of values stored in the stack δkC as the effect of −→C on the
state σ0.

σ′
6 = 〈V2, V6, k0 ⊕ δkC , R, S0 ⊕ SC ⊕ SD〉

Finally we have σ′
6 = σ6.

We have shown the preservation of the semantics at the level of one particular process pi.
The semantics preservation at the level of the complete parallel program P requires to show in
addition that the collection of messages sent by all individual processes pi matches the collec-
tion of messages expected by all the pi. At the level of the complete parallel code, the messages
expected by one process will originate from other processes and therefore will be in the mes-
sages emitted by other processes.
This matching of emitted and received messages depends on the particular parallel communica-
tion library used (e.g. MPI) and is driven by specifying communications, tags, etc. Observing
the non-checkpointed code first, we have identified the expected receives and produced sends
SU ⊕ SC ⊕ SD of each process. Since the non-checkpointed code is assumed correct, the col-
lection of SU ⊕ SC ⊕ SD for all processes pi matches the collection of RU ⊕ RC ⊕ RD for all
process pi.
The study of the checkpointed code for process pi has shown that it can run with the same ex-
pected receivesRU⊕RC⊕RD and produces at the end the same sent values SU⊕SC⊕SD. This
shows that the collected sends of the checkpointed version of P matches its collected expected
receives.
However, matching sends with expected receives is a necessary but not sufficient condition for

correctness. Consider the example of figure 5, in which we have two communications between
two processes (“comm A” and “comm B”):
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recv

Process 2:

send

sendrecv

comm A

Process 1:

comm B

Figure 5: Example illustrating the risk of deadlock if send and receive sets are only tested for equality.

• The set of messages that process 1 expects to receiveR= {comm B}. The set of messages
that it will send is S= {comm A}.

• The set of messages that process 2 expects to receiveR= {comm A}. The set of messages
that it will send is S= {comm B}.

The above required property that the collection of sends {comm A, comm B} matches the
collection of receives {comm A, comm B} is verified. However, this code will fall into a
deadlock.
Semantic equivalence between two parallel programs requires not only that collected sends
match collected receives but also that there is no deadlock. If, conversely:

Assumption 2. the resulting checkpointed code is deadlock free,

then, the semantics of the checkpointed code is the same as that of its non-checkpointed ver-
sion.

To sum up, a checkpointing adjoint method adapted to MPI programs is correct if it respects
these two assumptions:

Assumption 1. The duplicated recvs in the checkpointed part will collect the same values as
their original calls.

Assumption 2. The checkpointed code is deadlock free.

For instance, the “popular” checkpointing approach that we find in most previous works is
correct because the checkpointed part which is duplicated is self-contained regarding commu-
nications. Therefore, it has always been assumed that the receive operations in that duplicated
part receive the same value as their original instances. In addition, the duplicated part, being a
complete copy of a part of the original code that does not communicate with the rest, is clearly
deadlock free.
We believe, however, that this constraint of a self-contained checkpointed part can be allevi-
ated. We will propose a checkpointing approach that respects our two assumptions for any
checkpointed piece of code. We will then study a frequent special case where the cost of our
proposed checkpointing approach can be reduced.

3 A GENERAL MPI-ADJOINT CHECKPOINTING METHOD

We introduce here a general technique that adapts the checkpointing to the case of MPI par-
allel programs and that can be applied to any checkpointed piece of code. This technique is
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basically inspired by the works that have been done in the context of resilience [9]. There-
fore, before detailing this general technique, we will start with a small analogy between the
checkpointing in the context of resilience “Resilience-checkpointing” and the checkpointing in
the context of AD-Adjoints. In both mechanisms, processes take snapshots of the values they
are computing to be able to restart from these snapshots when it is needed. The difference is
the reason why taking these snapshots. In the case of “Resilience-checkpointing”, the reason
is to recover the system from failure, whereas in the case of AD-adjoint, the reason is mostly
the reduction of the peak of memory used. Also, the snapshots are called “checkpoints” in the
case of “Resilience-checkpointing”. Clearly the checkpoints in the context of Adjoint-AD are
different from the checkpoints in the context of resilience. We recall that the checkpoints (or
also the checkpointed parts) in the case Adjoint-AD are rather intervals of computation that are
re-executed when it is needed.
There are two types of checkpointing for resilience: the non-coordinated checkpointing, in
which every process takes its own checkpoint independently from the other processes and the
coordinated checkpointing in which every process has to coordinate with other process before
taking its own checkpoint. We are interested rather by the non-coordinated checkpointing, more
precisely by the non-coordinated checkpointing coupled with Message logging. To cope with
failure, every process saves in a remote storage checkpoints , i.e. complete images of the process
memory. Also, every process saves the messages it receives and every send or recv event that
it performs. In case of failure, only the failed process restarts from its last checkpoint. The other
non-failed processes continue their executions normally. The restarted process runs exactly in
the same way as before the failure, except that it does not perform any send call already done
before the failure. The restarted process does not perform either any recv call already done,
but retrieves instead the value that has been received and stored by the recv before the failure.

By analogy, we propose an adaptation of the checkpointing technique to MPI adjoint codes.
This adapted technique (we call it “receive-logging”) relies on logging every message at the
time when it is received.

• During the first execution of the checkpointed part, every communication call is executed
normally. However, every receive call (in fact its wait in the case of non-blocking com-
munication) stores the value it receives into some location local to the process. Calls to
send are not modified.

• During the duplicated execution of the checkpointed part, every send operation does noth-
ing (it is “deactivated”). Every receive operation, instead of calling any communication
primitive, reads the previously received value from where it has been stored during the
first execution.

• The type of storage used to store the received values is First-In-First-Out. This is different
from the stack used by the adjoint to store the trajectory.

In the case of nested checkpointed parts, this strategy can either reuse the storage prepared
for enclosing checkpointed parts, or free it at the level of the enclosing checkpointed part and
re-allocate it at the time of the enclosed checkpoint. This can be managed using the knowledge
of the nesting depth of the current checkpointed part.

Notice that this management of storage and retrieval of received values, triggered at the time
of the recv’s or the wait’s, together with nesting depth management, can be implemented by
a specialized wrapper around MPI calls, for instance inside the AMPI library [7].
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isend send wait recv

recv;
log

sendrecv;
log

send

no_op no_op

restorerestore

no_op no_op

restore

wait

recv

no_op

no_op

send

recvrecv

 isend

Process 1:
Process 2:

depth=1

depth=2

isend send wait recv

recv;
log

sendrecv;
log

send

no_op no_op

restorerestore;
free

no_op send

recv restore

wait

recv

no_op

no_op

send

recvrecv

 isend

Process 1:
Process 2:

depth=1

depth=2

restore

(a) (b)

Figure 6: (a) Checkpointing a parallel adjoint program on two nested checkpointed parts by using the receive-
logging method. (b) Refinement of the checkpointed code by applying the message re-sending to a send-recv
pair with respect to the inner checkpointed code which is right-tight

Figure 6 (a) shows the example of two nested checkpointed parts together with an arbitrary
communication pattern that straddles across the boundaries of the checkpointed parts.
During execution of the duplicated checkpointed parts, no communication call is made and
receive operations read from the local storage instead. We can see that the communication
pattern of the forward sweep is preserved by checkpointing, the communication pattern of the
backward sweep is also preserved, and no communication takes place during duplicated parts.

To show that this strategy is correct, we will check that it verifies the two assumptions of
section 2.

3.1 Correctness

By construction, this strategy respects Assumption 1 because the duplicated receives read
what the initial receives have received and stored.
To verify Assumption 2 about the absence of deadlocks, it suffices to consider one elementary
application of checkpointing, shown in the top part of figure 7. Communications in the check-
pointed code occur only in −→U , −→C , −→D (about primal values) on one hand, and in ←−D , ←−C , ←−U
(about derivatives) on the other hand. The bottom part of the figure 7 shows the communica-
tions graph of the checkpointed code, identifying the sub-graphs of each piece of code. Dotted
arrows express execution order, and solid arrows express communication dependency. Com-
munications may be arbitrary between G−→

U
, GC and G−→

D
but the union of these 3 graphs is the

same as for the forward sweep of the non-checkpointed code, so it is acyclic by hypothesis.
Similarly, communications may be arbitrary between G←−

D
, G←−

C
andG←−

U
but (asG−→

C
is by def-
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GU⃗ GC G D⃗

GD

GC

GU

⃗

GC⃗

U⃗ D⃗

C⃗

U

D

C

⃗
⃗

⃗

C

=φ

⃗

⃗
Figure 7: Communications graph of a checkpointed program with pure receive-logging method

inition empty) these graphs are the same as for the non-checkpointed backward sweep. Since
we assume that the non-checkpointed code is deadlock free, it follows that the checkpointed
code is also deadlock free.

3.2 Discussion

The receive-logging strategy applies for any choice of the checkpointed piece(s). However, it
may have a large overhead in memory. At the end of the general forward sweep of the complete
program, for every checkpointed part (of level zero) encountered, we have stored all received
values, and none of these values has been used and released yet. This is clearly impractical for
large codes.
On the other hand, for checkpointed parts deeply nested, the receive-logging has an acceptable
cost as stored values are used quickly and their storage space may be released and used by
checkpointed parts to come. We need to come up with a strategy that combines the generality
of receive-logging with the memory efficiency of an approach based on re-sending.

4 USING MESSAGE RE-SENDING WHENEVER POSSIBLE

We may refine the receive-logging by re-executing communications when possible. The
principle is to identify send-recv pairs whose ends belong to the same checkpointed part, and
to re-execute these communication pairs identically during the duplicated part, thus performing
the actual communication twice. Meanwhile, communications with one end not belonging to
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the checkpointed part are still treated by receive-logging.
However, the checkpointed part must obey an extra constraint which we will call “right-

tight”. A checkpointed part is “right-tight” if no communication dependency goes from down-
stream the checkpointed part back to the checkpointed part, i.e. there is no communication
dependency arrow going from D to C in the communications graph of the checkpointed code.
For instance, there must no wait in the checkpointed part that corresponds with communica-
tion call in other process which is downstream (i.e. after) the checkpointed part.

Figure 6 (a) shows an example of two nested checkpointed parts in which the outer check-
pointed part is not right-tight, whereas the inner checkpointed part is right-tight since the de-
pendency from the second recv of process 2 to the wait of the isend of process 1 only
goes from the checkpoint inside to its outside. In the figure 6 (a), we identify a send-recv
pair (whose ends are surrounded by circles) that belongs to both nested checkpointed parts.
As the outer checkpointed part is not right-tight, we can apply the message re-sending to the
send-recv pair only with respect to the inner checkpointed part. We see on figure 6 (b) that
the send-recv pair is re-executed during the execution of the duplicated instance of the inner
checkpointed part. As the duplication of the pair send-recv is placed between the wait of
process 1 and the first recv of process 2 and sincewait is a non blocking routine, the duplication
of this send-recv pair does not create deadlock in the resulting adjoint.

isend send wait recv

recv;
log

sendrecv

send

no_op send

restorerecv

no_op no_op

restore

wait

recv

no_op

no_op

send

recvrecv

 isend

Process 1:
Process 2:

depth=1

depth=2

restore

Figure 8: Application of the message re-sending to a send-recv pair with respect to the outer checkpointed part
which is not right-tight

Figure 8 shows a counterexample, illustrating the danger of applying message re-sending
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to a checkpointed part which is not right-tight. We reuse the example of figure 6 (a). Instead
of applying the message re-sending to the pair send-recv (whose ends are surrounded by
circles) with respect to the inner checkpointed code as it is the case in figure 6 (b), we applied
the message re-sending to the pair send-recv with respect to the outer checkpointed code
which is not right-tight. Figure 8 shows the cycle in the communications graph of the resulting
adjoint. We see on the figure that, between the recv of process 1 and the send of process 2
takes place the duplicated run of the outer checkpointed part. In this duplicated run, we find a
duplicated send-recv pair that causes a synchronization. Execution thus reaches a deadlock,
with process 1 blocked on the recv, and process 2 blocked on the duplicated recv.

Only when the checkpointed part is right-tight can we mix message re-sending of communi-
cations pairs that are contained in the checkpointed part with receive-logging of the others. The
interest is that memory consumption is limited to the (possibly few) logged receives. The cost
of extra communications is tolerable compared to the gain in memory.

4.1 Correctness

GU⃗
GC G D⃗

GD

GC

GU

GC⃗

U⃗ D⃗

C⃗

U

D

C

⃗
⃗

⃗

C

⃗

⃗

⃗

Figure 9: Communications graph of a checkpointed program by using the receive-logging coupled with the mes-
sage re-sending

The subset of the duplicated receives that are treated by receive-logging still receive the
same value by construction. Concerning the duplicated send-recv pair, the duplicated check-
pointed part computes the same values as its original execution (see step from σ′

5 to σ′
6 in section

2 ). Therefore the duplicated send and the duplicated recv transfer the same value.
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The proof about the absence of deadlocks is illustrated in figure 9. In contrast with the pure
receive-logging case, G−→

C
is not empty any more because of re-sent communications. G−→

C
is a

subgraph of GC and is therefore acyclic. Since the checkpointed part is right-tight, the depen-
dency from GC to G−→

D
and from G←−

D
to G←−

C
are unidirectional. There is no communication

dependency between G−→
C

and G←−
D

and G←−
C

because G−→
C

communicates only primal values
and G←−

D
an G←−

C
communicate only derivative values.

Assuming that the communications graph of the non-checkpointed code is acyclic, it follows
that:

• Each of G−→
U

, G−→
C

, G−→
D

, G←−
D

, G←−
C

and G←−
U

is acyclic.

• Communications may be arbitrary between G−→
U

and GC but since these pieces of code
occur in the same order in the non-checkpointed code, and it is acyclic, there is no cycle
involved in (G−→

U
; GC ). The same argument applies to (G←−

C
; G←−

U
).

Therefore, the complete graph on the bottom of figure 9 is acyclic.

5 DISCUSSION AND FURTHER WORK

Process 1:
send

send

Process 2:
recv;log

recv;log

depth=1

Process 3:

(a) (b)

send

no_op

restore

restore

send

recv

recv

Process 1:
send

send

Process 2:
recv;log

recv

depth=1

Process 3:

send

send

restore

recv

send

recv

recv

Figure 10: (a) The receive-logging applied to a parallel adjoint program. (b) Application of the message re-sending
to a send-recv pair with respect to a non-right-tight checkpointed code

We studied checkpointing in the case of MPI parallel programs with point-to-point com-
munications. We proved that any technique that adapts the checkpointing mechanism to MPI
parallel programs and that respects some sufficient conditions, is a correct MPI checkpointing
technique, in the sense that, the checkpointed code resulting from the application of this MPI
checkpointing technique preserves the semantics of the non-checkpointed adjoint code. We
introduced, a general MPI checkpointing technique that respects the sufficient conditions for
any choice of the checkpointed part. This technique is based on logging the received messages
, so that the duplicated communications need not take place. We proposed a refinement that
reduces the memory consumption of this general technique by duplicating the communications
whenever possible. There are a number of questions that should be studied further:

3794



A.Taftaf, L. Hascoët

We imposed a number of restrictions on the checkpointed part in order to apply the refine-
ment. These are sufficient conditions, but it seems they are not completely necessary. Figure
10 shows a checkpointed code which is not right-tight. Still, the application of the message
re-sending to a send-recv pair (whose ends are surrounded by circles) in this checkpointed
part, does not introduce deadlocks in the resulting checkpointed code.

In real codes we may have nested structure of checkpointed parts in which each checkpointed
part may be or not right-tight. Applying the message re-sending to only checkpointed parts
that are right-tight means that some communication calls will be activated in some levels and
deactivated in the other levels. Thus, to implement the refined receive-logging, we need to
think about the way we could automatically alternate between these two situations for each
communication call. For instance, a receive that is deactivated at a level and activated at the
level just after has to release its stored value.

Finally, these checkpointing techniques need to be experimented in real codes. It would be
interesting to measure the memory consumption of the general checkpointing technique before
and after the application of message re-sending.
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Abstract. In this paper, a new method for optimizing CFD meshes, based on the usage of a
geometric quantity called Sphericity, is introduced. Sphericity is an element-wise property that
provides a measure of the shapes deviation from a perfect sphere. When used as an objective
in a gradient based framework, it results in a fast, scale invariant, optimization algorithm ap-
plicable to arbitrary finite volume element topologies. The methodology is heuristic in nature
in that it does not consider known numerical quality metrics explicitly. Our study has however
shown it to be exceptionally robust and effective in improving mesh quality, provided that grid
topology does not introduce fundamentally concave cells.
The main focus of this paper is the development of a robust optimization algorithm that can ef-
fectively handle complications arising from constraints imposed by surface interactions. Specif-
ically, efficient heuristic and gradient based techniques, for handling difficult mesh topologies
with acutely curved surfaces, feature edges and high aspect ratio layer cells are introduced. In
combination with the base method, these measures ensure exceptional quality meshes even on
industrial scale applications. As a final step, the method is integrated into a general purpose
mesh motion framework, allowing the maintenance of high cell quality even during extreme
deformation events. Examples and industrial applications in the context of adjoint based shape
optimization are presented, illustrating the method’s general effectiveness.
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1 INTRODUCTION

In the field of computational solutions of partial differential equations (PDEs), the quality
of the computational mesh plays a significant role in various aspects of the solution procedure.
Important properties such as the rate of convergence of the solution, the fidelity of the results and
the robustness of the algorithm are all impacted by the mesh. In this context, the development of
an efficient and effective mesh quality optimization algorithm, can provide significant benefits,
not just in the context of static meshes, but also for moving mesh problems where degradation
of quality is often a severe constraint.

The quality of the mesh can be evaluated using element-wise quality metrics such as, non-
inversion, cell skewness, non-orthogonality, cell determinant, volume deviation etc. The mesh
optimization algorithm that is presented in this paper aims to calculate a new (optimum) set
of mesh vertex positions inside the computational domain that improves these mesh quality
metrics. The algorithm does not alter the mesh topology, i.e. no merging, swapping, insertion
or subdivision of mesh elements take place. Attempting to directly optimize all important mesh
quality metrics simultaneously would lead to an extremely costly and complex multi-objective
optimization problem that would require careful calibration. In an attempt to circumvent these
issues we introduce without further justification a geometric quantity termed sphericity as the
main quality metric and use its maximization as the objective for the mesh optimization. Since
sphericity is scale invariant and we only have to optimize for a single objective the process will
be much more efficient and robust than would otherwise be the case. It is shown empirically that
the maximization of sphericity inside the computational domain results a global improvement
to all other quality metrics, provided certain conditions are met.

While this paper deals with the mesh optimization problem specifically for finite volume
(FV) meshes, the method can be easily generalized for other areas of applications, such as
Finite Elements and surface triangulation problems, with the same efficacy.

2 OPTIMIZATION ALGORITHM

2.1 Sphericity

Sphericity is an element-wise geometric quantity which will be used as the objective function
on the mesh optimization problem. Sphericity defines how spherical a geometrical object is and
is given by the formula

Sph=

(
6
π
Vo
)1/3(

1
π
So
)1/2 (1)

where Vo is the volume and So is the surface of the object. In other words sphericity is the ratio
between the diameter of a sphere, that has the same volume with the object, and the diameter
of a sphere that has the same surface area as the object (considering that for a sphere holds
S = π1/3 (6V )

2/3). Given this the sphericity of a sphere is unity by definition and unity is the
largest value that any three dimensional object can have. It therefore follows that maximizing
this quantity will make elements more spherical. The most important property of spherical
elements is isotropy. Highly anisotropic elements can be in general elements with high aspect
ratio or/and skewness values that, in a context of computational solutions of PDEs, can affect
the quality of the results or even the total convergence of the solution.

In the case of a finite volume mesh, each cell will have a sphericity value calculated as a
function of the cell’s surface and volume. The goal is to re-position the vertices of the mesh
such that the cells will have the maximum sphericity. In order to do so it is necessary to calculate
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the derivative of sphericity w.r.t. the position of the points that constitute a cell.

2.2 Sphericity Differentiation

Assuming that a point P is surrounded by M cells, the total sensitivity derivative GP of that
point is the arithmetic mean of the sensitivities from all contributing cells

GP =
1

M

M∑
n=1

dSphn
dP

(2)

For each cell that uses point P, the first derivative of sphericity with respect to the position of a
point P in the cell is,

dSphn
dP

=

∂

(
6
π
Vc
)1/3(

1
π
Sc
)1/2

∂P
=−61/3π1/6Vc(P )1/3S ′c(P )

2Sc(P )3/2
+

61/3π1/6V ′c (P )

3
√
Sc(P )Vc(P )2/3

(3)

where S ′c(P ) and V ′c (P ) are the partial derivatives of the cell surface and cell volume w.r.t. the
position of the point P respectively. Taking into consideration that the cell surface can be written
as the sum of the areas of the facets surfaces that constitute the cell, i.e.

Sc(P )=
K∑
k=1

Sf (P )k (4)

where K is the number of faces the cell has. Is it therefore sufficient to calculate the partial
derivative of each face w.r.t. the point location. For doing this, the polygon of the face is
decomposed into N triangles by defining an approximate face center Cf (P ) and forming a
triangle from each edge of the polygon. Then it follows that

Sf (P )=
1

2

I−1∑
i=1

√
[(Pi − Cf (P ))× (Pi+1 − Cf (P ))]2 (5)

where I is the total number of points of the face polygon. It can be noticed that the face surface
is a function of the point position and the face centre which in turn is also a function of the point
position. Using the chain rule follows that,

dSf (P,Cf (P ))

dP
=
∂Sf
∂P

+
∂Sf
∂Cf

dCf (P )

dP
(6)

The last step is to write the face center as a function of the points that constitute the face and
compute the derivative. In order to avoid cyclical dependencies, the face center is defined as the
weighted sum of the edge centers,

Cf (P )=
1
2

∑I−1
i=1 (Pi + Pi+1)

√
(Pi − Pi+1)2∑I−1

i=1

√
(Pi − Pi+1)2

(7)

and which can be differentiated to produce,

dCf (P )

dP
=

1
2

∂
∑I−1

i=1 (Pi + Pi+1)
√

(Pi − Pi+1)2

∂P∑I−1
i=1

√
(Pi − Pi+1)2

−
1
2

∑I−1
i=1 (Pi + Pi+1)

√
(Pi − Pi+1)2[∑I−1

i=1

√
(Pi − Pi+1)2

]2

·
∂
∑I−1

i=1

√
(Pi − Pi+1)2

∂P
(8)
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Following the same approach for the derivation of the cell volume, the element is decomposed
into K (number of faces) pyramid elements taking as bases the polygonal faces and as the apex
the cell center. It thus holds that,

Vc(P )=
K∑
k=1

Vp(P )k (9)

where

Vp(P ) =
1

6

I−1∑
i=1

(Cf (P )− Cc) · (Pi − Cc)× (Pi+1 − Cc)) (10)

Since the face center derivative w.r.t. the point locations has already been computed, the cal-
culation of the volume derivative becomes almost straightforward. Having calculated all the
component derivatives the total sphericity gradient can now be calculated using equation 3.

2.3 Optimization Method

Having obtained the objective sensitivity derivatives of all the points of the mesh, the next
step is to find the new set of positions that maximizes the sphericity value. Thus, for each
optimization step, the new position of a point can be calculated as,

~P new= ~P old + α · ~GP (11)

where α is the step length of the optimization cycle. Using a constant value of α is not optimal
for the proposed application due to large variations in cell sizes encountered in different CFD
meshes (up to 20 orders of magnitude or more). It is therefore necessary to have an adaptive
step length. This can be achieved effectively by using second derivatives which also has the
added benefit of speeding up the convergence. Based on Nocedal [3] a limited memory BFGS
algorithm (LM-BFGS) is constructed for building and updating the inverse Hessian matrix of
the second derivatives. Thus, equation 11 can be written as

~P new= ~P old + λH−1
P · ~GP (12)

In general when using Newton and quasi-Newton methods the objective function has to be
convex so the optimization algorithm can converge to an optimum value. In other words, the
inverse Hessian matrix has to be positive definite. It has been observed that the sphericity
function generally behaves in a convex way except from cases where there are negative oriented
mesh cells. Therefore, instead of building one Hessian matrix for each point of the mesh which
is being optimized, the goal is to create a global Hessian taking into consideration the effect of
the displacement of one point, to all other points inside the mesh. Furthermore, the equation 12
can be written as ~P

new
1
...

~P new
n

 =

~P
old
1
...
~P old
n

+

 λ1 · · · · · ·
... . . . ...
· · · · · · λn

 ·H−1global ·

 ~G1
...
~Gn

 (13)

where the H−1
global is an n × n matrix with n to be the total number of points the mesh has.

The global matrix is more robust is a sense that is always positive definite which allows the
optimization algorithm to reliable converge to a new optimum set of point positions. At last, is
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(a) Initial Mesh (b) 2nd Optimization Cycle (c) Optimized Mesh

Figure 1: Mesh optimization based on sphericity value, starting from a low quality mesh (left) and ending up to
the optimized one with fully orthogonal cells(right)

fundamental the Wolfe conditions [4] to be satisfied at each and every step of the optimization
procedure. This is achieved by assigning a proper step length value λ which will guarantee that
the sphericity value, moving towards the direction H−1G̃, will actually be increased. Figure
2.3 shows three snapshots of a simple mesh optimization case. Starting from low quality mesh
and executing the optimization algorithm, keeping in the same time fixed the boundary points,
it results a mesh with fully orthogonal cell elements.

2.4 Constraints

2.4.1 Boundary Points

Interior points are much easier to involve in the optimization as, in general, we want to pre-
serve the original shape of the domain, which means that boundary points have to be constrained
to the original surface. As shown on the figure 2.3, if the boundary points are constrained with
zero displacement, then the optimization potential of the mesh can be severely curtailed. In
order to allow for effective optimization it is necessary to let the boundary points slide on the
surface, while respecting essential parts of the geometry like feature edges and feature points.
A feature edge in this context is defined as a boundary edge in which, neighbouring faces have
normal vectors that differ by more than a threshold value and a feature point is a boundary point
that is connected to more than two feature edges.

Supposing that for a boundary point on the mesh the displacement direction vector ~r has
been calculated according to the sphericity sensitivity. We decompose this direction into two
components, one normal to the surface and the other parallel to the tangent plane of the surface.
By eliminating the vertical component, each point on the boundary is allowed to move only in
the tangent direction ~rt. Since the surface is often curved the point then has to be projected back
onto the surface of the initial geometry. Figure 2.4.1 illustrates an optimization algorithm that
is applied in a low quality mesh with curved edges where the boundary nodes are allowed to
slide on the surface.

2.4.2 Layer Cells

In order to resolve highly directional anisotropic gradients many applications employ grids
which are likewise directionally biased. In CFD analysis this phenomenon often manifests

3801



Pavlos P. Alexias and Eugene De Villiers

(a) Initial Mesh (b) Optimized Mesh

Figure 2: Mesh optimization allowing the surface nodes to slide on the surface

itself in the use of stratified layers of cells adjacent to solid boundaries, which are used to
capture high wall-normal gradients in this region. Layer cells typically have high aspect ratios,
with wall normal dimensions being much smaller that tangential. Figure 3(a) illustrates an
example of layers cells close to the boundary wall. Due to their high aspect ratio layer cells
have very small sphericity values. Allowing the optimization algorithm to freely deform layer
cells will result in their extrusion, as illustrated in figure 3(b), which will significantly reduce
wall normal resolution. It is therefore important for the optimization procedure to maintain
anisotropic aspect of layer cells. To do this, the displacement of the layer cell points, towards
the growing direction of the layer cells, is constrained by eliminating the derivative component
in that direction. Since the method is scale invariant the implementation of such a constraint
inside the optimization framework can introduce a shrinking cell problem: due to its inability to
expand the layers in the normal direction, the algorithm will try to reduce all other dimensions.
If left unchecked and if the mesh topology allows, this will result in cells with very small
volumes. Figure 3(c) shows the result of a mesh optimization procedure with constrained layer
cells. The shrunk cells create problems both in terms of volume deviation and in the skewness
of the layer cells.

To overcome this problem, a supplementary objective, in the form of volume uniformity,
is introduced inside the optimization framework, to improve the behaviour in cases with high
aspect ratio layer cells. Supposing again that a point of the computational domain neighbours
M cells, the volume deviation of that point is given by the formula

Vdev(P )=
1

M

M∑
i=1

(
Vi(P )− V̄

V̄

)2

(14)

where V̄ is the mean volume of the surrounding cells. Its easy to see that the mean volume is
independent of the position of the point P. Thus the differentiation of the volume deviation is
straightforward,

dVdev(P )

dP
=

2

M

M∑
i=1

[
Vi(P )− V̄

V̄
· dVi(P )

dP

]
(15)

The new optimization function now becomes

Fobj =Sph · (1− Vdev) (16)
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(a) Initial mesh with layer cells (b) Mesh optimization without constrains

(c) Mesh optimization with constrains (d) Mesh optimization including volume devia-
tion

Figure 3: Mesh optimization procedure starting from the initial mesh (a), firstly without constraints (b), afterwards
with layer cells constraints (c) and finally combining constraints with volume deviation derivative (d).

with a derivative of
dFobj
dP

=
dSph

dP
· (1− Vdev)− Sph ·

dVdev
dP

(17)

Be noted that the addition of the new objective function does not raise the computational
cost of the algorithm, since the calculation of the derivative of the volume deviation depends
only on the cell volume derivative (which had been already calculated in Eq.10). Figure 3(d)
illustrates the optimized computational mesh after the introduction of the volume deviation
objective function. As it can be seen the additional derivative maintains the same volume on
every stack of layer cells and prevents also the formation of high skewness cells.

2.5 CFD Mesh Optimization Applications

In this section the effectiveness of the method for improving the mesh quality in large scale
test cases will be examined. The three quality metrics that will be used to compare the non
optimized with the optimized mesh are non-orthogonality, skewness and cell determinant. Non-
orthogonality of a face is the angle between the line that connects two cell centres and the
normal of their common face. Skewness measures the distance between the intersection of the
line connecting two cell centres with their common face and the centre of that face and finally
with the determinant we are referring to the determinant of the cell’s Jacobian matrix. Both for
non-orthogonality and skewness their optimum value is zero, instead the optimum value for the
determinant is unity.

Considering the previous example (figure 2.4.2) of the optimization algorithm, table 2.5
contains the maximum, minimum and mean values of those three quality metrics for the meshes
that are displayed in figures 3(a), fig. 3(c) and 3(d). It can be noticed that the introduction of
the volume deviation affects mostly the maximum/minimum values of non-orthogonality and
skewness.

3803



Pavlos P. Alexias and Eugene De Villiers

Quality Metric Max. Value Min. Value Mean Value
Non-Orthogonality 56.18o 0o 8.04o

Skewness 2.63 0 0.19
Determinant 1 0.243 0.899

Table 1: Quality metrics for the initial mesh with layers (fig. 3(a)).

Quality Metric Max. Value Min. Value Mean Value
Non-Orthogonality 56.32o 0o 7.14o

Skewness 3.31 0 0.12
Determinant 1 0.257 0.912

Table 2: Quality metrics for the optimized mesh with layers (fig. 3(c)) without introducing the volume deviation
objective.

Quality Metric Max. Value Min. Value Mean Value
Non-Orthogonality 50.16o 0o 7.02o

Skewness 3.01 0 0.11
Determinant 1 0.269 0.901

Table 3: Quality metrics for the optimized mesh with layers (fig. 3(d)) introducing also the volume deviation
objective.

Quality Metrics
Max.Value Min. Value Mean Value

Before After Before After Before After
Non-Orthogonality 69.27o 68.59o 0o 0o 7.57o 7.22o

Skewness 4.89 3.60 0 0 0.84 0.79
Determinant 1 1 0.621 0.657 0.979 0.984

Table 4: Quality metrics before and after the mesh optimization of the single channel pump.

Figure 2.5 shows the mesh optimization results for a single channel pump. The mesh is un-
structured, having around 0.5 million cell elements consisting primarily of tetrahedra, prisms
and other types of polyhedra. Images 4(a) to 4(d) show the mesh geometry before and after the
optimization, while figures 4(e) and 4(f) show the cell determinant. Tables 2.5 show the maxi-
mum, minimum and the mean values of the quality metrics before and after the optimization. It
can be seen that the maximization of the sphericity leads also to the maximization of the three
quantities inside the domain. It should be noted that the algorithm has been calibrated to fo-
cus more on improvement of cells near the boundary, where the mesh is finer and the accuracy
requirements are more demanding, than those further toward the interior of the domain.

The next case is the Ahmed-Body car (figure 2.5). Table 2.5 contain the quality metric quan-
tities before and after the optimization of the computational mesh (1 million elements). Figures
5(a) and 5(b) show the skewness in the car boundary faces before and after the optimization.

It is important to examine how the improvement of the computational mesh affects the CFD
calculations in terms of convergence speed. We solve the flow around the Ahmed-Body us-
ing the incompressible OpenFOAM solver (simpleFoam), both for the optimized and the non-
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(a) Initial Mesh (b) Final Mesh

(c) Initial Mesh Detailed (d) Final Mesh Detailed

(e) Initial Mesh Cell Determinant (f) Initial Mesh Cell Determinant

Figure 4: Mesh optimization results on a pump with half million cell elements. Figures (a) and (c) illustrate the
geometry before optimization while (b) and (d) illustrate the geometry after the optimization. Finally figures (e)
and (f) display the cell determinant before and after the optimization.
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Quality Metrics
Max.Value Min. Value Mean Value

Before After Before After Before After
Non-Orthogonality 48.68o 47.23o 0o 0o 3.93o 3.88o

Skewness 3.16 2.23 0 0 0.51 0.48
Determinant 1 1 0.617 0.749 0.990 0.991

Table 5: Quality metrics before and after the mesh optimization of the single Ahmed-Body.

(a) Initial Boundary Face Skewness (b) Final Boundary Face Skewness

Figure 5: Face skewness on the boundary of the S-Bend duct before and after the sphericity optimization.

optimized mesh. In the optimized mesh the solver needs 6.5% less iterations to achieve conver-
gence which reflects a 7.3% reduction on CPU time.

3 MORPHING FRAMEWORK INTEGRATION

It has been demonstrated that the optimization algorithm can be used for improving the qual-
ity metrics on the computational mesh, leading to more accurate and reliable results. However
the method can also be employed during dynamic mesh motion to prevent the occurrence of
badly deformed elements, resulting in greater robustness and efficacy even during extreme de-
formation. In the context CFD analysis, a mesh displacement algorithm is indispensable in
cases with moving boundaries, like shape optimization, aero-elasticity etc.

Many mesh displacement algorithms have been developed so far following a variety of ap-
proaches, like elastic medium analogy [8], [9] spring analogy [10] and Radial Basis Functions
(RBF) [11] methods. In this paper the mesh displacement algorithm is based on the existence of
an objective function (Sphericity) which quantifies the mesh quality. Solving the optimization
problem for the maximization of the sphericity value, results in the new positions of the points
inside the mesh.

Figure 3 illustrates the method’s ability to maintain high cell quality in extreme deformation
conditions such as a 90 degree box rotation. The rotation was made in 45 steps of 2 degrees
running 50 optimization cycles for each rotation step. Further rotation of the box (over 93
degrees), will lead to an invalid mesh, primarily due to the fact that the corner vertices are not
allowed to slip. Table 3 shows the quality metrics before and after the box rotation. The final
mesh even after the extreme deformation maintains very low skewness values. Contrariwise the
non-orthogonality has significantly increase, having four faces with non-orthogonality value
over 70 degrees (a threshold value over which can be consider that non-orthogonal faces are
starting to have impact in the CFD solution).
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Quality Metrics
Max.Value Min. Value Mean Value

Before After Before After Before After
Non-Orthogonality 5.77o 77.18o 0o 0.01o 0.23o 16.54o

Skewness 0.07 2.11 0 0 ∼ 0 0.16
Determinant 1 1 0.985 0.041 0.999 0.861

Table 6: Quality metrics before and after the rotation of the box by 90 degrees.

(a) Initial box position (b) 90o degrees rotating box

Figure 6: Mesh displacement around a box using sphericity optimization applying a 90o degrees rotation.

3.1 Adjoint Shape Optimization

In the context of gradient based optimization, the adjoint method can be considered the most
computational effective as the gradient calculation of the objective function is independent of
the number of the design variables. That allows the creation of a very rich design space which
leads to better optimum solutions. The adjoint method was introduced by Pironneau [5] and
consequently Jameson [6] and Giles [7] et al. extended the method inside the scope of shape
optimization. An in depth analysis of the adjoint method goes beyond the scope of this paper,
thus only a brief description of the continuous adjoint formulation will be presented. For a more
circumstantial analysis one can refer to [1], [2].

3.1.1 Continuous Adjoint Method

Further on, Einstein’s summation convention applies for the lower-case indices, unless de-
clared differently. Assuming a laminar flow of an incompressible fluid, the Navier-Stokes equa-
tions can be written as,

Rp=−∂vj
∂xj

=0 (18a)

Rv
i =vj

∂vi
∂xj
− ∂

∂xj

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
+
∂p

∂xi
=0 i = 1, 2, 3 (18b)
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where vi is the velocity in direction of the Cartesian coordinates, p is the static pressure divided
by the fluid’s density ρ and ν is the kinematic viscosity. Afterwards a general objective function
F is defined containing both surface S and volume Ω integrals,

F =

∫
S

FsdS +

∫
Ω

FΩdΩ (19)

then F is augmented by the state equations leading to

Faug=F+

∫
Ω

uiR
v
i dΩ+

∫
Ω

qRpdΩ (20)

note that since the Navier-Stokes equations are satisfied it holds that Faug = F .
The differentiating of the augmented objective function Faug arises the adjoint equations for

incompressible laminar flow.

Rq=
∂ui
∂xi
− ∂F

∂p
=0 (21a)

Ru
i =−vj

∂ui
∂xj

+uj
∂vj
∂xi
−ν ∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+
∂q

∂xi
+
∂F

∂vi
=0 (21b)

After solving the adjoint equations (which are similar to the Primal ones 18b,18a), the surface
sensitivities of the objective function w.r.t. the surface normal of each surface node can be
calculated as

G=
δFaug
δb

=−
∫
Sw

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)
− qni

]
∂vj
∂xk

∂xk
∂b

dS (22)

3.1.2 Adjoint Sensitivities Smoothing

The design variables in this shape optimization problem are the surface normal displace-
ments of each boundary node. Any oscillation (noise) in the sensitivity derivatives can lead to
impractical, non-manufacturable, shapes which makes it necessary to apply filters that eliminate
these oscillations. Based on [12] the filtered distribution of the sensitivity derivatives Ḡ is given
by the convolution

Ḡ(ξ) =

∫
Sw

K(r)G(ξ − r)dr, ∀ξεSw, (23)

where r is the filter radius and ξ is the curved boundary coordinate. The filtered sensitivities
can be calculated solving the equation

Ḡ− ∂

∂ξ

(
ε
∂Ḡ

∂ξ

)
=G (24)

where ε is the smoothing intensity.

4 APPLICATIONS

4.1 Optimization of the S-Bend Duct

The final application, is the adjoint-based shape optimization of the S-Bend duct. The aim
is to modify the shape of the duct so as to reduce the pressure losses while maintaining the
geometry of the inlet and the outlet boundary. The flow is laminar with a fully developed profile
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Figure 7: Total pressure losses for each shape optimization step.

at the inlet of the duct. Figure 4.1 illustrates the total pressure losses for every optimization step.
After 28 optimization steps, the pressure losses were reduced by 25.01%. Figure 4.1 illustrates
the geometry and the pressure distribution before and after the shape optimization of the duct,
while figure 4.1 illustrates the difference between initial and smoothed sensitivities.

Table 4.1 shows the quality metrics for the initial and the final mesh. A high increase can be
noticed at skewness metric having 3 faces over the acceptable skew value (≥ 4). Those faces
were also incorrectly oriented preventing us to proceed further in to the optimization procedure.

Using the mesh optimization algorithm as part of a mesh displacement procedure, maintains
the quality of the mesh throughout multiple deformation steps. This reduces or removes the need
for re-meshing after each optimization cycle, thus speeding up and improving the automation

(a) Initial shape and pressure distribution (b) Optimized shape and pressure distribution

Figure 8: Shape geometry and pressure distribution before and after the adjoint shape optimization.
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(a) Initial Sensitivity Map (b) Smoothed Sensitivity Map

Figure 9: Initial and smoothed sensitivity map calculated with the adjoint method.

Quality Metrics
Max.Value Min. Value Mean Value

Before After Before After Before After
Non-Orthogonality 60.09o 73.59o 0o 0.01o 2.47o 5.26o

Skewness 2.25 11.23 0 0 0.09 0.13
Determinant 1 1 0.118 0.014 0.999 0.990

Table 7: Quality metrics before and after the shape optimization of the S-Bend duct.

of the procedure.

5 CONCLUSIONS

An algorithm for optimizing finite volume meshes with arbitrary element topology was de-
veloped. The algorithm is based on a new heuristic quality metric termed sphericity. The max-
imization of sphericity inside the computational domain consistently produces improvement
of all other quality metrics (skewness, non-orthogonality etc.) during testing, leading to more
reliable results and solution times. The algorithm combines hand a derived gradient spheric-
ity with a LM-BFGS method to speed up the solution. Heuristic techniques for limiting cell
shrinkage were applied to improve effectiveness on meshes with mixed element topology and
highly anisotropic cells. Basic constraints are employed to allow flexibility in the context of
boundaries and feature elements. The algorithm was successfully employed in the context of
adjoint based shape optimization of an S-bend Duct case.
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Abstract. The goal of this work is to present an efficient CAD-based adjoint process chain for
calculating parametric sensitivities (derivatives of the objective function with respect to the
CAD parameters) in timescales acceptable for industrial design processes. The idea is based
on linking parametric design velocities (geometric sensitivities computed from the CAD model)
with adjoint surface sensitivities. A CAD-based design velocity computation method has been
implemented based on distances between discrete representations of perturbed geometries.
This approach differs from other methods due to the fact that it works with existing commercial
CAD packages (unlike most analytical approaches) and it can cope with the changes in CAD
model topology and face labeling. Use of the proposed method allows computation of
parametric sensitivities using adjoint data at a computational cost which scales with the
number of objective functions being considered, while it is essentially independent of the
number of design variables. The gradient computation is demonstrated on test cases for a
Nozzle Guide Vane (NGV) model and a Turbine Rotor Blade model. The results are validated
against finite difference values and good agreement is shown. This gradient information can be
passed to an optimization algorithm, which will use it to update the CAD model parameters.
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1 INTRODUCTION

Throughout industry, engineers use Computer Aided Design (CAD) software packages for
design and Computer Aided Engineering (CAE) tools for analysis. The CAD provides the
environment for the geometry generation of a model and its parametrisation, whereas the CAE,
such as Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) solvers,
performs an analysis on a computational mesh which approximates the geometry.

The engineer is interested in obtaining the optimum geometry (in terms of some objective
function of interest), while satisfying predetermined (e.g. manufacturing) constraints. The use
of efficient gradient-based optimization algorithms requires the derivatives of the objective
function w.r.t. the design variables. In case of CAD-based optimization, the CAD parameters
which define the geometric features can be considered as design variables. The derivative of
the model’s performance w.r.t. each design parameter can be obtained in a finite difference
sense, where the effect of a parameter change is computed by analysing both (baseline and
updated) geometries and comparing the results. For each parameter, a perturbed geometry is
created in CAD and then fed to CAE for analysis (including geometry healing and mesh
generation processes), where the resulting difference in performance enables the derivative
calculation. This finite difference approach is computationally expensive, since the cost scales
with the number of design parameters, and can thus be prohibitive for industrial applications.

As an alternative and much more efficient way of computing gradient information, adjoint
methods have been the subject of considerable research in recent years [1, 2, 3, 4, 5]. The
advantage of an adjoint method arises from the fact that the gradient computation becomes
independent of the number of design variables. This is achieved by solving a linear problem
of computational cost comparable to that of the primal analysis. As a result, most adjoint-
based optimization strategies use the model’s surface mesh node coordinates as design variables,
which represents the richest design space the CFD can evaluate. On the other hand, since all grid
surface nodes can move independently, the implementation of a smoothing algorithm is required
to prevent the appearance of oscillatory shapes during the optimization process. Moreover, such
CAD-free methods produce as their output an optimized mesh, which then has to be converted
back to CAD in order to obtain the optimized geometry for further analysis or manufacturing.
This mesh-to-CAD step is a non-trivial task and it may require extensive user interaction. For
these reasons, CAD-based optimization is considered more desirable and thus a link between
adjoint and CAD is of utmost importance.

Very limited work on CAD-based optimization is currently available [6, 7]. Three
promising approaches to include the CAD system into the design loop are explored within the
EC ITN IODA project: a) NURBS-based parametrisation, b) Parametric CAD sensitivities
through finite-differencing and c) CAD derivatives through automatic differentiation (AD).

Non-uniform rational B-splines (NURBS) patches are a generic surface description and are
used by all CAD packages (STEP format). Queen Mary University of London (QMUL) has
developed a NURBS-based approach [8], where the NURBS control points are considered as
design variables and the required derivatives are obtained by AD of the NURBS analytical
description. The approach is not limited to a single patch, but allows to enforce continuity
constraints across patch interfaces. Recent work has extended this CAD-based parametrisation
method to include geometric constraints (such as thickness and trailing edge radius) [9].

Geometric constraints are best incorporated by a restriction of the design space, which is
straightforwardly achieved through the parametrisation of the CAD model. However, if the
native CAD model parameters are to be used as design variables, then the derivatives of the
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model’s surface w.r.t. these parameters are required, since they are not provided by today’s
commercial CAD packages. One approach to obtain these geometric sensitivities (also found
in the literature as design velocities [10]) is to compute finite differences between the CAD
model before and after a parameter perturbation. This approach has been identified by some
researchers [11, 12, 13] to lack robustness against topology and labelling changes, which can
occur even under small parameter perturbations. Nevertheless, Queen’s University of Belfast
(QUB) has developed an approach based on projections between discrete representations of the
CAD geometries [14], which is efficient, robust and has been successfully applied to CFD [15].

To compute the exact geometric derivatives, one can differentiate the CAD kernel, either
analytically or via AD tools [16]. Differentiating the CAD kernel is possible only when you have
access to the CAD software source code, as in OpenCASCADE [27]. Although this approach is
promising, the automatic differentiation of a complete design chain incorporating a CAD tool
still remains a challenging task to be tackled.

In this work, the link to CAD is achieved by applying an improved QUB design velocity
approach, in which the CAD modeling system is treated as a black-box. The approach uses the
generic STEP surface description and thus it can be easily coupled to any feature-based CAD
tool. It is immune to topology changes caused by parametric variations and it requires no access
to the CAD source code. This makes it suitable for implementation within an industrial context,
where commercial CAD packages (such as Siemens NX or CATIA V5) are widely used.

The idea is based on linking two concepts: adjoint surface sensitivities and design
velocities. Adjoint surface sensitivities (which form a sensitivity map) can be obtained from an
adjoint CFD solution and represent the derivative of the objective function w.r.t. normal
perturbations of the boundary mesh at each node. Fig. 1(a) shows the sensitivity map provided
by Rolls-Royce Deutschland (RRD) for a Nozzle Guide Vane (NGV) case. Areas of high
sensitivity are shown in red or blue, representing areas where the body should be displaced
outwards or inwards (respectively) to achieve an increase in objective function, whilst areas of
low sensitivity (plotted in green) show that the boundary in this region has no large influence
on the objective function.

Figure 1: a) Adjoint sensitivity map for NGV test case and b) Simple example of 2D design velocity field.
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On the other hand, design velocities are geometric sensitivities computed from the CAD
model, representing the displacement of a point on the model boundary due to the perturbation
of a CAD model parameter. This work makes use of the normal component of the design
velocity, Vn, which is computed as

Vn = dp · n̂ (1)

where dp is the displacement vector of a point on the boundary due to a parameter perturbation
and n̂ is the outward unit normal of the surface at that point. This measure was initially
developed in the context of adjoint-based structural optimization problems [17]. In Fig. 1(b),
which is taken from [13], the arrows represent the design velocities as the boundary changes
from the solid to the dashed line. Due to the convention adopted throughout this paper that the
boundary normals are pointing outwards, a positive design velocity represents an outward
movement of the boundary, and negative is inward.

The CAD-based adjoint process chain for calculating parametric sensitivities (derivatives of
the objective function w.r.t. the CAD parameters), followed in this work, is outlined in Fig. 2.

Figure 2: Workflow for parametric sensitivities computation.

Use of the above approach allows the computation of parametric sensitivities at a cost of
one adjoint analysis per objective function and one design velocity field evaluation per
parameter. Since design velocities can be computed for all of the parameters in a much shorter
time than that needed to converge the primal and adjoint solutions, gradient computation is
achieved in timescales acceptable for industrial design processes. As shown in the last step of
Fig. 2, parametric sensitivities are calculated by applying the chain rule between the sensitivity
map φ and the design velocities Vn.

The remainder of this paper is structured as follows: Sec. 2 explains the mathematical
background of the discrete adjoint solver and how the sensitivity map is derived. Sec. 3
describes the method used for the computation of design velocities. The gradient results
obtained for two turbomachinery test cases are presented in Sec. 4, followed by the
conclusions in Sec. 5.
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2 DISCRETE ADJOINT METHOD

2.1 Mathematical background

In this work, a RANS compressible flow solver and its corresponding discrete adjoint solver
are used for computing the flow and sensitivity map. These are part of the Rolls-Royce in-house
HYDRA suite of codes, which have been extensively validated and applied to various industrial
cases (see for example [18, 19]). More details regarding the underlying theory and implemented
algorithm can be found in [3, 20, 21]. The nonlinear flow solver uses a node-based finite-volume
discretisation method and the pseudo-time-marching to steady state is accelerated by a block-
Jacobi preconditioner and a geometric multigrid technique.

During the convergence of the primal solution, the nonlinear residual for each control volume
is driven to zero

R(U,X) = 0 , (2)

where U is the primal solution and X stands for the mesh coordinates. The objective function
considered is a function of both the flow solution and the mesh, while the flow solution
implicitly depends on the mesh. In addition, the mesh coordinates are defined by the CAD
design variables α, which leads to the relation

J = J(U(X(α)), X(α)) . (3)

The parametric sensitivities can be computed using the chain rule as
dJ

dα
=
dJ

dX

dX

dXS

dXS

dα
, (4)

where XS stands for the surface mesh coordinates. The adjoint solver is responsible for the
computation of the volume mesh sensitivities dJ/dX , which is achieved by solving the
equations shown below.

The objective function is augmented as

J = J + λTR , (5)

where λ is the adjoint solution. Differentiating Eq. (5) w.r.t. X leads to
dJ

dX
=
dJ

dX
+ λT

dR

dX

=
∂J

∂X
+
∂J

∂U

dU

dX
+ λT

( ∂R
∂X

+
∂R

∂U

dU

dX

)
=
∂J

∂X
+ λT

∂R

∂X
+
( ∂J
∂U

+ λT
∂R

∂U

) dU
dX

. (6)

The idea is to eliminate the computationally expensive term dU/dX . To do so, its multiplier
in Eq. (6) is set to zero, giving rise to the adjoint equation

∂R

∂U

T

λ = − ∂J
∂U

T

. (7)

Obtaining the adjoint solution λ, by solving the linear Eq. (7), allows for the efficient
computation of dJ/dX , given by the remaining terms of Eq. (6) as

dJ

dX
=
∂J

∂X
+ λT

∂R

∂X
. (8)

As shown in Eq. (4), the computation of parametric sensitivities also requires the terms
dX/dXS and dXS/dα.
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2.2 Sensitivity map

The term dX/dXS represents the inverse operation of a mesh moving algorithm. It allows
the computation of the surface mesh sensitivities dJ/dXS as

dJ

dXS

=
dJ

dX

dX

dXS

. (9)

For this projection of sensitivities from the volume to the surface, a simple spring-based
mesh deformation algorithm is used. Eq. (9) results in

dJ

dXS

T

= KT
s2vK−T dJ

dX

T

, (10)

where K is the stiffness matrix and KT
s2v is a permutation matrix mapping each volume node to

its corresponding surface node if any, and to null if none. The only computationally expensive
part is to approximately invert KT . A Jacobi preconditioned conjugate gradient solver is used
in this work, resulting in negligible CPU cost compared to the primal and adjoint solution.

After this step, Eq. (4) is rewritten as

dJ

dα
=

dJ

dXS

dXS

dα
. (11)

The adjoint sensitivity map is derived by projecting each surface node’s sensitivity vector
dJ/dXS onto its corresponding boundary normal. The same is done for the missing term
dXS/dα, which represents the design velocities (explained in Sec. 3), and the parametric
sensitivities dJ/dα are finally obtained from the inner product of those two components.

3 DESIGN VELOCITY APPROACH

The approach presented in this paper for computing parametric design velocities is based on
a finite difference between the CAD model’s shape before and after changing the value of a
parameter defining the geometry. It is a development of the methodology presented in [14] and
is characterized by an increased robustness. It works with existing commercial CAD packages
and it can cope with the changes in CAD model topology and face labeling, as discussed in the
introduction.

The CAD geometry is represented using a surface mesh of triangular elements. In this work,
the mesh representations (for the unperturbed model and for each perturbed model) are created
using either Gmsh [28] or CADfix [29] grid generator. The displacement of the model boundary
due to a perturbation is approximated by projecting the centroid of each of the elements in the
unperturbed model onto the elements in the perturbed model, as shown in Fig. 3. The projection
location Pp is defined by the intersection of the surface normal direction n̂ at the centroid C
of the original model element with the plane the perturbed element exists on. When the correct
projection is identified, the displacement vector dp is calculated as the difference between the
centroid and its projection. The design velocity is then given by Eq. (1).

The question that arises is which perturbed element should each element centroid in the
unperturbed model be projected onto. In order to increase the efficiency of this search, a
multidimensional binary search tree known as KD-tree [22] is employed to find the perturbed
element with the closest centroid, which is tested first. If the result is an unsuccessful
projection, Barycentric coordinates [23] are used to determine which perturbed element should
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Figure 3: The centroid C of the original model element OP1OP2OP3 is projected onto the perturbed element
PP1PP2PP3.

be tested next. The process continues until a successful projection onto an element face, edge
or vertex is found, allowing the displacement to be calculated.

One additional check to ensure that the appropriate projection is identified is to demand the
unperturbed boundary normal at the centroid that is projected to be similar to the perturbed
boundary normal at the identified projection point. This is important in thin regions where
otherwise the projection could occur onto the wrong face of the model. In this work, the surface
normals are considered to be similar when

n̂unperturbed · n̂perturbed >

√
3

2
. (12)

The design velocity computation process is outlined in Fig. 4 and it is fully automated using
a Python script.

Figure 4: Design velocity computation process.
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4 APPLICATIONS

4.1 Nozzle Guide Vane

In order to test the proposed approach, the first case used in this work is a state-of-the-art
nozzle guide vane (NGV) of a high pressure turbine (HPT) provided by Rolls-Royce. The NGV
geometry is shown in Fig. 5, where a 3D parametric CAD model is built in Siemens NX. The
NGV has fillets at both ends and a cooling slot feature at the trailing edge (TE). This geometry
is also investigated in [24], which illustrates different methods in order to quantify the impact of
geometric variations on the NGV performance with focus on the capacity. Typically, the engine
mass flow (and by association the capacity) is governed by the NGV design, which defines the
narrowest cross section of the turbine. As a result, in this test case the capacity is considered as
the objective function.

The CFD simulation requires only one periodic section of the engine’s annulus.
Consequently, the sector domain (Fig. 5) was used for both CFD and design velocities
computation.

Figure 5: 3D parametric CAD model in Siemens NX: a) NGV geometry and b) TE cooling slot.

The CAD model is parametrised using NX expressions and perturbed geometries are
created using an iSIGHT workflow. Fig. 6 shows some of the 12 CAD parameters considered
as exemplary design variables in this test case, together with the corresponding geometric
variation that they cause.

For each perturbation of these parameters, a design velocity field was obtained using the
QUB design velocity tool. In this case, the QUB tool was coupled with the open source grid
generator Gmsh, which provided the mesh representations used for the projections. Design
velocity fields for some of the parameters are shown in Fig. 7.

In order to be able to validate the results produced by linking these design velocity fields
with the adjoint sensitivity map, a finite difference (FD) study has been conducted. Thus, 24
perturbed geometries (for + and - perturbations of the parameters) were generated using the
iSIGHT workflow and an automated meshing procedure was executed using the BOXER
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Figure 6: CAD feature parameters considered as design variables (not to scale): a) suction side lip radius, b) slot
width, c) pressure side and suction side profile and d) slot height and fillet radius at hub and casing.

Figure 7: Design velocity fields due to negative parametric perturbations of: a) Casing fillet radius, b) SS profile
and c) slot width.

meshing software. The produced meshes have approximately 9 million nodes and 13 million
cells. Prior to conducting the CFD simulations, a mesh refinement study was performed to
achieve a mesh-independent prediction of capacity. Fig. 8, illustrates the CFD domain,
including a detailed view of mesh properties in the TE area.

The capacity results were obtained using the Rolls-Royce in-house CFD solver HYDRA,
solving the steady RANS equations with Spalart-Allmaras turbulence model and wall functions.
After convergence, the capacity q at the inlet was calculated as

q = ṁ

√
Tt
pt

, (13)

where ṁ denotes the inlet mass flow, Tt the total temperature and pt the total pressure at the
inlet using mass averaged values. The resulting capacity for the baseline geometry was found
to match the expected capacity value very well and is taken as the reference value for all
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Figure 8: a) NGV CFD domain and b) CFD mesh around TE.

subsequent comparisons with perturbed geometries.
The CFD simulations have shown that a linear relationship between parameter variation

and capacity change applies for all of the parameters considered. This means that the adjoint
approach should be able to capture the relation and predict accurate results.

Apart from the primal CFD results, the adjoint sensitivity map for the baseline geometry
(needed for the proposed approach) was obtained using the HYDRA adjoint solver. The result
is illustrated in Fig. 1(a), according to which, the most sensitive area is the suction side.

Finally, the change in capacity caused by each parametric perturbation is predicted by
taking the inner product of the sensitivity map with the corresponding design velocity field.
The parametric sensitivities can then be computed by dividing with the perturbation step. The
obtained derivatives are shown in Fig. 9, where they are compared with central FD values.

Figure 9: Capacity derivatives predicted by adjoint results (in green) and validation against FD (in blue).
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As demonstrated in Fig. 9, for most parameters there is a good agreement between FD and
adjoint derivatives. The CPU cost of the design velocity tool was around 2 hours (5 min per
parametric perturbation), which is acceptable compared to the flow and adjoint solution. The
main advantage of this approach is its efficiency, since it only requires 1 flow solution, 1 adjoint
and 2 hours of post-processing, instead of 25 flow solutions (needed for the central FD).

4.2 Rotor blade with winglet

The second case tested in this work is a turbine rotor blade, also provided by Rolls-Royce.
The rotor blade geometry is shown in Fig. 10(a), where a 3D parametric CAD model is built
again in Siemens NX. The key feature of this blade is its winglet, a detailed view of which
is included in Fig. 10(b). This feature is used to reduce the leakage mass flow, which leads to
an increased rotor efficiency, by decreasing the driving pressure difference across the rotor’s
tip. The fluid stays inside the winglet and recirculations occur, as shown in Fig. 13(a), which
may cause an increase in total pressure losses within the tip gap. A detailed study on winglets
and squealers has been conducted in [25]. In what follows, the study is focused on the winglet
geometry and total pressure loss between inlet and outlet is considered as the objective function.

A similar case has been used in [26], where the same approach for calculating parametric
sensitivities is implemented and promising results are obtained. However, in this work the
further developed QUB tool is combined with the latest HYDRA adjoint version, leading to
results of increased accuracy.

Figure 10: 3D parametric CAD model in Siemens NX: a) Rotor blade geometry and b) winglet.

7 CAD parameters controlling the winglet geometry are considered as design variables. For
each perturbation of these parameters, a design velocity field was calculated using the QUB tool,
which was this time coupled with the commercial mesh generator CADfix, instead of Gmsh.
Moreover, bigger perturbation steps were used in this case, in order to test the robustness of the
approach. Some of the resulting design velocity fields are shown in Fig. 11.
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Figure 11: Design velocity fields due to parametric perturbations: a) -CAVITY HEIGHT, b) -SS FRONT OFFSET
and c) -SS REAR ANGLE PRIMARY.

The CFD mesh was generated again in BOXER, where a periodic sector was created from
the initial geometry, as illustrated in Fig. 12(a). The produced CFD domain of the baseline
geometry, shown in Fig. 12(b), has around 9 million nodes.

Figure 12: BOXER mesh generation: a) Periodic section of initial geometry and b) Rotor CFD domain.

The primal and adjoint solutions were obtained from the HYDRA solvers, by using the
steady RANS solver with a one equation SA turbulence model and wall functions. The
converged flow for the baseline geometry is shown in Fig. 13(a) and the corresponding adjoint
sensitivity map is illustrated in Fig. 13(b). The main sources of total pressure loss are the rotor
tip vortices.

As in the previous test case, a finite difference (FD) study was also conducted. More
specifically, 14 perturbed geometries were exported from Siemens NX and a Python script was
used to execute an automated meshing (BOXER) and solving (HYDRA) procedure.
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Figure 13: Flow and adjoint solution: a) Streamlines coloured by relative velocity magnitude and b) Sensitivity
map focused on winglet.

The derivatives of the pressure losses w.r.t. each parameter, predicted by linking the design
velocities with the sensitivity map, are compared with the corresponding central FD values in
Fig. 14. Since the results computed by the adjoint approach are again similar to the FD, further
confidence is gained that the proposed method works as expected. The CPU cost of the design
velocity tool was around 48 min, which is again negligible compared to the primal and adjoint
solution.

Figure 14: Pressure losses derivatives predicted by adjoint results (with orange) and validation against FD (with
blue).
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5 CONCLUSIONS

This paper has presented an efficient and robust method for calculating derivatives w.r.t.
CAD parameters, based on link of adjoint surface sensitivities with geometric sensitivities,
called design velocities, computed from a parametric CAD model. Design velocities are
obtained from finite differences between the CAD model before and after a parameter
perturbation. The method has been applied to two turbomachinery test cases and the gradient
results have been shown to match those computed using finite differences.

Possible sources of error causing the remaining differences between the adjoint derivatives
and the FD could be: a) the design velocities, b) the finite differences and c) the adjoint
sensitivity map. The design velocity fields have been extensively checked for both cases and
they were found to be smooth and without spurious design velocities caused by wrong
projections. The FD cannot be considered to be exact, especially for the Rotor case where
there was no refinement study carried out. The adjoint sensitivity map is also contributing to
the differences, due to the noise that characterizes the surface sensitivities. However, since the
sign of the derivatives is correctly calculated, the approach can already be used for steepest
descent optimization.

In terms of future work, the possibility of improving the sensitivity map for BOXER
meshes will be examined. Then, the work will be focused on passing the gradient information
to an optimization algorithm, in order to create a fully automated CAD-based aerodynamic
optimization system.
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Abstract. We propose a method for selectively applying automatic differentiation (AD) by op-
erator overloading to develop the discrete adjoint of a turbomachinery flow solver. A fully
differentiated version of the solver is generated by operator overloading using the tapeless tan-
gent mode of ADOL-C. The differentiated solver is coupled to an undifferentiated version of the
same code using message passing. The automatic differentiation is used to calculate deriva-
tives of the flux calculation routines. The flux derivatives depending on inner cell states are
sparse, and this sparsity is exploited using analytical differentiation of the spatial discretiza-
tion scheme. Subsequently the sparse matrix is communicated to the undifferentiated code for
solution. Turbomachinery boundary conditions may have dense Jacobians and are therefore
only evaluated during the solution process. The solution of the adjoint system of equations is
achieved through a preconditioned GMRES, implemented inside the undifferentiated code. A
modern three dimensional contra-rotating fan stage with engineering parameterization serves
as application example in order to demonstrate the technique and to perform numerical valida-
tions. The validation of gradient results is performed by comparing against results from finite
differences, and the tangent forward mode.
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1 INTRODUCTION

The adjoint method is a key technology to enable gradient based optimization methods with
expensive fluid dynamics simulations. It also has interesting applications in mesh adaptation,
robust design and the evaluation of shape variations either due to manufacturing tolerances
or wear during operations. Since the adjoint method gained popularity much later than the
application of flow simulations, it is often necessary to develop consistent adjoint solvers for
long existing CFD solvers. One way to obtain an adjoint solver is to adjoin the underlying PDEs
and discretize these; this is called the continuous approach. The discrete approach in contrast is
to take the discretized PDEs which are implemented as the primal flow solver and adjoin these.
We follow the discrete adjoint approach in this publication. There are two basic techniques
for developing a discrete adjoint solver: the white box and the black box approach. For the
white box approach, the developer reads a calculation routine, writes down the computation in
analytical form, derives its adjoint and subsequently implements the derived calculation. The
black box approach is to use a tool for automatic differentiation (AD) in reverse mode, which
yields the exact adjoint calculation routine. Both methods have benefits and shortcomings.
The white box approach has the potential for the most efficient result, but it requires a high
level of insight into the code and is susceptible for inconsistencies between the primal and
the adjoint code. While the black box approach solves these white box issues it can lead to
inefficient results, especially when applied to iterative solution schemes for PDEs. In practice, a
combination of both techniques is often used with success. Especially the selective application
of AD inside a white box framework is described by a number of publications [1, 2, 3, 4].
Automatic differentiation can be achieved in two ways: source to source transformation and
operator overloading. While the source to source technique is quite popular for solvers written
in Fortran, the operator overloading approach is found more advantageous for solvers written
in C. The following is a description of how selective application of AD by operator overloading
may be achieved in the frame of a parallel solver, starting from the adjoint solver described in
[5]. TRACE is a simulation suite for internal flows, with focus on turbomachinery applications;
it is developed at DLR, in productive use at MTU AeroEngines and a research tool at several
universities.

2 FLOW SOLVER

The most frequently used tool for industrial turbomachinery design optimizations are the
compressible steady Reynolds-averaged Navier-Stokes (RANS) equations in a rotating frame
of reference, discretized by the finite volume approach. These equations have the general form

∂q

∂t
+ divF (q)− S(q) = 0 (1)

with the conservative state in each cell denoted by q = (ρ, ρu, ρv, ρw, ρE), the fluxes in three
directions F = (F 1, F 2, F 3) with F i : R5 → R5 and the source terms S(q). For the dis-
cretization of convective fluxes we use Roe’s TVD upwind scheme in combination with the
MUSCL approach after van Leer, viscous fluxes are calculated by a central difference scheme.
The steady solution is obtained by implicit pseudo-time marching.

Turbomachinery simulations are characterized by a set of specialized boundary conditions
which influence how an adjoint solver can be constructed. Boundary conditions are applied
by prescribing values on extra layers, called ghost cells, which extend the mesh beyond the
boundary of the physical domain. We therefore divide the flow state into states in internal and
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external cells
q = (qint, qext) (2)

where the external cells values are prescribed by a functional relationship

qext = F(qint, qext). (3)

The class of non-local boundary conditions poses special challenges here. In the case of non-
reflecting boundary conditions after Giles [6] the ghost-cell update is defined as the fixed point
iteration

∆qn+1
ext = F(qnint, q

n
ext). (4)

Whereas F involves a Fourier transformation in circumferential direction in order to suppress
incoming waves at interfaces of the computational domain.

Blade rows with different rotational velocities are, in the steady case, coupled by Denton’s
mixing plane approach [7], which requires circumferentially mixed out states to become iden-
tical on each side of the mixing plane. Circumferential averaging of states is performed by
band-wise integration over fluxes and then applying the inverse flux function to obtain the inte-
gral state. This reads in cylindrical coordinates

q̄F = F−1
c

(
1

∆ϑ

∫ ∆ϑ

0

Fc(q)dϑ

)
, (5)

where ∆qn+1
ext vanishes in the case of a converged flow solution.

The boundary conditions mentioned before depend on flow states in a circumferential direc-
tion. A span-wise dependency of states may additionally occur at exit surfaces, when the static
pressure at the exit is prescribed by the radial equilibrium condition of pressure and centrifugal
forces

dp = ρV 2
ϑ

dr

r
, (6)

whereas p denotes the static pressure, Vϑ the circumferential component of the flow velocity
and r the radius.

3 ADJOINT SOLVER

For the fields of application mentioned in the introduction it is desirable to calculate partial
derivatives of cost functions I(q), calculated from the flow solution q which depends on many
design parameters α. An efficient way to evaluate ∂I

∂αi
, with αi denoting the i-th design param-

eter, for a large number of parameters is the adjoint method. Since the adjoint approach is well
documented in the literature, e.g. in [8], only the basic relations are repeated here. We want to
evaluate

∂I(q(α))

∂αi
, (7)

from the flow state q which is defined implicitly by fulfilling the discretized Navier-Stokes
equations

R(α, q(α)) = 0. (8)

One way this can be calculated is solving the adjoint system for the cost function I(
∂R

∂q

)t
ψ =

(
∂I

∂q

)t
(9)
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and afterwards evaluate the scalar product

∂I

∂αi
= −ψt ∂R

∂αj
(10)

for each design parameter. The computational costs of solving Equation (9) are about as high
as those for solving the nonlinear system of Equations (1) while evaluating the matrix vector
product in Equation (10) is comparatively cheap. The adjoint method is therefore efficient when
the number of parameters is larger than the number of cost functions.

3.1 Flux linearization

A central point in the implementation of the adjoint solver is the exact calculation of ∂R
∂q

.
The linearization of the discretized steady Eqn. (1) may be written as

∂Ri

∂qk
=
∑
j

∂Fj
∂qk

+ δik
∂Si
∂q

= 0 (11)

where i runs over all cells, j over the cell’s faces and k over all states. Since the flux at a cell
face depends only on a few flow states in neighboring internal cells qint, the Jacobian matrix
∂F
∂qint

can be efficiently calculated by exploiting the sparsity pattern of the spatial discretization
scheme.

While the nonlinear solver can be used with a variety of turbulence models, it is assumed
here, that the eddy viscosity is not influenced by small geometric changes and may therefore be
ignored for the adjoint system of equations. This is called the constant-eddy-viscosity (CEV)
assumption. The validity of the CEV assumption for design optimizations is discussed by vari-
ous authors, e.g. [9, 10].

3.2 Adjoint boundary conditions

While the flux Jacobian for inner cell states may be calculated with the above scheme, the
fluxes on cell faces close to the boundary of the computational domain depend on external cell
states and through Eqn. (3) on the boundary conditions. When differentiating Eqn. (11) with
respect to internal and external flow states, one obtains the residual Jacobian matrix

∂R

∂(qint, qext)
= (Aint Aext). (12)

Since qext depends on qint through Eqn. (4) in the case of non-reflecting boundary conditions,
one would have to differentiate this giving a fixed point iteration for the linear boundary condi-
tion

∆(δn+1
ext ) =

∂F
∂(qint, qext)

(
δqnint
δqnext

)
(13)

However, the adjoint system of equations is, in contrast to the primal system, not solved by
pseudo-time marching. Consequently, we cannot evolve Eqn. (13) parallel to the solution pro-
cess. Instead we use

∂F
∂(qint, qext)

(
δqnint
Tδqnext

)
= 0, (14)

with the adjoint boundary operator T . Since no routine in the primal solver exist which can
be differentiated to obtain T , the operator is manually derived and implemented. The linear
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operators T for the turbomachinery boundary conditions, employed here, are derived in [5, 11]
and not repeated for brevity. Using the above equations, the linearized residual reads

L =
(
Aint Aext

)(Id
T

)
. (15)

The adjoint is obtained by transposition

L ∗ = (Id T t)

(
Atint
Atext

)
. (16)

3.3 Solution scheme

The adjoint system of equations (9) is solved by a preconditioned GMRES solver with
restarts [12]. The available preconditioners are successive over-relaxation, (SSOR) and incom-
plete LU-decomposition with limited level-of-fill (ILU).

3.4 Selective use of AD

The introduction of AD into TRACE is described in [13]. The results of this work are used
here as a starting point to describe how an AD based adjoint solver can be implemented in a
grey box fashion.

More specifically we apply white box techniques to the spatial discretization stencil, objec-
tive functions and boundary conditions, while the flux calculation routines are differentiated in
a black box fashion through AD in forward mode. From forward derivatives of the flux calcu-
lation routines we then build the adjoint system matrix. This grey box approach was chosen
in order to obtain an efficient adjoint solver but at the same time avoid the cumbersome dif-
ferentiation of the sophisticated flux computation routines. The reasons for treating boundary
conditions differently from the rest of the flux computations are:

1. The primal boundary conditions are not implemented in simple function calls which could
be treated by AD. They are constituted by a composition of functions controlled by the
different solver modes and choices of models.

2. The fixed-point property of non-reflecting boundary conditions as discussed in section 3.2.

3. Non-local boundary operators, such as the non-reflecting boundary conditions, radial
equilibrium boundary conditions as well as row coupling interfaces depend on a large
number of cell states. The differentiation of these would add large dense contributions to
the residual Jacobian matrix. In order to keep the memory consumption manageable they
must therefore be evaluated on-the-fly during the adjoint solution process.

We employ the tangent forward mode of automatic differentiation which calculates direc-
tional derivatives by attaching to each variable in the calculation an additional derivative vari-
able and propagating this derivative value alongside the computation:

y = f(x), ẏ =
df

dx
ẋ, (17)

where df
dx

is analytically defined by the chain rule of differentiation for each elementary oper-
ation, i.e., all floating operations intrinsically provided by the C language. For a more com-
prehensive description of AD, the reader is referred to [14]. Since TRACE is written in the C
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language, more specifically the C99-standard, we apply automatic differentiation by operator
overloading, due to the easier implementation and to avoid the dependency on another com-
piler and the restrictions to supported language constructs. The operator overloading approach
works by providing a class which re-defines all elementary operations to calculate y and ẏ as in
Eqn. (17). Here we use ADOL-C [15] in tapeless tangent mode. The general workflow for ap-
plying AD by operator overloading is to change the definition of the floating point datatype used
for calculations from the standard floating point datatype to the AD class (called adouble in
ADOL-C). During the execution one sets the differentiation seed ẋ via a special member func-
tion (called setADValue in ADOL-C) of the independent variable x and runs the function
to be differentiated. The directional derivative is then computed alongside the computation
and its derivatives ẏ can afterwards be obtained by calling another member function (called
getADValue in ADOL-C) for the desired output variable. While this is the simplest way of
applying AD, there are a few obstacles observed during the introduction of AD in TRACE:

• Operator overloading is not defined for C, only for C++. Even though C++ is sometimes
called a superset of C, this is not exactly true. Not all programs conforming to the C99-
standard are also valid C++ programs. See [16] for a more detailed view on this issue.
In this context the most important issues are variable length arrays (VLA), which are not
supported in C++, and unions containing active floating point variables1. After eliminat-
ing incompatibilities it must be communicated to all developers which constructs must be
avoided and how these should be replaced. Automated testing of each new code revision
is necessary to ensure that no incompatibilities are introduced.

• External libraries receiving and returning floating point numbers must be differentiated,
by either automatic differentiation or, if possible, by high-level manual differentiation2.

• All floating point variables passed to an external library for output, including C’s standard
libraries, for which no overloaded equivalent is provided by the AD tool, must be con-
verted to standard datatypes. This requires wrapper-code around the actual library call.
For often recurring calls this may be facilitated by using macros. Functions with variable
number of arguments, e.g. printf type functions, require more elaborate solutions, e.g.
variadic templates.

• Some computations are not differentiable, e.g. calculating the length of a vector which
may become zero at some point during the calculation. For such results the AD value ẏ
takes the special values NaN or inf which propagate through the whole derivative com-
putation. While most of the time it is simple to circumvent such calculations by im-
provements to the primal code (cf. [14] for a list of applicable techniques), finding and
identifying such computations requires thorough testing.

3.5 Interfacing differentiated with non-differentiated code

When differentiating an existing code base using AD, one has to determine which variables
are active, i.e., if variables are used inside the dependency path between the selected inputs
and outputs. In the operator overloading approach a variable is marked as active by changing its
datatype from the standard arithmetic type to the respective AD class. It is necessary to correctly

1The C++11 standard improves on some of these issue, but it is still necessary to define constructors for such
unions

2The fast fourier transformation is a candidate for this
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identify all variables that have to be active. Any missed out declaration either leads to compile
time errors, or to wrong gradient results. Superfluously marking a passive variable as active
is less problematic; this only increases the computational effort and memory requirements.
Since correctness has to be reached before performance optimizations can be considered, one
often starts by changing all floating point type declarations to the AD type and handle only the
interface between this active types and the external libraries.

Selectively changing variables reduces the performance overhead to only those routines one
wants to differentiate. However this requires more work from the developer to handle the in-
terfaces between active and inactive variables. At these interfaces, all conversions from active
to inactive variables have to be explicitly implemented by introducing conversion calls. Com-
posite types complicate things further, since they may be used in contexts where their member
variables are active in others where they are passive. Even combinations where only parts of
the composite type have to be active may occur. A solution would be to create copies of the
data type for each pattern of activation, copy and adapt the calling routines. Since the activa-
tion pattern may depend on usage scenarios, this would lead to a lot of copied routines with
slightly varying activation patterns which is undesirable for code-maintainability reasons. This
approach may be automatized by a script. However that script has to mimic parts of a source-
to-source AD tool and therefore may become complicated, depending on the range of supported
language constructs.

In order to circumvent the development of such a script another approach for the selective
application was chosen here: Two executables are generated from the same code base using
a compile time switch. In the unmodified executable, all variables are defined as standard-
arithmetic types. In the differentiated executable, all variables are defined as the AD class.
Both contain the same set of functions and may be tested independently from each other to
ensure binary identical results from their primal calculations. In order to use exact derivatives
inside the faster unmodified executable, the unmodified launches the differentiated executable
and both perform the basic flow solver initialization, c.f. Fig. 1. The flux Jacobian matrix is
generated inside the differentiated solver by iterating over each component of the flow state qi

in each internal cell, setting q̇i to 1. After calling the flux-functions for the respective cell, the
derivatives are obtained by reading all Ḟ j as standard floating point values and storing these
inside the flux Jacobian matrix in block compressed row storage (BCRS) format, where each
submatrix is a 5x5 matrix. This matrix is subsequently communicated to the non-differentiated
executable, where it constitutes the system matrix for the adjoint system of equations. Since
the differentiated executable is terminated at this point, the additional memory for storing the
differentiated flow field is freed. The adjoint system of equations is solved by inside the non-
differentiated code as described in section 3.3.

4 VALIDATION

4.1 Procedure

For the validation of the sensitivities we now have three different validation procedures avail-
able. The first two are performed by running the complete code for a deformed mesh, and these
are therefore primal procedures. One can run the undifferentiated executable calculating finite
differences from the results, or one can run the differentiated executable and use the defor-
mation at each mesh node as a seeding direction. These procedures are called FD-primal and
AD-primal respectively. The other means of validation is to use finite differences instead of AD
in the grey box adjoint code. This is called FD-adjoint in the following text. The solver to be
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Figure 1: Sequence diagram for the code coupling strategy.

validated is the AD based adjoint, called AD-adjoint, consequently.
For the FD-primal evaluation first order accurate forward differences are obtained from the

first terms of the Taylor series expansion

dI

dαi
=
I(x + ph)− I(x)

h
+O(h). (18)

The grid coordinates x are perturbed by a deformation vector p which is obtained by modifying
one design parameter αi and generating the corresponding computational grid

p = x(α + eiεi)− x(α) (19)

The choice of h is a difficult task, due to the linear dependence of the truncation error on the one
hand, and cancellation errors on the other hand. Therefore different values of h are examined
to find a range where the result is insensitive to the choice of h. Finite differences have the
advantage of being very simple and they serve therefore as reference to rule out human error or
flaws in the AD tool. However, as the associated approximation error may become very large
finite differences cannot provide full confidence in the correctness of the results. The second
simple approach is the AD-primal procedure, which serves as an alternative way to calculate
derivatives in a forward manner. It has no associated step-width problem. This AD-primal
calculates any cost function I available inside the flow solver and İ with respect to one design
parameter provided as deformed mesh in one sweep

I(x), İ =
∂I

∂x
p. (20)

For p one can use the mesh deformations as in Eqn. (19) and apply these as seed direction
for the AD variables on the grid points. In principle, this is the same as the finite difference
evaluation described before with a step width approaching zero and no subtractive cancella-
tion present. This is equivalent to the complex step derivative technique [17], which could be
used alternatively. Since both primal procedures have a computational cost proportional to the
number of design parameters, they are only used for validation purposes.
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Figure 2: The contra-rotating integrated shrouded propfan CRISP 2.

The third solver is the FD-adjoint, where the flux Jacobian matrix is computed from finite
differences. By means of this solver we are able to tell whether the Jacobian matrix calculated
by the AD tool is valid and to assess the influence of errors in this matrix on the adjoint sensi-
tivities. The finite difference step-width here is chosen to be proportional to the flow state and
the factor of proportionality ε is varied to find a range of insensitivity of the finite differences.

4.2 CRISP 2

The second design of the contra-rotating shrouded propfan called CRISP 2 (Fig. 2) is a mul-
tidisciplinary optimization based design conducted at DLR [18] using the optimization frame-
work AutoOpti [19]. The design targets are to develop a new engine concept for extremely high
bypass-ratios (>20), in order to achieve a high fan efficiency and to reduce noise emissions for
the important operating points. To this end, aerodynamic, acoustic and mechanic objectives or
constraints were considered in the optimization [20]. The optimization has been carried out
using a combination of evolutionary algorithms and Gaussian process meta models constructed
from 3D simulations. The design used here has a mass flow rate of 158 kg/s, a total pressure
ratio of 1.3 and an isentropic efficiency of 94 %. With a pre-shock Mach number of about 1.2
the flow is transonic. A validation of the CFD solver on modern contra-rotating fans against
experimental results is described in [21]. See [22] for a description of how gradients from an
adjoint solver may be included in this optimization. Different mesh resolutions can be generated
from this process, here a coarse structured mesh consisting of 500 000 cells is used.

The CAD Model of the fan stage is parameterized by engineering CAD Parameters which
are translated into B-Spline tensor product surfaces using the geometry tool Blade-Generator.
Based on these surface definitions a structured grid is created using the mesh generator G3DHexa.
Deformed meshes for the sensitivity calculation process are created by an elliptic mesh defor-
mation tool [23].

From the 123 parameters of the original optimization we have selected 24 representative
parameters. This was necessary to reduce the computational effort spent on the primal validation
procedures. The selected parameters are the stagger angle, leading edge angle and trailing edge
angle on four profiles of each of the two rotors.

3836



Jan Backhaus, Anna Engels-Putzka and Christian Frey

Pseudo time step

R
e

s
id

u
a

l 
L

2
N

o
rm

0 2000 4000 6000
10

9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

4E05

3.5E05

3E05

2.5E05

2E05

1.5E05

1E05

5E06

|R|

|dR/dx|

0

Figure 3: Residual, differentiated residual and convergence of sensitivity of the total pressure ratio for the AD-
primal process

4.3 Validation using primal calculations

The convergence of the primal residual and the residual of the forward differentiation, AD-
primal, are shown in Fig. 3, additionally for the total pressure ratio Π the evolution of the
sensitivity ∂Π

∂α0
is plotted exemplarily. All primal validation calculations are stopped when the

residual falls below a threshold of 10−9. While the residual still drops afterwards, the accuracy
in all output quantities is sufficient, as can be seen for the value of the sensitivity in Fig. 3.

4.4 Validation using FD-adjoint

The adjoint solver based on finite differences is used to demonstrate the effect of approxima-
tions on the residual Jacobian matrix here. From Fig. 4 it can be seen that the convergence of
the adjoint residual improves, when a larger finite difference step is used. Errors from the finite
differences act as a regularization of the adjoint system matrix. The convergence behavior of
the AD-adjoint solver is identical to the convergence with ε = 10−11. However, the smallest
error in the sensitivities for the first parameter, comparing AD-adjoint to FD-adjoint, can be
observed for ε = 10−4 in Fig. 5.

4.5 Comparison of Gradients

Figure 6 shows the comparison of the calculated gradients for the total pressure ratio from the
four different approaches. One can see that these are in very good agreement. Minor deviations
can be observed for some parameters, between the sensitivities from the primal and the adjoint
approaches. Since the AD approaches show the same results as the FD approaches, an error in
the AD tool or its application can be ruled out. The absolute errors of the gradients are calculated
as the absolute value of the difference between AD-adjoint and AD-primal and plotted in Fig. 7.

The magnitude of errors is found to be sufficiently small for the optimization procedures
described in [22].
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5 CONCLUSIONS AND OUTLOOK

Developing the adjoint for an existing CFD solver can become a laborious task which re-
quires good knowledge of the solver and of the equations implemented therein. This amount of
knowledge may be replaced, in parts, by the ability to work with AD tools. Correctly applied
AD provides exact derivatives which stay consistent to the calculations, even when the solver
is modified, given that certain coding guidelines are obeyed. Besides a lot of effort spent on the
development of the AD tools, a complete black box approach is still not optimal for the itera-
tive solution processes. The approach presented here shows how AD can be selectively applied
for an industrial, parallelized turbomachinery solver written in the C language by using oper-
ator overloading. The approach taken here starts from a white box derivation and selectively
includes black box techniques. A benefit of the approach is the ability to use the same AD-
primal solver which is used to calculate the flux Jacobian for gradient validation purposes and
therefore gain confidence in the consistency of the computed flow solution and the derivatives.
An alternative approach is to derive an adjoint solver in a complete black box fashion through
reverse mode AD and afterwards introduce white box improvements to lower the runtime and
memory consumption. While this strategy has been pursued in [13], a thorough comparison of
both approaches will be left for future work.
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Abstract. Although adjoint-based optimization methods have numerous advantages such as
the efficient computation of the gradient virtually independent of the number of design vari-
ables, the methods are not yet picked up largely by industry. One major bottleneck herein is
that adjoint methods mainly work on deforming the CFD grid and as such loose the connection
to CAD, the industry adopted standard for the design of components. After the optimization a
step is required which transforms the optimal shape, defined by grid points, back to a smooth
CAD shape. This step is complicated, not easily automated and invariably impairs optimality of
the shape as CAD systems will only approximate the optimal shape. The work presented herein
is a first step to alleviate the problem by expressing the optimization problem through CAD
parameters, rather than working directly on the CFD grid. This allows the optimal shape to
remain defined within the CAD tool and through the differentiation of the CAD kernel and grid
generation tools with algorithmic differentiation (AD) it is possible to obtain the grid sensitiv-
ities propagated to the CAD-based parameters. The in-house CAD and grid generation tools
have been differentiated in forward mode as a first step. The VKI LS89 axial turbine vane is
selected as a demonstrator to test the methodology. The profile is parameterized by 24 design
parameters and the geometrical as well as grid sensitivities are obtained for each parameter,
showing the influence of each design parameter on the profile and on the CFD grid coordinates.
Finally, the sensitivities obtained by AD are compared against second order accurate central
finite difference approximations through changing the perturbation step.
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1 INTRODUCTION

Aerodynamic shape optimization using low-cost, efficient and accurate computational meth-
ods is key for the aerospace industry, as it provides the opportunity to make significant design
improvements at the early stage of the design chain.

For gradient-based optimization strategies it is essential to compute the total gradient of the
design chain, which is the derivative or gradient of the cost function with respect to a vector
of design variables. This is usually done by calculating the derivatives separately for the vari-
ous disciplines used in the design chain (e.g. grid generation, Computational Fluid Mechanics,
Computational Solid Mechanics, etc.) and then combining them to obtain the total gradient.
The derivatives can be obtained using different methods, either analytically, by finite differ-
ences or by differentiating the code(s). Adjoint-based optimization methods [1, 2, 3] have been
introduced for more than two decades and have witnessed a tremendous improvement over time.
They have become increasingly popular amongst the gradient-based optimization methods for
its efficiency to compute the gradients at a cost that is independent of the number of design
variables [4]. However, one major bottleneck herein is that adjoint methods mainly work on al-
tering the shape to be optimized by deforming the CFD grid [5] and as such loose the connection
to computer aided design (CAD), the industry adopted standard for the design of components.
After the optimization, a step is required which transforms the optimal shape, defined by grid
points, back to a smooth CAD shape. Many different procedures have been developed to ap-
proximate a given set of grid points with NURBS curves or surfaces [6, 7]. Despite the fact
that these methods can be successfully employed to obtain a smooth CAD shape, the fitting
error may invariably impair optimality of the shape as CAD systems will only approximate the
optimal shape.

The emphasis of this work is to present a method in which:

1. the optimal shape remains defined within the CAD tool. The optimization problem herein
is expressed by CAD parameters that are directly used in defining the CAD geometry by
means of Bézier and B-spline curves.

2. the in-house CAD and grid generation tools are automatically differentiated in forward
mode to obtain the exact derivatives of the grid coordinates with respect to the CAD-based
design parameters. This allows to accurately predict the sensitivities and circumvent the
errors introduced by finite differences.

3. the differentiation of the CAD kernel and grid generation tool in forward mode will then
serve to validate the sensitivities in reverse mode. The reverse capability would allow
enriching the design space by introducing more design parameters without penalising the
computational cost.

The work is carried out using a computer aided design and optimization tool for turbomachin-
ery applications (CADO) [8], which has been used so far mainly in gradient free optimization
methods, and hence the work presented herein represents the first steps to differentiate the en-
tire CADO code to make it work in gradient based optimisation. The LS89 [9, 10, 11, 12] axial
high pressure turbine nozzle guide vane (HPT NGV) is selected as a demonstrator to test the
methodology. This profile was designed and optimized at the von Karman Institute for Fluid
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Dynamics (VKI) for a subsonic outlet flow by the inverse method [9]. It was extensively tested
at the VKI laboratories for a large range of Reynolds and Mach numbers and this experimental
data was then used to improve the in-house CFD prediction capabilities in the late 80s.
In the following sections the approach to construct the geometry, fluid computational grid and to
compute the geometrical and grid sensitivities is presented. Also discussed are the sensitivities
obtained by AD and compared against FD second order central derivatives by tuning the step
size.

2 METHODOLOGY

The design chain process shown in Fig. 1 starts typically from a set of input design param-
eters that allow the designer to build a CAD model, from which it is necessary to generate a
computational fluid grid to perform CFD analysis. After obtaining a flow converged solution by
the primal solver, the cost function is evaluated as a post-processing step. The differentiation
of the design chain allows to compute the performance sensitivities which are necessary for
gradient based optimization algorithms. The following subsections present a description of the
methods employed in this work for the CAD and grid generation steps and the calculation of
the geometrical and grid sensitivities.

Primary problem:

Design space

CAD 'Master 

geometry'
Fluid grid

Performance parameter 

evaluation(cost function)

x,y surface

coordinates
X,Y  grid

coordinates

design 

parameters

Performance sensitivity

forward di erentiation

Geometrical 

sensitivity
Grid 

sensitivity

Solution 

sensitivity

reverse di erentiation

Figure 1: Chain to compute the performance sensitivity

2.1 Using CAD parameters as design variables

In gradient based optimization, it is vital to know the performance sensitivities with respect
to design parameter changes. Typically, the grid point coordinates have been used as design
variables in order to optimize a design [5]. This means that an additional step is required to con-
vert the optimal shape defined by the grid back to a CAD shape. However, it is not guaranteed
that the final CAD shape will meet all the manufacturing design requirements and constrains.
Furthermore, the generated CAD shape will only approximate the optimal shape given by the
CFD grid point cloud [6]. Hence there is an arising need to keep the CAD geometry in the
optimization loop.

2.1.1 Constructing a turbine profile with Bézier and B-spline curves

The construction of the turbine profile using Bézier curves is based on the parametrization
described in [13]. The turbine profile, which is shown in Fig. 2, is defined herein with three
independent curves, two B-spline curves for the suction side (SS) and pressure side (PS) and a
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circular arc at the TE to close the profile. In order to construct the profile, first a camber line is
constructed, which is used to define the position of the control points of the SS and PS B-spline
curves relative to the camber line. The camber line is defined by an inlet blade metal angle, an
exit blade metal angle, an axial chord length and a stagger angle. The position of the leading
edge and trailing edge is defined by the axial chord length and the stagger angle. By defining
an inlet and outlet lines respecting the inlet and outlet blade metal angles, one can intersect the
lines and define the point Pmid shown in Fig. 2.

cax-RTE

in

out

PTE

Pmid

PLE
f(RLE)

t1SS

t2SS t3SS

t4SS
t5SS

t6SS
t7SS

t8SS

t9SS

Figure 2: Construction of the suction side by a B-spline curve

The points PLE ,Pmid, PTE define the control points of the 2nd order Bézier curve describing
the camber line. By specifying a stretch factor and a number of points, the camber line is divided
into a number of intervals. For each point obtained on the camber line (except the first and last
two points) a normal distance is specified by the designer to obtain the corresponding control
point of the SS and PS B-spline curves. The normal distance of the first control point relative
to the camber line is a function of the LE radius, in order to guarantee G2 geometric continuity
(i.e. equal curvature) between the SS and PS B-splines at the stagnation point of the Leading
Edge. The normal distance of the last control point relative to the camber line is equal to the
TE radius. For the second last point, the normal distance is computed by specifying a wedge
angle. Usually more control points are placed on the SS than on the PS because the highly
curved shape of the SS is deemed to play a bigger role than the PS during the aerodynamic
shape optimization. Finally, the shape of the cascade is fixed after specifying the pitch, which
can be computed for a given solidity. The solidity plays an important role in turbomachinery
design practice and this justifies the use of this parameter as an independent variable.

2.2 Generation of Block-structured smoothed grids

In the present work a structured grid was preferred as opposed to an unstructured grid to have
better accuracy in the flow results. The generation of a boundary conformal curvilinear grid for
the turbomachinery flow geometry of this study was achieved by subdividing the domain into
multiple structured grid blocks which are independent from each other but share a common
interface. A single block approach for a relatively highly staggered profile, such as the LS89
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turbine profile, would result in a poor quality grid due to the high skewness of the cells. There-
fore, a multi-block approach was preferred because it allows to have more detailed control of the
element size and shape. Figure 3(a) shows the selected multi-block structured topology for the
LS89 CFD domain. One O-grid block is placed around the profile and there are six additional
H-grid blocks, four of them distributed around the profile and the remaining two being used as
the inlet and outlet blocks. The first step in the grid generation process consist of generating

(a) LS89 multi-block structured grid topology (b) LS89 smoothed multi-block structured grid

Figure 3: LS89 mesh topology and final smoothed grid

an initial grid on the edges of the different blocks. The internal grid is subsequently initialized
using Transfinite Interpolation (TFI) equations from the boundary mesh points, which are de-
scribed by the Eqns. 1 and 2 [14]. Equations 1 and 2 allow to compute the internal grid given
the coordinates of the boundaries for η = 0, 1 and ξ = 0, 1 (see Fig. 4).

X(ξ, η) = (1− u)x(0, η) + ux(1, η) + (1− v)x(ξ, 0) + vx(ξ, 1)

− (1− u)(1− v)x(0, 0)− u(1− s)x(1, 0)− (1− u)vx(0, 1)− uvx(1, 1)
(1)

Y (ξ, η) = (1− u)y(0, η) + uy(1, η) + (1− v)y(ξ, 0) + vy(ξ, 1)

− (1− u)(1− v)y(0, 0)− u(1− s)y(1, 0)− (1− u)vy(0, 1)− uvy(1, 1)
(2)

The parameters u and v from Eqns. 3 and 4 are blending formulas proposed by Soni [15] for the
normalised arc-length control functions s1(ξ), s2(ξ), t1(η), t2(η) along the boundary edges. The
normalised arc-length control functions intuitively express the position of each grid point along
the edge as a percentage of the total length of the edge. In the present work, s1(ξ) and s2(ξ)
are defined along the boundary edges spanning between t1(η = 0) and t2(η = 1) respectively,
whereas t1(η) and t2(η) are defined along the boundary edges spanning between s1(ξ = 0) and
s2(ξ = 1).

u(ξ, η) =
(1− t1(η))s1(ξ) + t1(η)s2(ξ)

1− (s2(ξ)− s1(ξ))(t2(η)− t1(η))
(3)

v(ξ, η) =
(1− s1(ξ))t1(η) + s1(ξ)t2(η)

1− (t2(η)− t1(η))(s2(ξ)− s1(ξ))
(4)
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η
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Figure 4: Two dimensional block

The generation of an algebraic grid for each block is efficient and easy to implement but there
is no guarantee that the grid lines will not intersect, fold, or that the corners from the side will
not be propagated inside the domain. Given the difficulty to generate successful smooth grids
using TFI equations, it is convenient to smooth them afterwards by solving a partial differential
equation (PDE) of some type (elliptic, hyperbolic, parabolic). The elliptic PDE is commonly
used for grid generation for ducted flows. The Elliptic grid generation equations shown in Eqns.
5-6 were pioneered by Thompson et. al. [16] and are employed in this work.

ξxx + ξyy = P (ξ, η) (5)

ηxx + ηyy = Q(ξ, η) (6)

These equations, which are also referred to as the Poisson equations, are formulated in the body-
fitted non-orthogonal physical space XY and need to be transformed to the uniform orthogonal
computational space ξη in order to solve them efficiently. The inverse transformed system of
equations then becomes [14]:

αxξξ − 2βxξη + γxηη = −I2(Pxξ +Qxη) (7)

αyξξ − 2βyξη + γyηη = −I2(Pyξ +Qyη) (8)

In Eqns. 7-8, the greek symbols α, β, γ represent the scale metric factors of the coordinate
transformation and they are defined by α = x2η+y

2
η , β = xξxη+yξyη, γ = x2ξ+y

2
ξ . The inverse

of the Jacobian is given by I = 1
J
= xξyη − xηyξ. The system of equations in the transformed

space can be approximated using Finite Differences and then solved by means of a standard
GS-(S)SOR (Gauss-Seidel Symmetric Successive Over-relaxation) approach.
The P and Q source terms are used to control the geometrical aspects of the cells. Grid behaviour
control is achieved through the introduction of forcing function terms in the manner of Steger
and Sorenson [17] in the O-grid block. The Steger and Sorenson method is an iterative forcing
function approach that adjusts the boundary forcing functions to meet a prescribed angle and
spacing constraint at the boundary. The forcing function is then interpolated into the domain
based on the boundary values of the source terms. In all the H-grid blocks, the source terms
have been set to zero and hence the elliptical equations being solved are the so called Laplace
equations.
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2.3 Algorithmic Differentiation

Algorithmic Differentiation (AD) is a technique for computing analytic derivatives of pro-
grams [18]. The idea of AD is to differentiate analytically each elementary mathematical oper-
ation performed by the code and accumulating the derivatives by applying the chain rule in an
automatic fashion. In this way, it is possible to build up the cost function or derivative of the
output with respect to the input variable, which can then be used for an optimization algorithm.

One distinguishes between the forward and reverse mode of AD. In forward mode one is
interested to know the derivative of the outputs depending on one setting of the input sensi-
tivities, whereas in reverse mode one is interested in the derivative of all inputs for one single
output value. Both modes allows to accurately compute the sensitivities with the best possible
machine accuracy. To compute the derivatives for all input parameters in the forward mode it
is necessary to run as many simulations as the number of input parameters. Conversely, in the
reverse mode you need as many runs as the number of output variables. AD methods can be im-
plemented by either source to source transformation or operator overloading. The former one
consists in transferring the primal evaluation trace into a differentiated evaluation trace. The
second is based on operator and function overloading. For a more detailed description of the
different techniques for evaluating derivatives using AD the reader is referred to [18].

In this work, all the sensitivities have been calculated using ADOL-C [19], an AD tool
developed at the Department of Mathematics at the University of Paderborn that is written in
C++ and uses overloaded operators and functions. The ADOL-C derivative evaluation routines
can be called from C, C++, Fortran and any other language that can be linked with C [19]. Both
the geometrical and grid sensitivities have been calculated in tapeless forward mode, which
means that the operation count of the added lines necessary to evaluate the sensitivities is a
small multiple of that for the underlying code to evaluate the output variable.

3 APPLICATION

The LS89 axial turbine aerofoil designed at the Von Karman Institute for Fluid Dynamics
is selected to test the method presented in this paper as a first demonstrator. The LS89 is

t1SS

in

out

RTE

t

inl

oul

pitch

SS
PS

TE

RLE

x

y

cax

Figure 5: LS89 profile geometry
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a relatively modern high pressure turbine nozzle guide vane (HPT NGV) profile specifically
designed for subsonic flows downstream of an aero-engine combustion chamber.

Design parameters Acronyms Value
Solidity σ 1.118

Axial Chord Length cax 36.955 mm
Stagger Angle γ 54.9◦

LE Radius RLE 4.126 mm
TE Radius RTE 0.710 mm

TE Wedge Angle SS ϕSS 4.0◦

TE Wedge Angle PS ϕPS 2.5◦

Inlet Angle βin 0.0◦

Outlet Angle βout 74.0◦

Stretching Factors PS kPS 1.175
PS Thickness (x4) t1PS , ..., t4PS see Tab. 2

Stretching Factors SS kSS 1.1
SS Thickness (x9) t1SS , ..., t9SS see Tab. 2

Table 1: Design parameters used to define the LS89 blade profile

Bézier Control Point Index j tjSS [mm] tjPS [mm]
1 16.750 2.250
2 15.900 6.650
3 19.690 2.300
4 6.750 0.040
5 10.750
6 4.750
7 6.850
8 2.565
9 2.295

Table 2: Bézier control point normal distances relative to the camber line

The profile was designed and optimized in the two-dimensional space at the VKI for a 0.9
downstream isentropic Mach number by an inverse method described in [9]. It was tested at the
VKI laboratories with the aim to use the experimental data as a benchmark to validate the VKI
CFD prediction capabilities in the late 80s. The complete experimental results were published
during the 1990 International Gas Turbine Conference held in Brussels [10]. The final report
is the VKI Technical Note TN174 [11]. The LS89 has been tested for different Reynolds and
Mach numbers in the VKI-CT2 test facility. A description of different set ups for optimization
studies can be found in [12].
The LS89 profile geometry shown in Fig. 5 comes first from point data [11] that has been
fitted with the parametrization method described before. The geometry is defined using 24
geometrical parameters shown in Tab. 1 and 2. The position of the Bézier control points of the
suction side and pressure side is shown in Fig. 5.

3850



Ismael Sanchez Torreguitart, Tom Verstraete and Lasse Mueller

4 RESULTS AND DISCUSSION

The geometrical and the grid sensitivities are obtained for all the design parameters, showing
the influence that each design parameter has on the aerofoil surface X-Y coordinates and the
CFD grid X-Y coordinates respectively. The discussion herein is limited to the parameters
t1SS , RLE , cax (see Tab. 1) for the sake of simplicity. In the following subsections, the AD
geometrical sensitivities, which are defined as the change in the X-Y turbine profile coordinates
with respect to a design parameter change, will be discussed first. The grid sensitivities, which
are defined as the change in the X-Y grid coordinates with respect to a design parameter change
will be discussed next. Finally, the sensitivities obtained by AD will be compared against FD.

4.1 AD geometrical sensitivities

Figures 6(a), 6(b) and 6(c) show the magnitude and direction of the geometrical sensitivities
obtained for the t1SS , RLE , cax design parameters, respectively. Different scale factors are used
to display the length of the vectors. Figure 6(a) clearly shows that an infinitesimally small
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Figure 6: AD geometrical sensitivities

perturbation of t1SS causes the movement of the points along the suction side shoulder in the
normal direction in which the suction side first Bézier control point position is specified relative
to the camber line. A similar perturbation in the RLE forces the first control point of the suction
and pressure side to move away from the camber line because their position is a function of
the LE radius, making the points along the LE region to move in the y direction accordingly
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as displayed in Fig. 6(b). Figure 6(c) shows that a perturbation in the cax causes the points
along the camber line, SS and PS curves to move away from the stagnation point at the LE.
Although the scale factor does not allow to show the magnitude of all the sensitivities, all the
control points (except the first of the SS and PS curves) sensitivity vectors point away from
the stagnation point because the TE point (PTE from Fig. 2) also moves away in both x and y
directions. The TE point movement is not in the x direction only because an increase of axial
chord by virtue of a constant stagger angle requires the TE point (and the camber line) to move
in the (x,y) space.

4.2 AD grid sensitivities

Figures 7(a), 7(b) and 7(c) show the magnitude of the grid sensitivities obtained for the t1SS ,
RLE , cax design parameters, respectively. In general, a perturbation in the design parameter
can cause two type of perturbations in the CFD grid point coordinates. First, the grid point
distribution along the edge of the curve itself can change due to the fact that the normalised
arc-length functions used to distribute points in the edge undergo some changes. This type of
perturbation that moves the surface grid points tangentially to the surface can also propagate
into the interior domain of the grid but it has a tendency to decay rapidly. Secondly, the grid
points coordinates in the fluid domain change as well according to the overall grid point field
movement sensed by them. The source of this perturbation is stronger than for the first type
and originates in the region where the geometrical sensitivities are not zero. Figure 7(a) clearly
shows that a small perturbation in the t1SS causes the grid points in the fluid domain above the
SS shoulder to move and this movement also propagates into the PS fluid domain through the
periodic interface. The rear suction side grid points are also affected due to the fact that the arc-
length distribution changes. The geometrical throat is used herein to split the SS curve into two
edges to have more control of the grid point distribution along the SS curve. This means that
the geometrical throat on the SS (see Fig. 7(a)) is the end of the SS pre-throat and the beginning
of the SS post-throat edges, which are using different arc-length distributions. Therefore, it
is expected that a perturbation in SSThck1 causes a grid point position variation along the
SS pre-throat and post-throat edges because the length of these edges changes. However, as
the geometrical throat X-Y coordinates remain fixed, the grid points in the vicinity of the SS
geometrical throat do not sense any perturbation.

Figure 7(b) shows that the biggest influence of RLE is in the vicinity of the largest geometri-
cal sensitivities (see Fig. 6(b)). The perturbation on the SS also propagates into the PS interior
domain through the periodic interface. Also, the changes in the normalised arc-length functions
for the PS and SS edges result into grid point movements in both PS and SS curves. As the SS is
more curved than the PS, it is expected that a perturbation in theRLE changes the total length of
the SS curve more than for the PS. This is the reason why the RLE grid sensitivities at the rear
SS are bigger than the rear PS. The grid point displacements along the SS and PS also propagate
into the interior of the fluid domain but decay more rapidly than in those that propagate from
the LE region. The minimum sensitivity areas around the profile correspond to those grid points
that are fixed, like the stagnation point, the geometrical throat position, and the SS and PS end
points towards the TE. In these points, the arc-length functions do not change because they take
the values zero or one, depending the orientation in which the grid point distribution has been
applied to the edges.

Figure 7(c) shows a non-periodic character, for the displacement field is not repeated passage
after passage. This is because the solidity, as an independent parameter, remains constant under
a change of the axial chord length, resulting is a proportional change in pitch. Identical points
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Figure 7: AD grid sensitivities

on the opposite side from the periodic boundary will experience a jump in the y-component
of the grid sensitivity, proportional to the change in pitch. In the figure, the jump value has
been added to the top CFD domain such that a continuous field is visualized. The choice to use
solidity as an independent parameter is inspired by it’s importance in classical turbomachinery
design practice.

4.3 AD vs FD comparison

The geometrical and grid sensitivities obtained by AD are compared against FD second order
central derivatives by tuning the step size. Figures 8(a) and 8(b) show the maximum error in
magnitude between the FD approximated and the exact AD sensitivities for the t1SS , RLE and
cax design parameters. The error is very sensitive to the chosen step size and the step size
needs to be relatively small to have a small error. Figures 8(a) and 8(b) show that the error in
both cases reduces with order two as the step size is reduced up to a critical step size, as to
be expected for a central second order FD scheme. If the step size is chosen too small below
this critical step size, the numerical representation of the FD approximation becomes unstable
and more error-prone due to the limited machine accuracy. The error increases with order one
approximately if the step size is reduced below the critical step size. Figures 9(a), 9(b) and
9(c) show the grid sensitivity error for the t1SS , RLE and cax design parameters if the step size
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is 1E-03 [m]. It has to be noted that the maximum grid sensitivity error shown in Fig. 9(b) is
relatively large, as it is only two orders of magnitude lower than the maximum grid sensitivities
shown in Fig. 7(b), and will eventually result in wrong gradient information.
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Figure 8: Max Error between the FD and AD

5 CONCLUSIONS

The method presented herein allows to integrate the CAD kernel and grid generation tools
within the CFD adjoint-based optimization algorithm by expressing the optimization problem
through CAD parameters, rather than working directly on the CFD grid. This allows the op-
timal shape to remain defined within the CAD tool and to differentiate the CAD kernel and
grid generation tool with algorithmic differentiation (AD) to obtain the grid sensitivities prop-
agated to the CAD-based parameters. The in-house CAD and grid generation tools have been
differentiated in forward mode and tested in the VKI LS89 axial high pressure turbine nozzle
guide vane. The two dimensional profile, constructed by means of Bézier and B-spline curves,
is parametrized by 24 design parameters and the geometrical as well as grid sensitivities are
obtained for each, showing the influence that each design parameter has on the profile and on
the CFD grid coordinates. Finally, the sensitivities obtained by AD are compared against finite
differences second order central derivatives by tuning the step size. The error introduced by FD
is very sensitive to the chosen step size and its magnitude can be relatively close to the sen-
sitivity value itself if the step size is not chosen appropriately. The algorithmic differentiation
of the cad kernel and grid generation tool is a promising approach to obtain accurate sensitivi-
ties with the best machine accuracy. Although in the present approach the AD sensitivities are
obtained in forward mode mainly, algorithmic differentiation also offers the reverse capability.
Further work will focus in differentiating the CAD kernel and grid generation tool in reverse
mode. The sensitivities computed in forward mode will serve to validate those obtained by
the reverse mode. The differentiated code will be integrated afterwards with the CFD solver
and the gradient-based optimization algorithm. Finally, the method will be extended to more
complicated 3D turbomachinery test cases.
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Abstract. Regardless of the specific discretisation framework, the discrete incompressible
Navier-Stokes equations present themselves in the form of a non-linear, saddle-point Oseen-
type system. Traditional CFD codes typically solve the system via the well-known SIMPLE-like
algorithms, which are essentially block preconditioners based on Schur complement theory.
Due to their “segregated” nature, which reduces to iteratively solving a sequence of linear
systems smaller than the full Oseen and better conditioned, traditional SIMPLE-like algorithms
have long been considered as the only viable strategy.

However, recent progress in computational power and linear solver capabilities has led
researchers to develop, for Oseen-type systems (and discrete Navier-Stokes in particular), a
number of alternative preconditioners and solution schemes, found to be more efficient than
SIMPLE-like strategies but previously deemed practically unfeasible in industrial contexts.

The improved efficiency of novel preconditioners entails a) faster, more stable convergence
and b) the possibility of driving residuals below more strict tolerances, which is sometimes
difficult with SIMPLE due to stagnating behaviour. The second aspect in particular is extremely
relevant in the context of adjoint-based optimisation, as evidence suggests that an adjoint system
may be affected by convergence issues when the primal flow solution is not well converged.

In this work, we present some solution schemes (both traditional and novel) implemented
for the Mixed Hybrid Finite Volumes Navier-Stokes solver we introduced in our previous work.
Performance, in terms of robustness and convergence properties, is assessed on a series of
benchmark test cases. We also turn our attention to the discrete adjoint Navier-Stokes prob-
lem itself, which in essence requires solving a linear system similar to the original Oseen and
therefore may benefit from the same preconditioning techniques. We show how the primal algo-
rithms are adapted to the adjoint system, and we run a series of adjoint test cases to compare
performance of various solution schemes.
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1 INTRODUCTION

In numerical optimisation, gradient-based methods are defined as a way of actively searching
for a local minimum of a given cost function J via minimisation algorithms that make use of
its sensitivity, i.e. its gradient with respect to a chosen set of design parameters α. Typical
examples related to fluid mechanics include: reducing the drag force exerted on an aircraft
wing by seeking the optimal airfoil profile; minimising the total pressure loss of a flow through
a duct by modifying the shape of the duct’s cross section.

Performing numerical optimisation in an industrial context can be prohibitively costly for
two reasons. Firstly, each iteration of the optimisation loop requires an evaluation of J , and
therefore a CFD solve. Secondly, extra computations are required in order to get the sensitiv-
ity dJ

dα
. The second issue in particular is a blocking factor in an industrial context: gradient

computation via traditional methods - finite differencing (FD) or forward-mode Algorithmic
Differentiation (AD) [11] - demands as many extra CFD solves as the number of design vari-
ables nα, which may be in the order of millions. This is notably the case for shape optimisation
processes where we want to compute the surface sensitivity, i.e. the gradient of J w.r.t. the
coordinates of each mesh node lying on the surface to be optimised.

The adjoint method [12, 13, 22] provides a workaround to the problem, as it allows to com-
pute the sensitivity of J at a cost that is essentially independent of nα. Our work is based on
the discrete adjoint approach, which consists in applying adjoint theory directly to the set of
discrete equations describing the original (or primal) problem. In short, a discrete adjoint boils
down to solving a linear system in the form:(

∂r

∂u

)T
u∗ = −∂J

∂u
(1)

where r is the primal residual vector and u∗ the discrete adjoint field.
The adjoint method, powerful as it is, suffers from stability and convergence issues. Solving

linear system (1) is not always a trivial task, and it was shown [20] that, if the primal solution is
not properly converged, then the adjoint might not converge at all. Evidence suggests that such
lack of robustness is to be blamed in part on the quality of the CFD solver itself, which in turns
depends on two key factors:

• the level of consistency and robustness of the discrete operators used in the primal;

• the efficiency of the algorithm used to converge the primal flow field.

In other words, even though a conventional CFD solver is able to produce results that are “good
enough” for mere engineering purposes, its discrete adjoint counterpart may be unstable or too
inaccurate to be of any use, since its quality is highly sensitive to how the primal governing
equations were discretised, as well as the tolerance down to which they were solved.

In our previous work [17, 18, 19] we addressed the task of finding robust discretisation
schemes for the Navier-Stokes equations, which we summarise in the next section. In this
paper we will turn our attention to developing improved solution algorithms for both primal
and adjoint systems.

1.1 Previous work: discretisation schemes

Traditional CFD solvers often rely on classical Finite Volumes (FV) schemes to discretise
the incompressible Navier-Stokes equations, which seem to produce discrete adjoints that some-
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what lack robustness. In our recent work we attempted to tackle such issue, focusing our re-
search on non-standard discretisation schemes. We looked in particular into a class of methods
formerly known as Mimetic Finite Differences (MFD), now renamed Virtual Elements Methods
(VE) [5], originally developed for pure anisotropic diffusion problems [3, 4] and subsequently
extended to convection-diffusion operators [7, 26] and 1st-order accurate Navier-Stokes [8].
Compared to FV, VE operators sport a series of attractive features, most notably:

• they “mimic” at a discrete level certain key properties of their continuous counterparts
(e.g. they satisfy the discrete Gauss-Green formula);

• they are perfectly consistent up to a set order of accuracy, which can be increased to an
arbitrary level by attaching extra degrees of freedom to each mesh element;

• they are fully implicit and free of numerical artefacts (e.g. the Non-Orthogonal Correctors
typically found in FV schemes);

• their requirements in terms of mesh quality are minimal, i.e. they can deal with highly
skewed, non-orthogonal or non-convex elements.

We refer the reader to our previous publications for details on our specific implementation
of a VE diffusion operator [17], the addition of a convective term [18], the extension to sta-
bilised 2nd-order accuracy and our implementation of a Mixed Hybrid Finite Volumes (MHFV)
Navier-Stokes solver [19]. Here we limit ourselves to providing a very simplified outline of our
framework.

The main degrees of freedom for a generic mesh cell (Figure 1) are:

• face-averaged velocities ~UF , with components uF , vF , wF ;

• cell-averaged pressure pC .

pC

UF3UF2

UF1

UF4

UF5

Figure 1: Placement of main MHFV flow variables on a generic 2D cell.
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Considering now the incompressible, steady-state Navier-Stokes equations{
~U · ∇~U −∇ · ν∇~U = −∇p+ ~g

∇ · ~U = 0
, (2)

when discretised via our MHFV operators they yield an Oseen-type saddle-point system
FΦ,x 0 0 Gx

0 FΦ,y 0 Gy
0 0 FΦ,z Gz
Dx Dy Dz 0




uF
vF
wF

pC

 =


gF,u
gF,v
gF,w
0

 (3)

or, in a more compact form: [
FΦ G
D 0

](
UF

pC

)
=

(
gF
0

)
. (4)

C +

C –
F

F5
–

F3
–

F4
–

F2
–

F6
–

F6
+

F5
+

F4
+

F3
+

F2
+

Figure 2: Face-to-face stencil on a generic 2D mesh.

• FΦ,i stands for any version of the MHFV hybrid convection-diffusion operator described
in [19], acting on the ith velocity component. It is identical in all 3 spatial directions
(boundary conditions aside), and it is of course non-linear, since it depends on the con-
vective flux ΦF which is a function of ~UF . However, when linearised w.r.t. ΦF , FΦ is
evidently block-diagonal, i.e. it only acts on the velocity component in its own direction.

The operator is derived by defining a face flux ΨFC , through face F outward w.r.t. cell C,
catering for both convective and diffusive fluxes and acting on its respective component
of ~UF ′ defined on all faces F ′ belonging to C. For instance, for uF :

Ψu
FC =

∑
F ′∈C

nCFF ′uF ′ . (5)

Derivation of the nCFF ′ coefficients, omitted here, is the core of the VE/MHFV scheme.
We then impose flux conservation across each face, i.e.

Ψu
FC+ + Ψu

FC− = 0 (6)
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where C+ and C− denote the two cells connected by face F , which yields the above
mentioned hybrid convection-diffusion operator. FΦ therefore operates on a face-to-face
stencil, as the one shown in Figure 2;

• the divergence operator D is simply derived from the Gauss divergence theorem applied
over each cell, i.e.

DC
(
~UF

)
=
∑
F∈∂C

~UF · ~F (7)

where ~F = {Fx, Fy, Fz} is the area vector of face F , outward w.r.t. cell C;

• the gradient operator G acting on the pressure is, for a 1st-order scheme, the transpose of
the divergence operator, i.e.

GF (pC) = ~F (pC− − pC+) . (8)

For a 2nd-order scheme, the operator also includes least-squares approximations of pres-
sure face values:

GF (pC) = ~F
{[
pC− +∇LSQ

C− p · (~xF − ~xC−)
]
−
[
pC+ +∇LSQ

C+ p · (~xF − ~xC+)
]}

. (9)

1.2 MHFV discrete adjoint

Let us now turn our attention to the discrete adjoint Navier-Stokes problem. In order to
assemble the adjoint system (1) we make use of the Equational Differentiation (ED) methodol-
ogy which we describe in [21]. In a nutshell, ED stands as a clear formulation of the fact that
we differentiate the primal (4) itself, and not the solution algorithm used to solve it (which is
what AD does). In other words, ED requires assembling (1) explicitly and independently of the
primal solving algorithm. Assembly of the Jacobian matrix ∂r

∂u
and the adjoint right-hand side

−∂J
∂u

may be done via any viable method, such as hand-differentiation, FD or AD tools. In our
case, we make use of FD techniques combined with colouring algorithms in order to make the
assembly cost independent of the problem size. One of the main advantages of such approach is
that it allows to assemble the system in an automatic, non-intrusive and black-box-like fashion.
However, since one of our goals here is to devise preconditioning techniques for the adjoint
system, it is paramount that we analyse its structure.

Let us consider the Jacobian ∂r
∂u

of the MHFV Navier-Stokes problem, i.e. the matrix of
partial derivatives of the residual vector of system (4) with respect to each flow variable. The
gradient and divergence operators, G and D, are linear with respect to all variables, and there-
fore their corresponding entries in the Jacobian correspond to the operators themselves. The
convection-diffusion operator FΦ, however, is non-linear with respect to UF : this is mainly due
to its dependency on the convective flux ΦF , although further non-linearities may be also be
present if the operator includes certain solution-dependent discretisation schemes (flux limiters,
weighting coefficients...), which is notably the case for our Upwind Least Squares (ULSQR)
stabilisation technique, often used in our tests. The full Jacobian A takes the form:

A =


F̃xx F̃xy F̃xz Gx
F̃yx F̃yy F̃yz Gy
F̃zx F̃zy F̃zz Gz
Dx Dy Dz 0

 (10)
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or, in compact notation:

A =

[
F̃ G
D 0

]
. (11)

Unlike its primal counterpart, the adjoint momentum block F̃ is not block-diagonal, due to
the fact that convective fluxes ΦF depend on all components of ~UF , and therefore so does the
momentum residual, regardless of its specific direction. Each entry F̃ij in (10) corresponds
to the partial derivative of the momentum residual in the ith direction with respect to the jth

velocity component. Defining now g∗F = − ∂J
∂UF

and g∗C = − ∂J
∂pC

, J being the cost function, we
can assemble the full adjoint system:[

F̃T DT
GT 0

](
U∗F
p∗C

)
=

(
g∗F
g∗C

)
, (12)

where U∗F and p∗C are the adjoint velocity and pressure fields, respectively. The system is
evidently an Oseen-type saddle-point problem, much like the primal it is derived from.

2 PRECONDITIONING OF OSEEN-TYPE PROBLEMS

In the past few decades, constant increases in computing power have driven the advances
in algorithm development, specifically towards block preconditioners for Oseen-type systems
more efficient than the traditional SIMPLE-like strategies. Research has successfully produced
a number of alternative algorithms, although mostly restricted so far to the FE community:
variants of classical ILU preconditioners [28]; those based on the so-called approximate com-
mutators [9] - in particular the Pressure Convection-Diffusion (PCD) commutator [15]; the
Augmented Lagrangian approach [1]. Several interesting comparisons amongst various Navier-
Stokes preconditioners have also been published [23, 24].

We showed above how our discrete Navier-Stokes problem, both primal and adjoint, indeed
takes the form of a saddle-point Oseen-type problem. The main difference is that the primal
is non-linear due to the contributions of convective terms to FΦ, which depend on UF , and
therefore requires an outer iterative procedure (Picard iteration) on top of the inner one that
solves the linearised Oseen problem itself. However, since there is no interest in obtaining the
exact Oseen solution at each Picard iteration, the two are typically performed at the same time
in a one-shot fashion: this gives rise to the well-known CFD solution algorithms, which are in
fact the mere combination of preconditioners for linearised Oseen-type systems with outer non-
linear iterations. The adjoint is simply a linear saddle-point problem; it is therefore perfectly
legitimate to devise generic algorithms that can be adapted to both primal and adjoint, provided
that a few subtle differences are taken care of. For this reason, in the following sections we will
first describe preconditioners for a generic Oseen system written in the following notation:[

F G
D 0

](
U
p

)
=

(
gu
gp

)
, (13)

then adapt them to the MHFV framework and highlight the differences between primal and
adjoint.

Notice that we set the lower right matrix block in (13) to zero, which is the case for our
Navier-Stokes scheme (4) and for its adjoint (12). This is typically true for FE schemes satisfy-
ing the so-called inf-sup stability condition, but false in general - most notably for classical FV
using Rhie-Chow interpolation, as well as for many common stabilised FE schemes.
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In the following sections we cover some of the algorithms we implemented so far, which are
mostly MHFV adaptations of preconditioners developed for traditional FV or FE schemes. It
is worth mentioning that, although our main goals are a) to achieve a better converged primal
in order to produce a more robust discrete adjoint and b) to devise efficient ways of solving the
adjoint itself, the potential benefits of our investigation go beyond the scope of adjoint-based
optimisation, since the ability to solve the discrete Navier-Stokes to higher accuracy and in as
few iterations as possible is highly desirable in the industry, regardless of adjoint computation.

2.1 SIMPLEC

Classical FV often make use of the ever-popular SIMPLE-like solution algorithms (see e.g.
[25]). The efficiency of SIMPLE-like preconditioners is debatable at best: they are somewhat
stable but they exhibit a rather poor convergence rate, they are prone to stagnation and their per-
formance is affected by mesh refinement. They mostly owe their popularity to legacy reasons,
being amongst the first devised working methods, and to their segregated nature, as they require
solving linear systems that are relatively small and better conditioned in comparison to the full
Oseen.

Despite traditionally being presented as segregated algorithms, highlighting the fact that they
solve separately for velocity and pressure, SIMPLE-like strategies can in fact be seen as a way
of preconditioning the discrete Oseen problem [24]. Notice that the generic Oseen matrix in
(13) can be factorized as [

F G
D 0

]
=

[
F 0
D −S

] [
I F−1G
0 I

]
, (14)

where I is the identity matrix and S is known as Schur complement:

S = DF−1G. (15)

This suggests a potentially very efficient way of preconditioning the Oseen system; in fact,
an exact Schur complement would provide an exact preconditioner, i.e. it would allow us to
solve the linearised (13) in one iteration only. However, this would require inverting operator
F, which would be computationally extremely expensive in real-life engineering applications.
Hence, practicality dictates that we compute an approximate Schur complement instead:

Ŝ = DF̂−1G (16)

and solve iteratively (relaxing if necessary) as follows:

1. solve FUn+1/2 = gu −Gpn (predictor step for velocity);

2. solve Ŝδp = DUn+1/2 − gp (pseudo-Laplacian for pressure correction);

3. update pressure: pn+1 = pn + δp;

4. update velocity: Un+1 = Un+1/2 − F̂−1Gδp (corrector step);

5. if non-linear, update operator F (Picard step).
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If F happens to be block-diagonal, as is the case for the primal Navier-Stokes system, then step
1 can be split into three separate linear solves, each corresponding to the momentum equation
in its respective spatial dimension.

In its most basic implementation, SIMPLE approximates the inverse of F with the inverse of
its main diagonal:

F−1 ≈ F̂−1 = (DIAG (F))−1 . (17)

In this paper, we focus on the variant of SIMPLE known as SIMPLEC. It operates by adding to
the momentum equations in (13) some form of implicit relaxation by factor α:

Fα = F + αDIAG (F) (18)

and subsequently approximating the inverse of F as:

F−1 ≈ F̂−1 =
1

α
(DIAG (F))−1 . (19)

It has been observed [25] that SIMPLEC, in the steady-state case, yields a pseudo-Laplacian
pressure equation aimed at correcting the velocity increment

(
Un+1/2 −Un

)
rather than the

velocity itself, and since it acts on relaxed velocity increments, it does not require relaxing the
pressure correction step.

We previously adapted SIMPLEC to the MHFV framework. The main difference with re-
spect to classical FV is that, when relaxing our operator FΦ, instead of using its diagonal coef-
ficients as in (18), we apply inertial relaxation in the form:

FΦ,α = FΦ + α [diag (βF )] (20)

where βF is a suitable scaling factor defined for each face, related to the hybridisation procedure
(i.e. the elimination of cell-averaged velocity components in the convection-diffusion operator)
and the flux conservation (6) we impose at each face. Our inertial relaxation is proportional
to the local Reynolds number ReF , meaning that stronger relaxation is applied in areas where
convection-to-diffusion ratio is higher. The explicit definition of βF , omitted here, can be found
in [19].

For the primal, the overall iterative algorithm is analogous to the generic one outlined above,
the only difference being that, since we are dealing with incompressible flow, there is no source
term for the continuity equation.

Primal SIMPLEC:

1. solve relaxed momentum:

FΦn,αU
n+1/2
F = gF − GpnC + α [diag (βF )]Un

F ; (21)

2. solve pseudo-Laplacian:

D
[

diag
(

1

αβF

)]
DT δpC = DUn+1/2

F ; (22)

3. update pressure:
pn+1
C = pnC + δpC ; (23)
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4. update velocity:

Un+1
F = U

n+1/2
F −

[
diag

(
1

αβF

)]
DT δpC ; (24)

5. update convective fluxes and assemble new operator FΦn+1,α.

Notice that here, in the Schur complement appearing in step 2, we use the transpose of the diver-
gence operatorDT rather than the gradient operator G. As mentioned in Section 1.1, the two are
identical - barring boundary conditions - when the pressure gradient term is discretised via the
1st-order scheme (8). For the 2nd-order scheme (9) that is no longer the case, meaning that by
using DT we introduce a further level of approximation in the Schur complement. We do so in
order not to degrade the sparsity pattern of the pseudo-Laplacian, which is already rather chal-
lenging for standard linear solvers even with 1st-order connectivity. Since this approximation
only affects the pressure correction step, the overall algorithm still converges.

SIMPLEC can be easily adapted to the adjoint system. The main difference is that the adjoint
momentum operator F̃T is not block-diagonal; since the ability to solve separately for each
velocity component is arguably one of the most attractive features of SIMPLE-like algorithms,
we aim to to maintain such de-coupled nature in the adjoint version. We therefore need to find
a suitable block-diagonal approximation to F̃T to be used as system matrix for the velocity
prediction step, whilst treating all extra-diagonal blocks explicitly. Intuitively, we choose to use
the transpose of operator FΦ itself, assembled using convective flux values ΦF taken at the last
primal iteration and therefore, presumably, converged.

As we did for the primal, we apply inertial relaxation in the form (20) to the adjoint mo-
mentum equation, which is necessary for steady-state SIMPLEC. We choose for simplicity to
recycle the same scaling factor βF from the primal, but we reserve the possibility to set a relax-
ation factor α independently. As for the adjoint pressure correction step, again we replace GT
with D, regardless of the order of accuracy of G, in order not to deteriorate the sparsity pattern
of the Schur complement.

Adjoint SIMPLEC:

1. solve relaxed adjoint momentum:

FTΦ,αU∗F
n+1/2 = g∗F −DTp∗C

n −
(
F̃T −FTΦ

)
U∗F

n + α [diag (βF )]U∗F
n. (25)

2. solve pseudo-Laplacian:

D
[

diag
(

1

αβF

)]
DT δp∗C = GTU∗F

n+1/2 − g∗C . (26)

3. update adjoint pressure:
p∗C

n+1 = p∗C
n + δp∗C ; (27)

4. update adjoint velocity:

U∗F
n+1 = U∗F

n+1/2 −
[

diag
(

1

αβF

)]
DT δp∗C . (28)
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The term
(
F̃T −FTΦ

)
U∗F

n on the right-hand side of (25) is the contribution due to the coupling
of adjoint velocity components that we treat explicitly, and in adjoint jargon it is known as
Adjoint Transposed Convection (ATC), a name borrowed from continuous adjoint theory.

It is also worth noticing that our adjoint SIMPLEC algorithm is very similar to what we
would obtain if we were to apply AD to our solver via the so-called Christianson’s method.
The method, described in [6], operates by 1) applying reverse-mode AD to the last CFD iter-
ation only, and 2) iterating until the adjoint states are converged. This can be interpreted as
transposing the primal algorithm by using FTΦ with a converged ΦF for the momentum linear
solves, with all off-diagonal blocks of the Jacobian - the ATC - relegated to the right-hand side.

2.2 Block-Coupled

The Block-Coupled (BCPL) solution strategy is arguably the most intuitive and straight-
forward way of solving a system like (13). In our framework, for the primal, it simply requires
solving (4) after linearisation, i.e. with a frozen convective flux ΦF , then update the value of
ΦF with the newly computed UF , re-assemble operator FΦ, and iterate. In other words, BCPL
proceeds from one Picard iteration to the next, without any inner Oseen iterations; it does not
in general require any relaxation.

As for the adjoint system, since it is linear, a BCPL approach reduces to one linear solve
with no iterations at all except for those that may be performed internally by the linear solver in
use (which may or may not be iterative).

The BCPL approach entails two major drawbacks:

• it has been observed [27] that the saddle-point nature of system (4) poses a challenge for
standard linear solvers, as it is difficult to precondition and, for certain types of solvers,
even difficult to factorise/solve via direct methods due to the so-called zero-block on the
main diagonal in the discrete continuity equation;

• while more traditional algorithms (such as SIMPLEC) require at each iteration solving
multiple smaller linear systems, the BCPL approach requires solving the full linearised
Oseen system (4) which can indeed be extremely large for industrial cases - even more so
in our MHFV framework, since the number of velocity unknowns scales with the number
of faces in the mesh, and not cells like in FV.

2.3 V-Coupled

We mentioned in Section 2.1 how the adjoint version of SIMPLEC solves for u∗F , v∗F and w∗F
in a segregated fashion, moving the ATC to the right-hand side. Although we did not record any
issues in our experiments, the ATC is known to be a troublesome term especially when treated
explicitly, causing severe instabilities to the point where some researchers, such as [14, 20],
resort to arbitrarily damping it, or even eliminating it completely in sensitive areas, in the hope
that the final sensitivities won’t be excessively affected qualitatively.

The issue is particularly evident in continuous adjoints, where the ATC appears explicitly at
a PDE level, thus posing the challenge of finding a suitable discretisation as well as a stable way
of treating it in the solution algorithm. However, it is reasonable to expect robustness issues in
a discrete adjoint as well, especially at high Re, since high values on the right-hand side of (25)
might cause instabilities, leading to divergence unless heavy relaxation is applied.

The obvious solution is to treat the ATC implicitly; we do so in our V-Coupled (VCPL)
algorithm, which is simply a version of the adjoint SIMPLEC from Section 2.1 in which, in the
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predictor step, we couple all velocity components by keeping them on the left-hand side:

F̃TαU∗F
n+1/2 = g∗F −DTp∗C

n + α [diag (βF )]U∗F
n; (29)

the pressure correction step (26), on the other hand, remains unchanged.
Besides tackling the above mentioned stability issues, by treating the ATC implicitly we can

also expect an overall reduction on the iteration count. On the downside, the VCPL approach
(29) comes with the obvious drawback of having to store larger matrices and solve larger linear
systems in comparison with SIMPLEC.

Of course the VCPL approach is only relevant to the adjoint system; applying VCPL to the
primal would be exactly equivalent to applying SIMPLEC, the only difference being that we
would be solving at each iteration a single, larger linear system rather than breaking it down
into three smaller ones.

2.4 Augmented Lagrangian

The Augmented Lagrangian (AL) preconditioning scheme for Oseen-type problems was first
presented by [1], and further developed with several variants by e.g. [2, 16]. AL-based precon-
ditioners have been so far investigated mostly within FE frameworks, and have been proven to
be theoretically almost optimal [2] in terms of mesh andRe-dependency. Despite its drawbacks,
we therefore deem it worth investigating the AL methodology and attempting to adapt it to our
MHFV scheme.

The AL core idea is to re-write system (13) as[
Fγ G
D 0

](
U
p

)
=

(
gu,γ
gp

)
, (30)

where
Fγ = F + γGW−1D (31)

and
gu,γ = gu + γGW−1gp. (32)

Systems (30) and (13) are clearly equivalent, since (31) and (32) simply add to the velocity
blocks a term proportional to residual of the continuity equation. In other words, the AL method
corresponds to adding to the momentum equations a penalisation term which is driven to zero
for a converged solution. In (31) and (32), γ is a positive augmentation factor, and W an
arbitrary symmetric positive definite (SPD) matrix.

As observed by [2], an advantage of using an AL formulation (besides theoretical near-
optimality of the preconditioner itself) is that the issue of finding a good approximation for the
Schur complement (15) is circumvented. If the augmentation factor is large enough, then the
penalisation term will prevail on the operator F itself, thus justifying the approximation

F−1
γ ≈ F̂−1

γ =
(
γGW−1D

)−1 (33)

which yields an approximate Schur complement in the form:

Ŝ = D
(
γGW−1D

)−1 G =
1

γ
W. (34)

The generic AL iterative procedure is outlined as follows:
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1. solve FγUn+1 = gu,γ −Gpn (penalised momentum equation);

2. solve 1
γ
Wδp = DUn+1 − gp (pressure correction);

3. update pressure: pn+1 = pn + δp;

4. if non-linear, assemble new augmented momentum operator Fγ .

In FE, matrix W is often chosen to be the so-called pressure mass matrix or, for practical rea-
sons, a diagonal approximation of it (usually a lumped mass matrix, or else simply its main
diagonal); in that case, the pressure correction step 2 involving the approximate Schur comple-
ment (34) simply requires inverting a diagonal matrix, i.e. it doesn’t actually involve a linear
solve. The main drawbacks of AL-based preconditioners are:

• the augmented momentum operator Fγ is no longer block-diagonal, because each of the
velocity components contributes to the penalisation term of the momentum equations in
all spatial dimensions. Therefore, step 1 in the procedure above entails a single coupled
linear solve for u, v and w at the same time and, unlike with SIMPLEC, it cannot be
de-coupled into segregated smaller systems, at least for the basic AL formulation;

• as shown by [1], too large values of γ cause the penalised block Fγ to become increasingly
ill-conditioned since GW−1D is a singular matrix, and therefore increasingly challenging
for linear solvers. On the other hand, the approximated Schur complement (34) is only
close to the exact one if γ is large enough, hence if γ is chosen too small, the overall
algorithm may underperform or even diverge. A trade-off between these two extremes
is thus required, possibly combined with inexact solves of the augmented momentum
equations.

Developing an AL preconditioner for our primal MHFV solver is fairly straight-forward. We
already described in Section 1.1 the divergence operator D (7); we proceed by adding a penali-
sation term in the form (31) to our MHFV momentum operator as follows:

FΦ,γ = FΦ − γµDT
[

diag
(

1

|C|

)]
D, (35)

whereas the right-hand side remains unchanged since there is no source term for the continuity
equation. A few observations are in order:

• as we did for the SIMPLEC Schur complement, here we use DT rather than G in the
AL augmentation term. We already highlighted how the two are identical in the case
of 1st-order pressure gradient scheme (8), and since a 2nd-order accurate G as defined in
(9) would further increase the complexity of the already challenging augmented operator
(35), we choose to stick with the 1st-order operator DT . It is important to stress that such
choice does not in any way affect the order of accuracy of the solution itself: the AL
algorithm ultimately drives DUF , and therefore the penalisation term, to zero, and the
final flow field satisfies the original non-augmented Navier-Stokes problem (4);

• |C| is the volume of cell C, and the diagonal matrix diag (|C|) plays in (35) the role of W
in the generic formulation (31). In a FV-like framework, such as ours, this is indeed the
equivalent of the FE pressure mass matrix, and since it is diagonal it can be inverted with
no further approximation;
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• besides the augmentation parameter γ, we also multiply the penalisation term by a scal-
ing factor µ, in order to maintain γ within a range of values that work reasonably well
regardless of the specific mesh size and problem physics. Following suggestions from [1],
we set µ to scale with the velocity: µ = max|~UC |, where |~UC | the cell-averaged velocity
magnitude.

We can now outline our primal AL iterative procedure.

Primal Augmented Lagrangian:

1. solve augmented momentum:

FΦn,γU
n+1
F = gF − GpnC ; (36)

2. compute pressure correction:

δpC = −γµ
[

diag
(

1

|C|

)]
DUn+1

F ; (37)

3. update pressure:
pn+1
C = pnC + δpC ; (38)

4. update convective fluxes and assemble new augmented operator FΦn+1,γ .

Lastly, we propose here an adaptation of the AL preconditioner to the adjoint Navier-Stokes
system. Following the generic methodology above, the penalised adjoint momentum operator
becomes

F̃Tγ = F̃T − γµDT
[

diag
(

1

|C|

)]
D, (39)

and its right-hand side:

g∗F,γ = g∗F − γµDT
[

diag
(

1

|C|

)]
g∗C . (40)

The scaling factor µ is taken from the primal, while the penalisation coefficient γ is defined
independently.

Notice that, as we did for the primal, in (39) we replaced GT with D in the adjoint aug-
mentation term in order to avoid excessively complex connectivities. For the adjoint, however,
we need to take a few extra measures: the adjoint continuity equation dictates that we pe-
nalise by a quantity proportional to

(
GTU∗F − g∗C

)
exactly; therefore, if GT 6= D, penalising for

(DU∗F − g∗C) as we do in (39) and (40) may never converge, as it would be the equivalent to
solving the adjoint of a 1st-order accurate primal, which would be inconsistent with the actual
Jacobian. A way around the issue is to treat all the (presumably small) 2nd-order contributions
explicitly, as shown in the algorithm below.

Adjoint Augmented Lagrangian:

1. solve adjoint augmented momentum:

F̃Tγ U∗F
n+1 = g∗F,γ −DTp∗C

n − γµDT
[

diag
(

1

|C|

)] (
GT −D

)
U∗F

n; (41)
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2. compute adjoint pressure correction:

δp∗C = −γµ
[

diag
(

1

|C|

)] (
GTU∗F

n+1 − g∗C
)

; (42)

3. update adjoint pressure:
p∗C

n+1 = p∗C
n + δp∗C . (43)

3 NUMERICAL RESULTS

L
wall

wall

wall

u = 1 , v = 0

Figure 3: Lid-driven cavity test case.

Mesh Type A Mesh Type B

Figure 4: Mesh types used for the lid-driven cavity test case.

For a first evaluation of the performance of our (primal) algorithms, we test them on the well-
known 2D lid-driven cavity benchmark test case, set-up as shown in Figure 3. We run it at two
different Reynolds numbers, Re = 102 and Re = 103, on the two different mesh types shown
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in Figure 4, with Type A being a quadrilateral, highly distorted/non-orthogonal mesh, and Type
B a more regular, polygonal honeycomb-like mesh. We test on a series of progressively refined
meshes of both types in order to assess h-dependency.

As for the discretisation schemes, we use 2nd-order MHFV operators for both velocity and
pressure, the first stabilised via our ULSQR technique described in [19], the second as in (9).
All simulations are run down to a tolerance of 10−4 on scaled residuals.

3.1 Block-Coupled
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Figure 5: MHFV Block-Coupled. Lid-driven cavity test case. Iteration count in function of mesh type, mesh size
and Re.

Results for BCPL are shown in Figure 5 where we plot, for each mesh type and each Re, the
iteration count niter against the number of mesh faces, i.e. against mesh refinement.

The figures are rather positive: at Re = 102 the iteration count is consistently small (below
10), and does not appear to be affected by mesh size or quality; at Re = 103 we record an
asymptotic behaviour of niter with respect to mesh size, namely the iteration count is higher on
coarser meshes and tends to settle around a value in the order of 10 as we refine the mesh; such
behaviour is identical over both mesh types. Evidence thus suggests that our BCPL algorithm is
independent of mesh quality and mesh size (barring coarse mesh cases, where it underperforms
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slightly), and only marginally affected by an increase of Re.

3.2 SIMPLEC
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Figure 6: MHFV SIMPLEC. Lid-driven cavity test case. Iteration count in function of mesh type, mesh size, Re
and relaxation factor α.

We perform on our SIMPLEC scheme the same tests presented above for BCPL. For SIM-
PLEC we also try out different values of relaxation factor α, in order to verify whether the
optimal value depends on the other parameters.

The resulting graphs are reported in Figure 6. It appears that, for both mesh types and both
Re, setting α = 0.1 gives the best performance in terms of both iteration count and algorithm
scaling against problem size. Results are encouraging in that sense, as that they suggest that the
optimal relaxation factor does not depend on mesh quality, and it is only slightly influenced by
grid coarseness and problem physics.

On the other hand, these results also highlight two severe limitations of SIMPLEC itself:

• the iteration count scales with the problem size, i.e. refining the mesh causes niter to
grow. The iteration count itself is in general very high, roughly an order of magnitude
greater than with the BCPL approach;
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• the algorithm heavily depends on numerical parameters, and in particular on mesh type.
Notice how niter is in general much higher, and grows more rapidly with the problem
size, for mesh Type A. This can be attributed to the irregularity of Type A, which fea-
tures several strongly distorted cells as well as a wide range of cell volumes/face areas -
whereas Type B is only slightly non-orthogonal, and perfectly regular in terms of element
size. This might be causing SIMPLEC to underperform on Type A compared to Type B,
despite the considerably smaller problem size.

3.3 Augmented Lagrangian
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Figure 7: MHFV Augmented Lagrangian. Lid-driven cavity test case. Iteration count in function of mesh type,
mesh size, Re and augmentation factor γ.

Once again we run the lid-driven test case to validate the performance of AL in function of
Re, mesh quality and mesh size; we also test for different values of penalisation factor γ. Results
are reported in Figure 7. The curves show that there is no definite correlation between niter
and grid size nor grid quality, hence our AL implementation is completely mesh independent.
Similarly to the other preconditioners, we observe however a slight increase in iteration count
for higher Re values. The value of niter itself remains in the order of 10, hence much lower
than that of SIMPLEC and fairly close to BCPL results, thus confirming the near-optimality of
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the AL algorithm.
Results also highlight how higher values of γ consistently reduce the total number of iter-

ations; this is expected because, when γ is high, the convection-diffusion operator FΦ in (35)
becomes negligible compared to the penalisation term, and therefore the diagonal approximate
Schur complement used in (37) is close to the exact one. However, as observed in Section 2.4,
too high values of γ will cause the augmented operator FΦ,γ to be nearly singular, thus hinder-
ing the linear solve for velocity prediction. Keeping γ in the order of 1 appears to be a resonable
choice; in order to run tests at higher γ values, we circumvent the linear solver issue by using
direct solvers, which is however not a viable option for real industrial cases.

3.4 Comparison of primal Navier-Stokes solution algorithms
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Figure 8: S-bend test case. Convergence history of the x-momentum and continuity scaled residual norms for
different solution algorithms.

We run a further comparison of the primal BCPL, SIMPLEC and AL algorithms on a 3D
flow solve: the S-bend, a popular benchmark test case involving an internal flow simulation
through an S-shaped air duct. We run the S-bend at a fairly low Re ≈ 400 and over a relatively
coarse, hexahedral mesh (approximately 41k elements and 126k faces). We show in Figure 9
the S-bend geometry and some solution contours.

For the current test, we set the following algorithm parameters: no relaxation for BCPL;
α = 0.1 for SIMPLEC (experimentally determined to be close to optimal); γ = 5 for AL (which
we found to produce good overall convergence properties whilst maintaining the augmented
system relatively well-conditioned). Tolerance is set to 10−4 for both momentum and continuity
equations. As for the numerical scheme, we set our MHFV solver to 2nd-order accuracy for both
pressure and velocity, the latter stabilised via the previously mentioned ULSQR strategy.

A comparison is shown in Figure 8, where we report the history of the x-momentum and
continuity scaled residuals for each preconditioner. The graph demonstrates once again the
definite superiority of both BCPL and AL over SIMPLEC in terms of convergence rate. The
reader may also notice a stagnation-like behaviour of SIMPLEC at the last few iterations, also
noticeable in other graphs throughout this paper. This is due to the fact that our CFD solver
only performs a linear solve if the initial residual norm for the specific equation being solved
is above the global tolerance; not all segregated equations reach convergence at the exact same
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(a)

(b)

(c)

Figure 9: S-bend test case. Domain geometry (a), velocity magnitude (b), pressure field (c).

iteration, hence a synchronisation phase happens at the end of the process, essentially causing
the equations to be solved alternately until all residual norms align just below tolerance.

It is remarkable how BCPL and AL exhibit very similar convergence properties. The differ-
ence is that AL runs several extra iterations, due to the fact that the continuity equation does
not converge at the same rate for the two: BCPL solves it exactly at each step, while AL itera-
tively reduces the continuity residual via the penalisation mechanism. The extra AL iterations
evidently result in a better converged momentum equation, at the expense of continuity being
solved only down the set global tolerance, whilst BCPL solves it exactly - or almost, depending
on the linear solver in use.

3.5 Comparison of adjoint Navier-Stokes solution algorithms

To test and compare performances of our adjoint preconditioners, we first run a simulation
on the simple 2D square box test case represented in Figure 10, a popular benchmark case
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Figure 10: Square box test case.

often used to illustrate adjoint-based optimisation techniques; the cost function J , necessary
to compute the adjoint right-hand side, is defined as the total pressure drop across the box’s
boundary ∂Ω:

J = −
∫
∂Ω

(
p+

1

2
|~U |2

)
(44)

We run the primal at Re ≈ 103 on a regular polygonal mesh (Type B in Figure 4); MHFV
operators are all 2nd-order accurate. We converge the primal down to a normalised resudual
of 10−6 in order to secure a robust discrete adjoint; for the adjoint itself, we set a tolerance of
10−4. We relax by α = 0.3 both SIMPLEC and VCPL, while for AL we use γ = 10. We report
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Figure 11: Square box test case. Convergence history of the adjoint x-momentum scaled residual norm for different
solution algorithms.

in Figure 11 the convergence history for the adjoint x-momentum. SIMPLEC and VCPL both
exhibit a somewhat oscillatory behaviour, and both converge roughly at the same rate. The gain
in iteration count obtained by opting for VCPL over SIMPLEC is moderate at best; a series
of other test cases, not reported here, also confirm that the reduction on niter, when present,
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is limited to a maximum of about 10%, at the considerable cost of having to solve a velocity
coupled system at each iteration. It should also be mentioned, however, that we mostly test on
fairly low-Re; we therefore maintain the argument that, for higher Re simulations, treating the
ATC implicitly may bring about significant advantages in terms of solver stability.

AL, on the other hand, outperforms by far the SIMPLE-like preconditioners. For this particu-
lar test case the adjoint momentum residual falls well below tolerance - in fact, down to machine
precision - from the very first iteration, whilst the adjoint continuity equation, not shown here,
converges to the given tolerance in 4 iterations only. Therefore, as for the primal, AL displays a
behaviour very close to the optimal BCPL approach - the adjoint system is linear, hence a fully
implicit adjoint BCPL approach does not need any outer iterations.
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Figure 12: S-bend test case. Convergence history of the adjoint x-momentum scaled residual norm for different
solution algorithms.

To further validate, we also assemble and solve the discrete adjoint of the 3D S-bend test case
whose primal we described in section 3.4; again we define as cost function the total pressure
drop (44). We use an optimal relaxation factor, found to be α = 0.28, for both SIMPLEC and
VCPL, and an augmentation factor γ = 10 for AL. Results are reported in Figure 12; we also
show, for the sake of generating reader interest, the computed surface sensitivity field in Figure
13.

Results on the S-bend confirm the observations previously made on the 2D square box: SIM-
PLEC and VCPL perform comparably (in fact, to be precise, for the S-bend VCPL even takes a
few more iterations than SIMPLEC due to the final residual synchronisation process explained
in Section 3.4), whilst AL drops the adjoint momentum residual down to near-machine preci-
sion from the very start, and only takes 3 iterations to converge the adjoint continuity below
tolerance. It should be mentioned, however, that all of the drawbacks highlighted for the primal
AL also affect the adjoint AL, namely: on one hand, the difficulties in solving the augmented
momentum other than via direct methods for too large values of γ; on the other hand, the failure
of the overall AL algorithm for a γ too small.
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(a)

(b)

Figure 13: S-bend test case. Surface sensitivity field: red areas indicate zones where pulling the surface outwards
results in total pressure loss reduction.

4 CONCLUSIONS

Despite our MHFV discretisation scheme being an alternative, non-standard form of the
discrete Navier-Stokes equations, numerical results shown in this paper reveal how the adap-
tation of preconditioning techniques developed for classical Finite Volumes or Finite Elements
schemes leads to algorithms exhibiting behaviours similar to those described in traditional lit-
erature. SIMPLE-type schemes suffer from poor convergence rates and excessive dependency
on mesh quality and size; alternative schemes, such as BCPL and AL, although fully mesh-
independent and theoretically near-optimal, are affected by several practical issues, notably
caused by the size and/or complexity of the linear solves involved. The same applies when such
algorithms are run for the adjoint Navier-Stokes system.

Convergence properties and robustness aside, there is one other aspect, paramount in indus-
trial contexts, which we haven’t yet delved into: the cost in terms of CPU time. Our tests show
that SIMPLEC benefits from a lower CPU time per iteration, as it involves solving smaller,
better conditioned systems. On the other hand, the CPU time per iteration is found to scale
similarly for all algorithms, and since the BCPL/AL iteration count is an order of magnitude
lower than for SIMPLEC, the former two remain by far the best choice.

Interestingly enough, an AL iteration appears to be roughly twice as expensive as a BCPL
one, despite AL solving for smaller matrices; this is easily explained by the fact that AL matri-
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ces, although smaller, are also less sparse: the face-to-face connectivity (Figure 2) repeated on
the off-diagonal blocks of the augmented momentum operator easily gives rise to AL matrices
with more non-zeroes than the full Oseen matrix itself. Of course the issue - which is scheme-
dependent and may be less aggravating for traditional FV methods - could be circumvented via
a more efficient preconditioning of the AL linear solves but, as we mentioned, this can prove to
be a very challenging task and beyond the scope of our current research.

In the near future we therefore plan to implement a MHFV version of the Modified Aug-
mented Lagrangian (MAL) described in [2], which is indeed designed to alleviate some of
the issues discussed above whilst still benefiting from most advantages brought about by AL.
We also plan to conduct further research related to Navier-Stokes preconditioning in general,
namely by investigating approximate commutators such as the Pressure Convection-Diffusion
(PCD) [15] and the Least Squares approximate commutator [10].
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Abstract. This paper presents the use of the continuous adjoint method, developed by the Par-
allel CFD & Optimization Unit of National Technical University of Athens (NTUA) in the Open-
FOAM environment, for the shape optimization of a passenger car defroster nozzle, including
experimental validation performed at Toyota Motor Europe (TME). The defroster nozzle plays
a major role in the demisting-defogging of the windshield, by blowing high velocity hot air jets
supplied by the HVAC (Heating, Ventilation and Air Conditioning) unit of the vehicle. For a
well–designed defroster nozzle, the time required for dispelling condensation or frost on the
windshield must be reasonable; the nozzle must also have the capability to perform uniform
defrosting from the bottom of the windshield to its top, without patches of condensation. In view
of the above, an appropriate objective function, to be minimized, is the integral of the differ-
ence of the air velocity from a target (desirable) one over a thin control volume defined close to
the windshield, inside the car cabin. To set up the optimization problem, the shape of a refer-
ence defroster nozzle is allowed to vary according to the morphing capabilities of a volumetric
NURBS tool developed by NTUA; the latter is also used for deforming the computational mesh
at each optimization cycle, by adapting it to the changed defroster shape. The CFD analysis is
based on RANS, using the k-ε turbulence model. The optimization loop uses the gradient of the
objective function with respect to the coordinates of the control points of a volumetric B–splines
lattice, which is computed using the continuous adjoint method. Experimental tests performed
to measure the actual velocity pattern on the windshield include velocity measurements with
a hot-wire anemometer. A convincing comparison between CFD analysis and measurements
is presented. The improved demisting performance of the geometry resulted from the adjoint
optimization was also experimentally validated, using rapid prototyping to manufacture the
designed defroster nozzle.
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1 INTRODUCTION

The safety and thermal comfort of automotive passengers are the most important factors in
the development of the automotive HVAC system, [6]. HVAC is responsible for the demisting
and defrosting of the vehicle’s windows and for creating/maintaining a pleasant climate inside
the cabin by controlling air humidity and temperature. The defroster nozzle, as part of the
HVAC system of vehicles, plays a major role in the demisting-defrosting of the windscreen.
Demisting refers to any function intended to remove a film of condensate from the internal face
of the surface of the windscreen. Defrosting refers to any function intended to eliminate frost or
ice from the external surface of the windscreen. The HVAC unit provides hot air to the nozzle
which is, blowing high velocity air jets to the windscreen.

Among other, windshield defrosting performance constitutes a compulsory test according to
national and international legislation since it has a significant impact on driving safety. The
formation of frost on the windshield and front door glasses during cold season can be proved
dangerous as it is veiling the drivers view and disturbing driving. Therefore, defroster perfor-
mance is seriously taken into consideration during the design of HVAC system. On the other
hand, the HVAC system has to meet the following performance requirements, [1]: (a) the time
required for dispelling condensation or frost on the windshield must be reasonable and (b) uni-
form defrosting ideally on the whole surface of the windshield must be ensured, for the latter to
become clear without being spotty or with condensation patches.

According to previous research [1, 4], the demist pattern is related to the air velocity distribu-
tion on the windshield, reflecting the defrosting performance to some extent. The defroster noz-
zle must, therefore, be designed to provide optimal air velocity distribution. This requirement is
expressed in the form of an (integral) objective function to be minimized using a gradient–based
optimization method.

CFD–based optimization methods based on either evolutionary algorithms or gradient–based
optimization can be used for the design of the defroster nozzle. In the latter case, the adjoint
method computes the gradient of the objective function with respect to (w.r.t.) the design vari-
ables, with a cost which is independent of the number of design variables. This paper presents
the use of the continuous adjoint method, developed by NTUA [8, 9, 10, 11] and implemented
within OpenFOAM, for the shape optimization of a passenger car defroster nozzle, including
experimental validation performed at Toyota Motor Europe (TME).

To set–up the optimization problem, the shape of a reference defroster nozzle is morphed
using a volumetric B–splines–based morphing tool; the same tool undertakes the deformation
of the CFD mesh at each optimization cycle. The CFD analysis is based on RANS, using the
k-ε turbulence model. The optimization loop uses the gradient of the objective function w.r.t.
the coordinates of the volumetric B–splines lattice, computed using the adjoint method.

Experimental tests to measure the actual velocity pattern on the windshield including ve-
locity measurements with a hot–wire anemometer, were performed at the TME premises, in
Belgium. A convincing comparison between CFD analysis and measurements is presented at
first. Then, the improved demisting performance of the nozzle geometry resulted from the ad-
joint optimization is confirmed on the basis of experiments; rapid prototyping techniques were
used to manufacture the optimized nozzle.
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2 CFD & EXPERIMENTAL ANALYSIS

The flow problem is governed by the RANS equations for steady-state, incompressible flow,
coupled with a turbulence model. The mean flow equations are:

Rp = −∂vj
∂xj

= 0 (1)

Rv
i = vj

∂vi
∂xj
− ∂

∂xj

[
(ν + νt)

( ∂vi
∂xj

+
∂vj
∂xi

)]
+
∂p

∂xi
= 0 i = 1, 2, 3 (2)

where vi are the velocity components, p stands for static pressured divided by the constant
density ρ, ν is the constant bulk viscosity and νt is the turbulent viscosity. Turbulent viscosity
results from the solution of the k-ε model, [7], with wall functions near the solid walls.

The flow equations are solved in the computational domain shown in fig. 1. The blower of
the HVAC unit provides the defroster nozzle with a high temperature airflow which, in turn,
directs high velocity air jets towards the windshield. The air flows through the whole cabin of
the car and exits through a flap located in the rear of the passenger compartment, to the outside.
Thus, the inlet (SI) to the domain corresponds to the inlet to the defroster nozzle, the outlet
(SO) is a rectangular patch located in the rear part of the cabin and solid walls (SW ) are the duct
sidewalls and the internal surface of the cabin.

At SI , Dirichlet boundary conditions are imposed on vi, k and ε and a zero Neumann condi-
tion on p. At SO, a zero Dirichlet condition is imposed on p together with zero Neumann ones
on vi, k and ε. No–slip boundary is imposed on the solid walls SW , where k, ε are computed
using wall functions and a zero Neumann condition is imposed on p.

Figure 1: Side (left) and bottom (right) view of the computational domain Ω. On the left, the surface mesh is
shown, highlighting the fact that the mesh is much finer inside the nozzle and in the front part of the cabin. SI is
in blue and corresponds to the inlet to the defroster nozzle. SO, in red, is close to the trunk. The solid walls SW

correspond to the remaining surfaces of the cabin.

The flow equations are solved using the SIMPLE algorithm and a cell–centered finite–
volume discretization scheme, on unstructured grids. The solution of the turbulence model
PDEs is decoupled. Convection terms are discretized using a second-order upwind scheme,
whereas for the computation of spatial gradients, the Green–Gauss theorem is used.

Before proceeding to the optimization, it is necessary to solve the flow problem, in the do-
main explained above, for the reference defroster nozzle. It should be noted that CAD data was
only used for parts where high accuracy is necessary (defroster nozzle, windshield, instrument
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panel close to the outlet of the nozzle, mirror). Already available laser scanned surface data was
used for the remaining parts of the car cabin. Mesh refinement boxes were defined to achieve
high accuracy where needed while balancing the overall computational cost, [5]. The mesh,
provided by BETA CAE Systems to TME, is fine in the front cabin and coarser in the rear.

The Reynolds number of the flow is approximately 20000, based on the inlet hydraulic di-
ameter. The flow fields over a cross section can be seen in fig. 2. The streamlines near the
windshield can be seen in fig. 3.

Figure 2: Velocity distribution across the symmetry plane; focus on the nozzle and windshield (left), the entire
computational domain (right). The velocity magnitude is almost zero in the car cabin while, in the duct and close
to the windshield, it reaches quite high values.

Figure 3: Streamlines emitted from seed points at the defroster inlet indicate the presence of small vortices of
low velocity air at the bottom of the windshield, below the level where the jet flow starts to be attached to the
windshield. The jet flow stays attached almost up to the level of the rear view mirror where recirculation occurs.

2.1 Experimental measurements–comparison

To verify the validity of the CFD results in the vicinity of the defroster nozzle jet flow and
the internal surface of the windshield, [2, 3], a grid with 100mm spacing was drawn on the
windshield, see fig. 4. The HVAC blower was controlled by constant voltage with an external
power supply ensuring that the defroster nozzle provides constant airflow. Velocity was mea-
sured at each grid point using the hot–wire anemometer; all measurements were performed at
points located on a surface 7mm away from the windshield, see also [2].
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Figure 4: Set–up of the velocity pattern measurement. On the left, the 100mm–spaced grid is shown while, on the
right, the use of the hot–wire anemometer on one of the grid points is demonstrated.

Measured and computed velocity patterns are compared in fig. 5. They are both non–
symmetrical because the instrument panel is so. On the driver’s side, the meter close to the
steering wheel is creating this asymmetry that is affecting the flow exiting from the defroster
nozzle, towards the windshield. Asymmetry is less intense on the CFD velocity pattern, since
the HVAC blower was considered to provide uniform flow, which does not happen in reality.
Regarding the measured velocity pattern, flow disturbance effects caused by the use of the mea-
suring tool may have a small impact too. Moreover, during the measurement, the side defroster
and face outlets were taped, so some leakage might be unavoidable. Last but not least, in a real
car, air leakage occurs through the ducts and other parts, so the mass flow made available to
the windshield through the defroster is lower than that provided from the blower, which was
imposed as input to the CFD simulation.
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Figure 5: Comparison between CFD–predicted (left) and measured (right) velocity distributions close to the wind-
shield. The axes are indicating the 2D grid used for the measurement (see fig. 4). CFD results and measurements
have been similarly interpolated for better visualization. CFD analysis and measurements show similar trends.

The velocity pattern provided by the CFD run (post-processed on the basis of the computed
velocity magnitude at the measurement points) gives a pattern qualitatively similar to the mea-
sured one. Quantitative differences between them can be due to the aforementioned reasons.
Overall, the CFD simulation is considered to provide an acceptable flow prediction which al-
lows to proceed to the adjoint–based optimization.
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3 FORMULATION OF THE OPTIMIZATION PROBLEM–THE ADJOINT SOLVER

3.1 Objective function

It is desirable that the air velocity pattern close to the windshield meets some performance
criteria pertinent to the improvement of the demisting and defrosting operation. Practically, a
uniform velocity distribution close to the windshield is targeted. Given that the upper part of the
windshield is dominated by low–velocity fluid flow, the objective function is confined to this
upper half (hereafter, to be denoted by Ωtar, figs. 6 and 7). There, target velocity vtar should
be higher than the flow velocity obtained with the reference defroster nozzle geometry. The
objective function F is given by

F =
1

2

∫
Ωtar

(v2
i − v2

tar)
2dΩ (3)

where Ωtar, fig. 6 is referred to as the target volume.

Figure 6: The thin target volume Ωtar where the objective function is defined is marked in red, inside the compu-
tational domain Ω.

Figure 7: Velocity pattern computed by the CFD software (left). The velocity magnitude contours shown are 7mm
away from the internal surface of the windshield. The air velocity distribution indicates low velocity areas in blue
and high velocity areas in red. On the right, on the same color scale (indicating vtar), the target volume (Ωtar) is
shown.

3.2 Optimization algorithm

To perform an automated CFD shape optimization loop for the defroster nozzle, the adjoint
solver coupled with an in-house morpher was used, [11]. The shape morpher is based on vol-
umetric B–splines [11], acting as a Free Form Deformation (FFD) method. The coordinates of
the control points of the volumetric B–splines are the optimization variables bn.
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To start, the 3D morphing box enclosing the nozzle geometry to be optimized, the number of
control points and the degree of the basis functions of the volumetric B–splines are defined. A
structured control grid is generated. CFD mesh points residing within the control grid are iden-
tified and parameterized; by doing so, these can be displaced in conformity to the displacement
of the control points during the optimization process. The flow and adjoint equations are solved
and the objective function gradient w.r.t. bn is computed. Having computed δF

δbn
, the control

point coordinates are updated via steepest descent. The CFD mesh is also updated according to
the nodal parametric coordinates which are assumed as constant during morphing. The previous
steps are repeated until a termination criterion is met.

3.3 Adjoint equations & boundary conditions

The adjoint problem, which leads to the computation of the sensitivity derivatives consists
of the adjoint mean flow equations

Rq = −∂uj
∂xj

= 0 (4)

Ru
i = uj

∂vj
∂xi
− ∂(vjui)

∂xj
− ∂

∂xj

[
(ν+νt)

(∂ui
∂xj

+
∂uj
∂xi

)]
+
∂q

∂xi
+2(v2

j−v2
tar)vi︸ ︷︷ ︸

only in Ωtar

= 0 i = 1, 2, 3 (5)

where ui is adjoint velocity and q is adjoint pressure as well as the adjoint boundary conditions,
as explained in detail in [8, 9].

After satisfying the adjoint mean flow equations and their boundary conditions, the sensitiv-
ity derivatives are given by

δF

δbn
= −

∫
SWP

[
(ν + νt)

(∂ui
∂xj

+
∂uj
∂xi

)
nj − qni

]
∂vi
∂xk

δxk
δbn

dS +
∫
SWP

(uiR
v
i + qRp)

δxk
δbn

dS (6)

where, in the first term inside the brackets, there are only flow and adjoint variables while
the outside part comes from the differentiation of the geometry, as computed by the morphing
software. For the differentiation of the turbulence model, the reader should refer to [8, 9]

4 NUMERICAL OPTIMIZATION & VALIDATION

Before proceeding to the shape optimization of the defroster nozzle, the adjoint equations
were solved in a domain associated with the reference geometry and the sensitivities of the ob-
jective function, eq. 6, w.r.t. the normal displacement of all surface mesh nodes were computed.
These are shown in fig. 8, in the form of the so–called sensitivity map.

4.1 Optimization results

Several optimization runs were performed until the most suitable new shape of the defroster
nozzle was obtained. The need to perform several optimization runs, instead of a single only,
comes from the necessity of selecting the appropriate parameterization setup that gives more
optimization potential, by also considering that the nozzle should be manufacturable and fit
inside the assembly of its neighbouring parts. Manufacturing and topology constraints were
manually taken into consideration during the optimization.

The designed (optimized) defroster nozzle yields 43% drop in the objective function and
has the following characteristics as far as the parameterization set–up is concerned. Firstly, the
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Figure 8: Sensitivity map indicating the change in the objective function F caused by the normal displacement of
the boundary faces. Blue–colored areas should be pulled outwards while red areas should be pushed inwards so as
to decrease the value of F .

control points were allowed to move only in the x–direction. Moreover, to get a quite smooth
shape, the displacements per iso–plane were averaged, see fig. 10. In other words, all control
points laying on the same iso–x plane are displaced in the x–direction using averaged sensitivity
derivatives.

Figure 9: Control box (3× 7× 9) with active (red) and frozen (blue) control points. The frozen control points help
to avoid mesh overlapping between the parameterized and non-parameterized areas. In this case, the side, top and
two bottom rows of the control points are kept frozen.

Figure 10: Reference (left) and optimized (right) defroster nozzle geometries and velocity patterns. In each row, the
control grid nodes are colored based on a different coordinate. The final shape is very smooth, due to the averaging
per iso–plane of the displacements of the control points and seems to be suitable for mass production. The field
shown in the last row is v − vtar in which green areas correspond to areas where vtar was reached, blue to areas
with lower air velocity and red to areas with greater air velocity than the target. The comparison between the two
patterns shows improvement in the coverage of the upper part of the windshield as well as increased uniformity.
The target is practically reached over the majority of the cells of the target volume.
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4.2 Defrost test of the optimized geometry & comparison

The optimized geometry of the defroster nozzle was manufactured using a rapid prototyping
technique (3D printing). Then, it was placed in the test vehicle, replacing the reference defroster
nozzle and submitted to a defrost test. Windshield defrost patterns were obtained from cold
room testing [3]. For the purpose of comparison, the defrosting and demisting efficiency of
both the reference and optimized defroster nozzles have been tested.

To reproduce cold start condition, the vehicle soaked for several hours at a temperature of
−20◦C, in TME’s climatic chamber. Following the soak, a high amount of humidity was gen-
erated in the cabin for a few minutes. Then, the defrost test commenced. The patterns were
recorded regularly and the windshield was marked from the inside to indicate clearance areas.

The melting pattern for the reference and the improved defrosters, at two different time
instants, are shown in fig. 11. At every instant recorded, the new defroster nozzle geometry
gives a bigger clearance zone compared to the initial one. At the end, the new geometry is
proved to be capable of clearing the windshield completely in 15% less time than the reference
defroster nozzle.

Figure 11: Defrost test of the reference (left) and improved (right) defroster nozzle shapes. The melting pattern
is recorded and marked on the internal surface of the windshield. The patterns in the above figures are compared
at the same time instants, proving the better defrosting ability of the optimized shape. The windshield with the
optimized defroster nozzle shape is completely clear in 15% less time compared to the reference shape.

5 CONCLUSIONS

In this paper, shape optimization using the continuous adjoint method and a morphing soft-
ware, both developed by the PCOpt Unit of NTUA, was applied to the defroster nozzle, part
of the HVAC unit of a Toyota passenger car. A new defroster nozzle shape resulted, by max-
imizing the magnitude (according to a preset target value) and uniformity of the air velocity
distribution on the upper–half of the windshield, leading improved defrosting performance of
the vehicle. The optimized geometry, that was manually forced to comply with manufacturing
and topological constraints, was manufactured with a rapid prototyping technique, placed in the
vehicle and submitted to a defrost test that validated its improved defrosting performance. The
optimized defroster nozzle achieves defrosting in 15% less time than the reference one.
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Abstract. The analysis of aeroelastic properties is an important aspect in the design of tur-
bomachinery components. In this study we focus on vibrations caused by the interaction of
adjacent blade rows (forced response). This is an inherently unsteady phenomenon. But due to
its periodic nature it can be efficiently treated by numerical methods formulated in the frequency
domain, e.g. the harmonic balance method.

When going from the analysis of individual designs using CFD to CFD-based optimisation
it is desirable to compute also sensitivities of objective functions (targets and restrictions for
the optimisation) with respect to design parameters. Since in typical applications the number
of design parameters is much larger than the number of objective functions, it is advantageous
to use the adjoint method for the computation of these sensitivities.

An adjoint solver based on the harmonic balance method has been implemented in the frame-
work of the flow solver TRACE. This is now extended and used to compute the sensitivities of
aeroelastic objective functions to the amplitudes of a harmonic perturbation at the entry or exit
of the respective blade row. These sensitivities can be validated by comparing to finite differ-
ences obtained from harmonic balance computations with different perturbations. We apply the
method to model problems which are representative for turbomachinery configurations.
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1 INTRODUCTION

The design of turbomachinery components is a complex and multi-disciplinary task, and
computational methods are more and more extensively used in the design process. Often a
compromise between conflicting design goals has to be found. For example, in aircraft propul-
sion it is on the one hand desired to build compact and light-weight machines, on the other hand
also structural properties have to be taken into account and a reduced axial gap between blade
rows leads to stronger interactions which could cause unwanted blade vibrations (forced re-
sponse). Therefore, besides CFD simulations to assess the aerodynamic performance of single
blade rows or entire components, also aeroelastic computations are important.

Aeroelastic phenomena in turbomachinery are inherently unsteady, but often of a periodic
nature, which makes them attractive for the application of frequency domain methods. These
are in most cases computationally more efficient than unsteady methods in time-domain. While
some phenomena, e.g. blade flutter, can often be adequately simulated by time-linearized un-
steady methods, e.g. the linear harmonic (LH) method [1], there are also important nonlinear
effects, in particular for forced response (cf. [2]). An overview on the use of frequency domain
methods in turbomachinery applications has been given by He [3] and in [4] Ekici and Huang
compare time- and frequency-domain methods.

In our work we focus on the harmonic balance (HB) method as proposed by Hall [5]. It has
been applied by Thomas et al. [6, 7] to analyse nonlinear effects in aeroelastic configurations.
The same approach has been used by Huang and Ekici [8, 9, 10] and also Gopinath et al.
developed a similar time-spectral method [11, 12]. In [13] different variants of HB are reviewed
and several applications are presented. The form where the harmonic balance equations are
formulated in the frequency domain is termed the nonlinear frequency domain (NLFD) form. It
is used e.g. by McMullen et al. [14, 15, 16]. The implementation of a harmonic balance method
in the DLR flow solver TRACE, which also uses the NLFD approach, and its application to
aeroelastic analysis are described in [17] and [18].

Besides the numerical evaluation of given designs it is – due to increased computational
resources – also possible to explore large ranges of designs in CFD-based automatic optimisa-
tions. To obtain efficient optimisation algorithms it is useful to also have access to derivatives
of the functions which are employed as objectives or constraints in the optimization. There are
different possibilities to compute such derivatives. The simplest is to use finite differences, but
this requires at least one additional function evaluation for each partial derivative, which can
be very expensive. Alternatively, derivatives can be computed directly by a linearisation of the
applied computational methods. But since in typical applications the number of design param-
eters is large compared to the number of objectives, the application of adjoint methods [19, 20]
is often more efficient than direct linearisation.

While steady adjoint methods are nowadays quite frequently used in the field of turboma-
chinery design (see e.g. [21, 22]), the application of unsteady adjoint CFD is very limited due
to its exceedingly high computational costs, see e.g. [23, 24, 25] and references therein.

A number of adjoint solvers for frequency domain methods have already been developed.
Discrete adjoint solvers for LH have been derived “by hand”, i.e. by analytic differentiation of
the primal code, by Florea and Hall [26] for the Euler equations and by Duta et al. [27, 28]
for the RANS equations. Since this approach is very cumbersome for nonlinear methods, many
authors apply algorithmic differentiation (AD) techniques in the development of adjoint fre-
quency domain solvers, e.g. Thomas et al. [29] for the HB method of Hall, Huang and Ekici
[30] for their implementation of this method, or Mader and Martins [31] for the time-spectral
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method of Gopinath et al. An implementation of an adjoint for the non-linear frequency domain
method of McMullen et al. is due to Nadarajah and Jameson [32, 33]. An adjoint method for
HB equations for one harmonic in the time-domain together with an application to a combined
aerodynamic and aeroelastic blade optimisation has been presented by He and Wang [34].

The steady adjoint solver in TRACE [35] also employs a discrete adjoint approach, but the
linearisation of the residual is obtained by computing finite differences. This approach has now
been extended to the frequency domain methods harmonic balance and linear harmonic. The
derivation and implementation of the adjoint methods used in this study has been described in
detail in [36]. In Section 2 we recall the basic equations and present some recent extensions of
the implementation. Afterwards, we apply the methods to two different test cases and compare
the results to finite differences from the primal solver (see Section 3).

2 ADJOINT FREQUENCY DOMAIN METHODS

2.1 Harmonic balance method

The harmonic balance method as implemented in TRACE (see [17, 18]) approximates the
time dependent flow solution as a Fourier series with a finite number of harmonics1

q(x, t) = Re

[
K∑
k=0

q̂k(x)eikωt

]
. (1)

The Fourier coefficients q̂k are determined by the set of equations

ikωq̂k + R̂(q)k = 0, k = 0, . . . , K, (2)

where the Fourier components of the residual are approximated as

R̂(q)k ≈ F (R(F−1(q̂)))|k, (3)

with F denoting the discrete Fourier transform (DFT). This means that the solution q in the time
domain is reconstructed at a finite number of sampling points, then the residual is evaluated at
these points, and the resulting vector is transformed back into the frequency domain.

The characteristic of the NLFD approach is that the variables which are solved for are the
Fourier coefficients q̂, while the flow states at the sampling points in time are only computed as
intermediate quantities during the solution process. In contrast, in the time-spectral approach,
the states at the sampling points are stored and the equations are formulated and solved com-
pletely in the time domain.

2.2 Discrete adjoint approach

We are now interested in the sensitivity of some functional I , which is computed from the
solution q, to some parameter α. We assume that I depends on α only through the Fourier
coefficients of q, i.e.

dI

dα
=
∂I

∂q̂

dq̂

dα
. (4)

1In general it could be a combination of such series for several base frequencies, but we restrict the discussion
here to a single base frequency, since the adjoint solver has only been developed for this case.
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To obtain an equation for dq̂
dα

we differentiate (2) with respect to α. Defining the harmonic
balance residual as RHB,k := ikωq̂k + R̂(q)k, we get

0 =
dRHB,k

dα
=
∑
j

(
ikωδjk +

∂R̂(q)k
∂q̂j

)
dq̂j
dα

+
∂RHB,k

∂α
. (5)

This is a linear system of equations and we write it briefly as

A
dq̂

dα
= −∂RHB

∂α
. (6)

The corresponding adjoint system of equations is then

A∗ψ̂ =

(
∂I

∂q̂

)∗
(7)

with the adjoint system matrix given by

A∗ =
(
F−1

)∗(
diag

(
∂R
∂q

∣∣∣
q(tj)

))∗
F ∗ − diag(ikω), (8)

where diag(. . .) denotes a block diagonal matrix with the corresponding entries on the diagonal
and tj are the sampling points for the DFT. The adjoint operator in the frequency domain is
defined with respect to the scalar product

〈ψ̂, q̂〉 = Re〈ψ̂, q̂〉C. (9)

This means that we consider the set of (complex) Fourier coefficients as element in a real vector
space, which is due to the fact that the transformations F and F−1 are not linear over the
complex numbers.

Using (7), the expression for the sensitivities (4) can be rewritten as

dI

dα
= −ψ̂∗∂RHB

∂α
, (10)

which is now independent of q̂.

2.3 Solution method and implementation

As in the steady adjoint solver in TRACE (see [35]) the discrete adjoint equations (7) are
solved by a preconditioned GMRes (Generalised Minimal Residual) algorithm with restarts, as
described in [36]. Due to the definition of the scalar product (cf. Eqn. (9)) all “internal” data
for the GMRes algorithm is stored as real vectors and matrices. As preconditioner we use either
SSOR or ILU(p), i.e. incomplete LU decomposition with variable fill level [37].

The sampling points for the DFT are chosen to be equidistant, i.e. we have tj = 2πj
ωN

if ω is the
base frequency and N the number of sampling points. To resolve K higher harmonics, at least
N = 2K+1 points are needed. But due to the nonlinearity of the residual function, the problem
of aliasing can occur [17]. Therefore a higher number of sampling points should be used. Since
the residual is a rational function of the flow variables, it is not possible to choose the number
of sampling points such that aliasing can be avoided completely. In our computations we take
N = 4K + 1, which is sufficient to resolve cubic terms, so that the remaining errors are of
fourth order and should be small in most applications.

The residual Jacobians at the sampling points are computed analogous to the steady case, i.e.
finite differences are used for the fluxes while the source terms are differentiated analytically.

3896



Anna Engels-Putzka and Christian Frey

2.4 Functionals

The right hand side of (7) is given by the linearisation of the objective functional w.r.t. the
state variables. Functionals which are relevant for aeroelastic applications are defined on the
blade surfaces. We consider here the modal force for a mode Φ and frequency ω, which is given
by

Fmod = 〈Φ, p̂ω~n〉L2 =

∫
Γ

〈Φ, p̂ω~n〉 dS (11)

where Γ is the blade surface, ~n the surface normal and p̂ω the Fourier coefficient of the pressure
on the blade for the frequency ω. In the context of this study we assume that Φ and ~n are fixed,
so that the linearisation of Fmod depends only on p̂ω:

dFmod =
∂Fmod

∂p̂ω
dp̂ω. (12)

Instead of the modal force itself, which is a complex-valued function, we consider its real
and imaginary parts as functionals. In the discrete context, the integral in (11) is evaluated as a
sum over the faces on the blade surface:

Fmod =
∑
σ

Fmod,σ with Fmod,σ = p̂ω,σ

〈
Φσ, ~Aσ

〉
C3
, (13)

where ~Aσ is the face normal vector with | ~Aσ| equal to the area of the face σ. In the following
we drop the subscripts σ and ω for simplicity. The real and imaginary parts of Fmod can then be
written as

Re(Fmod) = Re(p̂)AΦ,Re + Im(p̂)AΦ,Im (14)
Im(Fmod) = Im(p̂)AΦ,Re − Re(p̂)AΦ,Im, (15)

where AΦ,Re and AΦ,Im are the (real) scalar products of the real and imaginary parts of Φ with
~A, respectively.

For the derivative with respect to the Fourier coefficients of q, which is needed for the right
hand side of the adjoint equations, we get (compare (12))

dRe(Fmod)

dq̂
=

(
∂Re(Fmod)

∂Re(p̂)

∂Re(Fmod)

∂Im(p̂)

)
dp̂

dq̂
=

(
AΦ,Re

dp̂

dq̂
AΦ,Im

dp̂

dq̂

)
(16)

and analogously
dIm(Fmod)

dq̂
=

(
−AΦ,Im

dp̂

dq̂
AΦ,Re

dp̂

dq̂

)
, (17)

where we have used the fact that dp̂
dq̂

is real.

2.5 Sensitivity evaluation

To analyse the right hand side of (10) we assume that the flow field q depends on the param-
eter α only through the prescribed boundary values qbv, i.e. the flow conditions at entry and exit
boundaries of the computational domain. Then we get

dI

dα
= −ψ̂∗∂RHB

∂α
=

(
−ψ̂∗∂RHB

∂qext

)(
Tbv

dqbv

dα

)
(18)
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where qext denotes the ghost cells and Tbv is the inhomogeneous part of the linearised boundary
operator, i.e. the linearisation of the boundary update operator

T : (qint, qbv) 7→ qext (19)

with respect to qbv. The multiplication in (18) is a scalar product, which is defined here – as
in (9) – as the real scalar product, i.e. the real part of the standard scalar product for complex
vectors.

The implementation of the sensitivity evaluation is similar to the computation of boundary
value sensitivities for the steady adjoint solver which is discussed in [38]. The term ψ̂∗ ∂RHB

∂qext

from (18) is evaluated as
((

∂RHB

∂qext

)∗
ψ̂
)∗

by applying the (adjoint) system matrix to the adjoint
solution. The “outer” adjoint is then computed implicitly in the scalar product. The other fac-
tor of the product, Tbv

dqbv
dα

, is computed by applying the (inhomogeneous) linearised boundary
conditions to a zero vector. In contrast to the steady case, the boundary conditions here are
the gust boundary conditions, where a harmonic disturbance with a specified frequency and
(circumferential) wave number is prescribed at the entry or exit of a blade row [39]. Since the
parameters α we are interested in are the components of the gust perturbation themselves, dqbv

dα

is trivial. To obtain the result of applying the linearised boundary operator for one parameter,
we set the corresponding component of the gust boundary values to unity (with the appropri-
ate de-dimensionalisation) and use these values for the inhomogeneous part of the boundary
conditions. Since the gust values are prescribed band-wise, the sensitivities are also computed
for each band, which means that the contributions of all faces belonging to a given band are
summed up.

2.6 Linear harmonic method

The linear harmonic method is obtained if the nonlinear residual is approximated by its
linearisation about the time average q̂0, which is justified if the amplitudes of the harmonic
perturbations (|q̂k| for k > 0) are small. Then the different harmonics decouple and the flow
state is determined by the steady equation R(q̂0) = 0 and a linear equation(

ikω + ∂R
∂q

∣∣
q̂0

)
q̂k = 0 (20)

for each k > 0 [40, 39]. Accordingly, the system matrix for the adjoint LH equations is a
block-diagonal matrix with the blocks

A∗k =
(
∂R
∂q

∣∣
q̂0

)∗
− ikω. (21)

If gust boundary conditions are applied, (20) takes the form Akq̂k = Sk, i.e. the boundary
conditions lead to an additional source term [39]. This source term depends on the boundary
value parameters α and the sensitivities for the adjoint LH method are given by the expression

dI

dα
= ψ̂∗

∂S

∂α
, (22)

where ψ̂ is the adjoint solution as before.
The implementation of the adjoint LH method is analogous to adjoint HB, but the setup and

application of the system matrix are simplified. Moreover, only the time-average is needed from
the primal solution. Another subtle difference is that since the problem is now complex-linear,
the complex scalar product can be used and all computations – including the GMRes algorithm
– are carried out over the complex numbers.
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Figure 1: CAA Benchmark configuration.

3 APPLICATION

In this section we apply the described methods to single blade-row configurations with a
prescribed gust perturbation at the entry surface. On the blades an (artificial) mode with the
same frequency and phase shift as the gust perturbation is applied. The real and imaginary parts
of the modal force for this mode are used as functionals for the adjoint solver and we evaluate
the sensitivities with respect to the components qbv,j of the gust perturbation. These are the
real and imaginary parts of the flow parameters at the entry, i.e. the density ρ, the velocity
components (in cylindrical coordinates) ux, ur, uθ and the pressure p, so that there are in total
ten independent parameters.

To obtain approximate derivatives for comparison with the sensitivities computed by the ad-
joint solver we vary (sequentially) each component of the perturbation at the entry by a constant
multiple of the corresponding reference quantity, i.e.

qbv,j 7→ qbv,j + δqref,j, (23)

and perform a harmonic balance (or linear harmonic) simulation with this modified gust pertur-
bation. We choose δ = 10−4 as step size, but it has been verified for the used test cases that
the result is not sensitive to this choice within a certain range. To compare the two methods for
computing sensitivities the relative deviation of a sensitivity s is computed as

∆s =
sadj − sFD

sFD
. (24)

3.1 Numerical test case

As a first test case we take a configuration that is based on the “CAA Benchmark Category 3
Problem 1” from [41], which was originally designed as a test for computational aeroacoustics
methods. It consists of a cascade of (infinitely thin) flat plates (see Fig. 1). It is treated as
a rotational configuration, but with a relatively large radius and therefore a high number of
passages (1885). We use a scaled version of the original configuration with radiusR = 3 m. The
distance between the blades (pitch) is equal to the cord length and the computational domain
extends to two times the cord length on both sides. The computational grid for one passage
consists of 50000 cells (500×100×1). In circumferential direction periodic boundary conditions
are applied.

The steady flow conditions are uniform with density ρ∞ = 1.08 kg
m3 and axial velocity

u∞ = 166 m
s

, which corresponds to a Mach number of 0.5. At the entry plane a “vortical
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Figure 2: First harmonic of the axial velocity, reconstructed at time t = 0 from the harmonic balance solution
including one higher harmonic.

gust” is prescribed, i.e. a perturbation of the axial and circumferential components of the veloc-
ity (real part only). It has a frequency of 20700 Hz and a circumferential wave number of 2356,
which corresponds to a phase shift (inter-blade phase angle) of 90 degrees, and the magnitude
of the perturbation is 0.01u∞ = 1.66 m

s
. Figure 2 visualises the flow pattern which is induced

by this perturbation. For illustration the blades are drawn with a finite thickness.
The artificial mode applied on the blades in this case corresponds to a torsion. Sensitivities

are only computed for the non-trivial components of the gust perturbation, i.e. the axial and
circumferential velocity. The reference quantity is uref = 338.5 m

s
.

Although the configuration is simple, the test case is numerically challenging. The con-
vergence of the pseudo-time solver employed for the harmonic balance and linear harmonic
methods is rather slow in this case and a relatively small CFL-number of 3 has to be used. The
computations are stopped after 100000 pseudo-time iterations. Figure 3 shows that the values
for the modal force are not entirely converged at this point, but the remaining fluctuations are
much smaller than the difference between the values for two different gust perturbations.

The adjoint solver does not converge well if the SSOR preconditioner is used. Therefore
we tested the newly implemented ILU preconditioner with different levels of fill-in. For lower
levels (up to 4) no improvement is observed, while ILU(5) and ILU(6) work well if the restart
interval is large enough. In Fig. 4 the convergence histories for different setups are compared.
Based on this comparison we chose ILU(5) and a restart interval of 300 for the following com-
putations, since this yields the fastest convergence in terms of iterations as well as with regard
to simulation time. Figure 5 shows the first harmonic of the obtained adjoint flow solutions for
the modal force (real and imaginary parts).

In tables 1 and 2 the sensitivities of the real and imaginary parts of the modal force with
respect to the axial and circumferential velocity components of the gust perturbation computed
with the adjoint solver for the harmonic balance and linear harmonic methods are compared to
finite differences. The absolute value of the relative deviation is below 5% in all cases, which
indicates that the implementation of the adjoint solver is in principle correct. An exact equality
can not be expected, since there are differences between the primal and the adjoint solver e.g.
in the implementation of the boundary conditions. For the linear harmonic computations the
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Figure 3: Convergence of the modal force for the initial gust perturbation and the perturbation with modified
component Re(ux) in relation to the pseudo-time solver residual.
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Figure 5: First harmonic of the adjoint solution for the real (top) and imaginary (bottom) parts of the modal force,
reconstructed at time t = 0 from the adjoint harmonic balance solution including one higher harmonic. The
component ψ2 corresponds to the adjoint momentum in axial direction.
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Functional Re(Fmod) Im(Fmod)

Parameter FD adjoint rel. dev. FD adjoint rel. dev.

Re(ux) −1.171 ·10−10 −1.216 ·10−10 3.88% 1.813 ·10−10 1.863 ·10−10 2.73%
Im(ux) −1.811 ·10−10 −1.859 ·10−10 2.62% −1.166 ·10−10 −1.213 ·10−10 4.07%
Re(uθ) −1.165 ·10−10 −1.212 ·10−10 4.00% 1.805 ·10−10 1.857 ·10−10 2.91%
Im(uθ) −1.803 ·10−10 −1.857 ·10−10 3.02% −1.160 ·10−10 −1.210 ·10−10 4.30%

Table 1: Comparison of sensitivities for the HB method including the zeroth and first harmonic.

Functional Re(Fmod) Im(Fmod)

Parameter FD adjoint rel. dev. FD adjoint rel. dev.

Re(ux) −1.260 ·10−10 −1.211 ·10−10 −3.49% 1.837 ·10−10 1.859 ·10−10 1.40%
Im(ux) −1.837 ·10−10 −1.859 ·10−10 1.19% −1.260 ·10−10 −1.211 ·10−10 −3.74%
Re(uθ) −1.255 ·10−10 −1.207 ·10−10 −3.43% 1.824 ·10−10 1.854 ·10−10 1.81%
Im(uθ) −1.824 ·10−10 −1.854 ·10−10 1.81% −1.255 ·10−10 −1.207 ·10−10 −3.57%

Table 2: Comparison of sensitivities for the LH method including only the first harmonic.

agreement is slightly better than for harmonic balance. The linearity of this method is reflected
by the fact that the sensitivities satisfy the relations

dRe(Fmod)

dRe(α)
=
dIm(Fmod)

dIm(α)
and

dRe(Fmod)

dIm(α)
= −dIm(Fmod)

dRe(α)
. (25)

The differences between the LH and HB results are not very large, which indicates that the
nonlinear effects are not very strong in this test case.

3.2 Q3D slice of a turbine stage

As a first turbomachinery test case we take a Q3D slice of the rotor from a high pressure
turbine stage with subsonic flow conditions (maximum Mach number about 0.78). The wake
of the stator is extracted from a steady computation and the circumferential component with
wave number m = −70, which corresponds to a phase shift of 60 degrees, is prescribed as
gust perturbation at the entry of the rotor. The frequency in the relative system of the rotor is
11186.5 Hz. The resulting flow is visualised in Fig. 6. The used artificial mode corresponds to
a bending of the blade.

The computational grid is rather coarse with roughly 2000 cells for the rotor row. The for-
ward computations are carried out with a CFL number of 5 and the computations are terminated
when the L1-residual of the pseudo-time solver has dropped below 10−8. Figure 7 shows that
the modal force is sufficiently well converged at this point. For the adjoint computations the
SSOR preconditioner with a relaxation factor of 0.7 is applied and the restart interval is set to
100.

In the adjoint solver, the sensitivities are computed at each restart of the GMRes algorithm,
therefore we can also monitor the convergence of these quantities. In Fig. 8 this is shown
exemplarily for one component, namely the sensitivity of the real part of the modal force to
the real part of the x-component of the velocity. It can be seen that after the last restart the
sensitivity does not change any more, therefore in the following the adjoint computations are
terminated if the (normalized) L2-residual of the GMRes solver has dropped below 10−8.
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Figure 6: Mach number contours of the time averaged solution (left) and entropy contours of the reconstructed
unsteady solution at time t = 0 (right), both from a harmonic balance computation with four higher harmonics.
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Functional Re(Fmod) Im(Fmod)

Parameter FD adjoint rel. dev. FD adjoint rel. dev.

Re(ρ) −2.800 ·10−5 −2.880 ·10−5 2.85% 1.009 ·10−5 9.980 ·10−6 −1.14%
Im(ρ) −1.139 ·10−5 −1.028 ·10−5 −9.76% −2.769 ·10−5 −2.701 ·10−5 −2.45%
Re(ux) 5.083 ·10−8 5.087 ·10−8 0.08% 2.897 ·10−8 2.626 ·10−8 −9.36%
Im(ux) −2.375 ·10−8 −2.277 ·10−8 −4.15% 5.134 ·10−8 5.301 ·10−8 3.25%
Re(uθ) −7.081 ·10−8 −7.216 ·10−8 1.90% −3.453 ·10−8 −3.374 ·10−8 −2.28%
Im(uθ) 2.793 ·10−8 2.756 ·10−8 −1.34% −7.184 ·10−8 −7.620 ·10−8 6.07%
Re(p) 7.441 ·10−10 7.514 ·10−10 0.98% 3.215 ·10−10 3.124 ·10−10 −2.84%
Im(p) −2.538 ·10−10 −2.543 ·10−10 0.17% 7.550 ·10−10 7.759 ·10−10 2.76%

Table 3: Comparison of sensitivities for the HB method including the zeroth and first harmonic.

Functional Re(Fmod) Im(Fmod)

Parameter FD adjoint rel. dev. FD adjoint rel. dev.

Re(ρ) −3.468 ·10−5 −3.465 ·10−5 −0.07% −3.327 ·10−6 −3.330 ·10−6 0.08%
Im(ρ) 3.327 ·10−6 3.330 ·10−6 0.08% −3.468 ·10−5 −3.465 ·10−5 −0.07%
Re(ux) 3.546 ·10−8 3.568 ·10−8 0.62% 2.594 ·10−8 2.539 ·10−8 −2.12%
Im(ux) −2.597 ·10−8 −2.539 ·10−8 −2.22% 3.540 ·10−8 3.568 ·10−8 0.80%
Re(uθ) −5.013 ·10−8 −5.123 ·10−8 2.18% −3.101 ·10−8 −3.137 ·10−8 1.17%
Im(uθ) 3.101 ·10−8 3.137 ·10−8 1.17% −5.013 ·10−8 −5.123 ·10−8 2.18%
Re(p) 5.684 ·10−10 5.719 ·10−10 0.61% 3.202 ·10−10 3.229 ·10−10 0.84%
Im(p) −3.202 ·10−10 −3.229 ·10−10 0.84% 5.684 ·10−10 5.719 ·10−10 0.61%

Table 4: Comparison of sensitivities for the LH method including only the first harmonic.
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Functional Re(Fmod) Im(Fmod)

Parameter FD adjoint rel. dev. FD adjoint rel. dev.

Re(ρ) −3.476 ·10−5 −3.470 ·10−5 −0.17% −3.345 ·10−6 −3.318 ·10−6 -0.81%
Im(ρ) 3.132 ·10−6 3.108 ·10−6 −0.78% −3.522 ·10−5 −3.519 ·10−5 −0.09%
Re(ux) 3.551 ·10−8 3.585 ·10−8 0.97% 2.602 ·10−8 2.555 ·10−8 −1.82%
Im(ux) −2.587 ·10−8 −2.547 ·10−8 −1.57% 3.506 ·10−8 3.541 ·10−8 1.00%
Re(uθ) −5.018 ·10−8 −5.150 ·10−8 2.64% −3.101 ·10−8 −3.154 ·10−8 1.69%
Im(uθ) 3.111 ·10−8 3.154 ·10−8 1.39% −4.947 ·10−8 −5.082 ·10−8 2.74%
Re(p) 5.687 ·10−10 5.742 ·10−10 0.98% 3.205 ·10−10 3.245 ·10−10 1.26%
Im(p) −3.199 ·10−10 −3.239 ·10−10 1.25% 5.644 ·10−10 5.697 ·10−10 0.95%

Table 5: Comparison of sensitivities for the HB method including only the first harmonic.

We apply both the harmonic balance and the linear harmonic method, at first using only one
harmonic. For the finite differences, all components are varied except for the radial velocity,
which is not relevant in a Q3D configuration. The reference quantities are ρref = 0.439 kg

m3 ,
uref = 653.3 m

s
and pref = 133870 Pa. Tables 3 and 4 show the sensitivities for the two meth-

ods computed by finite differences (FD) as described above and by the adjoint solver, and the
relative deviation between them. For LH, there is a very good agreement between both solvers.
Almost all deviations are below 5%, most of them even below 1% (see Tab. 4). For HB the de-
viations between finite differences and adjoint computations are somewhat larger (see Tab. 3).
Most deviations are still below 5%, but some are also up to 10% large. These differences could
be due to inconsistencies between the two solvers, as mentioned above, but should be further
investigated. It can also be observed that the HB sensitivities differ considerably from the LH
results. For comparison we also performed a harmonic balance computation with only the first
harmonic, i.e. neglecting the coupling between this harmonic and the time-mean solution (ze-
roth harmonic). Table 5 shows that in this case the results are much closer to those of the
LH method, indicating that there is a strong interaction between the zeroth and first harmonic.
Comparing the different sensitivity components as in Eqn. (25) we see that they are closer to a
linear behaviour than in the coupled computation, but the nonlinearity is still present, although
there is only one solution component. A comparison of all methods is shown in Fig. 9 for the
sensitivities w.r.t. the angular component of the velocity.

We also investigated the effect of including higher harmonics in the computations. Since
only the first harmonic is used for the evaluation of the objective functionals, there is only
an indirect influence of higher harmonics through their interaction with the first, and it turns
out that the impact on the modal force - and therefore the sensitivities - is indeed small. In
Fig. 10 the values of the real and imaginary parts of the modal force are shown over the number
of higher harmonics included in the HB computation and it can be seen that only the second
harmonic yields a significant contribution. The convergence of the GMRes solver becomes
slower if more harmonics are included, as can be seen in Fig. 11, but we were able to obtain
converged solutions for all sets of harmonics considered here. The agreement between forward
and adjoint results is qualitatively similar to the case with only one higher harmonic, although
the maximal deviations become somewhat larger.
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4 CONCLUSION

We have described the development and implementation of an adjoint solver for frequency
domain methods (harmonic balance and linear harmonics) within an industrial turbomachinery
CFD solver. It is based on the extension of an existing steady adjoint solver. In particular,
the implementation of the modal force on blades as a functional for aeroelastic applications
and the evaluation of sensitivities with respect to the components of a flow perturbation at
inflow or outflow boundaries have been discussed. The method has been extensively tested on
Q3D configurations which are representative for turbomachinery applications. The overall good
agreement of the sensitivities obtained by the adjoint solver with finite differences shows the
validity of the approach. The reasons for some larger deviations have to be investigated in the
future. Also the extension to 3D configurations has to be tested in detail.

Another important issue for future work is the coupling of different blade rows, since we are
interested in the influence of the geometry of a neighbouring blade row on e.g. the modal forces
for the blade row under consideration. In the current process, where the influence of e.g. a stator
wake on the subsequent blade row is simulated only for selected wave numbers, the next step
would be to use the sensitivities from the adjoint harmonic balance solver as input, i.e. objective
functional, for a following steady adjoint computation. This would then give the geometric
sensitivities for the upstream blade row. To obtain an adjoint process for a complete forced-
response analysis using harmonic balance, the blade-row coupling and a geometric sensitivity
evaluation – analogous to the steady adjoint solver – have to be implemented within the adjoint
HB solver.
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Anil Nemili1, Emre Özkaya2, Nicolas R. Gauger2, Felix Kramer3 and Frank Thiele3

1Department of Mathematics, BITS Pilani - Hyderabad Campus, Hyderabad 500078, India
e-mail: anil@hyderabad.bits-pilani.ac.in

2 Chair for Scientific Computing, Technische Universität Kaiserslautern, 67663 Kaiserslautern,
Germany

e-mail: {emre.oezkaya, nicolas.gauger}@scicomp.uni-kl.de

3 CFD Software Entwicklungs- und Forschungsgesellschaft mbH, 10625 Berlin, Germany
e-mail: {felix.kramer, frank.thiele}@cfd-berlin.com

Keywords: Active Flow Control, Unsteady RANS, Hybrid optimization, Discrete adjoints,
Evolutionary Algorithms, Algorithmic Differentiation, Multi-element airfoil

Abstract. In this paper we present a two-level approach that combines an adjoint-based gradi-
ent search method with an evolutionary algorithm for optimal active flow control. The suggested
method effectively combines the advantages of both approaches and achieves a good compro-
mise between the computational effort and the degree of freedom used in optimization. In the
first level, a global optimization is performed with few design parameters using an evolutionary
algorithm. In the second level, the global optimal solution from the first level is taken as the ini-
tial setting for the adjoint based local optimization using a large number of design parameters.
The unsteady discrete adjoint solver required for the second level is developed based on Algo-
rithmic Differentiation techniques for the unsteady incompressible flowsgoverned by Unsteady
Reynolds-Averaged Navier Stokes (URANS) equations. In this way, the discrete adjoint solver
is robust and has exactly the same functionality with the underlying URANS flow solver. The
applicability of the two-level method is demonstrated by finding the optimal parameters of the
active flow control mechanism on a three element airfoil configuration at a Reynolds number of
Re = 106 and an angle of attack of AoA = 6◦. Numerical results have shown that the hybrid
approach completely suppressed the separation and very significantly increased the mean-lift
coefficient by 67% compared to the un-actuated baseline flow.
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1 INTRODUCTION

Application of active flow control methods [1] to delay the flow separation on the flap of
modern transport aircraft has been the subject of research for many years. An active flow con-
trol technique that is of particular interest to us is the predetermined or the so-called open-loop
active flow control approach. Typically, these methods supply energy or auxiliary power to the
boundary layer through an actuator. The additional longitudinal momentum due to actuation
delays or even completely suppresses the flow separation. Various researchers have performed
several experimental [2, 3, 4, 5, 6] and numerical investigations [7, 8, 9] to study the effect of
actuation in delaying the separation on the flap and enhancing the overall aerodynamic perfor-
mance of high-lift configurations. In the present work, synthetic jets, also known as zero-net-
mass-flux actuators [10, 11] are employed to control the flow separation on the suction side of
the flap. Common parameters of these actuators are amplitude, blowing angles, frequency and
the phase shift between two adjacent actuators. Effective separation control and thus delaying
aerodynamic stall to enhance maximum lift can be achieved by finding the optimal set of actu-
ation parameters.

The optimal values of the actuation parameters can be efficiently determined by employing
gradient-based optimization algorithms combined with adjoint approaches. A nice feature of
the adjoint approaches is that they enable the evaluation of gradient vectors at a fixed compu-
tational effort. Therefore, optimization studies with a higher degree of freedom become viable
and better control mechanisms can be achieved. Broadly, we can classify the adjoint approaches
into continuous and discrete adjoint methods. In the continuous adjoint method [12, 13], one
first derives the optimality system from the continuous optimization problem and the resulting
adjoint partial differential equations (PDEs) are then discretised and solved using numerical
methods. Although being computationally efficient, development of continuous adjoint flow
solvers requires much effort and their maintenance becomes a problem as the underlying non-
linear flow solvers are subject to continuous modifications, e.g., new boundary conditions, new
turbulence models etc. On the other hand, in the discrete adjoint method, one first discretizes
the state PDEs that govern the fluid flow, and then derives the discrete adjoint equation based on
the optimization problem in discrete form. In general, discrete adjoint solvers are more straight-
forward to implement, and therefore they have found a wider acceptance for the applications of
practical relevance.

In general, a discrete adjoint solver for optimal active flow control can be developed either
by using the so-called hand-discrete approach [14] or by employing Algorithmic Differentiation
(AD) techniques [15, 16]. In the hand-discrete approach, the governing flow equations are first
discretized as usual. The adjoint equations are then derived by linearizing various terms, which
comprise the discrete cell residuals. These terms involve convective and viscous fluxes as well
as source terms. Finally a computer code is implemented to solve the unsteady adjoint equa-
tions and to compute the design sensitivities using the adjoint solution. On the other hand, in
the AD based approach the adjoint code is generated by applying AD techniques [17] directly
to the source code of the corresponding flow solver.

Accurate computation of sensitivity information requires exact differentiation of all residual
terms in discretized state equations. However, the exact linearization of all terms in the discrete
residual is quite complex, laborious and might be often prone to errors. To simplify this tedious
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effort and ease the development of the adjoint solvers, various Jacobian approximations [18]
have been proposed in the past. In these approximations, linearization of certain terms in the
flux Jacobian is omitted. Examples of these are, turbulent models, flux limiters, reconstruction
operator for higher order accuracy, model parameters of the convective schemes etc. Jacobian
approximations may result in inaccurate computation of sensitivities [19]. In fact, in unsteady
flows, the effect of these approximations on the accuracy of sensitivities is much more signifi-
cant as the errors generated in the adjoint solution tend to accumulate rapidly while solving the
adjoint equations backward-in-time [16]. On the other hand, using the AD techniques the exact
differentiation of all residual terms can be performed with much ease.

Although being computationally very efficient, adjoint-based gradient search methods may
perform poorly in some cases as their solutions tend to be trapped to local optima. In prob-
lems with fairly noisy response surfaces, it is typical that the optimization method yields some
improvement after few cycles. However, further cycles may not yield any significant improve-
ment. Moreover, gradient-based algorithms are highly sensitive to the initial values chosen for
the design parameters. Therefore, a “bad” initial setting for the design parameters may result
in a significantly lower performance than expected. As a remedy to this problem, a global
optimization method may provide a better improvement within a specified design space. For
example, Evolutionary Algorithms (EAs) [20, 21], which try to imitate the natural evolution
processes, are widely accepted as global optimization tools. EAs are generally computationally
expensive and require a prohibitive amount of computational resources if the number of design
parameters is large. For this reason, EAs are applicable to limited problems with a few design
variables and they are usually implemented in conjunction with surrogate modeling techniques
such as response surface methods [22], radial basis functions [23] or Kriging method [24].

In the present study, an efficient two-level design strategy is employed by taking advan-
tage of both the global optimization method based on EA and the local optimization from the
adjoint-based gradient search. Since very few design parameters are used in the first level, the
evolutionary algorithm is constructed directly based on the non-linear URANS simulations. In
the second level, a gradient-based optimization is started using the best initial values provided
by the global optimization from the first level. In order to fully exploit the capabilities of the
adjoint solver, the control parameters of the actuation are allowed to vary spatially in the flap
region so that largest degree of freedom is taken for the optimization, thus allowing the maxi-
mum design space dimension. A similar design strategy for aerodynamic shape optimization is
suggested in [25].

This paper is organized as follows. Section 2 is devoted to the development of a robust
and accurate discrete adjoint incompressible URANS solver, meant for optimal active flow
control. In Section 3, we present the EA based optimization method, which is employed to
specify the initial point for the gradient-based optimization stage. In Section 4, we introduce the
configuration used in the present study along with the features of flow and adjoint solvers used
in the present work. In Section 5, numerical results are presented based on optimal synthetic jet
actuation on the three-element airfoil high-lift configuration. Finally, conclusions are drawn in
Section 6.
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2 A DISCRETE ADJOINT APPROACH FOR OPTIMAL ACTIVE FLOW CONTROL

Consider the problem of finding an optimal active flow control mechanism that delays or sup-
presses the flow separation and thus increases the stall angle of the three-element airfoil. This
amounts to the solution of a PDE-constrained optimal control problem. Since we are interested
in enhancing the overall lift coefficient, the objective function is defined as the time-averaged
lift coefficient. The PDE constraints are the incompressible URANS equations, that govern the
low speed flows during the landing and take-off phases of modern transport aircraft. The control
variables are the parameters of actuation.

In the discrete form, the time-averaged or the mean lift coefficient C l over the time interval
[0, T ] can be defined as

C l =
1

N

N∑
n=1

In (Un, α) , In = Cn
l (1)

where Un and Cn
l are the state vector and the lift coefficient at time iteration n respectively. α is

the vector of control variables comprising the actuation parameters amplitude, frequency, phase
shift and blowing angle. N = T/∆t is the number of time iterations that span the given time
interval and ∆t is the step size of the time discretisation scheme. At each time iteration n, the
discretised URANS equations are solved for the solution of the state vector Un by a contractive
fixed-point iterative scheme of the form

Un
i+1 = Gn

(
Un
i ,U

n−1,Un−2, α
)
, n = 1, . . . , N. (2)

Here,Gn represents an iteration of the pressure-velocity coupling scheme based on the SIMPLE
algorithm, employed for solving the incompressible URANS equations. Un−1 and Un−2 are the
converged state vectors at time iterations n − 1 and n − 2 respectively. Note that the transient
terms in the governing equations are approximated by a second-order implicit backward differ-
ence formula. The Lagrangian associated with the constrained optimization problem given by
Eqs. (1) and (2) is defined as

L =
1

N

N∑
n=1

{In (Un, α)} −
N∑
n=1

{(
U
n)T (

Un −Gn
(
Un,Un−1,Un−2, α

))}
, (3)

where U
n

is the vector of Lagrangian multipliers or the adjoint state vector at time iteration n.
From the first order necessary conditions for optimality (KKT conditions), the discrete adjoint
URANS equations can be derived in the fixed-point form as

U
n

i+1 =

[
∂Gn

∂Un

]T
U
n

i +

[
∂Gn+1

∂Un

]T
U
n+1

+

[
∂Gn+2

∂Un

]T
U
n+2

+
1

N

[
∂In

∂Un

]T
. (4)

Here, U
n+1

and U
n+2

are the converged adjoint solutions at time iterations n + 1 and n +
2 respectively. Unlike the flow equations, the adjoint equations are solved backward-in-time
starting from n = N to n = 1. The solution of the adjoint equations is then used to compute
the actuation sensitivities as

dL

dα
=

N∑
n=1

{
1

N

∂In

∂α
+
(
U
n)T ∂Gn

∂α

}
. (5)
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From Eqs. (4) and (5) it can be observed that an accurate computation of actuation sensitivities
requires the exact differentiation of the In and Gn. Note that the fixed-point iterator Gn con-
sists of residuals due to turbulence models, higher-order convective scheme and terms related to
implicit time marching algorithm. The exact differentiation of these terms by hand is laborious
and prone to errors. On the other hand, Algorithmic Differentiation techniques [17] can be used
to perform the exact differentiation of Gn with much ease. Since all terms in the fixed-point
iterator can be differentiated exactly, the adjoint code based on AD computes sensitivities that
are always accurate and consistent to the solutions obtained by URANS simulations. Further-
more, the adjoint solver inherits the robustness and the asymptotic rate of convergence of the
underlying URANS solver [17]. The ability of the AD based approach in accurate computation
of sensitivities in incompressible URANS simulations is successfully demonstrated on practical
configurations [26].

3 AN EVOLUTIONARY ALGORITHM FOR THE INITIAL CONTROL

Since the results obtained from gradient search algorithms are highly sensitive to the starting
values of the actuation parameters, the initial values chosen for these parameters play a cru-
cial role on the success of the optimization study. In general, values obtained from previous
simulations and/or experimental results can be specified for the initial values of the actuation
parameters. These values are, however, likely to be far away from the optimal values. If ini-
tially the actuation parameters are not allowed to vary spatially, application of an EA based
optimization using direct URANS simulations is viable since in this case the design vector has
only four parameters, namely amplitude, frequency, phase shift of the actuation and the angle
of blowing/suction. The evolutionary algorithm used in this work includes the following basic
ingredients:

• Selection of the initial sample points using the Latin Hypercube Sampling (LHS) method.

• URANS simulations at the initial sample points to form an initial population for the EA.

• Selection of a parent pair for the reproduction process based on the fitness values of each
member in the population.

• The cross-over process between the parent designs using random Gaussian distribution to
determine the design parameters of the children (new designs).

• URANS simulation performed at each new design.

• Removal of the member with the worst fitness from the population in each 10 iterations.

The initial population used for the EA algorithm is formed using the LHS method obtained
with initial URANS simulations. The selection of the parent pair for the reproduction step is
performed by a randomized selection procedure using a roulette wheel containing reproduc-
tion likelihoods of each member in the population. The cross-over process between the parent
members are then performed using random Gaussian distributions with a mutation likelihood
close to 5% (chosen to be 2σ event). As an example, in Figure 1, the probability distribution
function obtained by random 107 realizations of a cross-over process between two designs with
x = 1.0 and x = 5.0 is shown. As one may notice, the majority of the designs (close to 95%)
lie between 1.0 and 5.0. Only a small amount of new designs lie outside this range (in shaded
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Figure 1: Gaussian distribution of new designs for x1 = 1.0 and x2 = 5.0 obtained from 107 different cross-overs.

area). These designs are considered as a result of mutations.

Once the new design point is determined as a result of the cross-over process, a new URANS
simulation is performed at this design point and the fitness values of the population members and
the reproduction likelihoods of each member in the population (roulette wheel) are accordingly
adjusted. After every 10 reproductions, one member with the worst fitness value is removed
from the population. The stopping criteria in the EA based optimization is specified as the
maximum number of URANS simulations and is set to 250. Therefore, the global optimization
in the first level terminates after 250 iterations. The global optimum result obtained by the
global optimization is then used to specify the initial values for the actuation parameters in the
gradient-search optimization. In contrast to the first level, in the second level, the actuation
parameters are allowed to vary in each actuation slot. Therefore, the dimension of the design
vector increases from 4 to 162. In Figure 2, the two-level approach is illustrated schematically.

4 COMPUTATIONAL SETUP

4.1 Configuration Details

The geometry of the three-element high-lift configuration is shown in Figure 3. The high-lift
configuration consists of a main airfoil with extended slat and flap. The relative chord lengths
of slat and flap are given by lslat = 0.158lc and lflap = 0.254lc, where lc is the chord length.
The flap deflection angle is set to δflap = 37o while the angle of attack is fixed at AoA = 6o.
This angle of attack is within the typical range of angle of attack during landing scenarios of
modern commercial aircraft. It may be noted that with these settings, the flow over the flap is
detached from the shoulder region, while the flow over the slat and main airfoil is still fully
attached. Therefore, the above settings are best suited for the application of an active flow
control mechanism to delay the separation on the suction side of the flap.
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First Level Optimization

Second Level Optimization

Design parameters: Amplititude, frequency, blowing 
angle and phase shift (constant in all slits) 

Optimization method: EA with initial sampling 
based on the LHS method

Design parameters: Amplititude, frequency, blowing 
angle and phase shift (spatially variable in all slits) 

Optimization method: BFGS algorithm coupled with 
unsteady adjoint solver

Global solution: Best initial setting for the gradient 
search optimization

Local Solution: Spatial distribution of control 
parameters

Figure 2: Illustration of the two-level method for optimal active flow control on a three-element airfoil.

Figure 3: Sketch of a three-element airfoil high-lift configuration.

4.2 Computational Domain

The computational domain consists of a block-structured grid with 172, 392 finite volumes.
Figure (4) shows the grid around the flap of the high-lift configuration. The flap boundary has
370 grid points. Note that the non-dimensional wall distance of the first cell center remains
below y+ = 1 on the entire surface.

4.3 Boundary Conditions

At the inlet boundary all flow quantities are prescribed. At the outflow, a convective boundary
condition is used that allows unsteady flow structures to be transported outside the domain. On
the airfoil-flap-slat surface no-slip boundary condition is used. In the present work, the flow
control is realized by applying synthetic jet actuation at 27 slots on the suction side of the
flap, as shown in Figure (5). Numerically, each slot is resolved by two cell faces on the flap
boundary. It can be observed that the actuation is distributed almost on the entire flap starting
from the shoulder region. The actuation boundary condition at a flap face is defined by(

u
v

)
= A · u∞

( cos θ
tanβ
− sin θ

sin θ
tanβ

+ cos θ

)
sin[2πF · (t− t0)] (6)
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Figure 4: Block-structured grid around the flap of a three-element airfoil.

Here u and v are components of the actuation velocity vector, A is the non-dimensional am-
plitude of actuation, u∞ is the free-stream velocity, β is the blowing angle, F is the non-
dimensional frequency, t is the non-dimensional physical time and t0 is the non-dimensional
phase shift. The angle of the slit face, θ is fixed by the geometry of the airfoil. The named
quantities are appropriately non-dimensionalised by u∞.

4.4 Numerical Solvers

In the present work, the URANS calculations are performed using the multi-purpose parallel
CFD code ELAN [7, 8]. ELAN is an incompressible finite volume solver based on the SIMPLE
algorithm. The code is fully implicit and is of second order accuracy both in space and time.
The convective fluxes are approximated by a total variation diminishing (TVD) scheme. In
addition, the code offers various options for RANS/LES turbulence models.

The discrete adjoint URANS code ELAN-A [16, 26] is developed by applying the AD tool
Tapenade [27] to the underlying URANS solver. ELAN-A retains all features of the ELAN
code.

5 RESULTS AND DISCUSSION

In this section, we present the numerical results based on optimal active flow control mecha-
nism on the three-element airfoil high-lift configuration. We first consider the base flow without
actuation. The incompressible URANS simulations are performed with the SST k − ω turbu-
lence model at a Reynolds number of Re = 106 and angle of attack AoA = 6o. The contours of
velocity magnitude in Figure (6) show a massive flow separation on the suction side of the flap
starting from the shoulder region. Note that the early separation reduces the circulation around
the flap and hence the lift contribution from the flap decreases rapidly.
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Figure 5: Actuation slot distribution on the suction side of the flap of a three-element airfoil.

In order to delay the separation and to enhance the lift coefficient of the flap, synthetic jet
actuation is applied at 54 faces on the suction side of the flap. To start the optimization, initially
the non-dimensional values of the actuation parameters at all the faces are chosen as A = 0.2,
F = 2.0, β = 90o and t0 = −0.125. At a blowing angle of 90o the flow over the flap is perturbed
perpendicular to the local faces. The frequency of the initial actuation is fixed to the estimated
frequency of the vortex shedding of the un-actuated baseline flow. Time accurate simulations
are performed with the initial control starting from a fully developed baseline flow until the non-
dimensional time T = 28, which amounts to 40, 000 unsteady time iterations. Figure 7 shows
the time history of the lift coefficient. Compared to the baseline flow with C l = 2.2356, the
initial actuation has resulted in reasonable improvement in the lift coefficient with C l = 2.4936.

Our objective is to find the optimal actuation that results in maximum lift coefficient. It can
be observed that the lift profile for the actuated flow shows a typical initial transient behavior,
after which the flow settles down to a periodic state. For the objective function evaluation, we
neglect this initial transient and compute the time-averaged lift coefficient over a sufficiently
large interval of fully developed flow starting from 30, 000 time iterations to 40, 000 iterations.
It can be observed that the objective function interval consists of around 14 cycles of actuation,
which are good enough for a meaningful average. The discrete objective function and the
corresponding Lagrangian can then be written as

J = C l =
1

10, 000

40,000∑
n=30,001

Cn
l (Un,α)

L =
1

10, 000

40,000∑
n=30,001

Cn
l −

40,000∑
n=1

[(
U
n)T

(Un −Gn)
] (7)

The control variables are the actuation amplitudes, blowing angles and phase shifts at 54 actua-
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Figure 6: Baseline flow: Contours of the velocity magnitude on the flap of the three-element airfoil.

tion faces. This results in a total of 162 control variables. We now present the numerical results
for optimal active flow control based on a gradient based algorithm, evolutionary algorithm and
hybrid optimization approach.

5.1 Optimal Actuation based on the Gradient-based Optimization

To find the optimal actuation, the discrete adjoint URANS solver is combined with the BFGS
optimization algorithm. Figure 8 shows the time-history of the lift coefficient for the optimal
actuation. Compared to the un-actuated baseline flow, optimal actuation enhanced the mean lift
by around 19% to a value of C l = 2.6534. Figure 9 shows the contours of velocity magnitude
for the optimal case at the crest of a periodic oscillation in the lift coefficient. It can be observed
that the separation point has moved further downstream of the shoulder region.

5.2 Optimal Actuation based on the Evolutionary Algorithm

Figure 8 shows the variation of the lift coefficient based on the the Evolutionary Algorithm.
This approach resulted in very significant enhancement in the lift coefficient. Compared to the
baseline flow, the mean lift is increased by 63% to a value of C l = 3.6402. Figure 10 shows the
contours of velocity magnitude at the crest of a periodic oscillation in the lift coefficient. It can
be observed that the flow is fully attached as the separation is completely suppressed.

5.3 Optimal Actuation based on the Two-level Hybrid Approach

The optimal actuation obtained from the Evolutionary Algorithm is then used as an initial
condition at all the actuation faces on the suction side of the flap. Using this initial setting,
the discrete adjoint URANS solver is then employed along with the BFGS algorithm to further
enhance the lift coefficient. Figure 8 shows that the two-level approach has yielded a reasonable
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Figure 7: Comparison of the lift coefficient for the un-actuated baseline flow and the initial actuated flows.

improvement in the lift coefficient compared to Evolutionary Algorithm. The mean lift coeffi-
cient is observed to be 3.7266, which is almost 67% more than the baseline value. Figure 10
shows the corresponding contours of velocity magnitude. As a result, the two-level approach
yields an improvement of the mean drag around 40% compared to the classical gradient-search.
It can be concluded that, better initial values for the actuation variables, which are obtained by
the global optimization brings a significant improvement as far as the optimization results are
concerned. Table 1 shows a comparison of the mean-lift coefficient for the un-actuated, initial
actuated and optimal actuated flows.

In the present work, the levels of the hybrid approach were only performed once such that
the adjoint based gradient search stage has no effect on the initial global search using the EA. It
must also be noted that the EA uses a reduced design space that is case-specific and somehow
arbitrary. Therefore, choosing the reduced design space influences largely each stage’s potential
and emphasizes the case dependency of each stage’s individual performance. More complex
cases should show a stronger benefit of the hybrid algorithm.

Flow Mean lift coefficient C l

Un-actuated baseline flow 2.2356
Initial actuated flow 2.4936

Optimal actuation based on gradient search approach 2.6534
Optimal actuation based on EA 3.6402

Optimal actuation based on hybrid approach 3.7266

Table 1: Comparison of the mean lift for the un-actuated, initial actuated and optimal actuated flows.
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Figure 8: Comparison of the lift coefficient for the un-actuated baseline flow, initial actuated flow, optimal actuated
flows based on discrete adjoint approach, evolutionary and hybrid optimization algorithms respectively.

Figure 9: Optimal active flow control based on a gradient based optimization algorithm combined with discrete
adjoints. Contours of the velocity magnitude on the flap of the three-element airfoil.
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Figure 10: Optimal active flow control based on an evolutionary algorithm. Contours of the velocity magnitude on
the flap of the three-element airfoil.

Figure 11: Optimal active flow control based on the two-level hybrid optimization algorithm. Contours of the
velocity magnitude on the flap of the three-element airfoil.
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6 CONCLUSIONS

In this paper, we presented a two-level approach for the optimal active flow control by
combining an evolutionary algorithm based global optimization method with a gradient search
method using unsteady discrete adjoints. The discrete adjoint solver for the governing incom-
pressible URANS equations was developed by applying Algorithmic Differentiation (AD) tech-
niques. The adjoint solver retains the full functionality of the underlying non-linear URANS
solver. The suggested two-level method was then applied to find the optimal synthetic jet actua-
tion of a three-element airfoil configuration at a Reynolds number of 106 and an angle of attack
of 6◦. Numerical results have shown that the two-level approach had yielded 67% improvement
in the mean lift compared to the un-actuated baseline flow and 40% increase over the adjoint
based gradient search algorithm.
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relevant civil aircraft half model. Notes on Numerical Fluid Mechanics and Multidisci-
plinary Design (NNFM), 108:95–107, 2010.

[7] B. Günther, F. Thiele, W. Petz, R. Nitsche, J. Sahner, T. Weinkauf, and H.C. Hege. Control
of seperation on the flap of a three-element high-lift configuration. AIAA paper 2007-0265,
2007.
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Anil Nemili, Emre Özkaya, Nicolas Gauger, Felix Kramer and Frank Thiele
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Abstract. The processes of topology and shape optimization are well known methods in the
field of fluid mechanics. Although successful in their own rights, it is conceivable that the two
methods will find choicest solutions in tandem: i.e. if shape optimization were able to improve
a topological solution. Conjoining the two methods in this manner is not straightforward, how-
ever, since there is no existing process to connect one to the other. Toward this goal, a novel
transitional process is proposed to process level set topology solutions obtained using the con-
tinuous adjoint method such that a shape optimization loop using the continuous adjoint can
be initialized, run and ultimately produce a refined, parameterized solution. First, the topol-
ogy optimization process is enhanced using the level set method to both maintain an explicit
description of the interface between the solid and fluid topological domains and prevent the
formation of fluid or solid islands which would not be viable for manufacturing. The interface
is then fitted with Non-Uniform Rational B-Splines (NURBS) through application of sensitiv-
ities garnered from the solution of an auxiliary optimization problem which aims at reducing
the difference between the signed distance fields generated about each NURBS curve and its
corresponding interface section. A body-fitted mesh is generated for the geometry defined by
the fitted NURBS, allowing a shape optimization loop to be initiated. The parameterized result
of the topology to shape transition process will be compared to that of shape optimization in
two 2D cases with internal, incompressible fluid flows.
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1 INTRODUCTION

Topology optimization (TopO) was first proposed in [1] for the design of structural mechan-
ics and was expanded to the field of fluid mechanics through the introduction of a blockage term
(β) into the Stokes [2, 3] and laminar [4] flow equations which is treated as a design variable
per grid cell and varied to minimize an objective function. On the other hand, shape optimiza-
tion (ShpO) was initially introduced as shape control technique to reduce an objective function,
[5], and is expanded to fluid mechanics using boundary mesh displacement to alter the original
boundary shape of the case and, thus, its flow solution.

Both the TopO and ShpO processes require the ability to affect the current solution of a prob-
lem through design variable alteration in order to decrease (increase) the provided objective
function(s). To this end, the adjoint method is employed to supply objective function sensitivi-
ties, effectively telling the design variable set in which way they should be altered. Continuous
adjoint has been extensively developed for both ShpO and TopO for laminar and turbulent flows,
[5, 6, 7, 8, 9], and is applied for the TopO and ShpO processes used in this work.

While TopO is commonly used in fluid mechanics to develop optimal flow paths between pre-
scribed inlets and outlets according to the objective function(s) defined by the designer, ShpO is
only capable of altering known boundaries of a geometry in order to obtain an optimal solution,
but uses far fewer design variables (i.e., the boundary nodal or control point coordinates instead
of an internal field) to do so. Ideally, a solution found using TopO could be used to begin a
ShpO process which would produce a parameterized, manufacturable CAD model. However,
solutions of TopO do not, on their own, contain the surface information required for ShpO to
initialize; information which would be available if a fluid-solid interface (FSI) were explicitly
defined by the TopO solution. Furthermore, TopO solutions found can also suffer from island
formation and the development of grey-zones in which the FSI is ambiguous.

To address these issues, a process which conjoins the theories of both the continuous adjoint
topology and level set (LS) optimization methods for incompressible viscous fluid simulations is
devised and hereon associated with the term ’TopO’. The LS method is a conceptual framework,
first proposed in [10], which maps moving interfaces through the introduction of a LS field
(LSF) that corresponds to a signed-distance field. Integration of the LS method into TopO is
achieved by making β a function of the LSF: the domain is modeled as solidified where the LSF
is negative and fluidized when positive, making the zero-value contour of the LSF the FSI by
definition. FSI progression toward an optimal solution occurs via adjoint sensitivity convection
through alteration of cell-center LSF values and subsequent application of an accurate, fast-
marching reinitialization algorithm.

The TopO-to-ShpO transition process begins by subdividing the FSI from TopO such that
each division pertains to paired inlet-outlet connections. These FSI segments are used to initial-
ize new individual LSFs which act as target solutions to a field-matching algorithm which tries
to iteratively fit a NURBS curve to each segment. This is done by building a narrow band (NB)
LSF about each NURBS curve, comparing it to the target LSF and, then, generating sensitivi-
ties for moving each NURBS control point (CP) based on their difference. A body-fitted mesh
is generated from this NURBS fitting and is used to initialize an adjoint-driven ShpO process,
which in turn generates a parameterized solution. This paper will apply the proposed method for
conjoining the TopO and ShpO processes to two 2D test cases with the goal of minimizing total
pressure losses in ducted flow using volumetric constraints. Both the cases and the in-house
code pertaining to the coupling process are implemented within OpenFOAM2.2.1 [11].
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2 TOPOLOGY OPTIMIZATION

2.1 Flow Equations

In this paper, the modeled fluid flow is governed by the steady-state Navier-Stokes equations
for incompressible, laminar flows. The blockage formulation of TopO requires the addition of
a term which contains a function of the blockage variable (0 ≤ β ≤ 1) into the momentum
equation (eq. 1b). If f(β) becomes comparatively large, the added term becomes dominant,
forcing the velocity toward zero and effectively rendering the domain solid. Conversely, if this
term is comparatively small, the velocity is uninhibited and the domain remains fluid. The flow
equations are

Rp = −∂vj
∂xj

= 0 (1a)

Rvi = vj
∂vi
∂xj

+
∂p

∂xi
− ∂

∂xj

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
+ f(β)vi︸ ︷︷ ︸

Blockage Term

= 0 (1b)

where f(β) = ββMAX and βMAX is a large and positive user-defined value. The usual primal
boundary conditions associated with internal aerodynamics–constant inlet velocity, constant
outlet pressure and no-slip condition along the wall–are imposed for all cases.

2.2 Adjoint Equations, Boundary Conditions and Sensitivities

In order to properly discuss the formulation of the adjoint equations, the basic TopO opti-
mization problem must be examined. In this paper, the objective function to be minimized is
that of the volume-averaged total pressure losses between the inlet(s), SI , and outlet(s), SO,

F = −
∫
SI

(
p+

1

2
v2
k

)
vinidS −

∫
SO

(
p+

1

2
v2
k

)
vinidS (2)

where ni are the components of the outward normal vector. To account for the possible in-
clusion of a constraint C into the TopO process, the objective function F to be minimized is
re-defined as the Lagrangian objective function L according to the Augmented Lagrange Mul-
tiplier (ALM) method [12]. Constraints are discussed in Section 2.4. The optimization problem
and corresponding Lagrangian function are defined as

min(F ) , subject to c = 0

L = F − λc+ wc2 (3)

where c and λ are the constraint function and Lagrangian multiplier, respectively, and w is a
dynamically changing weighting scalar [12]. If the constraint is not imposed L ≡ F . The
Lagrangian function to be minimized is further augmented by the flow equation residuals as
follows

Laug = L+

∫
Ω

qRpdΩ +

∫
Ω

uiRvidΩ (4)

in which q and ui are the adjoint pressure and velocity components, respectively. After lengthy
derivation, [13], the variation of eq. 4 with respect to (w.r.t.) the design variable(s) β becomes

δLaug
δβm

=

∫
Ω

Rq
∂p

∂βm
dΩ +

∫
Ω

Rui

∂vi
∂βm

dΩ +

∫
Ω

viui
∂f(β)

∂βm
dΩ

+

∫
S

BC1
∂p

∂βm
dS +

∫
S

BC2,i
∂vi
∂βm

dS −
∫
S

∂

∂βm

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
uinjdS (5)
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wherem is the cell index and S is the boundary of the computational domain Ω. TheR andBC
terms in eq. (5) will become the adjoint field equations and boundary conditions, respectively,
and are derived through eliminating all terms with field integrals containing partial derivative(s)
dependent on the β design variable(s) by setting their multipliers, or, in the case of the BC
terms, portions of their multipliers, against zero. It should be noted that these partial derivatives
are technically total derivatives: δ≡∂ for TopO since the computational grid remains unchanged
when a design variable is changed [13].

The adjoint continuity and momentum field equations are defined as

Rq =
∂uj
∂xj

= 0 (6a)

Rui = −vj
(
∂ui
∂xj

+
∂uj
∂xi

)
+
∂q

∂xi
− ∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
= 0 (6b)

with appropriate boundary conditions derived from BC1 and BC2 (see [13]). After satisfaction
of the field equations and their boundary conditions, the remaining terms of eq. 5 define the
sensitivity derivatives of Laug (here-on referred to as simply L) for laminar flows w.r.t. the
blockage design variable(s)

δL

δβm
=

∫
Ω

viui
∂f(β)

∂βm
dΩ = vmi u

m
i ΩmβMAX (7)

where Ωm is the volume of the m-th grid cell.

2.3 Level Set Topology Formulation

Use of the blockage formulation of TopO creates two dilemmas w.r.t. the process of transi-
tioning to ShpO described in Section 3. The first is the lack of an explicit definition between
the solid and fluid topological domains. Depending on the value of β, the topological field will
be defined as solid (β = 1), fluid (β = 0), or, more likely, slushy grey-scale β values that are
neither solid or fluid (0<β<1). Such grey-scale regions are problematic from a manufacturing
point of view, since there is no way to know where the blockage-based TopO process would
choose the FSI within the grey-scale domain. Generally, the issue of β grey-scale has been
treated through a cut-off approach: if β is below a certain (small) value then it is considered
fluid while for larger values it is considered solidified. While convenient, this approach does
not address the larger issue at hand: that the solution has not defined a true FSI. The second
dilemma inherent to the blockage-based TopO formulation is the development of fluid or solid
islands within otherwise homogeneous domains of the opposite type, and can be attributed to
the fact that the adjoint sensitivities are applied across the entire domain. Since they have no
relevance w.r.t. manufacturing, islands should not be considered when defining the FSI.

To address both these issues simultaneously, the level set (LS) method was employed as a β
filter. The level set is a differential equation-driven method in which the design domains and
their interfaces Γ (here ΓFSI) are represented in terms of implicit functions which are monotonic
and differentiable on the interface [14]. The LS method is used to manipulate its field variable
φ, i.e. a signed distance field which must have a gradient magnitude of 1 everywhere,

‖∇φ‖ = 1 (8)

such that φi = {negative ∀i∈ΩSolid, zero ∀i∈ΓFSI, positive ∀i∈ΩFluid}
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To move the FSI toward the optimal solution, the LSF is subjected to a process of convection
such that the total derivative remains zero for the Lagrangian reference system. If eq. 8 holds
and the convecting velocity Vi of ΓFSI is defined as its unit normal multiplied by a scalar quantity,
then the convection equation is derived as follows

δφ

δt
=
∂φ

∂t
+
∂φ

∂xi

∂xi
∂t

=
∂φ

∂t
+ Vi

∂φ

∂xi
=
∂φ

∂t
+ Vn = 0

where Vn, the ‘normal’ convecting velocity of ΓFSI. Vn is redefined as GTot and is comprised
of two different contributions: those from the TopO sensitivities derived from the objective
function and those from the constraint C (if imposed). The discrete form of the equation of
convection is

φn+1
m = φnm − (∆τ)GTotm (9)

where

GTotm = GFm︸︷︷︸
F Term

+ GCm︸︷︷︸
C Term

=
δL

δφm
(10)

and ∆τ and m are a convection step size and cell index, respectively. The F and C terms found
in eq. 10 will be discussed in Section 2.4.

After eq. 9 is explicitly applied to ΓFSI, eq. 8 does not necessarily hold: the φ field must
undergo a signed-distance correction procedure (SDCorr) after each convection application.
The method employed for the work in this paper corrects ∀φi∈ΓFSI using the original φ values
for those cells and then conducts a Fast Marching Method (FMM) to solve for the remainder of
the φ domain [15]. If the computational domain is large, performing this FMM for the entire
φ domain can be expensive. Thus, a narrow-band (NB) technique is employed in this work:
the φ values are subject to SDCorr only if they are within the NB. Although this means that
the SDCorr must be performed after each convection step (ΓFSI moves and thus the NB cell set
must be reassessed), the overall computational cost of the procedure becomes negligible if the
NB is small.

The LS field can be trivially initialized from any given β field through the relation

φm = 1− 2βm (11)

which defines the zero-φ isoline as the FSI. Eq. 11 is an auxiliary, one-way expression: once
the LSF has been convected, an inverse application of this equation will not give an accurate β
field since the LS field has undergone a SDCorr and 0<β < 1 must hold (the corrected φ val-
ues would create β values above and below 0 and 1). Thus, after initialization the relationship
between the LSF and β is inverted: β depends on φ according to a piecewise continuously dif-
ferentiable NB sigmoidal Heavyside relationship (β(φm) =H(φm)). This Heavyside function
differentiates into the smoothed Dirac function D(φm), i.e.,

δβ(φn)

δφm
= D(φm)δnm (12)

where δnm is a Kronecker delta. This relationship is used in Section 2.4 to recast the objective
function’s TopO adjoint sensitivities into TopO convecting velocities.

The entire TopO process can be summarized as follows:
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1. Initialize φ from a given β field via eq. 11.

2. Solve eqs. 1 and 6; get new field sensitivities via eq. 7.

3. Compute the LS convecting velocitiesGTot via eq. 10 (see Section 2.4) and convect within
ΓFSI via eq. 9.

4. Conduct the SDCorr process and get the new NB φ values based on the newly convected
zero-φ isoline.

5. ComputeD(φm) via eq. 12 for the next iteration’s convection and set the new β field with
β(φm)=H(φm); return to step 2.

2.4 Level Set Convecting Velocity Term Formulation

The TopO formulation discussed in Section 2.3 requires the set of normalized convecting
velocities GTot which are defined in eq. 10 and expanded as follows.

GTotm =
δL

δφm
=

∂L

∂βn

δβn
δφm︸ ︷︷ ︸

F Term

+
∂L

∂c

δc

δφm︸ ︷︷ ︸
C Term

(13)

GTot is effectively comprised of two different contributions: those from the TopO adjoint sen-
sitivities derived from the defined objective function and those from the constraint. These two
contributions are discussed below and recast for the LS formulation as necessary.

Convecting Contribution GF : Objective Function
Without the constraint applied, only the F Term remains in eq. 13, which is eq. 7: the TopO
sensitivities become the LS convecting velocity. To recast the TopO sensitivities as LS sensi-
tivities, the fact that β is a function of φ is exploited through the relationship found in eq. 12 to
give δL

δφm
=D(φm) ∂L

∂βm
: the TopO sensitivities are simply multiplied by the LS Dirac function.

Physically, this means that the TopO sensitivities are only valid as LS convecting velocities
within the NB. Thus, the F Term in eq. 10 is

GFm = D(φm)vmi u
m
i ΩmβMAX (14)

Convecting Contribution GC: Fluid Volume Constraint
LS convecting velocity contributions generated from the constraint is contained within the
C Term of eq. 13. The constraint considered in this paper is an ALM equality constraint
which limits the total volume-averaged sum of the β field, requiring that a certain percentage
V– Fluid,Tar of Ω be ΩFluid. This constraint is useful from a production perspective since lim-
itation of the allowed fluid volume can help meet material usage restrictions. Without TopO
sensitivities, only the C Term of eq. 13 remains and is defined as

GCm = (−λ+ 2wc)
δc

δφm
(15)

c =
1

2
(V– Fluid−V– Fluid,Tar)

2, V– Fluid =

∫
Ω

(1−H(φm))dΩ∫
Ω
dΩ

(16)
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Figure 1: The TopO minimal total pressure
loss φ solution and geometry of the TToST
example case, using a NBHW of 0.01m.
The ΓFSI of the solution can be seen as a
black line.

Figure 2: The marching segmentation
process starts with end-point 0 and ends
at end-point 4, generating points along
ΓFSI and assigning them to the appropriate
isoPts list of each isoSeg.

3 2D TOPOLOGY-TO-SHAPE TRANSITION

The process of ShpO requires a parameterized curve or surface input in order to build a
computational mesh and generate a refined, parameterized solution. In the present work, these
inputs are comprised of NURBS curves. The goal of the proposed transition process is to
automatically generate and fit, as closely and efficiently as possible, NURBS curves to TopO
solutions so as to have a ShpO input which matches the TopO case geometry and can be fed
directly into a meshing program to begin the ShpO process. This approach is only feasible
due to the explicitly defined FSI found by the TopO formulation described in Section 2.3, as it
provides a known target curve (the zero-φ isoline) to be fitted. The procedure for the proposed
2D TopO-to-ShpO transition (TToST) is explained through its application to a representative
test case.

3.1 TToST Explanatory Test Case: 2D Single Inlet, Double Outlet

The case used to exemplify the TToST process is a laminar, 2D OpenFOAM (one cell in
the z direction) case with one inlet to be connected to two outlets. The case has an orthogonal
Cartesian mesh of 100x100 cells. β is initially specified as 0 at the cells which owned by (are
adjacent to) SI and SO, and as 1 everywhere else. A narrow band half width (NBHW), i.e. the
normal distance from ΓFSI to the limits of the NB, of 0.01m was selected for the LS process,
and the fluid volume constraint was specified with V– Fluid,Tar = 0.3 (see Section 2.4). The case
geometry and φ field solution found by the TopO process can be seen in fig. 1.

3.2 TToST Step1: Isoline Segmentation

In order to obtain a set of target curves for the NURBS fitting processes, the TopO solution’s
ΓFSI must be decomposed into as many isoline segments (isoSegs) as there are NURBS end-
point pairs to be connected. The NURBS end-points are defined at the centers of the edges
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shared by boundary face pairs which have a member in both the SW and SI ||SO face sets.
The normal vectors of each point (used to define the initial, positive normal direction for a
NURBS curve starting there) are defined as pointing from the SW cell to the SI ||SO cell. For the
considered case there are six end-points, requiring three isoSegs to be generated. The isoSegs
are generated by interpreting an auxiliary, binary field which is 1 for cells which contain the
ΓFSI and 0 otherwise. During the generation process, points which lie on the zero-φ isoline are
gathered so as to have an ordered set of points against which to fit NURBS curves in Section 3.4.
The process for generating the isoSeg and their isoPts starts from an end-point and traverses the
case’s boundaries and ΓFSI until another, unused end-point is reached, and then repeated until
no end-points remain to be considered. This process is sketched in fig. 2.

3.3 TToST Step 2: φ Target Field Generation

The next step in the TToST is to generate a set of ’target’ signed distance fields φTar from
each isoSeg’s ΓFSI cells through a SDCorr process similar to that used in the LS NB calculation
(see Section 2.3). Unlike during the TopO process, the SDCorr must be performed throughout
the entire domain: these target fields are used as a basis for distance comparison in step 4 of the
TToST (Section 3.5) to quantify how far away from its ΓFSI segment the generated NURBS is,
and must therefore exist wherever the NURBS could exist within Ω. An optimization problem
is solved in steps 3 and 4 of the TToST to minimize the difference between these φTar fields
and the NB φ fields generated about each NURBS curve. The use of the φTar fields during this
fitting process means that each NURBS curve only sees the isoSeg it is to be matched with and
will not attempt to fit the other isoSegs of the case.

3.4 TToST Step 3: NURBS Least Square Fit and Parameter Search Algorithm

Once the end-points, starting normals, ordered isoPt lists and φTar fields have been found,
the unique initialization and fitting process for each NURBS can begin. To initiate the iterative
Field Matching process described in Section 3.5 PI points are generated on the NURBS curve,
where PI is the number of isoPts for the corresponding isoSeg to be matched, and a Least
Squares Fitting problem (LSqF) is solved. The LSqF is supplied with a user-defined number
of control points (nCPs) and degree which are identical for all NURBS to be fitted; 8 CPs and
degree 4 for the considered example case. Performed with fixed initial nCPs and degree, the
LSqF can be poor if the isoSeg has high curvature (isoSeg2) or begins away from the specified
end-points (isoSeg1). A plot of the resulting NURBS curves, their CPs and the isoPts after
this LSqF process can be seen in fig. 3. To mitigate the effect of these matching errors, a
Parametrization Search Fit (PSF) is performed for each NURBS curve after its initialization in
which the nCPs and degree are altered to decrease the error of the LSqF. The PSF algorithm set
degrees 4, 3 and 2 and nCPs 9, 10 and 14 for NURBS 0, 1 and 2, respectively. A plot of the
resulting NURBS curves, their CPs and the isoPts after this PSF process can be seen in fig. 4.

3.5 TToST Step 4: NURBS Field Matching Fit Algorithm

The final step in the TToST process is an iterative field comparison between a generated
NURBS NB distance field, φN and the portion of its φTar field within its NB which attempts
to minimize ∆φNB, the aggregate difference between the two, through CP, and thus NB, dis-
placement. Displacement for each CP is dependent on sensitivities which quantify how the
current ∆φNB relationship would change if the CP were to be moved. Thus, to properly explain
the Field Matching Fit (FMF) algorithm, the formulation of its CP sensitivity generation must
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Figure 3: The TToST NURBS and their CP
polygons plotted against the target TopO
ΓFSI solution after the LSqF process.

Figure 4: The TToST NURBS and their CP
polygons plotted against the target TopO
ΓFSI solution after the PSF Algorithm.

be discussed in brief. The Field Matching (FM) objective function to be minimized and its
sensitivities w.r.t. the design variables bi are

FFM =
1

2

∫
Ω

HH(φN)(φN − φTar)2dΩ (17)

δFFM
δbi

=

∫
Ω

1

2

∂HH(φN)

∂φN
(φN − φTar)2︸ ︷︷ ︸

∆V– NB Term

+HH(φN)(φN − φTar)︸ ︷︷ ︸
∈V– NB Term

 δφNδbi dΩ (18)

where HH(φN) is a double Heavyside function which allows only the NB to be considered for
integration. The ∆V– NB term in eq. 18 describes how altering the shape of a NURBS curve
through CP displacement affects a change in the NB volume, while the ∈V– NB term describes
the change of ∆φNB within the current NB due the same CP displacement.

Each design variable bi is a degree of freedom of a CP. Recast, bi=Bn
q , where q is the index

of the CP and n is the component of the CP which bi pertains to. Note that both the number
of degrees of freedom and the number of all components considered here is the number of
dimensions of the system, D (D=2 for this paper). The NURBS curve has a total set of points
P that can be broken into subsets Pi which pertain to the points affected by design variable bi.
Within each subset, points are denoted as pkj , where j is the index of the point within Pi and k
is the point’s component. Furthermore, each point pj has a set Mi,j of cells cm within the NB
which it ‘owns’ (i.e., which it defines the φ value for due to the SDCorr process), each with
components denoted k due to the SDCorr relation to its curve point. Here, m is the the index
of cell c within the entire NB; an index which is interchangeable with that of its φ value. If bi
moves, the set Pi of these NURBS points which are affected by it will also move, requiring a
sensitivity relationship between bi and pj ∈ Pi and between pj ∈ Pi and cm ∈Mi,j . The term
within eq. 18 that requires this bi to cm coupling is ∂φN

∂bi
. If N is the set of basis functions

of the NURBS defined by the parametric variable u, ∂φN
∂bi

can be recast and found, after some
derivation, to be

δφN
δbi

=⇒ δφm
δBn

q

=

P1−1∑
j=0

D−1∑
k=0

δφm
δpkj

δpkj
δBn

q

=

P1−1∑
j=0

pnl − cnm(l)

φm
δljNq(uj) (19)
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where l is an iterate over the set Pi, subscript m(l) denotes that a cell of index m is owned
by the point with index l and Nq(uj) is the NURBS’ derivative contribution at point uj of the
curve. The calculation of the FM CP sensitivities therefore requires a summation over all cells
cm in the NB, adding each’s sensitivity contributions to all relevant CPs according to eq. 19.

The FMF algorithm, initialized with the NURBS curves found with the PSF (see Section
3.4), can now be summarized as follows for each NURBS curve to be fitted:

1. Generate points on the NURBS curve and perform the SDCorr for a defined NBHW.

2. Find FFM via summation between the φN and φTar fields within the NB.

3. Calculate the CP sensitivities via eq. (18) and move the CPs accordingly.

4. IF |F n
FM − F n−1

FM | < ∆FFMMIN
, BREAK.

5. Return to Step 1.

The FMF algorithm was run for the example case with parameters of ∆FFMMIN
= 0.0001 (a

relatively high matching tolerance) and NBHW=0.1m. A plot of the resulting NURBS curves,
their CPs and the isoPts after the FMF process can be seen in fig. 5.

Figure 5: The TToST NURBS and their CP polygons plotted against the target TopO ΓFSI

solution after the FMF Algorithm.

4 SHAPE OPTIMIZATION

The TToST process (see Section 3) generates a set of NURBS curves which represent the
ΓFSI of the TopO solution and which can be treated as a solid wall boundary (SW ) for the primal
and adjoint ShpO problem once a mesh has been generated from them. The flow equations
for the ShpO are identical to eqs. 1a and 1b if the blockage term is excluded. Similarly, the
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boundary conditions of the ShpO are identical to those of TopO. The design variables bl for
ShpO are, much like for the FMF optimization problem in Section 3.5, the degrees of freedom
of the CPs which define SW . The sensitivities for the ShpO CPs are computed by integrating
over SW via

δF

δbl
= −

∫
SW

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)
nj − qni

]
∂vi
∂xk

δxk
δbl

dS (20)

where δxk
δbl

is computed analytically through NURBS. It is beyond the scope of this paper to
present ShpO in detail; the interested reader will find material pertinent to the ShpO method and
its corresponding continuous adjoint formulation in [9]. The found ShpO solution compared to
the parameterized TToST NURBS solution can be seen in fig. 6. Aside from deeming the initial
bulging of isoSeg1 to be insignificant on the final solution, ShpO shows preference for widening
the lower and narrowing the upper exit ducts, decreasing the objective function by over 3.0%
through doing so.

Figure 6: Example case’s initial and final ShpO boundary solution (left) and its total pressure
losses objective function’s convergence history of and transitional behavior between TopO and
ShpO (right).

The objective function trend comparison between TopO and ShpO is also shown in fig. 6.
The TopO case was run to convergence to show that the continuous adjoint TopO and ShpO
find similar solutions. In many applications, and as is done in Section 5, TopO would be used
simply to initialize a flow channel, then let ShpO converge the solution as ShpO is considered
to be faster than TopO since the zero-φ isoline moves only within the NB.

5 2D APPLICATION: Dual Bottle Neck Case

To demonstrate the robustness of the TToST method developed in this work, a more complex
’dualBottleNeck’ case is presented. The case has a single inlet in the upper left of the case do-
main, two outlets in close proximity at the bottom right and two ’bottle neck’ locations between
them which fix the area of flow passage. The dualBottleNeck has a uniform Cartesian grid of
15200 cells and the same flow conditions, NBHW and objective function as the example case
presented in Section 3. The volume constraint is similarly set to enforce V– Fluid,Tar = 0.3. The
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case geometry, φ field solution found by the TopO process, TToST fitting solution and the final
ShpO solution are shown in fig. 7.

Figure 7: dualBottleNeck case solution set: (left): Case geometry and TopO φ solution with
its known ΓFSI. (center): TToST solution. Black and light grey dots indicate which control
points were allowed to move and kept fixed, respectively. (right): The ShpO boundary solution
overlaid that of the TToST.

Unlike the example case in Section 3, the dualBottleNeck case was not run to convergence
during the TopO process but prematurely stopped at iteration 25 for the reasons discussed at
the end of Section 4. Thus, the γ and ω ALM parameters were increased in strength to ensure
the constraint be respected by the time of the TopO process’ termination. Given initial degree
of 4 and 10 CPs, the PSF process chose to define degrees 4, 4 and 3 and nCPs 10, 16 and 14
for NURBS curves 0,1 and 2, respectively. The FMF solution found using these parameters
is shown in fig. 7, center. The two bottle necks in the case present an obstacle to the ShpO
process, as its SW boundaries are desired to remain inside the original boundary of the TopO
case even though ShpO does not know where this boundary was. Thus, CPs which could affect
boundary movement outside of the original TopO domain were fixed and are colored grey in the
FMF solution. The ShpO process enlarges the entrance channel and carves out its lower wall in
order to decrease pressure losses. It also expands the main lower exit channel. This enlarging
of the lower channel was seen in the example case as well and occurs because a pressure loss
is incurred when flow is diverted to the right (or upper) exit channel. Inversely, and due to the
need to maintain the volume constraint, the ShpO process narrows the right exit channel.

The TopO and ShpO objective functions are plotted in fig. 8. The initial oscillation of the
TopO objective is due to the severity of the imposed volume constraint since the dominance
of the adjoint and constraint sensitivities can switch between iterations. A sizable objective
function decrease is also seen between the end of TopO and the beginning of the ShpO: the TopO
solution has not yet converged and the sensitivities are still quite large, resulting in a jagged
ΓFSI (see fig. 7, center) which generates pressure losses along its entire length. In contrast, all
boundaries of ShpO are smooth. The ShpO process decreases the objective function by over
50%, which is not surprising due to the poor quality of the TopO’s premature solution.
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Figure 8: The convergence history of and transitional behavior between TopO and ShpO for the
dualBottleNeck case’s total pressure losses objective function.

6 CONCLUSIONS

The novel transitional TToST process between level-set topology and shape optimization
was developed in this paper. The narrow band implementation of the continuous adjoint level
set topology optimization process, TopO, ensures that the interface between the solid and fluid
topological domains is explicitly defined and prevents topological island formation. Although
the TopO method works well for 3D cases, its application was limited to 2D in order to showcase
the TToST process, as it is currently only applicable to 2D geometries. A topological constraint
for fluid volume was developed and can be used to ensure a topological solution which meets
manufacturing specifications.

The 2D TToST process itself was presented, with its fitting algorithms and sensitivity cal-
culation being discussed in detail. The cases shown in this paper demonstrate that the TToST
process can accurately fit the interface defined by the TopO solution, thereby finding a param-
eterized NURBS set which can be used to initialize a continuous adjoint shape, ShpO, opti-
mization problem. TToST has been shown to capture optimized solutions for both converged
and pre-converged TopO problems, allowing it to decrease the overall computational cost of
the linked TopO-ShpO optimization problem since ShpO’s boundary movement is not limited
by a narrow band like TopO. For all presented cases, ShpO allowed for a significant decrease
in the objective function w.r.t. the solution found by TopO, with the improvement being more
significant the sooner ShpO was allowed to take over.

Future research regarding the TToST algorithm includes expansion to 3D and the inclusion
of user-defined topological islands: the current TToST algorithm would not consider floating
solidified (or liquidized) islands as viable interfaces to be fitted. Validity of such an inclusion
into the TToST process is under investigation.
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Abstract. This paper presents the development and application of the Truncated Newton (TN)
method for shape optimization problems based on continuous adjoint. The method is presented
for laminar, incompressible flows. OpenFOAM R© is chosen as the CFD toolbox in which the
method is developed. The Newton equations are solved using the restarted linear GMRES al-
gorithm which requires only the product of the Hessian matrix of the objective function (with
respect to the design variables) with a vector. This overcomes the cost for computing the Hes-
sian matrix itself, which unfortunately scales with the number of design variables. The compu-
tation of Hessian-vector products is conducted via the combination of continuous adjoint and
direct differentiation that gives the minimum cost. The developed method is used for the shape
optimization of two 3D ducts and the speed-up gained compared to rival methods is showcased.
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1 INTRODUCTION TO THE TRUNCATED NEWTON METHOD

An unconstrained optimization problem, in which the target is to minimize the objective
function F by controlling the design variables bi , i = 1, ...,N can be solved by means of the
Newton method, according to which the design variables are updated (bn+1

i = bn
i + δbi) after

solving the Newton equations

δ 2F
δbiδb j

n

δb j =−
δF
δbi

n

(1)

where n is the Newton iteration counter, to be omitted hereafter. The direct solution of eq. 1
requires the computation of the Hessian of F , with a computational cost that scales with N [4].

Considering eq. 1 as a linear system of equations of the form Ax= q, a possible way to
solve it is through an iterative solver which requires only the computation of matrix-vector
products. Since the Hessian matrix is symmetric, a popular choice is the Conjugate Gradient
(CG) method, [5, 1]. For reasons to be discussed in sections 8 and 9.1, the linear restarted
GMRES method, [9], schematically given in Algorithm 1, is used herein instead.

Algorithm 1 : The Linear Restarted GMRES Method for the Solution of Ax = q

r0 = Ax0−q, s1 = r0

‖r0‖2
for j = 1,2, . . . ,M do

w j = As j

for i = 1,2, . . . , j do
hi, j = (w j,si)

end for

s j+1 = w j−
j

∑
i=1

hi, jsi

h j+1, j = ‖s j+1‖2

s j+1 = s j+1

h j+1, j

end for
Compute β1, . . . ,βM by solving the minimization problem min‖AxM−q‖2

xM = x0 +
M

∑
i=1

βisi

Based on Algorithm 1, the cost of each GMRES iteration is dominated by the cost of com-
puting the matrix–vector product (As), M times during the Arnoldi process, where M is the
chosen number of basis vectors. Regarding eq. 1, since the Hessian matrix stands for A, the
use of the Truncated Newton (TN) method in aerodynamic shape optimization problems means
that the Hessian matrix itself is no more needed and only its product with a vector must be
computed. On the other hand, for the r.h.s. of eq. 1, the gradient of F must be available and the
(continuous) adjoint method, [6], is the less expensive way to compute it, at a CPU cost which
is practically independent of N.
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2 FLOW MODEL & OBJECTIVE FUNCTION

3D laminar flows of incompressible fluids are governed by the continuity and momentum
equations,

Rp=−
∂v j

∂x j
=0 (2)

Rv
i =v j

∂vi

∂x j
−

∂τi j

∂x j
+

∂ p
∂xi

=0 , i = 1,2,3 (3)

where vi are the velocity components, p the static pressure divided by the constant density,
τi j=ν

(
∂vi
∂x j

+
∂v j
∂xi

)
the stress tensor and ν the constant viscosity.

In this paper, the development of the TN method will be demonstrated for the objective
function

F =−
∫

SI,O

(
p+

1
2

v2
k

)
vinidS (4)

where S= SI∪SO∪SW is the domain boundary with SI being the inlet, SO the outlet, SW the solid
wall and n the outward unit normal vector to the surface. F stands for the volume–averaged total
pressure losses of the flow inside a duct; the optimal duct shape is the one yielding the minimal
value that F may take on, given the parameterization of SW .

3 COMPUTATION OF δF
δbi

VIA CONTINUOUS ADJOINT

It is beyond the scope of this paper to present the continuous adjoint method for the compu-
tation of δF/δbi; the interested reader should refer to [6]. The adjoint continuity and adjoint
momentum equations are

Rq=−
∂u j

∂x j
=0 (5)

Ru
i =u j

∂v j

∂xi
−

∂
(
uiv j
)

∂x j
−

∂τa
i j

∂x j
+

∂q
∂xi

=0 , i=1,2,3 (6)

where ui are the adjoint velocity components, q the adjoint pressure and τa
i j =ν

(
∂ui
∂x j

+
∂u j
∂xi

)
the

adjoint stress tensor. By satisfying eqs. 5 and 6, δF/δbn becomes independent of δvi/δbn and
δ p/δbn at the interior of the computational domain, [6].

Using the continuous adjoint method, the gradient of the F w.r.t. bn becomes

δF
δbn

=
∫

Ω

A jk
∂

∂x j

(
δxk

δbn

)
dΩ (7)

where

A jk=−uiv j
∂vi

∂xk
−u j

∂ p
∂xk
−τ

a
i j

∂vi

∂xk
+ui

∂τi j

∂xk
+q

∂v j

∂xk
(8)

A few comments on eq. 7 are due. According to [2], δF/δbi can either be expressed exclusively
in terms of surface integrals or may also include field integrals. The two formulations are
referred to as SI (Surface Integral) and FI (Field Integral), respectively. Eq. 7 is obviously based
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on the FI formulation. A noticeable advantage of the latter is that it avoids the computation of
second-order spatial derivatives along S which might become a source of error. The proposed
TN method relies upon the FI formulation since, following this approach, the computation of
even higher spatial gradients at the boundary is avoided during the evaluation of δ 2F

δbnδbm
sm.

4 BACKGROUND EXPRESSIONS

First of all, a clear distinction between total and partial derivatives should be made. For any
flow quantity Φ, the total derivative δΦ/δbn, which represents the total change in Φ caused by
variations in bn, is

δΦ

δbn
=

∂Φ

∂bn
+

∂Φ

∂xk

δxk

δbn
(9)

where the partial derivative ∂Φ/∂bn includes only the variation in Φ caused due to changes in
the design variables, without considering space deformations.

The TN method makes extensive use of the products of total derivatives and any vector sm.
So, it is convenient to define

Φ=
δΦ

δbm
sm (10)

Eq. 10 is also valid for the grid coordinates, so xk=
δxk
δbm

sm. Starting from

δ

δbm

(
∂Φ

∂x j

)
sm=

∂

∂bm

(
∂Φ

∂x j

)
sm+

∂

∂xk

(
∂Φ

∂x j

)
δxk

δbm
sm=

∂

∂x j

(
∂Φ

∂bm

)
sm+

∂

∂xk

(
∂Φ

∂x j

)
xk

it can easily be proved that

∂Φ

∂x j
=

δ

δbm

(
∂Φ

∂x j

)
sm=

∂Φ

∂x j
− ∂Φ

∂xk

∂xk

∂x j
(11)

It can also be proved that, if Φ, Ψ is any pair of quantities, the following equation is also valid

δ

δbm

(
Ψ

∂Φ

∂x j

)
sm=Ψ

∂Φ

∂x j
+Ψ

∂Φ

∂x j
−Ψ

∂Φ

∂xk

∂xk

∂x j
(12)

Also, as shown in [4], for either structured or unstructured grids,

δ (dΩ)

δbm
=

∂

∂xλ

(
δxλ

δbm

)
dΩ (13)

from which we get
δ (dΩ)

δbm
sm=

∂

∂xλ

(
δxλ

δbm
sm

)
dΩ=

∂xλ

∂xλ

dΩ (14)

In what follows, the following abbreviation

xk,n=
δ 2xk

δbnδbm
sm (15)

will also be used.
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5 COMPUTATION OF HESSIAN(F)–VECTOR PRODUCTS

The TN method requires the computation of δ 2F
δbnδbm

sm. Based on the background expressions
presented in section 4, it is a matter of a rather lengthy development to show that

δ 2F
δbnδbm

sm =
∫

Ω

A jk
∂

∂x j

(
δxk

δbn

)
dΩ+

∫
Ω

A jk
δ

δbm

[
∂

∂x j

(
δxk

δbn

)]
smdΩ

+
∫

Ω

A jk
∂

∂x j

(
δxk

δbn

)
sm

δ (dΩ)

δbm
(16)

where

A jk = −uiv j
∂vi

∂xk
−uiv j

∂vi

∂xk
−uiv j

∂vi

∂xk
+uiv j

∂vi

∂xλ

∂xλ

∂xk
−u j

∂ p
∂xk
−u j

∂ p
∂xk

+ u j
∂ p
∂xλ

∂xλ

∂xk
−ν

(
∂ui

∂x j
+

∂u j

∂xi

)
∂vi

∂xk
+ν

(
∂ui

∂xλ

∂xλ

∂x j
+

∂u j

∂xλ

∂xλ

∂xi

)
∂vi

∂xk

− ν

(
∂ui

∂x j
+

∂u j

∂xi

)
∂vi

∂xk
+ν

(
∂ui

∂x j
+

∂u j

∂xi

)
∂vi

∂xλ

∂xλ

∂xk

+ ui
∂

∂xk

[
ν

(
∂vi

∂x j
+

∂v j

∂xi

)]
+ui

∂

∂xk

[
ν

(
∂vi

∂x j
+

∂v j

∂xi

)]
− ui

∂

∂xk

[
ν

(
∂vi

∂xλ

∂xλ

∂x j
+

∂v j

∂xλ

∂xλ

∂xi

)]
−ui

∂

∂xλ

[
ν

(
∂vi

∂x j
+

∂v j

∂xi

)]
∂xλ

∂xk

+ q
∂v j

∂xk
+q

∂v j

∂xk
−q

∂v j

∂xλ

∂xλ

∂xk
(17)

Based on eq. 15, the second integral on the r.h.s. of eq. 16 becomes∫
Ω

A jk
δ

δbm

[
∂

∂x j

(
δxk

δbn

)]
smdΩ=

∫
Ω

A jk
∂xk,n

∂x j
dΩ−

∫
Ω

A jk
∂

∂xλ

(
δxk

δbn

)
∂xλ

∂x j
dΩ (18)

Computing vi and p is straightforward since these are equal to the product of the directly differ-
entiated flow variables and sm. So, vi and p result from

Rp=
∂v j

∂x j
−

∂v j

∂xk

∂xk

∂x j
=0 (19)

and

Rv
i =

∂ (viv j)

∂x j
+

∂ (viv j)

∂x j
− ∂

∂x j

[
ν

(
∂vi

∂x j
+

∂v j

∂xi

)]
+

∂ p
∂xi

−
∂ (viv j)

∂xk

∂xk

∂x j
+

∂

∂x j

[
ν

(
∂vi

∂xk

∂xk

∂x j
+

∂v j

∂xk

∂xk

∂xi

)]
+

∂

∂xk

[
ν

(
∂vi

∂x j
+

∂v j

∂xi

)]
∂xk

∂x j
− ∂ p

∂xk

∂xk

∂xi
=0 (20)

Also, the product of the DD of the adjoint equations and sm yields

Rq=
∂u j

∂x j
−

∂u j

∂xk

∂xk

∂x j
=0 (21)
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and

Ru
i = u j

∂v j

∂xi
+u j

∂v j

∂xi
−

∂ (uiv j)

∂x j
−

∂ (uiv j)

∂x j

− ∂

∂x j

[
ν

(
∂ui

∂x j
+

∂u j

∂xi

)]
+

∂q
∂xi
−u j

∂v j

∂xk

∂xk

∂xi

+
∂ (v jui)

∂xk

∂xk

∂x j
+

∂

∂x j

[
ν

(
∂ui

∂xk

∂xk

∂x j
+

∂u j

∂xk

∂xk

∂xi

)]
+

∂

∂xk

[
ν

(
∂ui

∂x j
+

∂u j

∂xi

)]
∂xk

∂x j
− ∂q

∂xk

∂xk

∂xi
=0 (22)

from which q and ui can be computed.

6 COMPUTATION OF xk AND xk,n

In order to compute the Hessian-vector product of eq. 16, the grid sensitivities δxk/δbn
as well as their first-(xk) and second-order (xk,n) projections to s must be computed. These
computations depend upon the method used to deform the computational grid after the update
of the design variables. In [1], the Laplace equation was used as the grid displacement model
and the corresponding PDEs for computing the aforementioned terms were presented. Here,
a different grid displacement model is employed, based on volumetric B–Splines, details for
which can be found in [7, 3]. In brief, the grid points coordinates xl are given by

xl(u,v,w) =Ui,pu(u)Vj,pv(v)Wk,pw(w)B
i jk
l (23)

Here, Bi jk
l , l ∈ [1,3], i ∈ [0, I], j ∈ [0,J],k ∈ [0,K] are the Cartesian coordinates of the i jk-th

control point of a 3D structured control grid (acting also as the design variables of the opti-
mization problem), I,J and K stand the number of control points per control grid direction,
u=[u1,u2,u3]

T =[u,v,w]T are the CFD grid point parametric coordinates, U,V,W are the B–
Splines basis functions and pu, pv, pw their respective degrees, which may be different per con-
trol grid direction. Details about B–Splines basis definitions and properties can be found in
[8].

Obtaining grid sensitivities and their projections to s is just a matter of analytically differen-
tiating eq. 23 w.r.t. the coordinates of the control grid points. Let bm = Bλ µξ

t . Then, the grid
sensitivities are given by

δxl(u,v,w)
δbm

=Uλ ,pu(u)Vµ,pv(v)Wξ ,pw(w)δ
t
l (24)

where δ t
l is the Kronecker symbol. Eq. 24 states that grid sensitivities for each CFD grid point

with parametric coordinates u are given by the product of the basis functions, evaluated at
u, corresponding to the λ µξ control point. After computing the N components of δxl/δbm,
computing xl is a matter of a simple summation. It should be noted that xl,n=0, since the grid
displacement model depends linearly on the design variables. This further simplifies eq. 18, by
eliminating the first term on its r.h.s.

7 THE TN ALGORITHM – COMMENTS ON THE CPU COST

Using eqs. 14 to 18, eq. 16 can be written as

δ 2F
δbnδbm

sm =
∫

Ω

[
A jk+A jk

∂xλ

∂xλ

−Aλk
∂x j

∂xλ

]
∂

∂x j

(
δxk

δbn

)
dΩ (25)
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where A jk is given by eq. 17. To compute A jk, apart from the flow and adjoint fields, the
”overbar“ fields (vi,ui, p,q), as well as xi and their spatial derivatives must be available.

So, in each Newton cycle, the numerical solution of Rp=0 and Rv
i =0 (eqs. 2 and 3) yields

the flow fields (p,vi). The solution of Rq=0 and Ru
i =0 (eqs. 5 and 6) yields the adjoint fields

(q,ui). So far, the computational cost is approximately equal to that of twice solving the flow
equations or 2 EFS (EFS stands for an Equivalent Flow Solution, i.e. the cost for solving the
flow equations).

Before solving for p and vi, xk must be computed by evaluating eq. 24 for m ∈ [1,N] and
contracting with the components of the projection vector s. The latter has a cost of N GDE (GDE
stands for Grid Displacement Evaluations, i.e. the cost of evaluating δxk/δbm for a single m),
since δxk/δbm has to be evaluated separately for each design variable. It should be mentioned
that 1 GDE is significantly cheaper than 1 EFS since δxk/δbm is computed analytically through
eq. 24. xk has to be evaluated once per GMRES iteration, contributing a total cost of MN GDE
per optimization cycle.

Computing p and vi requires the numerical solution of eqs. 19 and 20. Similarly, to compute
q and ui requires the numerical solution of eqs. 21 and 22. Both systems of equations should be
solved within the GMRES loop (i.e. M times) and contribute 2M EFS to the overall cost of a
Newton iteration or cycle.

Within each GMRES iteration, the computation of A jk also requires the availability of the
δxk/δbn. These fields, however, have already been computed for the evaluation of xk and
contribute no extra cost.

Based on the above, the overall CPU cost per Newton iteration is equal to 2+2M EFS plus
NM GDE. However, since the cost of a GDE is significantly lower than that of an EFS, the GDE
part can be considered negligible for a moderate number of design variables. This leads to a
cost per Newton cycle that is, practically, independent of the number of design variables N.

8 CHOICE OF THE LINEAR SOLVER

The TN method can be coupled with any iterative linear solver that relies on the computa-
tion of matrix-vector products, without requiring the knowledge of the Hessian matrix itself. In
previous publications, [5, 1], the CG method was used as the linear solver, since the Hessian
matrix is symmetric in theory. However, the Hessian expression obtained through the use of
the AV-DD approach (i.e., use the adjoint variable (AV) method for the computation of δF/δbn
and DD for the computation of the variations of the primal and adjoint fields; the equivalent
of tangent-on-reverse in the Automatic Differentiation terminology) is not symmetric (eq. 16,
neglecting the multiplication with sm) and produces a symmetric matrix only upon the conver-
gence of all equations to machine accuracy (as discussed in Appendix A). This non-symmetry
of the Hessian expression is essential for the application of TN methods, since it allows the
computation of Hessian-vector products at a cost which is independent of N. In CFD-based
optimization, it is quite common not to converge the primal and adjoint equations to machine
accuracy in each optimization cycle in order to reduce the total CPU cost. This can deteriorate,
to an extent, the symmetry of the Hessian matrix, rendering CG inappropriate for the solution
of the Newton equations. To avoid this inconsistency, the linear GMRES solver can be used in
the context of TN methods. The impact of the linear solver is investigated in section 9.1.
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9 APPLICATIONS

The applications section consists of two parts. In the first, the impact of the linear solver used
to iteratively solve the Newton equations is investigated. In the second, optimization problems
concerning the total pressure losses minimization in two 3D duct geometries are tackled; the
results obtained by using the TN approach are compared to those computed by using Steepest
Descent (SD), the Fletcher-Rives Conjugate Gradient (CG) and BFGS methods for updating the
design variables.

9.1 Impact of the linear solver

To investigate the impact of the linear solver, an optimization problem with only 5 design
variables was devised, making the computation of the Hessian matrix feasible. The shape op-
timization of a 2D U-bend duct is considered, targeting minimum total pressure losses. The
upper part of the U-bend is parameterized using Bézier–Bernstein polynomials and the y co-
ordinates of 5 control points are used as the design variables, fig. 1. The flow is laminar with
Re=667 based on the inlet length. The update of the design variables is driven by a number
of different methods, among which the TN method coupled with the CG and GMRES solvers.
Their convergence histories are presented in fig. 2. It can be seen that as the number of linear
solver iterations M increases, the GMRES-based TN method greatly outperforms the CG-based
one. If fact, when M is chosen to be equal to the Hessian matrix dimension, the GMRES-based
TN method has exactly the same convergence with the pure Hessian method, as expected. On
the contrary, the CG-based TN method requires approximately 4 times more EFS in order to
reach the optimal solution. This can be attributed to the fact that CG is used to iteratively solve
a slightly non-symmetric system. In detail, the symmetric, in theory, elements of the Hessian
matrix computed using the AV-DD approach have a maximum difference of 0.8%, a mean dif-
ference of 0.1% and a standard deviation of 0.2%. Based on the above, for the remainder of this
article, the GMRES solver is used in conjunction with the TN method.
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Figure 1: 2D U-bend duct optimization: dust shape and the Bézier–Bernstein control points parameterizing it.
Only the y coordinates of the top 5 control points (CP) are allowed to vary during the optimization.
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Figure 2: 2D U-bend duct optimization: Convergence of the BFGS, Newton and TN optimization algorithms.
Convergence of the TN method is included with both CG and GMRES, with linear solver iterations in the range of
M ∈ [1,5]. Results of GMRES-based TN are plotted with a continuous line while CG-based results with a dashed
one. As expected, the convergence of the GMRES-based TN with M=5 coincides with the convergence of the
Newton method (the two curves are hardly distinguishable) since the dimension of the problem is N=5.

9.2 3D shape optimization

In this section, two applications of the developed TN optimization algorithm are presented.
The first one deals with the shape optimization of a 3D S-bend duct. The geometry and flow
conditions are provided as one of the cases of the AboutFLOW ITN programme. The flow is
laminar with a Reynolds number of Re=400 based on the inlet hydraulic diameter and the mesh
is comprised of 474000 hexahedrals. A 9×7×9 control grid is used to parameterize part of the
duct which, after disregarding fixed control points, results to 375 design variables, fig. 3. In
fig. 4, the convergence history of the developed TN algorithm is compared to those of the SD,
CG and BFGS methods. Comparisons are presented twice, in terms of the cycles required to
reach the minimum and the corresponding EFS. It can be observed that TN outperforms the
other methods, since it computes the optimized duct shape using less optimization cycles and,
especially, by requiring slightly less EFS. In fig. 5, the flow streamlines on the reference and
optimized geometries are compared, indicating the significant reduction of the flow recirculation
that leads to a total pressure losses reduction of ∼ 60%.

The second case is concerned with the optimization of a 3D U-bend duct. The flow Reynolds
number is Re=400 and a mesh consisting of 7×105 hexahedrals is used. The reference geome-
try and the 4×5×2 control grid parameterizing it are depicted in fig. 6. Since only two rows of
control points are used in the z direction and the reference geometry was generated by stacking
a 2D profile, the shape parameterization is practically 2D. In fig. 7, the total pressure field along
with velocity vectors are plotted for two slices, located at 10% and 50% of the duct height. It can
be seen that the flow recirculation downstream of the U-shaped formation has been suppressed,
leading to a reduction of about 18% in the objective function value. In fig. 8, the convergence
histories of the TN, SD and CG methods are illustrated. For this case, TN and CG reach the
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optimal solution at approximately the same CPU cost. The TN method outperforms CG during
the initial phase of the optimization run, providing a better solution if the entire CPU cost of the
optimization can not be afforded.

(a) (b)

Figure 3: S-bend duct optimization: (a) duct shape and the control grid parameterizing it. Control points in red
are allowed to vary during the optimization while blue ones are kept fixed, (b) optimal shape coloured based on
the cumulative displacement. Flow from right to left.
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Figure 4: S-bend duct optimization: comparison of the convergence of SD, CG, BFGS and TN w.r.t. (a) optimiza-
tion cycles and (b) EFS. The TN method outperforms all other methods in both comparisons.

10 CONCLUSIONS

A Truncated Newton method for computing an approximation to the second-order correc-
tion of the design variables by iteratively solving the Newton equations using GMRES was
presented. The method builds on previous work of the authors, by extending the mathematical
formulation for a different grid displacement model and investigating the impact of the linear
solver used to iteratively solve the Newton equations. It was observed that due to a slight non-
symmetry of the Hessian matrix, caused by the lack of convergence of the adjoint equations
to machine accuracy, CG may become inefficient when computing the solution of the New-
ton equations. Using GMRES as the linear solver within the TN loop significantly accelerated
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: S-bend duct optimization: Velocity streamlines plotted for the reference (left column) and optimized
(right column) geometries. In the top four figures, streamlines are coloured based on the flow velocity while, in the
bottom four, on the total pressure values. The intense flow recirculation close to the bottom side of the wall (figs.
c and g) has drastically been reduced (figs. d and h), leading to a reduction of about 60% in the objective function.

Figure 6: 3D U-bend optimization: Part of the duct shape along with one of two iso-z control point planes. Red
control points are allowed to vary while blue ones are kept fixed during the optimization.

the convergence. The proposed TN method computes the required Hessian-vector products by
utilizing a combination of (continuous) adjoint and direct differentiation. The cost per optimiza-
tion cycle is approximately equal to 2+2M equivalent flow solutions, where M is the number of
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(a) reference, 10% thickness (b) optimized, 10% thickness

(c) reference, 50% thickness (d) optimized, 50% thickness

Figure 7: 3D U-bend optimization: Total pressure field plotted for the reference (left column) and optimized (right
column) geometries, for a slice residing at 10% (top) and 50% of the duct height.

GMRES iterations used to approximate the solution of the Newton equations; this cost is prac-
tically independent of the design variables number. In the two applications presented, it was
shown that TN outperforms other optimization methods in terms of optimization cycles and is,
at least, as fast in terms of CPU cost. On going research, including the preconditioning of the
Newton system and appropriate initialization, for further improving the TN method speed-up is
performed.
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Figure 8: 3D U-bend optimization: Convergence of the SD, CG and TN methods wrt (a) optimization cycles and
(b) EFS. For this case, M=2 has to be used for TN to outperform the CG method.

A ON THE SYMMETRY OF THE HESSIAN MATRIX

In this appendix, the symmetry of the Hessian matrix computed using the AV-DD approach
(i.e. the approach used to also compute the Hessian-vector product in the TN approach) is
examined. Since the continuous gradient and Hessian expressions are quite lengthy, the discrete
approach is going to be used in this appendix. The conclusions, however, can be extended to
the continuous formulation as well.

Let the objective function F and discretized residuals R be functions of the design, b, and
flow variables, U(b), i.e. F=F(b,U(b)) and R=R(b,U(b)). After introducing the augmented
objective function as Faug=F +ΨkRk and differentiating it w.r.t. to b, we get

dFaug

dbi
=

∂F
∂bi

+Ψk
∂Rk

∂bi
+

(
∂F

∂Um
+Ψk

∂Rk

∂Um

)
dUm

dbi
(26)

from which the adjoint equations and sensitivity derivatives are derived as

RΨ
m =

∂F
∂Um

+Ψk
∂Rk

∂Um
=0 (27)

dF
dbi

=
∂F
∂bi

+Ψk
∂Rk

∂bi
(28)

Differentiating eq. 28 once more w.r.t. the components of b gives

d2F
dbidb j

=
∂ 2F

∂bi∂b j
+Ψk

∂ 2Rk

∂bi∂b j
+

∂ 2F
∂bi∂Uk

dUk

db j
+Ψk

∂ 2Rk

∂bi∂Um

dUm

db j
+

∂Rk

∂bi

dΨk

db j
(29)

The Hessian expression given by eq. 29 is not symmetric, since permuting i and j does not yield
d2F

dbidb j
= d2F

db jdbi
. This non-symmetric expression actually allows the computation of Hessian-

vector products with a cost that does not depend on the design variables number in TN methods.
However, since eq. 26 and eq. 28 are equivalent (upon the convergence of the residuals of the
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adjoint equations to machine accuracy) for computing dF/dbi, differentiating eq. 26 yields

d2F
dbidb j

=
∂ 2F

∂bi∂b j
+Ψk

∂ 2Rk

∂bi∂b j
+

∂ 2F
∂bi∂Uk

dUk

db j
+

∂ 2F
∂b j∂Uk

dUk

dbi
+Ψk

∂ 2Rk

∂bi∂Um

dUm

db j

+Ψk
∂ 2Rk

∂b j∂Um

dUm

dbi
+

∂ 2F
∂Um∂Uk

dUm

dbi

dUk

db j
+Ψk

∂ 2Rk

∂Um∂Ul

dUm

dbi

dUl

db j

+

(
∂Rk

∂bi
+

∂Rk

∂Um

∂Um

∂bi

)
dΨk

db j
+

(
∂F

∂Um
+Ψk

∂Rk

∂Um

)
d2Um

dbidb j
(30)

The sum of the first eight terms on the r.h.s. of eq. 30 is symmetric while the last two terms are
zero since they include dRk/dbi and RΨ

k , respectively. Hence, since the expression in eq. 30 is
symmetric and eqs. 29 and 30 are equivalent, upon the convergence of the adjoint equations to
machine accuracy, the Hessian matrix obtained through eq. 29 is symmetric as well.

However, if eq. 27 is not converged to machine accuracy, i.e. if

R̃Ψ̃
m =

∂F
∂Um

+Ψ̃k
∂Rk

∂Um
+ ra

m=0, , ra
m 6=0 (31)

where Ψ̃k is the slightly non-converged adjoint solution and ra
k the adjoint residual, differentia-

tion of the equivalent of eq. 26 would yield

d2F
dbidb j

=
∂ 2F

∂bi∂b j
+Ψ̃k

∂ 2Rk

∂bi∂b j
+

∂ 2F
∂bi∂Uk

dUk

db j
+

∂ 2F
∂b j∂Uk

dUk

dbi
+Ψ̃k

∂ 2Rk

∂bi∂Um

dUm

db j

+Ψ̃k
∂ 2Rk

∂b j∂Um

dUm

dbi
+

∂ 2F
∂Um∂Uk

dUm

dbi

dUk

db j
+Ψk

∂ 2Rk

∂Um∂Ul

dUm

dbi

dUl

db j

+
dRk

dbi

dΨ̃k

db j
+R̃Ψ̃

m
d2Um

dbidb j
+

dra
k

dbi

dΨ̃k

db j
(32)

Eq. 32 states that if the adjoint equations are not converged to machine accuracy, eqs. 29 and 30
are no longer equivalent due to the last, non-symmetric term in eq. 32.
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Abstract. In its first part, this paper presents a cut-cell method for simulating 2D unsteady
inviscid flows of compressible fluids in domains with moving boundaries. To solve shape opti-
mization problems, the gradient of the aerodynamic shape optimization with respect to (w.r.t.)
the design variables is computed via the continuous adjoint approach.

An automatic grid adaptation method based on a quad-tree data structure allows low mem-
ory usage for storing geometric data. The no-penetration condition along the surface of the
emerged bodies, is implemented using a second-order cut-cell approach. To avoid numerical
instabilities during the solution of the flow and adjoint PDEs, very small cut-cells are merged
with neighboring active cells to yield the finite-volume where the flow or adjoint equations are
integrated.

In transonic flow simulations, the Cartesian grid is adapted not only to the solid boundaries
but, also, to the evolving flow discontinuities. The refined grid follows the moving solid wall and
discontinuities, by means of local refinement and derefinement processes. The paper focuses on
the schemes used to interpolate the flow solution fields between successive time-steps, as the
grid becomes adapted to the moving geometry. During the solution of the unsteady adjoint
PDEs, since the adjoint solver marches backwards in time and the adapted Cartesian grids are
continuously changing, care should be taken so as to have full access to the necessary geometric
quantities at all cells, even if these did not exist at previous time-steps. Both the primal and
adjoint solvers are programmed on GPUs (Graphics Processing Units), using CUDA-C, to
reduce the optimization wall-clock time.

Results are presented for both the analysis and optimization problems.
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1 Introduction

Flows with complex moving boundaries are of utmost importance in many engineering ap-
plications. The traditional approach involves the use of body-fitted grids and the corresponding
discretization methods. Nevertheless, irrespective of the grid type (structured or unstructured),
these methods require a highly delicate and often costly grid deformation process, especially
when large boundary movements occur. A viable alternative encompasses the use of the Im-
mersed Boundary Method, originally proposed by Peskin [1]. In the latter, the computation
takes place on a Cartesian grid allowing for a simple and automatic grid generation.

Mittal and Iaccarino [2] discern two basic approaches stemming from the generalized term
”Immersed Boundary Methods”, namely the continuous and discrete forcing approaches. The
continuous one makes use of an additional source term in the momentum equations to approx-
imate the effect of solid boundaries. On the contrary, discrete forcing approaches rely on the
discrete representation of the immersed boundary without altering the governing equations. Pre-
vailing among them is the cut-cell finite volume method [3, 4] which guarantees both global and
local conservation. This is achieved through the reshaping of cells that are intersected by the
solid boundary, i.e., the so-called cut-cells, by making them conform to the boundary while the
remaining fraction of the cut-cells as well as cells lying in the interior of solid bodies are totally
discarded.

The present paper deals with the development of a cut-cell finite volume method for 2D
inviscid flows of compressible fluids. In order to avoid numerical stability issues caused by
the existence of small cells, a cell-merging technique is adopted. To maximize the accuracy of
the flow simulation, the grid in the vicinity of both the solid boundary and flow discontinuities
(e.g. shock waves) is refined. Extending this idea to moving boundaries, grid is dynamically
adapted following their motion, which calls for a method to project the solution onto the grid in
the next time-step. The software is developed in order to run on NVIDIA GPUs.

In addition, an optimization loop is implemented based on the continuous adjoint approach.
That is, after the adjoint PDEs are derived from the flow equations, both for steady and unsteady
flows, these are discretized and numerically solved utilizing the already developed method. In
the course of this process, the correct computation of the derivatives of geometric quantities
is crucial since the special nature of the stationary Cartesian grid must taken into account.
Problems related to the maximization of lift of a stationary airfoil as well as the time-averaged
lift of a pitching airfoil are showcased.

2 Grid Generation

The computational grid is dynamically generated based on criteria which make it compatible
with the cut-cell approach for solving the flow and adjoint equations around stationary and
moving bodies. Starting point is a uniform Cartesian grid within a rectangular domain; the
initial cell volume is defined by the user (Ωmax). Then, cells intersected by the solid walls are
recursively subdivided into four quadrants. The basic rule governing this iterative process is
that cut–cells with area greater than Ωmin should further be subdivided; Ωmin is a threshold
value defined by the user. This extra cell refinement may affect neighboring non–cut–cells
which should also be subdivided in order to meet a second rule stating that a cell face cannot
have more than two neighbors. This rule prevents the formation of tiny grid cells in contact
with much greater ones, which makes the CFD solver prone to numerical inaccuracies. Two
additional rules must be satisfied, see fig. 1. According to the first of them, cut-cells are not
allowed to have any of their four edges intersected twice by the solid wall. The last rule does
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not allow cut-cells to have their four edges intersected by solid walls. In either case, the cell
must be subdivided further. In the case of a stationary isolated airfoil, the refined Cartesian grid
for an inviscid flow simulation looks like that shown in fig. 2.

Figure 1: Visual representation of the third and fourth rule imposed during the Cartesian grid adaptation process,
as described in the text. Both cases are not acceptable.

x

y

(a)

x

y

(b)

Figure 2: Two views on the Cartesian grid in the vicinity of the boundary of an isolated airfoil, for an inviscid flow
simulation. Further local refinement is possible if flow discontinuities appear.

Grid generation is based on a quad-tree data structure [5] which allows fast operations and
ensures easy identification and access to neighboring cells, as required during the numerical
solution of the flow and adjoint equations. Each and every cell is given a unique pair of inte-
gers (i, j), facilitating a lot the computation of geometric quantities such as cell volumes and
barycentric coordinates. Among other, this two-index numbering system results to a noticeable
reduction in memory footprint.

A special treatment of the cut–cells is needed in order to satisfy the conservation equations
in the vicinity of solid boundaries with the required accuracy. For all cut–cells, their parts
belonging to the non-fluid domain are discarded. This gives rise to fluid or active cells which
can be shaped as triangles, quadrangles or pentagons; taking into account the aforementioned
constraints, no other shape is possible in a 2D problem. By definition, the active cell area
corresponds solely to the part of the cell which is within the fluid. In the course of this process,
new geometric quantities such as the newly formed edges, the active area and the corresponding
barycenter position appear.
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A common problem in the cut-cell method is the creation of very small cells, depending on
the instantaneous locations of the solid walls within the grid. It is known [7, 8] that the presence
of these cells might cause convergence issues. To tackle this problem, a cell-merging approach
is used, as shown in fig. 3, according to which the flow variables are stored at the barycenter of
the merged cell.

P
1

P
2

Figure 3: Three cut–cells with barycenters P1, P2 and P3. Since P2 and P3 are considered as very small cut-cells,
these are merged into a single cell with barycenter Pnew. Flow variables for the newly formed cell are all stored at
Pnew.

3 Governing Equations & Discretization

The Euler equations for unsteady compressible flows in an inertial reference frame are writ-
ten as

∂
−→
U

∂ t
+

∂
−→
f x

∂x
+

∂
−→
f y

∂y
=
−→
0 (1)

where
−→
U =

[
ρ ρu ρv E

]T is the vector of conservative variables and
−→
f x =

[
ρu ρu2 + p

ρuv u(E + p)
]T ,
−→
f y =

[
ρv ρuv ρv2 + p v(E + p)

]T are the inviscid fluxes in the x and y
direction, respectively, ρ the fluid density, u and v the Cartesian velocity components, p the
static pressure and E the total energy per unit volume.

The integration of equations (1) is based on the cell-centered finite volume scheme. The
integration volume consists of the part of the cell that lies in the fluid. For the merged cells, this
volume is defined as the fluid part of each of the constituent cells (e.g. the blue area in fig. 4).
According to this, if Ω

k+1
P is the control volume of a cell with centroid P (to be referred to as

cell P) at time-step k+1, Sk+1
P is its boundary and−→n is its normal unit vector, the corresponding

residual of the flow equations is

−→
R P :=

∫
Ω

k+1
P

∂
−→
U

∂ t
dΩ +

∫
Sk+1

P

−→
f i ·ni dS =

−→
0 (2)

The discretization of eqs. (2) is based on the Roe [9] scheme. The no-penetration condition
is imposed along the solid walls, that is, (−→u −−→u w) ·−→n =

−→
0 , where −→u w is the wall velocity.

Based on the latter, at all cut-cells’ boundary edges that correspond to solid walls the flux
vector becomes

−→
f w =

[
ρuw,n ρuw,nu+ pnx ρuw,nv+ pny uw,n(p+E)

]T where uw,n =
−→u w ·
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−→n . This flux corresponds to the center B of the solid boundary segment of the cut–cell as shown
in fig. 4(a). Variables appearing in

−→
f w are computed at point B using the Taylor expansion

formula
−→
U B =

−→
U P+

−→
PB ·

(
∇
−→
U
)

P
where

(
∇
−→
U
)

P
is computed using a weighted least–squares

method. The same process can be extended in the case of merged cells, as shown in fig. 4(b)

P

B

(a)

P
1

P
2

(b)

Figure 4: (a): The no-penetration condition is imposed via
−→
f w at point B using the extrapolated variables from

barycenter P. (b): Two cut–cells with barycenters P1 and P2 are merged into a single cell with barycenter Pnew.
Values at Pnew are extrapolated to B and C in order to compute

−→
f w1 and

−→
f w2.

Regarding the discretization of the temporal term in eq. (2) when the immersed body moves
inside the Cartesian grid, four different cases might occur. The simplest case is that of fluid
cells at time-step tk which remain intact at tk+1. Thus, the integration volume is unchanged and
a second-order backward differentiation scheme is readily applied. The second case concerns
all cells being intersected by the solid boundary at any of the three time-steps (tk−1, tk, tk+1). To
account for changes in ΩP, the Reynolds transport theorem [10] is applied,∫

Ω
k+1
P

∂
−→
U

∂ t
dΩ =

∂

∂ t

∫
Ω

k+1
P

−→
U dΩ −

∫
Sk+1

P

−→
U uw,n dS (3)

For the first term on the r.h.s., a second-order backward scheme is used

∂

∂ t

∫
Ω

k+1
P

−→
U dΩ ' 1

2∆t

(
3
−→
U k+1

P Ω
k+1
P −4

−→
U k

PΩ
k
P +
−→
U k−1

P Ω
k−1
P

)
(4)

while, for the surface term, the assumption∫
Sk+1

P

−→
U uw,n dS'−→U k+1

w

∫
Sk+1

P

uw,n dS

=
−→
U k+1

w

(
∂ΩP

∂ t

)k+1

'
−→
U

k+1
w

2∆ t

(
3Ω

k+1
P −4Ω

k
P +Ω

k−1
P

)
(5)

is made, where
−→
U k+1

w is the vector of flow variables computed at the wall face.
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According to the third case, a cell lying entirely in the solid boundary at tk, becomes fluid
cell at tk+1. In such a case, Ω k

P and Ω
k−1
P are equal to zero and eqs. (4) and (5) are properly

transformed. Finally, cells that are solidified should transfer their conservative values to their
neighboring cells in the fluid region via a merging process.

4 Dynamic Grid Adaptation

In case of moving solid boundaries, the grid must continuously be adapted to the new bound-
ary shape. During the dynamic adaptation, which embodies both coarsening and refinement
tasks, the resulting grid at each new time-step must comply with the four rules mentioned in
section (2). The grid adaptation from one time-step (tk) to the next (tk+1) takes place as follows:

Initially, the grid undergoes a coarsening process, according to which every cell with vol-
ume less than Ωmax is merged with its neighbors. Then, the solid boundary is moved to its
new position and, starting from the just coarsened grid, cells split anew in the vicinity of the
displaced wall. Through this procedure, grid refinement in the vicinity of the new position of
the solid boundary is achieved while the no longer necessary refined grid around the previous
wall position is canceled. This process is exemplified in fig. 5. Along with the grid adaptation,
interpolation should be employed to transfer the flow solution from the previous time-step (tk)
to the new one (tk+1).

(a) (b)

(c) (d)

Figure 5: Translational periodic, in the vertical direction, motion of an airfoil. Adapted grid at four time-steps
within the same period.
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In order to attribute values to the conservative variables at the barycenter of the newly formed
cells at tk+1, an intermediate step (t∗) at which the solid boundary is considered to its previous
position (tk) and, then, immersed in the new grid (tk+1), is used. The flow variables

−→
U ∗ at

the intermediate step represent the time history of the newly created cells at tk+1. The values
transferred from tk to t∗ must ensure the satisfaction of the conservation laws.

For the sake of clarity, two simple cases will be demonstrated. According to the first one,
due to the movement of the solid boundary, a cell at tk is decomposed into four smaller cells at
tk+1, fig. 6. Considering that each of the newly formed cells Pi should share the same

−→
U values

Figure 6: Cell P at step tk, decomposed into four smaller cells Pi at step tk+1, makes use of an intermediate step
(t∗) in order to attribute values to the flow variables

−→
U to each of the newly formed cells at step tk+1.

at tk, it is −→
U ∗Pi

=
−→
U k

P , i = 1, ... ,4 (6)

where
−→
U k

P is the flow variables array of cell P, at tk, and
−→
U ∗Pi

is the unknown vector of conser-
vative variables for each newly formed cell Pi at t∗.

Figure 7: The process of associating values of the flow variables
−→
U to the newly created cell barycenter P at tk+1.

In the second case, four cells Pi at tk are merged to form a single new cell, fig. 7. In this case,

−→
U ∗P =

4

∑
i=1

−→
U k

Pi
Ω

k
Pi

Ω
∗
P

(7)

The values
−→
U ∗P, computed by eqs. (6) and (7) and Ω ∗P, are considered as the flow fields and

volumes, respectively, at tk and are referred to as
−→
U k

P and Ω k
P in eq. (4). The same process must

be followed in order to compute
−→
U k−1

P and Ω
k−1
P .
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5 Validation of the flow solver

In this section, the use of the flow solver in steady and unsteady flows is demonstrated and
validated against other results. The steady flow case encompasses grid refinement due to the
formation of a shock wave over the suction-side of an airfoil with non-zero incidence, while
the unsteady case showcases the grid refinement according to both the airfoil motion and the
formation of the shock wave.

The software was programmed in CUDA-C and runs on NVIDIA GPUs by taking advantage
of the superior hardware characteristics they exhibit compared to CPUs. In order to exploit the
advantages of GPUs, special care must be taken in memory handling. Moreover, an appropriate
solution method should be chosen, which can be efficiently parallelized. Here, the discretized
equations are solved in each pseudo-time step using the Jacobi method. The simulation was
carried out on a single computational node with two NVIDIA Tesla K40 GPUs with 12 GB of
GPU memory each.

The NACA0012 airfoil is investigated at transonic flow conditions (M∞ = 0.8 and a∞ =
1.25 deg). The Mach number field around the airfoil with the adapted grid in the vicinity of the
shock wave is presented in fig. 8. The same case was studied using several Euler-flow solvers
on body-fitted grids in [11] and, as shown in Table 1, the results of the present cut–cell solver
are in good agreement with those solvers.

Mach

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 8: Transonic flow around NACA0012 airfoil-Steady flow: Computed Mach number field.

CL

Present cut–cell method 0.3492
Body–fitted Min 0.3482
Body–fitted Max 0.3562

Table 1: CL comparison between the present cut-cell method and other solvers using body-fitted grids where Min
and Max denote the spread of CL values found in [11].
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As far as the unsteady flow solver is concerned, its validation is carried out using the same
airfoil undergoing a periodic pitching motion about c/4 (c is the chord) with 2.51o amplitude
and 0.016o mean angle of attack. The Mach number is 0.755 and the reduced frequency k := ω

2V∞

is 0.0814, where ω is the angular velocity of the airfoil. The computed Mach number fields at
the two extreme positions of airfoil motion are shown in fig. 9.

This case has been investigated experimentally, by Landon [12]; over and above, an in-house
Euler code [13] running on a body-fitted grid was used to get CFD results to compare with.
Comparisons are presented in fig. 10.

(a) (b)

(c) (d)

Figure 9: Transonic flow around the pitching NACA0012 airfoil: (a),(c): Dynamically adapted grid with further
refinement in the vicinity of the shock wave and (b),(d): Mach number fields at the two extreme positions of airfoil
motion.

6 Formulation of the Steady Adjoint Method

The objective function to be maximized is the lift of an airfoil, namely

F =
∫
Sw

pnkrkdS (8)

where rk are the components of the unit vector normal to the freestream velocity. The airfoil
is parameterized using Bézier curves, the coordinates of the control points of which are the
design variables (bq) of the optimization process. The necessary derivative of F is computed by
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In-house Body-Fitted

Landon

Figure 10: Time-evolution of the lift coefficient, in terms of the angle formed between the airfoil chord and the
horizontal axis. Present results are contrasted with CFD results obtained using an in-house Euler solver for body-
fitted grids [13] and measurements by Landon [12].

expanding it as an augmented objective function Faug = F +
∫
Ω

ΨnRndΩ , where Ψn, n = 1,4

are the adjoint variable fields. By differentiating Faug w.r.t. to the design variables and setting
the multipliers of the variations in all flow variables equal to zero, the steady adjoint equations

−Anmk
∂Ψn

∂xk
= 0 (9)

arise [6]. Boundary conditions to be imposed along the solid wall are Ψk+1nk + nkrk = 0 and,
in the farfield, Ψn = 0, n = 1,4. Then, the gradient of F w.r.t. the design variables bq becomes

δF
δbq

=
∫
Sw

p
δ (nkrkdS)

δbq
+
∫
Sw

(Ψk+1 p−Ψi fik)
δnk

δbq
dS

−
∫
Sw

Ψi
∂ fik

∂xl
nk

δxl

δbq
dS+

∫
Sw

Ψi
∂ fil

∂xl

δxk

δbq
nkdS (10)

Eq. (10) requires the computation of δxk
δbq

which stands for the variation in the airfoil’s surface
w.r.t. the design variables. In contrast to body-fitted grids, the Cartesian grid used in the cut-cell
method is stationary even if the geometry changes during the optimization process. This must
be taken into consideration and, thus, the above term is computed at the intersection points
of the geometry with the Cartesian grid. Each intersection point can move only along the
corresponding cut-cell’s edge. Consequently, it is the projection of δxk

δbq
to the edge direction

that must only be taken into account in order to compute the derivatives at the mid-point of each
cut-cell’s solid edge, as shown in fig. 11.

7 Steady Adjoint Results

Below, the shape optimization of a symmetric airfoil is examined. The airfoil (M∞ = 0.44
and a∞ = 0 deg) pressure and suction sides are both parameterized using Bézier curves. The
design variables are the coordinates of six control points marked with empty circles, fig. 12.
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δx

δb geometry

δx

δb cell

δx

δb cell

δx

δb geometry

δx

δb face

δx

δb geometry

Figure 11: The red polyline denotes the surface of the geometry which cuts the cell in two points. The blue line
segment is part of the boundary of the cut-cell. The derivatives of the boundary w.r.t. the design variable b (red
vectors) are initially computed at the points marked with squares by differentiating the geometry’s parameteriza-
tion. These derivatives are used to compute δ

−→x
δb at the intersection points marked with circles which are taken into

account to compute the derivative at the mid-point of the line segment.

Initial Airfoil
Initial Bezier Polygon

Design Points

Figure 12: Bézier control polygon generating the initial shape of the airfoil. Points marked as empty circles signify
control points, the coordinates of which are used as design variables.

The maximization of lift, defined by eq. (8), is chosen as the target of the optimization process.

After ten optimization cycles, the suction side is cambered enough, causing an increase in
the lift coefficient from zero to approximately 0.36, as shown in figs. 13 and 14.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1  2  3  4  5  6  7  8  9  10

Optimization Cycle

CL

Figure 13: Subsonic flow around the airfoil parameterized as in fig. 12. Adjoint-based optimization for lift maxi-
mization. Lift coefficient evolution during the optimization cycles.
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Initial Airfoil
Optimized Airfoil

Figure 14: Subsonic flow around the airfoil parameterized as in fig. 12. Adjoint-based optimization for lift maxi-
mization. Initial and optimized airfoils.

For the objective function defined in eq. (8) with rk pointing along the y-axis, the imposed
adjoint conditions at the wall can be simplified as Ψn = −ny, where Ψn is the normal adjoint
momentum and ny is the ordinate of the normal unit vector over the airfoil, pointing towards
the solid. Along the pressure side, ny is positive enforcing the adjoint momentum flux to exit
the airfoil. In contrast, along the suction side, ny is negative so the adjoint momentum flux
points to the opposite direction. The aforementioned conditions result in the adjoint momentum
magnitude field presented in fig. 15(b) while the corresponding flow velocity field is shown in
fig. 15(a).

Velocity Magnitude: 20 40 60 80 100 120 140 160 180

(a)
Adjoint Momentum Magnitude: 2 4 6 8 10 12 14 16 18 20

(b)

Figure 15: Subsonic flow around the airfoil parameterized as in fig. 12. Adjoint-based optimization for lift maxi-
mization. (a): Velocity magnitude field and velocity vectors. (b): Adjoint momentum magnitude field and vectors.
Both figures correspond to the optimized geometry.

8 Formulation of the Unsteady Adjoint Method

The unsteady adjoint method is tailored to the flow around of pitching airfoil, with period T .
The objective function to be maximized is defined as

F =
1
T

T∫
0

∫
Sw

pnkrkdSdt (11)

The derivative of F is computed by differentiating the augmented objective function Faug =

F +

T∫
0

∫
Ω

ΨnRndΩdt, where Ψn, n = 1,4 are the unsteady adjoint variable fields. The resulting

unsteady adjoint equations are

−∂Ψm

∂ t
−Anmk

∂Ψn

∂xk
= 0 (12)
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The imposed boundary conditions along the moving solid wall are Ψk+1nk+Ψ4un,w+
1
T nkrk = 0

and, at the farfield, Ψn = 0, n = 1,4. Then, the gradient of F w.r.t. the design variables bq is

δF
δbq

=
1
T

T∫
0

∫
Sw

p
δ (nkrkdS)

δbq
dt +

T∫
0

∫
Sw

(Ψk+1 p−Ψi fik)
δnk

δbq
dSdt

−
T∫

0

∫
Sw

Ψi
∂ fik

∂xl
nk

δxl

δbq
dSdt +

T∫
0

∫
Sw

Ψi
∂ fil

∂xl

δxk

δbq
nkdSdt

+

T∫
0

∫
Sw

Ψi
∂Ui

∂xl

δxl

δbq
un,wdSdt +

T∫
0

∫
Sw

(ΨiUi + pΨ4)
δun,w

δbq
dSdt (13)

As described in section 4, the grid is dynamically adapted to the motion of the solid boundary.
Due to the fact that the unsteady adjoint equations are solved backwards in time, each and every
adapted grid must be stored. The quad-tree data structure allows for the minimum amount of
data to be kept in memory, i.e. the pair of integers (i, j) (see section 2) and information needed
to transfer values from one grid to the next one, in order to retrieve the proper grid at every
time-step during the unsteady solution. Regarding the adjoint variables’ projection to the grid
at the next time-step, eqs. (6),(7) are used.

9 Unsteady Adjoint Results

An optimization loop is implemented for the pitching airfoil with amplitude 2.5 deg, at fixed
infinite flow conditions of M∞ = 0.44 and a∞ = 0 deg. The optimization aims at maximizing
the lift integral given by eq. (11). Starting from a symmetric airfoil, (fig. 12), where F = 0 and
after ten optimization cycles, the airfoil became cambered and the objective function increased
to almost 0.32 (figs. 16, 17).

 0
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 0.15

 0.2
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 0.35

 1  2  3  4  5  6  7  8  9  10

Optimization Cycle

C
−

L

Figure 16: Unsteady subsonic flow around the pitching airfoil parameterized as in fig. 12. Adjoint-based maxi-
mization of the time-averaged lift. Variation in the objective function in terms of the optimization cycles.
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Initial Airfoil
Optimized Airfoil

Figure 17: Unsteady subsonic flow around the pitching airfoil parameterized as in fig. 12. Adjoint-based maxi-
mization of the time-averaged lift. Initial and optimized airfoils.

Velocity Magnitude: 20 40 60 80 100 120 140 160 180

(a)
Adjoint Momentum Magnitude: 1 2 3 4 5 6 7 8 9 10

(b)

Velocity Magnitude: 20 40 60 80 100 120 140 160

(c)
Adjoint Momentum Magnitude: 1 2 3 4 5 6 7 8 9 10

(d)

Figure 18: Unsteady subsonic flow around the pitching airfoil parameterized as in fig. 12. Adjoint-based maxi-
mization of the time-averaged lift. Flow and adjoint momentum magnitude fields at the two extreme positions of
the optimized airfoil’s oscillation. Vectors represent the velocity and adjoint momentum for flow and adjoint fields,
respectively.

10 Conclusions

The cut-cell method for inviscid flows of compressible fluids and the corresponding continu-
ous adjoint method were developed and programmed on GPUs. These were used in steady and
unsteady analysis and optimization problems. Both steady and unsteady analysis results were
validated against measurements and CFD results obtained using body-fitted grids. A technique
for merging very small cut-cells is employed to avoid numerical instabilities. The Cartesian grid
is adapted to the stationary solid wall boundaries and the emerging flow discontinuities. This
conforms to the quad-tree data structure, ensuring a significant reduction in memory require-
ments. The proposed scheme for transferring the flow and adjoint variables between successive
time steps, in case refinement or coarsening locally applies, proved to be accurate and capable
of supporting unsteady problems. The developed software was used to solve steady and un-
steady lift maximization problems in external aerodynamics but this could be extended to other
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objective functions with minor modifications.
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Abstract. This paper presents a gradient-based shape optimization method for turbomachinery
rows. The developed continuous adjoint method for incompressible flows, with a fully differ-
entiated turbulence model, is coupled with an in-house 3D blade parameterization software,
which is differentiated to support the gradient-based optimization process. The in-house flow
and adjoint solvers are implemented on a cluster of NVDIA Graphics Processing Units (GPUs).
The parameterization software creates the blade by superimposing thickness on both sides of
the mean-camber surface. The design variables are NURBS coefficients which ensure smooth
shape changes during the optimization, despite the great number of degrees of freedom. In
addition, NURBS surfaces are used to describe the final shape. Geometric sensitivities, which
stand for the ratio of boundary displacements over the corresponding variation in any of the
CAD parameters, are computed by differentiating the parameterization software. Based on the
chain rule these are combined with the gradient of the objective function with respect to (w.r.t.)
the displacements of the blade or casing nodes, as computed by the adjoint method, and used
to update the design variables. During the optimization, the grid is deformed according to
the updated shape of the flow domain; regenerating the grid is avoided, by making use of the
NURBS surface point inversion technique to retrieve the new surface grid and, then, Radial
Basis Functions (RBFs) to propagate the displacement of the boundary nodes to the interior of
the computational grid.

3972



K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

1 INTRODUCTION

In recent years, progress in the development of analysis and optimization tools has made
numerical optimization an indispensable component of industrial design processes. In turbo-
machinery, optimization tools must fully be automated, explore a wide design space and permit
the imposition of geometric constraints. Moreover, bringing the geometry back to CAD format
and keeping the computational cost as low as possible are both essential.

Recently, gradient–based methods, supported by the continuous or discrete adjoint for com-
puting the objective function gradient, have become very attractive, mainly because the gradient
can be computed at a cost independent of the number of design variables. The latter makes the
adjoint–based methods suitable for the shape optimization of turbomachinery rows. In CAD–
free methods, the objective function sensitivity derivatives w.r.t. the displacement of the nodes
lying over the wall boundaries (to be referred to as flow sensitivities), computed by the adjoint
solver, are used for modifying the shape of blades and/or casing. In these methods (a) special
care must be taken in order to obtain smooth deformed shapes, and (b) the optimized shape
must be converted into a CAD format for further processing in the industrial workflow. These
issues can be overcome through the use of a parameterization software which is compatible
with standard CAD formats. The objective function (F) gradient w.r.t. the design variables b is
computed as

δF
δb

=
δF
δx

δx

δb
(1)

where δF/δx stands for the flow sensitivities computed by the adjoint solver and δx/δb repre-
sents the sensitivities of the boundary node positions w.r.t. changes in the design variables (also
referred to as geometric sensitivities). In [4], the latter are computed for faceted surfaces by
projecting the perturbed geometry onto the original one and applying finite differences. Other
approaches rely on the deformation of the surface grids using RBFs followed by a finite differ-
ence scheme applied to the resulting and initial grids, [16]. Automatic differentiation of CAD
kernels is under investigation by other researchers but only a few basic functions are supported
yet.

The adaptation of the initial grid to the updated CAD parameterized boundaries is a crucial
component of an automatic optimization loop. This process is often referred as grid morphing.
Two main strategies can be employed. The first one exploits the connectivity of the internal
grid nodes, applying spring analogy [8] or pseudo–elastic solid techniques[9] while, in the
second, each grid node is moved individually by interpolating the surface grid displacement.
RBFs [6],[7] are well established tools used in the second approach, due to their robustness and
compatibility with any kind of grid connectivity, while preserving elements quality.

In this paper, the optimization of a compressor stator for minimizing viscous losses while
penalizing designs which decrease the static pressure rise, is carried out. The blade parameter-
ization software and the computation of geometric sensitivities are presented in Section 2. The
continuous adjoint formulation as well as key features of the GPU–enabled flow and adjoint
solver are presented in Section 3. Grid morphing is incorporated in the optimization loop (fig.
1) as also described in Section 3. Finally, results of the stator row optimization are discussed in
Section 4.

2 BLADE PARAMETERIZATION METHOD

A parameterization/design software for turbomachinery blades is used. The method creates
the row geometry by first parameterizing the shape of the blade’s mean camber surface and,
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Figure 1: Structure of the overall optimization loop

then, adding thickness.
The majority of data given as input to the parameterization software are Non–Uniform Ra-

tional B–Spline (NURBS) curves defining the meridional shape of the row as well as other
geometric distributions in the spanwise direction. The NURBS curves provide flexibility to the
parameterization method, offering also a compact description for a wide range of blade geome-
tries. In order to parameterize axisymmetric geometries, a conformal mapping [3] of a surface
of revolution on the (m–meridional, θ–peripheral) plane is employed.

2.1 Outline of the method

The parameterization process and computation of geometric sensitivities δx
δbi

consists of five
basic steps, as follows:

Step 1: Parameterization of the row generatrices and the meridional shape of the LE and
TE, Fig. 2.

Step 2: Parameterization of the mean–camber surface of the blade.

Step 3: Superposition of thickness distribution on the mean–camber surface to form the
blade shape.

Step 4: Export of the geometry in standard CAD format.

Step 5: Computation of geometric sensitivities.

The first step is the definition of the hub and shroud generatrices via NURBS. In case of a tip
clearance between the blade and the hub or shroud, the generatrix representing the meridional
shape of the blade tip must also be defined. The meridional shape of the blade LE and TE are
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also defined using NURBS curves. Next step is to generate a number of meridional curves,
equidistant in the spanwise direction, by interpolating the already defined generatrices for the
hub, shroud and blade tip (fig. 2). These curves are used to create surfaces of revolution on
which blade sections are defined.

Figure 2: Meridional shape parameterization. Apart from the LE and TE edge meridional
projections, the hub and shroud generatrices are shown along with the generatrices of a number
of intermediate surfaces of revolution, on which blade sections are defined. Thick lines are
defined as NURBS curves, while the thinner ones result from the interpolation of the hub and
shroud curves.

After defining the surfaces of revolution for all blade sections, the mean–camber surface
is constructed by defining the mean camber line at each section. The mean camber lines are
computed on the (m, θ) plane. Since the mapping (x, y, z) 7→ (m, θ) is conformal, the blade
angles defined on the (m, θ) plane are preserved. The LE and TE of each blade section are
defined by their peripheral position (θLE and θTE , respectively). Then, the blade metal angles
are defined (βLE and βTE , respectively). As shown in fig. 3, the starting and ending–point of
the mean camber line (P0 and P3, respectively) of each blade section and the point P̃ where
the two tangents intersect are defined. The remaining two control points are located using two
non-dimensional weights ζLE and ζTE , as follows:

P1 = ζLEP0 + (1− ζLE)P̃

P2 = ζTEP3 + (1− ζTE)P̃
(2)

In order to compactly define the θ, β and ζ for the leading and trailing edge and also achieve
a smooth geometry, their distributions in the spanwise direction are specified as NURBS curves.

Thicknesses tPS and tSS for the pressure and the suction side, respectively, might be differ-
ent. To add flexibility they are defined in two steps. First, the normalized thickness (t̂) profiles
w.r.t. the normalized arc–length of the mean camber line (s) are defined at some spanwise
positions. For any other blade section, (̃t̂) is interpolated. Then, a spanwise distribution for
the thickness factor (tf ), that scales the pre-computed profile, is specified. By doing so, the
thickness corresponding to a point at distance s along the mean camber line positioned at a
normalized spanwise position (η) is given as t(η, s) = ˜̂t(s, η) tf (η). Having drawn the mean
camber line for each blade section on the (m, θ) plane, the normal vector is computed. The two
sides of each airfoil are then formed by defining points in the normal direction at a distance
specified by the computed thickness distributions scaled as follows

cmθ(η, s) = µmθ(η, s)± nmθ(η, s)
t(η, s)

r2(m(η, s))
(3)
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Figure 3: Definition of the mean camber line on the (m, θ) plane. The βLE and βTE angles as
well as the curvature of the mean camber line is preserved when mapped back on a surface of
revolution, in the 3D Cartesian space.

where c represents the point on the airfoil in the (m, θ) plane, µ the corresponding point on
the mean–camber line and n the vector normal to the mean–camber line. The resulting blade
airfoils on the (m, θ) plane are mapped back onto the 3D Cartesian coordinates to yield the final
blade shape.

The parameterization software can export the geometry in neutral CAD format (IGES) for vi-
sualization and grid generation purposes. IGES format supports many different entities, among
which free–form surfaces in the form of NURBS surfaces that can be used to describe the skin
of 3D models.

In the 3D Cartesian space, airfoils are spanwise interpolated through NURBS curves and a
skinning algorithm is used to construct the NURBS surface describing the blade; skinning is
the process of passing a smooth surface through a set of cross-sectional curves (airfoils). This
method requires all cross-sectional NURBS curves to be compatible (equal knot-vector and
degree) and can, thus, cause data explosion [5]. Controlling the parameterization of the blade
airfoils to have natively compatible cross-sectional curves overcomes this problem.

Hub and shroud surfaces are easily generated as surfaces of revolution based on generatrices
and the pitch angle. Similar to the blades themselves, periodic surfaces are generated through
skinning. The inlet and outlet boundaries are generated as Coons patches through bilinear
blending [15].

Finally, hub and shroud surfaces must be trimmed: in order to avoid numerical instabilities
the blade sides are extended. An extension algorithm is applied to the NURBS blade surface
[10], as shown in Fig. 4.

Flow sensitivities ( δF
δx

) are computed by the continuous adjoint method for the nodal coor-
dinates of the CFD surface grid. To close the chain rule of eq. 1, geometric sensitivities are
needed. Making use of the NURBS representation of the geometry and finite differences, these
sensitivities are computed directly on the CFD grid.

Starting from an initial parameterization, the software module perturbs each appropriate de-
sign variable and calls the parameterization process, computing the corresponding NURBS sur-
faces. Surface mesh nodes are inverted onto the NURBS parametric space and, for each surface
node, parametric coordinates become available. These parametric coordinates can be used to
compute each surface node in the original or any perturbed geometry. Finite differences are
applied to the computed nodes. In order to avoid the propagation of numerical errors, intro-

3976



K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

Figure 4: 3D view of the blade extension and the trimming of the blade and shroud surfaces
(left). Geometric sensitivities of the blade w.r.t. βLE ( fig. 3 ) at shroud. Contours represent
the geometric sensitivities in the normal direction δx

δb
n : red denotes inwards (towards the solid)

displacement, whereas blue outwards. Arrows represent the actual geometric sensitivities δx
δb

(right).

duced by the point inversion algorithm, to the computation of the geometric sensitivities, nodes
in the original geometry are recomputed through their parametric coordinates. An application
is shown in fig. 4.

3 ADJOINT–BASED SHAPE OPTIMIZATION AND GRID DISPLACEMENT

3.1 Flow Model

The flow model is based on the Navier–Stokes equations for incompressible flows, using the
pseudo–compressibility approach introduced by Chorin [1]. By introducing the pseudo–time t
the flow equations are expressed as

Rn =
∂Un
∂t

+
∂f invnk

∂xk
− ∂f visnk

∂xk
= 0 (4)

where n = 1, . . . , 4 and Un = [p v1 v2 v3], with p denoting the static pressure divided by the
constant density of the fluid and vk (k = 1, . . . , 3) the components of the fluid velocity. The
inviscid (f invnk ) and viscous (f visnk ) fluxes, in the Cartesian frame, are expressed as

f invk =


βvk

vkv1 + pδ1k

vkv2 + pδ2k

vkv3 + pδ3k

 , f visk =


0
τ1k

τ2k

τ3k

 , τmk = (ν + νt)

(
∂vk
∂xm

+
∂vm
∂xk

)
(5)

where β stands for the pseudo–compressibility parameter, ν and νt the kinematic and turbulent
viscosity respectively, δij is the Kronecker symbol and τkm denotes stresses. The turbulent
viscosity is computed using the Spalart–Allmaras turbulence model by solving one additional
PDE (Rν̃) for the turbulence variable ν̃, as in [2].
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3.2 Continuous Adjoint for Aerodynamic Shape Optimization

The first objective is to minimize the volume–averaged total pressure (pt) losses of the flow
through a stationary row. Without any loss in generality, this paper is dealing only with station-
ary bladings, though the programmed software may also handle rotating bladings by switching
to a rotating reference frame. The first function to be minimized is expressed as

f1 = −
∫
SI

ptvknkdS −
∫
SO

ptvknkdS (6)

where SI is the stator inlet and SO the stator outlet. The second objective, practically, is used
to penalize designs which decrease the static pressure rise. This gives the second objective
function (being a negative quantity for compressor blading)

f2 = −
∫
SI

pvknkdS −
∫
SO

pvknkdS (7)

The same method could also be used for the optimization of rotating rows, with the first objec-
tive being the minimization of the relative total pressure ptR between inlet and outlet.

The problem, given by eqs. 6 and 7 can be reformulated as a single one by minimizing ,

F = ω1f1 + ω2f2 (8)

where ω1 and ω2 are appropriate positive user–defined weights. To make the cost of computing
δF
δbi

independent of the number of design variables, the adjoint method is employed. For a
function I (which stands for either f1 or f2), the adjoint formulation starts by defining the
augmented function

Iaug = I +

∫
Ω

ΨnRndΩ +

∫
Ω

ν̃aRν̃dΩ (9)

where Ψn are the adjoint mean flow variable fields and ν̃a the adjoint to turbulence variable ν̃.
By differentiating eq.9 and applying the Leibniz theorem, we have

δIaug
δbi

=
δI
δbi

+

∫
Ω

Ψn
∂Rn

∂bi
dΩ +

∫
Ω

ν̃a
∂Rν̃

∂bi
dΩ +

∫
S

ΨnRn
δxk
δbi

nkdS +

∫
S

ν̃aRν̃
δxk
δbi

nkdS (10)

Using the Green–Gauss theorem, the volume integrals of eq. 10 are transformed into (a) volume
integrals containing ∂Un

∂bi
and ∂ν̃

∂bi
, (b) surface integrals containing δUn

δbi
and δν̃

δbi
and (c) surface

integrals containing δxk
δbi

. Similarly, δI
δbi

results in surface integrals containing δUn

δbi
and δν̃

δbi
.

By eliminating all integrals containing ∂Un

∂bi
, [18], the adjoint to eqs. 4, are derived. These are

∂Ψ1

∂t
−∂Ψk+1

∂xk
= 0

∂Ψm+1

∂t
−vk

(
∂Ψk+1

∂xm
+ ∂Ψm+1

∂xk

)
− ∂τadjmk

∂xk
− ν̃ ∂ν̃a

∂xm
+ T TMm = 0, m = 1, . . . , 3

(11)

where the adjoint stresses are given as τadjkm = (ν + νt)
(
∂Ψm+1

∂xk
+ ∂Ψk+1

∂xm

)
and T TM stands for

terms resulting from the differentiation of the turbulence model. Similarly, eliminating volume
integrals containing ∂ν̃

∂bi
results to the adjoint to the turbulence model equation, [17]. Eliminating

the corresponding surface integrals gives rise to the adjoint boundary conditions: the remaining
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terms give the final expression of the gradient. The expression of the gradient of I w.r.t. the
coordinates of all surface nodes is

δI
δxk

=−
∫
Sw

βΨ1nm
∂vm
∂x`

δx`
δxk

dS +

∫
Sw

Ψm+1nq
∂τqm
∂x`

δx`
δxk

dS −
∫
Sw

τadjmq nq
∂vm
∂x`

δx`
δxk

dS (12)

Since the inlet and outlet boundaries remain unchanged during the optimization, δxk
δbi

= 0 along
SI and SO.

3.3 Numerical Solution of the Flow and Adjoint Equations on GPUs

The primal and adjoint solvers use the vertex-centered variant of the finite volume method on
unstructured/hybrid meshes. Both solvers are implemented on NVIDIA GPUs using CUDA-C,
taking advantage of the great parallel speed–up they offer. Some comments on the discretization
and numerical solution techniques used as well as their implementation on GPUs follow.

The primal inviscid fluxes are computed using the Roe’s approximate Riemann solver [11]
adapted to incompressible flows. Adjoint fluxes are computed in a similar way, by considering
the non-conservative form of the field adjoint equations. The spatial discretization of the in-
viscid fluxes is second–order accurate, with appropriate flux limiters, if necessary. Both primal
and adjoint viscous fluxes are computed using an edge–based central difference scheme. The
discretized equations are solved in each pseudo-time step using a point–implicit Jacobi iterative
scheme.

Modern GPUs are massively parallel co-processors to CPUs offering at least an order of
magnitude more FLOPS and higher memory bandwidth than CPUs. However, due to the dif-
ferent architecture, software directly ported from CPUs to GPUs cannot efficiently exploit the
available GPU computational resources. The authors group has developed a flow and adjoint
solver that is capable of running on many GPUs belonging to the same or different computa-
tional nodes with a parallel speed–up of up to 45x compared to the CPU implementation of the
same code. This parallel speed–up results from a) the optimization of memory access patterns
for the used GPU architecture [14], b) the use of GPU specific scatter–adding techniques [13]
c) the minimization of the communication overhead when using many GPUs, by simultaneous
data transfers and computations.

Another important feature of the flow and adjoint solver is the use of Mixed–Precision Arith-
metics(MPA); the interested reader could find more about MPA in [12]. In order to reduce
memory footprint and number of memory accesses, in MPA, the LHS terms are computed in
Double–Precision Arithmetics (DPA) and stored using Single–Precision Arithmetics (SPA). Of
course, the RHS terms are still stored using double–precision, so as to maintain the accuracy of
a purely DPA scheme.

3.4 Grid Displacement using RBF

With the RBF model the deformation is treated as a scattered data interpolation where surface
node displacements are smoothly interpolated at the internal nodes. The new surface grid,
which corresponds to the new geometry, is obtained by inverting [15] and displacing nodes in
the NURBS parametric space (u, v). Special care is taken in case of trimmed surfaces. An
application is shown in fig. 5.
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Figure 5: Example of the use of the RBF-based grid displacement method showing the initial
(left) and displaced at cycle 4 (right) shroud surface mesh. All boundary nodes are displaced
into the NURBS parametric space and, then, transformed back to the Cartesian space.

4 APPLICATION TO A LOW–SPEED COMPRESSOR STATOR

The test case concerns the optimization of the stationary row of a low–speed compressor. The
objective is to minimize the volume averaged total pressure losses between the inlet and outlet
of the CFD domain penalizing designs which decrease the volume averaged static pressure rise.
The weights used in the objective function 8 are ω1 = 0.9 and ω2 = 0.1. The inlet flow angle
is 46◦ w.r.t. the axial direction and Re = 6.5×105 based on the blade axial chord–length (cax).
The initial blade is formed by the spanwise extrusion of the same airfoil and trimming with the
cylindrical hub and shroud.

The total number of design variables used to carry out the optimization is 40; note that 32
out of the 40 variables are used to control the blade thickness distribution. In fig. 6, the initial
distribution of the thickness is reported along with the NURBS control polygon; control points
are allowed to vary only in one direction. In order to maintain C0 continuity, at the trailing and
leading edge, the first and last control point are kept fixed.

The metal angles βLE and βTE and parameters ζLE and ζTE are used to control the blade
camber at the hub and shroud positions. Only two span positions are used to describe the
distribution of these geometric characteristics. A graphical representation is shown in fig. 6,
together with a 3D view of the stator to be optimized. The hub and shroud generatrices remain
frozen.

The optimization run on a single computation node with two 6-core Intel(R) Xeon(R) CPU
E5-2620 v2 @ 2.10GHz processors and two NVIDIA Tesla K40 GPUs with 12GB of GPU
memory. The computational grid consists of ~1.9×106 nodes and is carefully stretched close to
the solid walls, where the non-dimensional distance of the first grid nodes off the wall is y+≈1.
The solution of the flow field runs for ~17min while ~12min are needed for the solution of the
adjoint equations per optimization cycle.

The optimization history as well as both the initial and optimized shapes, are shown in fig. 7.
To compare the flow fields around the initial and optimized geometries 4 stations/positions

in the axial direction are chosen as shown in fig. 8. In figs. 9 to 10, the flow fields around the
initial and the optimized blade geometries are compared.
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Figure 6: Parameterization of the β angles at LE and TE for hub and shroud position (left). The
normalized thickness profile distributions are defined as NURBS curves (right). The control
points of the NURBS curves are used as design variables: displacements in the y direction
(defining the non–dimensionalized thickness) are safely allowed.

Figure 7: Comparison of the initial (blue) and the optimized (red) blade shape (left). Conver-
gence history for f1 and f2 during the optimization (right). Both absolute convergence history
(right–top) and relative convergence history (right–bottom) are reported. Both pt and p are
non–dimensionalized by (V in)2.
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Figure 8: Axial positions chosen to compare the flow fields around the initial and optimized
geometry.

Figure 9: Peripheral velocity component field at axial positions from 1 (left) to 4 (right) for
the initial (top) and the optimized (bottom) geometry. The peripheral velocity component is
non-dimensionalized by V in.
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Figure 10: Loss coefficient (pint − pt) field at axial positions from 1 (left) to 4 (right) for the
initial (top) and the optimized (bottom) geometry. The total pressure is non-dimensionalized by
(V in)2.

5 CONCLUSIONS

A method for the optimization of turbomachinery rows, by coupling the adjoint–based opti-
mization process with a parametric blade modeller was presented. This enables the exploration
of the design space while maintaining a CAD representation. The use of the (continuous) ad-
joint method makes the cost of computing the objective function gradient independent of the
number of design variables. Moreover, the optimization wall–clock time is further reduced by
implementing the flow and adjoint solvers on GPUs, speeding–up the corresponding processes
by ~45x, compared to the use of CPUs. Regenerating the CFD grid for each new geometry was
overcome by using a grid displacement technique based on RBFs. The reduced cost, combined
with the capability of linking to CAD, makes the proposed method appropriate for the industrial
design workflow.
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[3] M. Rossgatterer, B. Jüttler, M. Kapl, G. Della Vecchia, Medial design of blades for hydro-
electric turbines and ship propellers. Computers & Graphics, 36, 434–444, 2012.

3983



K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

[4] T.T. Robinson, C. G. Armstrong, H. S. Chua, Carsten Othmer, T. Grahs, Optimizing pa-
rameterized CAD geometries using sensitivities based on adjoint functions. Computer-
Aided Design & Applications, 9(3), 363–268, 2012.

[5] L. Piegl, W. Tiller, Algorithm for approximate NURBS skinning. Computer-Aided Design,
9(28), 699–706, 1996.

[6] M. Buhmann, Radial basis functions: theory and implementations. Cambridge University
Press, Cambridge, 2003.

[7] D. Sieger, S. Menzel, M. Botsch, High quality mesh morphing using triharmonic radial
basis functions. Proceedings of the 21st International Meshing Roundtable, 1–15, 2013.

[8] S. Zhu, A semi-torsional spring analogy model for updating unstructured meshes in 3D
moving domains. Finite Elements in Analysis and Design, 41, 1118–1139, 2005.

[9] Z. Xu, M. Accorsi, Finite element mesh update methods for fluid structure interaction
simulations. Finite Elements in Analysis and Design, 40, 1259–1269, 2004.

[10] S.M. Hu, C.L. Tai, S.H. Zhang, An extension algorithm for B-splines by curve unclamp-
ing. Computer Aided Design, 34, 415–419, 2002.

[11] P. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. Journal
of Computational Physics, 43(2), 357–372, 1981.

[12] I. C. Kampolis, X. S. Trompoukis, V. G. Asouti, K. C. Giannakoglou, CFD–based anal-
ysis and two–level aerodynamic optimization on Graphics Processing Units. Computer
Methods in Applied Mechanics and Engineering, 199(9-12), 712–722, 2010.

[13] V. G. Asouti, X. S. Trompoukis, I. C. Kampolis, K. C. Giannakoglou, Unsteady CFD com-
putations using vertex–centered finite volumes for unstructured grids on Graphics Process-
ing Units. International Journal for Numerical Methods in Fluids, 67(2), 232–246, 2011.

[14] X. S. Trompoukis, V. G. Asouti, I. C. Kampolis, K. C. Giannakoglou, CUDA implemen-
tation of vertex–centered, finite volume CFD methods on unstructured grids with flow
control applications. GPU Computing Gems, Jade Edition, 2011.

[15] L. Piegl, W. Tiller, The NURBS book. Springer, 2013.

[16] A. Ronzheimer, Aircraft geometry parameterization with high-end CAD-software for de-
sign optimization. Proceedings ECCOMAS 2012, Vienna, Austria, 2012.

[17] E. M. Papoutsis-Kiachagias, K. C. Giannakoglou, Continuous adjoint methods for turbu-
lent flows, applied to shape and topology optimization: Industrial applications. Archives
of Computational Methods in Engineering. Springer, 2016.

[18] K. T. Tsiakas, X. S. Trompoukis, V. G. Asouti, K. C. Giannakoglou, Shape optimization
of wind turbine blades using the continous adjoint method and volumetric NURBS on a
GPU cluster. Proceedings of EUROGEN 2015, Glasgow, UK, 2015.

3984



ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

GEOMETRIC CONTINUITY CONSTRAINTS FOR ADJACENT NURBS
PATCHES IN SHAPE OPTIMISATION

Xingchen Zhang, Yang Wang, Mateusz Gugala and Jens-Dominik Müller

Queen Mary University of London
Mile End Road, E1 4NS, UK

e-mail: {xingchen.zhang, yang.wang, m.gugala, j.mueller}@qmul.ac.uk

Keywords: shape optimisation, adjoint methods, automatic differentiation, geometrical conti-
nuity, constraints, NURBS, CAD.

Abstract. The automatic shape parametrisation method ’NURBS-based parametrisation with
complex constraints (NSPCC)’ which uses the control points of multiple B-spline patches as de-
sign variables, is extended here to include Non-Uniform Rational B-Splines (NURBS) patches.
The necessary modifications to the continuity constraints across patch interfaces are presented
and the number of required test points to evaluate the constraints is estimated. Numerical tests
to demonstrate the developments are presented.

3985



Xingchen Zhang, Yang Wang, Mateusz Gugala and Jens-Dominik Müller

1 INTRODUCTION

In shape optimisation problems, several important issues should be considered carefully. A
crucial aspect is the choice of parametrisation method as it determines the design space. A wide
range of parametrisations have been presented in the literature [1].

Node-based methods use the displacement of the nodes of the surface grid provide the richest
design space the CFD surface mesh can express. This space is richer than the CFD discretisa-
tion can typically see as high-frequency oscillations can be expressed which are not adequately
resolved by the CFD. This is addressed by regularisation or smoothing of the gradients or dis-
placements [2, 3]. Lattice-based methods where suitable shape modes are defined on skeleton
grids such as Hicks-Henne bumps for aerofoils [4] or stacks of B-spline curves to define turbo-
machinery blade shapes [5] are popular in aeronautical design. While they can give appropriate
design freedom, they are typically limited to topologically rectangular planforms. Free-form
deformations (FFD) with volume splines [6] or Radial Basis Function (RBF) [7] are often used
for more general design approaches but are cumbersome to define if interfaces between design
(deformable) and fixed surfaces need to be respected.

All of the aforementioned methods suffer from the fact that the optimal shape is produced
as a deformed mesh, further processing or manufacturing will then require a manual step to
capture the relevant modes in a CAD model. This step will typically incur approximations and
impair the optimal shape.

At the other end of the spectrum one could consider using parametrisation defined in CAD
to define the design space. While this produces the optimal design in CAD, it is typically very
time-consuming and complex to define a design space that is rich enough to contain the relevant
shape modes. Furthermore, commercial CAD systems are black-box and the relevant shape
derivatives for gradient-based optimisation need to be approximated using finite-differences [8],
resulting in high run-times for rich design spaces and issues with robustness under topological
changes. The companion paper [9] presents work of the group to overcome some of these issues
by applying exact algorithmic differentiation to an open-source CAD system.

As an alternative, we here pursue a vendor-neutral CAD approach which does not rely on a
parametrisation defined in a CAD system. Using an initial net of surface patches from a CAD
Boundary Representation (BRep), the NSPCC approach [10] derives a rich parametrisation in
an automatic fashion by considering all control points of these patches as design variables. The
unique feature of NSPCC is that it is not limited to single patches or clamped interfaces between
patches, but formulates constraints across patch interfaces to guarantee a user-selected level of
geometric continuity such as water-tightness (G0), tangency (G1) and curvature (G2). The
approach exploits the polynomial nature of B-Splines by evaluating the value and derivative of
the constraint function at a small number of test points. Using a projected gradient method, the
design space is then projected into the null space of the constraint matrix, while the range space
is used to recover a non-linear constraint using a normal step. The method has been successfully
demonstrated on a range of configurations and is currently extended to include shape constraints
such as thickness and radius [11].

This paper further develops the approach of Xu et al. [10] in two aspects, a) the approach
will be extended from B-Splines to NURBS b) an approximation for the number of required
test points is proposed. Finally, a S-bend air duct test case using NURBS is presented.

The remaining parts of this paper are structured as follows: Sec. 2 provides the background
knowledge of this study, Sec. 3 describes the methods used to describe and maintain the geo-
metrical continuity. Sec. 4 presents number the estimation of the number required test points.
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Conclusions and future research directions are presented in Sec. 5.

2 Geometry parametrisation for CFD shape optimisation

Optimisation of shapes immersed in fluids using CFD typically uses gradient-based algo-
rithms as they converge to the optimum in many fewer design iterations compared to stochastic
or surrogate modelling approaches. The gradients ∂J

∂α
of the objective function J with respect to

a design variable α induced in each control volume by a design change is best computed using
the adjoint method [12, 13, 14]. Writing the flow equations as

R(U(xV ),xV ) = 0,

where R is the conservative residual of the flow equations, U is the state and xV are the volume
grid coordinates, the adjoint equations can be written as

ATv = g

where AT is the transpose of the system Jacobian A = ∂R
∂U , v = ∂J

∂R is the adjoint solution and
g = ∂J

∂U only depends on the objective function J, but not on the design variables α .
The adjoint approach allows to compute the sensitivities of J with respect to all N design

variables α in a single computation of comparable cost to the flow,

dJ
dα

=
∂J
∂α

+
∂J
∂R

∂R
∂α

=
∂J
∂α

+ vT f

The direct dependence of J on α , e.g. if the J is defined on the design surface, is straightforward
to compute and omitted for simplicity in the following.

Using the chain rule of calculus, the differentiation of the remaining term ∂J
∂R

∂R
∂α

can be
separated into contributions from the perturbations in volume grid coordinates xV , which in
turn are linked to perturbations of the surface grid coordinates xB through a mesh deformation
algorithm such as Laplacian smoothing.

∂J
∂R

∂R
∂α

=
∂J
∂R

∂R
∂xV

∂xV

∂xB

∂xB

∂α
= vT ∂R

∂xV

∂xV

∂xB

∂xB

∂α
.

The first term on the right hand side ∂R/∂xV is computed by differentiating the flux and metrics
computation of the flow solver w.r.t. the mesh coordinates. The second term ∂xV/∂xB arises
from differentiating the volume mesh smoothing. The final term in the chain rule is the sensi-
tivity of the surface coordinates w.r.t. the changes in design variables, ∂xB/∂α , which requires
a differentiation of the parametrisation.

The NSPCC approach uses a source-code implementation of NURBS patches which can
then be differentiated using AD, in our work we employ Automatic Differentiation Software
tools (AD) [15]. While the implementation in Xu et al.’s work [10] used the coordinates of the
control points Pi j as design variables, with each control point having three degrees of freedom
(DoF) to move, here we extend the approach to also include the weights ωi j as design variable,
leading to 4 DoF per control point.
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2.1 NURBS surface patches

Non-Uniform Rational B-splines (NURBS) are widely used to describe geometries. A NURBS
patch is a 3D surface defined as [16]:

S(u,v) =

n
∑

i=0

m
∑
j=0

Ni,p(u)N j,q(v)ωi, jPi, j

n
∑

i=0

m
∑
j=0

Ni,p(u)N j,q(v)ωi, j

0≤ u,v≤ 1 (1)

where Pi, j are control points, ωi, j are weights, Ni,p(u) and N j,q(v) are p-th and q-th degree
bspline basis functions defined in the following knot vectors:

{0, . . . ,0︸ ︷︷ ︸
p+1

,up+1, . . . ,ui, . . . ,ur−p−1,1, . . . ,1︸ ︷︷ ︸
p+1

}

{0, . . . ,0︸ ︷︷ ︸
q+1

,vq+1, . . . ,v j, . . . ,vs−q−1,1, . . . ,1︸ ︷︷ ︸
q+1

}

where r = n+ p+1 and s=m+q+1. Ni,p(u) and N j,q(v) are given by the following expression:

Ni,0(u) =
{

1 i f ui ≤ u < ui+1
0 otherwise

Ni,k(u) =
(u−ui)

ui+k−ui
Ni,k−1(u)+

(ui+k+1−u)
ui+k+1−ui+1

Ni+1,k−1(u) (2)

Written in homogeneous form, a NURBS surface can be expressed as

Sω(u,v) =
n

∑
i=0

m

∑
j=0

Ni,p(u)N j,q(v)Pω
i, j 0≤ u,v≤ 1, (3)

where Pω
i, j = (ωi, jxi, j,ωi, jyi, j,ωi, jzi, j,ωi, j). Written in this form, most of algorithms formulated

for B-spline surfaces can straightforwardly be applied to NURBS. We shall hence omit the
superscript ω and use P for the homogeneous control point coordinate in the following.

3 NSPCC algorithm using NURBS surfaces

3.1 Geometric continuity

In shape optimisation problems, the congruence between patches usually requires at least G0
(adjacent surfaces touch or intersect to be watertight). Smoothness of the geometry is typically
a very important aspect in the CFD design, the changes in tangency and curvature often have
a very strong influence on the pressure field. G2 continuity (continuous curvature) would be
required to not induce pressure spikes, however this seems difficult to implement with standard
methods and is often not imposed. While our methodology could also be used to impose G2, in
this study G0 and G1 continuity are considered.

In the NSPCC approach the constraint between patches is evaluated numerically at the same
position in all touching or intersecting patches. Pairs of test points are evenly distributed along
the common edges as shown in Fig. 1. G0 continuity can then be written as:

G0 = Xs,L−Xs,R = 0 (4)
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Figure 1: Two patches sharing one common edge.

where Xs,L is the test point on the left patch, and Xs,R is the test point on the right patch sharing
an edge. G1 continuity can be written as:

G1 =
nL ·nR

||nL||||nR||
= 1 (5)

where nL and nR are the unit normal vectors of the tangent plane at the test points either side of
the patch interface. The unit normal vector is expressed as:

n =
(
∂Xs

∂u
× ∂Xs

∂v
)∥∥∥∥∂Xs

∂u
× ∂Xs

∂v

∥∥∥∥ (6)

where u and v are the parametric coordinates of the surface as introduced in equation (1).

3.2 Computation of the constraint matrix using singular value decomposition (SVD)

Linearising the difference in continuity constraint values G between two design iterations n
and n+1 one obtains

Gn+1 = Gn +
N

∑
i=1

∂G
∂Pi

δPi, (7)

where G comprises the constraints of all required levels of continuity, δPi is the displacement of
the homogeneous coordinate of control point Pi. Requiring Gn+1 = Gn one obtains a linearised
condition for zero change in constraints, hence

N

∑
i=1

∂G
∂Pi

δPi = CδP = 0. (8)

The matrix C has MC rows and 4×N columns in total, corresponding to the total number of
MC constraint equations in the M test points and the N NURBS control points. The elements of
the matrix C are calculated using Automatic Differentiation (AD) of the STEP file interpreter.
In the typical situation of all patches having a much higher number of control points in each
direction compared to the order of the spline, the majority of the control points do not affect the
continuity of the patch borders and the matrix C is sparse.

It can be seen from equation (8) that the displacements of the control points δP have to lie
in the null space of C to satisfy the continuity constraints in a linearised sense. To obtain the
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space of displacement vectors of control points, we need to compute the null space of C. This
is performed by means of a SVD from the LAPACK library [17],

C = UΣVT , (9)

where U is an MC×MC unitary matrix, Σ is an MC×4N diagonal matrix with non-negative real
numbers on the diagonal, and the 4N×4N unitary matrix VT denotes the transpose of V. The
rank of the matrix, r, is the number of the non-zero diagonal entries in Σ. The last (4N− r)
columns of the matrix V span the nullspace of C, denoted by Ker(C).

3.3 Required number of test points

The polynomial of order Nq on the parametric coordinate of the patch edge, along a section
of a B-spline curve can be matched uniquely if there are Nq+1 distinct test points within the
knot vector interval that supports this section of the curve. In practice it is algorithmically
cumbersome to determine the appropriate number as the support intervals overlap.

The number of required test point pairs for a B-spline curve can be determined a-priori by
considering each non-zero knot-interval. To match the polynomial of order Nq exactly we need
Nq + 1 test point pairs in the interval. The relationship between the number of knots Nk, the
number of control points Np and the order of the spline Nq is

Nk = Np +Nq (10)

The number of non-zero knot intervals is

Ni = (Nk−1)−2(Nq−1)−NM (11)

where NM is the number of zero knot intervals because of internal multiplicities. From Eq. (10)
and Eq. (11), the number of non-zero knot intervals becomes

Ni = Np−Nq−NM +1 (12)

In each interval we then need Nq+1 test points to fit the polynomial exactly, for the left side
of a patch edge with Np control points, we hence need ML test points

ML ≥ (Nq+1)(Np−Nq−NM +1),

similarly for the right side MR. Assuming a regular spacing of knots, the number of required
test points MT,E along edge E then becomes

MT,E ≥max(ML, MR). (13)

However, imposing too many test points does not pose a problem as the SVD filters out
linearly dependent constraint equations. To allow for non-regular knot-intervals we use

MT,E ≥ fT max(ML, MR)

with an inflation factor fT chosen around 1.2≤ fT ≤ 1.5. In the typical case of equal polynomial
orders Nq|L = Nq|R this becomes

MT,E ≥ fT (Nq+1)(max(Np|L, Np|R)−Nq−NM +1). (14)
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The exactness argument employed for B-Splines does not carry over straightforwardly to the
non-rational functions in NURBS. This could be accommodated by increasing the factor fT ,
however in practice we have not found this to be necessary.

Due to finite-precision arithmetic and ill-conditioning of the constraints, the singular values
do not drop off to zero sharply after all non-singular modes, but show a rather gradual decrease.
In practice the authors have found the NSPCC method applied to B-Splines to be very insen-
sitive against setting the cut-off threshold. The constraint equations G are non-linear and for
finite-size steps the design iteration introduces a constraint violation, requiring a recovery step
in the range of C. An exact representation of the feasible space is hence not essential.

4 Results

4.1 Discrete incompressible flow and adjoint solver

In this work, our in-house code GPDE [18] is used. GPDE is an incompressible, viscous,
steady flow solver on unstructured grids. The spatial discretisation of the flow solver (pri-
mal) is based on a finite volume approach with 2nd order schemes. The SIMPLE-type time-
discretisation [19] is used to decouple velocity and pressure computation.

A discrete adjoint solver is used to obtain the sensitivity of the objective function w.r.t. changes
in surface node coordinates, ∂J

∂xS
. The adjoint solver is derived from the flow solver via automatic

differentiation with the AD tool Tapenade [15]. AD is used to produce the relevant derivative
source code for fluxes and source terms. The differentiated routines are then assembled in a
hand-written driver code to improve performance, exploiting the fixed-point nature of the pri-
mal. In the fixed point iteration of GPDE, stabilisation strategies such as CFL-ramping, skew-
ness correction, semi-coupled methods are implemented to stabilise both primal and discrete
adjoint solvers [20].

4.2 The number of test points

Two test cases are utilised in this study to investigate the number of test points required. The
first one is a half cylinder case as shown in Fig. 2 and the other one is the ONERA M6 case
shown in Fig. 3.

Figure 2: The 3D model of a half cylinder and its control points.

For both cases, all of parameters about the geometry such as the control points, the knot
vectors are read from the STEP file. STEP file is a standard file to exchange data among different
systems [21]. In addition, a random perturbation to the geometry is given in these two cases.
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Figure 3: The 3D model of ONERA M6 wing which consists of two patches, and the control points of one patch.

4.2.1 Half cylinder

The half cylinder case used in this study is created using Rhino 5.0 1 This half cylinder
consists of two NURBS surfaces sharing one common edge. The number of control points on
each surface along the common edge is 5, and the degree of surface along the common edge is
2, hence order 3. The knot vector along the common edge is

{0,0,0,0.5,0.5,1.0,1.0,1.0},

hence the number of non-zero knot vector interval is 2, matching the estimate of Np−Nq−
NM +1 in Eq. (12). According to Eq. (14), the number of test points should be:

M ≥ (3+1)2 = 8.

Fig. 4 shows the number of singular values found vs. the number of test points. To useful
numerical precision, the number of non-singular values no longer increases beyond 10 test
points., which means that 10 test points are enough to ensure the continuity constraints. This
matches well with the result of equation (14).

Figure 4: The number of non-zero singular values when the number of test points changes for half cylinder case.

1https://www.rhino3d.com/
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4.2.2 ONERA M6 wing

The M6 wing case used in this study is created using CATIA V5. It consists of two B-spline
patches and there are two common edges as shown in Fig. 3. In this study, B-splines are treated
as NURBS by setting weight 1.0 to every control point. There are 12 control points along each
common edge and the degree of surface along the common edge is 5, hence order 6. The knot
vector along the common edge is

{0,0,0,0,0,0,0.12,0.27,0.41,0.56,0.70,0.85,1.0,1.0,1.0,1.0,1.0,1.0} ,

hence the number of non-zero knot vector intervals is 7, matching the estimate of Np−Nq−
NM +1 in Eq. (12).

According to equation (14), the number of test points should be:

M ≥ (6+1)7 = 49.

In this study, the relationship between the number of non-zero singular value and the number
of test points is shown in Fig. 5. It indicates that the number of singular values keep constant
after the number of test points reaches 60 which means that 60 test points are enough.

Figure 5: The number of non-zero singular values when the number of test points changes for M6 wing case.

4.3 Optimisation results

In this paper, we apply the NURBS-based parametrisation method to a S-bend air duct case.
The original shape of this S-bend is shown in Fig. 6. There are 30 surfaces in this geometry, only
the 8 surfaces in the middle section are design surfaces. 400 control points on these surfaces
are allowed to move and change weights, thus there are 1600 DoF in total. G1 continuity is
imposed across the interfaces of these 8 surfaces.
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Figure 6: The S-bend air duct and the control points of middle section.

The cost function is the mass-averaged total pressure loss between inlet and outlet defined as

J =

∫
inlet ptotal(u ·n)dS−

∫
outlet ptotal(u ·n)dS∫

inlet(u ·n)dS
(15)

The flow solver GPDE is used with steepest descent with fixed step width as optimiser.
The cost function and gradient history during the 62 iterations are shown in Fig. 7 and Fig. 8,
respectively. From Fig. 7 it can be seen that, the cost function is reduced by about 9.4% during
the optimisation.

Figure 7: The cost function history.
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Figure 8: The gradient history.

The optimised shape is shown in Fig. 9. Checks with the CAD software, confirm that the
G1 continuity across the interfaces in the middle section is satisfied. In addition, the maximum
G1 deviation value during the optimisation is 2.3× 10−10. This means after the extension to
NURBS, the geometric continuity can be ensured across different patches.

Figure 9: The optimised S-bend air duct.
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Figure 10: The cross section of optimised S-bend air duct.

Fig. 10 shows the cross section of the cranked part of this S-bend. It can be seen that the side
surfaces are pushed out after optimisation offering more cross-sectional area to the flow which
through reduction the velocity gradients at the wall reduces skin friction and ultimately total
pressure loss. A more significant effect is the reduction in secondary flow motion as visible
in Fig. 11, showing the streamlines for the initial and deformed shape after 62 optimisation
iterations. The optimised shape shows diminished secondary flow, which results in lower total
pressure loss.

Figure 11: Streamline plots for initial (top) and optimised ducts (bottom).

5 CONCLUSIONS

The NSPCC method of Xu et al. [10] has been extended to include NURBS patches. The
test-point approach projecting the design space of control point movements has been extended
to include weight changes. An estimate of the required number of test points has been presented,
numerical tests confirm the validity of the estimate.

An S-bend air duct optimisation case is presented to demonstrate the proposed method works
for shape optimisation problem. The NURBS-based parametrisation using a typical density
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of control points is able to develop a very rich but smooth geometry perturbation with G1
geometric continuity. Using a simple optimiser the objective function was reduced by over 9%.
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Abstract. The current state-of-the-art adjoint design optimizations for turbomachinery compo-
nents focus solely on aerodynamic cost functions and constraints, yet disregard structural fea-
sibility during the optimization procedure. This paper presents the first steps taken towards in-
cluding structural constraints in a multidisiplinary adjoint optimization design chain for turbo-
machinery components. Particularly in turbomachinery, deformations arise due to centrifugal
and pressure load during running conditions, which lead to a coupled fluid-structure interaction
problem. While most optimization methods treat the fluid and structure domains separately in
a single-disciplinary fashion, we seek to directly include the coupled fluid-structure interaction
within the adjoint optimization. To this end, a cold-to-hot transformation tool that deforms a
CAD geometry based on FEM displacements is implemented and differentiated using adjoint
algorithmic differentiation to compute the required transformation sensitivities.
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1 INTRODUCTION

Current adjoint optimization methods for turbomachinery components focus mainly on aero-
dynamic cost functions and constraints , e.g. [3], [10], [18]. The structural feasibility of the
resulting optimized shape is usually tested a posteriori by conducting a stress analysis. As a
result, an aerodynamically optimized shape may exceed defined stress tolerance levels and a
new shape will have to be designed. This can lead to several costly design iterations. Multidis-
ciplinary adjoint optimization seeks to take structural constraints into consideration during the
optimization process by coupling the fluid and structural disciplines. This will avoid unneces-
sary design iterations and directly compute an aerodynamically optimized shape, which is also
structurally feasible.

Turbomachinery components pose an additional challenge due to the deformations which
occur at running conditions. These are caused by rotation-induced centrifugal forces, gas pres-
sure loads, as well as thermal expansions due to temperature changes. The deformation process
is known as the cold-to-hot transformation [5], which can be seen as a fluid-structure interac-
tion problem. The cold state defines the at-rest state at which a component is manufactured.
The hot state defines the deformed state of a component during running conditions. Typically,
these deformations are not taken into account during the optimization process itself, but rather
a shape is optimized in its hot state and transformed a posteriori to its cold shape for manufac-
turing. In this case, the parametrized CAD geometry used in the optimization, also named the
master CAD geometry, is defined in the hot state [6]. However, this method has the downside
that the master CAD geometry used in the optimization was generated for one specific design
point. Different design points, each with their own centrifugal and pressure loads, would result
in different deformed hot geometries. Nevertheless, often the same master CAD geometry is
used to compute other design points. Additionally, the cold geometry that is generated after
the optimization may no longer fulfill manufacturing constraints, e.g. flank milling of radial
machines requires ruled surfaces.

As opposed to a hot state optimization and an a posteriori hot-to-cold transformation, we pro-
pose setting the cold state CAD parameters as the design parameters for the optimization with
the cold-to-hot deformation being computed during the simulation. As a result, the optimiza-
tion would directly compute a manufacturable cold state geometry of a component optimized
for a chosen design point. Since the final goal is an adjoint multidisiplinary optimization, the
differentiation of an entire cold-to-hot chain is required. In this paper, we present first steps
towards this alternative by implementing an adjoint version of a cold-to-hot transformation tool
to compute the required sensitivities.

First, we will motivate our goal of adjoint multidisciplinary optimization in section 2. Sec-
tions 3 and 4 outline the cold-to-hot algorithm and its differentiation with AD, respectively. The
results are presented in section 5 with concluding remarks in section 6.

2 ADJOINT MULTIDISCIPLINARY OPTIMIZATION

This section introduces the motivation of adjoint multidisciplinary optimization in turbo-
machinery. With the goal of optimizing the shape of a turbomachinery component, a metric
referred to as the cost function J(x) 2 R

c, e.g. efficiency, has to be optimized, i.e. maxi-
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mized. The parameters which can be varied to minimize the cost function are referred to as
the design parameters x 2 Rd. The cost function is minimized using an optimization method,
which mainly falls into one of the two categories of gradient-free or gradient-based optimiza-
tion methods.

Gradient-free optimization methods can be used to compute improved designs using only
cost function evaluations, but finding the true optimal design is not guaranteed. Additionally,
converging towards an optimum can require a large number of evaluations and the cost of the
optimization is dependent on the number of design parameters d. Gradient-based optimization
methods, on the other hand, use sensitivity information to compute a minimum with less it-
erations than gradient-free methods. However, these methods compute a local minimum and
cannot guarantee that the computed minimum is indeed the global minimum, unless the opti-
mization problem is convex. Furthermore, the sensitivities of the cost function with respect to
the design variables

@J

@x
2 Rc�d (1)

have to be computed. Typical approximation methods, such as finite differences (FD), compute
the gradient (1) at a cost proportional to the number of design parameters d, which can lead to
high computational costs.

Using the adjoint approach, first introduced by Pironneau [15] and later in the application of
aerodynamic design optimization by Jameson [8], [16], the gradient (1) can be computed at a
cost proportional to the size c of the cost function J . In the context of aerospace engineering,
one is typically interested in few parameters such as efficiency, mass flow rate, pressure ratio,
and maximum stresses. Thus, the size of the cost function is usually much smaller than the size
of the design space, such that c� d. Thus, the adjoint method offers a significant performance
advantage for gradient-based optimization methods over gradient-free methods, given a smooth
design space. Notably, the cost of computing the gradient is independent of the number of
design variables d, allowing a much greater design space. The adjoint approach requires the
evaluation of the adjoint model

x(1) =
@J(x)

@x

T

J(1) (2)

of the cost function. First deriving a continuous form of the adjoint model (2), then discretizing
it, is referred to as the continuous adjoint [9] approach. However, deriving a continuous adjoint
model of a complex system of equations can be extremely difficult and error prone. Alterna-
tively, the discrete adjoint [11] approach discretizes the system of equations first, then derives an
adjoint model of the discretized system of equations. By using the code transformation method
algorithmic differentiation (AD) [7], [13], also known as automatic differentiation, an adjoint
model of a computer program code can be easily generated. In total, this makes the discrete
adjoint optimization method an efficient and precise alternative to gradient-free optimization
methods.

Gradient-free optimization methods have been applied in the context of CAD-based multidis-
ciplinary optimization of turbomachinery components e.g. by [12], [17]. In this project, we seek
to apply the discrete adjoint approach. We especially want to focus on the fluid-structure inter-
action (FSI) problem portrayed in the introduction (section 1). An essential aspect of FSI within
a CAD-based optimization is the interface between the fluid, solid, and CAD disciplines. The
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cold-to-hot transformation (section 3) provides one such interface. Within an adjoint optimiza-
tion, a discrete adjoint model of this interface is required, which is achieved by differentiating
the cold-to-hot transformation using AD (section 4).

3 COLD-TO-HOT TRANSFORMATION

The cold-to-hot transformation implemented in this project is based on the method detailed
in [5]. Given an FEM mesh that is generated from a cold state CAD geometry, an FEM linear
elastic computation is carried out to compute the displacements generated by given centrifu-
gal forces. For now, we are focusing on deformations caused only by centrifugal forces. By
perturbing the B-spline surface control points, the computed FEM displacements are matched
and the CAD geometry is transformed to its hot state. In this section, the key steps of the
transformation will be outlined. The interested reader is referred to [5] for a more detailed ex-
planation of the algorithm and to [4], [14] for an in-depth discussion of computational geometry.

A B-spline surface

S(u; v) =
n�1X
i=0

m�1X
j=0

N
p
i (u)N

q
j (v)p

0
i;j; (3)

is given with basis functions Np
i (u) and N

q
j (v) of order p and q, respectively, foot points 0 �

u � 1 and 0 � v � 1, and control points p0i;j 2 R
3. The position of FEM nodes d0

k 2 R
3 and

their respective displacements �dk 2 R
3 are given as well. k = 0; :::; s � 1, where s defines

the number of FEM nodes on the surface.

3.1 FEM node projection

The FEM nodes d0
k are projected onto surface foot points (uk; vk) by solving a point inversion

problem, which can be solved using a suitable algorithm from [14]. As depicted in figure 1, the
displacements �dk are imposed onto the foot points (uk; vk), to compute the displaced node
points

dk = S(uk; vk) + �dk: (4)

Figure 1: Displacing surface point S(uk; vk) with FEM displacement �dk
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Using the assumption that the displaced node points dk must pass through the deformed
B-spline surface bS(uk; vk), the following system of equations can be derived:

n�1X
i=0

m�1X
j=0

N
p
i (uk)N

q
j (vk)�pi;j = �dk; k = 0; :::; s� 1; (5)

where �pi;j represents the change to control point pi;j . Typically, this system is overdetermined
since the number of FEM nodes s is usually greater than the number of control points n � m.
This system can be solved using a least-squares method.

3.2 Solve for outer control point displacements

While the solution of the system (5) can deliver the required control point displacements
�pi;j for a single surface bS(u; v), multiple surfaces with adjacent edges are mostly involved in
a complex geometry. An explicit treatment of the surface edges is required to avoid different
solutions of �pi;j along adjacent edges, which can lead to undesirable kinks. The control points
along the surface edges are thus solved first by treating the edges as B-spline curves. This results
in the overdetermined system of equations

n�1X
i=0

N
p
i (uk)�pi = �dk; k 2 Kedge; (6)

withKedge defining the set of FEM nodes along the edge.

3.3 Solve for inner control point displacements

Once the control point displacements along the edges �pi;0;�pi;m�1;�p0;j;�pn�1;j are de-
termined, the known values of (5) can be moved to the right-hand side to solve for the remaining
inner control point displacements

n�2X
i=1

m�2X
j=1

N
p
i (uk)N

q
j (vk)�pi;j = �dk �

n�1X
i=0

N
p
i (uk)[N

q
0 (vk)�pi;0 +N

q
m�1(vk)�pi;m�1]

�
m�2X
j=1

N
q
j (vk)[N

q
0 (uk)�p0;j +N

p
n�1(uk)�pn�1;j];

k 2 Kinner; (7)

withKinner defining the set of remaining inner FEM nodes. Afterwards, the control points can
be updated by

p = p0 +�p (8)

and continuity correction methods can be used to ensure continuity at the common edges of
deformed surfaces. Results of the implemented algorithm are presented in section 5.1.

4 SENSITIVITY COMPUTATION

For the computation of the sensitivities of the structural quantity of interest, e.g. the maxi-
mum von Mises stress �max 2 R, with respect to the design parameters� 2 Rd, the sensitivities
of an entire chain of operations have to be considered. While the inclusion of pressure loads
from the CFD solution is required to fully couple the fluid and structural disciplines, for now
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we regard only centrifugal loads. Consider figure 2 for the chain of computations required to
compute the structural quantity �max.

CAD kernel grid gen.

CSM

cold-to-hot

stress comp.

Figure 2: cold-to-hot flow chart

One starts off with design parameters �, which can define initial control points of the cold
geometry, as well as application specific parameters such as inlet- and outlet radius. � is then
plugged into the CAD kernel which generates a cold B-spline surface Si

c, which is used to gen-
erate the initial solid mesh 
i

s. The solid mesh, along with the known centrifugal forces Fc,
is then used in the computational structural mechanics (CSM) solver to compute the FEM dis-
placements �di+1. The solution of the CSM solver automatically gives us an updated solid
mesh 
i+1

s . The FEM displacements �di+1 are then plugged into the cold-to-hot transforma-
tion algorithm to compute the updated control points pi+1, which can be used to generate an
updated geometry Si+1. Once this deformation loop, which is boxed within a dashed line in
figure 2, has converged, the maximum von Mises stress �max can be computed.

Performing a structurally constrained gradient-based optimization would require differenti-
ating the entire described chain to compute the gradient

@�max

@�
2 R1�d: (9)

Typically, it would hold that d � 1, which gives the opportunity of a cheap gradient computa-
tion using adjoints. However, this would involve computing the adjoints of the entire cold-to-hot
chain. A first step towards computing the adjoints of this entire chain is made by computing the
adjoints of the cold-to-hot transformation

p(�d) = p0 +�p(�d): (10)

The corresponding 1st-order adjoint model is given by

�d(1) =
@�p

@�d

T

p(1); (11)

which will yield the gradient

@�p(�d)

@�d
=

@p(�d)

@�d
2 Rn�m�s (12)
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by performing n �m runs of the adjoint model (11). Each adjoint run i is seeded with the i-th
unit vector~i 2 Rn�m, where~i is a vector of 0s, except for the i-th variable, which is a 1 :

p(1) = ~i =

0
BBBBBBBBB@

0
...
0
1
0
...
0

1
CCCCCCCCCA

: (13)

Analogously, the 1st order tanget model is given by

p(1) =
@�p

@�d
�d(1); (14)

which allows the computation of the gradient (12) by performing s runs with each run j seeded
with a unit vector ~j 2 Rs:

�d(1) = ~j: (15)

For the differentiation with AD, the cold-to-hot algorithm is not treated as a black box. No-
tably, the first step of the cold-to-hot transformation, the projection of FEM nodes onto the
surface (section 3.1), does not need to be differentiated. This is because the projection is per-
formed only to determine the foot points (uk; vk) of a corresponding FEM node dk. Differen-
tiating equations (6) and (7) is sufficient to compute the gradient (12). This is achieved using
the open-source AD tool CoDiPack [1] developed by the Chair for Scientific Computing at TU
Kaiserslautern, Germany. The results of the adjoint sensitivity computation compared against
finite difference (FD) approximations are presented in section 5.2.

5 RESULTS

In this section, test results of the implemented cold-to-hot transformation and its sensitivity
computation are presented. The selected test case is an axial fan blade geometry, which has
been used as a baseline geometry for an optimization in [2].

5.1 Cold-to-hot transformation results

The results of the cold-to-hot transformation of the axial fan are quantified by computing the
distance error between the deformed B-spline surface bS(u; v) and the displaced points d. The
error is computed in the same manner as in [5]:

�k = min
u;v2[0;1]

kdk � bS(u; v)k2; k = 0; :::; s� 1 (16)

The maximum and mean distance errors are computed as

�max = max
k

�k; �mean =
1

s

s�1X
k=0

�k: (17)

The deformations are visualized in figures 3 and 4, which show that the deformed blade geom-
etry in figures 3(b) and 4(b) follows the displacements given by the vectors in figures 3(a) and
4(a). Distance error results are summarized in table 1.
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(a) displacements vectors of FEM results (b) deformed blade: dark. original blade: light

Figure 3: axial fan cold-to-hot transformation

(a) displacements vectors of FEM results (b) deformed blade: dark. original blade: light

Figure 4: axial fan cold-to-hot transformation

Suction Side Pressure Side
�max[m] 2:83� 10�3 2:49� 10�3

�mean[m] 7:36� 10�5 7:53� 10�5

Table 1: Maximum distance error �max and mean distance error �mean of the axial fan blade

5.2 Sensitivity computation results

The cold-to-hot transformation was differentiated using CoDiPack in both forward and re-
verse mode to compute the 1st order sensitivities (12). The input variables are the FEM node
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displacements �d 2 Rs and the output variables are the updated control points p 2 Rn�m. The
number of control points n �m is less than the number of FEM nodes s, with

n �m = 1053; s = 8149: (18)

A finite-difference (FD) approximation of (12) would require 2�s runs of (10) and a forward AD
evaluation of the gradient requires s runs of the tangent model (14). On the other hand, comput-
ing (12) using reverse AD would require only n�m runs of the adjoint model (11). Thus, a faster
run time is expected and also observed for the adjoint AD computation compared to the FD ap-
proximations and tangent AD runs (see table 2). The relative run time results are compared
to the measured cost of the primal computation of the control point displacements, excluding
the FEM node projection, cost(P ) � 4:52 seconds. Note that in the final application of the
adjoint cold-to-hot chain, only a single adjoint computation of the cold-to-hot transformation is
necessary for each output parameter of the entire chain.

FD forward AD reverse AD
absolute run time [min] 83:57 98:06 11:94
relative run time 1110:42 � cost(P ) 1303:04 � cost(P ) 158:61 � cost(P )

Table 2: run time comparison of FD vs forward AD vs reverse AD for the 1st order sensitivities (12), with
cost(P ) � 4:52 seconds

Figures 5(a) and 5(b) present a comparison between gradients computed using FD, forward
AD, and reverse AD for selected rows r and columns k of @pr

@�dk
. The plots show a good agree-

ment between the FD and AD computed values with discrepancies between FD and AD at
values of around O(10�10) in figure 5(a). A maximum discrepancy of O(10�6) and a mean
discrepancy of O(10�13) between FD and AD was computed for the entire matrix (12). A
visualization of the 1st-order sensitivities of a single control point with respect to the FEM
displacements �d is shown in figure 6.
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Figure 5: Comparison of FD vs forward AD vs reverse AD on a semi-logarithmic plot row of @pr
@�d
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Figure 6: 1st-order sensitivities with respect to �d of center control point, denoted by �

6 CONCLUSIONS

With the implementation and adjoint differentiation of the cold-to-hot transformation, an im-
portant component of the cold-to-hot chain was addressed. The AD computed sensitivities agree
well with the FD computed sensitivities, paving the way towards an adjoint multidisiplinary op-
timization for turbomachinery components. Further work could involve a local error reduction
in the cold-to-hot transformation, as well as the inclusion of pressure forces in the cold-to-hot
transformation to couple the fluid and solid computations. An adjoint differentiation of a CSM
solver is the next key component of the cold-to-hot chain that is to be implemented.
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8 NOMENCLATURE

J 2 Rc cost function
J(1) 2 R

c adjoint cost function
x; � 2 Rd design parameters
x(1) 2 R

d adjoint design parameters
S; Sc; bS 2 R B-spline surface (initial, cold state, deformed)
Np; N q 2 R B-spline basis functions
p; q 2 N B-spline basis function orders
u; v 2 R B-spline foot points
p0i;j; pi;j 2 R

3 control points (initial, displaced)
p(1);i;j 2 R3 tangent control points
p(1);i;j 2 R

3 adjoint control points
�pi;j 2 R

3 control point displacements
n �m 2 N number of control points
d0
k; dk 2 R

3 FEM nodes (initial, displaced)
�dk 2 R

3 FEM node displacements
�d(1);k 2 R3 tangent FEM node displacements
�d(1);k 2 R

3 adjoint FEM node displacements
s 2 N number of FEM nodes
Kedge set of FEM nodes along surface edge
Kinner set of inner FEM nodes
�max 2 R maximum von Mises stres

s solid mesh
Fc 2 R

3 centrifugal forces
~i 2 Rn�m i-th unit vector
~j 2 Rs j-th unit vector
�k; �max; �mean 2 R distance error (k-th, maximum, mean)
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Abstract. A methodology for estimating the truncation error between a fine computational
grid and topologically inconsistent coarse grid from a multi-grid sequence is presented. This
sensor is then weighted with the adjoint solution to obtain a goal-based refinement sensor which
provides local scales for a re-meshing procedure. The truncation-based sensor, as well as an
output-based indicator, were implemented in the proprietary Rolls-Royce code Hydra. The
output-based re-meshing refinement is first applied to the simple cube case with an inviscid
flow. The truncation-based sensor and the output-based sensor are then evaluated for a turbine
stator case as a first step towards the turbomachinery application of the re-meshing refinement
methodology. The results are presented and discussed.
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1 INTRODUCTION

The adjoint method [1] is well-established as the most efficient method for an aerodynamic
shape optimisation with CFD. Adjoint sensitivities can be also used to obtain a robust adapta-
tion sensor for an objective function which drives a solution-adaptive mesh refinement process
that computes a more accurate objective function at the lower computational cost compared
to error-estimators without adjoint weighting or compared to heuristic sensors. The adjoint-
weighted truncation error known also as an output-based indicator gained popularity as an ef-
fective driver for an adaptation process - see e.g. [2, 3, 4]. Through the adjoint weighting, the
mesh adaptation is very effectively targeted to those areas of the computational domain where
the objective function is highly sensitive to mesh resolution and the local error estimate is large.
That is the key advantage of an output-based indicator as compared to other approaches such
as e.g. gradient/Hessian-based sensors or pure truncation-error-based sensors. While the latter
at least attempts to estimate the actual errors, both of these methods apply the refinement to all
errors, regardless of whether they are relevant to the computation of the objective function or
not.

Assuming that the adjoint solver is available, the remaining challenge in obtaining output-
based sensor lies in the estimation of the truncation error. A popular approach in the literature
has been presented by Venditti and Darmofal [5]. The computational grid is locally refined
preserving its original topology and the current solution interpolated to the refined grid is used
to estimate the truncation error on the computational grid. Further refinement and application
of this approach can be found in [2]. Even though no full solution is computed on the refined
mesh, some work as higher-order interpolation or a few iterations have to be done on the refined
grid and the computational cost is not negligible.

As an alternative, we could consider using the difference between finest computational grid
and a coarsened grid to estimate the local error. In this variant the computational effort is
significantly reduced and in case of fully coarsened geometric multi-grid methods can even be
at no additional effort since the coarse grid is computed anyways. On the other hand, the error
estimate is then only valid for the coarse grid, and care has to be taken to make the extrapolation
to the fine grid valid.

Using geometric multi-grid levels for truncation error estimation has been proposed by
Fraysse and Ponsin [4]. In this approach, the truncation error is estimated on the finest grid
level using a topologically consistent coarser mesh. In our approach, we explore topologically
inconsistent fine and coarse grids as arising from unstructured grid coarsening [6].

The proposed output-based sensor estimation methodology described in section 2 was imple-
mented in the Rolls-Royce proprietary CFD code Hydra. A small number of explicit smoothing
iterations (see appendix A) is applied to the obtained refinement indicator in order to regularise
unwanted high-frequency modes arising mainly from the topological inconsistency between
meshes used for truncation error estimation. The obtained sensor fields can either be used for
hierarchical refinement, leading to topologically consistent grids, or be used in as local sizing
fields in a re-meshing procedure as is the case in this work. Obtained fields are used to drive
re-meshing process using BoxerMesh1 [7]. The application of the output-based re-meshing re-
finement to the simple cube case with inviscid flow is presented in section 4.1. The preliminary
results i.e. truncation sensor and output sensor plots are presented for a turbine stator case and
discussed in section 4.2.

1http://www.cambridgeflowsolutions.com/en/products/boxer-mesh/
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2 Description of Methods

2.1 Basic Quantities and Output Error

The discretisation error δUh is defined as the difference between the exact solution U of
the continuous PDE system R(U) = 0 and its discrete approximation Uh, where the latter is
resulting from the discrete PDE system solve Rh(Uh) = 0. The notation ·|h indicates that the
exact quantity is either evaluated at the discrete space with characteristic size h, or interpolated
onto this space, not to be confused with the discrete quantity Uh denoted only with subscript h.
More formally it can be written using a symbolic interpolation operator U |h = IhU . However,
to keep the derivations more transparent the following notation is used in this section.

δUh = U |h − Uh (1)

The truncation error δRh can obtained using Taylor series expansion (2) which also shows the
relation between the discretisation error and the truncation error.

R(U)|h −Rh(U |h) =

(
∂R

∂U

)
h

δUh + . . . (2)

An output error δJh due to the inexact solution can be similarly expanded using Taylor series:

Jh(U |h)− Jh(Uh) =

(
∂J

∂U

)
h

δUh + . . . (3)

Replacing δUh in (3) with the discretisation error derived from (2) and skipping higher order
terms, one can arrive at the formula (4):

δJh ≈
(
∂J

∂U

)
h

(
∂R

∂U

)−1

h

δRh = vTh δRh (4)

The adjoint variable v for the objective function J , e.g. lift, drag, translates the truncation
error δR into the error in cost function δJ . In this manner, the information on how the truncation
errors in each control volume contribute to the error in the cost function is obtained. Summation
of all contributions together gives a scalar variable i.e. the output correction, which can be used
to increase cost function estimation accuracy. The discrete adjoint approach is used in order
to obtain adjoint variable νh. Tapenade2 algorithmic differentiation tool is used for flow solver
differentiation. The adjoint system is presented in equation (5). Using discrete adjoint allow
obtaining exact gradients that correspond to the cost function evaluated on the discrete space
Jh. (

∂R

∂U

)
h

vTh =

(
∂J

∂U

)
h

(5)

Assuming that an adjoint solution is available, the remaining task is to get a good estimate of
the truncation error.

2.2 Truncation Error Estimation

The truncation error TEH is the difference between a mathematical model (PDE, denoted
R(U) = 0) and its discrete approximation RH(U |H), or in other words, it is the error due

2AD tool developed at Inria http://www-sop.inria.fr/tropics/

4013



Mateusz Gugala, Marcus Meyer and Jens-Dominik Müller

to the truncation of the continuous model. First, the exact system R(U) is expanded using
Taylor series around a point in space H where the higher order components are denoted TEH

- equation (6). The truncation error can be evaluated using discrete operator RH and an exact
solution U , where the former is evaluated at |H , the discrete space H - equation (8). The
operator RH(U |H) is a finite-volume residual which is an integral quantity over each control
volume. The truncation error is defined for PDE so the mentioned residual has to be divided by
the volume. In this work the TEΩ

H indicates the undivided finite-volume residual scaled with
the volume, and TEH = TEΩ

H/Ω denotes the truncation error in PDE - as per its definition.

R(U) = RH(U |H) + TEΩ
H (6)

TEΩ
H = R(U)−RH(U |H), R(U) = 0 (7)

TEΩ
H = −RH(U |H), TEH = TEΩ

H/ΩH (8)

The truncation error calculated using formula (8) will be called exact truncation error and it
is applicable only when the exact solution U is known. In practical applications the truncation
error has to be estimated. For this purpose the exact solution U is replaced with its approximate
i.e. discrete solution Uh resulting from the discrete system solve Rh(Uh) = 0.

TEH = −RH(IHh Uh) (9)

In order to get the truncation error estimate on the finest mesh the prolongation operator is used:

TEh = IhHTEH (10)

The list of simplifications that lead to errors in the estimated TE using presented methodol-
ogy are following:

• The fine grid solution is used as an approximation of the exact one.

• In practice, a finite precision interpolation operators are used.

• It is assumed that the truncation error estimated on space H can be used as an approxi-
mation of truncation errors on space h which should be valid as long as both meshes lie
within the asymptotic convergence range.

As mentioned in the last point, both meshes, i.e. coarse ( H ) and fine ( h ), should lie within the
asymptotic convergence range of solution U in order to get a good error estimate. However in
practice, it was shown that even for cases which do not meet this criterion the refinement driven
by an adaptation sensor based on the method described can be effective, see e.g. Fidkowski and
Darmofal [2].

Within the context of geometric multi-grid solvers, inter-grid transfer operators between fine
and coarse grids are available in the solver, and the error estimation can be implemented with
a very low effort. The complete procedure used for truncation error estimation is presented in
algorithm 1.
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Algorithm 1 Truncation Error Estimation Using Geometric Multi-grid

1: Solve discrete system for mesh ( h ) Uh

2: Restrict solution from fine ( h ) to coarse ( H ) grid Uh
H ← IHh Uh

3: Estimate truncation error on the coarse grid TEH ← RH(Uh
H)/ΩH

4: Prolong TEH to fine grid, add remaining ( h ) residual TEh ← Rh(Uh)/Ωh−IhHTEH

2.3 Adaptation Sensors

Two adaptation sensors are used for the re-meshing algorithm: a) a truncation-error-based
sensor TS and b) an output-error-based indicator OS. The variable Neq denotes the number of
equations to solve (e.g. 6 for the RANS with Spalart-Allmaras turbulence model). The trunca-
tion error sensor TS is a sum of the absolute values of the truncation error from each equation
as shown in (11). The sensor is multiplied with the characteristic size of each cell i.e. hi = Ω1/3

which plays a role of scaling factor in order to prevent infinite refinement in the regions where
the errors decrease at a very low rate or diverge (e.g. at shocks) see e.g. Fraysse [8].

TSh,i = hi

Neq∑
j=1

|TEh,i,j| (11)

The output sensor (OS) is the sum of the undivided local truncation errors weighted by the
adjoint solution as shown in (12). It hence is the absolute value of the sum of the contributions
of each control volume to the error in the objective function.

OSh,i =

∣∣∣∣∣
Neq∑
j=1

OEh,i,j

∣∣∣∣∣ =

∣∣∣∣∣
Neq∑
j=1

vh,i,j TE
Ω
h,i,j

∣∣∣∣∣ (12)

Five explicit smoothing iterations are applied to obtained sensors in order to regularise un-
wanted high-frequency modes - section A.

3 Re-meshing Strategy

The re-meshing approach using BoxerMesh3 [7] and the output-based sensor defined in equa-
tion (12) is used to drive the adaptation process. The mesher uses octree cut-cell algorithm to
create an initial mesh respecting defined areas of refinement. Created octree mesh is then fitted
to the geometry defined by the user and in the final step the boundary layer is extruded. An
example cross-section of the stator blade mesh is presented in figure 1.

3http://www.cambridgeflowsolutions.com/en/products/boxer-mesh/
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Figure 1: Cross-section of the stator mesh generated in Boxer.

The procedure for single re-meshing step is as follows:

1. Obtain flow solution (Uh).

2. Estimate truncation error (TEh) as presented in algorithm 1.

3. Obtain adjoint solution (νh).

4. Evaluate output-based sensor (OSh) - eqn. (12).

5. Perform 5 explicit smoothing iterations (see appendix A) on obtained sensor (OSh) to
damp unwanted high-frequency modes.

6. Use Paraview to extract mesh region for refinement.

• Use the ’Threshold’ option to mark region for refinement, figure 2.

• Extract surface and output an STL file.

7. Import surface to Boxer and specify new refinement region for octree mesher.

8. Generate new mesh and re-run the case.

Figure 2: Cells forming region for refinement obtained using ’Threshold’ feature in Paraview.
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Currently steps (5-8) requires manual operations from the user.

4 Application

4.1 Cube with 3D Manufactured Solution

As the first output-based re-meshing example the cube case with 3D manufactured solution
by Roy [9] is used. Although the case is physically meaningless it is challenging for the solver
as it uses highly nonlinear manufactured solution. It is a compressible, supersonic Euler flow
where the example pressure field and corresponding manufactured source term are presented on
figure 3. The objective function is a drag force integrated over on one of the cube sides marked
in figure 3a.

(a) Patch for objective evaluation (b) pressure (p) (c) energy src (fe)

Figure 3: The 3D supersonic manufactured solution.

The initial grid was generated using Boxer and is of mixed cell type. The coarse grid for
truncation error estimation was generated using internal Rolls-Royce edge-collapsing tool. The
re-meshing was performed according to the procedure described in section 3. Total two re-
meshing steps were applied and the resulting refined meshes are presented on figure 4. The
complex and non-intuitive refinement structures can be easily noticed.

(a) Initial mesh (b) Re-mesh step 1 (c) Re-mesh step 2

Figure 4: Re-meshing process driven by the output-error-based sensor.
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Figure 5 shows the comparison of the achieved error in objective function for the uniformly
refined set of grids - 3x3x3 to 129x129x129, regular hex where each refinement stage was
achieved by halving the coarser grid edges, and the output-based re-meshed grids. The im-
proved convergence slope for the later approach is obtained - between h3-h4. The summary
table 1 shows that the same objective function accuracy can be obtained for almost an order of
magnitude lower mesh size when the output-based sensor is used, even though a rather crude
re-meshing methodology and the topologically inconsistent meshes for truncation error estima-
tion were used. The topological inconsistency between grids is what distinguishes truncation
error estimation methodology used in this work as compared to nested grids used by Ponsin and
Fraysse [4] as well as Venditti or Fidkowski [2, 3].

Figure 5: Re-meshed vs uniformly refined regular mesh - error convergence comparison.

Re-meshing stage δL/L̃ [%] NOS
DoF NU

DoF NOS
DoF / NU

DoF

0 2.11 754 660 0.87

1 0.37 3082 12100 3.9

2 0.03 43349 335000 7.7

Table 1: Quantitative comparison of achieved objective accuracy between re-meshed grids using
output-based sensor and uniformly refined regular hex meshes. DoF - degrees of freedom, NOS

- DoF for output-based refinement, NU - DoF for corresponding uniformly refined grid.

4.2 Preliminary Application Results for the TurboLab Stator4 Case from TU Berlin

The turbine stator from TurboLab at TU Berlin is used The boundary conditions are 42
degrees of swirl angle at the inlet, and outlet static pressure adjusted to keep the mass flow

4http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/
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rate at 9.0 kg/s. The objective function is total pressure loss weighted by mass flow. The flow
solution is presented in Figure 6 which shows static pressure on the hub and blade whereas
velocity profiles are presented in axial and radial sections.

Figure 6: Flow around the stator blade.

Figure 7 shows the iso-volume that encloses regions within the domain with the truncation
sensor value (11) above a user specified threshold.

Figure 7: Iso-volume of truncation sensor.

Similarly, figure 8 presents iso-volumes for the output sensor (12). The iso-fields were
clipped to hide the casing and make the picture more transparent. The fields differ signifi-
cantly. The truncation sensor targets mainly leading and trailing edges and regions close to the
blade. The output-sensor however marks mainly coarse regions of mesh at the proximity of the
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inlet and regions in the wake. Both sensors capture the region of a spinning horseshoe vortex
between the hub and the blade suction side - visible in figure 6.

Figure 8: Iso-volume of output sensor.

At the moment, only the sensor fields were generated. Application of the re-meshing to the
stator case is an ongoing work.

5 Summary

The geometric multi-grid method with topologically inconsistent fine and coarse grids was
used for truncation error estimation. The methodology was successfully applied to the sim-
ple cube case with a highly nonlinear manufactured solution. Roughly an order of magnitude
grid size reduction was obtained for the re-meshed grid as compared to uniformly refined case
keeping the same cost function accuracy. The preliminary results for the turbine stator case
were presented and the obtained truncation sensor and output sensor patterns compared and
discussed. The re-meshing refinement application of the obtained sensor fields to the presented
turbine stator case is and ongoing work.
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Appendix

A Weighted Explicit Laplacian Smoothing

The Laplacian equation has the form presented in equations 13. It can be easily discretised
using e.g. and explicit time stepping and an edge-based data structure as presented in equation
(14). The constant β = 1.0 was used which is related to the maximum allowed time step, con-
strained by the stability condition of an explicit scheme. The edge-length-weighting is applied
in order to prevent distortions due to the grid size, see e.g. Desbrun [10].

∂φ

∂t
= ∆φ (13)
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φn+1
i = φn

i + β

(
m∑
j=1

φn
j − φn

i

lij

)/
m∑
j=1

lij (14)

Figure 9 shows the eigenvalues of explicit smoothing system matrix for a simple 1D case. Each
eigenvalue corresponds to the eigenvector i.e. shape mode. The magnitude of the eigenvalue
tells how much given shape mode will be damped when the smoothing is performed. The graph
confirms that the explicit smoothing is very effective in filtering the high-frequency modes while
having a minor influence on the the low-frequency modes.

Figure 9: Eigenvalues of explicit smoothing system matrix for simple 1D case.
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Abstract. In order to optimise the shape of a three-dimensional CAD-based model using the
computationally efficient adjoint methods, the calculation of shape sensitivities, the derivatives
of the surface position with respect to the design parameters, is required. This sensitivity is
usually not available with CAD systems, but can be obtained by applying the Finite Difference
method to CAD-system. Finite-Differences or part-analytic differentiation have been proposed
to obtain sensitivities, but have their drawbacks. If source code is available, automatic dif-
ferentiation can provide accurate derivatives without incurring topology changes or requiring
hand-differentiation.

This paper proposes the differentiation of the open-source CAD kernel - OpenCascade Tech-
nology (OCCT) with AD software tool ADOL-C (Automatic Differentiation by Overloading in
C++). As a case study we consider the optimisation of pressure loss in a U-bend pipe. The
geometry of the U-bend is parametrised in OCCT with a number of cross-sections lofted along
a guiding path line. The corresponding geometric derivatives are used in CFD optimisation
loops with the resulting shape outperforming the initial design.
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1 INTRODUCTION

In industrial shape optimisation the computationally efficient gradient-based methods are
used extensively. In particular, the adjoint method [1, 2] is the most effective approach as
it allows to compute the sensitivities to an arbitrary number of control variables in a single
computation. To complete the chain rule of derivatives, we also need the derivative of the
shape parametrisation. A wide range of parametrisations have been developed, here it is useful
to distinguish between CAD-free and CAD-based methods. CAD-free methods [3] also often
referred as mesh- or lattice-based, optimise the positions of computational grid points using
either a globally interpolated distortion field from radial basis functions (RBF), an auxiliary grid
defining perturbations such as Free-Form deformation (FFD) or lattices of Hicks-Henne bumps.
Mesh-based approaches use the surface mesh of the CFD grid [4] to impose a displacement.
This design space is actually too rich for the CFD computation, high-frequency oscillations are
not damped adequately, and hence require regularisation. A major drawback of all the CAD-free
methods is that the optimised shape exists only as a mesh. Importing this shape back to CAD
for further analysis or manufacturing is an unsolved challenge and typically incurs significant
approximation. As a consequence the quality of the optimum is impaired.

As an alternative, CAD-based methods work with the CAD in the design loop and use CAD
parameters or variables as the design variables. The main advantage is that CAD geometry is
taken as an input and CAD geometry is produced as an output, however obtaining derivatives is
more challenging. Xu et al. [5, 6] propose the NSPCC approach which uses the NURBS control
points in the CAD-native boundary representation (BRep) as degrees of freedom. Additional
constraints need to be imposed to retain the desired continuity between NURBS patches or to
respect thickness, radius or build-space constraints. These constraints are evaluated numeri-
cally and the design space is the kernel of the constraint matrix which is computed using SVD.
Selecting the SVD cutoff for non-singular modes provides an effective preconditioner of the
design space. The NURBS geometry engine is implemented in source and derivatives are ob-
tained by application of automatic differentiation. The main advantage of the NSPCC approach
is that it is vendor neutral and only considers the BRep of the standardised STEP file. As a
consequence, it is agnostic to any design parametrisation set up in the CAD system.

Robinson et al. [7] use the design parametrisation and internal variables set up in a closed-
source CAD system as design variables and obtain derivatives with finite differences. To avoid
issues with patch re-numbering and disappearance due to the finite-size displacements, the ge-
ometry is projected onto an STL approximation of the surface and the finite-differences of the
displacements of grid nodes are evaluated on this STL, which is a computationally expensive
process and further affects accuracy of the gradients. However, the method does allow to define
a design space with constraints through the CAD parametrisation.

Dannenhoffer and Haimes [8] use the open-source CAD-kernel OpenCascade Technology
(OCCT) as a geometric engine. They apply analytic differentiation to known simple shapes
such as circles and cylinders defined by origins, radii and axes. Remaining derivatives are
evaluated using finite differences.

In this paper we present the differentiation of the entire geometric kernel of OCCT with
Automatic Differentiation (AD) by the ADOL-C AD tool [9]. Compared to other CAD-based
approaches this results in a number of significant advantages. Similar to [7, 8] the design space
is defined by the parametrisation of the CAD system which allows to build in geometric con-
straints, while in the NSPCC approach [6] these constraints have to be reimposed. As opposed
to the finite-difference approaches [7, 8] the geometric sensitivities are exact and not affected by
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truncation error. Most importantly, there is no finite-size displacement of the geometry during
the differentiation, hence this approach is not affected by patch re-numbering or disappearance
and a projection onto an intermediate surface is not necessary. This should significantly reduce
the computational cost of the method. Finally, automatic differentiation can also be performed
in reverse mode [10], which has the potential to dramatically reduce the computational cost
of derivative computation as used for the flow solver (cf. Sec. 2.1). While we do not use
the reverse-mode differentiation in this paper, the successful demonstration of forward-mode
differentiation presented here is a step toward this.

The paper is structured as follows. Sec. 2 presents the governing equations for flow and
its adjoint, as well as the assembly of the relevant derivatives. Sec. 3 describes the differenti-
ation of the OCCT CAD system. Sec. 4 shows the U-bend testcase and the definition of the
parametrisation, followed by computational results in Sec. 5.

2 CAD-DRIVEN SENSITIVITY

2.1 Primal and adjoint flow equations

To optimise a scalar cost function J which describes the aerodynamic performance of the
system of interest, the optimisation problem can be stated as

min
α

J(U(X(α)), X(α), α) , (1)

R(U(X(α)), X(α)) = 0 . (2)

Equation (2) denotes the system of steady-state Reynolds-Averaged Navier-Stokes equations,
where the residual R is driven to zero. R is a function of the state variable U and the mesh
coordinates X , both depending on the design parameters α. The objective function J could
correspond to drag, lift, total pressure losses, etc. Application of the chain rule to the system
yields

dJ

dα
=
[ dJ
dX

+ vTf
]∂X
∂α

. (3)

Here v represents the solution of adjoint equations:(∂R
∂U

)T
v =

∂J

∂U
, (4)

where
f = − ∂R

∂X
. (5)

The algorithm of calculating the surface mesh sensitivities consists of evaluating the volume
sensitivities dJ

dX
and then projecting them onto design surfaces. This is performed after primal

and adjoint CFD runs, followed by projections which use the mesh-perturbation algorithms. For
instance, the spring-based or elasticity-based mesh deformation algorithms detailed in [6] could
be used. In other words, the mesh perturbation algorithm creates a correspondence between the
movements of volume and surface mesh points. Hence, denoting the surface grid points with
XS , the mapping XS → X(XS) allows to rewrite the sensitivity in equation (3) in terms of
displacements of the surface grid points

dJ

dα
=

dJ

dXS

dXS

dα
, (6)
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dJ

dXS

=
[ dJ
dX

+ vTf
] ∂X
∂XS

. (7)

The gradient obtained in (6) is used in an iterative optimisation process to find optimal design
parameters α by updating

α(n+1) = A(α(n),
dJ

dα
(α(n))) , (8)

were A represents an optimisation algorithm of choice.

2.2 Assembling CAD-based sensitivity

In the previous section we considered a more general nature of the design parameters, from
now on we will refer to α as the parameters of a given CAD-model. In this context the two
terms in equation (6) correspond to the flow and geometrical (CAD) sensitivities, respectively.
These terms, which are composed of derivatives in each of the n surface mesh points, could be
calculated independently from each other and afterwards assembled in a global sensitivity by

dJ

dXS

=
[ dJ

dXS,i

]
i=1,...,n

. (9)

Similarly, the CAD sensitivity w.r.t. one of the m design parameters α = (α1, ..., αm) could be
written as:

dXS

dαj
=
[dXS,i

dαj

]i=1,...,n

j=1,...,m
. (10)

For a 3D CAD-model the mesh pointsXS have three components, hence the two matrices listed
above have dimensions 3×n. Therefore, in order to calculate the gradient components, one
primal and adjoint run of a CFD solver is required, andm computations of the matrix in equation
(10). Finally, the m components of the gradient are obtained from the scalar multiplication of
two previously written matrices as in equation (6):

dJ

dαj
=

n∑
i=1

dJ

dXSi

dXSi

dαj
. (11)

The process of finding the CAD derivatives (second term) in the last equation will be described
in detail in the following sections.

The optimisation algorithm consists of the following steps: for the initial design parameters,
the CAD-model and the corresponding mesh are built. Afterwards, at each iteration one solves
primal and adjoint flow equations and assembles the gradient as described above. Then, the
CAD-model is updated with new parameters and the mesh deformation step is performed for
the computational grid to match the updated CAD geometry.

3 AUTOMATIC DIFFERENTIATION OF OPENCASCADE TECHNOLOGY

3.1 Introduction to ADOL-C

ADOL-C is a software tool that facilitates the computation of first and higher derivatives of
vector functions that are defined by computer programs written in C/C++. It uses the operator
overloading concept, which means that it is not generating intermediate source code as it is the
case for the source transformation approaches [9]. ADOL-C supports the following modes of
differentiation:

4026



S. Auriemma, M. Banovic, O. Mykhaskiv

• Forward (options: trace-based or traceless),

• Reverse (trace-based),

where trace is an internal representation of the function to be differentiated, produced by op-
erator overloading. The difference between trace-based and traceless mode is that in trace-
less mode the derivative computation is done at the same time as the function evaluation. For
computing the derivatives using trace-based variants, one has to call driver functions provided
by ADOL-C after the trace generation. For the purpose of this article, the traceless forward
differentiation, which computes first order derivatives in scalar mode and in vector mode, is
considered.

3.2 Introduction to OCCT differentiation

A key ingredient for automatic differentiation by overloading is the concept of an active
variable - which is named adouble in ADOL-C. All variables that may be considered as
differentiable quantities at some time during the program execution must be of an active
type. Therefore, the integration of the ADOL-C library into a certain code is done by injection
of its specific adouble type instead of the native real type. This kind of integration is not
simple when facing complicated object-oriented code like OCCT.

Several possible ways of source code modification were considered for ADOL-C integra-
tion, but one was taken as a way to proceed with the full sources - the typedef approach.
The typedef approach is the most intrusive way of integrating ADOL-C into OCCT be-
cause of replacing all double by adouble, by using an existing typedef which is named
Standard Real in OCCT. It is the fastest way of integration because code modification
should be as minimal as possible, while the drawback is about sacrificing memory and effi-
ciency to some extend since all double variables, even ones not needed for differentiation,
will be adouble objects.

Although the idea looks simple, it is not as straightforward as one would expect. The differ-
entiation involved a significant amount of code modification and even after successful compila-
tion, a large number of run-time errors had to be resolved during the testing phase. These issues
will not be explained here, but will be set out in detail in a future paper that will be mainly
focused on the automatic differentiation of OCCT.

After fixing the parts of the code that were giving the errors, a major part of the full differ-
entiated kernel is working. There are still some run-time errors that have to be resolved, but
they are not related to the parts of OCCT executed in the application considered here. Before
using the differentiated kernel, AD has been verified against Finite Differences (by a central
difference scheme) in the required OCCT methods for the U-bend construction.

4 PARAMETRISATION OF THE U-BEND

4.1 Geometry

The U-bend under investigation is a typical internal cooling channel for the turbine blades in
turbomachinery applications [11]. The geometry is shown in Figure 1. It consists of a circular
U-bend with a hydraulic diameter D = 0.075m.

4.2 Parametrisation

The parametrisation is based on a cross-sectional design approach which takes N -curves/N -
slices as inputs in order to construct a final surface. Each slice consists of a closed wire com-
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Figure 1: U-bend Dimensions

posed by 4 Bezier curves; every Bezier curve is characterized by 4 control points and shares
the first and the last control point with the previous and the following Bezier curve, therefore
having in total 12 control points, as shown in Figure 2. This choice allows the section to assume
a wide variety of shapes that the optimiser could impose during the optimisation loop.

The plane where the slice lies is constructed in the following way:

• define a B-spline planar curve called pathline that drives the U-part of the U-bend in the
3D space.

• Take a point P on the pathline and the vector V tangent to the pathline in P .

• Construct the plane that holds the 12 control points of the section passing through the
point P defined as the origin of the plane’s (x, y, z) axis, orthogonal to V (whose direction
is defined as the z axis) and with y axis orthogonal to the plane where the pathline lies.

Figure 2: U-bend slice

4028



S. Auriemma, M. Banovic, O. Mykhaskiv

Figure 3: Construction of the first plane

An example of the constructed plane in shown in Figure 3. The slice of the U-part is free
to move onto the plane constructed as explained above. Each control point of the section is
characterised by a law of evolution along the pathline; in particular, the control point laws are
described by B-spline curves in a (ε,η,τ ) modelling space. These B-spline laws consist of 8
control points whose (ε,η) coordinates are the final design parameters of the simulation; the τ
coordinates are not considered as design parameters - their values constrain the first and last
control point to correspond to the first and the last slice, respectively. The laws are intersected
N -times by a plane that is always parallel to plane (ε,η) and that passes through a point of coor-
dinates (0,0,Plength), where Plength is the length of the curve pathline at the point of intersection
between the slice and the pathline; this approach in particular is called ”Clipping” technique.
For each intersection point between the plane and the law, the coordinates of the point of inter-
section (εn,ηn) are assigned as coordinates (xn,yn) of the control point of the section to which
the law is referred. Two examples of the clipping technique are shown in Figure 4.
Furthermore to assure the tangency constraint between the U-part and the vertical pipes of the
U-bend during the optimisation, for every law the coordinates of the first two and the last two
control points are not considered as design parameters of the simulation. In general it would
be possible to allow the second and the penultimate law control points to move in τ direction
(which means to assign the τ coordinates of these control points as design parameters) but at
this stage we preferred to simplify the simulation making the assumption that the optimisation
does not consider τ coordinates as design parameters. In a future article an optimisation will be
presented that considers all the coordinates of the law control points.

Once that all the control points of a slice assume their position on the plane as described
above, it is possible to get the N -slice of the U-bend. The N -slices are then used to obtain the
final U-bend B-spline surface. To achieve this result, an Open Cascade cross-sectional design
technique [12] that approximates the 4 NURBS surfaces (one for every Bezier curve of the
section) has been used. Finally the 4 surfaces are merged using an Open Cascade Topology
tool.

To complete the U-bend for the test case, the first and the last wire of the U-part are extruded
with an Open Cascade tool to get the vertical pipes that corresponds to the inlet and the outlet
pipes, as shown in Figure 5.
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(a) Clipping before optimisation (b) Clipping after optimisation

Figure 4: Clipping before and after optimisation

Figure 5: Final U-bend

5 OPTIMISATION RESULTS FOR THE U-BEND

The U-bend model described in the previous section will be optimised to reduce total pres-
sure losses between the inlet and outlet:

J =

∫
inlet

P (u · n)dS +
∫
outlet

P (u · n)dS∫
inlet

(u · n)dS
. (12)

Only the U-part is subject to design changes. This testcase was initially proposed in [11]. Since
we wanted to point out in particular the strength of CAD-based optimisation approach using
the differentiated OCCT, a simplified version of the U-bend was chosen to reduce dramatically
the computational cost of the CFD. In comparison with [11] much shorter lengths of outlet and
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inlet legs were considered. Furthermore, the horizontal outlet and inlet part were not subject
to design changes. While longer legs assured fully developed flow at the design part (U-part),
shorter legs reduced the size of computational mesh. To further accelerate CFD computations,
turbulent flow was replaced with a laminar one. We want to emphasize that the latter does not
affect in any way the proposed methodology and more correct physical flow conditions could
be applied without any further restrictions.

The CAD-model parametrised in differentiated OCCT depends on 96 design parameters (12
laws of evolution × 4 control points × 2 directions), as described in section 4.2. In Figure

(a) Sensitivity Parameter 0 (b) Sensitivity Parameter 6

Figure 6: CAD sensitivities

6 the magnitudes of the CAD sensitivities of two parameters are shown. Since the design
parameters correspond to control points positions of the law’s B-spline curves, these sensitivities
also inherited their local influence feature.

The structured mesh was created to match the given geometry. This could be achieved either
by creating a mesh from corresponding CAD-file (STEP, IGES, etc.) or by creating a mesh
directly matching the prescribed sizes (feasible in case of non-complex geometries).

For the flow simulation the in-house CFD solver mgopt with incompressible setting was used.
The solver is based on the vertex-centred Finite Volumes scheme and facilitates a geometric
multi-grid method. It includes the differentiated code provided by AD tool Tapenade [13] to
implement the discrete adjoint method. To increase stability and robustness of CFD runs the
solver makes use of novel implicit time stepping JT-KIRK scheme [14].

The flow is considered to be incompressible with low free stream Mach number Ma =
0.04566. Following boundary conditions were imposed: subsonic inlet at the end of the longer
leg, and subsonic outlet at the shorter one. On all other boundaries no-slip wall conditions were
specified. The air properties at ambient conditions are: density ρ = 1.204kg/m3, viscosity
µ = 1.813× 10−5kg/(sm), pressure P = 101300Pa and temperature T = 293.15K.

As the optimisation algorithm the Conjugate Gradient method with Armijo-type line search
was used. For this particular problem this method has the additional advantage of a direct
control over design parameters update, which influences robustness of the mesh perturbation
step. The gradient (11) which drives the optimisation was tested with the Finite Differences for
few design parameters, showing mutual agreement.
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In Figure 7 the decrease of cost function is shown during the course of optimisation. This
demonstrates that optimiser components work as expected while the optimised design outper-
forms the initial one by approximately 4%. The corresponding geometry update is shown in
Figure 8.

Figure 7: Optimisation loop history

The relatively small improvement can be explained with the case settings. Laminar condi-
tions simplified the flow behaviour in comparison with the turbulent. Fixed inlet and outlet legs
also reduced the possible design change. In this setting pressure losses are related mostly to
frictional forces and the flow separation occurring after the U-part. In Figure 9 the change in
velocities before and after the optimisation are shown. The optimiser managed to suppress the
separation bubble and reduce the cost function mainly by increasing the outer U-part hydraulic
diameter and a small decrease of the inner circular surface diameter.

6 CONCLUSIONS AND FURTHER WORK

This paper shows that the automatic differentiation of a fully developed CAD system is fea-
sible, as well as its integration into the design loop. The CAD-model was built in OCCT and its
derivative information was used in the global gradient assembly driving the optimisation pro-
cess. Despite relatively small improvements, the advantages of CAD-based optimisation were
exploited. First, the output of the optimisation process was the updated CAD-model. Second,
the direct use of the parametrisation ensured a seamless process of parameters update without
appearance of cross-patches discontinuities. This is an advantage in comparison with other
CAD-based approach, when the control points of the surfaces are taken directly as design pa-
rameters. Nevertheless, the obtained CAD-software sensitivities were used in the simplification
of the testcase mentioned above resulted in relatively small design changes and cost function
decrease. The further investigation on this testcase is planned to solve CFD on a finer mesh and
for correct flow physics including additional design domains. Together with more advanced
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optimisation methods the problem could result in more apparent design update.

(a) Initial design

(b) Initial outer circular U-part surface

(c) Optimised design

(d) Optimised outer circular U-part surface

Figure 8: Modified Geometry

(a) Initial design (b) Optimised design

Figure 9: Velocity Magnitude

4033



S. Auriemma, M. Banovic, O. Mykhaskiv

ACKNOWLEDGMENTS

The authors are very thankful to Mr. Sergey Slyadnev (OpenCASCADE) for his support re-
lated to the OpenCASCADE Technology, its differentiation and parametrisation.
This research is a part of the IODA project - Industrial Optimal Design using Adjoint CFD.
IODA is Marie Sklodowska-Curie Innovative Training Network funded by European Commis-
sion under Grant Agreement No. 642959.

REFERENCES

[1] A. Jameson, Aerodynamic Design via Control Theory. JSC, 3: 233–260, 1988.

[2] M. B. Giles and M. C. Duta and J.-D. Müller and N. A. Pierce, Algorithm Developments
for Discrete Adjoint Methods. AIAA Journal, 41(2) : 198 –205, 2003.

[3] J.A. Samareh, Aerodynamic shape optimization based on free-form deformation. AIAA,
4630: 1–13, 2004.

[4] A. Jameson and J. Vassberg, Studies of alternative numerical optimization methods ap-
plied to the brachistochrone problem. Computational Fluid Dynamics Journal, 9(3), 281
– 296, 2000.

[5] S. Xu, J. Wolfram, J.-D. Müller, CAD-based shape optimisation with CFD using a discrete
adjoint. Int. J. Numer. Meth. Fluids, 74: 153–168, 2013.

[6] S. Xu, D. Radford, M. Meyer, and J.-D. Müller, CAD-Based Adjoint Shape Optimisation
of a One-Stage Turbine with Geometric Constraints. ASME Turbo Expo 2015: Turbine
Technical Conference and Exposition, 2C: Turbomachinery.

[7] T. Robinson, C. Armstrong, H. Chua, C. Othmer and T. Grahs, Optimizing Parameter-
ized CAD Geometries Using Sensitivities Based on Adjoint Functions. Computer-Aided
Design and Applications, 9(3), 253-268, 2012.

[8] J. Dannenhoffer and R. Haimes, Design Sensitivity Calculations Directly on CAD-based
Geometry. 53rd AIAA Aerospace Sciences Meeting, AIAA SciTech, AIAA 2015–1370.

[9] A. Griewank and A. Walther. Getting Started with ADOL-C, 181 – 202. Combinatorial
scientific computing, 181 – 202, 2009.

[10] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. SIAM, 2008.

[11] T. Verstraete, F. Coletti, J. Bulle, T. Vanderwielen, and T. Arts, Optimization of a U-Bend
for Minimal Pressure Loss in Internal Cooling Channels - part 1: Numerical Method.
ASME Turbo Expo 2011: Power for Land, Sea and Air, GT2011-46541.

[12] L. Piegl, On NURBS: a Survey. Int. IEEE Computer Graphic and Application, 55 - 71,
1991.
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Abstract. In this paper the continuous adjoint method is developed for a vibroacoustic model
that predicts the interior noise of a vehicle induced by the airflow. The model simulates the
front side window vibration, excited by the acoustic and hydrodynamic pressure load, and the
resulting sound wave propagation into the cabin. Targeting interior noise reduction, the contin-
uous adjoint formulation is used to derive the adjoint to the state equations, namely the bending
wave and the wave equations, whilst taking into consideration their coupling. The developed
method is applied to a generic vehicle test body for the minimisation of the interior noise.
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1 INTRODUCTION

When a vehicle travels at high speeds wind noise dominates the noise perceived in the pas-
senger cabin. The turbulent flow field around the A-pillar and side mirror induce flunctuating
acoustic and hydrodynamic pressure load on the side window. The vibrational response in form
of bending waves of the window generates in turn sound waves which propagate to the interior
and contribute to the overall sound pressure level.

In [1], the external flow generated sound and its propagation into the interior of a model
passenger vehicle was numerically and experimentally investigated. The vehicle model, which
is also used in this paper, was a SAE Type 4 car body and was built in such a way that only
sound transmission through the front side and only window is allowed. In [2] a vibroacoustic
model was developed to simulate the window vibration induced by pressure load and afterwards
the sound propagation in the interior of the same vehicle.

In this paper the continuous adjoint method is developed for the aforementioned vibroacous-
tic model, in order to compute gradients of functionals related to the interior noise of a vehicle.
Continuous and discrete adjoint methods [3, 4] have been widely used to solve optimisation
problems in various research fields, due to their advantage of computing cost function gradients
at a computational cost nearly independent of the number of the design variables. In the contin-
uous formulation, the adjoint equations and sensitivity derivatives are derived by differentiating
the objective function, augmented by the field and time integral of the product of the state equa-
tions and the adjoint variables. The adjoint equations are discretised and numerically solved to
compute the adjoint fields and, through them, the sensitivity derivaties. In contrast, the discrete
adjoint equations are derived directly from the discretised state equations. This paper is dealing
exclusively with the continuous adjoint method.

2 VIBROACOUSTIC MODEL FOR THE INTERIOR NOISE OF A VEHICLE

The governing equation of the window deflection driven by a given pressure load is the two-
dimensional bending wave equation,

Rw =
∂2w

∂t2
+
D

m′
∇4w + η1

D

m′
∂

∂t
∇4w + η2

∂w

∂t
+ η3

√
D

m′
∂

∂t
∇2w − p′

m′
= 0 (1)

where w is the window deflection, p′ the pressure load, D the window bending stiffness, m′ the
normalised window mass and ηi the damping coefficients. The initial and boundary conditions
for a pinned at its edges window are

w = 0 and
∂w

∂t
= 0 for t = 0s and x ∈ Swi (2)

w = 0 and ∇2w = 0 for x ∈ ∂Swi and t > 0s (3)

where Swi is the window surface.
The window vibration generates sound waves which propagate to the vehicle interior. The

sound radiation is governed by the wave equation,

Rp =
∂2p

∂t2
− c2∇2p = 0 (4)
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The initial and boundary conditions are

p = 0 and
∂p

∂t
= 0 for t = 0s and x ∈ Ω (5)

∇p · n = ρ0
∂2w

∂t2
for x ∈ Swi ⊂ ∂Ω and t > 0s (6)

∇p · n = −1

c

∂p

∂t
for x ∈ Swa ⊂ ∂Ω and t > 0s (7)

where Ω is the interior domain and ∂Ω = Swi ∪ Swa. On the window Swi, the acoustic pressure
is coupled with the window accelaration. At any other interior wall the propagated sound waves
are reflected and a convective boundary condition is imposed.

The equations are programmed and solved in OpenFOAM, version 1.6-ext. For the solution
of the bending wave equation a fourth order scheme for gradients, a first order scheme for
second order time derivatives and an explicit time marching scheme were used. Moreover, in
order to take into account the difference of propagation speeds of waves in the window and in
the air, the bending wave equation is solved with a smaller timestep.

3 THE CONTINUOUS ADJOINT FORMULATION FOR THE VIBROACOUSTIC MODEL

The objective function to be minimised is defined as the integral over a time interval T of the
squared pressure at a specific point P

J =
1

T

∫
T

p2
P dt (8)

The implentation of more sophisticated objective functions, such as functionals in frequency
domain, is possible. However, without loss of generality, a simplified objective function was
chosen here so as to clearly focus on the results of the developed method.

The augmented function L is defined as the sum of J and the time-space integrals of the
product of the state equations and the corresponding adjoint variables. So,

L = J +

∫
T

∫
Swi

zRwdSdt+

∫
T

∫
Ω

qRpdV dt (9)

where z and q are the adjoint deflection and pressure respectively. Next step is to compute the
variation of L

δL = δJ +

∫
T

∫
Swi

zδRwdSdt+

∫
T

∫
Ω

qδRpdV dt (10)

The development using the Gauss divergence theorem of steady and unsteady terms similar
to the ones of eq. 10 has been thoroughly covered in literature [5], and is therefore omitted here.
Due to the self-adjoint nature of the state equations, the adjoint equations will have the same
differential operators, now applied on the adjoint variables, apart from the first order derivatives,
which will appear with the opposite sign in the adjoint equations.

More focus is laid upon the the derivation of the boundary conditions and sensitivity deriva-
tives on the window and how the coupling between the two adjoint equations is achieved. The
surface integrals expressed on the window derived by the expansion of

∫
T

∫
Ω
qδRpdV dt read

c2

∫
T

∫
Swi

[
∇q · n δp− q δ

(
∇p · n

)]
dSdt (11)
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The first term is set to zero, by imposing a zero Neumann boundary condition for adjoint
pressure q on the window. Using eq. 6 , the second term expands further to

ρ0 c
2

∫
T

∫
Swi

−q
(
∂2δw

∂t2

)
dSdt = ρ0 c

2

∫
Swi

[
−q∂δw

∂t
+
∂q

∂t
δw

]Tend

Tstart

dS

+ ρ0 c
2

∫
T

∫
Swi

−∂
2q

∂t2
δw dSdt (12)

All terms of eq. 12 include now the total variation of the deflection w. The first integral gives
the initial conditions for the adjoint wave equation, while the second one will be the source term
for the adjoint bending wave equation.

The adjoint equations and their respective boundary conditions eventually read

Rq =
∂2q

∂t2
− c2∇2q + 2pP = 0 (13)

with

q = 0 and
∂q

∂t
= 0 for t = Tend and x ∈ Ω (14)

∇q · n =
1

c

∂q

∂t
for x ∈ Swa ⊂ ∂Ω and t < Tend (15)

∇q · n = 0 for x ∈ Swi ⊂ ∂Ω and t < Tend (16)

and

Rz =
∂2z

∂t2
+
D

m′
∇4z − η1

D

m′
∂

∂t
∇4z − η2

∂z

∂t
− η3

√
D

m′
∂

∂t
∇2z − c2ρ

∂2q

∂t2
= 0 (17)

with

z = 0 and
∂z

∂t
= 0 for t = Tend and x ∈ Swi (18)

z = 0 and ∇2z = 0 for x ∈ ∂Swi and t < Tend (19)

The sensitivity derivatives expression of the objective function with respect to any design
variables bm which affect the input pressure load is given by

δJ

δbm
= −

∫
T

∫
Swi

z

m′
δp′

δbm
dSdt (20)

In the adjoint chain, the procedure is performed backwards in time and in reverse order. The
variation of the objective function acts as a monopole source for the adjoint wave equation and
the information propagates to the interior. Then, the second derivative of the adjoint pressure
on the window is used as a source term for the adjoint bending wave equation. In the end,
the sensitivity derivatives computed at the window express the change in the objective function
induced by a change in pressure load p′.

In case there is a closed-form expression for p′, as in the test case shown in section 5, the
gradient of the pressure load can be analytically calculated. Otherwise, when p′ is derived from
the solution of another set of equations, the right hand side term in eq. 20 serves as a boundary
condition to its corresponding adjoint. For example, in case p′ is the hydrodynamic pressure
computed by solving the incompressible Navier-Stokes equations, the integrad of 20 is used for
imposing the boundary condition for the adjoint Navier-Stokes on the window.
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4 VALIDATION OF THE METHOD

The accuracy of the adjoint solution was validated first for each equation separately and then
for the coupled problem, thus for three different cases. The vehicle model used is the SAE
Body, seen in fig. 1.

Figure 1: SAE Type 4 geometry: Exterior (left) and interior (right) vehicle walls. The only window of the vehicle,
through which sound is transmitted to the interior, is coloured in magenta.

For the window vibration a plane wave excitation is investigated, targeting at minimising the
time averaged square of the deflection,

p′vib = A sin(kxx− ωt) and Jvib =
1

T

∫
T

∫
Swi

w2dSdt (21)

For sound radiation in the interior a plane wave profile is given for w in eq. 6 , targeting at
minimising the objective function in 8.

wprop = A sin(kxx− ωt) and Jprop =
1

T

∫
T

∫
Swi

p2
PdSdt (22)

For the coupled problem the plane wave excitation of eq. 21 was used.

p′coupl = A sin(kxx− ωt) and Jcoupl =
1

T

∫
T

∫
Swi

p2
PdSdt (23)

The gradient of the respective objective function for each of the three aforementioned testcases
with respect to the input amplitude were computed with the continuous adjoint method and
compared with finite differences.

As seen in table 1, the continuous adjoint method computes the gradient of the objective
function with sufficient accuracy, since at most occasions the relative error is lower than 1%.
In the sound radiation case, the higher error can be explained by taking into consideration the
boundary condition on the window. Since the given deflection wprop does not fulfil a zero
Dirichlet condition on the window edges, a discontinuity arises there, which leads to higher
numerical errors. However, the high accuracy computation in the coupled problem means that
the gradient can be confidently used in a gradient-based optimisation.
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Window
Vibration

Sound
propagation

Coupled
Problem

Continuous Adjoint 2.4391E-15 6.236 3.115E-10
Finite Differences 2.4394E-15 6.486 3.085E-10
Relative Error (%) 0.013 3.87 -0.964

Table 1: Comparison between objective function gradient values computed with the continuous adjoint method
and finite differences.

5 MINIMISING THE INTERIOR NOISE OF THE SAE BODY

The developed method was applied for the minimisation of the perceived noise near the
driver’s ear, in the SAE body. To keep a focus only on the vibroacoustic phenomena and their
adjoint, the pressure load on the window was induced by the sound radiation from a dipole
source in a moving medium, rather than by a fully developed turbulent flow. The induced
pressure is given analytically by

p′(x, t) = −ρ0

[
∂

∂t
+ U0∇

]
φ (24)

where ρ0 is the air density, U0 the vehicle velocity and φ the acoustic potential

φ(x, t) = ∇
{

A

4πR∗
e
iω

“
t−R+

c0

”}
d (25)

with amplitude A and directivity vector d. Variables R+ and R∗ are related to the distance
between the dipole and each receiver point where the induced pressure is calculated [6], namely
each computational face of the window, Swi.

Optimising with respect to its position, the dipole source is only allowed to move on the
surface of an ellipsoid resembling a vehicle mirror, as seen in fig. 3. Moreover, its directivity is
defined by the normal to the surface vector. The design variables of the optimisation problem
are variables u and v which parameterise the ellipsoid surface by

Xdip = Xc + a cosu cosv
Ydip = Yc + b cosu sinv
Zdip = Zc + c sinu (26)

with −π
2
≤ u ≤ π

2
and −π ≤ v ≤ π

By differentiating eqs. 24 ,25 and 26, a closed form expression is derived for the derivative
of the pressure load with respect to the design variables in expression 20.

A linesearch strategy was used for updating the design variables, starting from the initial
value binit = (0 0). The quasi-Newton BFGS method was used for computing the search
direction and an interpolation based algorithm for choosing an appropriate step length [7]. In
total 4 optimisation cycles were performed and the objective function was reduced by 34.3%.
As seen in fig. 4, the dipole source is moved by the optimisation algorithm in a way that the
induced pressure amplitude is reduced and that less area is affected by the dipole source. The
first is achieved by increasing the distance between the source and the window and the second
by pointing the directivity parallel to the z-axis.
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Figure 2: Validation of the adjoint solution. Bending wave equation: Instantaneous fields of the input pressure
load p′

vib (top left), window deflection w (top right), adjoint deflection z (middle left) and sensitivity derivative
w.r.t. input amplitude (middle right). Wave equation: Instantaneous fields of pressure (bottom left) and adjoint
pressure (bottom right).
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Figure 3: Minimising the interior noise of the SAE body: Pressure load on the window is induced by a dipole
source which moves on the surface of the ellipsoid resembling a mirror, with directivity normal to the surface. The
optimisation loop will find the optimal position of the dipole source, so that the perceived noise at the point near
the driver’s ear (red sphere) is reduced.

Figure 4: Minimising the interior noise of the SAE body: Comparison between the starting (left) and the optimised
(right) setup. The instantaneous pressure load p′ (top row) induced by the dipole source (red sphere) has reduced
amplitude and acts on a smaller area of the window in the optimised case. The amplitude of the acoustic pressure
in the interior computed at a time instance (bottom row) is also reduced for the optimal position of the source.
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Figure 5: Minimising the interior noise of the SAE body: Instantaneous fields of deflection (top left) and acceler-
ation (top right) of the window, as well as adjoint deflection (bottom left) and sensitivity (bottom right) computed
at the first optimisation cycle.

6 CONCLUSIONS

The continuous adjoint method was formulated for a vibroacoustic model, which predicts
the vehicle interior noise induced by a pressure load on the side window. The primal equations
include the bending wave equation, which simulates the vibrational response of the window to
the pressure load, and the wave equation, which describes the sound radiation to the interior.
The adjoint to the state equations and the corresponding boundary conditions which couple the
two equations were derived.

The method was validated with finite differences and applied to interior noise reduction in
a generic vehicle model, the SAE body. In this case, the pressure load was induced by the
sound radiation from a dipole source located at the area of the side mirror and the optimisation
algorithm searched for the optimal position of the source. It was shown that the developed
method computes gradients with sufficient accuracy and therefore can be integrated to larger
aeroacoustic chains, in which the pressure load on the window is computed by solving different
sets of equations, such as the Navier-Stokes equations.
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Figure 6: Minimising the interior noise of the SAE body: Six time snapshots during the sound radiation in the
interior, computed at the first optimisation cycle. Sound waves generated by the window vibration propagate to the
interior and are partly reflected by the vehicle interior walls.
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Figure 7: Minimising the interior noise of the SAE body: Six time snapshots of the computed adjoint pressure. The
point where the objective function is defined (red sphere) acts as a monopole source for the adjoint wave equation.
The adjoint pressure flunctuations propagate to the interior and reach the window. The second time derivative of
the presented field at the window is the source for the adjoint bending wave equation.

4045



Christos Kapellos and Michael Hartmann

REFERENCES

[1] M. Hartmann, J. Ocker, T. Lemke, A. Mutzke, C. Schwarz, H. Tokuno, R. Toppinga, P.
Unterlechner, G. Wickern, Wind Noise caused by the A-pillar and the Side Mirror flow of
a Generic Vehicle Model. 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroa-
coustics Conference), 2012, Colorado Springs, USA

[2] Alexander Kabat vel Job, Analysis of the vibrational response of a non-laminated glass
plate for predicting the aeroacoustic performance in time domain. The 2nd OpenFOAM
User Conference 2014, Berlin Germany

[3] S. Nadarajah, A. Jameson, Studies of the continuous and discrete adjoint approaches to
viscous automatic aerodynamic shape optimisation. AIAA Paper, 25(30), 2001

[4] M. Giles, N. Pierce, An introduction to the adjoint approach to design. Flow, Turbulence
and Combustion, 65,393-415, 2000

[5] E. Papoutsis-Kiachagias, K. Giannakoglou, Continuous adjoint methods for turbulent
flows, applied to shape and topology optimization: Industrial applications. Archives of
Computational Methods in Engineering, 2014, 1-45

[6] A. Najafi-Yazdi, F. Bres, L. Mongeau, An acoustic analogy formulation for moving
sources in uniformly moving media. Proceedings of the Royal Society A, 2010

[7] J. Nocedal, S. Wright, Numerical Optimization. Springer

4046



ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

A MIXED OPERATOR OVERLOADING AND SOURCE
TRANSFORMATION APPROACH FOR ADJOINT CFD COMPUTATION

Zahrasadat Dastouri1, Sinan M. Gezgin1, Uwe Naumann1

1LuFG Informatik 12
Software and Tools for Computational Engineering (STCE)

RWTH Aachen University, DE 52056 Aachen
(dastouri,gezgin )@stce.rwth-aachen.de

Keywords: Algorithmic Differentiation, Computational Fluid Dynamics, Operator Overload-
ing, Source Transformation

Abstract. Adjoint based calculation of sensitivities pertaining to a Computational Fluid
Dynamics (CFD) Solver has proven to be a vital tool in tackling large scale problems often
found in industrial applications. There are two basic approaches for applying Algorithmic Dif-
ferentiation (AD) to a CFD solver, namely, Operator Overloading and Source Transformation.
Unfortunately, in both cases, it is still necessary to invest a significant amount of manual cod-
ing in order to get to an application that performs acceptably in terms of memory consumption
and runtime. In this paper reverse mode of AD has been applied to an unstructured pressure-
based steady Navier-Stokes solver. We explore the feasibility of combining both kinds of AD
approaches to show where and how the advantages of each method can be exploited in order
to reach a suitable compromise between performance, simplicity and efficiency. Additionally,
we propose a methodology to automate the implementation of an adjoint software in order to
minimize work the developer must carry out to produce the desired derivative. We investigate
the effectiveness of this approach for relevant flow test cases.

4047



1 INTRODUCTION

Algorithmic Differentiation (AD) [1, 2] employs the rules of differential calculus in an algo-
rithmic manner to determine accurate derivatives of a function defined by computer programs.
For a given implementation of the flow model F : Rn→Rm over a computational grid, the com-
puter program is developed to simulate the functional dependence of one or more objectives
y ∈ Rm on a potentially large number of input variables x ∈ Rn by simulation of:

F : Rn→ Rm, y = F(x) (1)

AD enables us to compute the corresponding derivatives ∂y
∂x in forward (forward mode) or

backward (reverse mode). For a given implementation of the primal function in Equation 1, the
function F(1) : Rn×Rm→ Rn×Rm , defined as

(y,x(1)) = F(1)(x,y(1))≡

(
F(x),

(
dy
dx

)T

· y(1)

)
(2)

is referred to as the adjoint model of F . The adjoint model implementation yields the objective
y and the product x(1) ≡ ∇F(x)T ·y(1) of its transposed jacobian at the current point x ∈ Rn.

There are two main methods for implementing AD: by source code transformation (S-T) or
by use of derived data types and operator overloading (O-O). In O-O AD the code segments
and arguments of the primal code are stored inside a memory structure called tape during the
forward run of the primal. In reverse mode the stored values on the tape are interpreted to get
the resulting adjoints , while the S-T approach parses the code at compile time and generates
the actual derivative code.

Prior to this paper [3], [4], we have discussed the implementation of the AD tool
dco/fortran1 (Derivative Code by Overloading in Fortran) to an unstructured pressure-
based steady Navier-Stokes solver. The solver is an incompressible flow solver with cell-
centered storage and face-based residual assembly. It works on unstructured meshes with col-
located variables and uses the SIMPLE [5] pressure correction algorithm in a pseudo time step-
ping scheme towards a steady solution. It is written in Fortran 90-95 (7,000 lines) as a test-bed
for developing adjoint Navier-Stokes fields [6]. The case study that is used for flow model
simulation and sensitivity studies is the S-bend channel flow case which is a simplified vehi-
cle climatisation duct that is presented in [7]. We have addressed proper solution algorithms
adapted to the code for the improvement of efficiency of the adjoint code by optimizing the
checkpointing scheme for the iterative solver and development of symbolically differentiated of
linear solver. In addition, we investigated the benefit of the reverse accumulation technique [8]
for the fixed point iterative construction in the primal code.

In this paper we combine the flexibility and robustness of operator overloading with the ef-
ficiency of source transformation by coupling dco/fortran and TAPENADE [9]. The latter
is used for the derivation of computationally expensive kernels. Our emphasis is to automate
the implementation of an adjoint software to decrease the development time of the differenti-
ated code. The overall design is presented in Sections 3 and 4 illustrating the transformation
procedure. Numerical results demonstrate the computational efficiency in terms of memory

1developed at the institute aSoftware and Tools for Computational Engineering at RWTH Aachen University
implementing AD by overloading in Fortran [1]
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consumption and speed while preserving the flexibility of an O-O approach applied to a CFD
code.

2 REVIEW OF AD TOOLS

Algorithmic Differentiation is generally implemented using one of two strategies: source
code transformation or operator overloading. Here we present a brief review of both tools.

2.1 Operator overloading

Using AD by operator overloading to evaluate directional derivatives of an existing program
is comparatively easy. The main idea is to replace all relevant floating point data types within a
given program with corresponding enhanced types of the particular operator overloading tool.
The enhanced data types then keep track of any tangent- or adjoint-information of the specific
variables declared as floating point data types throughout the forward execution of the program.
This is accomplished by defining special operators for all intrinsic functions like +, -, sin(),
exp(), etc. , hence the name operator overloading. In case of a tangent-linear model derivative
information is acquired alongside the forward execution of the program. Using the adjoint
model this is not the case. When an intrinsic function is called during the forward execution
of the program, the required information to compute the adjoint information of all involved
active(i.e. tracked) variables does not yet exists. To show that, consider the assignment y =
x1 · x2. The adjoints for both inputs are x(1),1+ = y(1) · x2 and x(1),2+ = y(1) · x1 respectively.
Unfortunately, the value for y(1) is not yet available when the assignment is executed. Therefore,
the derivative information cannot be computed at that point in time. A two step approach to
solve this problem first stores all required information for every operation during the forward
execution of the program. The second step is running through the operations in reverse order
and calculating adjoint values of its inputs (x1, x2) from adjoint values of its outputs y(1) which
are now available. Storing of such information is usually realized by creating log entries on
a stack also referred to as tape. In case of dco/fortran, an entry in such a tape stores a
code for the type of operation, virtual addresses of operands x1 and x2 as well as floating point
values for its value y and adjoint y(1). This method automatically fulfils requirements of data-
flow and control-flow-reversal for an adjoint model without any extra effort by the tool or the
developer. Understandably, such an approach may require a very large amount of available
memory in order to store the entire tape for programs of even small to moderate complexity.
Its big advantage is its ease of implementation. There are different O-O AD tools for Fortran
programs such as ADF [10], ADOL-F [11], AUTO DERIV [12], etc.

2.2 Source transformation

AD by source transformation analyses the source code of a particular function and produces a
new source code which, when executed, calculates the original function value and its directional
derivative. The source code for a function is replaced by an automatically generated source code
that includes statements for calculating the derivatives interleaved with the original instructions.
The advantage is that the resulting code can be compiled into an efficient program due to com-
pile time optimizations having a greater effect. This is a valid approach for all programming
languages. The drawback is that this is an enormous transformation that usually cannot be done
by hand. Tools are needed to perform this transformation correctly and rapidly. For a tangent-
linear model, the transformation is straight forward because the derivative statements are in the
same order as the original statements. The adjoint model requires control flow reversal which
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turns it into a challenging problem for S-T tool developers. Tapenade [9] engine is just one such
Automatic Differentiation tool that uses source transformation.Other examples of S-T tools that
provide automatic differentiation for Fortran programs are ADG [13], ADFOR [14], TAF [15],
OPENAD [16].
The relative advantages and dis- advantages of using the two different tools are summarized in
Table 1. The + sign indicates that the corresponding AD tool possesses the desired characteris-
tic.

AD tool O−O S−T
Ease of implementation + −
Changing the original source code + −
Memory consumption − +
Compile time optimizations − +
Compatibility of numerical gradients with the discrete PDE + +
Flexibility to handle arbitrary functions + −
Robustness + −

Table 1: Comparison operator overloading and source transformation AD tools

3 MIXED APPROACH: SOURCE TRANSFORMATION VIA OPERATOR OVERLOAD-
ING TOOL

We apply S-T via O-O tool using a feature of dco/fortran called External Function. This
interface provide adjoints of specific functions of a program to dco/fortran or TAPENADE.
It is typically used to provide analytically derived adjoints for computationally intense kernels.
Instead of recording the operations of such a kernel during the forward run a function pointer
is registered on tape. It points to a function capable of providing the adjoint information of
the kernel. Basically, if the adjoint model of a function f is known, this information can be
used during the interpretation in order to remove the necessity to record f during the forward
execution of the program. Depending on the complexity of f , this may have a drastic impact on
memory consumption. The following small example shows how this feature is used in order to
mix different approaches to adjoint computation.
Consider a function z = g(x, p) with x ∈Rn and z ∈Rm which at any point during its execution
calls y = f (x) (1). Let f(1), described in (2), be its known first order adjoint model and let P be
a program that computes the adjoint z(1) of g using dco/fortran. Including f(1) into P takes
two function implementations. First, a function f wrap(x) that hides the process described in
figure 1 denoted by X-Forward from the rest of P. Second, a function f ext which includes the
steps X-Reverse and calls the desired implementation of f(1) in between steps 3 and 4.

1-Forward The state of every non-constant variable which is needed to evaluate f has to be
saved. In addition, independent inputs for f are registered using the checkpointing fea-
tures of dco/fortran in order to have the correct variable addresses available later in
step 4.

2-Forward The output of f is saved and the implemented function f(1) is registered as the
external function that is later called by the interpretation process to evaluate adjoints x(1).
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dco/fortran tape passive dco/fortran tape

1-Forward:

• save x

• register inputs x

2-Forward:

• save y

• register external func-
tion f ext(..)

3-Reverse:

• load x, y

• extract adjoint y(1)

4-Reverse:

• increment adjoints x(1)

compute y

compute x(1)

Figure 1: External Function Concept

3-Reverse The stored data is loaded and the adjoint y(1) is read from tape.

4-Reverse The computed adjoint information has to be added back into the tape at their corre-
sponding positions. This is done by incrementing adjoint values of all registered variables
in reverse order.

4 AUTOMATION METHODOLOGY

The idea of the automation process described here assumes that there already exists an over-
loaded program derived by using dco/fortran. This section lists steps that need to be taken
in order to produce a combined (dco/fortran and TAPENADE) solution. The overview of
the method is presented in figure 2. In addition, a basic approach for automatic source code
generation of wrapper- and external functions is presented in 4.2.1 and 4.2.2 respectively. This
section uses some abbreviations for the different versions of a function:

f : The original overloaded function of the black-box dco/fortran version
f passive : The original function of the original program
f b : The adjoint function derived by TAPENADE
f wrap : The wrapper function corresponding to f
f ext : The function called by the interpreter to compute f(1)

Table 2: Function abbreviations

4.1 Kernel identification

The first and vital step is to choose the correct functions for extraction. Using a profiling tool
like gprof[17] or intel’s vtune[18] is more than sufficient to provide a list of computationally
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Code of
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Code
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Figure 2: Automation of Source Code Generation

expensive functions. Another important information is how often those have been called during
one execution of the original program. The reason for collecting that particular information is
that using the external function feature involves storing/copying of data. This overhead may
negate any benefit when the computational effort per function call is too small. Thus, the
optimal candidates for extraction are functions with a significant self time and minimal number
of calls. In addition, it is beneficial if such a function is low in the hierarchical calling order so
as to avoid passing the entire program on to TAPENADE. Once such functions are identified they
can be passed on to TAPENADE in order to generate the corresponding overloaded versions.

4.2 Code generation

This sections describes how the development of wrapper- and external functions can be au-
tomated. The focus is on source code generation. Not considered is the automated integration
of newly created functions into a build system due to the variety in which such a system can be
realized.

4.2.1 Wrapper generation

A Wrapper function f wrap of an arbitrary function f has a fixed structure outlined in Algo-
rithm 1. Due to this fixed structure, it is possible to define the complete source code of f wrap
using only a few additional informations about the arguments of f. Once all required informa-
tion is collected a Python preprocessor could generate wrappers, register routines and replace
the code. The source code is determined knowing the following information about each variable
appearing in the argument list of the function f :

1. Input/Output/Parameter
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2. Array Dimension(s)

3. Active/Basic/Derived Type

An active type is a specific derived type, namely dco_a1s_type. Knowing the input/output
status of an active variable defines whether it needs to be registered as such. It also determines
when its value has to be saved. Inputs and parameter values are saved before calling f whereas
outputs naturally have to be saved after their evaluation. Array dimensions determine the loop
structures encasing calls of functions like register input. All basic types are classified as pa-
rameters by default and only their current values need to be stored. A special case occurs when
processing derived types. This is due to the fact that a derived type may hold all kinds (in-
put/output/parameter) of variables inside. Consequently, this information needs to be collected
for all members of a derived type independently. In addition, a derived type may also have a
member which is a derived type itself. A program/script capable of processing arbitrary types
therefore has to have a part handling nested derived types. One way to realize such a program
is to split it in two parts. The first part collects all required information and fills a data structure
similar to Table 4 for each argument and each basic/active member variable of any derived types
appearing in the argument list of f. Then, for each step of Algorithm 1 it is checked for each
variable if code has to be added to the current section corresponding to the current variable.
This can be done by adding references of all var structures into three lists, inputs, outputs and
parameters, depending on their var.intent value.

Algorithm 1: wrapper function generation
Input :

- module dependency information of the overloaded adjoint function f(1)
- three lists of var structs: inputs, outputs, parameters

Output:
- source code of function f wrap

Algorithm:
generate function head
foreach var in inputs do

generate block register input
end
foreach var in inputs & parameters do

generate block checkpoint
end

generate call of original function y = f passive(x,p)

foreach var in outputs do
generate block checkpoint

end
foreach var in outputs do

generate block register output
end
generate closure statements
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4.2.2 External function generation

Like the concept of the wrapper function, the external function also follows a specific se-
quence of tasks that need to be executed in a fixed order. The sequence is presented in algorithm
2. The information required to generate external function code is equal to that of a wrapper func-
tion when making one simplification. Every array is assumed to be allocatable, meaning that
all data structures are allocated when loading the checkpointed data in f ext. Not having this
assumption just means adding a allocatable flag to the Var structure and distinguishing the two
cases during code generation.

Algorithm 2: external function generation
Input :

- module dependency information of f passive

- three lists of var structs: inputs, outputs, parameters

Output:
- source code of function f ext

Algorithm:
generate function head
foreach var in inputs & parameters do

generate block read checkpoint
end
foreach var do

generate block allocate adjoint
end
foreach var in outputs do

generate block get input adjoint
end

generate call to fb

foreach var in inputs do
generate block increment adjoint

end
generate closure statements

4.3 Data collection

The collection of necessary information can be done in many ways. The method proposed
here consists of parsing the output of gfortran -fdump-parse-tree and the result of
the data flow analysis of TAPENADE. The latter is necessary for the identification of in- and
outputs of the function where as the former is used to fill data type and shape information. The
TAPENADE data flow analysis can be found on top of the source code of the derived function.
For example, let a function f_passive(x,y) implement y = ∑

n
i=1 x2

i . The corresponding
analysis of TAPENADE produces the following comments on top of the derived function f_b(

x,xb,y,yb):

! Differentiation of f_passive in reverse (adjoint) mode (with
options noISIZE):
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State meaning of var(1) for f b meaning of var for f code blocks for f wrap
:zero output, var(1) := 0 parameter save in
:incr input, var(1) incremented input rgstr in, save in
:in-zero input, var(1) := 0 at end output rgstr out, save out
:in-out input & output input & output rgstr in, rgstr out, save in
:out output, var(1) := 0 at start input & output rgstr in, save in

Table 3: Intent states of active variables for f b

! gradient of useful results: x y
! with respect to varying inputs: x y
! RW status of diff variables: x:incr y:in-zero

The input/output status of an argument can be extracted from the RW status of diff variables
line. Arguments appearing here can have the following states listed in Table 3. Arguments of f
not appearing in this line are parameters and only need to be stored to ensure correct execution
of f_b. If any variable appearing in that line is a member of a derived type the corresponding
part denoting the RW status looks like

*(<var>.<member>):<state>.

A convenient solution to parse nested types is to construct each var.name like the string inside
the round brackets. This way, it is easy to produce the Fortran source code accessing said
member by just exchanging every ”.” with a ”%”.

5 NUMERICAL RESULTS

Numerical results are described for the S-bend test case in three dimensions for different
problem sizes ranging from 47k up to 500k cells. Sensitivity analysis results of the adjoint code
using operator overloading have been presented in earlier work [4] to calculate the sensitivity
of the pressure loss objective function with respect to surface boundary nodes of the S-bend.
These results have been obtained for the whole iteration process for the steady solver up to the
convergence point of the flow solver. Applying only operator overloading zo the flow solver
leads to significant memory usage presented in Figure 3 ( on tape ). The performance has
been improved by symbolically differentiating the linear solver. However, this is only applicable
to problems where the function to be differentiated is simple enough. Nevertheless, it is a very
good baseline for performance measurements.

Here we apply the alternative approach presented in this paper by applying source transfor-
mation for repetitive parts of the solver where the operator overloading interconnect the upper
level. Numerical results are verified and the cost is compared for most expensive repetitive part
of the CFD solver.

Var
name string
type string
rank integer
shape [dim1,dim2, . . . ,dimrank]
intent { ’in’,’out’, ’in-out’, ’parameter’}

Table 4: Members of Var struct
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Table 5: Verification of results with finite difference

version error

dco/fortran 4.62263870374081E−008
dco/fortran +TAPENADE 4.62273583679148E−008

5.1 Verification

We verify the sensitivity results for adjoint solver with finite difference for all cells as pre-
sented in Equation 3. The value of step size increment is determined by smallest relative error
between the derivatives of adjoint code and finite difference, see [4]. The error comparison in
Table 5 show the accuracy of applying dco/fortran and TAPENADE tools for generating
derivatives.

err =
n

∑
i=1
|sen f d(i)− sen(i)version | (3)

5.2 Test environment

The test case is a S-bend ventilation duct for incompressible steady-state flow as presented
in [4] . The objective function computes the loss of pressure at the outlet of the channel and
the derived program adds computation of sensitivities of surface nodes with respect to the ob-
jective function (pressure loss at outlet). All programs are compiled and run on a machine with
hardware specifications shown in Table 6.

CPU Intel(R) Xeon(R) CPU E5-2630
Memory DDR3 @ 1600 Mhz

OS Debian GNU/Linux 8 (jessie)
Fortan Compiler GNU Fortran (Debian 4.9.2-10) 4.9.2

C++ Compiler gcc (Debian 4.9.2-10) 4.9.2
S-T tool TAPENADE 3.9

Table 6: Machine Specifications

5.3 Overloaded program variants

The process described in section 4 aims to combine the overloaded dco/fortran program
with kernels derived by TAPENADE. The kernel identification exposed the linear solver as, once
again, being the function doing most of the computation. Thus, it is chosen to be replaced using
the process presented in sections 4.2.1 and 4.2.2. Two program variants are compiled which
differ in one option for TAPENADE. The option is -nocheckpoint which splits the recording of
the variable and control flow stacks from the computation of the adjoint values into two separate
functions f_fwd and f_bwd [9]. This allows a more detailed performance comparison. As a
baseline for performance the symbolic differentiation of a linear solver is used and incorporated
using the external function feature producing a third program variant.
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Figure 3: Runtime and Memory for ventilation duct with 47k elements

5.4 Performance

Figure 3,4 and 5 show performance comparison results for the above mentioned test case
with 47k, 130k and 500k elements respectively. Runtime and peak memory requirement is
measured for computation of sensitivities with a fixed iteration count for the forward compu-
tation. The blue solid line is the default variant combining dco/fortran and TAPENADE.
Here, the function derived by TAPENADE reruns the forward evaluation of the linear solver dur-
ing the interpretation of the dco/fortran tape. The black, dashed line represents the second
combination where temporary data used by TAPENADE is acquired during the passive execu-
tion of the linear solver, i.e. in between steps 1-Forward and 2-Forward. This saves one linear
equation solve during the interpretation of each outer iteration but adds to the peak memory
requirement. The theoretical maximum memory requirement for this variant is

peak mem≈ tape+
n

∑
i=1

stacki (4)

where tape represents the space needed to store the entire dco/fortran tape and stacki
refers to the size of the temporary data of TAPENADE generated for calls of the linear solver
during the ith outer iteration. The default variant is between two and three times slower than
the symbolic variant for all three mesh configurations. As expected, the -nocheckpoint version(
black, dashed line ) is faster than the default variant but requires more space. In particular,
for smaller test cases(47k) the peak memory depends more on the iteration count of the linear
solver as shown in figure 3. Here, the number of iterations needed to meet a certain tolerance
of the linear solve about triples after roughly 250 outer iterations. That is the reason for the
sudden jump of the peak memory for the variant combining dco/fortran and TAPENADE
without checkpoints. A similiar but much more pronounced, jump can be observed for the O-O
only case. The configuration with 130k elements has a constant high number of iterations of
the linear solver and thus does not show a similar jump.
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6 CONCLUSIONS

The method described in this paper employs a source transformation via operator overloading
approach such that the resulting derivative code computes the sensitivity results of the given
problem in CFD solver. The key aspect of this method is a combination of source-to-source
transformation and operator overloading approaches. The numerical experiments are tested
for expensive repetitive part of the solver demonstrating significant memory reduction of the
resulting combined code compared to the overloaded adjoint version. In terms of memory
usage, these results are competitive with symbolic differentiation of a given function. It could
be used as a lower bound to decide whether developing a symbolic adjoint is viable. Moreover,
the time needed to computer the derivatives speed up by applying the combined approach which
is clearly superior for higher number of iteration. The overall design of a generic transformation
methodology is presented that is applicable for complicated computer programs.
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Abstract. Material model parameter identification for discrete element models (DEM) is typi-
cally done using a trial-and-error approach and its outcome depends largely on the experience
of the DEM user. This paper describes a work flow which facilitates the efficient and system-
atic calibration of discrete element material models against experimental data. The described
workflow comprises three steps. In the first step, an approach based on the design and analysis
of computer experiments (DACE) is adopted in which data is generated for the parametrisation
of Kriging models based on Latin hypercube sampling. In the second step, multi-objective op-
timisation is applied to the Kriging models. This study introduces an additional cost criterion,
which includes the Rayleigh time step, in order to reduce the solution set size to one element.
In the third step, the optimisation procedure is repeated with the actual DEM models, using the
optimal parameter set from the Kriging models as the start value. This final step with the full
DEM models refines the parameter set against experimental data. Since DEM material model
calibration is time-consuming, the workflow is implemented into an automated process chain.
In this paper, the methodology is described in detail and results are shown which illustrate
the usefulness and effectiveness of this approach. Initial verification simulations run using the
calibrated parameters give good agreement with experimental results.
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1 Introduction

Many advanced modelling methods and tools are available, and the continual increases in
affordable computational power allow more ambitious and realistic simulations to be run year-
on-year. One remaining problem affecting certain simulation methods, which particularly in-
hibits their adoption in industry, is the difficulty in choosing suitable input parameters. This is
especially true when the simulation input parameter does not have a physical analogue.

This paper focuses on one simulation tool, the discrete element method (DEM). A work flow
is described and demonstrated for calibration of key simulation input parameters against exper-
imental data. The objective is to allow DEM users to identify their required input parameters in
an efficient, user-friendly and systematic manner.

1.1 Overview of discrete element method

Since its formulation in the 1970s [1], the discrete element method (DEM) has become
increasingly popular for simulating complex systems of particulates at the particle scale by
specifying a relatively small number of microstructural parameters. The growing interest in
DEM among the scientific community is demonstrated by the publication of a number of special
issues of journals devoted to DEM within the past five years (e.g., Engineering Computations
26(6); Granular Matter 11(5); Powder Technology 193(3); Powder Technology 248). Literature
surveys have also shown a rapid increase in the popularity of DEM since its introduction [2, 3].

In ‘soft-sphere’ DEM simulations, particles are modelled as bodies of finite size, inertia
and stiffness. The geometries of the simulated particles are usually idealised to reduce the
computational requirements. The particles are rigid but are allowed to overlap; this interparticle
overlap is analogous to the deformation that occurs at real particle contacts. The most common
implementation of DEM is based on an explicit, conditionally-stable time-stepping algorithm.
In each time step [3], interparticle forces are evaluated at contact points and resultant forces are
calculated for each particle. Newton’s Second Law is then applied to determine the translational
and angular particle accelerations. These acceleration terms are integrated numerically to find
particle velocities and displacements. Finally, the displacements are used to update the particle
positions during each time step.

1.2 DEM material parameter identification

Even though a typical DEM simulation requires relatively few input parameters, finding
these can be challenging. Consider the simplest case in which each idealised, simulated particle
represents one physical particle. The rheological parameters for input to the contact models
(i.e., force–displacement laws) can be difficult to determine accurately by experiment [4]. The
interparticle friction coefficient strongly influences the system response in simulations using
spheres [5], but its value is often increased beyond physical measurements of friction in an ef-
fort to model the particle irregularity in the real system. Numerical damping [6, 7] is difficult to
relate to physical measurements. These problems are exacerbated when irregular particles are
simulated: even simple rolling resistance models require at least one non-physical parameter
[8]. Other complications of the basic DEM, e.g., crushable fundamental particles, also require
parameters which lack a physical basis [9]. ‘Coarse graining’ may be used to reduce the com-
putational requirements of a simulation. The real particles are replaced by fewer, larger coarse
particles, each of which represents many real particles [10, 11, 12]. Thus, none of the input
parameters for a coarse-grained simulation may necessarily be obtainable by laboratory testing.

In general, it is not possible to infer a complete set of appropriate parameters for a DEM
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simulation directly from measured properties of the physical material. Therefore, some (or all)
of the parameters may need to be determined by calibration, i.e., by varying the unknown DEM
parameters until a good match is obtained between physical measurements of the response(s) of
interest and the simulation results. Although DEM calibration is often used, e.g., [13, 14, 15],
the main limitation of existing, commonly-used calibration methods is inefficiency. The param-
eters are often varied individually by trial-and-error while the user-defined response of interest
is monitored. This approach has many disadvantages [4]: the effectiveness of the approach
is dependant on the experience of the user, the final parameters obtained may not be optimal,
the number of DEM simulations required for calibration is not known in advance, and limited
mechanistic insight is gained. As DEM simulations can be very computationally expensive,
it is desirable to maximise the efficiency of the calibration process. Several researchers have
proposed more efficient DEM calibration approaches using design of experiments (DoE) meth-
ods [4, 16, 17, 18] but these have found limited application to date. In subsection 2.4 of this
paper, an alternative work flow for DEM calibration is described which is both efficient and
user-friendly.

2 MATERIALS AND METHODS

The work flow proposed in this paper is based on Kriging meta modelling, multi-variate op-
timisation and general concepts of Design and Analysis of Computer Experiments. A detailed
description of the process implemented using GNU Octave (Octave, [19]) is given in subsec-
tion 2.4.

2.1 Design and Analysis of Computer Experiments

Design and Analysis of Computer Experiments (DACE) is closely related to the Design
of Experiments (DoE) for physical experiments. It includes methods and work flows for the
characterisation of computationally inexpensive and expensive black box models. In the case of
DEM material parameter calibration, the black box models are the material test setups, which
were modelled using DEM. The reader is referred to widely-available literature on DoE and
DACE for nomenclature, general ideas as well as background of the methods (e. g. [20, 21]).

As with DoE, any DACE workflow can be divided into four steps:

1. Define the factors, factor levels (or factor intervals) and the response to be recorded.

2. Create an experimental plan based on the data of step 1 and the requirements for step 4.

3. Conduct the experiments by running simulations according to the experimental plan and
gather the response data.

4. Transform (where required) the data, use them to parametrise meta models and harness
the latter for e. g. optimisation of the response.

2.2 Kriging and Latin Hypercube sampling

Kriging, which is also known as Gaussian process regression, is a statistical regression
method for meta modelling which is based on covariances. It requires response data from
several samples taken from within a previously-defined N-dimensional factor space and esti-
mates the (meta) model parameters via a maximum likelihood approach [22]. Basic ideas for
Kriging were developed and applied in [23] and later generalised [24]. In this study, the Kriging

4063



M. Rackl, C.D. Görnig, K.J. Hanley and W.A. Günthner

implementation of the Small Toolbox for Kriging (STK, [25]) was used under Octave. The base-
line options for the Kriging models were set to using an anisotropic Matérn covariance matrix
together with a linear trend.

The experimental plan, which prescribes the factor value combinations at which the response
data are to be computed, is generated via Latin hypercube sampling (LHS, [26]). LHS generates
factor value combinations by randomly, but evenly, distributing points within the specified factor
interval limits. To further reduce the variance of the Kriging models, this study uses LHS in
conjunction with a MAXIMIN criterion [21, p. 138 ff.].

2.3 Issues addressed by the proposed work flow

Since the calibration of DEM material parameters is greatly dependent on the DEM user, the
aim of the proposed work flow was to reduce the user interaction to a minimum. Three major
issues with DEM material calibration were selected to be addressed by the work flow.

First of all, the calibration process should become automatic, which means that computations
required to calibrate the material parameters are to be set up and run automatically. This also
includes the evaluation of DEM results. While the manual evaluation of e. g. the bulk density
is fairly easy, the measurement of, for example, the angle of repose is somewhat subjective
and its result may vary with the measurement method used. It is therefore important to ensure
comparability of different values of the same response, which is solved using an automatised
results evaluation.

Secondly, keeping track of how changes of the material parameters affect the DEM results
is a challenging task, even for an experienced user. Due to the sheer number of up to 14 param-
eters1 and possible interactions, it becomes very difficult to relate parameters to effects when
altering several parameters at once. This problem could be resolved by only changing one fac-
tor at a time; however this approach does not account for parameter interactions and is highly
inefficient [20]. The solution suggested in this study is to combine LHS and Kriging methods
to create meta models that account for interactions and corresponding effects.

Thirdly, the computational efficiency of the calibrated material model may not always be the
focus of the calibration process. This is especially true since the Rayleigh time step in DEM
depends on material parameter values (i. e. altering the Young’s modulus affects the maximum
time step size). Hence, a further target of the described work flow is to take the Rayleigh time
step into account and not only seek precise prediction of measurement results but also larger
minimum time step sizes. Within subsection 2.4, a cost function that accounts for the Rayleigh
time step is proposed and implemented.

2.4 Work flow of the proposed calibration process

The described workflow was developed and implemented using the open-source DEM soft-
ware LIGGGHTS [29]. Since DEM material model calibration is time-consuming, the work-
flow is implemented into an automated process chain using GNU Octave. The user has to
integrate custom DEM models of material tests into the folder structure of the Octave scripts. A
custom DEM model usually consists of a LIGGGHTS model of a bulk material test along with
auxiliary functions which allow for automatic evaluation of the result files. For example, this
could be the model of a simple bulk density experiment, including Octave functions to compute
the bulk density from the total particle mass and the known volume of the container2.

1DE model with one particulate medium and wall interaction.
2Setting up custom models is a non-recurring task.
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The only actual user input are the measurement results from physical experiments (e. g. bulk
density) and intervals for the material and contact parameters of materials in Octave. These
intervals will have to include the final solution set. Of course, the final solution set is unknown
at this point, so the intervals can be of any finite width. Subsequently, the algorithm can be
started and it will finish autonomously.

The main workflow comprises three steps. In the first step, an approach based on the design
and analysis of computer experiments is adopted in which data is generated for the parametrisa-
tion of Kriging models based on Latin hypercube sampling. The material and contact parameter
values, as defined by the user, are used as free variables for the calibration. The programme will
carry out a user-specified number of DEM simulations, which provide the input for the Kriging
meta model parametrisation (cf. Figure 1). Depending on the performance of the computer,
several simulations may be run in parallel to save time. All obtained results are handed over
and saved in Octave.

intervals of
material

parameters

Latin hypercube
sampling

discrete element
models of simple

material test setups

DEM model
response

input for
Kriging

Figure 1: Generation of response data as input for the Kriging models.

In the second step, multi-objective optimisation is applied to the Kriging models (cf. Fig-
ure 2). For the optimisation the frontend ‘nonlin-residmin’ Octave function for non-linear resid-
ual minimization is used which is based on the Levenberg-Marquardt algorithm [27, 28]. All
results of the previous DEM simulations and the Latin hypercube sampling plan are used as
responses to parametrise Kriging models. The Kriging models are then used to optimise the set
of variable material and contact parameters such that the user-specified measurement values are
attained.

DEM model
response

input for
Kriging

Kriging

meta model for
each material test

setup

optimisation
using

measurement
results as target

values

starting
values for

calibration of
the DEM
material
model

Figure 2: Response data from the LHS are used as input to the Kriging models.

For this purpose, the multi-objective cost function

ci =
si −mi

mi

(1)

has been implemented where si is the result of the simulation and mi is the corresponding
physical measurement. The smaller the difference between the two, the smaller ci is. The
function calculates i proportions of i measurement results and all have the same weighting. To
avoid generating computationally-expensive sets of DEM parameters, the Rayleigh time step
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will also be optimised. The cost function of the Rayleigh time step is

ti =
rmax − dtr
rmax − rmin

, (2)

where dtr is the Rayleigh time step, rmax is the best-case of the Rayleigh time step and rmin
is the worst-case. Best and worst-case refer the minimum and maximum achievable Rayleigh
time with respect to the intervals specified. The Rayleigh time step is calculated according to

dtr = π · r ·

√
ρ
G

0.1631 · ν + 0.8766
, (3)

where ρ is particle density, G is the shear modulus, ν is Poisson’s ratio and r is the radius of
the smallest particle. The Rayleigh time step depends on the parameter values that have to be
optimised. The cost function of the Rayleigh time step is linear and it can take values between
0 and 1.

In the third step, the optimisation procedure is repeated with the actual DEM models, using
the optimal parameter set from the Kriging models as start values (cf. Figure 3). This final
step only requires a few more runs with the full DEM models and simultaneously refines the
parameter set against the experimental measurement data.

starting
values for

calibration of
the DEM
material
model

discrete element models
of simple test setups

DEM results

optimisation
using measurement

results as target values

calibrated
DEM

material
parameters

compare with
measurements

within
tolerance?

yes

no

Figure 3: Optimisation procedure for DEM models

2.5 A small study using glass beads

A small initial study was set up in order to test the proposed work flow within a realistic
framework and glass beads were chosen as the bulk solid of interest. The overall aim was to
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calibrate the density and rolling friction (particle-particle) in such way that the angle of repose
and bulk density results match measured values. A bulk density of 1500 kg m−3 and an angle of
repose of 22◦ were found in literature for glass beads ([30, p. 16], [31]). The particle diameter
was set to 10 mm.

A combined discrete element model was used for simulation of the bulk density and angle of
repose. Since measuring the angle of repose can be difficult, an automatic evaluation algorithm,
based on image recognition, was developed for this study. The DEM software LIGGGHTS
was applied with a Hertz-Mindlin contact model and the elastic-plastic spring-dashpot (EPSD)
rolling friction model. Table 1 shows the DEM input parameters used.

material parameter particle wall p-p p-w constant?
Young’s modulus (N m−2) 3.6 × 105 2.11 × 1011 yes
Poisson’s ratio (-) 0.22 0.30 yes
density (kg m−3) 2100 7700 used for calibration
contact parameter
friction coefficient (-) 0.18 0.27 yes
rolling friction (-) 0.67 0.005 used for calibration
coefficient of restitution (-) 0.79 0.82 yes
viscous RF damping (-) 0.25 0.25 yes

Table 1: Constant DEM input parameters and those used for calibration of the bulk density and angle of repose
(p-p: particle-particle; p-w: particle-wall; RF: rolling friction).

In addition to running the described test case, the influence of the factor interval width (FIW)
and the random factory seed (RFS) of the DEM models was investigated for the purpose of test-
ing the robustness of the work flow. The FIW prescribes how wide the factor interval of the
calibration parameters is, whereas the RFS controls the random generation of particles when
starting a DEM simulation in LIGGGHTS. The influence of RFS on the results should only
be of a stochastic nature, in theory. Table 2 shows details about the RFS and FIW levels and
the experimental plan for this study. For the two non-constant parameters–density and rolling
friction– maximum and minimum values (intervals) were specified before each calibration run
(±FIW). During each calibration run 26 probes were computed to parametrise the Kriging mod-
els.

FIW (%) RFS (-)
levels 10, 33, 66 3000, 4000

run no.
1 10 3000
2 10 4000
3 33 3000
4 33 4000
5 66 3000
6 66 4000

Table 2: Factor levels and experimental plan for the study to investigate factor interval width (FIW) and random
factory seed (RFS).

3 RESULTS AND DISCUSSION

Two factors, the FIW and the RFS, were altered to initially assess the reliability of the work
flow for DEM material parameter calibration. Each of the runs from the experimental plan
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converged to a meaningful solution set. It took the multi-variate optimisation algorithm a mean
of 10 optimisation runs (min. 9, max. 15) with the actual DEM models.

The desired values for bulk density and angle of repose were closely met, as deviations were
within a few percent. Mean differences were 1.3 % (min. 0.45 %, max. 2.7 %) for the angle
of repose and 0.92 % (min. 0.13 %, max. 3.1 %) for bulk density. One should also note that
the variance measured in physical experiments, especially for the angle of repose, is typically
significantly higher than the deviations recorded in this study.

Due to the small number of simulation experiments, it is not fully clear how much the RFS
value influences the results. Ideally, it should only induce stochastic noise. According to the
results depicted in Figure 4 and Figure 5, it does not generate a systematic trend or offset.
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Figure 4: Influence of the FIW and RFS on the absolute relative difference between desired and optimised bulk
density.

There is a clear correlation between the number of optimisation runs and the FIW. It can be
seen from Figure 6 that a wider FIW results in more optimisation runs being required, inde-
pendently of the RFS. This behaviour was expected, since the sampling density reduces with
an increased FIW and the Kriging models have to interpolate in areas with a greater distance
between interpolation points. The Kriging model predictions therefore show a greater variance
on those areas and the precision of the estimates for starting values for the DEM optimisation
reduces.

4 CONCLUSION

A framework for efficient calibration of discrete element material model parameters was
implemented in this study. A total of approximately 38 DEM runs were required to calibrate
particle density and rolling friction against measurements of the angle of repose and bulk den-
sity. The results from a small study with glass beads show that the general approach works and
desired results were well within practical tolerances of the desired values. Nonetheless, more
studies will be necessary to further validate the usefulness of the described work flow as well as
its robustness, e. g. when unfavourable parameter intervals are set by the user.
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Xiang, J. & Pain, C.C. (2014). Verification and validation of a coarse grain model of the
DEM in a bubbling fluidized bed. Chemical Engineering Journal, 244: 33–43.

[12] Nasato, D.S., Goniva, C., Pirker, S. & Kloss, C. (2015). Coarse Graining for Large-scale
DEM Simulations of Particle Flow – An Investigation on Contact and Cohesion Models.
Procedia Engineering, 102: 1484–1490.
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Abstract. One approach in statistical analysis that distinguishes between frequentist and
Bayesian is the inclusion of available prior information about the data even before measuring/
surveying the data. Many researchers argued that the inclusion of prior information resulted
in a better model prediction/parameter estimation. Bayesian inference is repeatedly used in
inverse problems to retrieve parameters due to the development of high efficient sampling algo-
rithms such as Markov Chain Monte-Carlo (MCMC). Inverse problems are generally ill-posed
in nature. Nevertheless, the inclusion of prior information reduces the ill-posedness of the prob-
lem to an extent. Any inverse problem relies on measured data by physical sensors, therefore
induced random errors greatly affects the quality of estimation. When the uncertainty of the
measured data is high, the inferences made from the resulting sampling distributions are nearly
the same as the supplied prior information. The reason is that, probability of samples nearer to
prior information is more at higher uncertainties of measurement and has more chance to get
repeatedly accepted than the samples that are close to actual value. Therefore, in this work an
effort is made to update the prior hyper parameters in each iterations of the MCMC algorithm
based on the history of the likelihood function. The applicability of method is demonstrated by
retrieving parameters from 1-D fin experiment. Three thermal properties such as thermal con-
ductivity, heat transfer coefficient and emissivity are retrieved simultaneously. The estimation
is carried out for both error and errorless temperature measurements and the results show that,
the estimated parameters with the proposed method are in excellent agreement with the true
parameter value and a maximum of 7% deviation occurs in estimating heat transfer coefficient
at a measurement error of ±0.3K
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1 INTRODUCTION

In recent years, Bayesian inference is predominantly used in many engineering, science, so-
cial and behavioral sciences due to the advancement in high computing resources and efficient
sampling algorithms. The result of Bayesian is a probabilistic statement regarding the unknown
quantities unlike a single point estimate in other methods e.g., least-square parameter estima-
tion. Bayesian treats the measured/surveyed data as a random variable and hence the inferences
made by Bayesian are random variables. The uniqueness about Bayesian inference lies in that,
a prior knowledge about the unknown parameters could be included in the statistical analysis of
the data. The inclusion of prior information in inverse problems reduces the ill-posed nature of
the problem and improves the quality of estimation. In general, prior information in the form of
Gaussian distribution is commonly employed in inverse heat transfer literatures. Parathasarathy
and Balaji [1] studied the different forms of prior model and its effects in the estimation of
single and multiple parameters. In their work, they demonstrated that in multi-parameter esti-
mation, Bayesian inference tends to point to alternate feasible solutions when highly correlated
parameters are retrieved using non-informative prior models.

Monte-Carlo sampling techniques are widely practiced in order to find the expectations of
the probability distribution functions. Among several Monte-Carlo techniques, Markov Chain
Monte-Carlo (MCMC) is more frequently used in inverse heat transfer problems [2]-[4]. The
hyper parameters (mean and standard deviation) of the prior model are usually taken from pre-
viously published results/previous experiments. More frequently these prior parameters are
known vaguely. Under such case, when correlated parameters are estimated or when the mea-
surement uncertainty is high (more likely to occur due to unavoidable random errors) the esti-
mated parameters using sampling algorithms are close to the subjected prior parameters.

Single parameter estimation (inverse estimation of thermal conductivity) is carried out at dif-
ferent levels of measurement uncertainty. Refer section 2 and 3 for problem specification and
inverse formulation. MCMC sampler is used to sample through the posterior. The estimation
results reveal that, as the measurement uncertainty increases, the estimated parameter (mean of
the posterior distribution) becomes closer and closer to the subjected prior mean. The reason
for this could be explained intuitively as follows: consider the case (a) wherein the generated
sample is close to actual parameter. In this case, at low uncertainty the likelihood probability
is relatively larger than prior probability, so the combined probability (posterior probability)
is more likely greater than the acceptance ratio (refer MCMC algorithm) and hence the sam-
ple is more frequently accepted. However, at high uncertainties the likelihood probability is
slightly lesser or equal to prior probability, so the combined probability is likely lesser than the
acceptance ratio and hence the sample is frequently rejected even though it is close to actual
parameter. Now, consider the case (b) wherein the generated sample is close to prior parameter
(mean). In this case, at low uncertainty the likelihood probability is relatively less compared
to prior probability, so the combined probability is more likely lesser than acceptance ratio and
hence the sample is more frequently rejected. However, at higher uncertainties the likelihood
probability is slightly lesser or equal to prior probability, so the combined probability is likely
greater than the acceptance ratio and hence the sample is accepted frequently even though it is
away from actual parameter (nearer to prior mean). Therefore, in this work an attempt is made
to modify the prior parameters in each iteration of the MCMC algorithm based on the history of
likelihood function to overcome the aforesaid difficulty and study the applicability of modified
algorithm to multi-parameter estimation related to inverse heat transfer applications.
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2 DEFINITION OF FORWARD PROBLEM

A simple 1-D fin losing heat to the surrounding both by convection and radiation is consid-
ered as the forward problem. Mathematically, the forward problem is represented as,

k
∂2T

∂x2
− hAs(T − T∞)− εσAs(T 4 − T 4

∞) = Cp
∂T

∂t
in 0 ≤ x ≤ L (1)

subjected to the following initial and boundary conditions:

T (x, 0) = Ti = T∞ 0 ≤ x ≤ L

at x = 0,

q =

{
q0 0 ≤ t ≤ t0

0 t > t0

In equation 1 k, ε and Cp are fin material properties. i.e., thermal conductivity (W/mK),
surface emissivity and heat capacity (J/K) respectively. As (m2) is lateral surface of the fin and
L (m) is the length of the fin. A step heat input of magnitude q0 is given at one end (x = 0) for
time t0. The experiment is carried out in an ambient of temperature T∞(K) and heat transfer
coefficient, h (W/m2K)

The solution to equation 1 is the temperature distribution along the length of the fin w.r.t.
time. In this work, Finite Volume Method (FVM) is employed to solve the forward problem
[5] in which energy balance is applied to each discretized control volume in order to convert
the above partial differential equation into set of algebraic equations. Because of the radiation
heat loss term, equation 1 is non-linear and hence the discretized equations are also non-linear.
Therefore, they are solved simultaneously using Gauss-Seidel iterative technique.

3 BAYESIAN INVERSE FORMULATION FOR PARAMETER ESTIMATION

The objective of the Bayesian inference in inverse problems is to formulate the posterior
probability distribution (ppdf), which in Bayesian context of linear/non-linear parameter esti-
mation is proportional to product of likelihood function and prior probability distribution.

p(X|Y ) ∝ p(Y |X)p(X) (2)

In equation 2 X is the unknown parameter vector to be estimated and Y is the measured/
surveyed data. The LHS of equation 2 is the required ppdf, whereas the first and second term of
RHS is the likelihood function and prior distribution respectively. Without loss generosity, it is
assumed that the errors between the measured and simulated variable is additive, uncorrelated,
normally distributed with zero mean and constant standard deviation and hence the likelihood
function is given by [6, 7].

p(Y |X) =
1√
2π
|V |−1/2exp

{
−1

2
[Y − Y (X)]TV −1[Y − Y (X)]

}
(3)

In equation 3 Y is the measured quantity, Y (X) is the simulated quantity for the assumed
unknown parameter X and V is the covariance matrix of the measurement. As previously men-
tioned, Bayesian exploits all the information that are available even before the measurements
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are taken, this information is usually included in the analysis in the form of prior distribution
p(X) as given in equation 2. In this work, a normal prior model is assumed and hence it is given
by,

p(X) =
1√
2π
|Vp|−1/2exp

{
−1

2
[X − µp]TV −1p [X − µp]

}
(4)

In equation 4 µp and Vp are hyper parameters of the prior distribution (mean and covari-
ance) respectively. Substituting 3 and 4 in equation 2 we get the desired ppdf. For the present
parameter estimation problem the unknown parameters are thermal conductivity, heat transfer
coefficient and emissivity i.e., X = {k, h, ε} and the measurable quantity is the temperature as
a function of space and time T (x, t).

3.1 MCMC algorithm for updating prior parameter

The next step in Bayesian inference is to calculate the appropriate statistic (mean/mode/
median/maximum a posterior/and standard deviation) of the unknown parameters using the
posterior distribution. However, in inverse heat transfer literatures mean/maximum a posterior
and standard deviation of the unknown parameters are more commonly reported. Monte-Carlo
sampling methods are being widely used for this purpose, among which Markov Chain Monte-
Carlo (MCMC) is more repeatedly used in the literatures. An excellent discussion is presented
in [8] as in why to use sampling techniques over the analytical/numerical methods in order to
find the expectations of ppdf. In the present work, the simple MCMC algorithm is slightly mod-
ified to update prior hyper parameters based on the history of likelihood function to overcome
the convergence of estimated parameters to the prior mean at high measurement uncertainties.
One iteration of the algorithm consist of the following steps,

1. Select a new sample, X∗ from the proposal/jumping distribution q(X∗|X i−1)

2. Find the ppdf for new sample, p∗ using 2

3. Accept the new sample based on Metropolis Hasting (MH) ratio, if r ≤ U otherwise
reject the sample. Here U is a uniformly distribute random number and

r = min

{
1,

p∗ × q(X∗|X i−1)

pi−1 × q(X i−1|X∗)

}
4. Find the parameter vector X , corresponding to minimum likelihood function from the

chain length of 1 to i-1 iterations and add a normally distributed random number (-1 to
1). Assign it as the new hyper parameter for the prior distribution.

5. Return to step 2 and continue until the number of iterations exceeds the specified limit

It is worth to mention here that in the above algorithm except step 4, all other steps are same
as simple MCMC algorithm.
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Figure 1: Grid independent study.

4 RESULTS AND DISCUSSION

The solution to the forward problem using FVM is written in Matlab and it is validated with
commercial FVM based software package Fluent. A grid independent study is carried out and
based on the study, a grid size of ∆x = 2mm is chosen for further studies (refer Fig. 1).

The fin material is assumed to be steel and hence its thermo-physical properties are consid-
ered in the analysis for demonstration. It is also assumed that the temperature measurement is
carried out in a natural environment; therefore the convective heat transfer coefficient is taken
as 10W/m2K. The duration and magnitude of heat input, total time of experiment and number
of temperature measurements are decided based on D-optimal test [9]. The results of these
preliminary studies are not presented here, since it is not the objective of the present work.

The results of multi-parameter estimation (k=25W/mk, h=10W/m2K and ε=0.85) using both
simple and present modified MCMC algorithm are presented for an error level of ±0.03K and
±0.3K respectively. The noisy temperature measurements are obtained by adding random errors
with zero mean and standard deviation (±0.03/0.3K) to the solution of forward model.

Figure 2: Sampling distribution Vs prior distribution for k (W/mK) obtained using simple MCMC algorithm.

Throughout the study the considered prior mean (µp) for k, h and ε are 20W/mK, 5W/m2K
and 0.6 respectively with standard deviation equal to 0.15µp. This multi-parameter estimation
is especially difficult due to two reasons: (1) the posterior distribution is correlated and (2) due
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to high measurement errors the inverse problem becomes more ill-posed. Also the combination
of above two makes the estimation highly difficult.

Figure (2-4) shows the sampling distribution for k, h and ε respectively at standard devia-
tion ±0.3K obtained using simple MCMC algorithm and from these figures it is clear that the
sampling distribution for all parameters are very close to prior distribution.

Figure 3: Sampling distribution Vs prior distribution for h (W/m2K) obtained using simple MCMC algorithm.

Figure 4: Sampling distribution Vs prior distribution for ε obtained using simple MCMC algorithm.

This parameter estimation problem is repeated again using the present modified MCMC al-
gorithm and the resulting sampling distributions for all parameters at standard deviation ±0.3K
are shown in Fig. (5-7) and from these figures it is clear that the resulting sampling distribu-
tion for all parameters are normally distributed with mean close to the actual value for all the
parameters. The estimates of the parameters (k̂,ĥ and ε̂) and spread of the samples (σ̂) are calcu-
lated from the sampling distribution that are obtained using both simple and modified MCMC
algorithms and are listed in table 1 and 2 respectively. Table 2 clearly shows that the estimates
obtained using modified MCMC algorithm are in good agreement with the exact value even at

4078



S. Somasundharam, and K. S. Reddy

higher level of measurement error (±0.3K). In contrary, the estimates obtained using simple
MCMC are in good agreement with the prior parameter, but far away from the true parameter
(refer table 1)

Figure 5: Sampling distribution Vs prior distribution for k (W/mK) obtained using present modified MCMC
algorithm.

Figure 6: Sampling distribution Vs prior distribution for h (W/m2K) obtained using present modified MCMC
algorithm.

k=25W/mK h=10W/m2K ε=0.85
k̂ σ̂k % error ĥ σ̂h % error ε̂ σ̂ε % error

±0.03K 26.78 1.65 7.12 7.54 1.03 24.6 0.811 0.066 4.59
±0.3K 21.25 4.39 15 4.38 1.34 56.2 0.583 0.088 31.41

Table 1: Mean and standard deviation of the parameters calculated from sampling distribution obtained using
simple MCMC.
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Figure 7: Sampling distribution Vs prior distribution for ε obtained using present modified MCMC algorithm.

k=25W/mK h=10W/m2K ε=0.85
k̂ σ̂k % error ĥ σ̂h % error ε̂ σ̂ε % error

±0.03K 24.92 1.4 0.32 9.38 1.03 6.2 0.862 0.066 1.41
±0.3K 23.71 2.6 5.16 10.61 1.5 6.1 0.821 0.099 3.41

Table 2: Mean and standard deviation of the parameters calculated from sampling distribution obtained using
modified MCMC.

5 CONCLUSIONS

In this work, a modified MCMC algorithm was proposed in which the hyper parameter of the
prior distribution was updated in each iteration based on the history of likelihood function. The
idea of modifying prior parameter was put forth in order to restrict the sampling distribution
moving close to the prior distribution at higher measurement uncertainties.

The proposed modified MCMC algorithm was tested for its reliability by employing it in
inverse heat transfer problem, wherein three thermal properties were estimated simultaneously
(the posterior for which is correlated). The estimation was carried out for both error and error
less temperature measurements. The estimated parameters with modified MCMC were in good
agreement with the true parameters, whereas with simple MCMC the estimated parameters were
close to the supplied prior information at±0.3K measurement uncertainty. Since the posterior is
correlated, the error associated with the parameter estimation using simple MCMC are more and
a maximum deviation of 24.6% occurred in estimating h even at zero error level. Nevertheless,
with modified MCMC, all the parameters were estimated with less than 7% deviation from
the actual parameter value. Therefore, modified MCMC algorithm could be effectively used
in inverse problems to estimate parameters from correlated posterior distribution even at high
level of measurement errors.
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Abstract. This work presents an application of Surrogate-Based Optimization (SBO) to the 

multipoint constrained design of the 3D DPW wing [1]in viscous transonic flow conditions. 

The geometry is parameterized by a control box with 36 design variables. An adaptive sampling 

technique focused on the optimization problem, the Intelligent Estimation Search with Sequen-

tial Learning (IES-LS), is applied. The selected SBO approach is based on the use of Support 

Vector Machines (SVMs) as the surrogate model for estimating the objective function, in com-

bination with an evolutionary algorithm (EA) to enable the discovery of global optima. The aim 

of this work is to complement a previous one [2] by adding a study of the capability of this 

method to obtain an improvement for this multipoint constrained three-dimensional test case.
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1 INTRODUCTION 

In the last few years, there has been an increasing interest in the topic of Surrogate-based 

Optimization (SBO) methods for aerodynamic shape design. This is due to the promising po-

tential of these methods to speed-up the design process by the use of a “low cost” objective 

function evaluation to reduce the required number of expensive computational fluid dynamics 

(CFD) simulations. However, the industrial applications of these SBO methods has still to face 

several challenges, as for instance, the ability of surrogates when handling a high number of 

design parameters, efficient constraints handling, adequate exploration of the design space, etc. 

The aim of this work is to complement a previous one [2] by adding a study of the capability 

of this method to obtain an improvement for a constrained multipoint three-dimensional viscous 

test case. 

This work is under the scope of the GARTEUR Action Group (AD/AG52) [3], with the 

objective of providing a comprehensive survey about different surrogate methods for surrogate-

based aerodynamic shape optimization, started at the beginning of 2013. Within this AG, re-

search activities are planned over four-year period, with the objective of performing a fair com-

parison between different surrogate modeling methods applied to the aerodynamic optimization 

of baseline geometries, sharing the parameterization (volumetric NURBS) and mesh defor-

mation algorithms.. 

2 PREVIOUS WORK 

A physics-based surrogate model was recently applied in [4] to the drag minimization of a 

NACA0012 airfoil in inviscid transonic flow and RAE2822 airfoil in viscous transonic flow, 

both using PARSEC parameterization with up to ten design parameters. The drag minimization 

problem was also addressed by SBO in [5] for the NFL0416 airfoil, parameterized with ten 

design parameters. 

Moreover, a combination of a generic algorithm (GA) and an artificial neural network (ANN) 

was applied in [6] to the shape optimization of an airfoil, parameterized by a modified PARSEC 

parameterization involving ten design variables. In [7] a surrogate based on Proper Orthogonal 

Decomposition (POD) was applied to the aerodynamic shape optimization of an airfoil geom-

etry parameterized by sixteen design variables defined with Class Shape Transformation 

method (CST). In summary, the ability of SBO methods to manage a high number of design 

parameters still remains an open challenge and have been studied by several authors in the last 

few years, as well as the strategies for efficient infill sampling criteria with constraint handling. 

[7, 8]. 

Finally, the authors also presented recent works on this topic [2, 9]. This paper is an exten-

sion of previous research, here considering the constrained multi-point aerodynamic optimiza-

tion of the DPW-W1 wing for viscous transonic flow. 

3 PROPOSED APPROACH 

A surrogate-based global optimization method with an adaptive sampling strategy is used, 

called ‘The intelligent Estimation Search with Sequential Learning (IES-SL)’. Support Vector 

Machines for regression (SVMr) are combined with Evolutionary Algorithms (EA) in order to 

perform an efficient adaptive sampling guiding the optimization algorithm towards the most 

promising regions of the design space. The geometry is parameterized with volumetric Non-

Uniform Rational B-Splines which vertical movements are the design variables for this study.  

As can be observed, it comprises two steps: First, the algorithm generates an initial database 

by evaluating a small number of random designs (four in this application study). The initial 
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surrogate model is then generated using this reduced database. Then, the algorithm searches for 

the position of the optimum value with the surrogate model to use it as an estimation for the 

real optimum position [10]. The estimated optimum is evaluated using the CFD solver, obtain-

ing a new pair [design, cost] that will enrich the database. After that, the surrogate is updated 

by adjusting it to the complete database and the cycle is finished, starting again the search for 

the new sample. When the maximum number of iterations is reached, the optimum design is 

obtained as the best parameters on the database. In this way, it is ensured that the design ob-

tained is optimum with respect to the simulator system (CFD solver) and not only to the surro-

gate model. For more information about the SVMr, EAs and IES-SL readers can consult  [5, 6, 

11, 12] 

4 DEFINITION OF THE OPTIMIZATION PROBLEM 

4.1 Baseline geometry: DPW-W1 wing  

The public domain transonic DPW-W1 wing (a test case of the Third AIAA Drag Prediction 

Workshop) was used [1, 10]. Reference quantities for this wing are displayed in the following 

table: 

Sref (wing ref. area) 290322 mm2  

Cref (wing ref. chord) 197.55 mm  

Xref*  154.24 mm  

b/2 (semi span)  762 mm  

AR (aspect ratio, AR=b2/Sref) 8.0  
*(relative to the wing root leading edge) 

Table 1. DPW reference quantities 

The initial geometry (in IGES format) was downloaded from [10]. A set of grids are also 

available in the website of the 3rd AIAA Workshop on Drag Prediction. 

4.2 Parameterization 

The DPW geometry is parameterized by a 3D control box (displayed in Figure 1) with 5 

control points in direction u, 10 in direction v and 5 in direction w. The parametric u direction 

corresponds to the y axis, the v direction to the x axis, and the w direction to the z axis.  

The design variables are the vertical displacement of those control points set up on the aer-

odynamic surface. The wing is split in three profile sections and the transition between sections 

is linear. Each section has 6 active control points for the upper side and other 6 for the lower 

side, which are independent (the movement of a control point at the upper side does not modify 

the lower side and vice versa), with a total of 36 design parameters for the whole wing. Authors 

have previously applied this parameterization technique to other local and global optimization 

problems [11]. During the optimization performed in this paper, the wing platform will be kept 

fixed, as well the angle of attack and the torsion. 
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Figure 1. DPW wing parameterization 

 

4.3 Aerodynamic constraints 

The following aerodynamic constraints are considered: 

1. Prescribed constant lift coefficient (CL=CL
0) 

2. Minimum pitching moment: CM>=CM
0      

3. Drag penalty: If constraint in minimum pitching moment is not satisfied, the penalty 

will be 1 drag count per 0.01 increment in CM. 

4.4 Geometric constraints 

Each design variable will be constrained by its minimum and maximum values that will be 

chosen as the + or – 20% of their original value. Apart from this, other constraints have been 

defined, according to [1]: 

1) Airfoils’ maximum thickness constraints:  

0

sec sec( / ) ( / )tion tiont c t c  

where the right term is the maximum thickness for the original wing sections, root, mid-span 

and tip, which has the value of 13.5%. 

 

2) Beam constraints: 

First, two locations (x/c) are fixed to represent the beam constraints: 

75.0)/()/()/(

20.0)/()/()/(
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 The constraint here is that the thickness value of the optimized wing sections at these lo-

cations should be greater or equal than the thickness of the original ones. It is defined with the 

expressions: 
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4.5 Test cases definition & objective function 

The proposed approach is applied to the multipoint aerodynamic shape optimization of a 

DPW-W1 wing in viscous transonic flow. The specific flow conditions are exposed in Table 2 

for both Design Points (DP) 

 DP1 DP2 

M 0.76 0.78 

Re 5×106 5×106 

AoA 0 0 

Turbulence SA SA 

Table 2. Test cases definition 

The design goal is to achieve a geometry with the minimum drag, while maintaining the 

specified aerodynamic constraints. Aerodynamic constraints are implemented as penalties in 

the objective function. The pseudo-code implementations is: 

 

lift_penalty=1-(Cl/Cl0); 

if (lift_penalty<0) lift_penalty=0; 

cm_penalty = (Cm0-Cm)*0.0001/0.01; 

if (cm_penalty < 0) cm_penalty = 0; 

objective_function=(((Cd+cm_penalty)/Cd0 ) )+5*lift_penalty; 

4.6 Computational grid 

The DPW RANS grid was directly downloaded from [10]. The features of the unstruc-

tured grid are: 

#points #surface points #elements #surface elements 

3770k 152k 9335k 310k 

Table 3. Computational grid features 
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5 NUMERICAL ASSESSMENT 

5.1 DPW-W1 optimization results  

This section shows the results of the optimization approach exposed in previous sections. 

Table 4 summarizes the DPW the results of the optimization process. Results exhibit a reduc-

tion of 3 & 6 drag counts respectively for each DP which are in the same order that the results 

obtained in [1] 

 

 DP1 DP2 
fobj 

 CL CD CM CL CD CM 

DPW-W1 0.3632 0.0205 -0.0674 0.3718 0.0222 -0.0692 

0.9746 Optimized 0.3637 0.0202 -0.0677 0.3712 0.0216 -0.0695 

Δ 0.0005 -0.0003 -0.0003 0.0006 -0.0006 -0.0003 

Table 4.DPW-W1 optimization results 

Figure 2 depicts the baseline and optimized airfoils along wing span. 

 

Figure 2. Baseline vs. optimized geometry 

Figure 3 andFigure 4 show the Cp distribution @ 25% 50% and 75% of wing span while 

Figure 5 andFigure 6 contains the Cp contours for both baseline and optimized geometries at 

each flow conditions. 
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Figure 3. Cp distribution for DP1 along wing span 

 

Figure 4. Cp distribution for DP2 along wing span 
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Figure 5. Cp contours for baseline and optimized geometries @ DP1 flow conditions 

 

Figure 6.  Cp contours for baseline and optimized geometries @ DP2 flow conditions 
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6 CONCLUSION 

This paper presented the application of a global optimization strategy using the Intelligent Es-

timation Search with Sequential Learning (IES-SL) and the hybridization of EA and SVMr to 

the multi-point constrained optimization of a three dimensional DPW wing in viscous transonic 

flow conditions, showing first promising results. Future work will focus on the combination of 

this approach with traditional gradient-based methods to perform a deep comparison and also 

an enrichment of the search space in the evolutionary optimization algorithm. 
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Abstract. Nowadays, one of the priorities of the European Commission is to reduce the envi-

ronmental impact of aviation through the advanced design of novel aircraft configurations. 

This implies that new methods and tools for aerodynamic shape optimization will have to be 

developed, allowing aircraft configurations that cannot be obtained with traditional strategies. 

Evolutionary optimization algorithms have the potential to find a global optimal candidate but 

on the other hand, they involve a vast number of evaluations, which are CFD runs in aerody-

namic analysis. The use of surrogate modeling has been proposed in the literature [1, 2] as a 

suitable method to speed up the global optimization process. This work presents an application 

of a surrogate-based global optimization method (SBGO) to the aerodynamic shape optimiza-

tion of a 2D infinite circular cylinder in laminar flow conditions. The geometry of this test case 

is parameterized by a Non-Rational B-Splines (NURBS) control box with 10 design variables. 

An approach based on Support Vector Machines (SVMs) in combination with Evolutionary 

Algorithms (EA) is applied.
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1 INTRODUCTION 

Currently there is a strong need of computational tools for the design of the type of aircraft 

that will be demanded by the European industry, according to the guidelines stated at the 

ACARE 2020 [3] and 2050 [4] flight paths. The aeronautical industry agrees that these objec-

tives make necessary the design of an innovative aircraft shape rather than further local im-

provements in the traditional wing-body-tail configuration. Efficient and accurate shape design 

optimization tools, able to consider novel concepts through the use of flexible geometry param-

eterization, are becoming a must for the aeronautical industry. Considering this, aerodynamic 

shape design and optimization problems based on evolutionary algorithms and surrogate mod-

els (also called surrogate-based optimization or SBO) have recently found widespread use in 

aeronautics, due to the potential to reach optimal configurations that are far away from their 

baseline geometries, and therefore their ability to enable non-conventional aircraft configura-

tions. In addition, their increasing applicability in aerodynamic shape optimization problems is 

also due to the promising potential of these methods to speed-up the whole design process by 

the use of a “low cost” objective function evaluation to reduce the required number of expensive 

computational fluid dynamics (CFD) simulations.  

However, the application of these SBO methods for industrial configurations still requires 

facing several challenges. The most crucial challenges nowadays are the so-called “curse of 

dimensionality”, the ability of surrogates when handling a high number of design parameters, 

efficient constraints handling, adequate exploration and exploitation of the design space, and 

last but not least, how to deal with grid deformations in case of large displacements, which is 

always the case when trying to achieve novel configurations from the traditional ones. 

This work focuses on the application of enhanced methods in aerodynamic shape design 

optimization to enable novel aircraft configurations. In particular, it aims to demonstrate the 

feasibility of a combined approach, based on Evolutionary algorithms and Support Vector Ma-

chines, to reach optimal configurations that are far away from its baseline geometry. In order 

to validate this, the optimization approach is applied to the selected baseline geometry, a land-

ing gear master cylinder, resulting on optimal configurations for each of the defined flow con-

ditions. This very simple test case (clean cylinder) has been selected for several reasons: it will 

allow to validate the potential of the proposed approach to reach non-conventional configura-

tions (those which are far from the initial one), and in addition, it is of interest for an European 

aircraft manufacturing industry, which is looking for flow optimization in this region. However, 

in order to further exploit the results in industry, more complex geometries and constraints, 

including also structural aspects should have to be taken into consideration. 

2 PREVIOUS WORK 

A physics-based surrogate model was recently applied in [5] to the drag minimization of a 

NACA0012 airfoil in inviscid transonic flow and RAE2822 airfoil in viscous transonic flow, 

both using PARSEC parameterization with up to ten design parameters. The drag minimization 

problem was also addressed by SBO in [6] for the NFL0416 airfoil, parameterized with ten 

design parameters. 

Moreover, a combination of a generic algorithm (GA) and an artificial neural network (ANN) 

was applied in [7] to the shape optimization of an airfoil, parameterized by a modified PARSEC 

parameterization involving ten design variables. In [8] a surrogate based on Proper Orthogonal 

Decomposition (POD) was applied to the aerodynamic shape optimization of an airfoil geom-

etry parameterized by sixteen design variables defined with Class Shape Transformation 

method (CST). In summary, the ability of SBO methods to manage a high number of design 

parameters still remains an open challenge and have been studied by several authors in the last 
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few years, as well as the strategies for efficient infill sampling criteria with constraint handling. 

[8, 9]. 

3 PROPOSED APPROACH 

A surrogate-based global optimization method with an adaptive sampling strategy is used, 

called ‘The intelligent Estimation Search with Sequential Learning (IES-SL)’. Support Vector 

Machines for regression (SVMr) are combined with Evolutionary Algorithms (EA) in order to 

perform an efficient adaptive sampling guiding the optimization algorithm towards the most 

promising regions of the design space. The geometry is parameterized with volumetric Non-

Uniform Rational B-Splines which vertical movements are the design variables for this study.  

As can be observed, it comprises two steps: First, the algorithm generates an initial database 

by evaluating a small number of random designs (four in this application study). The initial 

surrogate model is then generated using this reduced database. Then, the algorithm searches for 

the position of the optimum value with the surrogate model to use it as an estimation for the 

real optimum position [1]. The estimated optimum is evaluated using the CFD solver, obtaining 

a new pair [design, cost] that will enrich the database. After that, the surrogate is updated by 

adjusting it to the complete database and the cycle is finished, starting again the search for the 

new sample. When the maximum number of iterations is reached, the optimum design is ob-

tained as the best parameters on the database. In this way, it is ensured that the design obtained 

is optimum with respect to the simulator system (CFD solver) and not only to the surrogate 

model. For more information about the SVMr, EAs and IES-SL readers can consult [6, 7, 10, 

11]. 

4 DEFINITION OF THE OPTIMIZATION PROBLEM 

4.1 Geometry parameterization 

The cylinder grid is deformed through a volumetric b-spline, as shown in Figure 1. The 

design variables are the control points located on the upper and lower side, which can freely 

move in any direction, while the control points located in the middle are kept fixed during 

optimization. In this method, the original geometry is deformed by the movement of control 

points in a similar way than the Free Form Deformation technique (FFD) [12], but in contrast 

to FFD, deformations of the upper-side and lower-side are considered independently one of 

each other, which provides more flexibility. 

The computational surface grid vertices are mapped into the NURBS (Non-Uniform Ra-

tional B-Splines) space through the parametric coordinates, which are previously calculated 

using an appropriate inversion point algorithm [12, 13]). These parametric coordinates are in-

variant throughout the optimization, allowing to recalculate the spatial coordinates at any time 

of the process. A second mapping is performed on the cylinder geometry, by means of a discrete 

uniform rasterization, in order to accurately calculate the volume throughout the optimization. 
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This geometry mapping is done in parallel, independently of the computational grid and it is 

used for handling the volume constraints within the optimization process.   

  

 

Figure 1. Parameterization of the cylinder. 2D (left) and 3D (right) views. 

4.2 Test cases definition  

The approach is applied to the aerodynamic shape optimization of a cylinder parameterized 

as shown in section 4.1, with the problem formulation defined on Table 1. The location of the 

design parameters on the surface of the test case was previously displayed in Figure 1. A sym-

metric movement of the upper and lower face control points was imposed. The objective func-

tion was to minimize drag while preserving, at least, the 80% of the baseline volume, which 

was considered the minimum valid volume due to structural requirements. This volume preser-

vation was implemented as a strong penalization of the objective function, which allows ex-

ploring the whole design space even if several geometries will finally be discarded by the 

optimization algorithm. Furthermore, DV’s are allowed to move ± 60% of their initial value in 

both directions, horizontal and vertical. 

 

M Re 

0,05 1214 

0,1 2490 

0,15 3735 

0,2 4980 

0,25 6226 

0,3 7471 

0,35 8716 

0,4 9961 

Table 1. Problem formulation (the Re reference length considered is the cylinder diameter) 

The optimization study was performed for a range of Mach numbers from 0.05 and 0.4, 

meaning a Reynolds below 105 (Table 1), ensuring laminar boundary layer separation condi-

tions, as can be observed in Figure 2 [15]. This problem formulation allows using laminar flow 

conditions, therefore reducing the required computational cost (compared with turbulence 

RANS modeling).  

4095



Esther Andrés-Pérez, Daniel González-Juárez, Mario J. Martin-Burgos, Leopoldo Carro-Calvo and Sancho Salcedo-Sanz 

 

 

 

Figure 2. Drag coefficient versus Reynolds number for an infinite circular cylinder [15]. 

4.3 Drag minimization of a 3D cylinder for different flow conditions  

In this section, the approach is applied to the drag minimization and results are displayed in 

Table 2 & Table 3. In particular, Table 2 shows the optimization results regarding the whole 

objective function (which includes both drag and volume values considerations), where it can 

be seen that the total reduction of the objective function was between 73-77% of its original 

value. Table 3 shows the drag coefficient values of the original and optimized geometries. It 

can be observed that the drag was minimized between 92-94% of its original value in the base-

line geometry (depending on the Mach number considered), while at the same time fulfilling 

the constraints imposed in the volume. 

M 0.05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 

OFbaseline 0,39248 0,30123 0,26356 0,24341 0,23173 0,22510 0,22124 0,21910 

OFoptim 0,08918 0,07525 0,06751 0,06385 0,06031 0,05784 0,05740 0,05817 

%Improvement 77,28% 75,02% 74,39% 73,77% 73,97% 74,31% 74,05% 73,45% 

Table 2. Optimization results (OF means objective function) 

M 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 

C-dragbaseline 0,95672 0,84988 0,80707 0,78708 0,77838 0,77638 0,77909 0,78578 

C-dragoptim 0,06924 0,05842 0,05241 0,04957 0,04682 0,04490 0,04472 0,04570 

C-dragoptim_p  0,05391 0,04875 0,04507 0,04353 0,04162 0,04033 0,04057 0,04189 

C-dragoptim_v 0,01532 0,00967 0,00733 0,00604 0,00520 0,00457 0,00415 0,00381 

%Improve-
ment 

92,76% 93,13% 93,51% 93,70% 93,98% 94,22% 94,26% 94,18% 

Table 3. Optimization results (C-drag minimization) 

From the mentioned tables, it can be also observed that the gain in the objective function 

tends to decrease with the Mach number while, on the other hand, the improvement in the drag 

coefficient tends to increase. This behavior is explained because the optimizer proposes thinner 

shapes as the Mach number increases, producing a geometry with less drag, but also less volume, 

which is penalized in its global objective function. 

The optimized shapes returned by the optimizer are displayed in Figure 3. For clearness, 

only the baseline geometry and the optimized geometries for Mach numbers 0.10, 0.20, 0.30 
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and 0.40 are shown. It can be observed that all the optimized shapes are similar except the one 

returned for Mach=0.40, where the optimizer returns a geometry with a wider area near the 

trailing edge, in order to ensure the volume constraint, even when it will affect the drag value. 

 

 

Figure 3. Comparison of baseline and optimal shapes for Mach numbers 0.10, 0.20, 0.30 and 0.40 

Finally, ¡Error! No se encuentra el origen de la referencia. shows the Mach number 

contours of the original (left) and optimized (right) geometries for each of the Mach numbers 

considered in the range [0.05, 0.4]. As expected, a pair of vortices (bigger with the Mach num-

ber) appear downstream of the baseline geometry. In the optimized shapes, the cross-sectional 

area has been reduced as much as the geometric and volume constraints allows. This explains 

the vortices disappearance and the drag reduction, as expected from the aerodynamic point of 

view, since the objective function was to reduce drag while maintaining the volume. Some 

asymmetric effects can be seen in the Mach contours of the optimized geometries, which are 

due to asymmetric volume grid deformation since the geometric surface deformation is propa-

gated to the volume. 
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M=0.05 

  

 
 

 

 

 

Figure 4. Mach contours and velocity streamlines of the baseline and optimized geometries for Mach numbers 

0.05 and 0.1 
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M=0.15 

  

 
 

 

 

Figure 5. Mach contours and velocity streamlines of the baseline and optimized geometries for Mach numbers 

0.15 and 0.2 
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Figure 6. Mach contours and velocity streamlines of the baseline and optimized geometries for Mach numbers 

0.25 and 0.3 
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M=0.35 

  

 
 

 

Figure 7. Mach contours and velocity streamlines of the baseline and optimized geometries for Mach numbers 

0.35 and 0.4 

 

M=0.40 
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5 CONCLUSION 

This article presented the application of a global optimization strategy using the Intelligent 

Estimation Search with Sequential Learning (IES-SL) and the hybridization of EA and SVMr 

to the aerodynamic shape optimization of a clean cylinder representing a simple model of the 

landing gear master cylinder. The objective of this work was to demonstrate the feasibility of 

the proposed strategy to reach optimal configurations that are far from the baseline geometry. 

This approach allows extensively exploring the design space, without any dependence on 

an initial solution and expensive CFD computations, since it uses a metamodel (based on SVMr) 

to estimate the aerodynamic coefficients. At the same time, accuracy is ensured, because in 

each iteration the result is validated with the CFD tool. 
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Abstract. All optimization methods depend on some form of internal model of the problem 

space they are exploring. To build such a model when there are many variables can require a 

large number of analyses to be carried out. Because of these difficulties, it is now common in 

aerospace design to manage explicitly the building and adaptation of the internal surrogate 

model used during optimization. However, it is very difficult to know a priori which surrogate 

model is more suitable for a specific application. As described above, in this paper, the 

performance of two surrogate models, Kriging and Support Vector Regression is compared in 

order to choose the most suitable model targeting a future application within an aerodynamic 

shape optimization process. The selected test case was the DPW wing, from the AIAA Workshop 

on drag prediction, also used in the GARTEUR AD-AG52 on “Surrogate-based global 

optimization for aerodynamic shape design.” 
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1 INTRODUCTION 

 

Surrogate modeling is referred to a group of techniques that make use of previously 

obtained sampled data in order to build surrogate models, which aims to predict the value 

of variables at untried points in the design space. These groups of techniques, also known 

as metamodeling, have been developed from many different disciplines including 

statistics, mathematics, computer science, and various engineering disciplines.  

Different techniques have been studied in the literature, which can be classified in 

three categories [1] such as, (I) the response surface method (RSM) with optimization of 

coefficients for a base function, (II) the neural network approximation (NN) and (III) an 

estimation method using observed values at sampling locations to compute an estimated 

value at an optional location in a solution space. Although these all can be used practically 

in industry, each method has different features that have to be taken into account before 

the application to a particular problem. Several comparisons among those methods have 

been previously described in [2–5]. 

The RSM is one of the very effective approaches for modeling with small numbers of 

design variables and its solution space is not too complex, being successfully used in 

some optimization problems in engineering [6–9]. However, the RSM usually requires 

the assumption of the order of the approximated base function because the approximation 

process is performed using the least-square method for the function coefficients. 

Therefore, the knowledge of the qualitative trend of the entire design space is required by 

the designer, which will sometimes be difficult to determine. This problem will be 

highlighted as the number of design variables increases. 

NN has been used for solving difficult modeling problems [10-11]. NN generally 

minimizes the sum of the approximation errors at sampling locations, so that the accuracy 

of the approximated value at a sampling location is relatively high. However, NN implies 

high computational cost incurred for learning stage and the need for the designer to be 

skilled or experienced in using NN [2]. 

Estimation methods such as Kriging (KR) [12–15], Radial Basis Functions (RBF) [16] 

or Support Vector Regression (SVR) [17,18] usually require more sample points in the 

solution space than RSM or NN within the training stage, in order to perform an accurate 

estimation [19,20]. However, they allow to build complex high non-linear models [21-

24] which it is very difficult to achieve with RSM or too complex with NN. They are then 

found to be a valuable tool to support a wide scope of activities in modern engineering 

design such as chemical and materials engineering [25,26], and other fields such as 

agriculture and ecology [27,28], medicine [29-31] and economy [32]. 

One of the main model applications can be found within the aerospace field [17]. Thus, 

the use of long running expensive simulations in design leads to a fundamental problem 

when trying to compare and contrast various competing options: is very expensive from 

the computational resources point of view to analyze all combinations of variables in the 

design space. This problem is particularly highlighted when using optimization schemes. 

All optimization methods depend on some form of internal model of the problem space 

they are exploring. To build such a model when there are many variables can require large 

numbers of analyses to be carried out. Because of these difficulties it is now common in 

aerospace design to manage explicitly the building and adaptation of the internal model 

used during optimization (Surrogate Based Optimization, SBO). 

Thus, the performance obtained by the surrogate model in SBO schemes is very 

important in order to minimize the number of iterations in the design process, which 

implies expensive Computational Fluid Dynamics (CFD) simulations in a high 
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performance computer (HPC). However, it is very difficult to know a priori which 

surrogate model is more suitable for a specific application.  

 

This paper presents a comparison between two surrogate techniques, KR and SVR, for 

the prediction of aerodynamic coefficients and objective functions for different aircraft’s 

wing geometries, in order to have more information for choosing the most suitable 

surrogate for this kind of application. In order to perform this comparison, both KR and 

SVR have been applied to the DPW-wing [33, 34], used by the GARTEUR AD/AG-52 

Group [35], with the same initial database composed of different geometries. This 

database is derived with high fidelity CFD simulations for use in the initial stage of the 

design process. V-fold cross validation [36, 37] has been used to compare both methods. 

This paper is structured as follows: Section 2 briefly describes both surrogate model 

theory, sampling and model validation methodologies used in this research. Section 3 

describes the database to be modeled by the surrogate models. Section 4 presents the 

comparative results between KR and SVR obtained in the application to the wing case 

described in the previous section. Finally, Section 5 presents the conclusions. 

 

2 SURROGATE MODEL THEORY 

This section briefly describes KR and SVR surrogate modelling. Then, the sampling 

and the model validation methodologies used in this research are stated. 

2.1 Kriging (KR) 

This section recalls the basic KR algorithm, as an interpolation technique. Full 

description of KR algorithm and modifications of basic implementation can be found in 

[1,16,19-21,24]. 

KR can be seen as a two-step process. First, a regression function f(x) is constructed 

based on the data, and, subsequently, a Gaussian process Z(x) is constructed through the 

residuals [1,38]. Thus, the prediction �̂�(𝒙) in x is derived by: 

 

�̂�(𝒙) =  𝑓(𝒙) + 𝑍(𝒙)      (1) 

 

where f(x) is a regression function and Z is a Gaussian process with mean 0, variance σ2 

and a correlation matrix ψ. 

 

Depending on the form of the regression function Kriging has been prefixed with 

different names. Simple Kriging assumes the regression function to be a known constant, 

i.e., f(x)=0. A more popular version is Ordinary Kriging, which assumes a constant but 

unknown regression function f(x), and Universal Kriging, which assumes other more 

complex trend functions such as linear or quadratic polynomials. In general, Universal 

Kriging treats the trend function as a multivariate polynomial: 

 

𝑓(𝑥) =  ∑ 𝛼𝑖

𝑝

𝑖=1

𝑏𝑖(𝑥) 

(2) 

where 𝑏𝑖(𝒙) are 𝑖 = ( 1 …  𝑝) basis functions and α = ( α1 …  α𝑝) denotes the 

coefficients. Therefore, the regression function captures the general trend of the data and 

the Gaussian Process interpolates the residuals. However, selecting the correct regression 

function is a difficult problem, hence, the regression function is often chosen constant. 
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Consider a set of n samples, X = { x1, … , xn } in d dimensions and associated function 

values, y = { y1, … , yn }. Essentially, the regression part is encoded in the n x p model 

matrix F: 

𝐹 =  (

𝑏1(𝒙𝟏) ⋯ 𝑏𝑝(𝒙𝟏)

⋮ ⋱ ⋮
𝑏1(𝒙𝒏) ⋯ 𝑏𝑝(𝒙𝒏)

) 

 

while the stochastic process is mostly defined by the n x n correlation matrix ψ, 

 

ψ =  (
ψ(𝒙𝟏, 𝒙𝟏) ⋯ ψ(𝒙𝟏, 𝒙𝒏)

⋮ ⋱ ⋮
ψ(𝒙𝒏, 𝒙𝟏) ⋯ ψ(𝒙𝒏, 𝒙𝒏)

) 

 

where ψ(𝒙𝒊, 𝒙𝒋) is the correlation function. ψ(𝒙𝒊, 𝒙𝒋) is parametrized by a set of 

hyperparameters θ, which are identified by Maximum Likelihood Estimation (MLE) 

[39,40]. Subsequently, the prediction mean and prediction variance of KR are derived, 

respectively, as, 

𝜇(𝒙) =  𝑀𝛼 + 𝑟(𝒙) ψ−1 (𝐲 − 𝐅α)    (3) 

 

𝑠2(𝒙) =  σ2 ( 1 − 𝑟(𝒙) ψ−1𝑟(𝒙)𝑇 +  
1−( 𝐹𝑇 ψ−1𝑟(𝒙)𝑇 

 𝐹𝑇 ψ−1 𝐹
)   (4) 

 

where 𝑀 = ( 𝑏1(𝒙) … 𝑏𝑝(𝒙) ) is the model matrix of the predicting point x, and 𝑟(𝒙) =

( ψ(𝒙, 𝒙𝟏) …  ψ(𝒙, 𝒙𝒏) ) is an 1 x n vector of correlations between the point x and the 

samples X. The process variance σ2 is given by: 

 

 σ2 =
1

n
 (𝐲 − 𝐅α)𝑇 ψ−1 (𝐲 − 𝐅α)     (5) 

and the coefficients of the regression function, 𝛼, are determined by Generalized Least 

Squares (GLS) by: 

𝛼 =  ( 𝐹𝑇 ψ−1 𝐹 )−1 𝐹𝑇 ψ−1𝒚     (6) 

 

2.2 Support Vector Machines (SVR) 

SVR can be solved as a convex optimization problem using kernel theory to face non-

linear problems. Thus, SVR consider not only the prediction error but also the 

generalization of the model [17,41]. 

SVR consist of training a model with the form 𝑦 = 𝑤𝑇𝜙(𝑥) + 𝑏 given a set of 

parameters 𝐶 = {(𝑥𝑖, 𝑦𝑖)}, 𝑖 = 1,2, … , 𝑙}, to minimize a general risk function of the form: 

𝑅[𝑓] =
1

2
||𝑤||

2
+

1

2
𝐶 ∑ 𝐿(𝑦𝑖, 𝑓(𝑥))

𝑙

𝑖=1

 (7) 

 

where 𝑤 controls the smoothness of the model, 𝜙(𝑥) is a function of projection of the 

inputs space 𝑤 to the feature space, 𝑏 is a parameter of bias, 𝑥𝑖 is a feature vector of the 

input space with dimension 𝑁, 𝑦𝑖 is the output value to be estimated and 𝐿(𝑦𝑖, 𝑓(𝑥)) is 

the loss function selected. In this study, the 𝐿1 support vector regression (𝐿1 − 𝑆𝑉𝑅) is 

used, 
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𝐿(𝑦𝑖, 𝑓(𝑥)) = |𝑦𝑖 + 𝑓(𝑥𝑖)|𝜀 (8) 

In order to train this model, it is necessary to solve the following optimization problem: 

min (
1

2
||𝑤||

2
+

1

2
𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

+ 𝜉𝑖
∗) (9) 

subject to: 

yi − 𝑤T 𝜙(𝑥) − 𝑏 ≤  𝜀 + 𝜉𝑖, 𝑖 = 1, … , 𝑙 

−yi + 𝑤T 𝜙(𝑥) + 𝑏 ≤  𝜀 + 𝜉𝑖
∗, 𝑖 = 1, … , 𝑙 

𝜉𝑖𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑙 

(10) 

To do this, a dual form is usually applied, obtained from the minimization of the Lagrange 

function that joins the function to minimize and the constraints: 

max (−
1

2
∑ (𝛼𝑖 + 𝛼𝑖

∗)(𝛼𝑗 + 𝛼𝑗
∗)𝐾(𝑥𝑖 + 𝑥𝑗)

𝑙

𝑖,𝑗=1

−  𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗) +

𝑙

𝑖=1

∑ 𝑦𝑖(𝛼𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

) 

(11) 

subject to the following constraint: 

∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑙

𝑖=1

= 0, 𝛼𝑖 , 𝛼𝑖
∗ ∈ [0, 𝐶]  (12) 

In addition to the constraints, also must be taken in account the Karush-Kuhn-Tucker 

conditions and obtain the bias value. In the dual formulation, the apparition of the kernel 

function 𝐾(𝑥𝑖 , 𝑥𝑗) must be emphasized, which is equivalent to the scalar 

product⟨𝜙(𝑥𝑖 )|𝜙(𝑥𝑗)⟩. In this case, the kernel function is a Gaussian function: 

𝐾 = exp (−𝛾 · ||𝑥𝑖 − 𝑥𝑗||
2

)  (13) 

The final form of the regression model depends on the Lagrange multipliers 𝛼𝑖 , 𝛼𝑖
∗, 

following the expression: 

𝑓(𝑥) =  ∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑙

𝑖=1

 (14) 

In this way, SVR model depends on three parameters, 𝜀, 𝐶 and 𝛾. (I) 𝜀 parameter controls 

the error margin permitted for the model, as can be seen in equations (9) and (10). (II) 𝐶 

parameter controls the number of outliers allowed on the optimization of the equation (3). 

Finally, (III) 𝛾 parameter determines the Gaussian variance for the kernel. Depending on 
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the selection of these values, the model can have different performance. To obtain the 

best SVR performance, search of the most suitable combination of these three parameters 

must be performed, usually by means of cross validation techniques over the training set, 

as explained in Section 2.4. To reduce the computational time of this process, different 

methods have been proposed in the literature to reduce the search space related to these 

parameters. In this case, it has been applied the one developed in [41], which has proven 

to require pretty short search times. 

 

2.3 DESIGN OF EXPERIMENTS (DOE) METHODOLOGY 

Both KR and SVR surrogate models have been applied to the database generated with 

the DLR TAU solver [42] for a set of initial wing geometries. Therefore, a suitable Design 

of Experiments (DoE) technique, that envelopes the design space, is required. 

When the initial database is produced by a deterministic computer code, as opposed to 

a physical experiment or stochastic analysis, a given input will always yield the same 

output, because there is no measurement error or other random sources of noise. Under 

these conditions, the DoE need only be space-filling [43,44] so that all regions of the 

design space Ω as a subset of ℝ𝑁𝑆, being NS the number of independent variables of the 

design space, are sampled. A commonly used space-filling design is Latin hypercube 

sampling (LHS) [45], which has been used as sampling methodology in this study in order 

to perform the comparison between KR and SVR. In LHS, each input parameter is 

partitioned into N equally spaced sections. Each input parameter is sampled once in each 

section, resulting in a column vector 𝒙i containing NS different values of the input 

parameter. The column vectors for each input parameter are arranged side by side into a 

matrix and the components of the vectors are then randomly reordered. The resulting 

training set 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑁} is a matrix of size N x NS, known as a Latin hypercube, 

in which each row corresponds to a different training case defined by the input 

parameters. 

In this particular case, NS columns correspond to the z-axis coordinates of different 

control points distributed by the wing surface to optimize. N sets of coordinates are 

derived, in order to obtain the aerodynamic coefficients by means of CFD and, in this 

way, perform the initial database in order to train in the same conditions both surrogate 

models. 

2.4 METRICS FOR MODEL VALIDATION 

In most real applications, only a limited amount of data is available, which leads to the 

idea of splitting the data: part of data, the training sample, is used for training the 

algorithm, and the remaining data, the validation sample, is used for evaluating the 

performance of the algorithm. The validation sample can play the role of “new data”.  

A single data split yields a validation estimate of the risk, and averaging over several 

splits yields a cross-validation estimate. V-fold CV (VFCV) was introduced in [46] and 

now is widely used as a model validation technique within surrogate modelling. Thus, the 

methodology used in this paper to obtain the model performance in order to obtain the 

surrogate models comparison is, for a training set 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑁}, the following: 

a. Partition the training set 𝑋 into 𝐾 independent equal-sized subsets 𝑋𝑘, 
  𝑘 = 1, … , 𝐾 such as 𝑋 = 𝑋1 ∪ 𝑋2 ∪ … ∪ 𝑋𝐾; 

b. for 𝑘 = 1, … , 𝐾 

i. train the prediction model on 𝑋(−𝑘) = 𝑋\𝑋𝑘 ; 

ii. test the prediction model on 𝑋𝑘 

4109



D. Viúdez-Moreiras, E. Andrés-Pérez, D. González-Juárez and M. J. Martin Burgos 

 

iii. ∀ 𝒙𝑖 ∈ 𝑋𝑘 compute the values of �̂�−𝑘(𝑖)(𝒙𝑖), 

iv. Derive the quadratic error between the real 𝑦𝑖 and the estimated 

�̂�−𝑘(𝑖)(𝒙𝑖) values: 

 SE= (𝑦𝑖 − �̂�−𝑘(𝑖)(𝒙𝑖))
2

      (15) 

c. Estimate the following metrics: 
i. Mean Squared Error of �̂� 

𝑀𝑆𝐸(�̂�) =
1

𝑁
∑ (𝑦𝑖 − �̂�−𝑘(𝑖)(𝒙𝑖))

2
𝑁
𝑖=1    (16) 

ii. R-squared 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖)2

𝑖

∑ (𝑦𝑖−�̅�𝑖)2
𝑖

     (17) 

    where �̅� is the mean value of the true values 𝑦𝑖. 

 

iii. Pearson’s correlation coefficient 

 

𝜌 =
𝑁 ∑ 𝑦𝑖�̂�−𝑘(𝑖)(𝑥𝑖)𝑁

𝑖=1 −∑ 𝑦𝑖 ∑ �̂�−𝑘(𝑖)(𝑥𝑖)𝑁
𝑖=1

𝑁
𝑖=1

√𝑁 ∑ 𝑦𝑖
2𝑁

𝑖=1 −(∑ 𝑦𝑖
𝑁
𝑖=1 )

2
√𝑁 ∑ [�̂�−𝑘(𝑖)(𝑥𝑖)]

2𝑁
𝑖=1 −[∑ �̂�−𝑘(𝑖)(𝑥𝑖)𝑁

𝑖=1 ]
2
  (18) 

 

The MSE metric gives an estimate of the expected test error by using the squared error 

as loss function. It ranges between zero and plus infinity, smaller values indicate smaller 

errors. The Pearson’s correlation coefficient ranges between -1 and 1 and provides the 

ratio between the covariance of 𝑦 and �̂� and the product of their standard deviations. In 

other words, it measure the tendency of �̂� to vary in function of 𝑦. If 𝜌 is close to zero, 𝑦 

and �̂� are weakly correlated and, hence, is expected that the prediction model �̂� badly 

reproduces the variation of the function 𝑦. On the other hand, if 𝜌 approaches the unity 

value, a strong correlation between the variables and the two datasets 𝑦𝑖 and  �̂�−𝑘(𝑖)(𝑥𝑖) 

is obtained. If 𝜌 is close to -1, anti-correlation exists and is expected that, for positive 

variation of 𝑦, negative variation of �̂� is obtained. 
 

 

3 AERODYNAMIC DATABASE USED FOR SURROGATE COMPARISON 

This section describes how the database, to be used for comparison and validation 

purposes, was generated from the DPW-W1 wing baseline geometry [33], whose 

reference quantities for this wing are displayed in Table 1.  

 

Reference quantity Value 

Sref (wing reference area) 290,322 mm2 

Cref (wing reference chord) 197.55 mm 

Xref (relative to the wing root leading edge) 154.24 mm  

b/2 (semi span) 762 mm 

AR  (aspect ratio, AR=b2/Sref ) 8 
Table 1: Reference quantities for the DPW wing 

 

As can be seen in Fig. 1, in order to generate the database, the DPW geometry was 

parameterized by a 3D control box, with 5 control points in direction u, 10 in direction v 

and 5 in direction w. The parametric u direction corresponds to the y-axis, the v direction 

to the x-axis, and the w direction to the z-axis. The vertical displacement of those control 
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points, which correspond to the design space, set up on the aerodynamic surface. The 

wing is split in three profile sections and the transition between sections is linear. Each 

section has 6 active control points for the upper side and other 6 for the lower side, which 

are independent (the movement of a control point at the upper side does not modify the 

lower side and vice versa), with a total of NS=36 design variables for the whole wing. 

 

Figure 1: DPW wing parameterization 

The initial database X was performed according to the methodology described in 

previous sections, executing 180 cases for position changes of the 36 design control points 

by means of DLR TAU solver in a High Performance Computer platform (HPC). Each 

design variable has been constrained by its minimum and maximum values that will be 

chosen as +/- 20% of their original value. In addition, other constraints, such as airfoil’s 

maximum thickness and beam constraints have been defined, according to [34]. The flow 

conditions are Mach = 0.80, angle of attack 0 deg and Reynolds, 5*106. 

The design goal for the SBO is to achieve a geometry with the minimum drag, while 

maintaining the specified aerodynamic constraints: 

1. Prescribed constant lift coefficient (𝐶𝐿 = 𝐶𝐿
0). 

2. Minimum pitching moment: 𝐶𝑀 ≥ 𝐶𝑀
0 . 

3. Drag penalty: If constraint in minimum pitching moment is not satisfied, the 

penalty will be 1 drag count per 0.01 increment in 𝐶𝑀. 

 

Therefore, an objective function was derived, based on the lift, drag and pitching 

moment aerodynamic coefficients obtained by the DLR TAU code, and the previously 

mentioned constraints [17]. This objective function will be modeled by the surrogate 

model in order to predict new values within the SBO scheme. 

 

 

 

 

4 EXPERIMENTAL AND COMPARATIVE RESULTS 

 

Surrogate modeling has been applied to the database X. As described in Section 3, this 

database has N=180 samples and NS=36 columns, with a +/-20% variation of the design 

variables from the base geometry. Thus, both KR and SVR methodologies have been 
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applied in the same conditions, validating them with 10-fold CV as described in Section 

2.4. 

Figure 2 shows the R2 comparison between KR and SVR. In the KR case, R2 is 0.8239, 

62.7% greater than the value obtained with SVR (0.5064). This difference can be seen to 

a lesser extent in the Pearson coefficient stated in Table 2, with a 27.6% of variation. In 

addition, the MSE and the RMSE have a difference of 58.3% and 35.4% respectively. 

 

 

 

Figure 2: R2 comparison between KR (above) and SVR (below). 

 

Thus, KR seems to offer a better performance than SVR, applied to the DPW 

prediction of the objective function. This study allows to select the best surrogate model 

between SVR and KR based on experimental data, due to it is very difficult to know a 

priori which surrogate model is more suitable for a specific application.   

 

 

y = 0.6649x + 0.3853
R² = 0.8239
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  SVR KRIGING Difference 

MSE 7.8093E-03 3.2580E-03 58.3% 

RMSE 8.8370E-02 5.7079E-02 35.4% 

Pearson 0.7116 0.9077 27.6% 

R2 0.5064 0.8239 62.7% 

Table 2: Summary of performance comparison between KR and SVR. 

 

5 CONCLUSIONS AND FUTURE WORKS 

This paper describes the comparison between two different surrogate models, Kriging 

(KR) and Support Vector Regression Machines (SVR), for prediction of the objective 

function within different aerodynamic configurations, with the aim of aerodynamic 

optimization. In order to carry out this comparison, both KR and SVR have been applied 

to the same training database generated with CFD simulations for different geometries. 

V-fold cross validation has been used to compare both methods, showing the better 

performance obtained by KR methodology. 

Future work will focus on studying the relationship between the model performance 

and the number of design variables and other parameters with influence, in order to 

minimize the required CFD simulations for the initial database, and therefore speed up 

the design process. 
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Abstract. Over the last years, complex design and optimization engineering problems became
more and more demanding in computational time. Despite the advances made in computer
science, these demands are prohibitive in some cases, in many engineering fields such as fluid
mechanics and heat transfer. Aiming to alleviate this, surrogate response models are introduced
and coupled with optimization drivers to deliver cheaper and accurate optimization results. The
present paper investigates the performance of various surrogate-assisted optimization schemes
applied to a heat transfer modeling problem of a ribbed surface. In this study, performance
of different surrogate models such as Kriging, Co-Kriging and Support Vector Regression in
different evolutionary optimization schemes are assessed. These schemes employ the aforemen-
tioned surrogate models coupled with different infill strategies depending on the availability of
an uncertainty measure for the prediction. The results show that Co-Kriging model provides
accurate results in comparison with the other metamodels while the computational time is re-
duced by more than 50%. It is illustrated that the combination of multi-fidelity approaches and
sophisticated infill strategies can provide accurate predictions at a reduced computational cost.
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1 INTRODUCTION

Design and optimization problems in various engineering fields, are becoming more com-
plex. The growing need of taking into account the highest number of design variables possible,
stretches the capabilities of the existing computational systems. In this context, the Curse of
Dimensionality is an important issue that has to be addressed. Use of surrogate evaluation mod-
els, is a well-known practice to alleviate the computational time of expensive response models.
Surrogates can mimic the underlying behaviour of the response function providing a cheap and
alternative evaluation tool. The prediction quality of these models relies on their effective train-
ing process and the proper selection of the respective training samples. The coupling of those
models with optimization schemes, called Surrogate Based Optimization (SBO), results in more
computationally efficient strategies.

The seminal study of Jones et al. [1] used Kriging models as a predictor during the op-
timization cycles. The validation of the surrogate model is crucial during the optimization
process to assess the results derived and it is thoroughly discussed at [1]. Emmerich et al.
[2] described an SBO scheme for both single and multi-objective optimization problems. The
proposed scheme in that study employs Gaussian Random Field Meta-models (GRFM) and a
novel procedure of selecting the infill training points from the offspring generated. It should
be noted here that this infill strategy requires an uncertainty measure of the surrogate model's
prediction. Particularly for the multi-objective problems, the Expected HyperVolume Improve-
ment (EHVI) suggested, uses balanced exploration and exploitation of the metamodel in order
to screen out the less promising individuals during the generational process. Thus, the proposed
scheme results in a more computationally efficient optimization strategy. Building more on
the EHVI concept, Hupkens et al., in studies [3, 4], suggest a faster computational procedure
for the calculation of the EHVI scores which replaces the initial Monte-Carlo integration tech-
nique. Empirical comparisons showed that this new implementation results in minimum five
times faster computations for two or three dimensional objective spaces. It is worth to men-
tion here that the Couckuyt et al. [5] algorithm remains the fastest one for the computation of
hypervolume-based Probability of Improvement in higher dimensional objective spaces (more
than three dimensions).

The use of SBO schemes for heat transfer modeling problems is of great importance, since
the application range is very wide and the numerical response models can be relatively costly.
Particularly, the heat transfer optimization of ribbed surfaces is important for the cooling per-
formance of turbine blades. The wide application field of turbomachinery justifies the rigorous
research activity, aiming to define the optimal geometrical and operational configuration of
these ribbed surfaces. Labbé [6] described the flow topology and heat transfer performance of
a ribbed surface with constant-sized ribs using Large Eddy Simulation. Recirculation zones on
the top and behind the rib were identified while the enhancement of heat transfer performance
is maximum in front of the ribs, as a result of the highly unsteady secondary eddies. The nu-
merical optimization of a ribbed channel was performed in Yang and Chen study [7], where
Response Surface Method (RSM) and evolutionary-based optimizer were coupled in order to
derive the optimized scenarios. The design variables used in the study were the height and
thickness of the ribs and the pitch of the channel while the formulated objective was based on
the Nusselt number distribution and the pressure drop. Results showed an apparent increase of
the channel's performance particularly for the staggered ribs design scenario. Xie et al. [8] in-
vestigated numerically five different configurations of variable sized ribs in a three-dimensional
internal cooling channel flow. The different scenarios employ half-sized and same-sized ribs
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aiming to define the configuration that results in the maximum Nusselt number distribution and
the minimum pressure drop. Despite the fact that no optimizer is used in this study, the numer-
ical investigation provides useful insights for the ribbed surface set up and a detail description
of the heat transfer modeling case.

In the present study, a nominal geometrical configuration based on [8] is used to build a SBO
test case and investigate its performance using CFD evaluations and different surrogate models.
Thus the purpose of this research study is twofold: investigate and assess the performance of the
SBO in heat transfer problems and derive further optimized configurations of the ribbed surface
under examination. Therefore, the suggested optimization framework will be first described and
validated against a well-known analytical test case. Then, the numerical optimization results
regarding the heat transfer test case will be presented and thoroughly discussed.

2 A SURROGATE-BASED OPTIMIZATION FRAMEWORK

The implementation of the optimization test cases is based on the development of a modular
SBO framework. Each of the implemented modules performs a specific group of tasks. The
modular approach enhances the flexibility while it makes easier the addition of new features.
The necessary modules are enlisted in Table 1 along with a short description.

Modules Short Description
Base module: Co-ordinates the actions of different modules
Parameters module: Defines the input parameters for the selected test case
Evaluation module: Implements the proper fitness function for the selected test

case
Sampling module: Performs the initial sampling plan
Optimize module: Implements the optimization schemes. Contains the opti-

mizer as well
Infill module: Implements different infill strategies
Surrogate module: Implements the training, activation and assessment actions

of different surrogate models

Table 1: Short description of the SBO framework modules.

The developed framework can function in two basic modes: the offline and the online meta-
model training modes. The simpler offline training strategy uses an initial Design of Experiment
in order to train the surrogate model and uses it instead of the expensive fitness function during
the optimization cycles. The method does not use infill points to update the metamodel. Thus,
the quality of the predictions and the final optimization outcome is based on the sampling tech-
nique and the initial amount of samples. This primitive strategy is simple to implement and
suitable for very low dimensional problems. The more sophisticated and currently used online
mode is starting with a Design of Experiment (DoE) which serves as the population of the first
generation as well. These design samples are calculated then, employing the exact response.
The resulting data is used as input training data for the respective surrogate model. The trained
meta-model is activated during the optimization cycles, aiming to calculate the fitness values of
the offspring created. An infill strategy, such as EHVI [2], is employed to assess the offspring
and to choose the best individual which will be evaluated through the expensive response. Af-
terwards this individual is added to the training database and the metamodel is updated. In this
way the model evolves during the optimization cycles which results into better prediction at the
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regions of interest (near the optimum). This strategy is based on a smaller initial DoE and it is
depending strongly on the performance of the infill strategy.

The described task-flow of the framework is based on the implementation of specific tech-
niques for each modules. Starting from the sampling strategy, the Optimal Latin Hypercube
Design [9] was used due to its improved space-filling properties. A simple genetic algorithm
is used to maximize the Morris-Mitchell criterion and derive the optimized sampling plan. The
optimizer employed in all the test case is the extensively used Nondominated Sorting Genetic
Algorithm Type-II (NSGA-II) [10], which is suitable for multi-objective problems. The respec-
tive algorithm was created with the Distributed Evolutionary Algorithms in Python (DEAP)
library [11]. The infill strategy used here is the classical Expected Improvement (EI) in case of
a single-objective problem and the described EHVI [2] method for the bi-objective problems. A
hypervolume-based indicator is used as well in order to be coupled with specific metamodels.
The combinations of the surrogates and the infill strategies are explained in the next paragraph.
The surrogate model part contains models such as Kriging [12] and its variant Co-Kriging [13]
and Support Vector Regression [14]. The implementation of the Co-Kriging model was based
on the work of Le Gratiet et al. [15] as it was implemented originally at the Open Multidisci-
plinary Design Analysis and Optimization (OpenMDAO) [16] framework in Python. The use
of Co-Kriging requires the definition of variable levels of fidelity. The model is based on the
correlation of those levels which eventually bring advantages in computational efficiency.

Finally it should be mentioned that the different surrogate models are capable to work with
specific infill strategies. This is resulting in two different optimization schemes for the online
mode. The Kriging and Co-Kriging models are combined with EHVI [2-4] infill criterion which
accounts balanced exploration and exploitation of the surrogate models. The SVR metamodel
is combined with the hypervolume indicator which in the case of a bi-objective problem trans-
lates to the area of the produced Pareto front and purely exploits the surrogate model. The
reason behind those choices is that, unlike the SVR models, the Gaussian metamodels can eas-
ily provide an uncertainty measure of their prediction. Thus the balance between exploration
and exploitation of the surrogate is allowed.

3 TEST CASES DESCRIPTION

3.1 Analytical Test Case

The implementation of different techniques and its coupling is not a trivial task. In order to
ensure the proper functioning of those techniques, a validation test case should be implemented.
Therefore, the DTLZ2 [17] bi-objective analytical test case is chosen to validate and assess the
performance of the multi-objective SBO framework. The mathematical formulation of the test
case is described as follows:

f1(~x) = (1 + g(~x)) cosx1
π

2
(1)

f2(~x) = (1 + g(~x)) sinx1
π

2

where:

g(~x) =
∑
xi∈~x

(xi − 0.5)2 (2)

0 ≤ xi ≤ 1, i = 1, 2, . . . , Ndimensions
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3.2 Heat Transfer Test Case

3.2.1 Design Variables and Computational Domain

The heat transfer test case aims to improve the heat transfer modeling of a surface with
variable-size ribs placed in an internal cooling passage. The detailed description of this test case
is based on [8], where five different geometric configurations are investigated. The configuration
selected to be further optimized is demonstrated in Fig. 1(one-pitch length).

Figure 1: Nominal geometric configuration.

As shown in Fig. 1, the design variables of the test case are the height, width and placement
length of the ribs resulting in a six-dimensional design space. The height and the pitch of the
ribbed channel are 50 mm and 100 mm in respect, with a hydraulic diameter of 50 mm as
well. The computational domain is restricted in one-pitch length in order to decrease the mesh
size and accelerate the numerical evaluations. The proper definition of the periodic boundary
conditions based on [8] ensures the quality of the CFD results.

3.2.2 Overview of the Numerical Procedure

The CFD evaluations aim to calculate the Nusselt number distribution on the ribbed surface
and the pressure drop between the inlet and the outlet of the channel. A two-dimensional, steady
and turbulent flow process is assumed to calculate these values. The standard k-ε turbulence
model with standard wall-function is selected. It should be added that the selected model is
not the most suitable for the heat transfer problems. The present study though focuses more on
the performance of the SBO scheme. Therefore, the balance between the quality of the results
and the simplicity of the model is deemed proper for these purposes. The pressure-velocity
coupling is achieved through SIMPLE method, while second order schemes are used for the
spatial discretization. Finally the absolute convergence criterion is set at 10−6.
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3.2.3 Boundary Conditions

As it was stated previously periodic boundary conditions are used for this problem. The
periodicity is defined at the inlet and the outlet of the channel. The mass flow rate is used as a
parameter. In order to mimic the heat transfer in an internal cooling passage, constant heat flux
of 1000W/m2 is applied to the entire walls of the channel, including the ribs. The air enters the
passage at a temperature of 300K and a Reynolds number of 20000. The turbulence intensity
level is defined as 5% at the inlet.

3.2.4 Definition and Validation of Different Fidelities

As it was mentioned in section 2, the multi-fidelity approach is employed in order to use the
Co-Kriging model and benefit from its advantages. Therefore, it is important to describe two
different levels of fidelity which serve as a cheap and expensive response. The first cell distance
is defined as the basic criterion to derive the alternative levels of fidelity, since the heat transfer
phenomena are intense at the boundary layers. Table 2 summarizes the main aspects of the two
defined fidelities.

Lower Fidelity Higher Fidelity
First Cell Distance [m] 1e-04 1e-05

Mesh Size 15500 32000
Computational Time* [min] 7 30
*The computational time was defined on an 4-cores Intel Xeon E3-1200

Table 2: Main characteristics of the various fidelities.

In addition, the distributions of Nusselt number on the ribbed surface and the pressure drop
along the vertical axis are presented in Fig. 2. It is apparent that the lower fidelity simulations
overpredict Nusselt number distribution while the pressure drop is underpredicted.

Figure 2: Nusselt number (left) and pressure drop distribution (right) for different fidelities.

In the extent of this definition, the numerical approaches used are validated against the ve-
locity profiles obtained from [8]. An indicative comparison plot is shown in Fig. 3. The overall
agreement is good. The underprediction of the velocities is due to the fact that the present study
employs a two-dimensional simulation while [8] uses a three-dimensional approach.
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Figure 3: Comparison of derived velocity profiles to the reference CFD data.

4 RESULTS AND DISCUSSION

4.1 Analytical Test Case Results

The DTLZ2, bi-objective analytical test case is used mainly to test and validate the function
of the developed framework. The validation is performed using a six-dimensional version of
the DTLZ2 problem (same size of the design space as the heat transfer test case), while one
surrogate model per objective is used. It is reminded that the results presented are obtained
using the combinations of Kriging metamodel with the EHVI strategy and SVR surrogate model
with the hypervolume-based indicator. The Co-Kriging model is not used in this test case
since the definition of variable levels of fidelity does not lead to any actual computational time
differences. The model will be investigated in the heat transfer test case where the different
levels of fidelity are properly defined.

A reference Pareto front of the optimized DTLZ2 test case without surrogates employed
is obtained. Fig. 4 compares the Pareto fronts obtained by the described surrogate models
against the reference one. The results presented are obtained after 20 generations. The Kriging

Figure 4: Optimal Pareto fronts obtained with the different optimization schemes.
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surrogate model coupled with the EHVI technique managed to derive an optimal Pareto front
similar to the reference one by calculating 95% less samples. The SVR model along with the
hypervolume-based selection of infill points results in a Pareto front clearly dominated by the
reference Pareto. The reason behind this difference is the infill strategy used. The hypervolume-
based selection only exploits the surrogate model. Thus, the improvement of the surrogates
performance is slower. It is expected that the higher number of samples in the training database
will finally increase the prediction quality. Indeed, the Pareto front obtained for SVR models
trained with higher number of samples is closer to the reference Pareto as it is presented in Fig.
5. It should be mentioned that in this case the SVR training database is 36% bigger than the
Kriging training database.

Figure 5: Reference and SVR obtained Pareto fronts.

The implementation of the analytical test case with the developed framework provides a fast
way to assess different optimization schemes. Therefore, the comparison between the offline
and online training schemes of the surrogate models is described within this test case. The
NSGA-II optimizer with a constant number of twenty generations was employed, while the
Kriging model is selected for the surrogate evaluations. The online training mode allows the
surrogate to start from a small training database and enrich it during the optimization cycles by
selecting the most appropriate infill points. On the contrary, during the offline training mode
the metamodel is trained a priori, with a constant higher number of samples and then is used as
the fitness function. This fact results to the calculation of unnecessary samples which decreases
the overall computational efficiency. The superior performance of the online training mode is
illustrated at Fig. 6.

The online training mode outperforms the offline one in terms of accuracy for almost the
same number of samples. Further increase of the size of the training database, which is trans-
lated to more computational time, will improve the performance of the surrogate trained with
the offline mode. It is proved that the proper selection of the new points, added in the training
database is essential for the performance of the surrogate as a fitness function and for the re-
duction of the final computational cost. The pre-definition of the training database using solely
the initial DoE results in less computationally efficient SBO schemes. The efficiency decreases
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Figure 6: Comparison of online and offline surrogate training modes for the DTLZ2 test case.

more intensively for higher dimensional test cases. Moreover, the prediction accuracy in offline
mode depends more strongly on the morphology of the response. Thus, the use of the online
training mode is clearly recommended.

4.2 Heat Transfer Test Case Results

The goal of this test case is the heat transfer modeling of a ribbed surface placed in an
internal cooling channel. First a reference solution based only on CFD evaluations only is
obtained. This solution is considered as the baseline to determine the most efficient scheme
among the different SBO approaches. One surrogate model per objective approach is employed
in this test case as well. The online training mode of the surrogate is used due to its profound
advantages described in the previous section. The definition of various levels of fidelity for this
test case (section 3.2.3) allows the meaningful assessment of a multi-fidelity surrogate such as
Co-Kriging.

Figure 7: Optimal Pareto fronts obtained with the various surrogate models: a. Kriging, b. Co-Kriging, c. SVR.
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In all the cases, optimal Pareto fronts are well formed and tend to follow the same trends as
the reference Pareto. The Co-Kriging metamodel manages to derive the optimal Pareto front
closer to the reference one. Particularly, the lower part of this Pareto contains individuals which
dominate the respective individuals at the reference front. Those configurations indicate further
improved designs of the ribbed surface. Among Kriging and SVR surrogate models, the latter
present the less dominant Pareto front due to the use of the less efficient hypervolume-based
infill strategy. This is justified from the selection process of the infill points as it was described
for the analytical test case. The points defined from the DoE and the different infill strategies
are presented for each surrogate in Fig. 8.

Figure 8: DoE and Infill design sites: a. Kriging. b. Co-Kriging, c. SVR.

The Co-Kriging metamodel coupled with the EHVI technique manages to capture far more
infill points placed closer to the reference Pareto (towards bottom-right of Fig. 8b) front than
the other two metamodels. Thus, the surrogate model improved its prediction capabilities at the
region of interest, at a reduced computational cost due to the multi-fidelity approach. As it was
expected the SVR model capture the least points at the region of interest. It is clear that more
generations are needed in order to obtain a dominant Pareto front. The additional calculation
time though will lead to a further decrease of the computational efficiency.

Finally, the prediction accuracy of the surrogate models are tested. For each optimal Pareto
front obtained, 30 points are randomly selected to be evaluated through CFD simulations. Then,
the coefficient of determination (R2) is calculated to determine the quality of the prediction:

R2 = 1 −
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
(3)

Table 3 summarizes the prediction performance along with the number of samples in the training
database and the respective computational time.

The computational cost of Co-Kriging surrogate is reduced by 57% and 61% compared to
the Kriging and SVR model respectively. The huge decrease of computational time is due to
the multi-fidelity approach. Among the approximately one hundred samples only twelve of
them are calculated using the higher fidelity. The computational efficiency of the Co-Kriging
is dramatically increased since the lower fidelity simulations require 75% less time. Thus,
the Co-Kriging model coupled with the EHVI method capture the most efficient infill points
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Number of
Samples

Computational Time [min] R2
Nu R2

dP

Kriging 76 2280 0.8775 0.84915
Co-Kriging 101 983 0.8925 0.8603
SVR 83 2490 0.8205 0.9403

Table 3: Performance metrics of the surrogate models.

by consuming the least time. Moreover the performance of the Kriging and SVR models in
terms of computational time is quite close since the size of the final training database is similar.
The quality of the infill points though from the optimization standpoint, is reduced for the SVR
model. Finally, the generalization error for all the surrogate models is sufficiently good. Further
increase of the training database size will improve the quality of the predictions.

5 CONCLUSIONS

The present study described the development of a Surrogate-Based Optimization framework
capable of implementing different optimization strategies. The framework then was used to
optimize the heat transfer modeling of a ribbed surface of an internal cooling channel.

The proper functioning of the model was validated through a benchmark multi-objective an-
alytical test case. The superior performance of the online surrogate training mode against the
corresponding offline mode was proved as well. The results for both test cases showed that the
algorithm is able of approximating the real optimal Pareto front particularly for the case of the
Gaussian models coupled with the Expected HyperVolume Improvement infill strategy. Further-
more, among the Gaussian models, Co-Kriging showed sufficient good prediction capabilities
while the computational time needed was 57% less than the Kriging surrogate model. Thus,
the multi-fidelity surrogate models coupled with a sophisticated infill strategy, which allows
balanced exploration and exploitation of the metamodel, were considered as the best option in
the present study.

Further investigation of the Support Vector Regression (SVR) models regarding the uncer-
tainty measures of their predictions will improve their performance within an optimization
framework. This is suggested as a subject of future research since the performance of the SVR
models within this study and their capabilities in general are quite promising.
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Abstract. This paper presents a methodology for building multi-fidelity surrogate models ba-
sed on Non-Intrusive Proper Orthogonal Decomposition. The proposed strategy aims at fusing
multiple fidelity levels of simulation to improve the quality of surrogate models exploited in au-
tomated optimization loops of industrial-scale problems. A proof of concept is then given on
a mathematical toy example which illustrates the ability of the proposed method to significan-
tly reduce the overall computation cost. A 3D industrial study of a 1.5 stage booster is then
presented to address the scaling capability of the proposed methodology.
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1 INTRODUCTION

Despite huge advances in the high performance computing domain, the integration of high-
fidelity computations, taking up to thousands of CPU hours, into automated optimization loops
still stands as a stumbling block for engineers. The design process being intrinsically multi-
scale, multi-fidelity and multi-disciplinary [1]; the earlier the different scales, fidelities and
disciplines are all integrated in the process, the better the technical solution can be [2, 3].

In this context, multi-fidelity surrogate modeling proposes a promising way to reduce the
computational cost of industrial optimization [4]. The “data-fusion”, also referred to as cor-
rective approach in scaling methods [4, Section 6.1], enables the improvement of surrogate
models [5] at a given computational cost. The most documented multi-fidelity model is the “co-
Kriging” proposed by Kennedy and O’Hagan [6]. This technique has been widely applied to
Multidisciplinary Design Optimization (MDO) [2, 5–11] and allows the enhancement of sparse
high-fidelity information with cheaper low-fidelity data as well as the gradient of the modeled
function [12, 13].

In the meantime, “Reduced-Order Models” (ROM) such as Proper Orthogonal Decomposi-
tion technique (POD) [14] have become very popular and their ability to focus on physical phe-
nomena with highest impact on the performances targeted by the designer [15, 16] fosters their
integration into new optimization strategies such as the “Non-Intrusive POD” (NI-POD) [17].

The aim of this work is to propose a methodology leveraging multi-fidelity computations
during the training phase of an improved NI-POD model. This strategy can be seen as a re-
interpretation of the constrained POD concept [15, 18] dedicated to multi-fidelity surrogate
modeling. The methodology efficiency will be compared to classical NI-POD models as well
as scalar mono- and multi-fidelity coKriging models.

The paper is organized as follows. Section 2 will present the NI-POD concept and the propo-
sed extension. In Section 3, a proof of concept will be given on an academic example. Section 4
introduces the industrial application to illustrate the scalability of the proposed methodology.
Finally, conclusions and perspectives are drawn in Section 5.

2 NON-INTRUSIVE POD

2.1 Classical NI-POD

POD, also known as “Karhunen-Loève expansion”, or Principal Component Analysis (PCA)
was introduced in the context of turbulence by Lumley [19] and allows to approximate high-
dimensional numerical solution’s output space by low-dimensional representation. The NI-POD
methodology consists in building the orthonormal basis which optimally spans training databa-
se simulation’s space and interpolating its coordinates in the basis via data-fitting methods [17].

The POD basis is computed by “snapshots” method [20] based on a Singular Value Decom-
position (SVD) of M centered snapshots of the physical solution corresponding to M distinct
positions Θ in a p-dimensional design space D ⊂ IKp.
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Let’s consider a solver giving the physical response of any configuration in the design space
D,

s̄ : D → IRn

θ → s̄(θ).
(2.1)

The centered data are obtained by substracting the mean response over the training database

s(θ) = s̄(θ) − 1

M

M∑

i=1

s̄(i). Following the formulation introduced in [21], the POD procedure

gives the best projector P(s) on the orthonormal basis Φ contained in the set of snapshots S, in
the sense of the Frobenius norm ‖A‖2F = tr(A>A),

Φ = argmin
Φ

(
‖S− P(S)‖2F

)
, with Φ>Φ = I, (2.2)

and,

P(s) = ΦΦ>s. (2.3)

The POD basis Φ lies in a IRM×n space where M � n. This ROM procedure is usually
associated with a truncating step that removes the less energetic modes yielding a POD basis

Φm in IRm×n, where m < M and characterized by the error ε(m) = 1 −
∑m

i=1 λi∑M
j=1 λj

, where λ

is the vector of monotically decreasing eigenvalues associated with the basis Φ. In the coming
sections, we consider a full basis of size M , for the sake of simplicity.

Denoting α = Φ>s(θ) the coordinate of a given configuration θ in the POD basis, the NI-
POD procedure approximates the vector α ∈ IRM over the whole design space D. Assuming
a good predictive behaviour of the built surrogate model, the NI-POD procedure enables the
engineer for predicting the full vectorial response at any location in D.

s̃(θ) = Φα̃(θ), (2.4)

where ∀i ∈ [[1,M ]], α̃i = α̃i(θ) w αi(θ). It is important to keep in mind that the type of the
surrogate model chosen to approximate the coefficients is critical. Depending on the sampling
method, the variations in the simulation output vector over the design space and on the number
of training samples, different techniques could lead to either good or bad approximation. One
can find a non-exhaustive list of potential models in Forrester et al. [5, Section I.2].

2.2 Proposed multi-fidelity extension to NI-POD based surrogate modeling:

Given the computational cost of industrial simulations, the number of known locations in
the design spaces is usually relatively low reducing the representativeness of the POD basis Φ
over the whole design space D. The integration of multi-fidelity information tends to address
this limitation by improving the basis and the interpolation of the coefficients surrogate models
thanks to cheaper low-fidelity solutions the engineer can compute more intensively. Adapting
the constrained POD modeling method introduced by Xiao et al. [15, 18], we propose to ap-
pend the POD basis with low-fidelity modes projected on the complementary space spanned
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by the high-fidelity data available. In the meantime, we improve the predictive capabilities of
the coefficients surrogate models by increasing the number of constraints they are submitted to.
Indeed, while the sparse high-fidelity projection coefficients are interpolated by the surrogate
models, the higher density of known low-fidelity projection coefficients gives information about
the global trend the surrogate models should follow.

Let’s consider an approximated solution associated with the simulation output of a complex
system characterized by its position in a p-dimensional design space D. Assuming the two
levels of fidelity at hand are lying in spaces with matching dimensions, we can denote the low-
and high-fidelity solutions respectively sL and sH both in IRn,

s : D → IRn

θ → sL(θ)

θ → sH(θ).

(2.5)

We compute the low- and high-fidelity databases SL and SH assuming the solutions s are
already centered as presented in Section 2.1 on two Design of Experiments (DoE) ΘL and ΘH .

SL(ΘL) =



sL1 (θ(1))

...
sLn(θ(1))

· · ·

sL1 (θ(ML))
...

sLn(θ(ML))


 , ∀θ(i) ∈ ΘL

SH(ΘH) =



sH1 (θ(1))

...
sHn (θ(1))

· · ·

sH1 (θ(MH))
...

sHn (θ(MH))


 , ∀θ(i) ∈ ΘH

(2.6)

Usually, the number of low-fidelity experiments will be higher ML > MH , and no ne-
sted sampling is here required to build the DoE’s ΘL and ΘH . One should notice that all the
presented notions are straightforwardly extendable to more than 2 different levels of fidelity.

2.2.1 Multi-fidelity basis

We first seek the best definition of the space spanned by the high-fidelity simulation output
via a QR decomposition,

SH = [Q1 Q2] [R1 0]>. (2.7)

Q1 is an orthonormal basis spanning the high-fidelity image of the high-fidelity DoE while
Q2 is a non-unique description of the complementary space of the space spanned by the basis
Q1.

As the two simulation output spaces are both lying in IRn, we can project the low-fidelity da-
tabase SL onto Q2 and perform an SVD to find the best projector for the low-fidelity information
in the complementary space of the high-fidelity information

VλU> = Q>2 SH . (2.8)
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We define the multi-fidelity POD basis Ψ in Eq. 2.9 as the best projector for the low-fidelity
information with a cancelling constraint on the high-fidelity error

Ψ = [Q1 Q2V] , (2.9)

with Ψ ∈ IR(ML+MH)×n.

2.2.2 Multi-fidelity coefficients surrogate model

Once the multi-fidelity POD basis Ψ is created, the final steps of the classical NI-POD pro-
cedure 2.1 are repeated. Given two databases, the information used for building the surrogate
model is tagged by its level of fidelity. We first project the low- and high-fidelity databases
SL and SH on the basis Ψ. This step enables the construction of data-fitting models on every
real-valued coordinate of the vectors of coefficients α.

The surrogate modeling techniques dealing with multi-fidelity databases are of two kinds.
The category of nested sampling based models does not restrain the high-fidelity database to
any subset of the low-fidelity database. This category being the less used in the literature, we
will focus on multi-fidelity surrogate models based on nested DoE’s such as classical corrective
models. We first project the two nested databases SL and SH onto Ψ and use the low-fidelity
coefficients of projection to create a low-fidelity Radial Basis Function Network (RBFN) model
α̃L(θ), ∀θ ∈ D. Then we build another RBFN model of the difference between low- and high-
fidelity coefficients and define the coefficients approximation as the sum of the two previous
models. The proposed model is an additive scaling model defined in Eq. 2.10 where the models
δ̃H−L(θ) and α̃L(θ) are one hidden-layer artificial neural networks

α̃H(θ) = δ̃H−L(θ) + α̃L(θ) ∀θ ∈ D . (2.10)

3 VALIDATION ON MATHEMATICAL FUNCTIONS

In this section, the developed multi-fidelity NI-POD model is used to approximate vectorial
analytical functions with different training sets. Various mathematical functions are referen-
ced in the literature for the validation of optimization methodologies, but none, to the authors
knowledge, exhibits a referenced low-fidelity definition and a multi-dimensional output space.
We decided to derive our analytical test case from the multi-fidelity examples in [7] and [22,
Section 3.5] as detailed in the coming section.

3.1 Mathematical definition

We assume two solvers associated with the functional solutions in Eq. 3.2. A 2-dimensional
“design” space D is created by parameterizing the low- and high-fidelity solutions defining a
1-dimensional function

f : D → F ⊂ C∞[0, 1]

θ → flθ(x)

θ → fhθ(x)

(3.1)

with
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flθ(x) = 0.5
(
(θ1x− 2)2 · sin(12x− 4)

)
+ θ2(x− 0.5) + 5,

fhθ(x) = 0.5(θ1x− 2)2 · sin(12x− 4) + sin(θ2 cos(5x)).
(3.2)
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Figure 3.1: Correlation between low- and high-fidelity functions

Two vectorial solutions sL and sH are extracted from the functions flθ(x) and fhθ(x) by
sampling the [0, 1]-interval with 100 points evenly spaced. A first 10-level full factorial DoE
Θvalid can show the correlation between low- and high-fidelity levels represented by its Pear-
son’s correlation coefficient [23] painted on Figure 3.1a. We can distinguish different regions
in the design space, some with good agreement (Fig. 3.2b) between low- and high-fidelity so-
lutions and others where low- and high-fidelity are completely decorrelated (Fig. 3.2a), while
the reference point (Fig. 3.1b) inspired by [7] and [22, Section 3.5] presents an average corre-
lation level. As illustrated on Figure 3.2, the 2− σ area (green shaded) of the coKriging model
f̃coKg(x) is highly dependent on the low- to high-fidelity correlation intensity.
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Figure 3.2: Range of correlations between low- and high-fidelity functions
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3.2 Design of Experiments

Multiple nested Latin Hypercube DoE’s (ΘH ⊂ ΘL) are created to assess the predictive
performance of the proposed multi-fidelity model. Figure 3.3 shows a possible repartition of
training points for a 2 + 10 samples multi-fidelity DoE in the design space. The next section
will present the results obtained with the proposed methodology in comparison with classical
NI-POD models.
As the definition of a Latin Hypercube Sampling (LHS) is not unique, a statistical analysis of
the impact of the training set on the model performances will be given for models trained on
100 different LHS for each couple (ML,MH).
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Figure 3.3: Multi-fidelity DoE in the design space D with (ML,MH) = (10, 2)

3.3 Results and classical NI-POD comparison

The performances of the proposed approach have to be evaluated in two phases. First, we
want to assess the impact of the low-fidelity information gathered all over the design space on
the quality of the multi-fidelity POD basis Ψ with respect to two representative bases:

• Φ : POD basis trained from SH(ΘH)

• Φ∀ : POD basis trained from SH(ΘL)

The POD basis Φ can be seen as the computational cost equivalent basis assuming the low-
fidelity solution is almost free whereas the POD basis Φ∀ is the “best” basis we would have if
we could afford intensive use of the high-fidelity solver.

3.3.1 Comparison of POD basis quality

Considering the DoE illustrated on Figure 3.3, the three basis Ψ, Φ, and Φ∀ are built and the
absolute L2-error of the POD reconstruction of the solution SH(Θvalid) is shown on Figure 3.4.
The represented errors are expressed as following for any sample point in the design space D
computed with the high-fidelity solver:

• εΦ(θ) =
√
‖sH(θ)−ΦΦ>sH(θ)‖2

‖sH(θ)‖2

• εΦ∀(θ) =
√
‖sH(θ)−Φ∀Φ>

∀ sH(θ)‖2
‖sH(θ)‖2

• εΨ(θ) =
√
‖sH(θ)−ΨΨ>sH(θ)‖2

‖sH(θ)‖2
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One can notice that the information introduced into the multi-fidelity basis construction pro-
cess globally reduces the absolute L2-error in the design space (Fig. 3.4c). This is due to the
enrichment of the basis with orthogonal modes taken from the low-fidelity solutions supposed
to be relatively close to the high-fidelity solution. Adding these modes in the complementary of
the high-fidelity output space cancels any contamination of the basis by incoherent information
from the low-fidelity solutions. We can also see (Fig. 3.4b) that for this 2-dimensional design
space, 10 samples are sufficient to drop drastically the reconstruction error.

The proposed multi-fidelity POD basis tends to reduce the reconstruction error in both badly
and strongly correlated low- and high-fidelity levels areas. This reduction of reconstruction
error has to be confirmed after the surrogate modeling of the POD coefficients step.
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Figure 3.4: Absolute L2-error of the POD reconstruction over D

3.3.2 Comparison of NI-POD models quality

Once the POD basis is built, the training points are projected onto the basis and surrogate
models are created to fit the coefficients databases. The chosen surrogate models are RBFN
with tuned kernel and widths. For the proposed methodology, the surrogate model described on
Equation 2.10 is used for each dimension of the vector of coefficients α.
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Figure 3.5 presents the prediction error, hereafter detailed, of the three NI-POD models
compared:

• Φα̃(θ) : NI-POD model trained on SH(ΘH),

with scalar mono-fidelity RBFN for α̃i ∀i ∈ [[1,MH ]]

• Φ∀α̃∀(θ) : NI-POD model trained on SH(ΘL),

with scalar mono-fidelity RBFN for α̃i ∀i ∈ [[1,ML]]

• Ψα̃+
H,L(θ) : NI-POD model trained on SH(ΘH) ∪ SL(ΘL),

with scalar multi-fidelity RBFN (Eq. 2.10) for α̃i ∀i ∈ [[1,MH +ML]] .

We can see on Figure 3.5b that for this test case, the 10 samples are sufficient to build a
very good approximation of the POD coefficients as well. The maximum error observed in the
lower-left corner of the design space on Figure 3.5a appears reduced on the Figure 3.5c as low-
fidelity information is added to the model in regions where the low- to high-fidelity correlation
coefficient is higher than 0.4 (Fig. 3.1a).
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Figure 3.5: Absolute L2-error of the NI-POD prediction over D
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It is also important to keep in mind that the projection of the low-fidelity information on the
complementary of the high-fidelity output space tends to reduce the impact of the POD coeffi-
cients associated with low-fidelity related modes as their contribution at high-fidelity location
is cancelled. This behaviour is responsible for the non-pollution of the multi-fidelity NI-POD
model in the top-left corner where both low- and high-fidelity are available and bad correlation
coefficient is observed on Figure 3.1a.

3.3.3 Statistical analysis

To validate the impact of the proposed methodology in terms of computational cost, we pro-
pose to estimate the mean absolute L2-error ε̄ over the entire design space depending on the
size of the DoE’s ΘH and ΘL and on the NI-POD based surrogate modeling technique. The
construction of any DoE given couple of sizes (MH ,ML) being non-unique, we build 100 in-
dependent DoE’s for every couple (MH ,ML) ∈ [[2]]× [[2, 28]]. Figure 3.6 shows the decreasing
trend of ε̄Φ∀α̃∀ while ε̄Φα̃ remains statistically stable meaning that the 100-DoE’s samples are
sufficient to determine coherent conclusions for the study case at hand. We can also observe
that the mean error associated with the proposed surrogate model ε̄Ψα̃+

h,l
starts decreasing with

added low-fidelity training points before stabilizing after ML > 8. Once all the high-fidelity
information lying in low-fidelity solutions is added to the POD basis, the computation of new
low-fidelity experiments becomes useless and new high-fidelity computations are required to
reduce further the global error of the surrogate model.

Statistical errors have also been compared for higher number of high-fidelity training snap-
shots and led to the same conclusions. These results are not illustrated because of too fast drop
in the mean error due to the fact that the design spaceD is low-dimensional in this case (p = 2).
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Figure 3.6: Evolution of the mean error ε̄ over D depending on the modeling technique

To investigate further the performance of the proposed modeling technique, we intend to test
its efficiency on an industrial application presented hereafter.
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4 INDUSTRIAL APPLICATION AND RESULTS

Aerodynamic design of Low-Pressure Compressors (LPC) is of major interest for jet engine
manufacturers. The economical, technical and environmental constraints applied to turbofan
designs force engineers to make a tradeoff between stage loading and both component efficiency
and stability. Based on previous work presented by Lepot et al. [24], we propose to improve
classical NI-POD surrogate models by adding low-fidelity information from coarse mesh based
simulations.

4.1 Test case presentation

The test case presented in [24] consists in a surrogate-assisted optimization of a 1.5 stage
booster based on 3D RANS simulations. The computational domain contains the inlet vane, the
first rotating row and its following stator as illustrated on Figure 4.1. The deformed geometries
are restrained to the rotating row, where the blade stacking as well as the hub axisymmetric
profiling are parameterized respectively by 2 and 17 parameters. The geometric deformations
are performed by either an in-house blade shape modeler for the stacking modifications or
CATIA v5R21 for the hub profiling. 3-level multigrid meshes are generated by Autogrid v9r1.1
and 3D RANS simulations are computed by elsA v3.3p1 [25]. Both high- and low-fidelity
computations are conducted with k − ε turbulence model without any near-wall treatment.

High-fidelity simulations are based on a structured mesh of about 5 million points preserving
a y+ value below 1 along blades and endwalls. The convergence is accelerated thanks to a 2-
level multigrid V-cycling leading to an overall run time around 2 hours for both design and
near stall configurations on 32 Intel Xeon E5-2680v3 computation cores of Cenaero’s cluster.
Low-fidelity computations are performed on the mesh χlf , obtained by isotropic coarsening of
the high-fidelity mesh χhf , leading to execution time around 15 minutes.

Figure 4.1: Low- and high-fidelity computational domains with isocontour of surface mesh
coefficient y+ and ρ distribution on mixing planes

4.2 Snapshot definition

We chose to approximate the conservative variables of the 3D computation in 4 sections de-
fined by the inlet, outlet and inter-rows mixing planes. The definition of every mixing plane is
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orthogonal to the revolution axis of the engine which avoid important mesh interpolation efforts.

As explained in Section 2.2, the low- and high-fidelity solutions lie in spaces with matching
dimensions. The high-fidelity solution is therefore considered only at low-fidelity mesh point
locations (“coarsening” step) to train the multi-fidelity NI-POD model and to compute scalar
indicators such as isentropic efficiency. Figure 4.2 shows the impact of “coarsening” the high-
fidelity solution on the computation of isentropic efficiency at design point η. We can see that
considering high-fidelity solution only on the low-fidelity mesh χlf has a negligible impact on
the isentropic efficiency. Indeed, the efficiency computed from the “coarsened” high-fidelity
solution ηhf [χlf ] (green points) is very close to the one integrated from the computed high-
fidelity solution ηhf (red line). On the contrary, the isentropic efficiency integrated from low-
fidelity solutions ηlf (blue points) presents non-negligible error with respect to the perfect match
line (red line).

ηfine [−]

η c
oa
rs
e
[−

]

ηhf[χlf]

ηlf

perfect match

Figure 4.2: Low- to high-fidelity correlation of the efficiency for the 1.5 stage compressor at
design configuration

4.3 Design of Experiments and multi-fidelity NI-POD

Given the overall computational cost of high-fidelity solutions, we decided to perform a
100-points DoE to train the proposed multi-fidelity NI-POD models as well as the POD and
data-fitting based models used for validation purposes. Both the low- and high-fidelity solu-
tions of the 100 training points are computed enabling a pseudo-statistical study of the impact
of high-fidelity training samples on models performances. The success rate of the overall com-
putation chain is about 60% removing all CATIA regeneration failures and all meshes with
minimal skewness angle lower than 3°.

The presented results only concern the design point performance approximations. By ran-
domly selecting high-fidelity solutions for a part of the training DoE we seek the impact of a
priori sampling on the surrogate model quality. Different models are compared at predicting the
high-fidelity design point efficiency computed for a 200-points validation DoE:

• Reconstruction capabilities assessment :
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1. POD model built on the high-fidelity training set only ΦΦ>s

2. POD model built on a high-fidelity training set computationally equivalent to the
multi-fidelity database ΦceΦ

>
ces

3. multi-fidelity POD model built on the high-fidelity training set enhanced by all low-
fidelity training solutions ΨΨ>s

• Prediction capabilities assessment :

1. NI-POD model built on the high-fidelity training set only Φα̃

2. NI-POD model built on a high-fidelity training set computationally equivalent to the
multi-fidelity database Φceα̃ce

3. multi-fidelity NI-POD model built on the high-fidelity training set enhanced by all
low-fidelity training solutions Ψα̃+

4. mono-fidelity tuned radial basis function network built on the high-fidelity training
set η̃

5. mono-fidelity tuned radial basis function network built on a high-fidelity training set
computationally equivalent to the multi-fidelity database η̃ce

4.4 Results

Figure 4.3 shows a comparison of the reconstruction capabilities of all POD-based models.
One can see that the reconstruction error of all 3 models (ΦΦ>s, ΦceΦ

>
ces, and ΨΨ>s) is very

low as the circles are close to the perfect match line (in red). This means that the POD basis
contains already (MH ≈ p, where D is p-dimensional) all the modal information needed to
reproduce the conservative variables distributions of the 110 successfully computed samples
in the validation DoE. Note that the reconstruction capability of a POD based model is totally
useless for a “real world” application as projecting a solution on the POD basis first requires the
expensive computation it is derived from.
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Figure 4.3: Computed- to modeled-efficiency correlation for POD-based models reconstruction

On the contrary, the predictive capabilities of NI-POD based models present more differen-
ces depending on the chosen approach (see Fig. 4.4a). The integration of low-fidelity points for
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the training step increases the quality (correlation coefficients on Fig 4.4) of the proposed mo-
del with both respect to classical NI-POD models and mono-fidelity scalar RBF-based models
(Fig. 4.4b). We can see on Fig. 4.4a that the green points (associated to the isentropic efficien-
cy prediction of the proposed model) are closer on average to the perfect match line than the
blue and red points (associated to the isentropic efficiency prediction of classical NI-POD mo-
dels). The same observation can be made for mono-fidelity RBFN based models (see Fig. 4.4b).
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Figure 4.4: Comparison of predictive capabilities of NI-POD and radial basis functions based
models

As mentioned earlier, we try to study the impact of the initial high-fidelity training set ΘH

on the models quality. Table 1 shows that the proposed methodology is responsible on average
for an increase of the model quality and tends to limit the impact of the initial DoE.

Pearson’s coefficient (µ) Pearson’s coefficient (σ) CPU cost (µ)

PO
D ΦΦ>s 0.9913 0.0311 10.7

ΦceΦ
>
ces 0.9996 0.0008 17.7

ΨΨ>s 1.0000 0.0000 16.6

N
IP

O
D Φα̃ 0.0586 0.1611 10.7

Φceα̃ce 0.0803 0.1558 17.7
Ψα̃+ 0.1816 0.0588 16.6

R
B

F η̃ 0.0707 0.1573 10.7
η̃ce 0.0763 0.1491 17.7

Table 1: Mean and standard deviation of Pearson’s correlation coefficients for different models
trained with 50 different ΘH of given mean costs

As the selection of high-fidelity training points is non-uniformly random, the overall cost of
training points computation is not constant. The mean value of training CPU costs is given in
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Table 1, and shows that despite its higher mean training cost, the “computationally equivalent”
high-fidelity trained NI-POD model presents lower quality that the proposed multi-fidelity mo-
del. This is due to higher coverage of the design space with low-fidelity samples improving
globally the model quality.

5 CONCLUSIONS AND PERSPECTIVES

One can consider non intrusive-POD models as better integrators of physics than classical
data-fitting based models. In the context of surrogate-assisted optimization, this leads to better
insight in the relation between design parameters and performance indicators and similarly be-
tween parameters and the global system behaviour. Based on this assumption, the current paper
has presented an extension of non-intrusive POD to multi-fidelity design. The proposed metho-
dology leverages relatively high density of low-fidelity solutions in the design space to enhance
both the POD basis and the surrogate models of coefficients of classical NI-POD models. First
implementation of the presented technique has been tested on an analytical test case inspired
by coKriging related articles [7, 22] and an industrial test case of a 1.5-stage low-pressure com-
pressor [24].

The proposed model efficiency has been compared to classical NI-POD models and mono-
fidelity RBFN-based models. The multi-fidelity NI-POD model significantly improved both the
POD basis representativeness and the NI-POD predictive capabilities on the analytical test case.
The results showed the contribution of low-fidelity samples in the prediction error of the model.
At the same time, the potential limit in error reduction due to the lack of correlation between
low- and high-fidelity solutions in some regions of the design space has been revealed.

The prediction error reduction, obtained from added low-fidelity information, has also been
verified on the industrial scale problem in Section 4. The models performances have been com-
pared on the isentropic efficiency at design point showing again the impact of densely spaced
low-fidelity information. Despite relatively low correlations observed, the results showed a real
potential of the proposed method to reach the objective of starting an optimization with DoE
samples as large as the problem dimensionality (MH ≈ p).

Some issues remain to be addressed concerning the building methodology itself as well as so-
me questions remain opened on the industrial application presented. The question of truncation
is one of the cornerstones of NI-POD based approximation and is totally opened when dealing
with multi-fidelity POD models. The impact of truncation has to be questionned especially for
problems where only a few modes are needed but highly non-linear behaviour is observed for
projection coefficients. The impact of snapshot definition is also to be investigated. In the pre-
sented test case, the stacking deformation incited us to post-process conservative variables only
on mixing planes. Because of relatively important distances between rows and diffusion, the
physical complexity of wake and secondary flows can vanish and be missed in the integrated
snapshots. The extension of the proposed study to other performance indicators and off-design
configurations would allow more precise comparison with the results highlighted in [24].

In terms of general perspectives, a comparison with Kriging or coKriging models could be
considered in future work where none is presented in this study because of the hyper-parameters
optimization cost in high-dimensional design space. Last but not least, the integration of the
proposed methodology in an automated optimization loop has also to be performed and would
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check the validity of the given observations for higher correlation coefficients needed for a
successfull surrogate-assisted optimization.

Acknowledgements

The present work was partly founded by the Association Nationale de la Recherche et Te-
chnologie. The authors would like to thank Snecma and Techspace Aero from the SAFRAN
Group for their support and permission to publish this study and especially Ir. Stephane Hier-
naux and Ir. Jean Coussirou for their technical support in this research project.

References

[1] E. Tromme, O. Brüls, J. Emonds-Alt, M. Bruyneel, G. Virlez, and P. Duysinx. “Di-
scussion on the optimization problem formulation of flexible components in multibody
systems”. In: Structural and Multidisciplinary Optimization 48.6 (2013), pp. 1189–1206.

[2] A. March and K. Willcox. “Constrained multifidelity optimization using model cali-
bration”. In: Structural and Multidisciplinary Optimization 46.1 (May 2012), pp. 93–
109.

[3] A. J. Keane. “Wing optimization using design of experiment, response surface, and data
fusion methods”. en. In: Journal of Aircraft 40 (July 2003), pp. 741–750.

[4] A. J. Keane and P. B. Nair. Computational Approaches for Aerospace Design: The Pru-
suit of Excellence. John Wiley & Sons, 2005.

[5] A. I. J. Forrester, A. Sóbester, and A. J. Keane. Engineering Design via Surrogate Mo-
delling : A Practical Guide. John Wiley & Sons, 2008.

[6] M. C. Kennedy and A. O’Hagan. “Predicting the output from a complex computer code
when fast approximations are available”. In: Biometrika 87.1 (Jan. 2000), pp. 1–13.

[7] A. I. J. Forrester and A. J. Keane. “Recent advances in surrogate-based optimization”. In:
Progress in Aerospace Sciences 45.1-3 (Jan. 2009), pp. 50–79.

[8] Y. Kuya, K. Takeda, X. Zhang, and A. I. J. Forrester. “Multifidelity surrogate modeling
of experimental and computational aerodynamic data sets”. In: AIAA Journal 49.2 (Feb.
2011), pp. 289–298.

[9] D. J. Toal and A. J. Keane. “Efficient multipoint aerodynamic design optimization via
cokriging”. en. In: Journal of Aircraft 48.5 (Sept. 2011), pp. 1685–1695.

[10] L. Huang, Z. Gao, and D. Zhang. “Research on multi-fidelity aerodynamic optimization
methods”. en. In: Chinese Journal of Aeronautics 26.2 (Apr. 2013), pp. 279–286.

[11] Z.-H. Han, S. Görtz, and R. Hain. “A Variable-Fidelity Modeling Method for Aero-Loads
Prediction”. English. In: New Results in Numerical and Experimental Fluid Mechanics
VII. Ed. by A. Dillmann, G. Heller, M. Klaas, H.-P. Kreplin, W. Nitsche, and W. Schröder.
Vol. 112. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer
Berlin Heidelberg, 2010, pp. 17–25.

[12] Z.-H. Han, R. Zimmermann, and S. Görtz. “A new cokriging method for variable-fidelity
surrogate modeling of aerodynamic data”. In: Proc. 48th AIAA Aerospace Sciences Mee-
ting Including the New Horizons Forum and Aerospace Exposition. AIAA, Jan. 2010.

[13] Z.-H. Han, S. Görtz, and R. Zimmermann. “Improving variable-fidelity surrogate mo-
deling via gradient-enhanced Kriging and a generalized hybrid bridge function”. In:
Aerospace Science and Technology 25.1 (Mar. 2013), pp. 177–189.

4144



Benamara T., Breitkopf P., Lepot I. and Sainvitu C.

[14] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, Coherent Struc-
tures, Dynamical Systems and Symmetry. Second. Cambridge Books Online. Cambridge
University Press, 2012.

[15] M. Xiao, P. Breitkopf, R. F. Coelho, P. Villon, and W. Zhang. “Proper orthogonal decom-
position with high number of linear constraints for aerodynamical shape optimization”.
In: Applied Mathematics and Computation 247.0 (2014), pp. 1096–1112.

[16] R. Filomeno Coelho, P. Breitkopf, and C. Knopf-Lenoir. “Model reduction for multidi-
sciplinary optimization - application to a 2D wing”. In: Structural and Multidisciplinary
Optimization 37.1 (2008), pp. 29–48.

[17] M. Guénot, I. Lepot, C. Sainvitu, J. Goblet, and R. Filomeno Coelho. “Adaptive sampling
strategies for non-intrusive POD-based surrogates”. In: Engineering Computations 30.4
(Jan. 2013), pp. 521–547.

[18] M. Xiao, P. Breitkopf, R. F. Coelho, C. Knopf-Lenoir, P. Villon, and W. Zhang. “Con-
strained Proper Orthogonal Decomposition based on QR-factorization for aerodynamical
shape optimization”. In: Applied Mathematics and Computation 223.0 (2013), pp. 254–
263.

[19] J. L. Lumley. “The structure of inhomogeneous turbulent flows”. In: Atmospheric tur-
bulence and radio propagation. Ed. by A. M. Yaglom and V. I. Tatarski. Nauka, 1967,
pp. 166–178.

[20] L. Sirovich. Turbulence and the Dynamics of Coherent Structures, Part1: Coherent Struc-
tures. Vol. 45. Quarterly of Applied Mathematics 3. Brown University, Division of Ap-
plied Mathematics, Oct. 1987, pp. 561–571.

[21] B. Raghavan, L. Xia, P. Breitkopf, and P. Villon. “Towards simultaneous reduction of bo-
th input and output spaces for interactive simulation-based structural design”. In: Com-
puter Methods in Applied Mechanics and Engineering 265 (July 2013), pp. 174–185.

[22] L. Le Gratiet. “Multi-fidelity Gaussian process regression for computer experiments”.
PhD thesis. Université Paris-Diderot-Paris VII, Oct. 2013, 306pp.

[23] K. Pearson. “Mathematical Contributions to the theory of evolution. III. Regression, He-
redity, and Panmixia”. In: Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 187 (1896), pp. 253–318.

[24] I. Lepot, T. Mengistu, S. Hiernaux, and O. De Vriendt. “Highly loaded LPC blade and
non axisymmetric hub profiling optimization for enhanced efficiency and stability”. In:
ASME Turbo Expo 2011: Turbine Technical Conference and Exposition. Vol. 7. Jan.
2011, pp. 285–295.

[25] L. Cambier, S. Heib, and S. Plot. “The Onera elsA CFD software : input from research
and feedback from industry”. In: Mechanics & Industry 14.3 (Apr. 2013), pp. 159–174.

4145



ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

EVOLUTIONARY AERODYNAMIC SHAPE OPTIMIZATION
THROUGH THE RBF4AERO PLATFORM

Dimitrios H. Kapsoulis1, Varvara G. Asouti1, Kyriakos C. Giannakoglou1, Stefano
Porziani2, Emiliano Costa2, Corrado Groth3, Ubaldo Cella3 and Marco E. Biancolini3

1National Technical University of Athens (NTUA), School of Mech. Eng.,
Parallel CFD & Optimization Unit, Athens, Greece

e-mail: jim.kapsoulis@gmail.com, vasouti@mail.ntua.gr, kgianna@central.ntua.gr

2 D’Appolonia S.p.A.
Viale Cesare Pavese 305, 00144 Rome, Italy

e-mail: {stefano.porziani, emiliano.costa}@dappolonia.it

3 University of Rome Tor Vergata, Dept. of Enterprise Engineering
Via Politecnico 1, 00133, Rome Italy
e-mail: biancolini@ing.uniroma2.it

Keywords: Aerodynamic Optimization, Metamodels, Evolutionary Algorithms, Radial Basis
Functions, Mesh Morphing.

Abstract. This paper demonstrates a way of solving industrial aerodynamic shape optimiza-
tion problems using the RBF4AERO platform, developed in the framework of the EU–funded
RBF4AERO project. The platform combines optimization algorithms (stochastic and gradient–
based ones), a mesh morphing tool based on Radial Basis Functions (RBFs) and various eval-
uation tools (CFD, CSD, etc). In this paper, the Evolutionary Algorithms (EAs) based tool as-
sisted by metamodels trained on a sampling performed during the Design of Experiment phase
is used along with a CFD evaluation tool. The use of Response Surface Models (RSM) signifi-
cantly reduces the number of CFD runs required to reach the optimal solution(s), while the use
of RBF–based mesh morphing avoids re–meshing prior to each CFD–based evaluation. In op-
timization problems, the platform starts by selecting a number of individuals to undergo CFD–
based evaluations. The latter constitute the training patterns for the RSM which is, then, used
as a low-cost evaluation tool within the EA–based optimization. ”Optimal” solutions found
by the EA–based search exclusively based on the trained metamodel are then re-evaluated by
means of the CFD tool. The database of already evaluated individuals is updated, the RSM is
re–trained and the EA–based optimization is repeated. The optimization terminates when con-
vergence criteria related to the RSM prediction accuracy are met or the computational budget
is exhausted. The optimization of an ultra-light aircraft and that of the DrivAer car model for
minimum drag are showcased. In all cases presented, the simpleFoam solver of OpenFOAM is
used to evaluate candidate solutions.
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1 INTRODUCTION

During the last decades, Evolutionary Algorithms (EAs) have widely been applied to shape
optimization problems. Though EAs can easily accommodate any evaluation software as a
black–box tool, they ask for a great number of evaluations to reach the optimal solution(s)
which often makes their utilization in optimization problems prohibitively expensive, especially
in industrial problems with excessive computational cost per evaluation. A known remedy
to this problem is the use of surrogate evaluation models or metamodels, leading to the so–
called metamodel–assisted EAs (MAEAs). Metamodels replace the exact evaluation tool, thus
reducing the total number of evaluations required to reach the optimal solution(s).

MAEAs can be classified to on–line and off–line trained ones, based on whether the meta-
model training takes place during the evolution or not. On MAEAs with on–line trained meta-
models, the EA relies upon the interleaving usage of the problem–specific (to be considered as
the high–fidelity) evaluation tool and the metamodel. The entire EA population can be evalu-
ated with any of these tools, [1, 2], by switching either periodically or based on some criteria.
Another option is to pre–evaluate all the generation members on the metamodel and use the
high–fidelity tool only for the most promising, according to the metamodel, individuals out
of them [3, 4, 5, 6]. Metamodels used can be of either local or global support. On the other
side, off–line trained metamodels usually rely on a single global metamodel and a sampling
technique, often referred to as Design of Experiments (DoE), [7] which defines the appropriate
training patterns. Once the metamodel has been trained, this becomes the only evaluation tool
during the EA-based search.

In the RBF4AERO platform, developed in the framework of the EU–funded RBF4AERO
project, the optimization algorithm relies on off–line trained metamodels. In particular, a
polynomial-based Response Surface Model (RSM), trained on appropriately selected samples
in the design space, is implemented.

Another important feature of the platform is the mesh morphing tool. Generally, mesh mor-
phing techniques are based on shape parameterization, which can parameterize the surface along
with the surrounding nodes of the interior mesh. These techniques allow the interior of the com-
putational mesh to be deformed, avoiding, thus, costly re-meshing. Methods like Radial Basis
Functions (RBFs) [8, 9] and volumetric B-splines or NURBS [10] can provide the required pa-
rameterization and mesh deformation. The RBF4AERO platform makes use of a morphing tool
implementing RBFs, [11]. A number of parameters controlling the positions of groups of RBF
control points are used as design variables. Though the RBF4AERO platform may accommo-
date several CFD tools, for the applications presented in this paper the simpleFoam solver of
the OpenFOAM is used, since we are dealing with low speed applications.

In what follows, the basic features of the platform are described and, then, this is used for
the re–design/shape optimization of an ultra–light aircraft and a car model.

2 OPTIMIZATION THROUGH THE RBF4AERO PLATFORM

The EA–based optimization algorithm of the RBF4AERO platform is summarized below:

1. Define the RBF shape modifications that require a specific set–up and a steerable para-
metric mesh.

2. Sample the design space with a DoE technique.

3. Evaluate the above samples on the high–fidelity (herein CFD) tool, after appropriately
morphing a pre–existing computational mesh using the RBF–based morpher tool. Store
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the so–computed objective function value(s) in the database (DB), paired with the corre-
sponding values of the design variables.

4. Train the RSM using the DB entries as training patterns.

5. Perform EA–based optimization, exclusively based on evaluations on the RSM.

6. Re–evaluate ”optimal” solution(s) resulting from step 5 on the exact evaluation tool and
update DB.

7. Return to step 4 until convergence.

In the re–evaluation phase, step 6, there is the possibility to perform additional high–fidelity
evaluations, if one area of the design space is not explored properly. Below, the basic features
of each step are further described. Note that the optimization algorithm settings, i.e. DoE,
RSM and EA parameters are user–defined through the RBF4AERO platform Graphical User
Interface.

2.1 Design space sampling

The RBF4AERO platform offers three DoE [12, 13] options to sample the design space,
namely the full factorial, partial factorial and randomized designs. Either option decides how
many and which candidate solutions will be evaluated on the CFD tool. To perform DoE, each
design variable is discretized to a number of user–defined levels. In case of a full factorial de-
sign, all possible combinations of design variables’ levels are considered. Full factorial designs
may result to high CPU cost since all possible combinations must then be evaluated on the
computationally expensive tool. The partial (or fractional) factorial design extracts a sub–group
from the corresponding full factorial design after cutting some user–selected “less important”
variables off. To obtain the partial factorial, a full factorial design is firstly defined using only
the “important” variables and the levels of the cut–off variables results from combinations of
the other variables’ levels. The partial factorial is a better compromise in terms of CPU cost but
requires a very good knowledge of the problem in hand in order to correctly decide the design
variables to cut–off. Finally, in the randomized design, a user–defined number of designs must
be generated. To do so the algorithm computes all possible partial factorial designs and keeps
the one with number of members less or equal to the user–defined number of individuals. If the
number of collected members is less than the user–defined one, the remaining design vectors
are selected from the remaining members of the corresponding full factorial design at random.

2.2 Individuals mesh morphing and evaluation

The individuals determined by the DoE are evaluated on the CFD tool. In this paper, all
evaluations are carried out using the steady state solver of OpenFOAM. Instead of re–meshing
the computational domain for each and every geometry change during the DoE, an RBF–based
morpher undertakes the morphing of a baseline mesh before delivering it to the evaluation man-
ager for the CFD run. In all cases, the baseline mesh is generated using the snappyHexMesh
tool of OpenFOAM.

RBFs are mathematical functions able to interpolate data defined at discrete points only
(source points) in an n-dimensional environment. The RBF function has the following form

s(x) =
K∑
k=1

γk φ(||x− xk||) + h(x) (1)
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where x the position vector of a mesh node and γk the coefficients of the polynomial, fitted
imposing the known values at source points xk. The interpolation quality and its behavior
depends on the chosen φ function, being of either global or compact support. In 3D mesh
morphing, the bi–harmonic function φ(r)=r is adopted for its smoothing abilities. The solution
of the RBF mathematical problem consists of the computation of the scalar coefficients of a
linear system of order equal to the number of considered source points (RBF centers). Once the
RBF system coefficients have been computed, the displacement of an arbitrary mesh node can
be expressed as a function of the distance-based contributions from the RBF centers.

The RBF method has several advantages that make it very attractive for mesh morphing.
Being a mesh–less method, where only grid points are moved regardless their connectivity, its
parallelization is quite straightforward. Over and above, it is able to exactly prescribe known
deformations onto the surface mesh. This can be achieved by using all the mesh nodes as RBF
centers with prescribed displacements, including the simple zero field to denote a surface which
is left untouched by the morphing action.

The industrial implementation of the RBF mesh morphing poses two challenges, (a) the
numerical complexity related to the solution of the RBF problem for a large number of centers
and (b) the definition of suitable paradigms to effectively control shapes using RBF. The RBF
Morph software, [11], included in the RBF4AERO platform addresses both challenges as it
comes with a fast RBF solver capable to fit large dataset (hundreds of thousands of RBF points
can be fitted in a few minutes) and with a suite of modeling tools that allows the user to easily
set–up each shape modification.

2.3 Response surface model training

The surrogate evaluation model (or metamodel) implemented in the platform is a Response
Surface Model [7] based on polynomial functions. The mathematical expression of the response
is

F̂ (~x) = b0 +
N∑
i=1

Pi∑
j=1

bijx
j
i +

M∑
j=0

aj

N∏
i=1

xIii (2)

where F̂ is the approximate objective function value, N is the number of design variables, xi is
the ith design variable, M the number of interactions, Ii the power that the ith design variable
is raised to and Pi the maximum power for each variable. The RSM coefficients bij, aj are
computed during the training phase. Interactions, [14], denote the relationship among design
variables and are mathematically expressed as multiplications among the related/interacting
variables. In case that the number of training patterns exceeds the number of coefficients to be
computed, the least–squares method is used during the RSM training. The number of equations
constructed by the least–squares method is equal to the number of coefficients. As a result, the
cost of the training depends on the number of used coefficients.

The Pi and Ii values in equation 2 can either be selected by the user or defined automatically
by minimizing the RSM’s error. Note that a different RSM, i.e. with a different configuration
(maximum powers, interactions, etc) is trained for each objective function and constraint.

2.4 Optimization using evolutionary algorithms

Once the RSM has been trained, a (µ, λ)EA, with µ parents and λ offspring, undertakes
the optimization by exclusively using the RSM as the evaluation tool. A real coded EA with
tournament selection for the parents population and simulated binary crossover scheme is im-
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plemented. Note that the computational cost of this phase is negligible since the previously
trained RSM is used to approximately evaluate all candidate solutions. Upon the termination of
the evolution, the “optimal” solution(s) resulting from EA are re–evaluated on the high-fidelity
tool and added to the DB.

2.5 Convergence/Termination criteria

The optimization platform includes three convergence criteria, checked upon completion of
each optimization cycle. The first convergence criterion is related to the CPU clock time of the
optimization (computational budget) and is defined as the maximum number of high-fidelity
evaluations that can be performed with the provided budget. This limits the size of the initial
sampling and the number of optimization cycles to be performed. The second convergence
criterion is related to the RSM prediction accuracy. The optimal solution is considered as found,
if the RSM error is very small and its prediction practically replicates the objective function
value which results from the problem–specific evaluation tool. The third convergence criterion
checks if the “optimal” solution found by the EA is not improving during a user-defined number
of evaluations.

3 OPTIMIZATION OF AN ULTRA–LIGHT AIRCRAFT

The first case is concerned with the re–design/optimization of an ultra–light aircraft [15] aim-
ing at the minimization of its drag coefficient. The aircraft geometry was provided by Pipistrel,
a light aircraft manufacturer, partner in the RBF4AERO project. In particular, the re–design
focuses on the wing root–body junction by defining two boxes. The larger one is used to limit
the morphing action and remains fixed thanks to the proper spacing of RBF points. The smaller
box, which includes the whole wing, is allowed to move along all three directions, leading to
3 design variables in total (the degrees of freedom are the displacements of the control box in
the x, y and z axes). The mesh lying in the space between the small box (which is allowed to
change) and the large one (still), including part of the fuselage and wing surfaces, is deformed
by the RBF model. A close–up view of the wing root–body junction and the morphing boxes is
shown in figure 1.

Figure 1: Optimization of an ultra–light aircraft. Close–up view of the wing root–body junction
on a surface mesh (left) and RBF control boxes (right).

The flow conditions areM∞ = 0.08, flow angle 10o andRe = 106 (based on the wing chord).
Each candidate solution is evaluated on the OpenFOAM incompressible solver (simpleFoam)
coupled with the Spalart–Allmaras turbulence model with wall functions. The computational
mesh around the aircraft is unstructured and consists of about 4.7M cells.
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The optimization starts by evaluating, on the aforementioned CFD tool, 45 samples which
are used for training a sixth degree (Pi = 6 in equation 2) RSM. Then a (µ, λ) = (15, 30) EA
undertakes the optimization with a termination criterion of 500 evaluations on the RSM. The
“optimal” solution resulting from the EA is re–evaluated on the CFD tool and the RSM is trained
anew. Note that each re–training results in different degree and coefficients in equation 2, since
the algorithm automatically defines the parameters needed (see section 2.3). This procedure
is repeated ten times before meeting the convergence criteria of the optimization procedure
(herein, RSM error criterion is firstly met), resulting into a total cost of 55 evaluations on the
CFD tool. The convergence history of the optimization is shown in figure 2. Note that the
horizontal axis starts from 45 since the optimization started after evaluating 45 samples during
the DoE phase.

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 44  46  48  50  52  54  56

C
D

/C
D

,r
ef

High-Fidelity Evaluations

Figure 2: Optimization of an ultra–light aircraft. Convergence history of the optimization.

The optimized geometry yields drag coefficient which is lower by 9% compared to the ref-
erence one. The displacement of the junction towards the rear and bottom part of the fuselage
(figure 3) is responsible for the observed objective function reduction. A by–product of this
optimization is that the lift of the optimized geometry becomes higher, without being included
in the objective function. Figures 3, 4 and 5 compare the reference and the optimized aircraft
geometries. In all figures, the pressure field on the aircraft surface is plotted.

Figure 3: Optimization of an ultra–light aircraft. Comparison of the reference (left) and opti-
mized (right) aircraft geometries. Close–up front view of the wing root–body junction.
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Figure 4: Optimization of an ultra–light aircraft. Comparison of the reference (left) and opti-
mized (right) aircraft geometries. Upper view.

Figure 5: Optimization of an ultra–light aircraft. Comparison of the reference (left) and opti-
mized (right) aircraft geometries. Bottom view.

4 OPTIMIZATION OF THE DRIVAER CAR MODEL

The second case is dealing with the drag minimization of a specific configuration of the
DrivAer car model, a generic car model developed at the Institute of Aerodynamics and Fluid
Mechanics of TU München, [16], to facilitate aerodynamic investigations of passenger vehicles.
Herein, the fast–back configuration with a smooth underbody, mirrors and stationary wheels is
used [17]. For this configuration, the generated unstructured mesh consists of about 3.8M cells.

Six design variables related the shape deformation of the mirror, the rear window, the front
and back underbody, the car’s distance from the road and the boat tail are used. The RBF set–up
for two out of the six design variables is shown in figure 6. The evaluation tool is the steady
state solver of OpenFOAM with the Spalart–Allmaras turbulence model with wall functions. In
some candidate solutions, for which the flow becomes unsteady, the objective function value
results from averaging results of the 100 last iterations.

The optimization starts with 20 samples, resulting from a randomized design which are then
used to train the initial RSM. A (25, 50)EA with 500 evaluations on the RSM is used as de-
scribed before. A total of 10 optimization cycles was needed to meet the convergence criteria.
The convergence history is depicted in figure 7.

After 30 high-fidelity evaluations (including those in the DoE phase), the best solution yields
7% reduction in mean drag. Figures 8 and 9 compare the reference and the optimized car
geometries. In all figures, the pressure over the DrivAer model surface is plotted.

Since, the shape optimization of this car model with the same design variables has previously
been presented by the same team in [17], using a gradient–based optimization algorithm and the
continuous adjoint method for the computation of the objective function gradient, it is interest-
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(a) Rear window. (b) Boat tail.

Figure 6: DrivAer car shape optimization. Preview of the RBF source points, before applying
morphing, for two out of the six design variables.
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Figure 7: DrivAer car shape optimization. Convergence history of the optimization.

(a) Front view. (b) Side front view.

Figure 8: DrivAer car shape optimization. Comparison of the reference (left) and the optimized
(right) car geometries.

ing to compare the resulting optimal solutions. Both methods yield almost similar results at the
same computational cost and reduce the objective function value by about 7%. The resulting
optimal geometries are similar and small differences can be identified in the front bumper and
the spoiler, see figure 10.

5 CONCLUSIONS

This paper presented EA–based features of the RBF4AERO optimization platform along
with real–world applications. The gradient–based features are presented in a companion paper,
[18]. The use of RSM as a surrogate evaluation model during the EA–based search allows for
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(a) Rear view. (b) Side rear view.

Figure 9: DrivAer car shape optimization. Comparison of the reference (right) and the opti-
mized (left) car geometries.

(a) Front view. EA (left), adjoint (right) (b) Rear view. Adjoint (left), EA (right).

Figure 10: DrivAer car shape optimization. Comparison of optimized geometries resulted from
the EA assisted by the RSM and a gradient–based optimization in conjunction with the adjoint
method, as presented by the same group in [17].

reduced optimization time. Over and above, the RBF–based mesh morphing reduces further the
wall clock time per evaluation to be performed on the high–fidelity (CFD) tool. The overall op-
timization algorithm described is fully automated and quite user–friendly thanks to the graphic
user interface of the RBF4AERO platform.
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Abstract. This paper presents the RBF4AERO benchmark technology platform, developed in
the framework of the EU-funded RBF4AERO project. The platform enables the so-called Bench-
mark Management System (BMS) used for benchmark submission and results reporting. The
BMS is deployed using three modules, namely the Graphical User Interface (GUI), the Work-
flow Manager (WM) and the Benchmarking Database System (BDS) which cooperate during the
whole optimization benchmark life-cycle. The GUI is the only component which interacts with
the end-user. It enables the optimization benchmark submission, along with the progress, results
and computational platform resources monitoring. The configuration of the Optimization (OT)
and the Morpher Tool (MT) is a pre-requisite for the optimization benchmark submission. In
an optimization scenario the WM, which is practically the controller of the system, queries the
OT in order to get a table of samples and gives back the results of the simulator (for instance a
CFD tool). The evaluated individuals serve as training patterns of a Response Surface Model
(RSM) which is, then, used for an Evolutionary Algorithms based optimization. The resulting
’optimal’ solution(s) are delivered back to the WM for re-evaluation on the CFD tool. For each
evaluation on the CFD tool, when a new geometrical shape is required, the computational grid
is morphed using the MT based on radial basis functions.
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1 Introduction

The final goal of the RBF4AERO Project http://www.rbf4aero.eu is the develop-
ment of a Benchmark Technology, namely a dedicated numerical platform and strategy capa-
ble to allow aeronautical design engineers to build up the novel optimization environment by
using their own numerical models and computing platforms, and achieve the results of multi-
objective and multi-disciplinary optimization studies in shorter time with respect to current
practices. Besides, the RBF4AERO numerical platform enables to solve other relevant aircraft
design studies such as fluid-structure interaction (FSI) and icing growth, and proposes a chal-
lenging CFD optimization technique that foresees the adjoint-morphing coupling. The basic
idea of the optimization strategy is to make the CFD model parametric through an innovative
shape optimization environment based on a high performance meshless morphing technique.
The technique is founded on Radial Basis Functions (RBF) approach which offers a number of
distinct advantages over the more traditional optimization approaches with no need to face with
typical limiting trade-off constraints of speed, accuracy and extent, here the speed is related
to the time required by the overall optimization process, the accuracy is achieved using large
CFD meshes, and the extent is related to the number of different configurations fully calculated
during the optimization process (see Figure 1).

Figure 1: Trade-off between accuracy, time of computing, and number of analysed variants using traditional and
the RBF4AERO proposed approach.

2 Description of Work

The scientific and technological enhancements offered by the RBF4AERO techniques re-
quire a convincing verification process before entering the industrial practice. For this reason,
the Project work plan develops a robust industrial based process divided into three principal
tasks:

1. Benchmark Technology Infrastructure Development
The novel methodological procedure for the computational-driven optimisation proposed
in the Project implies the development of an appropriate infrastructure to set-up the op-
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timisation environment and enable the simulation of test cases of industrial relevance. A
major role in achieving this goal will be played by parallel processing;

2. Benchmark Technology Verification
Preliminary verification of results accuracy will be achieved on published state-of-the-art
reference applications or available industrial cases;

3. Benchmark Technology Numerical Testing
The optimisation procedure on demanding industrial applications will be carried out and
numerically validated by the Project End Users.

Critical analysis of the numerical predictions of morphed configuration with respect to the
baseline is supported and complemented by experimental outputs provided within the project.
Finally, the effectiveness as well as the efficiency of the overall RBF4AERO optimization pro-
cedure is demonstrated.

3 Benchmark Technology Infrastructure capabilites

The architecture of the RBF4AERO numerical platform is thought as a control and commu-
nication manager framework where different modules are seamlessly integrated according to
the available hardware and software. Looking at the platform as a whole, this integrated system
is required to accomplish three principal functions: optimization, mesh morphing and simula-
tion. The first two functions are carried out by software internal to the Benchmark Technology,
whereas the latter one by external numerical solvers. An outline of the Benchmark Technology
optimization process is depicted in Figure 2.

In specific, the optimization techniques implemented in the RBF4AERO platform are:

1. optimization algorithms based on Evolutionary Algorithms (EAs);

2. optimization based on a gradient algorithm and the continuous adjoint solver;

3. optimization based on Adjoint Self Sculpting.

The EA-based optimization is assisted by metamodels trained on data collected during the
Design-of-Experiment (DoE) phase and supported by the Response Surface Models (RSM)
that reduces the number of evaluation tool calls [1]. In the case the CFD solver is OpenFOAM
and the objective function is the drag, lift or the pressure loss, the user can also exploit the
capabilities of the continuous adjoint solver and of the innovative adjoint-morphing coupling.
In particular, two algorithms foreseeing the coupling between the adjoint solver and the MT,
called gradient-based [2] and Adjoint Self Sculpting algorithms, can be used to perform shape
optimization. Moreover the Adjoint Preview feature, in the case multiple shape variations are
available, can be adopted to identify the most influent ones. Relating to FSI two methods, re-
spectively referred to as mode-superposition and two-way, are available [3]. According to the
mode-superposition method, the CFD model is made flexible imposing structural displacements
through mesh morphing by the superposition of its natural modes provided either by an analytic
method or by means of a FEM model. The two-way technique foresees instead the coupled use
of CFD and structural FEM solvers and the exchange of data between them. Using both ap-
proaches the MT allows to apply the deformation to selected wet surfaces only by constraining
the other rigid bodies. With regard to icing, two methodological approaches have been designed
[4]. According to the first one, termed frozen or constrained, icing simulations are carried out by
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Figure 2: RBF4AERO Benchmark Technology optimization process.

imposing, at specific iterations of the CFD computing, the icing profiles previously calculated
by means of an icing accretion tool at predefined instants of time. The second one, referred to
as on-the-fly or evolutionary, foresees the use of an accretion code that, in conjunction with a
CFD solver, modifies dynamically the numerical grid according to the calculated ice accretion.

4 Benchmark Management System

The Benchmark Management System (BMS) is used by the end-user for benchmark edit-
ing, benchmark submission, platform monitoring and results reporting. One of the main re-
quirement of the software was to be as modular as possible, in order to be deployed in the
largest possible number of system types and be able to manage the largest possible number of
solvers. Three software modules have been developed to accomplish all the requirements:

• Graphical User Interface (GUI) give the end-user the possibility to interact with the
platform by submitting user benchmarks to the BDS;

• Workflow Manager (WM) which executes the user submitted benchmarks by evenly
distributing workload to platform nodes;

• Benchmarking Database System (BDS) which holds all information about user submit-
ted benchmarks; it is the communication channel between GUI and WM.
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Figure 3: Benchmark Management System simplified scheme.

These three modules cooperate in order to assist the end-user during the whole optimization
benchmark life-cycle.

4.1 Graphical User Interface

In order to guarantee compatibility on the majority of operating systems, GUI is based on
the multi-platform Qt framework. The Graphical User interface is the only component which
interacts with the end-user; it basically gives the possibility to:

• submit a generic benchmark

• show benchmark progresses and results

• monitor the available platform resources load

Benchmark submission is the procedure for the end-user to setup an optimization bench-
mark. The benchmark can be a shape optimization procedure based on the methods previously
described, a multi-physics simulation or both. During this phase the user will input: the com-
putational model prepared for a generic simulator/CFD, the RBF material needed during the
morphing phase, all the optimization parameters needed for the specific benchmark type. Once
the input is finished, the user can submit the benchmark which is then delivered to the Bench-
marking Database System.

Benchmark visualization After the benchmark is submitted, it will be dispatched by the
Workflow Manager. The user can follow all the progresses within the GUI, which is automat-
ically updated while the information is inserted in the BDS. Benchmark visualization includes
tabular views of data, various post processing graphs drawn using live data, platform logs for
all messages and outputs/errors generated during the benchmark execution.
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Resources monitoring For each platform computation node, the Workflow Manager is also
responsible for updating node load information inside the BDS. This information is then re-
ceived by the GUI which shows it to the end-user.

4.2 Workflow Manager

The workflow manager is the module which coordinates all the computing activities in the
system. It queries the optimizer in order to get a table of candidate solutions, then represents
the generated candidate solutions inside the BDS, executes every single candidate solution by
scheduling jobs to be ran on the installed working nodes and gives back the results of the vari-
ous jobs into the optimizer, writing the results also in the BDS as they can be read by the GUI
and shown to the end-users. During jobs execution all the log information is stored by the WM
on its log files, and all the important log messages produced by the running jobs are also stored
in the BDS. When the user requests for these informations, the GUI will query the BDS and
show these messages on a dedicated panel.

WM runs as a service on the hosting server and can be stopped and resumed at any moment,
as all the benchmark and computed data are stored in the BDS and can be retrieved when the
service is restarted. This means a lot of time saved when a running benchmark is stopped by
the user or by the hosting machine malfunctioning.

Job scheduler

The Job Scheduler layer separates the WM component in two sub-layers: controller side
and worker side. In the former, jobs are defined and delivered to a Job Sender that packs and
entrusts them to the Job Scheduler layer; in the latter, executed on a potentially different sys-
tem node, all the CFD/solver specific computation is done.

This way the controller node does not have to deal with node selection in job assignment,
it has just to assure right dependencies between jobs. Before the assignment of a job to a par-
ticular node, the Job Scheduler checks if the node has access to all the solvers and resources
needed in order to complete the job. Once the node has been selected, resources on that node
will be allocated and the job will be prepared to be sent.

Finally, on the worker side, the workflow manager will receive the job from the Job Sched-
uler layer, will unpack the job and dispatch it to the right helper. When the job is completed,
Job Scheduler will take care of copying the output results (a set of files on disk) to the controller
node, which then parses them and updates the information in the BDS. Also, on a benchmark
type basis, some important folders in the job working directory will be saved and referenced as
a Resource inside the BDS. The end-user can request these Resources from a dedicated panel
in the GUI. In our implementation we used the open-source workload management system
HTCondor1, which handles all the job scheduling operations during node selection and job
sending.

1 HTCondor software website: https://research.cs.wisc.edu/htcondor/index.html
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Worker-side helpers

Each of the platform nodes communicates with the Controller node only through HTCondor
communication protocols and can have any number and type of simulators/CFDs installed. The
only constraint is that for each simulator, an Helper must be defined and installed. An Helper
is a Python script with a predefined command line arguments set, defined in the Workflow
Manager specifications. As the Python interpreter and HTCondor software are implemented in
various operating systems, an RBF4AERO platform installation can have an heterogeneous set
of worker nodes (WN) and can accomodate a huge number of simulators.

4.3 Benchmarking Database System

The Benchmarking Database System (BDS) is a relational database defined in a PostgreSQL
DBMS installation. This module is the glue between the GUI and the WM, as they only commu-
nicate through queries to the DBMS. We have chosen this particular DBMS because it natively
implements some triggering procedures which can notify tables update to both, GUI and Work-
flow Manager sides. The fact that all the information about benchmark management is stored
inside BDS will also allow future exploitation of the platform using a web app. This will enable
end-users to access RBF4AERO platform also outside the LAN where the WM and BDS are
installed.

5 Conclusions

In this paper, an overview of the RBF4AERO benchmark technology platform and its work-
ing logic was presented. The complex modular structure that compose it was designed in order
to be deployed in heterogeneous architectures and to be as much customisable as possible.
Multi-objectives and multi-physics optimisation studies can be accomplished in a dramatically
shorter times with respect to current practices.
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Abstract. Contrast enhanced dynamic MRI data is important for classifying anomalies in
tissue and blood circulation, e.g. tumors, stokes, kidney failure. The resulting sequence of
images providing spatial-temporal representation of contrast agent concentration must be given
meaningful clinical interpretation. Current processing typically relies on localized strategies,
where the images are analyzed voxel by voxel. The consensus seems to be that taking direct
advantage of the global structure of the images potentially will allow for more accurate and
robust interpretations.

Based on a workflow that has been extensively studied within both petroleum and ground
water research, the current paper combines explicit porous media flow modelling and state of
the art data assimilation. Starting from a multi-compartment global flow model, we explore
MRI interpretation via synthetic cases where model generated images are used as input to a
parameter identification algorithm based on ensemble based data assimilation like the ensemble
Kalman filter (EnKF).

From reasonable assumptions, the procedure demonstrates ability to identify relevant model
parameters for two synthetic cases.

This study indicates that flow based assimilation of MRI data is viable and that it might
provide valuable supplementing insight compared to state of the art. Regularizations are made
on a firm statistical basis, eliminating the need for ad hoc parameters, and leading to estimates
that are rigorous in terms of error thresholds. A priori knowledge can easily be incorporated in
the procedure. The flow model allows explicit representation of basic material properties, and
adds regularization to the procedure by enforcing globally consistent flow fields.
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1 INTRODUCTION

Magnetic resonance imaging (MRI) enhanced by an injected contrast agent is a useful tool
for characterizing the blood flow in organs like brain or kidney. The procedure provides a
high resolution spatial-temporal representation of contrast agent concentration (CAC) over the
object considered, and the aim of the subsequent interpretation is to extract clinically useful
parameters. Assessment of brain blood supply relies on concepts like cerebral blood volume
(CBV), cerebral blood flow (CBF), and mean transit time (MTT) of the blood flow.

The traditional parameter identification approach, see [1] for a detailed review, relates the
observed average CAC across a volume of interest (VOI) to the CAC of the incoming (arterial)
blood stream by the convolution

CVOI(t) = (Carterial ∗ k)(t) , (1)

where the response function k(t) is the flow-scaled residual and can be determined by explicit
deconvolution or alternatively from various ad-hoc procedures. Given k(t), the following esti-
mates are available

CBF =
max (k(t))

ρVOI

, MTT =

∫∞
0 k(τ)dτ

max (k(t))
, CBV = MTT · CBF (2)

where ρVOI denotes the mean density of the tissue constituting the VOI.
The significance of CBF is to identify the amount of blood that is actually feeding the local

tissue. Applying the above approach voxel-wise based on modern high resolution imaging has
certain limitations. It can be difficult to isolate the relevant arterial influx, and the observed CAC
for the voxel will typically represent a superposition of blood in transit in the arterial and/or
venular system as well as blood relevant to the local CBF. Voxel-wise temporal deconvolution
also neglects the potential useful spatial structure of the observations.

These challenges are addressed by [2], where a systematic approach is formulated in terms of
discrete spatial-temporal conservation relations for the CAC. The procedure can readily be ex-
tended to so-called multi-compartment models, where the total flowing volume of each voxel is
partitioned into a set of distinct but interacting compartments. Each compartment type connects
globally throughout the voxel-lattice thus constituting a set of interacting flow networks. Con-
nection coefficients governing the flow between voxels and exchange between compartments
can then in principle be identified from the evolving CAC distribution.

The current work is directly inspired by Sourbron [2], and in particular his section IV-D
where he formulates a two-compartment model for ”blood flow and perfusion”. While Sourbron
identifies the flow pattern by solving for a set of abstract connection coefficients, our approach
is based on explicit physical modelling and identification of basic physical properties. We
strongly believe that maintaining complete physical consistency throughout our computations
may contribute important regularization to the problem.

It is natural to start to investigate if one can identify the volumes for the different compart-
ments within a voxel by combining the use of a physical model for the flow of the contrast agent
through some live tissue with the information obtained from a high resolution spatial-temporal
representation of the CAC obtained from MRI. A natural approach is to use data assimilation
methodology developed for characterization of the properties of a porous medium (e.g. flow in
an oil reservoir or a hydrological model) developed over the last decades. A common approach
is to use ensemble based methods, like the ensemble Kalman filter (EnKF) [3] for solving such
problems (see e.g. [4], [5]). Alternatively, the Adaptive Gaussian Mixture filter (AGM) [6]
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may be used. This filter is a combination of the traditional EnKF and particle filters, and was
developed to better represent multi-modal posterior distributions.

The ensemble based data assimilation approaches works efficiently with large scale models.
The models are updated by utilizing the information obtained from an ensemble of forecast
(model simulations) with the available measurements. The EnKF and its variants are suitable for
updating large scale non-linear models and is applied in a range of geophysical sciences, besides
reservoir models such as meteorology (e.g. [7]) and oceanography (see e.g. [8]). Ensemble
based data assimilation has also been used within medicine. In [9] a synthetic study using the
local ensemble transform Kalman filter for improved forecasting for glioblastoma utilizing MRI
data. In the recent paper [10] it is proposed that the cancer biology community makes an effort
to utilize ideas from weather forecasting to predict and evaluate tumor growth and treatment
response.

2 FORWARD MODEL

We consider a two-compartment model, or - in the terminology of traditional porous media
modelling - a dual porosity, dual permeability model. One porous network (index a) is consid-
ered to represent the arterial blood flow and the other (index v) models the flow in the venular
system. The interaction between the two pore networks represent the capillary perfusion feed-
ing the local tissue, and the motivation for the model formulation is that this approach allows
for an accurate identification of CBF.

We consider a spatial-temporal domain with coordinates (~x, t), and the model formulation is
equally valid in one, two, or three spatial dimensions. Filtration velocities, ~ui for the respective
networks are related to pressures pi by Darcy’s law. We assume fluid of constant viscosity
µ, and permeabilities Ki that are functions of spatial position. Neglecting gravity, yields the
following version of the Darcy law

~ui = −µ−1Ki(~x)∇pi , i = a, v. (3)

We make the assumption of incompressibility for both fluid and porous media. The flow will
be driven via boundary conditions, and the interior source terms qi will only represent exchange
between the compartments according to

∇ · ~ui = qi , i = a, v. (4)

As customary for dual models, we relate the transfer terms to the pressure difference between
the compartments. The parameter σav scales for arterial/venular interface area of a unit volume,
and the product Kav · σav constitutes a dimensionless conductivity factor at each location. Thus
the volumetric flux per unit volume medium can be written

q = −qa = qv = µ−1Kav(~x)σav(~x)(pa − pv). (5)

Substituting equation (3) into (4) and then use equation (5) to eliminate the source terms yields
a coupled system of two equations where pa and pv are the only unknowns. Given a domain,
fluid and media properties, and suitable boundary conditions, we solve for the pressures using
a standard finite volume scheme on a regular lattice. Subsequently we substitute the pressures
into (3) and (5) to find velocities and transfer rates respectively.

The CAC is modelled as passive (i.e. not influencing the fluid flow) scalar field that enters
along inflow boundary into the arterial network, is drained trough the capillary bed into the
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venular network, and eventually leaves through the outflow boundary. The fractions of voxel
volume occupied by the arterial and venular networks respectively, are given by the porosities
φa and φv. As for equation (4), the source terms are exclusively related to transfer between
compartments and the associated CACs are denoted c∗i

φi(~x)
∂ci
∂t

+∇ · (ci~ui) = qic
∗
i , i = a, v. (6)

Assuming normal operating conditions, the transfer will be one-way only, directed from arterial
into venular, i.e. q ≥ 0. We assume the CAC of the fluid leaving the arterial system at a given
space-time location equals the overall arterial CAC at that location. This means c∗a = ca and by
combining equations (4) and (6) for i = a we have

φa(~x)
∂ca
∂t

+ ~ua · ∇ca = 0. (7)

Thus the CAC travels unchanged along the characteristics φa
~dx = ~uadt. By tracking the curve

backwards until it hits an inflow boundary and take the time delay (time of flight) into con-
sideration, ca for arbitrary space and time can immediately be deduced from the appropriate
boundary condition.

In order to associate a time delay with the transfer between the arterial and venular system,
we introduce a third porosity, φav(~x), characterizing the capillary beds. This additional com-
partment is assumed to be ”discrete” in the sense that inter-voxel connections are omitted, a
simplification justified by comparing the typical voxel size with that of a capillary bed. The
time delays for given location can then be expressed as φav/q.

For the venular compartment, the situation is slightly more involved as the local CAC cv
normally will be different from the entering CAC c∗v due to flow in the venular network and we
have

φv(~x)
∂cv
∂t

+ ~uv · ∇cv = q (c∗v − cv). (8)

Again we identify a family of characteristics φv
~dx = ~uvdt, but this time CAC varies along the

curves according to the right hand side of equation (8). By combining the time delay for the
arterial and capillary flow, we can identify c∗v at any point in space-time. Then cv can be found
at an arbitrary location by first tracking the characteristic curve backwards in time until one hits
an inflow boundary or reaches the initial time. Starting from the relevant boundary or initial
value, equation (8) is integrated forward along the characteristic curve to obtain the appropriate
value for cv.

To conclude this section, we relate our model formulation to the clinical parameters CBV,
CBF and MTT. The unit used for CBF in a clinical setting will typically be either [mL/min/100g]
or [mL/min/100mL], where the first is multiplied with a relevant density ρVOI of unit [g/mL] to
obtain the second. Thus, starting from our inter-compartment flux q of units [1/s], the conver-
sion factor is either 60 × 100/ρVOI or simply 60 × 100. Similarly, the unit used for CBV is
normally [mL/100g] or [mL/100mL] which can be obtained by multiplying to our dimension-
less capillary bed porosity φav with conversion factors of 100/ρVOI or 100 respectively.

For the brain, [11] estimates the CBV for grey matter to be in the range 1.8 - 3.4 [mL/100mL]
and the corresponding CBF in the range 61 - 103 [mL/min/100mL]. Thus the corresponding
MTT is between 1.0 and 3.3 seconds. Similar estimates for white matter give a CBV between
0.9 and 1.7 [mL/100mL] and a CBF between 9 and 37 [mL/min/100mL], leading to MTT
between 1.4 and 11 seconds. For our model parameters q and φav, typical values will then be
0.014 [1/s] and 0.026 [-] for grey matter, and 0.0038 [1/s] and 0.013 [-] for white matter.
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3 ENSEMBLE BASED METHODS FOR DATA ASSIMILATION

Data assimilation concerns the subject of combining model and observations to improve the
forecasting applicability of the model. The prototype application is weather forecasting were
current observations from all available sources are taken into account before a new weather
forecast is prepared. In that application, the observations are primarily used to update the initial
values of the system equations that need to be solved for generating a new forecast.

As mentioned in the introduction data assimilation is used within many disciplines besides
meteorology and atmospheric sciences, including oceanography, hydrology (e.g. groundwater
flow) and petroleum (in particular reservoir modelling). Opposed to the initial value that one
faces in meteorology, in our case, we are facing uncertain parameters in describing the blood
flow through an organ. This means that we are closer to the problems faced within groundwater
and reservoir modelling. For these applications an ensemble based approach is most common.

The data assimilation problem can be formulated as a minimization problem for a quadratic
cost function

J(~s) = (~s− ~sb)TC−1(~s− ~sb) +
n∑

i=0

(yi −Gi(~s))
TR−1i (yi −Gi(~s)). (9)

Here ~sb is the initial state estimate, C is a covariance matrix for a background error, Ri are
measurement error covariance matrices, Gi are observation matrices and i is a time index and
n the number of time steps. In weather forecasting variational approaches is the most common
approach, whereas in other applications ensemble based methods are very popular. A variational
approach will require ∇J(~s). The ensemble based approaches have an advantage in that they
do not require the access to the code developed for solving the forward problem.

The ensemble based approaches, like the EnKF, are typically derived based on the Kalman
filter [12]. The Kalman filter can be derived as a recursive solution of the least squares problem
(9). It is motivated from electrical and mechanical engineering with the aim of solving the state
estimation for a linear dynamic system described by a forward model

~sn = F~sn−1 + ~εn, (10)

and an observational model
~yn = G~sn + ~ηn.

Here, ~s is the state vector of the system, ~y denote the observations of the system, ~εn denotes
the model noise, which is assumed to be zero mean normally distributed with covariance matrix
Σ and ~ηn is the measurement noise that is normally zero mean distributed with covariance
matrix CD. The model and measurement noise is independent, and the both the model and the
measurement noise at different time instances are also independent.

Kalman [12] gave the optimal solution, given observations ~yo,n at time step n. Starting
from an initial estimate ~̂s0 with covariance matrix C0 representing the initial uncertainty, the
following recursion provides the solution:

~sn = F~̂sn−1,

Cn = FĈn−1F
T + Σ,

~̂sn = ~sn +Kn(~yo,n −G~sn),
Kn = CnG

T (GCnG
T + CD)−1,

Ĉn = (C−1n +GTC−1D G)−1.
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The first two equations above represent the effect of the forward model, which propagates the
mean and the covariance matrix. The third equation is the update equation taking into account
the observations. The matrix Kn is denoted the Kalman gain matrix. The last equation give
the posterior covariance matrix Ĉn after taking the information form the measurement at time
n into account.

The Kalman filter was derived for a linear system, but was soon generalized to non-linear
systems by the extended Kalman filter. The extended Kalman filter works by performing a
linearization of a non-linear system around the mean, and works well for many mildly non-
linear system. However, if the non-linearities are to large it breaks down. Another issue is that
the propagation of the covariance matrices is not feasible for large-scale system.

The ensemble Kalman filter was suggested by Evensen [13], and that has been found to
work for large scale system, and handle non-linearity better than the extended Kalman filter.
The linear forward model (10) is now replaced with the non-linear extension

~sn = F (~sn−1) + ~εn (11)

where we have kept the model noise ~εn ∼ N(0,Σ). The observation equation is

yn = G~sn + ~ηn

where the measurement noise is ~ηn ∼ N(0, CD).
The ensemble Kalman filter solution is obtained by using an ensemble of N model realiza-

tions ~Sn = [~sn,1 . . . ~sn,N ] to obtain the statistics required to solve the Kalman filter equations.
The initial ensemble is generated by sampling from a normal distribution. All the ensemble
members are propagated through the forward model ~sn,i = F (~sn−1,i) + εn,i. Here n is the
time index and i is the counting of the ensemble members. Forecasted values of the observa-
tions can be computed as yn,i = G~sn,i + ~ηn,i. (The noise need to be added to each ensemble
member to propagate the statistics correct.) The Kalman gain is now approximated by cal-
culating the mean of the ensemble, ~̄sn = 1

N

∑N
i=1 ~sn,i. Formally, we can also calculate the

covariance matrix C̄n = 1
N−1

∑N
i=1(~sn,i − ~̄sn)(~sn,i − ~̄sn)T and estimate the Kalman gain matrix

Kn = C̄nG
T (GC̄nG

T + CD)−1. From this each of the ensemble members are updated as

~̂sn,i = ~sn,i +Kn(~yo,n − ~yn,i). (12)

What is presented here is a formal derivation of the Kalman filter update equation using the
ensemble Kalman filter. Care needs to be taken in the implementation, and different approaches
exist on how to handle this, see e.g. [3], [4], [9].

The AGM filter utilizes the same set of equations for updating of the state variables, but in
addition weights are computed (and adaptively adjusted to avoid degeneracy) for each ensemble
member. The weights are then used to resample the ensemble to better represent non-Gaussian
behavior. For more details, see [6], [14].

In our application, the primary aim is to estimate parameters, ~p. This can be done by extend-
ing the state vector ~s to the form

~se =

[
~s
~p

]
.

In the forward step (11) the parameters are not changed, that is,

~se,n = F (~se,n−1) =

[
F (~sn)
~pn

]
.
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Figure 1: Four first ensemble members for permeability. The units are [m−2].

However, in the update equation (12) we are now working on the extended state vector ~se. As is
common in reservoir engineering applications for parameter estimation we set the model noise
~εn = 0 in (11).

4 DETERMINING PARAMETERS IN A TWO-COMPARTMENT MODEL USING
MRI DATA

We demonstrate the methodology on two examples of increasing complexity. In the first
example the tissue perfusion (CBF) is estimated and in the second example the cerebral blood
volume (CBV) is estimated. In both cases we consider a a square tissue field, with dimensions
10 cm × 10 cm, with resolution nx = 20 and ny = 10. The arterial inlet function is represented
by a pulse (Carterial = 1) lasting 4 seconds, and entering the field at the left boundary of
the field. The pressure at the same boundary is 13300 Pa. At the venular compartment, the
pressure boundary condition is 133 Pa at the left edge. All other edges are assumed to be
sealed. The blood viscosity is 4 · 10−3 Pa·s. The MRI data are simulated as the superposition of
the compartment concentrations times the corresponding porosity:

mmri(~x) = φa · ca + φav · cav + φv · cv. (13)

To these measurements we add independent (temporally and spatially) measurement noise of
10−4.

In both the following examples the simulator is run for 60 seconds with time step of 0.6
seconds.

4.1 Estimating perfusion

In this example we assume that the permeabilitiesKi(~x) defined in equation (3) are unknown,
but we assume that the permeabilities are equal for the arterial and venular system, i.e. Ka =
Kv. We further assume that the product Kav · σav defined in equation (5) is given by 10 · Ki.
This gives one unknown parameter for each voxel in the simulated system. The ensemble
members are generated as exponentials of a Gaussian randoms fields. The random fields have
a spatial distribution having a Gaussian variogram [15, page 91] with practical range 10√

3
in

the x-direction and 20√
3

in the y-direction. The fields are shifted so that the maximum value is
10−9. Four realizations of the ensemble are shown on Figure 1. In this example 500 ensemble
members are used. We have assumed that the porosity values for the arterial, capillary and
venular systems are known. The applied fields are shown on Figure 2. The Adaptive Gaussian
Mixture (AGM) filter is then applied for estimation of the true permeability field. The true field
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Figure 2: Porosity values for arterial, capillary and venular system.

is generated the same way as the initial ensemble. The field is updated at 24 points in time,
evenly distributed within the simulation interval from 0 to 60 seconds. The true field is shown
on Figure 3 (top) and the mean value of the final estimated permeability is shown on Figure 3
(bottom). As can be seen, the field is almost perfectly reconstructed. The corresponding true
and estimated perfusion fields are shown on Figure 4. Finally, we show the simulated MRI
data at selected points in time on Figure 5. Here we can clearly see how a rather inaccurate MRI
image at the early time steps are improved as more data are assimilated.

4.2 Estimation of porosities for individual compartments

In this example we consider estimation of the porosity fields φa(~x), φv(~x) and φav(~x) of the
two-compartment model using MRI observations of the CAC as a function of time. The region
we consider is the same as in the previous example, but now we have constant permeabilities
Kav = 2·10−9m−2,Ka = Kv = 2·10−10m−2. For the porosity we generate three spatially vary-
ing fields. These fields are constructed by first generating two fields u(~x) and v(~x) a spatial dis-
tribution having a Gaussian variogram [15, page 91] with practical range 6√

3
in the x-direction

and 12√
3

in the y-direction. Then φa(~x) = 0.003 ·u(~x)+0.0375 giving the field shown at Figure 6
(top). Then we set φv(~x) = 0.005 ·(−0.8 ·u(~x)+0.6 ·v(~x))+0.15 and obtain the field shown in
Figure 7 (top). Further we make the assumption that the φau(~x) +φvu(~x) +φavu(~x) = 0.2 and
this defines φav as shown in Figure 8 (top). (Note that φau(~x) and φvu(~x) are generated such
that they have an expected correlation of −0.8, but for the realization giving our “true” fields
the correlation is actually higher.)

While working with the EnKF we generate an initial ensemble of size 200 of fields φa, φv and
φav using the same construction as for the true field, but with the additional φv is truncated such
that φv +φa < 0.199. The condition φv +φa +φav = 0.2 corresponds to having full knowledge
of CBV from the CAC data. While generating the initial ensemble we added a constraint that
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Figure 3: True permeability field (top) and mean value of estimated fields (bottom). The units are [m−2].

Figure 4: Estimated perfusion - CBF in units [mL/min/100mL].
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Figure 5: Simulated MRI data. Black indicate low intensity and white indicate high intensity. The range is between
0 and 10−2.
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Figure 6: True and estimated φa.

all the porosity values always should be above 0.001. In the cases when the EnKF update step
adjusted them below this value, they were truncated.

We observe the CAC for every 0.6 seconds for one minute with same type of measurement
noise as in the previous example. This give a very large data set to assimilate. For the EnKF this
poses additional challenges to avoid ensemble collapse. Therefore we restrict the use of each
CAC observation to only update the porosities in its own location. Similar type of localization
was used in [16] for updating a petroleum reservoir model using a seismic data set. The final
estimates are shown in Figures 6 (bottom), 7 (bottom) and 8 (bottom). We note that the match
all over is exceedingly good, except for a few locations. To avoid some extreme values to flatten
the colors of the image, we have truncated the fields. For φv(~x) there are two values above 0.16,
the highest one 0.22. For φav(~x) there are two locations having a value above 0.02, the highest
one is 0.068. For four locations we came below 0.01, the lowest value was 0.001 (the truncation
value). For φa(~x) we got two values below 0.036, the lowest one was 0.001. The extreme values
should be easily identified in the figures.

5 SUMMARY AND CONCLUSIONS

A two-compartment model is built with the aim of studying blood flow in live tissue. In a
couple of synthetic examples we show that estimating important parameters as porosities of the
compartments and the permeability seems feasible. In further studies, we need to generalize the
estimation methodology to estimate these parameters jointly. In further studies there is also a
clear need to proceed towards more realism in the biological modeling.

There are several issues that has been simplified in the modelling. The boundary condition
is now assumed known, but in reality there will be uncertainty associated with it. Dispersion
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effects are ignored, as well as the fact that the tissue will be in constant movement due to the
heart pulse. However, while interpreting MRI images, any internal movement of the body has
to be adjusted for to compare images at different time instances. Another interesting feature
that might be added is the modelling is accounting for defects in the blood-brain barrier.

Both the EnKF and AGM that is used for data assimilation here, requires an initial ensemble
based on a prior model. In the examples presented here, both the true model and the initial
ensemble has been built based on the authors prior experience within geoscience. For modelling
flow in live tissue, the prior assumptions need to be developed based on understanding of the
biology of the actual system.
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Abstract. This study is concerned with microwave full-waveform inversion method for the 

reconstruction of electromagnetic properties in heterogeneous one-dimensional media. 

Perfectly-Matched-Layers (PMLs) are introduced as wave-absorbing boundary to reduce the 

originally infinite medium to a finite computational domain. The microwave full-waveform 

inversion method is based on an optimization approach constrained by PML-endowed 

Maxwell’s equations for plane electromagnetic waves. The approach attempts to minimize the 

objective functional consisting of the L
2
 norm of a misfit between calculated and observed 

electric fields. Specifically, Lagrangian was constructed comprising the objective functional 

augmented by the PML-endowed Maxwell’s equations via Lagrange multipliers. Enforcing 

stationarity of the Lagrangian yields time-dependent state, adjoint, and time-independent 

control problems, which can be iteratively solved to update the electromagnetic properties of 

the medium such as permittivity and permeability. We used Fletcher-Reeves conjugate 

gradient method for updating the electromagnetic property profiles, and explored Tikhonov 

and Total Variation regularization methods to relieve the ill-posedness inherent in the full-

waveform inversion. Numerical results are reported showing the successful reconstruction of 

both smooth and sharply-varying electromagnetic property profiles with appropriate 

regularization methods. 

1 INTRODUCTION 

In the last several decades, microwave nondestructive evaluation (NDE) of civil structures 

has been paid considerable attention by both academics and industry owing to the advantages 

such as low cost, good penetration in dielectric materials, good resolution, and contactless 

feature of sensors. The method has been found to be potentially excellent in detecting cracks, 

voids, flaws, defects, moisture contents, layers, etc. of composite structures by itself or with 

the combination with other NDE methods. Recent applications of the method includes, but 

not limited to, damage exploration of FRP sheets [1], quality control and condition 

assessment of reinforced concrete structures [2,3].  
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Microwave NDE methods generally use electromagnetic waves with frequencies between 

300 MHz and 100 GHz to inspect and characterize structures and materials. For dielectric 

materials, microwaves may have wavelengths of orders of centimeters to millimeters, and it 

has been shown that cracks and layer thickness of heterogeneous dielectric structures could be 

measured using microwaves of such wavelengths [4,5]. However, microwave NDE methods 

have been more implemented in academic research environment, rather than for practical 

applications so far. One of the reasons for this is probably that the microwave NDE technique 

and the interpretation of test data are fairly complicated. Despite the difficulties and limited 

availability of commercial microwave NDE systems, microwave NDE methods have 

achieved great progress in the development of sophisticated inversion procedure and 

microwave imaging system for structure monitoring and biomedical applications. In particular, 

recent development of innovative inverse scattering methods with various optimization 

algorithms deserves close attention [6,7]. 

This work seeks the development of a microwave inverse scattering method for subsurface 

imaging of structures. The proposed inversion method is based on using full waveforms rather 

than using the waveform of specific frequencies. This kind of method is called full-waveform 

inversion method, and it has been shown to be effective in unveiling unknown material 

properties in seismic imaging and geophysical probing applications, etc. [8,9] 

The target for reconstruction in this work is the spatial distribution of permittivity and 

permeability profiles of heterogeneous media. To this end, an optimization approach 

constrained by Maxwell’s equations for plane electromagnetic waves was introduced. The 

approach attempts to minimize the objective functional consisting of the L
2
 norm of a misfit 

between calculated and measured electric fields. Specifically, Lagrangian was constructed 

comprising the objective functional augmented by the Maxwell’s equations. Enforcing 

stationarity of the Lagrangian yields time-dependent state, adjoint, and time-independent 

control problems, which can be solved iteratively to update the permittivity and permeability 

profiles of the medium. To satisfy far-field radiation condition of electromagnetic waves, 

Perfectly-Matched-Layers (PMLs) were introduced as wave-absorbing boundaries next to the 

finite computational domain. Formulation and numerical examples of plane microwave 

inversion are presented in the subsequent Chapters. 

2 FORWARD PROBLEM 

To conduct full-waveform inversion analysis, forward solutions of wave equations are 

indispensable since the solutions should be utilized in the overall inversion process. In this 

work, plane microwaves are treated as probing waves for the characterization of material 

profiles, such that the domain of wave propagation can be modelled as a one-dimensional one. 

Fig. 1 illustrates the one-dimensional domain truncated by PMLs on both sides. For the 

forward modelling of plane electromagnetic waves in the PML-truncated domain, modified 

Maxwell’s equations discussed in [10-12] are introduced. Therefore, the forward problem to 

find electric and magnetic fields in the PML-truncated domain can be formulated as the 

following: Find 𝐸𝑥 = 𝐸𝑥(𝑧, 𝑡) and 𝐻𝑦 = 𝐻𝑦(𝑧, 𝑡), such that: 

 
𝜇

𝜕𝐻𝑦

𝜕𝑡
+ 𝑐ref𝑔𝜇𝐻𝑦 +

𝜕𝐸𝑥

𝜕𝑧
= 0 (1a) 

 𝜖
𝜕2𝐸𝑥

𝜕𝑡2
+ 𝑐ref𝑔𝜖

𝜕𝐸𝑥

𝜕𝑡
+

𝜕2𝐻𝑦

𝜕𝑧𝜕𝑡
= −

𝜕𝐽

𝜕𝑡
− 𝑐ref𝑔𝐽 (1b) 

and 
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𝐸𝑥(−𝐿𝑡𝑙, 𝑡) = 𝐸𝑥(𝐿𝑡𝑟 , 𝑡) = 0 (2a) 

𝐻𝑦(−𝐿𝑡𝑙, 𝑡) = 𝐻𝑦(𝐿𝑡𝑟 , 𝑡) = 0 (2b) 

𝐸𝑥(𝑧, 0) =
𝜕𝐸𝑥

𝜕𝑡
(𝑧, 0) = 0 (2c) 

𝐻𝑦(𝑧, 0) = 0 (2d) 

where 𝐸x(𝑧, 𝑡) and 𝐻y(𝑧, 𝑡) are the electric and magnetic fields polarized in the x and y 

directions, respectively. 𝐽 is current density, and 𝜖 (= 𝜖0𝜖𝑟) and 𝜇 (= 𝜇0𝜇𝑟) denote the 

permittivity and permeability of the medium, respectively. 𝑐ref (= 1/√𝜖0𝜇0)  denotes 

reference wave velocity, which was taken as the velocity of electromagnetic waves in free 

space. 𝑔(𝑧) represents an attenuation function that enforces amplitude decay of waves 

within the PML. The value of the attenuation function 𝑔(𝑧) is zero within the regular 

domain ( −𝐿𝑙 ≤ 𝑧 ≤ 𝐿r ), whereas 𝑔(𝑧) > 0  within the PML ( −𝐿𝑡𝑙 ≤ 𝑧 ≤ −𝐿𝑙  and 

𝐿𝑟 ≤ 𝑧 ≤ 𝐿𝑡𝑟). 

z = 0

PML PMLRegular domain

Conductor wallConductor wall

z = Lrz = -Ll

Lp Lp

z = -Ltl z = Ltr
 

Figure 1: schematics of the PML-truncated domain 

3 INVERSE PROBLEM 

3.1 PDE-constrained optimization 

The inverse medium problem of interest here is to reconstruct the permittivity profile of 

heterogeneous medium surrounded by PMLs, given measured electric fields to prescribed 

excitation at a point in the domain. The inverse problem can be formulated as the following 

optimization problem constrained by governing partial differential equations: 

𝐽 ≔
1

2
∑ ∫ ∫ [𝐸𝑥(𝑧𝑖, 𝑡) − 𝐸𝑚(𝑧𝑖, 𝑡)]2𝛿(𝑧 − 𝑧𝑖)𝑑𝑡𝑑𝑧

𝑇

0

𝐿𝑡𝑟

−𝐿𝑡𝑙

𝑁𝑟

𝑖=1

+ 𝑅(𝜖) (3) 

subject to Eqs. (1)-(2). 

The objective functional 𝐽 in Eq. (3) consists of a misfit functional represented as the L
2
 

norm of difference between measured electric field 𝐸𝑚(𝑧𝑖, 𝑡) and calculated electric field 

𝐸𝑥(𝑧𝑖, 𝑡). 𝑁𝑟  denotes the number of receivers, and 𝑧𝑖  is the location of receivers. To 

alleviate the ill-posedness of the inverse problem, regularization term 𝑅(𝜖) was introduced 

as a function of permittivity to be recovered. In this work, Tikhonov (TN) and Total Variation 

(TV) regularization schemes were used to investigate the regularization effect on the 

reconstructed permittivity profile of the PML-truncated domain. If TN regularization scheme 
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is used, 𝑅(𝜖) can take the form: 

𝑅𝑇𝑁(𝜖) ≔
𝑟𝜖

2
∫ (

𝑑𝜖

𝑑𝑧
)

2

𝑑𝑧
𝐿𝑡𝑟

𝐿𝑡𝑙

 (4) 

whereas if TV regularization scheme is used, 𝑅(𝜖) can be formulated as: 

𝑅𝑇𝑉(𝜖) ≔ 𝑟𝜖 ∫ [(
𝑑𝜖

𝑑𝑧
)

2

+ 𝛽] 𝑑𝑧
𝐿𝑡𝑟

𝐿𝑡𝑙

 (5) 

where 𝑟𝜖 is a regularization factor controlling the amount of penalty on the gradient of 

permittivity. In Eq. (5), a small parameter 𝛽 was included to make 𝑅𝑇𝑉(𝜖) differentiable 

when 𝑑𝜖/𝑑𝑧 = 0. It has been known that TN scheme is suited for the reconstruction of 

smooth profiles, whereas TV scheme is more relevant for the reconstruction of sharply-

varying target profiles. 

3.2 Lagrangian functional 

To solve the PDE-constrained optimization problem, augmented Lagrangian method was 

introduced, by which the constrained optimization problem can be replaced by unconstrained 

optimization problem. The objective functional in Eq. (3) was augmented by side-imposing 

the PML-endowed Maxwell’s equations via Lagrange multipliers to form the following 

Lagrangian functional. 

              ℒ (𝐸𝑥,  𝐻𝑦,  𝜆𝐸𝑥
,  𝜆𝐻𝑦

, 𝜖)  

                      ≔
1

2
∫ ∫ [𝐸𝑥(𝑧, 𝑡) − 𝐸𝑚(𝑧, 𝑡)]2𝛿(𝑧)𝑑𝑡𝑑𝑧

𝑇

0

𝐿𝑡𝑟

−𝐿𝑡𝑙

+  𝑅𝜀(휀)  

                          + ∫ ∫ 𝜆𝐻𝑦
(𝜇

𝜕𝐻𝑦

𝜕𝑡
+ 𝑐ref𝑔𝜇𝐻𝑦 +

𝜕𝐸𝑥

𝜕𝑧
)𝑑𝑡𝑑𝑧

𝑇

0

𝐿𝑡𝑟

−𝐿𝑡𝑙

  

                       + ∫ ∫ 𝜆𝐸𝑥
(𝜖

𝜕2𝐸𝑥

𝜕𝑡2
+ 𝑐ref𝑔𝜖

𝜕𝐸𝑥

𝜕𝑡
+

𝜕2𝐻𝑦

𝜕𝑧𝜕𝑡
= −

𝜕𝐽

𝜕𝑡
− 𝑐ref𝑔𝐽)𝑑𝑡𝑑𝑧

𝑇

0

𝐿𝑡𝑟

−𝐿𝑡𝑙

 (6) 

The permittivity profile 𝜖(𝑧) is sought to be reconstructed in an attempt to minimize the 

Lagrangian functional. The boundary and initial conditions in Eqs. (2a)-(2d) are explicitly 

imposed in the inversion process. 

3.3 First-order optimality conditions 

Optimal solutions of the state (𝐸𝑥, 𝐻𝑦), adjoint (𝜆𝐸𝑥
, 𝜆𝐻𝑦

), and control (𝜖) variables of the 

Lagrangian functional can be sought by enforcing the first variations of the Lagrangian to 

vanish. First of all, enforcing the vanishing of the first variations of ℒ with respect to the 

Lagrange multipliers 𝜆𝐸𝑥
 and 𝜆𝐻𝑦

 results in the system of equations identical to Eqs. (1a) 

and (1b) for the forward problem. 

Second, enforcing the vanishing of the first variations of ℒ with respect to the state 

variables 𝐸𝑥  and 𝐻𝑦  yields the following mixed adjoint problem: Find 𝜆𝐸𝑥
= 𝜆𝐸𝑥

(𝑧, 𝑡) 

and 𝜆𝐻𝑦
= 𝜆𝐻𝑦

(𝑧, 𝑡), such that: 

𝜖
𝜕2𝜆𝐸𝑥

𝜕𝑡2
− 𝑐ref𝑔𝜖

𝜕𝜆𝐸𝑥

𝜕𝑡
−

𝜕𝜆𝐻𝑦

𝜕𝑧
= −[𝐸𝑥(𝑧𝑖, 𝑡) − 𝐸𝑚(𝑧𝑖, 𝑡)] 𝛿(𝑧 − 𝑧𝑖) (7a) 
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𝜇
𝜕2𝜆𝐻𝑦

𝜕𝑡
− 𝑐ref𝑔𝜇𝜆𝐻𝑦

−
𝜕𝜆𝐸𝑥

𝜕𝑧𝜕𝑡
= 0 (7b) 

and 

𝜆𝐸𝑥
(𝑧, 𝑇) =

𝜕𝜆𝐸𝑥

𝜕𝑡
(𝑧, 𝑇) = 0 (8a) 

𝜆𝐻𝑦
(𝑧, 𝑇) = 0 (8b) 

The adjoint equations (7a) and (7b) are also PML-endowed, and coupled in terms of 𝜆𝐸𝑥
 and 

𝜆𝐻𝑦
. The source term of the adjoint problem depends on the misfit between computed and 

measured electric fields as indicated in Eq. (7a). It is noted that the adjoint problem is a final 

value problem, as opposed to the initial-value state problem. 

Third, enforcing the vanishing of the first variations of ℒ with respect to the control 

variable 𝜖 entails the following time-invariant control problem: Find 𝜖 = 𝜖(𝑧), such that: 

−𝑅𝜖

𝜕2𝜖

𝜕𝑧2
+ ∫ (𝜆𝐸𝑥

𝜕2𝐸𝑥

𝜕𝑡2
+ 𝑐ref𝑔𝜆𝐸𝑥

𝜕𝐸𝑥

𝜕𝑡
) 𝑑𝑡

𝑇

0

= 0 (9a) 

                                             
𝑑𝜖

𝑑𝑧
(−𝐿𝑡𝑙) =

𝑑𝜖

𝑑𝑧
(𝐿𝑡𝑟) = 0 (9b) 

To reach Eq. (9a), TN regularization scheme was used in Eq. (4). If, instead, TV 

regularization scheme were used, the control equation would become 

−𝑅𝜖𝛽
𝜕2𝜖

𝜕𝑧2
[(

𝑑𝜖

𝑑𝑧
)

2

+ 𝛽]

−
3
2

+ ∫ (𝜆𝐸𝑥

𝜕2𝐸𝑥

𝜕𝑡2
+ 𝑐ref𝑔𝜆𝐸𝑥

𝜕𝐸𝑥

𝜕𝑡
) 𝑑𝑡

𝑇

0

= 0 (10) 

The control problem is a boundary-value problem in terms of 𝜖, which can be solved once the 

state and adjoint solutions are obtained. 

4 MATERIAL PROPERTY UPADTE 

The state, adjoint, and control problems can be solved simultaneously to obtain the optimal 

solutions of the inverse problem. However, the computational cost is expensive and the 

approach may not be practical for highly ill-posed inverse problems. In this work, a reduced 

space approach was introduced, where the permittivity profile is updated repeatedly as 

inversion iteration progresses. At each inversion iteration, the state variables 𝐸𝑥 and 𝐻𝑦 are 

calculated by solving Eqs. (1)-(2) assuming the distribution of permittivity profile within the 

domain. Then the adjoint variables 𝜆𝐸𝑥
 and 𝜆𝐻𝑦

 are calculated by solving Eqs. (7) using the 

state solutions obtained earlier. Finally, the control variable 𝜖 is updated using the calculated 

state and adjoint solutions. The permittivity profile at k-th inversion iteration can be updated 

as 

𝝐𝑘+1 = 𝝐𝑘 + 𝛼𝒅𝑘 (11) 

in which 𝛼 is step length, and 𝒅𝒌 is search direction vector. 𝝐𝒌 is the vector of nodal 

permittivity values at k-th inversion iteration. The search direction vector 𝒅𝒌 was determined 

by using Fletcher-Reeves conjugate gradient method as the following: 
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𝒅𝑘 = {

−𝒈𝑘                                                   (𝑘 = 0)

−𝒈𝑘 +
𝒈𝑘 ∙ 𝒈𝑘

𝒈𝑘−1 ∙ 𝒈𝑘−1
𝐝𝑘−1              (𝑘 ≥ 1)

 (12) 

where 𝒈𝒌 denotes the vector of reduced gradient of the Lagrangian. The continuous form of 

the reduced gradient can be taken as the left-hand-side terms of Eq. (9a) with 𝑔 = 0 in the 

regular domain as 

∇𝜖ℒ = −𝑅𝜖

𝜕2𝜖

𝜕𝑧2
+ ∫ (𝜆𝐸𝑥

𝜕2𝐸𝑥

𝜕𝑡2
) 𝑑𝑡

𝑇

0

 (13) 

If TV regularization scheme were used, the reduced gradient would be 

∇𝜖ℒ = −𝑅𝜖𝛽
𝜕2𝜖

𝜕𝑧2
[(

𝑑𝜖

𝑑𝑧
)

2

+ 𝜖]

−
3
2

+ ∫ (𝜆𝐸𝑥

𝜕2𝐸𝑥

𝜕𝑡2
) 𝑑𝑡

𝑇

0

 (14) 

In updating the vector 𝝐𝒌 by Eq. (11), an inexact line search method was used, where the 

following Armijo condition was imposed. 

𝐽(𝝐𝑘 + 𝛼𝒅𝑘) ≤ 𝐽(𝝐𝑘) + 𝜇𝛼𝒈𝑘 ∙ 𝐝𝑘 (15) 

In Eq. (15), 𝜇 is usually chosen to be small. 𝜇 = 10−10 was used herein. 

5 NUMERICAL RESULTS 

Let us consider a one-dimensional PML-truncated domain with the regular domain 

occupying −0.1 m ≤ 𝑧 ≤ 20 m and the PML placed at −5.1 m ≤ 𝑧 ≤ −0.1 m as well as 

at 20 m ≤ 𝑧 ≤ 25 m, as shown in Fig. 2. As target permittivity profiles for reconstruction, 

two profiles were considered. The first one is a smoothly-varying profile represented by the 

following function: 

𝜖(𝑧) = 𝜖𝐴𝑖𝑟 × exp [−
(𝑡 − 10)2

10
] + 𝜖𝐴𝑖𝑟 (16) 

where 𝜖𝐴𝑖𝑟 denotes the permittivity of air and was taken as 휀𝐴𝑖𝑟 = 8.847 × 10−12F/m. Fig. 

3(a) shows the smoothly-varying profile corresponding to Eq. (16). The second profile is a 

sharply-varying profile as shown in Fig. 3(b), where it is assumed that concrete layer with 

𝜖𝑐𝑜𝑛𝑐 = 4.5𝜖𝐴𝑖𝑟 exists in the range of 8.95m ≤ z ≤ 10.95m. 

In this setting, plane electromagnetic waves were assumed to be generated at origin (𝑧 = 0) 

by the acceleration of charges (𝜕𝐽/𝜕𝑡). As the source for electromagnetic waves, a wide-band 

Gaussian pulse type signal of the following expression was considered: 

z = 0

PML PMLRegular domain

Conductor wallConductor wall

z = -0.1m z = 20mz = -5.1m
5m 5m

z = 25m
 

Figure 2: One-dimensional PML-truncated domain for material profile reconstruction 
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(a) Smooth profile (b) Sharply-varying layered profile 

Figure 3: Target permittivity profiles 

𝜕𝐽

𝜕𝑡
= 1013exp [−

(𝑡 − 5 × 10−8)2

2 × 10−19
] (17) 

Fig. 4 shows the time history and frequency spectrum of the Gaussian pulse, whose maximum 

frequency is about 2 GHz. In the simulation of wave propagation by finite element method, 

time step was set as Δ𝑡 = 8 × 10−11 s and element length was set as 𝐿𝑒 = 0.1 m. Electric 

field 𝐸𝑥(𝑧, 𝑡) and magnetic field 𝐻𝑦(𝑧, 𝑡)  were spatially approximated with linear and 

quadratic shape functions, respectively. 

  

(a) Time history (b) Frequency spectrum 

Figure 4: Time history and frequency spectrum of microwave source signal 

Fig. 5 shows the smoothly-varying permittivity profiles reconstructed using TN and TV 

regularization schemes. The inversion started with homogeneous initial guess of 𝜖(𝑧) =
0.75 × 10−11F/m, and the target profile was recovered at about 500 iterations with both TN 

and TV regularizations. Regularization factor was set as 𝑟𝜖 = 1023 for both regularization 

cases, and the small auxiliary parameter 𝛽 = 10−54 was used for TV regularization. As can 

be seen in Fig. 5, both TN and TV regularization schemes assisted the inversion process 

excellently in capturing the smoothly-varying target profile. Fig. 6 shows the sharply-varying 

permittivity profiles reconstructed using TN and TV regularization schemes. Initial guess, 

regularization factor, and the parameter 𝛽 used for TV regularization were the same as in the 

case of smooth profile inversion. The layered target profile was recovered at about 2,000 

iterations for both cases of TN and TV regularizations. The inversion with TV regularization 
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reconstructed the sharply-varying material interfaces better than the inversion with TN 

regularization, but slight oscillations appeared in the recovered profile when TV scheme was 

used. 

  

(a) TN regularization (b) TV regularization 

Figure 5: Inverted smoothly-varying permittivity profiles 

  

(a) TN regularization (b) TV regularization 

Figure 6: Inverted sharply-varying permittivity profiles 

6 CONCLUSIONS  

 A microwave full-waveform inversion method was developed for the reconstruction of 

permittivity profile in PML-truncated domains. 

 The inversion of microwaves was conducted in a PDE-constrained optimization framework, 

using PML-endowed Maxwell’s equations for plane electromagnetic waves as constraint 

conditions. 

 The permittivity profile of medium was updated iteratively satisfying the first-order 

optimality conditions of augmented Lagrangian. 

 Both smooth and layered permittivity profiles were reconstructed successfully by the full-

waveform inversion method with the aid of Tikhonov and Total Variation regularization 

schemes. Sharply-varying layered profile could be effectively reconstructed using the 

Total Variation regularization. 
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Abstract. The Poisson-Boltzmann equation (PBE) is a nonlinear elliptic PDE that arises in
biomolecular modeling and is a fundamental tool for structural biology. It is used to calcu-
late electrostatic potentials of biomacromolecules in liquid solutions. To efficiently compute
the electrostatic potential numerically, a very large domain is required to sufficiently accom-
modate both the biomacromolecule and the electrolyte. This yields high degrees of freedom in
the resultant algebraic system of equations ranging from several hundred thousands to a few
millions. This poses great computational challenges to conventional numerical techniques, es-
pecially when many simulations for varying parameters, for instance, the ionic strength, are
to be run. The reduced basis method (RBM) greatly reduces this computational complexity by
constructing a reduced order model of typically low dimension. We discretize the linearized
PBE (LPBE) with a centered finite differences scheme and solve the resultant linear system by
the preconditioned conjugate gradient (PCG) method with algebraic multigrid as the precon-
ditioner. We then apply the RBM to the high-fidelity full order model (FOM) and present the
numerical results. We notice that the RBM reduces the model order from N = 1, 614, 177 to
N = 6 at an accuracy of 10−9 and reduces computational time by a factor of approximately
over 1300.
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1 INTRODUCTION

Electrostatics plays a crucial role in almost all processes that involve biomolecules in ionic
solutions, for instance, in areas such as protein structural stability, biomolecular recognition,
enzyme catalysis, among others [1]. Biomacromolecules such as nucleic acids and proteins
have quite low internal dielectric constants ranging from 2 to 5 because of the fixed or frozen
state of their constituent polar groups and side chains that cannot significantly reorient them-
selves in response to an applied external dielectric field [2, 3, 4]. On the other hand, water as
the solvent has a high dielectric constant of around 80 because its dipoles are able to reorient
freely. In principle, the Poisson-Boltzmann equation (PBE) is capable of modeling a system
comprising of two dielectric materials with totally different dielectric properties. In this ap-
proach, the biomacromolecule is treated as a low dielectric cavity in which partial charges are
discretely embedded at atomic positions, whereas the solvent is treated as a continuum through
the Boltzmann distribution [1, 2, 3].

The PBE and its linear form have been widely applied in the field of structural biology. First,
they are used to determine the electrostatic potential at the surface of a biomacromolecule. This
is anticipated to provide information about the concentration of charged solute molecules in
its vicinity which may, through inspection, indicate possible docking sites for biomolecules.
Secondly, they determine the electrostatic potential outside the biomacromolecule that provides
information on the free energy of interaction of micromolecules at different positions in the
proximity of the biomacromolecule. Thirdly, they determine the free energy of a biomacro-
molecule or of its different states which provides information about its stability. Finally, they
are used to determine the electrostatic field that is used to derive mean atomic forces which are
added to the interatomic calculations in standard molecular dynamics [2, 3, 5].

In this study, we consider a charged protein molecule immersed in some electrolyte, for
example, a salt solution at physiological concentration, and determine the electrostatic potential
triggered by the interaction between the two particles. The kind of electrolyte considered is
monovalent, in which the cations and anions are present in a ratio of 1 : 1, which implies that
the ionic strength equals the concentration of the ions. The ionic strength acts as a physical
parameter of the LPBE, and we obtain the electrostatic potential under the variation of this
parameter. The PBE is given as:

−~∇.(ε(x)~∇u(x)) + k̄2(x) sinh(u(x)) = (
4πe2

c

kBT
)
Nm∑
i=1

ziδ(x− xi), u(∞) = 0 (1)

where u(x) = ecψ(x)
kBT

is the dimensionless potential and ψ(x) the electrostatic potential in
centimeter-gram-second (cgs) units at x ∈ R3. The dielectric coefficient ε(x) and the modi-
fied Debye-Hückel screening parameter k̄, a function of the ionic strength of the solvent, are
discontinuous functions at the interface between the charged biomacromolecule and the solvent,
and at an ion exclusion region (Stern layer) surrounding the molecule, respectively. kB is the
Boltzmann constant and T the temperature. The term k2 = 8πe2cI

1000εkBT
describes ion accessibility

and concentration, where I is the ionic strength given by I = 1
2

∑N
i=1 ciz

2
i . The right-hand side

term represents the molecular charge density of the biomacromolecule consisting of Nm point
partial charges qi = ziec at atomic positions xi and the distributions δ(.) reflect the point charge
behaviour. Details on how to map the dielectric coefficient and the Debye-Hückel parameter to
a computational grid can be found in [6].

The PBE (1) has some features which pose great challenges in both analytical and numerical
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Figure 1: 2-D view of the 3-D Debye-Hückel model, a reproduction of Figure 1.1 in [7].

approaches. These include the infinite (unbounded) domain, delta functions, rapid nonlinear-
ity, and discontinuous coefficients [7, 8]. Figure 1 shows the two dimensional view (cross-
section) of the three dimensional Debye-Hückel model of electrostatic interactions between a
biomolecule and a salt solution [7]. Proteins are not highly charged as compared to nucleic
acids and, therefore, it suffices to consider the linearized PBE (LPBE) and still obtain accurate
results. The PBE can be linearized under the assumption that the electrostatic potential is very
small (relative to kBT ) or that the ions’ electrostatic energy is much less than their thermal en-
ergy [1]. Therefore, the nonlinear function sinh(u(x)) can be expanded by a Taylor series and
only the first term is retained. We obtain the linearized PBE (LPBE) given by;

−~∇.(ε(x)~∇u(x)) + k̄2(x)u(x) = (
4πe2

c

kBT
)
Nm∑
i=1

ziδ(x− xi). (2)

However, we must note that the LPBE yields very inaccurate results for highly charged biomacro-
molecules such as nucleic acids (DNA and RNA) or polylysine, though it can be applied to low
charged biomacromolecules such as proteins [3]. More information about the PBE, including
its derivation from first principles can be found in [7].

Many different kinds of numerical methods have been used to solve the PBE and LPBE
[9]. The finite difference method (FDM) is the most widely used method and has been im-
plemented in many programs, for example, Amber, Delphi, and adaptive Poisson-Boltzmann
solver (APBS) [10]. Other methods such as the finite element method (FEM), the boundary
element method, the interface method, and an adaptive method have also been developed and
a thorough review can be found in [9]. APBS, for instance, has versions for both FDM and
FEM. As stated earlier, an infinite domain, u(∞) = 0, coupled with the fact that molecules
of interest such as enzymes and proteins have a spatial scale of 10 to over 100 Ångströms,
provides a great challenge to numerical techniques. Therefore, it is customary to choose a trun-
cated domain of at least threefold the size of the biomacromolecule to accurately approximate
the boundary conditions [7]. Nevertheless, this leads to a very large algebraic system which
becomes computationally expensive if many simulations for different ionic strengths have to
be run. The reduced basis method may largely reduce the computational complexity due to its
capability of constructing a reduced order model of typically low dimension, which can replace
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the high-fidelity system in the multi-query tasks, and can be solved at a low computational cost
[11]. In this paper, we apply the reduced basis method to the system of PBE, and have achieved
significant acceleration of orders of magnitude.

The outline of this paper is as follows: In Section 2, we provide the basics of RBM which
include the problem formulation, the solution manifold, the greedy algorithm, and the a poste-
riori error estimation. In Section 3 we provide numerical results of the FOM (via the FDM) and
those of the ROM. Conclusions and future work are given in the end.

2 ESSENTIALS OF THE REDUCED BASIS METHOD

RBM is a projection-based parametrized model order reduction (PMOR) technique that aims
at computing numerical solutions to parametrized PDEs in real-time and many-query scenarios
by exploiting an offline/online procedure which ensures accurate approximation of the high-
fidelity solution in a rapid and inexpensive manner. For a thorough review, see [12]. We consider
a physical domain Ω ⊂ R3 with boundary ∂Ω, and a parameter domain D ⊂ R. Since the exact
solution is seldom available, we discretize the PDE (LPBE) with a centered finite differences
(FD) scheme. The discrete problem of the LPBE now becomes, for any µ ∈ D, find uN (µ) that
satisfies the linear system

A(µ)uN (µ) = f, µ ∈ D, (3)

whereA(µ) ∈ RN×N and f ∈ RN . We notice that theN×N system is indeed computationally
expensive to solve for an accurate approximation of u(µ) and therefore, we apply model order
reduction (in this case, RBM) to save computational costs by providing an accurate approxima-
tion of uN (µ) at a greatly reduced dimension N � N .

2.1 The solution manifold and the greedy algorithm

A very important assumption in RBM is the assumption that a typically very low dimen-
sional solution manifold already covers all the high-fidelity solutions of (3) under variation of
parameters [11]:

MN = {uN (µ) : µ ∈ D}. (4)

The RB approximation space is then built upon this solution manifold and is given by the sub-
space spanned by the snapshots, i.e. the subspace spanned by the high-fidelity uN (µ) solutions
corresponding to a number of samples of the parameters

range(V ) = span{uN (µ1), ..., uN (µN)}, ∀µ1, ..., µN ∈ D. (5)

The greedy algorithm is used to generate the reduced basis space (5) through an iterative pro-
cedure where a new basis is computed at each iteration. The procedure, as given by [13] is
shown in Algorithm 1. The RB approximation is then formulated as, for any given µ ∈ D, find
uN(µ) ∈ XN which satisfies

AN(µ)uN(µ) = fN , (6)

where AN = V TAV and fN = V Tf . V is the orthonormal matrix computed from the greedy
algorithm. From the fact that N � N , solving the small dimensional ROM is much cheaper
than solving the high-fidelity model (3) [11]. Efficient implementation of Algorithm 1 depends
on an efficient error estimation ∆N(µ) of the ROM. In the next subsection, we introduce an a
posteriori error estimation derived from the residual of the approximate RB solution.

4190



Cleophas Kweyu, Martin Hess, Lihong Feng, Matthias Stein and Peter Benner

Algorithm 1 Greedy algorithm
Input: A training set Ξ including all the samples of µ, i.e., Ξ := {µ1, . . . , µm}.
Output: RB basis represented by the projection matrix V .

1: Choose µ∗ ∈ Ξ ⊂ D arbitrarily
2: Solve (3) for uN (µ∗)
3: S1 = {µ∗}
4: V1 = [uN (µ∗)]
5: N = 1
6: while max

µ∈Ξ
∆N(µ) ≥ ε do

7: µ∗ = arg max
µ∈Ξ

∆N(µ)

8: Solve (3) for uN (µ∗)
9: SN+1 = SN ∪ µ∗

10: VN+1 = [XN uN (µ∗)]
11: Orthonormalize the columns of VN+1

12: N = N + 1

13: end while

2.2 A posteriori error estimation

A posteriori error estimators are computable indicators that estimate the actual solution error
by utilizing the residual of the approximate RB solution. An error estimator is required to
fulfill three major properties: it is supposed to be sharp (close to the unknown actual error),
asymptotically correct (tend to zero with increasing RB space dimension N , at a similar rate
as the actual error), and computationally cheap. Therefore, they guarantee both reliability and
efficiency of the reduction process [14].

We first compute the residual;

rN(uN ;µ) = f − A(µ)uN(µ)

= A(µ)uN (µ)− A(µ)uN(µ)

= A(µ)e(µ)

(7)

where the error e(µ) := uN (µ)− uN(µ) is given by

e(µ) = (AN (µ))−1rN(uN ;µ) (8)

We obtain an upper bound for the 2-norm of the error by taking the 2-norm on both sides of
equation (8), that is;

‖e(µ)‖2 ≤ ‖(AN )−1(µ)‖2‖rN(uN ;µ)‖2 =
1

σmin(AN (µ))
‖rN(uN ;µ)‖2 =: ∆N(µ), (9)

where σmin(AN (µ)) is the smallest singular value of AN (µ) [14]. The quantity ∆N(µ) is a rig-
orous error bound, and can be used to select snapshots within the greedy algorithm in the offline
stage and consequently to measure the accuracy of the RB approximation in the online stage
[13]. For efficient computation of the norm of the residual and error bounds, see [15, 14]. It is
computationally expensive, especially in the offline-online context, to compute σmin(AN (µ)) as
it entails solutions of large-scale eigenvalue problems [13]. Therefore, in our computations, we
use the norm of the residual as our error estimator, an upper bound which satisfies the inequality
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(9) and provides an estimation of the true error that works well for our problem. It also provides
rapid convergence as depicted in the numerical results in Figures 6 and 7. It is given by

‖e(µ)‖2 ≈ ‖rN(uN ;µ)‖2 = ∆N(µ). (10)

3 NUMERICAL RESULTS

3.1 Finite differences results

We consider the LPBE in (2), a parameter domain µ ∈ D = [0.05, 0.15], and a physical do-
main Ω = [7.4415, 64.5655]Å× [−1.5120, 44.2180]Å× [−20.2755, 35.8775]Å. The parameter
domain is chosen for a feasible physiological process and µ resides in the second term in the
kappa function. Information about the molecular charge density (right-hand side of the LPBE)
was obtained from a PQR file provided by the MSD group at our institute. The file contains
1228 protein atoms (constituents of amino acid residues) at various atomic positions (P), with
respective charges (Q), and radii (R). The PQR file is generated from the PDB (Protein Data
Bank) file by the PDB2PQR software which allows users to add charges and assign atomic radii
as additional parameters. The PDB file provides a standard representation for macromolecular
structure data (in terms of atomic coordinates), derived from X-ray crystallography and nuclear
magnetic resonance (NMR) studies for electrostatic potential analysis [16].

We discretize the LPBE with a centered finite differences scheme and the resulting parametrized
linear system (3) is of more than 1.6× 106 degrees of freedom. We solve this full order model
(FOM) by the preconditioned conjugate gradient (PCG) method with algebraic multigrid as the
preconditioner at different samples of ionic strength. We use a tolerance of 10−10 for the PCG
and the solution converges within 50 iterations. The choice of this tolerance directly affects that
of the greedy algorithm proportionally and therefore, it is prudent to ensure that the truth solu-
tion is highly accurate. Zero Dirichlet boundary conditions are used to avoid the dependence
of the boundary data on the parameter as well. Figures 2-5 below plot cross-sections of the z−
axis and show the exponential decay of the high-fidelity solutions (uN (µ),N = 1, 614, 177)
with variation of the parameter µ. This is attributed to the large force constant (332 kcal/mol)
of electrostatic interactions. In the absence of ions (that is, at µ = I = 0), these interactions are
long ranged, but in the presence of ions (that is, µ > 0), they are damped and gradually decay to
zero [1]. The computational time taken to obtain the high-fidelity solution uN (µ) is on average
approximately 90 seconds, and varies depending on the value of the ionic strength used.

Figure 2: uN (µ) at µ = 0.05 Figure 3: uN (µ) at µ = 0.5
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Figure 4: uN (µ) at µ = 1.5 Figure 5: uN (µ) at µ = 5

3.2 Reduced basis results

The a posteriori error estimates the true error between the high-fidelity solution and the re-
duced basis solution. It also provides the exponential decay of the error in the greedy algorithm
until a reasonable tolerance is achieved. Figures 6 and 7 show the decays of the error estimator
and the true error during the greedy algorithm at the current RB dimension i = 1, . . . , N . They
satisfy the asymptotic correctness property stated in subsection 2.2, and it is evident that the er-
ror estimator is an upper bound to the true error. We also observe a high convergence rate of the
error estimator with up to two orders of magnitudes. The error estimators in Figures 6 and 7 are
the maximal error and relative maximal error, respectively, and are defined as, maximal error:
∆max
N = max

µ∈Ξ
‖rN(uN ;µ)‖2, relative maximal error: ∆max

N

‖uN (µ∗)‖2 , µ∗ = arg max
µ∈Ξ
‖rN(uN ;µ)‖2.

Figure 6: Maximal versus true error Figure 7: Relative maximal versus true error

Figure 8 shows the error estimator and the true error of the finally constructed reduced model
over the whole parameter domain µi ∈ Ξ for i = 1, ..., 100. It is evident that the error estimate
for the final RB approximation at dimension N = 6 is indeed an upper bound of the true
error and a trend that both quantities behave similarly is clearly visible from the graphs. The
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computational time taken to obtain the approximate solution uN(µ) is on average approximately
0.065 seconds. Figure 9 validates the true error of the ROM of dimension N = 6, i.e., the final
ROM constructed by the greedy algorithm, at some 100 randomly selected parameter values
µ ∈ D which are different from those in Ξ, used in Algorithm 1. It is evident that the true error
is still smaller than the error estimate.

Figure 8: Error estimate versus true error Figure 9: True error

4 CONCLUSIONS

In this paper, we have presented the RBM and its application to the LPBE with ionic strength
as the meaningful parameter. The RBM reduces the high dimensional full order model by a fac-
tor of 269, 029.5 and the computational time by a factor of approximately over 1300. The error
estimator provided fast convergence to the reduced basis approximation. Our future research is
on employing non-zero Dirichlet boundary conditions from Debye-Hückel model for a spher-
ical non-polarizable ion with uniform charge. These boundary conditions also vary with the
parameter, which is non-affinely inherent in them and therefore we need to employ the discrete
empirical interpolation method (DEIM) for a speed-up in the online stage.
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Abstract. We focus on interpolatory-based model order reduction for a special class of bilinear
descriptor systems in the H2-optimal framework, appearing in constraint circuit simulations.
The straightforward extension of the H2-optimality conditions for ODE systems to descriptor
systems generically may produce an unbounded error in the H2 or H∞ norm, or both. This
arises due to the inappropriate use of the polynomial part of the system. To ensure bounded
error, one needs to deal with the polynomial part of the systems properly. To do so, we first
transform these descriptor systems into equivalent ODE systems by means of oblique projectors,
as it is widely done in the literature for linear index-2 ODEs. This enables us to employ bilinear
iterative rational Krylov algorithm (B-IRKA) which provides us locally H2-optimal reduced-
order systems on convergence, if it converges. Unfortunately, the direct implementation of B-
IRKA on equivalent ODEs requires the expensive explicit computation of the oblique projectors.
Therefore, as one of our contributions, we show how to apply B-IRKA to the equivalent bilinear
ODE system without an explicit computation of the projectors. We demonstrate the efficiency
of the proposed technique by means of several constraint circuit examples and compare the
quality of the reduced-order systems with the ones obtained by using the projection matrices
determined by applying IRKA on the corresponding linear part.
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1 Introduction

We discuss the interpolatory-based model order reduction technique for bilinear descriptor
systems which are of the form

E11ẋ1(t) = A11x1(t) + A12x2(t) +
m∑
k=1

Nkx1(t)uk(t) +B1u(t),

0 = A21x1(t) +B2u(t),

y(t) = C1x1(t) + C2x2(t) +Du(t),

(1)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 are the generalized states, y(t) ∈ Rp and u(t) ∈ Rm are the
output and input of the system, respectively, and all the matrices are of appropriate dimensions.
It is assumed thatE11 andA21E

−1
11 A12 are invertible. This implies that the dynamical system (1)

is a Hessenberg index-2 differential algebraic system [1] in case of Nk = 0. Generally, these
special bilinear systems (1) arise from semi-discretization of Navier-Stokes equations or con-
straint RLC circuits. As a motivating example, we consider a constraint transmission circuit as
shown in Figure 1.

i
=

u
(
t
)

v1

g
(
v
) C

g(v) g(v)

v2

C C

g(v)

C

g(v)

vñ

C

Figure 1: A constraint nonlinear transmission line.

The above transmission circuit contains nonlinear diodes, g(v) = e40vD+vD−1, where vD
is the voltage difference across the nodes. Using Kirchhoff’s current law, we can model the
dynamics of the circuit as a quadratic-bilinear descriptor system, having an index-2 matrix
pencil λE−A (details are presented in Section 5). Nonetheless, such quadratic systems, having
an index-2 matrix pencil, can be approximated as bilinear systems via Carleman bilinearization.
The approximated bilinear systems have a similar structure as (1). We refer to Section 5 for a
couple of more constraint circuit examples, having the same structure as well. Therefore, there
is a need to develop efficient model reduction techniques for such bilinear structured systems.

To have high accuracy in modeling of physical phenomena or for a better understanding of
the underlying process, the governing differential equations are discretized very fine over the
spatial domain. As a consequence, we obtain large-scale complex dynamical systems whose
numerical simulations, optimization and control study become a huge numerical burden and
inefficient. Thus, model order reduction (MOR) brings forth a solution to the immense numer-
ical demand for such large-scale systems. MOR aims to replace these large-scale systems by
small surrogate systems of much smaller dimensions, while capturing the important dynamical
characteristics of the original system.

MOR for linear systems has proven to be successful and efficient, see, cf. [2, 3, 4]. The
extension to the bilinear systems has drawn significant attention in recent times. Many of
MOR techniques have been extended from linear systems to bilinear systems. For example,
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Gramian-based MOR such as balanced truncation has been extended to bilinear systems in [5]
and interpolatory-based methods are extended to bilinear systems in [6, 7, 8, 9]. Obviously,
Gramian-based MOR requires the solutions of two generalized Lyapunov equations which are
computationally cumbersome, although efficient methods are proposed to solve these general-
ized Lyapunov equations in [10, 11].

On the other hand, interpolatory-based MOR seeks to determine the projection matrices such
that each subsystem of the reduced bilinear system interpolates the corresponding subsystem of
the original system at predefined interpolation points. For the first time in [12], the problem
related to the H2-optimal MOR for bilinear systems was considered, wherein the Gramian-
based Wilson conditions [13] for the H2 optimality for linear systems are extended to bilinear
systems. A similar problem, but in a rather different way, was again considered in [7], where the
first-order necessary conditions forH2-optimality are derived by taking the derivative of theH2-
norm of the error system with respect to the elements of the reduced-order system’s realization.
Based on these conditions, an iterative method, the so-called bilinear iterative rational Krylov
algorithm (B-IRKA) is proposed, extending the iterative rational Krylov algorithm (IRKA) for
linear systems to bilinear systems.

Notwithstanding, there are many up-front questions when it comes to MOR of bilinear de-
scriptor systems. The Gramian-based MOR for bilinear descriptor systems is still an open ques-
tion, but interpolatory conditions can be readily extended to descriptor systems by just replacing
I by E. However, as discussed for linear descriptor systems in [14] that straightaway extending
interpolation conditions for ODE systems to descriptor systems can lead to poor reduced-order
systems due to mismatch of the polynomial parts of the systems. This may give rise to an un-
bounded error in the H2-norm. This holds for bilinear systems as well. Therefore, a special
attention to the polynomial part is required to ensure a bounded error. Considering a special
class of bilinear descriptor systems whose kth order subsystem has a constant polynomial part,
the modified interpolation conditions are proposed in [15]. Therein, a special attention to the
polynomial parts of the bilinear systems is paid. Later, the problem of obtaining locally H2-
optimal reduced-order systems of such descriptor systems is considered in [16].

In this paper, we focus on MOR for bilinear descriptor systems (1), having an index-2 matrix
pencil, in the H2-optimal framework. In this regard, we first transform the system (1) into
an equivalent bilinear ODE system by means of projections as it is done in [17] for Stokes-
type quadratic-bilinear descriptor systems. This allows us to employ the version of B-IRKA
which is extended in [18] from the E = I case to the E 6= I case. However, the direct
implementation of B-IRKA requires the explicit computation of the projectors which is highly
undesirable. Therefore, as one of the main contributions in this paper, we show how to apply
B-IRKA without explicit computation of the projectors.

As mentioned before, the application of MOR for bilinear systems can also be seen in the re-
duction of quadratic-bilinear systems [8, 19]. This is done by first determining an approximate
bilinearized system by using Carleman bilinearization process and then employing MOR tech-
niques for bilinear systems. This way, one loses the quadratic-bilinear structure of the system
and blows up the dimension of the state vector but it is possible to achieve a reduced bilinear
system of much smaller dimension. The Carleman bilinearization process for ODE systems has
been widely studied; see [19] and it is recently extended to descriptor systems in [20], having
an index-1 matrix pencil λE−A. In this paper, we extend the Carleman bilinearization process
for quadratic-bilinear descriptor systems, with an index-2 matrix pencil, to obtain approximate
bilinearized systems, under the assumption that x2(t) in (1) is a scalar variable. We also show
that the bilinearized systems preserve the index of the matrix pencil.
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In the following section, we briefly outline B-IRKA for bilinear ODE systems. In Section
3, we present the transformation of the bilinear descriptor systems (1) into equivalent ODE
systems and apply B-IRKA to obtain reduced-order systems. Therein, we also discuss the com-
putational issues and present implementation details. In Section 4, the Carleman bilinearization
process for quadratic-bilinear descriptor systems, having index-2 of the matrix pencil λE − A,
is presented. In Section 5, we demonstrate the efficiency of the proposed MOR technique by
means of several constraint electrical circuit examples.

2 H2-Optimal Model Reduction of Bilinear Systems

In this section, we briefly review MOR for bilinear ODE systems in the H2-optimal frame-
work. We consider bilinear systems in the following form:

Σ :=

Eẋ(t) = Ax(t) +
m∑
k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t) +Du(t),

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm and y(t) ∈ Rp are the input and output of the
system, respectively, and all other matrices are of appropriate sizes. Here, E is considered to
be nonsingular. The H2-norm expression for bilinear systems (2) is defined in [12] and can be
given as follows:

‖Σ‖H2 = tr

(
∞∑
k=1

∫ ∞
0

· · ·
∫ ∞

0

m∑
l1,...,lk=1

h
(l1,...,lk)
k (h

(l1,...,lk)
k )Tdt1dt2 · · · dtk

)
,

in which h(l1,...,lk)
k = CeÃtkÑl1e

Ãtk−1Ñl2 · · · Ñlke
Ãt1 b̃lk with Ã = E−1A, Ñi = E−1Ni, B̃ =

E−1B and b̃i is the ith column of the matrix B̃. Assuming the bilinear system is bounded input
bounded output stable, theH2-norm can also be computed in terms of the Gramians associated
with the bilinear system, i.e.,

‖Σ‖2
H2

= tr(CPCT ) = tr(BTQB),

where the reachability Gramian P and the observability Gramian Q are the solutions to the
following generalized Lyapunov equations:

APET + EPAT +
m∑
k=1

NkPN
T
k +BBT = 0

and

ATQE + ETQA+
m∑
k=1

NT
k QNk + CTC = 0,

respectively. The main goal of H2-optimal MOR is to determine an r-order reduced system,
satisfying

Σr = arg min
‖Σr‖H2

<∞
‖Σ− Σr‖H2 .

As noted, this problem for E = I is investigated in [7] and an iterative scheme is proposed
to determine reduced-order systems, satisfying H2-optimality conditions. This is extended to
E 6= I in [18]. In the following, we sketch B-IRKA to obtain reduced-order systems, satisfying
the necessary conditions forH2-optimality.
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Algorithm 1 MOR for Bilinear ODE Systems.
1: Input: E,A,Nk, B, C.
2: Make an initial guess of Ê, Â, N̂k, B̂, Ĉ.
3: while no convergence do
4: Determine nonsingular S,R such that SÂR = Λ and SÊR = Î , where Î is the identity

matrix.
5: Compute B̃ = B̂TST , C̃ = ĈR and Ñk = RT N̂T

k S
T .

6: Determine the projection matrices V and W :

vect(V ) = −(Λ⊗ E + Î ⊗ A+
m∑
k=1

ÑT
k ⊗Nk)−1(B̃T ⊗B) vect(Im),

vect(W ) = −(Λ⊗ E + Î ⊗ A+
m∑
k=1

ÑT
k ⊗Nk)−T (C̃T ⊗ CT ) vect(Ip),

where Iq ∈ Rq×q is the identity matrix, m and p are the numbers of inputs and
outputs, respectively, and the operator vect(·) yields a column vector by
stacking columns of the matrix on top of each other.

7: Compute the reduced-order system matrices:
Ê = W TEV, Â = W TAV, N̂k = W TNkV, B̂ = W TB, Ĉ = CV .

8: end while
9: Output: Êopt = Ê, Âopt = Â, N̂ opt

k = N̂k, B̂opt = B̂ and Ĉopt = Ĉ.

3 MOR for Bilinear Descriptor Systems

In this section, we focus on MOR for bilinear descriptor systems (1), having an index-2
matrix pencil, in theH2-optimal framework. We begin with the case B2 = 0, i.e.,

E11ẋ1(t) = A11x1(t) + A12x2(t) +
m∑
k=1

Nkx1(t)uk(t) +B1u(t), (2a)

0 = A21x1(t), x1(0) = 0, (2b)
y(t) = C1x1(t) + C2x2(t) +Du(t), (2c)

where the dimensions of the matrices are the same as in (1). We assume thatE11 andA21E
−1
11 A12

are invertible, and E11 is symmetric. As a first step, we transform the bilinear descriptor sys-
tem into an equivalent bilinear ODE system. Following the same steps as for the Stokes-type
quadratic-bilinear descriptor system in [17], we obtain the following system:

E11ẋ1(t) = ΠA11x1(t) +
m∑
k=1

ΠNkx1(t)uk(t) + ΠB1u(t), x1(0) = 0, (3a)

y(t) = Cx1(t) +
m∑
k=1

C(k)
N x1(t)uk(t) +Du(t), (3b)

where

C = C1 − C2(A21E
−1
11 A12)−1A21E

−1
11 A11, C(k)

N = −C2(A21E
−1
11 A12)−1A21E

−1
11 Nk,

D = D − C2(A21E
−1
11 A12)−1A21E

−1
11 B1

and
Π = I − A12(A21E

−1
11 A12)−1A21E

−1
11 . (4)
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Throughout this paper, for simplicity we assume A21 = AT
12. However, A21 6= AT

12 can be
treated in the current bilinear framework as well, if one extends the arguments used in [14]. By
AT

12x1(t) = 0, we have that ΠTx1(t) = x1(t), cf., e.g., [21]. Replacing x1(t) by ΠTx1(t) in (3)
and premultiplying by Π, we obtain the following system:

ΠE11ΠT ẋ1(t) = ΠA11ΠTx1(t) +
m∑
k=1

ΠNkΠTx1(t)uk(t) + ΠB1u(t), (5a)

y(t) = CΠTx1(t) +
m∑
k=1

C(k)
N ΠTx1(t)uk(t) +Du(t), x1(0) = 0. (5b)

As stated in [21], the dynamical system (5) evolves in the n1−n2 dimensional subspace ker (Π).
Therefore, with the decomposition of Π,

Π = φ1φ
T
2 (6a)

with φ1, φ2 ∈ Rn1×n1−n2 assuring

φT
1 φ2 = I, (6b)

the system is completely described through x̃1(t) = φT
1 x1(t) which satisfies

φT
2E11φ2

˙̃x1(t) = φT
2A11φ2x̃1(t) +

m∑
k=1

φT
2Nkφ2x̃1(t)uk(t) + φT

2B1u(t), (7a)

y(t) = Cφ2x̃1(t) +
m∑
k=1

C(k)
N φ2ṽu(t) +Du(t), x̃1(0) = 0. (7b)

Thus, MOR of the system (7) is equivalent to MOR of the system (2). However, the advan-
tage of the system (7) is that φT

2E11φ2 is nonsingular, allowing us to employ Algorithm 1, if
bilinear terms are neglected in the output equation. This leads a locally H2-optimal reduced-
order system, provided it converges. Unfortunately, to determine the system matrices of (7), we
require the explicit computation of the basis matrix φ2 which is not readily available. Moreover,
it might also appear that the realization of the system (7) becomes dense after multiplication
with φ2 which makes the computation of the reduced-order systems expensive. To overcome
this, in what follows, we show how to avoid the explicit computation of φ2 in the application of
B-IRKA.

Remark 3.1. In this paper, we neglect the nonlinear terms and the control part in the output
equation as far as the computation of the projection matrices is concerned. We focus on the
linear relation between the state vector and the output. Nonetheless, the bilinear terms in the
output equation are projected afterwards.

Computational issues

We consider the following associated bilinear ODE system to compute the projection matri-
ces V andW:

φT
2E11φ2

˙̃x1(t) = φT
2A11φ2x̃1(t) +

m∑
k=1

φT
2Nkφ2x̃1(t)uk(t) + φT

2B1u(t), (8a)

ỹ(t) = Cφ2x̃1(t), x̃1(0) = 0. (8b)
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In the view of resolving the computational issues, we aim to determine V and W such that
the system matrices E11, A11, Nk, B1, C and CN can be directly reduced using the projection
matrices as shown in Algorithm 2.

Algorithm 2 MOR for Bilinear DAEs, having an Index-2 Matrix Pencil (Involving Projector).

1: Input: E11, A11, Nk, B1, C, C(k)
N .

2: Make an initial guess of Ê, Â, N̂k, B̂, Ĉ.
3: while no convergence do
4: Compute nonsingular matrices Y and Z such that Y ÂZ = Λ and Y ÊZ = Î .
5: Define B̃ = B̂TY T , C̃ = ĈZ and Ñk = ZT N̂T

k Y
T .

6: Determine

L = −(Î ⊗ φ2)

(
Λ⊗ (φT2 E11φ2) + Î ⊗ (φT2 A11φ2) +

m∑
k=1

ÑT
k ⊗ (φT2 Nkφ2)

)−1

(Î ⊗ φT2 ).

7: Determine the projection matrices V andW:
vect(V) = L(B̃T ⊗B) vect(Im),
vect(W) = LT (C̃T ⊗ CT ) vect(Ip).

8: Compute the reduced-order system matrices:
Ê =WTE11V , Â =WTA11V , N̂k =WTNkV ,
B̂ =WTB1, Ĉ = CV , C(k)

N = Ĉ(k)
N V .

9: end while
10: Output:

Êopt = Ê, Âopt = Â, N̂ opt
k = N̂ opt

k , B̂opt = B̂, Ĉopt = Ĉ, Ĉ(k)opt
N = Ĉ(k)

N .

We notice that the projection matrices can be directly applied to the original system matri-
ces, but in order to compute the projection matrices V and W , we still require the matrix φ2

explicitly. Therefore, our next goal is to construct the matrices V and W without resorting to
φ2.

Lemma 3.1. Let φ2 be the matrix as defined in (6) andF be a matrix such that (Î⊗φT
2 )F(Î⊗φ2)

is invertible. Define X IF and XF as follows:

X IF := (Î ⊗ φ2)
(

(Î ⊗ φT
2 )F(Î ⊗ φ2)

)−1

(Î ⊗ φT
2 ),

XF := (Î ⊗ Π)F(Î ⊗ ΠT ),
(9)

where Π is defined in (4). Then the matrices X IF and XF satisfy the following relation:

X IFXF = (XFX IF )T = Î ⊗ ΠT .

Proof. We begin with

X IFXF = (Î ⊗ φ2)
(

(Î ⊗ φT
2 )F(Î ⊗ φ2)

)−1

(Î ⊗ φT
2 )(Î ⊗ Π)F(Î ⊗ ΠT ).

We decompose Π = φ1φ
T
2 and use properties of the Kronecker product to get

X IFXF = (Î ⊗ φ2)
(

(Î ⊗ φT
2 )F(Î ⊗ φ2)

)−1

(Î ⊗ φT
2 )(Î ⊗ φ1)(Î ⊗ φT

2 )F(Î ⊗ ΠT )

= (Î ⊗ φ2)
(

(Î ⊗ φT
2 )F(Î ⊗ φ2)

)−1

(Î ⊗ φT
2 φ1)(Î ⊗ φT

2 )F(Î ⊗ ΠT ).
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Since φT
2 φ1 = I from (6), we obtain

X I
FXF = (Î ⊗ φ2)

(
(Î ⊗ φT

2 )F(Î ⊗ φ2)
)−1

(Î ⊗ φT
2 )F(Î ⊗ φ2)(Î ⊗ φT

1 )

= (Î ⊗ φ2)(Î ⊗ φT
1 ) = Î ⊗ ΠT .

A similar argument can be given for the other equality.

Using Lemma 3.1 and properties of the Kronecker product, we observe that the projection
matrices V andW , computed in step 7 of Algorithm 2, satisfy:

(Î ⊗ Π)F(Î ⊗ ΠT ) vect(V) = (Î ⊗ Π)(B̃T ⊗B), (10a)

(Î ⊗ Π)FT (Î ⊗ ΠT ) vect(W) = (Î ⊗ Π)(C̃T ⊗ C), (10b)

where F = −
(

Λ⊗ E11 + Î ⊗ A11 +
∑m

k=1 Ñ
T
k ⊗Nk

)
. Note that Π⊗ = Î ⊗ Π is also an

oblique projector. It can be verified that (Π⊗)2 = Π⊗, ker (Π⊗) = range
(
Î ⊗ A12

)
, and

range (Π⊗) = ker
(
Î ⊗ AT

12E
−1
11

)
. Using these properties, it can be shown that

(Î ⊗ AT
12)Z = 0 if and only if (Î ⊗ ΠT )Z = Z. (11)

In the following lemma, we show the way of circumventing the explicit computation of Π to
solve (10) for vect(V) or vect(W) and reveal the connection between the solution of (10) and
saddle point problems.

Lemma 3.2. Consider Z = (Î⊗ΠT )Z and (Î⊗Π)F(Î⊗ΠT )Z = (Î⊗Π)G. Then, the matrix
Z solves [

F Î ⊗ A12

Î ⊗ AT
12 0

] [
Z
Ξ

]
=

[
G
0

]
. (12)

Proof. Since Z = (Î ⊗ ΠT )Z using the properties of Î ⊗ ΠT as stated in (11), we have (Î ⊗
AT

12)Z = 0. This implies that the second block of the equation (12) is satisfied.
Moreover, (Î⊗Π)FZ−(Î⊗Π)G = 0 implies that the columns ofFZ−G lie in ker

(
Î ⊗ Π

)
= range

(
Î ⊗ A12

)
. Therefore, there exists Ξ, satisfying FZ − G = −(Î ⊗ A12)Ξ which is

nothing but the first block of the equation (12). This concludes the proof.

Therefore, using Lemma 3.2, we can determine vect(V) and vect(W) without explicitly
computing Π by solving the corresponding saddle point problems. All these theoretical analysis
gives rise to Algorithm 3 for MOR of the system (7).

Remark 3.2. As discussed in [21], the general B2 6= 0 index-2 problems can be brought back
to a problem with B2 = 0 type by decomposing x1(t) as follows:

x1(t) = x0(t) + xu(t), (13)
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Algorithm 3 MOR for Bilinear DAEs, having an Index-2 Matrix Pencil.

1: Input: E11, A11, Nk, B1, C, C(k)
N

2: Make an initial choice of Ê, Â, N̂k, B̂, Ĉ.
3: while no convergence do
4: Compute nonsingular matrices Y and Z such that Y ÂZ = Λ and Y ÊZ = Î .
5: Define B̃ = B̂TY T , C̃ = ĈZ and Ñk = ZT N̂T

k Y
T .

6: Determine the projection matrices V andW:[
F Î ⊗ A12

Î ⊗ AT
12 0

] [
vect(V)

Γ

]
=

[
(B̃T ⊗B) vect(Im)

0

]
,[

FT Î ⊗ A12

Î ⊗ AT
12 0

] [
vect(W)

∆

]
=

[
(C̃T ⊗ C) vect(Ip)

0

]
,

where F = −(Λ⊗ E11 + Î ⊗ A11 +
∑m

k=1 Ñ
T
k ⊗Nk).

7: Compute the reduced-order system matrices:
Ê =WTE11V , Â =WTA11V , N̂k =WTNkV ,
B̂ =WTB1, Ĉ = CV , C(k)

N = Ĉ(k)
N V .

8: end while
9: Output:
Êopt = Ê, Âopt = Â, N̂ opt

k = N̂k, B̂opt = B̂, Ĉopt = Ĉ, Ĉ(k)opt
N = Ĉ(k)

N .

where xu(t) = −E−1
11 A12(AT

12E
−1
11 A12)B2︸ ︷︷ ︸

Υ

u(t) and x0(t) satisfies AT
12x0(t) = 0. After doing

the algebraic calculations as done for the case B2 = 0 case, we get

ΠE11ΠT ẋ0(t) = ΠA11ΠTx0(t) +
m∑
k=1

ΠNkΠTx0(t)uk(t) + ΠBũ(t), (14a)

ΠTx0(0) = ΠT (x0 − xu(0)), (14b)

y(t) = CΠTx0(t) +
m∑
k=1

C(k)
N ΠTx0(t)uk(t) +Dũ(t) (14c)

− C2(AT
12E

−1
11 A12)−1B2u̇(t),

where

B = [B1,B(1)
u , . . . ,B(m)

u ] with B(k)
u = −NiΥ, ũ(t) =

(
[1, u(t)T ]⊗ u(t)T

)T
,

C = C1 − C2(AT
12E

−1
11 A12)−1A11, C(k)

N = −C2(AT
12E

−1
11 A12)−1AT

12E
−1
11 Nk,

D =
[
D − C1Υ− C2(AT

12E
−1
11 A12)−1AT

12E
−1
11 B1,

C2(AT
12E

−1
11 A12)−1AT

12E
−1
11 [B(1)

u , . . . , B(m)
u ]
]
.

Although the system (14) has terms associated with u, u·uk which are functions of u eventually,
but we treat them as different inputs of the system as far as MOR is considered. Now, it can
be easily seen that determining reduced-order systems of the system (14) is analogous to the
system (5). Therefore, Algorithm 3 can be readily applied to the system (14) to obtain locally
H2-optimal reduced-order systems, having neglected bilinear terms in the output equation.
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4 Carleman Bilinearization for Quadratic-Bilinear Descriptor Systems with Index-2 Ma-
trix Pencil

In this section, we study the Carleman bilinearization process for quadratic-bilinear descrip-
tor systems. The Carleman bilinearization process can be applied to approximate quadratic-
bilinear systems; see, e.g., [8, 19]. This process was recently extended to quadratic-bilinear
descriptor systems, having an index-1 matrix pencil λE−A in [20]. For simplicity of notation,
we consider a single-input quadratic-bilinear descriptor system in the following form:

E11ẋ1(t) = A11x1(t) + A12x2(t) +Hx1(t)⊗ x1(t) +Nx1(t)u(t) +B1u(t),

0 = A21x1(t) +B2u(t),

y(t) = C1x1(t) + C2x2(t),

(15)

where x1(t) ∈ Rn1 and x2(t) ∈ R are the generalized states, and y(t) ∈ Rp and u(t) ∈ R are
the output and the input to the system, respectively. All other matrices are fixed by the size
of the state vectors, the input and the output. We assume that matrices E11 and A21E

−1
11 A12

are invertible. This implies that the matrix pencil λE − A is index-2 pencil. Moreover, it is
assumed that the system has only one constraint due to which x2(t) is considered to be a scaler
variable, rather than a vector. With these assumptions, we aim to determine an approximate
bilinear system via Carleman bilinearization, preserving the properties like the index of the
matrix pencil λE −A. Without loss of generality, we can assume that B2 = 0, otherwise it can
be brought back to the B2 = 0 case by an appropriate change of variables as stated in Remark
3.2. As a first step, we develop a differential equation for x⊗1 = x1(t)⊗ x1(t), neglecting cubic
and higher order terms:

(E11 ⊗ E11)
d

dt
x⊗1 (t) = E11ẋ1(t)⊗ E11x1(t) + E11x1(t)⊗ E11ẋ1(t)

= L(A11, E11)x⊗1 (t) + L(A12, E11)x1(t)x2(t)

+ L(B1, E11)x1(t)u(t) + L(N,E11)x⊗1 u(t)

(16)

in which L(A,B) = A⊗ B + B ⊗A. We also get additional constraints as

0 = (E11 ⊗ A21)x⊗1 (t). (17)

Combining (15),(16) and (17), we get the following bilinear system as an approximation to (15):

Ẽ11
˙̃x1(t) = Ã11x̃1(t) + Ã12x̃2(t) + Ñ x̃1(t)u(t) + B̃1(t),

0 = Ã21x̃1(t),

ỹ(t) = C̃1x̃1(t) + C̃2x̃2(t),

where

Ẽ11 =

[
E11 0
0 L(E11, E11)

]
, Ã11 =

[
A11 H
0 L(A11, E11)

]
, Ã12 =

[
A12 0
0 L(A12, E11)

]
,

Ã21 =

[
A21 0
0 (A21 ⊗ E11)

]
, Ñ =

[
N 0

L(B1, E11) L(N,E11)

]
,

B̃1 =

[
B1

0

]
, Ĉ1 =

[
CT

1

0

]T
, C̃2 =

[
CT

2

0

]T
, x̃1 =

[
x1

x⊗1

]
, x̃2 =

[
x2

x1x2

]
.
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Next, we show that the matrix pencil λẼ − Ã is also an index-2 pencil. For this, we need to
prove that Ã21Ẽ

−1
11 Ã12 is a full rank matrix. Therefore, we consider the following:

Ã21Ẽ
−1
11 Ã12 =

[
A21 0
0 (A21 ⊗ E11)

] [
E−1

11 0
0 L(E−1

11 , E
−1
11 )

] [
A12 0
0 L(A12, E11)

]
=

[
A21E

−1
11 A12 0
0 E11

((
A21E

−1
11 A12

)
I + E−1

11 A12A21

)] .
SinceE−1

11 A12 andA21 both are vectors, this implies that the eigenvalues ofE−1
11 A12A21 are zero

and
(
A21E

−1
11 A12

)
with multiplicities n−1 and 1, respectively. Also, we know that if σi are the

eigenvalues of matrix P , then the matrixQ := I+P has the eigenvalues 1+σi. This shows that
the matrix

((
A21E

−1
11 A12

)
I + E−1

11 A12A21

)
has eigenvaluesA21E

−1
11 A12 and 2·A21E

−1
11 A12 with

multiplicities n−1 and 1, respectively. Hence, Ã21Ẽ
−1
11 Ã12 is invertible and so, the bilinearized

system has an index-2 matrix pencil.

5 Numerical Experiments

In this section, we investigate the efficiency of the proposed iterative algorithm for bilinear
descriptor systems, having an index-2 matrix pencil and compare the quality of the determined
reduced-order systems with the ones obtained by using the projection matrices determined by
linear IRKA [14, Algo. 6.2]. The stopping criterion for Algorithm 3 is based on the relative
change in the eigenvalues of the reduced-order system. If this change is below the square root
of the machine precision, then the iteration is stopped. We randomly select the initial guess
of the reduced-order matrices in Algorithm 3, and also choose a scaling factor γ as suggested
in [7] for a smooth convergence of B-IRKA. All the simulations are done on a CPU 2x Intel
Xeon E5620, 12 MB Cache, 48 GB DDR3 RAM, MATLAB® Version 7.11.0.584 (R2010b)
64-bit(glnxa64).

5.1 Nonlinear RC Circuit

Nonlinear transmission line circuits are considered to be standard test cases the community
of interpolation-based MOR; see, e.g., [22] for the unconstrained RC circuit and [15] for the
constraint RC circuit. Here, we consider a variant of the constraint transmission line circuit
as shown in Figure 1 (in Introduction), where it is assumed that the voltages at the first and
last nodes are the same. The electrical component i.e., diode I-V, has nonlinear characteristics
g(vD) = e40vD+vD−1, where vD is the voltage across the node. Using Kirchhoff’s current law
at each node, we get the following set of equations:

v̇1 = −2v1 + v2 + 2− e40v1 − e40(v1−v2) + u(t),

v̇i = −2vi + vi−1 + vi+1 + e40(vi−1−vi) − e40(vi−vi+1), 1 < i < ñ,

v̇ñ = −vñ + vñ−1 − 1 + e40(vñ−1−vñ)

(18)

with a constraint
0 = v1 − vñ.

The system of equations (18) can be written as a quadratic-bilinear descriptor system by ap-
propriately introducing the new state variables, as shown in [22] for a nonlinear RC circuit
example. The dynamics of the system, in state-space representation, is given as follows:

ẋ(t) = Ax(t) +Gλ+Hx(t)⊗ x(t) +Nx(t)u(t) +Bu(t),

0 = GTx(t),
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where x(t) ∈ Rñ and λ are state vector, containing voltages at each node, and an appropriate
Lagrangian multiplier, respectively. We observe the voltage at the first node. Since we have only
one constraint in the system dynamics, this allows us to employ Carleman bilinearization as
discussed in Section 4 to obtain an approximate bilinearized descriptor system. We set ñ = 15,
leading to a bilinearized system of order n = 2 · ñ+ 4 · ñ2 + 1 = 961. We apply theH2-optimal
model reduction method given in Algorithm 3 by setting the order of the reduced-order system
to r = 10. We choose the scaling factor γ = 0.01 in order to achieve convergence of B-IRKA.
We also determine a reduced-order system by using linear IRKA of the same order. In Figure 2,
we compare the quality of the reduced-order systems with the original system by computing
transient responses for an input u(t) = (sin(10πt) + 1)/2.

Bilinearized system Reduced system (B-IRKA) Reduced system (IRKA)

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6
·10−3

Time [s]

Response

0 0.2 0.4 0.6 0.8 1
10−8

10−5

10−2

Time [s]

Absolute error

Figure 2: Comparison of the transient response of the systems for an input u(t) = (sin(10πt) + 1)/2.

We observe that the reduced-order system obtained by modified B-IRKA captures the dy-
namics of the system better as compared to the reduced-order system obtained by linear IRKA.

5.2 Resistance-varying RC circuit

As our second example, we consider the RC circuit as shown in Figure 3 in which the ith node
is connected to the (i−1)st and the (i+1)st nodes via resistances, and connected to the ground
via capacitors. Moreover, the first node is connected to the ground via a variable resistance, and
the voltage at the first node is influenced by the current (the input u1). We also add an extra
control u2, controlling the voltage difference between the first and last nodes. Now, we apply
Kirchhoff’s current law at each node to obtain the following set of ODEs:

Cv̇1(t) = 1
R

(−v1 + v2) + 1
Rv

(0− v1) + u(t),

Cv̇i(t) = 1
R

(−2vi + vi−1 + vi+1), (2 ≤ i ≤ n− 1),

Cv̇n(t) = 1
R

(−vn + vn−1)

along with a constraint
0 = v1 − vn − u2(t).

We set all the capacitors (C) and the constant resistance (R) equal to 1, and consider that the
variable resistance Rv varies with respect to the parameter δ as follows:

Rv =
R

1 + δ
.
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Rv C C

R

C C

R R

u2(t)

u
1
(t
)

v1 v2 v3 vn−1 vn

Figure 3: A constraint RC-circuit diagram.

Combining all these equations together, we obtain the dynamics of the RC circuit which are
described by the following descriptor system:

ẋ(t) = Ax(t) +GTλ(t) + δNx(t) +B1u1(t),

0 = Gx(t) +B2u2(t),

y(t) = Cx(t),

(19)

where x(t) ∈ Rn is the state vector containing the voltage at each node, λ ∈ R is the Lagrange
multiplier, G = [1, 0, . . . , 0,−1] is a constraint matrix, B1 = [1, 0, . . . , 0] and B2 = 1. The
voltage at the second node is the output of interest, and it yields C = [0, 1, 0, . . . , 0]. For this
example, we first transform the system (19) into an equivalent system with B2 = 0 as suggested
in Remark 3.2, leading to the following system:

˙̃x(t) = Ax̃(t) + δNx̃(t) +GTλ(t) + Bũ(t),

0 = Gx̃(t),

y(t) = Cx̃(t) +Dũ(t),

(20)

where B = [B1, AG, NG] and D = [0, CG, 0] in which G = −GT (GGT )−1B2, and ũ(t) =
[u1(t), u2(t), δu2(t)]. Now, the system (20) can be seen as a linear parameter-varying system in
the parameter δ. It is shown in [23] that the special class of parametric systems is closely related
to MOR of bilinear systems. Therefore, we reformulate the linear system (20) appropriately as
a bilinear system with four inputs and one output as follows:

˙̃x(t) = Ax̃(t) +
4∑

i=1

Nix̃(t)ui(t) +GTλ(t) + Bbũb(t),

0 = Gx̃(t),

y(t) = Cx̃(t) +Dbũb(t),

(21)

where
[
N1, N2, N3, N4

]
=
[
0, 0, 0, N

]
, Bb = [B, 0] and Db = [D, 0] with inputs ũb(t) =

[ũT (t), δ]T . We consider n = 1000, leading to the order of the system ñ = 1001. Next, we
determine reduced bilinear systems of order r = 15 by employing the H2-optimal model re-
duction method given in Algorithm 3 and by using linear IRKA. These reduced bilinear systems
again can be rewritten into reduced linear parametric systems. This allows us to determine the
quality of the reduced-order systems by comparing the relative H∞-norm ‖H−Ĥ‖H∞

‖H‖H∞
of the error

system varying parameter values δ which is shown in Figure 4.
We observe that the reduced parametric system obtained from B-IRKA captures the dynamics

of the original system for a wide parameter range much better as compared to the one obtained
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Reduced system (B-IRKA) Reduced system (IRKA)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
10−4

10−3

10−2

10−1

100

Parameter, δ

‖H
−
Ĥ
‖ H

∞
‖H
‖ H

∞

Figure 4: Relative H∞ error versus the parameter δ for the reduced linear parametric systems obtained from
B-IRKA and IRKA.

by using linear IRKA. However, one can see the drop in the relative H∞ error in Figure 4. This
is due to an obvious reason that the projection matrices obtained by employing IRKA capture
the dynamics of the system quite accurately for δ = 0, but fail to capture the dynamics of the
system as the parameter δ moves away from δ = 0. On the contrary the reduced parametric
system obtained from B-IRKA performs quite well over a wide parameter range.

5.3 Parameter dependant RLC circuit

Lastly, we consider an RLC circuit as shown in Figure 5. The governing equations of the
RLC circuit can be written as follows:

C d
dt
vj = ij − ij−1, j = 1, . . . , g − 1,

C d
dt
vg = ig,

L d
dt
ij +Rij = vj−1 − vj j = 2, . . . , g,

where vj and ij are the voltage at the jth node and the current passing through the (j−1)st
inductor, respectively. Also, V (t) is a control voltage source of the system and i1 is the current
passing through this voltage source. Since the voltage source is connected to the first node via
ground, this leads to a constraint 0 = v1 − V (t). We set all capacitors and inductors to 1, and
consider variable resistances, depending linearly on the parameter p as follows:

R = 1 + p.

V (t)

i1

C

R
L

i2

C

R
L

i3

C C

R
L

ig

C

v1 v2 v3 vg−1 vg

Figure 5: A variable resistance RLC circuit.
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With these relations, we can write the system in state-space form as:

d

dt
x1(t) = A11x1(t) + A12x2(t) + pNx1(t),

0 = AT
12x1(t) +B2u(t),

(22)

where x1(t) contains the voltages at each node and the currents passing through each induc-
tor, and x2(t) contains the current though the voltage source. The voltage at the last node is
observed. We choose g = 500 which results in the order of the system (22) n = 1001. As a
first step, we convert system (22) to an equivalent system by using an appropriate change of the
state variable so that the constraint equation becomes independent of the input, leading to the
following system:

d

dt
x̃1(t) = A11x̃1(t) + Ã12x2(t) + pNx̃1(t) + B̃u(t),

0 = AT
12x̃1(t),

y(t) = C1x̃1(t).

Next, we treat the above system as a bilinear system by considering the parameter p as an
input to the system. We determine reduced bilinear systems of order r = 10, by employing
the proposed B-IRKA and IRKA, and then convert back to have linear parametric reduced-order
systems. In order to compare the quality of the reduced-order systems, we plot the relative
H∞-norm of the error system in Figure 6.

Reduced system (B-IRKA) Reduced system (IRKA)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
10−10

10−7

10−4

10−1

Parameter, p

‖H
−
Ĥ
‖ H

∞
‖H
‖ H

∞

Figure 6: Relative H∞ error versus the parameter p for the reduced linear parametric systems obtained from
B-IRKA and IRKA.

The similar phenomenon, as observed in Example 5.2, can be seen in Figure 6, in particular
a drop in the relative H∞ error for IRKA at p = 0. Nevertheless, the reduced-order system,
obtained by using B-IRKA, outperforms the one obtained by using IRKA for a wide range of the
parameter.

6 Conclusions

We have proposed an iterative algorithm for MOR of bilinear descriptor systems, having an
index-2 matrix pencil. This gives rise to locally H2-optimal reduced-order systems on conver-
gence, if it converges. First we have transformed the original bilinear descriptor system into
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an equivalent bilinear ODE system by means of projectors. This enabled us to employ bilin-
ear iterative rational Krylov algorithm (B-IRKA). Next, in the view of implementation, we have
proposed a modified B-IRKA which does not require the undesirable explicit computation of the
spectral projector in order to compute reduced-order systems. We have also extended the Carle-
man bilinearization process for quadratic-bilinear descriptor systems, having an index-2 matrix
pencil and only one constraint. It is shown that the bilinearized systems preserve the index-2
of the matrix pencil. Finally, we have illustrated the efficiency of the proposed B-IRKA using
various constraint electrical circuit examples, showing that reduced-order systems, obtained by
using modified B-IRKA, replicate the dynamics of the original system much better as compared
to the reduced-order systems obtained by using linear IRKA.
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Abstract.

Recently microwave heating is replacing classical methods in composite manufacturing pro-

cesses. In fact one of the advantages of microwave heating is achieving a volumetric heating,

which can improve the final material properties. However electrical and magnetic fields prop-

agation is complicated to simulate and understand inside a heterogeneous domain. In fact,

carbon fibers are highly conductor with respect to the composite matrix. Such behavior would

alter the wave propagation inside the part and reduces the desired volumetric heating effects.

In this work, we simulate the propagation of electric fields inside a heterogeneous part by using

the Proper Generalized Decomposition (known as PGD). In fact this method helps us achieving

full 3D simulations by the complexity of few 1D simulations.
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1 INTRODUCTION

Composite parts are getting popular thanks to their good mechanical properties and low

weight. Aeronautic and transport industries are turning to composite materials to reduce the

energy use and therefore the transportation costs.

However composite materials manufacturing processes are not fulfilling industrial needs yet.

In fact, classical manufacturing techniques can’t follow up the increasing industrial demand of

faster and reliable production. Therefore, researchers are turning their attention to innovative

production techniques such as the microwave curing of composite parts. Moreover, microwave

curing can lead to better parts with mechanical properties similar to the autoclave-made parts

[1], thanks to the volumetric heating achieved by this method [2]. On the other hand, volumetric

curing can also shorten the total manufacturing process time [3]. Such advantages are leading

the industrials to microwave heating of thermoplastic as well as thermoset polymers.

On the other hand, microwave heating relies on the propagation of an electromagnetic field

inside composite materials. However, such materials are heterogeneous, and usually with a de-

generated thickness dimension. Moreover, we note that carbon fibers are electrical conductors,

while, in general, the composite matrix is highly insulating. Thus, the electrical field behavior

in such conditions is still not mastered yet to the knowledge of the authors. Therefore a full 3D

simulation is required to analyze the wave propagation inside the composite material and un-

derstand the microwave heating process. Despite the large progress in computing power during

the last decade, such simulations are still difficult to perform with the required resolution using

classical calculation techniques. In fact the simulation of the wave propagation in the composite

material is highly dependent on the degenerated thickness direction.

Thus, model order reduction techniques appeared recently as a replacement of classical nu-

merical methods, which allow faster simulation with acceptable accuracy [4]. The Proper Gen-

eralized Decomposition or PGD is one of these techniques which allows overcoming the curse

of dimensionality by using separated representation of the domain [4, 5]. In fact this technique

allows the simulation of a full 3D models with a complexity of few 2D or 1D simulations [6, 7].

The objective of this work is to simulate the electrical field propagation using a full 3D model

in an heterogeneous domain, containing carbon fibers inside a thermoplastic matrix. Using the

PGD, the simulation will be separated in a sequence of three 1D simulations which will lead to

the full 3D solution [8]. We will be showing the results inside two different domains. In the

first one, the domain dimensions are large with respect to the wavelength, while in the second

one, the domain dimensions are small with respect to the wavelength.

2 SIMULATED MODEL

In this section we describe the model used in the simulation. As illustrated in figure 1, we

have a matrix domain in which a conductor which has a rectangular cross section is placed. The

conductor is at 3

5
b from the bottom of the domain and centered in the (x, z) plane. The cross

section of the conductor has the dimensions 1

5
b× 0.05c.

The physical model consists of the Maxwell equations in the phasor domain, that after some
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a

b

c

3/5 b

0.45 c

0.45 a

Ey=1 on top plane

x

y

z

Figure 1: The model used in the simulation

manipulations and assuming an harmonic electric field, is reduced to:

∇2
E− γ2

E = 0 (1)

where E is the electric field in the phasor domain having 3 components denoted as E =
(Ex;Ey;Ez). While γ is defined by:

γ2 = i · w · µ (σ + i · w · ǫ) (2)

where i being the complex number, σ is the electrical conductivity, µ is the electrical perme-

ability, ǫ is the permittivity and ω is the angular frequency of the wave. In our simulations we

use a frequency of 2.45 GHz, which has a wavelength of about 12 cm. The boundary conditions

of the simulated domain can be written by:

Ey = 0 at y = 0;
Ey = 1 at y = b;
Ex(x = 0) = Ex(x = a);
Ex(z = 0) = Ex(z = c);
∂Ex

∂x
(x = 0) = ∂Ex

∂x
(x = a);

∂Ex

∂z
(z = 0) = ∂Ex

∂z
(z = c);

Ez(x = 0) = Ez(x = a);
Ez(z = 0) = Ez(z = c);
∂Ez

∂x
(x = 0) = ∂Ez

∂x
(x = a);

∂Ez

∂z
(z = 0) = ∂Ez

∂z
(z = c);

Ey(x = 0) = Ey(x = a);
Ey(z = 0) = Ey(z = c);
∂Ey

∂x
(x = 0) = ∂Ey

∂x
(x = a);

∂Ey

∂z
(z = 0) = ∂Ey

∂z
(z = c);

(3)

The boundary conditions depicted in equation 3, can be resumed by an imposed electrical

field on the y direction and symmetrical boundary conditions on the x and z directions.

In table 1 we indicate the considered parameters for both the matrix and the fibers (conductor)

in the domain.
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Material conductivity permeability permittivity

Conductor inf µ0 ǫ0
Matrix 0 µ0 ǫ0

Table 1: Parameters used in the simulation of the proposed model

3 USING THE PROPER GENERALIZED DECOMPOSITION

Using the Proper Generalized Decomposition, we will separate the domain into 3 × 1D
domains by assuming that Ex, Ey and Ez can be written as:

Ex =
i=N∑

i=0

X i
x(x) · Y

i
x(y) · Z

i
x(z)

Ey =
i=N∑

i=0

X i
y(x) · Y

i
y (y) · Z

i
y(z)

Ez =
i=N∑

i=0

X i
z(x) · Y

i
z (y) · Z

i
z(z)

(4)

Such representation is appealing for solving 3D problems efficiently, especially for problems

with rich physics in the in-plane and out-of-plane directions, while ensuring a computational

complexity of few 1D resolutions [6]. Such representation allows the use of a fine mesh in

the degenerated thickness direction if needed. However, classical techniques should employ a

3D extremely fine mesh in the entire domain to capture the discontinuity of the electrical field

around the conductors, which involves a prohibitive number of degrees of freedom. Moreover,

for the resolution of the separated 1D problems, one could use any suitable numerical technique

(for example finite elements for one problem and finite differences for the second one).

The resolution procedure starts by replacing equations (4) into the weak form of the Maxwell

equation (1). Afterwards, a fixed-point algorithm is used to compute the unknown functions,

one at a time. All the details of the resolution algorithm can be found in [9].

4 RESULTS

4.1 Large domain

As a first step, we propose to simulate the problem detailed in section 2 on a large domain

such that the wavelength is small compared to a, b or c values. Therefore we start by showing

the results on a domain having the dimensions a = 1m; b = 0.4m and c = 1m. We use 110

nodes along each of the x and z directions, while we use 500 nodes along the y direction. All

the following figures are showing the amplitude of the electrical fields components. Figure 2

illustrated the Ey component in the domain, while figure 3 shows Ey inside the domain using

2 cuts normal to the x and z axis. Figure 4 illustrates Ey in the domain with a horizontal cut,

normal to the y-axis, and passing by the conductor. On the other hand, figures 5, 7 and 6 show

respectively Ex, Ey and Ez on a cut passing by z = 0.5m.

4.2 Small domain

In this section, we solve the same model on a domain that is relatively small compared to the

wavelength, therefore we consider a = 1mm; b = 0.4mm and c = 1mm. The result for Ey in a
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Figure 2: The electrical fields on the domain a = 1m; b = 0.4m and c = 1m

Figure 3: Ey shown inside the domain a =
1m; b = 0.4m and c = 1m

Figure 4: Ey on an horizontal cut passing

by the conductor

vertical section passing by the fibers is shown in figure 8. Moreover, figures 10, 9 and 11 show

respectively Ex, Ey and Ez in a section normal to the z-axis and passing by z = 0.5 · 10−3m.

5 CONCLUSION

In this work, we solved the Maxwell equations in a heterogeneous domain to simulate the

electrical fields. The resolution is performed on two different domains, the first one large with

respect to the wavelength, while the second one is small with respect to it.

The shown results are different in each case. In the large domain, the wavelength is small

with respect to the domain dimensions therefore the electric field can oscillate inside the do-

main. However, in the second case, the electric field can’t oscillate due to the large wavelength

with respect to the dimensions of the domain.

For the first time to the knowledge of the authors we are able to simulate in full 3D the

electric fields with a resolution up to more than 6 000 000 nodes (18 000 000 degrees of free-

dom) with about an hour on a standard laptop, core i7. Such simulation wasn’t possible without

the use of the PGD which allows separating the 3D domain into 3 × 1D domains. Therefore

the computation time is reduced several orders of magnitude, from few days to few minutes.

Moreover, the used resolution allows capturing the 3D effects generated by the presence of the
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Figure 5: Ex on a section passing by z =
0.5 m

Figure 6: Ez on a section passing by z =
0.5 m

conductor in the domain, which changes the electrical fields around the conductor.

This present work will be generalized to a large number of fibers inside the domain, lead-

ing to effective simulation of composite materials and therefore a better understanding of the

microwave heating process in both thermoplastics and thermosets.
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Figure 7: Ey on a section passing by z = 0.5 m
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Figure 8: The electrical field Ey in the do-

main a = 1 × 10−3m; b = 0.4 × 10−3m
and c = 1 × 10−3m, shown on a section

normal to z
Figure 9: Ey on a section passing by z =
0.5× 10−3 m

Figure 10: Ex on a section passing by z =
0.5× 10−3 m

Figure 11: Ez on a section passing by z =
0.5× 10−3 m
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Abstract. Frequency response analysis in structural dynamics usually requires solving large
dynamical systems of the form (−ω2M + iωD + K)u(ω) = f(ω), which result from a FE
discretization. A straightforward solution of big systems requires a high computational cost;
therefore several Model Order Reduction (MOR) techniques have been developed in the last
decades to obtain faster and efficient results. Between them interpolatory approaches have
gained importance for solving second order dynamical systems. This work presents and com-
pares ten MOR techniques which are suitable for structural dynamics problems. These are:
Guyan-Irons Reduction, Improved Reduction System, Dynamic Reduction, Real Modal Anal-
ysis, Complex Modal Analysis, Craig-Bampton Method, and Interpolatory MOR methods like
Multi-point Padé Approximation, the Krylov-based Galerkin Projection and the Derivative-
based Galerkin Projection. A brief summary of the theoretical background is presented for
each method. A first numerical example shows the applicability for damped systems and a sec-
ond example shows suitability of the Interpolatory MOR methods for industrial applications,
using data from a commercial FE software (ANSYS®).
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1 INTRODUCTION

The equation of motion resulting from a finite element discretization of a mechanical system
is given by

Mü(t) + Du̇(t) + Ku(t) = f(t) (1)

Applying a Fourier transformation to eq. (1), with u(ω) = F
(
u(t)

)
and f(ω) = F

(
f(t)

)
leads

to
(−ωj2M + iωjD + K)u(ωj) = f(ωj) j = 1, 2, 3...nω (2)

which is the equation of motion in the frequency domain, where M, D, K ∈ RN×N are the
mass, damping and stiffness matrix respectively, f ∈ RN×1 is the load vector (force vector) and
u ∈ RN×1 is the displacement vector. nω is the number of times that u(ω) is computed in eq.
(2) in the scope of frequency response analysis. If nω and N are large numbers solving eq.(2)
for u(ωj) becomes computationally expensive, in these cases one may search for a reduced-
order model which would lead to a lower computational time. Such a reduced-order model is
achieved using a suitable MOR technique. The main idea of MOR techniques is to find a vector
space spanned by the columns of V ∈ CN×nr , with nr � N , which maps a reduced set of
degrees of freedom (dofs) ur ∈ Cnr×1 into the original set of degrees of freedom u, such that

u ≈ ũ = Vur (3)

where ũ is the approximation of u. In the following the approximation will not be labeled
anymore. By substituting the approximation of u given by eq. (3) in eq. (2), there exists an
error er defined by

er = (−ω2M + iωD + K)Vur − f (4)

This error is not contained in the Ran(V), therefore it is said to be in the null space of V, i.e.
the transpose of V is orthogonal to er,

VH
(
(−ω2M + iωD + K)Vur − f

)
= 0. (5)

Where H is used for the conjugate transpose of a matrix. Eq. (5) is equivalent to performed
Galerkin projection [14] or applied the least square method to the overestimated system of
equations resulting from substituting eq. (3) in eq. (2). From eq. (5) the following reduced
order model is achieved:

(−ωj2Mr + iωjDr + Kr)ur(ωj) = fr(ωj) (6)

where Mr, Dr, Kr ∈ Cnr×nr , fr ∈ Cnr×1 are defined by

Mr = VHMV Dr = VHDV Kr = VHKV
fr = VHf

(7)

For the construction of that matrix V different approaches have been proposed in the field
of structural mechanics. A classical approach to construct V is using a modal decomposition;
this idea was in the mathematics community since the 18th century and it uses the superposition
principle, which was stated by Bernoulli in 1753 [1]. With the development of the finite element
method (FEM) the modal decomposition has been extensively used to reduce large numerical
models leading to a set of decoupled equations, whose solutions are straightforward. In 1965
Guyan and Irons presented the first condensation method, Guyan-Irons Reduction [2, 3]. A
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new paradigm was introduced in 1968 by Craig and Bampton [6], the Craig-Bampton method
which introduced the concept of sub structuring, has allowed the achievement of computing
large complex systems and is suitable for parallelization. A similar procedure to that of the
Guyan-Irons reduction but for dynamical analysis was introduced in 1978 by Leung [4], the
dynamic condensation (Dynamic Reduction) which allows to reduce a system about a frequency
of interest. In 1991 Blair et. al. [19] presented an iterative process to the already established
Improved Reduction System method presented by O’Callahan [17] in 1989. From system and
control field the moment matching method, i.e. the Krylov Subspace method was reformulated
in 1989 by Craig and Su [7] to solve second order dynamical systems, thus the reduced-order
model preserves the second order form of the original model, avoiding the structural dynamics
model be transformed into the first order formulation (state space form), which destroys the
meaning of the original model. It turns out that the Krylov subspace method results in a very
efficient method in computational cost and its parallelization could be easily achieved. In this
contribution ten MOR techniques are reviewed and classified as follows

1. Modal Decomposition Methods

• Real Modal Analysis (RMA)

• Complex Modal Analysis (CMA)

2. Condensation Methods

• Guyan-Irons Reduction (GR)

• Improved Reduction System (IRS)

• Dynamic Reduction (DR)

3. Component Mode Synthesis Methods

• Craig-Bampton Method (CB)

4. Interpolatory Methods

• Multi-point Padé Approximation (mP)

• Krylov-based Galerkin Projection (KGP)

• Derivative-based Galerkin Projection (DGP)

The general procedure of a frequency response analysis using MOR techniques is summarized
as follows:

1. Define a frequency interval ∆ω = [ωL ωR]

2. Define a set of reduced dofs or generalized coordinates ur and construct the basis for the
matrix V, see secs. 2 - 5, such that Vur approximates the physical coordinates u.

3. Compute the reduced force vector and the reduced matrices of eq. (7)

4. Compute ur(ω) in eq. (6) and use eq.(3) to get u in the interval ∆ω.

(a) Define nω frequency points in ∆ω, those frequency points are denominated ωj .
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(b) Compute ur(ωj) nω times, i.e. for each ωj

ur(ωj) =
(
− ω2

jMr + iωjDr + Kr

)−1
fr j = 1, 2, 3, ..., nω (8)

(c) Project the vector ur into the Ran(V) to get the solution u(ωj) of the original model
using (3):

u(ωj) = Vur(ωj) (9)

2 MOR: Modal Decomposition Methods

This section presents an overview of the classical modal decomposition methods

• Real Modal Analysis

• Complex Modal Analysis

2.1 Real modal analysis

Real Modal Analysis uses a set of natural vibration forms (mode shapes) of the full-model
as the vector space which contains u, i.e. the displacement vector u(ω) is approximated by the
set of nr natural modes using the expansion theorem [15]

u(ω) =
nr∑
j=1

φjηj(ω)

= [φ1 φ2 φ3 · · ·φnr ]η
= Φη (10)

where the modal matrix Φ ∈ RN×nr and the vector of modal coordinates η ∈ Rnr×1 are V and
ur in eq. (3) respectively.
The modal matrix Φ is obtained from the free vibration problem of eq. (2), which appears when
f and D are equal to zero. Then a generalized eigenvalue problem is formulated:

(K− ω2
jM)φj = 0 j = 1, 2, 3, ..., nr (11)

where the eigenvalue λj = ω2 is the jth natural frequency of the system and the eigenvector
φj ∈ RN×1 is the jth mode shape, which is normalized for convenience. The mode shapes are
mutually orthogonal to the mass and stiffness matrices, i.e.

φTj Mφi =

 = 0 for j 6= i orthogonality

= mj for j = i

 (12)

φTj Kφi =

= 0 for j 6= i orthogonality

= kj for j = i

 (13)

If the damping matrix D is defined to be proportional to the mass and stiffness matrices, the
mode shapes are also mutually orthogonal to the damping matrix D. Thus, due to the orthog-
onality property of the mode shapes of the modal matrix Φ, the reduced-order model given by
eq. (6) results in a set of nr decoupled equations of the form

(−ω2mj + iωcj + kj)ηj(ω) = φTj f(ω) j = 1, 2, 3, . . . , nr (14)
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2.2 Complex Modal Analysis

In case of non-proportional damping a reduced decoupled system is obtained using a com-
plex modal analysis, i.e. using complex eigenvectors and eigenvalues. Therefore the second
order ordinary differential equations given by eq. (1) is expressed as a 2N-dofs first order dif-
ferential equations, i. e. the state-space formulation

ż(t) = Az(t) + Bf(t) (15)

where the state vector z ∈ R2N×1, the state matrix A ∈ R2N×2N , the input matrix B ∈ R2N×N ,
and the input vector f ∈ R2N×1 are defined by

z =

[
u
u̇

]
; A =

[
0 I

−M−1K −M−1D

]
; B =

[
0

M−1

]
(16)

Considering the free vibration problem, i.e. the external force vector f equal to zero and using
a solution of the form z =

∑nr
k=1 e

λkφ̂k leads to

λkφ̂k = Aφ̂k k = 1, 2, ..., nr (17)

which is the standard eigenvalue problem. A is a real and nonsymmetric matrix, therefore the
2N eigenvalues must either be real or they must occur in complex conjugate pairs and the modal
matrix is composed by N eigenvectors and their N complex conjugates. The right eigenvectors
(eigenvectors of A) φ̂j and φ̂k are not orthogonal with respect to the matrix A. Nevertheless the
eigenvalues of A and the eigenvalues of AT are the same. Furthermore the right eigenvectors
φ̂k , with k = 1, 2, ..., nr, are biorthogonal with respect to the matrix A to the left eigenvectors
ψ̂j (eigenvectors of AT ), with j = 1, 2, ..., nr, [16]. For convenience the normalization of the
eigenvectors is done such that

ψ̂
T

j φ̂k = δkj, j, k = 1, 2, ..., nr (18)

holds true. Then nr right eigenvectors of A are used as a basis for a vector space which con-
tains z approximately, i.e. the expansion theorem permits to represent the state vector z as a
combination of the right eigenvectors of A

z =
nr∑
k=1

φ̂kξk(t) (19)

or in the frequency domain

z =
nr∑
k=1

φ̂kξ̂k(iω) (20)

where ξ̂k(iω) = F
(
ξk(t)

)
. Taking Fourier transform of eq. (15) and using eq.(20) leads to

iωξ̂k(iω) = λkξ̂k(ω) + ψ̂
T
Bf(iω) (21)

or

ξ̂k(iω) =
ψ̂
T
Bf(iω)

iω − λk
(22)

where the set of modal coordinates ξ̂ = [ξ̂1, ξ̂2, .., ξ̂nr ]
T ∈ Cnr×1, and the set of right eigenvec-

tors Φ̂ = [φ̂1, φ̂2, ..., φ̂nr ] ∈ C2N×nr are the reduced set of dofs ur and the matrix V in eq. (3)
respectively and the set of left eigenvectors Ψ̂ = [ψ̂1, ψ̂2, ..., ψ̂nr ] ∈ C2N×nr is VH in eq. (5)
and (7).



Raul Rodriguez Sanchez, Martin Buchschmid and Gerhard Müller

3 MOR: Condensation Methods

This section addresses the formulation of the following condensation methods:

• Guyan-Irons Reduction

• Improved Reduction System

• Dynamic Reduction

The main approach of the condensation methods is to have a linear dependence between dofs,
i.e. if a set of dependent dofs, ud ∈ R(N−nr)×1, can be expressed as linear dependent of a set of
active dofs, ua ∈ Rnr×1, then a condensation method can be applied to the system, which leads
to a reduced-order model. Assuming the above statement is valid for a structural system, the
total displacement vector is divided in two groups:

u =

[
ud
ua

]
(23)

then the linear relation between ua and ud is created through the linear transformation matrix
T as follows:

ud = Tua (24)

Thus, the total displacement vector is defined by

u =

[
T
I

]
ua (25)

where [T I]T and the set of active dofs ua are V and the reduced vector of dofs ur in eq. (3)
respectively.

3.1 Guyan-Irons Reduction

The Guyan-Iron Reduction [2, 3] neglects the inertial and the damping contributions in eq.
(2), i.e. it considers just the static case, for this reason it is called static condensation. Then the
static equation system is divided as follows[

Kdd Kda

Kad Kaa

][
ud
ua

]
=

[
fd
fa

]
(26)

The linear relation between dofs given by eq. (24) is obtained by solving for ud in the first row
of eq. (26) and is given by

ud = Tgua + ue (27)

where Tg is the Guyan linear transformation matrix defined by

Tg = −K−1dd Kda (28)

and ue = K−1dd fd is the Guyan Reduction-error which would emerge if fd is not the zero vector.
It is also interpreted as a correction factor which guaranties that the exact solution of the full-
order model is recovered when static systems are considered. Thus the displacement vector u
can be written as a function of the active dofs ua:[

ud
ua

]
=

[
−K−1dd Kda

I

]
ua +

[
K−1dd fd

0

]
(29)
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Usually, the set of depended dofs are the force-free ones, i.e. fd = 0. From (29) the Guyan
projection matrix is given by

Vg =

[
Tg

I

]
=

[
−K−1dd Kda

I

]
(30)

Vg and ua are the matrix V and the reduced set ur in eq. (3) respectively. Therefore the
reduced-order model, eq. (6), is given by:

(−ω2Mg + iωDg + Kg)ua = fg (31)

Applying equations given by (7) the following Guyan reduced matrices are obtained:

Mg = VT
g MVg =

[
(−K−1dd Kda)

T I
] [Mdd Mda

Mad Maa

][
(−K−1dd Kda)

I

]
= Maa + (−K−1dd Kda)

TMdd(−K−1dd Kda) + Mad(−K−1dd Kda) + (−K−1dd Kda)
TMda

= Maa + TT
g MddTg + MadTg + TT

g Mda (32)

Dg = VT
g DVg =

[
(−K−1dd Kda)

T I
] [Ddd Dda

Dad Daa

][
(−K−1dd Kda)

I

]
= Daa + (−K−1dd Kda)

TDdd(−K−1dd Kda) + Dad(−K−1dd Kda) + (−K−1dd Kda)
TDda

= Daa + TTDddTg + DadTg + TT
g Dda (33)

Kg = VT
g KVg =

[
(−K−1dd Kda)

T I
] [Kdd Kda

Kad Kaa

][
(−K−1dd Kda)

I

]
= Kaa + (K−1dd Kda)

TKddK
−1
dd Kda + Kad(−K−1dd Kda)− (K−1dd Kda)

TKda

= Kaa + TT
g Kda (34)

fg = VT
g f =

[
TT
g I

] [fd
fa

]
= TT

g fd + fa = fa (35)

Usually, to save computational time only the first term of the right hand side of eqs. (32) and
(33) are considered to define Maa and Daa respectively.

3.2 Improved Reduction System (IRS)

In the derivation of Guyan-Irons transformation matrix the inertial terms of eq. (2) were
excluded, in the IRS [17] procedure they are considered to have an improved solution. Then (2)
is subdivided in blocks having the dependent set of dofs force-free, i.e. fd = 0:−ω2

[
Mdd Mda

Mad Maa

]
+

[
Kdd Kda

Kad Kaa

][ud
ua

]
=

[
0
fa

]
(36)

The first row of (36) is given by

(Kdd − ω2Mdd+)ud + (Kda − ω2Mda)ua = 0 (37)
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Therefore the linear transformation defined by eq. (24) is given by

ud = −(Kdd − ω2Mdd)
−1(Kda − ω2Mda)ua (38)

(Kdd−ω2Mdd)
−1 can be approximated by the first three terms of the Taylor series about ω0 = 0,

i.e. using the binomial series [18] until the third term

ud = −(K−1dd + ω2K−1dd MddK
−1
dd )(Kda − ω2Mda)ua

= −(K−1dd + ω2K−1dd MddK
−1
dd )(Kda − ω2Mda)ua

= −
(
K−1dd Kda − ω2K−1dd Mda + ω2K−1dd MddK

−1
dd Kda − ω4K−1dd MddK

−1
dd Mda

)
ua

=
(
−K−1dd Kda + K−1dd

(
Mda + Mdd(−K−1dd Kda)

)
ω2 +O(ω4)

)
ua (39)

The frequency dependency in eq. (39) is eliminated using the following expression which comes
from eq. (31) in case of free vibration of the reduced-Guyan model:

ω2ua = M−1
g Kgua (40)

Substituting eq. (40) in eq. (39), the set ud is given by

ud = Tirsua (41)

where Tirs is given by

Tirs = Tg + τ irs (42)

where Tg is given by eq. (28) and the inertial-corrective factor τ irs is given by

τ irs = K−1dd (Mda + MddTg)M
−1
g Kg (43)

Thus the IRS projection matrix is given by:

Virs =

[
Tirs

I

]
=

[
τ irs + Tg

I

]
(44)

A better IRS projection matrix can be achieved by an iterative procedure which was introduced
by Blair et al. [19]. The reduced system matrices that Guyan reduction provides are used in (43)
as updating matrices to produce the IRS transformation matrix. Thus, it is possible to update
again the matrices to be used in an iterative scheme. The substitution of the reduced Guyan
matrices M−1

g and Kg in (43) by the new updated IRS matrices results in

Tirs,i = K−1dd (Mda + MddTg)M
−1
irs,i−1Kirs,i−1 + Tg

= τ irs,i + Tg (45)

The ith IRS projection matrix is now given by

Virs,i =

[
Tirs,i

I

]
=

[
τ irs,i + Tg

I

]
(46)

with:

M−1
irs,0 = M−1

g (47)

Kirs,0 = Kg (48)

The reduced-order model, eq. (6), using the IRS projection matrix defined in eq. (46) is given
by

(−ω2Mirs,i + iωDirs,i + Kirs,i)ua = firs,i (49)

These reduced matrices and vector are computed analogously to eqs. (32) - (35).
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3.3 Dynamic Reduction

The dynamic reduction [4] is obtained considering the undamped version of eq. (2) which is
given by

(−ω2M + K)u(ω) = f(ω) (50)

Subdividing eq. (50) in blocks yields[
Zdd Zda

Zad Zaa

][
ud
ua

]
=

[
0d
fa

]
(51)

where
Z(ω) = −ω2M + K (52)

Solving the first row of (51) for ud yields

ud = −Zdd(ω)−1Zda(ω)ua (53)

Thus the displacement vector u can be written as a function of the active dofs ua and a chosen
frequency ω as follows:

u =

[
ud
ua

]
ua = Vdyua (54)

where

Vdy =

[
Tdy

I

]
=

[
−Z−1dd (ω)Zda(ω)

I

]
(55)

ua and Vdy are the reduced vector ur and the matrix V in eq. (3) respectively. Therefore the
reduced-order model , eq. (6), is given by

(−ω2Mdy + iωDdy + Kdy)ua = fdy (56)

The reduced matrices and reduced force vector are obtained using eq. (7) analogously to eqs.
(32)-(35).

4 MOR: Component-Mode Synthesis Methods

The component-mode synthesis approach consists in the subdivision of a mechanical model
into substructures using the following classification for the dofs [15], see fig. 1:
I: interior coordinates (i as subscript in matrix notation).
R: rigid-body coordinates (r as subscript in matrix notation).
E : excess boundary coordinates (e as subscript in matrix notation).
B = R + E : boundary coordinates (b as subscript in matrix notation) with the assumption that
dofs with external loads are assumed to be boundary dofs.

R

u1
θ1

u3
θ3

u4
θ4

u5
θ5

u6
θ6

u7
θ7

u8
θ8

u9
θ9

I E

Figure 1: FE discretization of a catiliver beam.
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The equation of motion of an undamped sub-structure, identified by the superscript α, is
given by

M(α)ü(α) + K(α)u(α) = f (α) + r(α) (57)

where Mα, Kα, uα and fα are the mass matrix, stiffness matrix, displacement vector and force
vector at the component label α respectively. rα is a force vector which contains the reaction
forces on the component due to its connection to adjacent components at the boundary dofs.

Component Modes
Eq. (57) may be written in the following partitioned form[

Mii Mib

Mbi Mbb

][
üi
üb

]
+

[
Kii Kib

Kbi Kbb

][
ui
ub

]
=

[
0i

f b + rb

]
(58)

Fixed-Interface Normal Modes
The fixed interfaced normal modes are a set of ni modes shapes resulting by solving the follow-
ing eigenvalue problem of the internal dofs of eq. (58), while the boundary dofs are fixed, see
fig. 2, [

Kii − ω2
kMii

]
φk = 0 k = 1, 2, . . . , ni (59)

The eigenvectors φk are gathered in the in-
ternal modal matrix Φii ∈ Rni×1. There-
fore the fixed interfaced normal modes for
a substructure α is given by

Φi =

[
Φii

0bi

]
(60)

where Φi ∈ RNα×1. Nα is the total number
of dofs of the structure or substructure.

Fixed− interface mode 1

Fixed− interface mode 2

Fixed− interface mode 3

Fixed− interface mode 4

Figure 2: Four component fixed-interface nor-
mal modes of a cantiliver beam.

Interface Constraint Modes
Interface constraint modes result when a unit displacement is applied in one dof in the set of

boundary dofs, while the remaining dofs of that set are restrained, and conserving the remaining
dofs force-free, see fig. 3. The constraint modes are defined by solving the following static
equation for [Ψib Ibb]

T :
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[
Kii Kib

Kbi Kbb

][
Ψib

Ibb

]
=

[
0ib
Rbb

]
(61)

Thus the interface constraint mode matrix Ψb is
given by

Ψb =

[
Ψib

Ibb

]
=

[
−K−1ii Kib

Ibb

]
(62)

w = 1
θ = 0

w = 0
θ = 1

Figure 3: Interface-constraint modes in the
boundary dofs of a cantilever beam.

Those constraint modes are stiffness-orthogonal to all of the fixed-interface normal modes
[15].

4.1 The Craig-Bampton Method

The Craig-Bampton transformation [6, 8] consists of transforming a set of physical coordi-
nates made up of internal dofs ui and dofs at the boundary ub in terms of a hybrid set which
is compound of a set of modal coordinates at the interior ηi and physical coordinates ub, at
the boundary. The Craig-Bampton hybrid coordinates ucb = [ηi ub]

T are then related to the
physical coordinates u = [ui ub]

T as follows[
ui
ub

]
=
[
Φi Ψb

] [ηi
ub

]
(63)

where Φi and Ψb are given by eqs. (60) and (62) respectively. Substituting those equations in
(63) [

ui
ub

]
= Vcbucb (64)

where

Vcb =

[
Φii −K−1ii Kib]
0bi Ibb

]
=

[
Φii Ψib

0bi Ibb

]
=
[
Φi Ψc

]
(65)

is the Craig-Bampton projection matrix. Vcb and ucb are the V matrix and the ur vector in
eq. (3) respectively. After defining the Craig-Bampton Transformation Matrix above, it follows
the transformation of the equation of motion from the set of physical coordinates to a set of
coordinates consisting of physical coordinates at the subset of the boundary dofs and modal
coordinates at interior dofs.
Using the the Craig-Bampton projection matrix eq. (65) in eq. (7) the reduced order model in
eq. (6) is obtained [8] and given by−ω2

[
m Mkb

Mbk Mbb

]
+ iω

[
c 0
0 0

]
+

[
k 0
0 Kbb

][η
ub

]
=

[
0
fb

]
(66)
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where

m = ΦT
i MΦi = ΦT

iiMiiΦii

Mib = ΦT
i MΨc = ΦT

ii

[
Mib + MiiΨib

]
Mbi = ΨT

c MΦi =
[
Mbi + ΨT

ibMii

]
Φii

Mbb = ΨT
c MΨc = Mbb + MbiΨib + ΨT

ibMbi + ΨT
ibMiiΨib

k = ΦT
i KΦi = ΦT

iiKiiΦii = mω2
E

Kib = ΦT
i KΨc = ΦT

ii

[
Kib −Kib

]
= 0

Kbi = ΨT
c KΦi =

[
Kbi −Kib

]
Φii = 0

Kbb = ΨT
c KΨc = Kbb −KbiK

−1
ii Kib

c = ΦT
i DΦi = ΦT

iiDiiΦii = 2ζmωE

The mass matrix Mbb and the stiffness matrix Kbb are reduced to the boundary nodes in the
same way as they are reduced using the Guyan-Irons reduction. m, c and k are the modal mass,
modal damping and modal stiffness matrix of the interior dofs respectively. ΨT

c DΨc, ΨT
c DΦi

and ΦT
i DΨc are considered equal to 0. Thus only the submatrix 2ζmωE has significance [8].

5 MOR: Interpolatory Methods

The standard formulation of the second order dynamical system, (2), in the frequency domain
is given by

(s2M + sD + K)u(s) = Bf f(s)
y(s) = Cu(s)

(67)

where s = iω, B and C can be considered equal to the identity matrix I and the function f(s)
equal to one in case of a response having the same form of the excitation force, i.e. the input
vector is constant. The transfer function of eq. (67) is defined by

H = C(s2M + sD + K)−1Bf (68)

The main approach of an interpolatory MOR method is to match the first νp terms of the Taylor
expansion of eq. (68) about ωp with p = 0, 1, 2, ..., P , i.e. about P frequency points in a
frequency interval ∆ω = [ωL, ωR], which is the same as to find an approximated vector uν
which matches the first ν terms of the Taylor expansion of the vector u about the same ωp
frequency points in the context of structural mechanics problems, i.e.

u(s) = uν(s) +O
( P∏
p=1

(∆sp)
νp

)
(69)

where ∆sp = s − sp and νp is the order of the Taylor series expansion at the interpolation
frequency ωp. Thus u

(k)
ν (sp) = dk

dsk

(
u(s)

)
. Therefore the main task for interpolatory MOR

methods is to find a vector space that contains the first ν moments (see, sub-sec. 5.2) of H.
In the case of the multi-point Padé approximation such an approach is simplified to find the
coefficients of the Padé approximation [L/M ] of a single dof, which implies to match the first
L + M + 1 moments of the transfer function, eq. (68). Due to the matching process and the
analogy to the Padé approximant those methods are also known as moment matching methods
or Padé type methods [9, 10]. Here a similar terminology as in [14] was adopted.
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5.1 Multi-Padé approximation

Every dof uj(s), j = 1, 2, 3, ..., N , of the displacement vector can be approximated by a Padé
approximant about a frequency point ω0. The Padé approximant of the jth dof has the form

uj(ω) = [L/M ] =
p0 + p1∆ω0 + · · ·+ pL∆ωL0
1 + q1∆ω0 + · · ·+ qM∆ωM0

+O(∆ωL+M+1
0 )

=
Pj(ω)

Qj(ω)
+O(∆ωL+M+1

0 ) (70)

where ω = ω0 + ∆ω, Pj(ω) and Qj(ω) is a polynomial of degree L and M respectively. By
Cross-multiplying eq. (70) and disregarding the error of the right hand side leads to

uj(ω)Qj(ω) = Pj(ω) (71)

Successively differentiating eq. (71) with respect to ω the following equation is obtained [13]

k∑
r=0

 k!

r(k − r)!
u
(k−r)
j

M∑
m=r

m!

(m− r)!
qm∆ωm−r

− L∑
l=k

l!

(l − k)!
pl∆ω

l−k = 0 (72)

k = 0, 1, . . . , L+M

with
ql = 0 if r > M

pk = 0 if k > L
(73)

where ukj =
(
dk

dωk

(
u(ω0)

))
j

and ∆ω = ω− ω0. Then the coefficients of the polynomials Pj and
Qj can be computed if uj and its first L + M derivatives are known, i.e. the Padé approximant
given by eq.(70) matches the first L + M + 1 terms of the corresponding Taylor series about
ω0, therefore the Padé approximant matches the first L + M + 1 terms (moments) of a power
expansion of the transfer function given by eq. (68) [9].

It is said to be a multi-point Padé Approximation [13] if P frequency points are defined and
interpolated in the frequency interval of interest, ∆ω, where each frequency is denoted by ωp
with p = 1, 2, 3, ..., P , using

k∑
r=0

 k!

r!(k − r)!
u
(k−r)
j,ωp

M∑
m=r

m!

(m− r)!
qm∆ωm−rp

− L∑
l=k

l!

(l − k)!
pl∆ω

l−k
p = 0 (74)

k = 0, 1, . . . ,

⌈
L+M + 1

P

⌉
− 1

where d e is the ceiling function and u(k)j,ωp is the k derivative of the jth dof of the displacement
vector u evaluated at ωp and is defined by

u
(k)
j,ωp

= (u(k)
ωp )j =


K−1ω f k = 0
Kω
−1((2ωpM− iD)uωp + f (1)

)
k = 1

K−1ω
(
kM(2ωpu

(k−1)
ωp + (k − 1)u

(k−2)
ωp − ikDu

(k−1)
ωp

)
k ≥ 2

(75)

where ∆ωp = ωp − ω0 and Kω = (−ω2
pM + iωD + K). Eq. (75) implies to solve P times a

generalized impedance problem with
⌈
L+M+1

P

⌉
different right hand sides.
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From eq. (75) it is possible to obtain the coefficients of the Padé polynomials for each
component uj of u, those coefficients are collected in the vector x = [p0 p1 p2 ... pL q1 q2 ... qM ]T

and are found by solving Ax = b which is formed as follows:

[
· · · A1 · · ·

]
[nν×nP ]

...[
· · · Ap · · ·

]
[nν×nP ]

...[
· · · AP · · ·

]
[nν×nP ]


[nP×nP ]

x[nP×1] =


b1
...

bp
...

bP


[nP×1]

(76)

where Ap ∈ Cd
(L+M+1)

P
e×(L+M+1), bp ∈ Cd

(L+M+1)
P

×1, p = 1, 2, . . . , P , nν = dL+M+1
P
e and

nP = L+M + 1. A is a symmetric matrix but ill-conditioned, thus this approach can be used
only when few interpolation points are considered [9].

Ap and bp are computed by expanding eq. (74) for k = 0, 1, . . . ,
⌈
L+M+1

P

⌉
− 1, i.e the row

k + 1 of Ap is an equation given by

− (k)!
0!
pk − (k+1)!

1!
(∆ωp)

1pk+1 − (k+2)!
2!

(∆ωp)
2 pk+2 − · · · − L!

(L−k)!(∆ωp)
L−k pL

+
(∑k

r=0
k!

r!(k−r)!
1!

(1−r)!(∆ω)1−ru(k−r)
)
q1

+
(∑k

r=0
k!

r!(k−r)!
2!

(2−r)!(∆ω)2−ru(k−r)
)
q2

· · ·+
(∑k

r=0
k!

r!(k−r)!
M !

(M−r)!(∆ω)M−ru(k−r)
)
qM = u

(k)
p

(77)

Then the coefficients of the left hand side of eq. (77) are placed in the row k+ 1 of Ap, and the
right hand side is placed at the k + 1 position of the vector bp. It permits to express eq. (74) in
a matrix notation of the form [Ap][nν×nP ][x][nP×1] = [bp][nP×1] as follows

−1 −(∆ωp) −(∆ωp)2 · · · −(∆ωp)L (∆ωp)up (∆ωp)2up · · · (∆ωp)Mup

0 −1 −2(∆ωp) · · · L(∆ωp)L−1
(
u
(0)
p +(∆ωp)u

(1)
p

) (
2(∆ωp)u

(0)
p +(∆ωp)2u

(1)
p

)
· · ·

(
M(∆ωp)M−1U

(0)
p +(∆ωp)Mu

(1)
p

)
...

...
...

...
...

...
...

...
...





p0
p1
p2
...
pL
q1
q2
...

qM


=

u(0)
p

u
(1)
p

...



(78)
Thus P small systems of equations, which share the same unknown vector x, of the form given
by eq.(78) are assembled, i.e they are gathered in the assembled-system of equations given by
eq.(76), which permits to compute the coefficients of the multi-point Padé approximation with
a very low computational cost.

5.2 Krylov-based Galerkin projection Method

First Order approach
The second order dynamical system in eq. (67) is reformulated in the standard first order form,
see sub-sec. 2.2, and given by

s z(s) = Az(s) + Bf(s)
y(s) = Cz(s)

(79)
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Where z ∈ R2N×1 , A ∈ R2N×2N and B ∈ R2N×N are the state vector, the state matrix and the
input matrix respectively and are defined by

z =

[
u
u̇

]
A =

[
0 I

−M−1K −M−1D

]
B =

[
0

M−1f

]
(80)

The transfer matrix of (79) is given by

h(s) = C(sI−A)−1B (81)

If A is non singular, the transfer matrix h(s) can be approximated about s0 = 0 using the Taylor
series as follows

h(s) = C
(
(−A−1B) + (A−1)(−A−1B)s+ · · ·+ (A−1)i(−A−1B)si + · · ·

)
(82)

For convenience one may define

H = A−1 =

[
−K−1D −K−1M

I 0

]
b = A−1B =

[
K−1f

0

]
(83)

and
b0 = K−1f H11 = −K−1D H12 = −K−1M (84)

The resulting non-negative coefficients of the series (82) are said to be the system’s moments

mi = C(A−1)i(A−1B) = C(H)iB, i = 0, 1, 2, . . . (85)

where mi ∈ C2N×1 is the ith moment of eq. (81). It is clear from eq. (85) that z(s) of (80)
is contained in a vector space spanned by the columns of the Krylov subspace Kν(H, b) with
starting vector b and matrix H. A simplification of the dimension of the vectors in the Krylov
subspace can be done if one notes that

m0 = b =

[
K−1f

0

]
=

[
b0
0

]
m2 = H2b =

[
H11b1 + H12b0

b1

]
=

[
b2
b1

]

m1 = Hb =

[
H11b0
b0

]
=

[
b1
b0

]
m3 = H3b =

[
H11b2 + H12b1

b1

]
=

[
b3
b2

]
therefore the displacement part u(s) of the vector z(s) is contained in the column space spanned
by {b0,b1,b2,b3, ...}, i,e. by the Krylov subspace Kν(H11, H12; b0),

u(ω) ∈ Kν(−K−1D, −K−1M; K−1f) (86)

which holds true for low frequency range, because the interpolation point s0 was chosen equal
to zero.
It remains to show how to get the Krylov subspace for s 6= 0, such that the matrix V contains
information of many points, i.e. a interpolatory approach over the frequency interval ∆ω. It is
achieved by noting that the moments of h(s) about s0 6= 0 are equal to the moments of h(s+s0)
about zero [12], i.e the transfer function of eq. (81) is given by

h(s+ s0) = C((s+ s0)
2M + (s+ s0)D + K)−1B

= C(s2M + s(2s0M + D) + (s20M + (s0D + K))−1B (87)
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For convenience one may define

Ds = 2s0M + D and Ks = s20M + s0D + K (88)

Ds and Ks is the generalized damping and the dynamic impedance respectively. The substitu-
tion of D and K in the Krylov subspace in eq. (86) by the definitions given by eq. (88) leads to

Kν(−K−1s Ds, −K−1s M; K−1s f) (89)

which approximates the solution u for any s0. Using s = iω and defining P frequencies as
interpolation points in ∆ω a vector space V may be defined by

V[N×3P ] =
⋃P
p=1Kνp

(
− (−ω2

pM + iωpD + K)−1(2iωM + D),

−(−ω2
pM + iωpD + K)−1M; (−ω2

pM + iωpD + K)−1f
) (90)

where ωp is the interpolation frequency, with p = 1, 2, ..., P and νp is the number of matched
terms about ωp of the Taylor expansion of the transfer matrix given by eq.(81). If the dynamic
damping is neglected eq. (90) simplifies to

V[N×3P ] =
P⋃
p=1

Kν
(
− (−ω2

pM + iωpD + K)−1M, (−ω2
pM + iωpD + K)−1f

)
(91)

which is the suitable form for proportional (Rayleigh damping and modal damping) damped
systems.

Second order approach
The transfer matrix of the second order dynamical system of eq. (67) is given by eq. (68) and
rewritten here for convenience

H(s) = C(s2M + sD + K)−1Bf = CKsBf (92)

The Taylor expansion of eq. (92) is given by

H(s0 6= 0) =
∞∑
k

1

k!

d(k)

ds(k)
(
H(s0)

)
(∆s)k (93)

therefore the moments of eq. (93) are

mk =
1

k!

d(k)

ds(k)
(
H(s0)

)
k = 0, 1, 2, 3, ..., ν (94)

By solving the first ν moments, eq. (94), of the Taylor series given by eq. (93) and considering
C and B equal to the identity matrix it is possible to group together their terms such that a
Krylov subspace of the form given by (89) is obtained. It is illustrated by solving the first four
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moments, using eq. (94), of the Taylor series about s0, i.e.

m0 = K−1s f = b0 (95)
m1 = −K−2s (2s0M + D)f = (−K−1s Ds)b0 (96)
m2 = K−3s (2s0M + D)2f −K−2s (M)f

= (−K−1s Ds)(−K−1s Ds)b0 + (−K−1s M)b0 (97)

m3 = −K−4s (2s0M + D)3f +
8

6
K−3s (2s0M + D)(M)f

+
4

6
K−3s (2s0M + D)(M)f

= (−K−1s Ds)(−K−1s Ds)(−K−1s Ds)b0 + (−K−1s Ds)(−K−1s M)b0

+ (−K−1s M)(−K−1s Ds)b0 (98)

These show that the moments m0,m1,m2, ...,mν of the second order dynamical system given
by eq. (67) span the Krylov subspace defined by eq. (89) and vice versa.

5.3 Derivative-based Galerkin projection Method

The transfer function of the original second order dynamical system of eq. (67) can be
redefined as

H(s) = C(s2M + sD + K)−1B = CK−1ω B (99)

f f(s) of eq. (67) is interpreted as a constant input with f(s) = 1. Analogously the transfer
function of a reduced second order system is defined by

Hν(s) = CV(s2Mr + sDr + Kr)
−1VHB = CVK−1s,νV

HB (100)

One searches for a Hν which acting in a vector f approximates the original transfer function
acting on the same vector, i.e.

‖ H(sp + ∆s)f −Hν(sp + ∆s)f ‖ ≤ c|∆s|h (101)

where ∆s is sufficient small and h > 0. An equivalent expression to eq. (101) is given by

H(s)f = Hν(s)f +O((∆s)ν) (102)

which implies
dk

dsk
(H) =

dk

dsk
(Hν) for k = 0, 1, 2, 3, ..., ν − 1 (103)

Thus if dk

dsk
((s2pM + 2spD + K)−1f) ∈ V for k = 0, 1, 2, ..., ν − 1 then one proofs eq. (101)

as follows [11]

‖H(sp + ∆s)f −Hν(sp + ∆s)f‖ = ‖CK−1s (sp + ∆s)f −CVK−1s,ν(sp + ∆s)VHf‖
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Using the skew projection Pν = VK−1s,ν(s+ ∆s)VHKs(s+ ∆s)

‖CK−1s (sp + ∆s)f −CVK−1s,ν(sp + ∆s)VHf‖
= ‖CK−1s (sp + ∆s)f −CPνK

−1
s (sp + ∆s)f‖

= ‖C(I−Pν)
∞∑
k=0

1

k!

d(k)

ds(k)
(
K−1s (sp + ∆s)

)
∆skf‖

= ‖C
∞∑
k=ν

1

k!

d(k)

ds(k)
(
K−1s (sp + ∆s)

)
∆skf‖

= |∆s|ν ‖C
∞∑
k=0

1

(k + ν)!

d(k+ν)

ds(k+ν)
(
K−1s (sp + ∆s)

)
∆skf‖

≤ c|∆s|ν (104)

where c is chosen uniformly for all ∆s sufficient small. For the second order dynamical system
given by eq. (67) the matrix C is considered equal to the identity matrix and one is interested
in the state vector u, therefore taking the vector f of eq. (102) equal to the force vector, and the
fact that s = iω, eq. (102) holds true if

P⋃
p=1

span

{
u(ωp),

d

dω

(
u(ωp)

)
, · · · , d

ν−1

dων−1
(
u(ωp)

)}
⊂ Ran(V) (105)

u and its derivatives are found by solving eq. (75) for k = 0, 1, 2, ..., ν − 1.

6 Numerical Examples

Two numerical example are addressed in this section. In the first example a frequency re-
sponse analysis using the ten MOR techniques mentioned in section 1 are applied to a cantilever
beam in order to evaluate the quality of the approximation of those methods for proportional
and non-proportional damped systems. In the second example a medium-sized structure is in-
vestigated in order to evaluate the efficiency in computation time of the Interpolatory MOR
methods. In both examples the solutions given by the MOR methods are compared with the
solution of the full-order model (DM).

6.1 Cantilever Beam

A cantilever beam has been discretized in 10 finite elements, as illustrated in fig.4,

u1
θ1

u3
θ3

u4
θ4

u5
θ5

u6
θ6

u7
θ7

u8
θ8

u9
θ9

u2
θ2

u10
θ10

u11
θ11

Figure 4: FE discretization of a catiliver beam.

The beam has a length of 1m, cross section of 0.1m × 0.1m, modulus of elasticity of
2.068e11 N

m2 and material density of 7830 kg
m3 . It is loaded in the vertical direction with a dis-

tributed load of -100 N
m

. ∆ω = [1, 700] and nω = 700. In the Real Modal Analysis (RMA)
and the complex Modal Analysis (CMA) 20 modes shapes are considered. The condensation
methods use the vertical displacement as the active set of dofs, ua. The Dynamic Reduction
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(DR) is done about ωdy = 50 and the IRS reduction method uses 3 iterations. Craig-Bampton
method uses 5 fixed-interface normal modes. For the Interpolatory MOR methods ωp ={1, 30,
80, 110,300, 500, 700}. The response of the dof u11 will be compared for a Rayleigh-damped
and non-proportional damped beam.

6.1.1 Rayleigh Damped Cantilever Beam

The Rayleigh damping matrix is defined as C = a0M + a1K. In this example a0 = 0.0002
and a1 = 0.0001. The ten MOR methods are able to capture the exact solution in amplitude and
phase angle, see figs. 5 and 6, even the GR, and IRS which are in general only suitable for a
low frequency range.
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Figure 5: Amplitude of the response for u11 of the Rayleigh-damped cantilever beam.
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Figure 6: Phase angle of the response for u11 of the Rayleigh-damped cantilever beam.

6.1.2 Non-proportional Damped Cantilever Beam

For an arbitrary damped cantilever beam a random dense matrix was defined in MATLAB
R2015b® using the command randn with a seed value of 0.1, a mean of 0.15 and a standard
deviation of 0.1. That matrix does not have a physical meaning due to the fact that the matrix
was not derived according to the assembling of the elements, nevertheless it is important to
see how the MOR methods behave for a simple arbitrary damped system like the 10-elements
cantilever beam.
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Figure 7: Amplitude of the response for u11 of the non-proportional damped cantilever beam.

From figs. 7 and 8 it is clear that the RMA gives a result far from the exact solution, the
condensations methods and the CB method do not capture the exact solution any more as the
Interpolatory MOR Methods (DGP, KGP and the mP) and the CMA do.
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Figure 8: Phase angle of the response for u11 of the non-proportional damped cantilever beam.

If the damping increases, the capability of the Interpolatory MOR Methods are more evident.
In figs. 9 and 10, the response of u11 is shown in the case of an arbitrary damping matrix, created
in the same way as before, but with mean value and standard deviation equal to 0.35 and 0.2
respectively. It results in a more evident lack of approximation for the RMA, Condensation
Methods and CB Method, in contrast with the Interpolatory MOR Methods and the CMA which
lead to the exact solution. Nevertheless the CMA is not suitable for large systems due to the
expensive computation of the complex modes, so the Interpolatory MOR Methods remain as
a very attractive possibility to be used as standard MOR techniques for frequency response
analysis in case of non-proportional damped systems.
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Figure 9: Amplitude of the response for u11 of the non-proportional damped cantilever beam
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Figure 10: Phase angle of the response for u11 of the arbitrary damped cantilever beam

6.2 Solar Panel - Structure

The second numerical example is a solar panel modeling with ANSYS®, see fig. 11. It
is a 4 m × 12 m structure, built out of beam and shell elements. The beam188 element was
used for the frame, with an elastic modulus of 2 × 1011 N

m2 , a Poisson’s ratio of 0.3 and mass
density of 7850 kg

m3 . For the panel the shell181 element was used, with an elastic modulus
of 0.7 × 1011 N

m2 , a Poisson’s ratio of 0.3 and mass density of 2500 kg
m3 . This structure was

loaded with a distributed load of 50N in vertical direction (Y direction of the global coordinate
system). In total, the solar panel contains 9582 dofs, 3 nodes are fixed, i.e. 18 dofs, and has 33
coupling dofs, thus the equation system to be solved contains 9531 unknowns (displacements
and rotations).

Figure 11: Solar panel modeling in ANSYS®.

For medium- and large-scale structures without going into the sub structuring approach (CB
method) the RMA is extensively used in frequency response analysis. The computation of the
set of mode shapes is the time-demanding task in the RMA but leads to a reduced-decouple
equation system. RMA can be also applied over a large frequency interval ∆ω, unlike conden-
sation methods which offer good approximation only in a narrow ∆ω near to ω = 0 or to the
chosen dynamic frequency ωdy in case of DR. For those reasons the computational time of the
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Interpolarory MOR are compared to that of the RMA and the DM solving a non-damped solar
panel - structure.

6.2.1 Interpolatory MOR Methods and RMA

For this first analysis ∆ω = [1, 100], nω = 100, P = 16, and ωp={ 5, 10, 15, 20, 25, 30, 40,
50, 55, 60, 65, 70, 85, 90, 95, 100 }. mP uses P = 10 and ωp={1, 15, 30, 40, 50, 60, 75, 85, 95,
100}. RMA number of modes is equal to 100.

The computation time required for this analysis is shown in tab. 1 and the amplitude of the
frequency response for dof UY of the node 153, marked with a circle over the upper beam in
fig. 11, is depicted in fig. 12.

Method c.t.[s] c.t.parallel[s]
DM 10.330 5.231
mP 3.650 2.153

KGP 3.840 2.560
DGP 3.900 2.249
RMA 1.820 2.316

Table 1: Computation time using DM, mP, KGP, DGP and RMA.

The comparison in computation time (c.t.) shows a faster solution for the parallel implemen-
tation of Interpolatory MOR Methods, i.e. the KGP and DGP are 4.5 times faster than the DM
runs in the conventional way. The RMA provides also a fast computation for this problem and
overlaps the exact solution as KGP and DGP. The mP computation time in tab. 12 is just for the
computation of the response of a single dof and fig. 12 shows that the mP-response is slightly
shifted from the exact one. For the mP approximation, it is recommended to used a mesh with
few interpolation points, e.g. for this example P < 10, due to the fact that the matrix A in eq.
(76) is ill-conditioned for large P [9], which yields to wrong coefficients and therefore wrong
approximation of the response.
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Figure 12: Amplitude of the response using DM, KGP, DGP and RMA.
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6.2.2 Interpolatory MOR Methods

In this second investigation ∆ω = [1, 1000], nω = 3000, P = 101, ωp={5, 10, 20, 30, 40, 50,
... , 500, 510, 520,...,1000} and RMA number of modes is equal to 500.

The computation time required for this analysis is written in tab. 2 showing that the KGP
and DGP (run in parallel) are approximately 18 times faster than the DM and 6 times faster than
the DM runs in parallel. Also the KGP and DGP are 2 time faster than the RMA when they are
run in parallel.

Method c.t.[s] c.t.parallel[s]
DM 274.732 91.884
KGP 42.267 15.522
DGP 39.731 15.507
RMA 38.236 31.439

Table 2: Computation time using DM, mP, KGP, DGP and RMA.

The amplitude of the frequency response for dof UY of the node 153 , marked with a circle
over the upper beam in fig. 11, is depicted in figs. 13, 14, 15 and 16.
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Figure 13: Amplitude of the response using DM, KGP, DGP and RMA: ∆ω = [1, 250].
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Figure 14: Amplitude of the response using DM, KGP, DGP and RMA: ∆ω = [250, 500].
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Figure 15: Amplitude of the response using DM, KGP, DGP and RMA: ∆ω = [500, 750].
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Figure 16: Amplitude of the response using DM, KGP, DGP and RMA: ∆ω = [750, 1000].

The solutions given by the KGP and DGP overlap the exact solution almost everywhere in
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the ∆ω and the RMA using 500 modes is able to capture the exact solution until the 865Hz, see
Fig. 16, using almost the same amount of time.

7 CONCLUSIONS

As shown in this work several approaches are available to have a reduced-order model for
a second order dynamical system of the form given by eq. (2). Some of them have been
extensively used in the structural dynamics fields when ∆ω is a narrow band and the damping
matrix is proportional to the stiffness and mass matrix. Those are: the GR, IRS and DR. Another
classical technique like RMA is suitable when the eigen-frequencies of the modal matrix are
the main eigen-frequencies in ∆ω which does not limit the interval ∆ω. In a similar way, the
Interpolatory MOR are applicable in a large ∆ω with all the interpolatory points contained in
that interval.

For non proportional-damped systems the CMA and the Interpolatory MOR are the best
choices, but the CMA increases the dimension of the matrices. The mP is applicable in a narrow
∆ω or when few interpolation points are needed. The KGP and DGP can be applied to any kind
of system defined by eq. (2) over a narrow or large ∆ω. Thus they are very promising methods
to obtain a reduced-order model with cheaper computational cost and good approximation to
the exact solution for proportional and non-proportional damped systems.
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Abstract. Proper Generalized Decomposition (PGD) has become a popular technique of model
order reduction to solve the so-called curse of dimensionality in multidimensional partial dif-
ferential equations, especially for real-time simulations. Therefore, it is very interesting to
implement the PGD algorithm non-intrusively for a better integration with off-the-shelf finite
element (FE) codes. This paper provides a non-intrusive scheme for PGD computation based
on commercial softwares to minimize the implementation effort. Specifically, also for the sake
of simplicity, we chose linear elasticity models with two independent material parameters as the
extra coordinates for the preliminary implementations. The strategy is using proper separated
representation of the functional of material properties to split the problem into sequentially
independent linear equations, and solve the equations of mechanical problem, which usually
have a large scale, with an efficient external solver. The proposed non-intrusive PGD scheme
can be easily realized using arbitrary codes for iteration control cooperating with commercial
FE softwares. Numerical examples were realized with MATLAB (The MathWorks, Inc., USA)
as the main procedure for iterations, and Abaqus (Dassault Systèmes, France) as the external
solver. In particular, we have applied the algorithm on a biomedical problem. The proposed
scheme is extensible and also considered to be a promising bridge between academic research
and industrial application.
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1 INTRODUCTION

Modern simulation-based engineering sciences relies on physical models depending on many
parameters described by partial differential equations (PDEs) to be solved in a multidimensional
parametric space, where the depending parameters are viewed as extra coordinates. For this
reason, the dimensionality of the problem is increased and the computational cost is raised
exponentially, leading to the so-called curse of dimensionality.

Proper generalized decomposition (PGD) method [1, 2, 3, 4] is a recently developed model
order reduction technique particularly powerful on tackling the curse of dimensionality. Readers
may refer to [5] for a recent review on PGD method. As a model order reduction method, it
can be divided into off-line phase and on-line phase. In this paper, we will focus on the off-line
phase of PGD method, which produces a computational vademecum [6] consisting of functions
of the parameters. Based on the vademecum, the value of the functions can be calculated as fast
as real-time in the on-line phase, so that to enable real-time and multi-query simulation.

Numerical methods for solving PDEs, especially the finite element method [7], are intensely
implemented in both academia and industry in the form of computer aided engineering (CAE),
covering a wide range of fields. There are numerous finite element (FE) codes highlighting dif-
ferent features. Academical institutes tend to develop less complexed but more flexible codes
for research purposes. Industrial companies invest resources on commercial CAE softwares
and make rules for the application routines, because the provided reliable results with robust FE
solvers, and user-friendly graphical interfaces for the pre-processing and post-processing can
improve productivity. To bridge the gap in between, we propose a scheme for the application of
PGD method in a non-intrusive manner. The idea is using a general-purposed code to perform
input/output (I/O) and to control the whole program, in which the key subroutines are executed
by calling the external solver. The non-intrusive implementation is guaranteed for PGD method,
thanks to the feasibility of separated representation for functions of parameters. Recent work by
Courard et al. [8] has implied the non-intrusive PGD idea that starts from taking geometric pa-
rameters as extra coordinates, and makes SAMCEF (Siemens, Germany) work with an in-house
MATLAB code for the generation of virtual charts to optimize engineering design process.

In this work we concentrate on physical models of linear elasticity, whose governing equation
is vector-valued. The problems considered include a very simple but typical one-dimensional
model, and a practical three-dimensional model as an application in biomechanics. As a pre-
liminary step towards a complete non-intrusive PGD scheme, we take the material properties as
the extra coordinates. Further work is in progress for solving problems with load or boundary
conditions or geometric parameters as the extra coordinates based on the proposed scheme.

2 PROBLEM STATEMENT

2.1 Governing equation in linear elasticity with two materials

Under the infinitesimal deformation assumption, the relationship between strain tensor ε and
displacement u reads

ε = ∇su =
1

2

[
∇u + (∇u)T

]
. (1)

The stress tensor σ and the strain tensor are related with elasticity tensor C by Hook’s law

σ = C : ε. (2)

Consider an elastic domain Ω ⊂ Rd, (d = 1, 2, 3), the function of interest is displacement
u, of the following boundary value problem (BVP) of the govering equations. The strong form
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of the BVP is stated as follows: find u satisfying the equilibrium equation and the boundary
conditions

∇ · σ + b = 0 in Ω, (3)
u = uD on ΓD, (4)

σ · n = tN on ΓN , (5)

where b represents the known external body forces. The Dirichlet boundary uD and Neumann
boundary traction tN are also known data sets.

To simulate an elastic body composed of two, for example, parts with different material
properties, the domain is partitioned into two subdomains Ω1 and Ω2. For the sake of simplicity,
we consider only the homogeneous, isotropic materials with the same Poisson’s ratio, so that
the elasticity tensor C depends only on Young’s Modulus E within each subdomain. So that the
Young’s Modulus E can be written as

E(x) =

{
E1 for x ∈ Ω1,

E2 for x ∈ Ω2.
(6)

Geometrically, we suppose that Ω̄ = Ω̄1 ∪ Ω̄2 and ∂Ω1 ∩ ∂Ω2 is the interface between the two
open subdomains. In principle, there is no difficulty to increase the number of subdomains with
the same strategy.

The standard weak form of the problem reads as follows: find u ∈ V such that

a(u,v) = l(v), ∀v ∈ V0, (7)

where V := {u ∈ H1(Ω) : u = uD on ΓD}, and its corresponding test function space is
V0 := {u ∈ H1(Ω) : u = 0 on ΓD}. The bilinear and linear forms a(·, ·) and l(·) are given by

a(u,v) :=

∫
Ω

∇su : C : ∇sv dΩ and l(v) :=

∫
Ω

b · v dΩ +

∫
ΓN

tN · v dΓ. (8)

2.2 PGD separated representation with material properties as extra coordinates

The general procedure of the parametrization problem is discussed in [9]. Here we introduce
the PGD weak form simply by assuming the material properties as extra coordinates. The
displacement is then generalized as u = u(x, E1, E2), in which x ∈ Ω, E1 ∈ IE1 and E2 ∈ IE2 ,
and thus the weak form reads: find u ∈ V ⊗ L2(IE1)⊗ L2(IE2), such that

A(u,v) = L(v), ∀v ∈ V0 ⊗ L2(IE1)⊗ L2(IE2), (9)

where the bilinear and linear forms are defined by

A(u,v) :=

∫
IE1

∫
IE2

a(u,v) dE2dE1 and L(v) :=

∫
IE1

∫
IE2

l(v) dE2dE1. (10)

It can be seen that the dimensionality of the problem is increased by the introduced extra co-
ordinates, which may cause the so-called curse of dimensionality. To overcome this with PGD
methodology, the separated representation is used to approximate u(x, E1, E2) as

u(x, E1, E2) ≈ un
PGD(x, E1, E2) =

n∑
m=1

χm(x)εm1 (E1)εm2 (E2). (11)
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This representation implies that we can approximate the solution by using only n terms of
modes, which are products of the separated functions χ(x), ε1(E1) and ε2(E2). Hereafter, the
explicit dependence of these functions is frequently omitted in the notations since readers can
easily identify from the names and the subscripts. The normalization of the products is useful
by defining the magnitude of the modes

Mm := ‖χm‖ · ‖εm1 ‖ · ‖εm2 ‖. (12)

Derivation of the PGD algorithm requires assuming that the bilinear and linear forms a(u,v)
and l(v) are also separable. That is to say, the functions involved should be separable. For our
purposes, as generally seen in real structural problems, we assume that the load is independent
of the material properties; while the elasticity tensor C is dependent on the Young’s modulus of
the subdomains in a generalized form of Equation (6)

C(x, E1, E2) =

nC∑
k=1

Ck(x)µk
1(E1)µk

2(E2), (13)

where Ck(x), µk
1(E1) and µk

2(E2) describe the material properties in each of the nC subdomains.
In the simplest two-material case, without losing generality, the Heaviside-like functionHk(x) :
Ω→ {0, 1} is used as

C(x, E1, E2) = C1H1(x)E1 + C2H2(x)E2, (14)

in which Ci is a constant tensor and

Hi(x) =

{
1, if x ∈ Ωi,

0, otherwise.
(15)

The function related to Young’s modulus reads

µj
i (Ei) =

{
Ei, i = j,

1, i 6= j.
(16)

In practical FE analysis, following the standard approach, C is represented in a discretized
form by the stiffness matrix K, which is computed by FE softwares as long as the user inputs
given values for E1 and E2 and specifies the mapping of material properties to the subdomains
(or element sets) in the pre-processing.

2.3 Non-intrusive PGD mode search with alternated directions

In general, the number of modes n which needed to approximate un
PGD is not known a priori.

The greedy approach is used to calculate the modes on-the-fly with proper stopping criteria.
Note that

un
PGD(x, E1, E2) = un−1

PGD(x, E1, E2) + χnεn1ε
n
2 , (17)

we can compute the modes term by term. From now on the superscript n for the functions is
omitted since we are more focused on the terms. Due to the bilinearity, we have turned the
problem into: find χ ∈ V , ε1 ∈ L2(IE1) and ε2 ∈ L2(IE2) such that

A(χε1ε2,v) = L(v)−A(un−1
PGD,v), ∀v ∈ V0 ⊗ L2(IE1)⊗ L2(IE2). (18)
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To apply FE approximation properly, the fixed-point iteration method is used by treating the
terms of test function v separately from normal variation v = u∗ = χ∗ε1ε2 + χε∗1ε2 + χε1ε

∗
2.

With this idea, the alternating directions approach is adopted to split (18) into three sequential
linear problems:

1. Assuming ε1 and ε2 known, update χ such that

A(χε1ε2,χ
∗ε1ε2) = L(χ∗ε1ε2)−A(un−1

PGD,χ
∗ε1ε2), ∀χ∗ ∈ V0. (19)

2. Assuming χ and ε2 known, update ε1 such that

A(χε1ε2,χε
∗
1ε2) = L(χε∗1ε2)−A(un−1

PGD,χε
∗
1ε2), ∀ε∗1 ∈ L2(IE1). (20)

3. Assuming χ and ε1 known, update ε2 such that

A(χε1ε2,χε1ε
∗
2) = L(χε1ε

∗
2)−A(un−1

PGD,χε1ε
∗
2), ∀ε∗2 ∈ L2(IE2). (21)

We would like to address that (19) is a mechanical problem, since χ is a vector-valued func-
tion, that usually takes much more cost to compute, while (20) and (21) are one-dimensional
problems, since ε1 and ε2 are scalar functions, which can be solved with little computational
cost. The key idea of the non-intrusive scheme we propose is making use of off-the-shelf FE
softwares to solve the mechanical problem numerically with the expectation of efficiency im-
provement for both coding and computing.

2.4 FE approximation and resulting linear algebra formulation

Choosing proper subspaces V h ⊂ V , V h
0 ⊂ V0, V h

1 ⊂ L2(IE1) and V h
2 ⊂ L2(IE2), we

perform the Galerkin approximation by choosing proper discrete approximations following or
imitating the standard FE formulations. That is

χ ≈ NTU, ε1 ≈ NT
1 ε1, ε2 ≈ NT

2 ε2, (22)

and thus

un
PGD ≈

n∑
m=1

NTUm ·NT
1 ε

m
1 ·NT

2 ε
m
2 , (23)

where N is the matrix of shape functions of the standard FE approach for the mechanical prob-
lem, N1 and N2 are vectors of shape functions for one-dimensional problems. Note that the
shape functions are fixed, only the degree of freedom (DOF) vectors U, ε1 and ε1 will be up-
dated throughout the computation. Empirically, to initialize the computation, we assume U as a
zero vector while ε1 and ε2 are vectors in which each component equals to one. The dimensions
of the DOF vectors can be chosen according to the desired precision.

In standard FE theory, the global stiffness matrix K is an assembly of elemental stiffness
matrices, so it has a natural separable formulation. According to (13), the global stiffness
matrix K can be rewritten as

K = E1K1 + E2K2, (24)

where K1 and K2 are stiffness-like matrices. It is convenient that we still refer K1 and K2 to
stiffness matrices without any ambiguity.
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With the help of external FE software, we can obtain K1 and K2 in the non-intrusive manner.
In particular, using Equation (24), K1 can be obtained by letting E1 = 1 and E2 = 0, while K2

be obtained by E1 = 0 and E2 = 1.
By putting (22) to (24), along with (8), (10), (11) and (13) into (19) to (21), we can obtain

the algebraic formulation as

1. Assuming ε1 and ε2 known, update U by solving

(M1C2K1 +M2C1K2)U = Q1Q2F−
n−1∑
k=1

(Mk
1C

k
2K1 +Mk

2C
k
1K2)Uk. (25)

Letting K̃ = M1C2K1 +M2C1K2 and F̃ = Q1Q2F−
∑n−1

k=1(Mk
1C

k
2K1 +Mk

2C
k
1K2)Uk,

Equation (25) is simplified to K̃U = F̃, which has a standard FE form, thus can be seen as
a fictitious mechanical problem and be sent to the external FE software for a non-intrusive
solution, taking advantage of its robust solvers.

2. Assuming U and ε2 known, update ε1 by solving

(K1C2M1 +M2K2C1)ε1 = FQ2Q1 −
n−1∑
k=1

(Kk
1C

k
2M1 +Kk

2M
k
2 C1)εk1. (26)

3. Assuming U and ε1 known, update ε2 by solving

(M1K1C2 +K2C1M2)ε2 = FQ1Q2 −
n−1∑
k=1

(Kk
1M

k
1 C2 +Kk

2C
k
1M2)εk2. (27)

The coefficients and matrices are defined as follows

Ki :=

∫
Ωi

∇sN : Ci : ∇sN
T dΩ, Ki := UTKiU, Kk

i := UTKiU
k, i = 1, 2. (28)

Mi :=

∫
IEi

EiNiN
T
i dEi, Mi := εTi Miεi, Mk

i := εTi Miε
k
i , i = 1, 2. (29)

Ci :=

∫
IEi

NiN
T
i dEi, Ci := εTi Ciεi, Ck

i := εTi Ciε
k
i , i = 1, 2. (30)

Qi :=

∫
IEi

NT
i dEi, Qi := QT

i εi, i = 1, 2. (31)

F :=

∫
Ω

NTb dΩ +

∫
ΓN

NT tN dΓ, F := UTF. (32)

In the definitions above, the load vector F is exactly the same as that in standard FE theory,
since we have the assumption that it is independent of the material properties. Therefore, F can
be obtained directly from the external FE software. As previously stated, Ki can be obtained
non-intrusively by giving proper values of E1 and E2. By definition, Mi and Ci are quasi-
diagonal sparse matrices, and Qi is a vector, all of them can be calculated in conventional ways.
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2.5 Non-intrusive PGD algorithm

We take advantage of MATLAB as the main code, and Abaqus as the external FE solver. See
the flowchart of non-intrusive PGD algorithm in Figure 1.

The pre-processing of the mechanical model can be performed in Abaqus/CAE, which will
produce an input file containing data of the node-element topology, the load and boundary con-
ditions, and the material properties with associated element sets. In our non-intrusive scheme,
stiffness matrix Ki and load vector F are generated within Abaqus. In addition, the Python
interface provided by Abaqus is also used for data I/O.

The matrices Mi, Ci and vector Qi are all calculated and stored in MATLAB once for all.
While the scalar parameters Ki, Mi, Ci, Qi are updated and stored with mode index k in each
iteration.

The idea that using the external FE solver to resolve the mechanical problem (25) can also
be generalized to the parametric problems (26) and (27). However, the parametric problems are
one-dimensional, which can be solved very quickly within the main code, so that this general-
ization is usually unnecessary.

Two error limits, η1 and η2, are introduced within the stopping criteria of the iteration loops:
η1 controls the iteration of alternative direction, η2 controls the search for PGD modes. In the
following examples, we have empirically chosen η1 = 10−5 and η2 = 1.

In standard FE analysis in mechanics, one is usually more interested in the global nodal
result U other than the field result u(x). To be compatible, we can rewrite (23) as

un
PGD(x, E1, E2) ≈ NT (x)UPGD(E1, E2), (33)

by introducing

UPGD :=
n∑

m=1

Um ·NT
1 ε

m
1 ·NT

2 ε
m
2 . (34)

So that we can use UPGD to make comparisons with standard FE result UFE.
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Stiffness matrices:
Load vector:

Matrices for 1D problem:

Update parameters:

Generate: Solve from:

Update parameters:

Initialize vectors:

Update     by solving
Equation (26)

Update parameters:

Update     by solving
Equation (27)

If

Save into
vademecum

Y

N

If

Y

Input parameters:
range of  

FE data file:
mechanical model

N

Output vademecum

MATLAB

Abaqus

: prescribed error limit for alternative direction
: prescribed error limit for mode searching

Figure 1: Flowchart of non-intrusive PGD algorithm exemplified by MATLAB as the main program and Abaqus
as the external solver.
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3 NUMERICAL EXAMPLES

3.1 Example I: a one-dimensional model problem

Consider a one-dimensional mechanical model problem consisting of two vertical bars,
shown in Figure 2, with unit cross-section area A1 = A2 = 1 mm2 and with different lengths
L1 = 10 mm andL2 = 20 mm and Young’s moduliE1 ∈ [10, 100] MPa andE2 ∈ [20, 200] MPa.
The lower end (Node 3) is fixed (u3 = 0) and the upper end (Node 1) loaded with a concentrated
force F = −10 N. From standard FE theory, we know that the load vector is F = F [1, 0, 0]T

and the stiffness matrix is naturally separable

K = E1K1 + E2K2 =
E1

L1

 1 −1 0
−1 1 0
0 0 0

+
E2

L2

0 0 0
0 1 −1
0 −1 1

 . (35)

Assuming no buckling would happen, we have the analytical solution of a stiffness approach

Uex =

u1

u2

u3

 = K−1F = F

L1/E1 + L2/E2

L2/E2

0

 . (36)

Note that takingE1 andE2 as extra coordinates, Equation (36) has implied that the solutions for
u1 and u2 are nonlinear. We select 100 DOFs to discretize the extra coordinates for functions ε1

and ε2.

1

2

3

E1

E2

L1

L2

F

A1=A2=1

Figure 2: Sketch of the one-dimensional mechanical problem: two vertical bars.

Solving the problem with the proposed non-intrusive PGD approach, the resulting magni-
tudes decrease with mode sequence, which is plotted in Figure 3. From Figure 4 we can find
that the relative error, which is defined as (uPGD − uex)/uex, tends to be larger when E1 and E2

reach their lower bounds due to the nonlinearity.
Another approach is to take the slenderness of the materials, S1 = 1/E1 and S2 = 1/E2, as

extra coordinates. So that we are able to rewrite (35) and (36) as

K =
1

S1

K1 +
1

S2

K2 =
1

L1S1

 1 −1 0
−1 1 0
0 0 0

+
1

L2S2

0 0 0
0 1 −1
0 −1 1

 , (37)

Uex =

u1

u2

u3

 = F

L1S1 + L2S2

L2S2

0

 . (38)
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Figure 3: PGD mode-magnitudes relationship of Example I with stiffness approach.
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Figure 4: Verification of nodal displacements (u1 and u2) for Example I with stiffness approach.

The slenderness approach has converted u1 and u2 into linear functions of S1 and S2, which
is demonstrated in Equation (38) and illustrated in Figure 6. Thanks to the linearity, the modes
required to achieve prescribed accuracy is decreased from twelve (Figure 3) to nine (Figure 5).
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Figure 5: PGD mode-magnitudes relationship of Example I with slenderness approach.
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Figure 6: Verification of nodal displacements (u1 and u2) for Example I with slenderness approach.
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3.2 Example II: a three-dimensional model of human proximal femur

As an example for biomechanical applications of the non-intrusive PGD scheme, a FE model
of human proximal femur is built with tetrahedral elements in Abaqus/CAE. The femur bone
is fixed at the distal end and loaded vertically at the femur head with F = −740 N (uniformly
distributed to 74 nodes), see the sketch in Figure 7. The Young’s modulus of the proximal
epiphysis is E1 ∈ [8000, 10000] MPa and that of the cortical bone is E2 ∈ [9000, 15000] MPa.

Solving the problem with the proposed non-intrusive PGD scheme, the resulting mode-
magnitude relationship demonstrates very well the linearity of the three-dimensional model:
from Mode 2 on, the magnitudes are close to zero, which means a certain accuracy could be
achieved with only two modes. The mode-magnitude plot is shown in Figure 8 and the dis-
placement at the femur head is plotted in components in Figure 9. Since we have no analytical
solution for this three-dimensional problem, there is no straightforward way to plot the error
surface like Figure 4 and Figure 6. To verify the proposed non-intrusive PGD approach, we
select a fixed (E1, E2) and compare displacements between standard FE result UFE and non-
intrusive PGD result UPGD by computing nodal error UPGD−UFE. All seven modes are used to
compute UPGD. For the purpose of illustration, we compute the magnitude of the nodal error at
each node, and the result is shown in Figure 10.

E1

E2

F

X

Z

Figure 7: Sketch of the human proximal femur model.
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Figure 8: PGD mode-magnitude relationship for human proximal femur model.
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Figure 9: Non-intrusive PGD results of displacement components (ux, uy , uz) at a node on the femur head. The
dependence on E1 is much less apparent than that on E2.

Figure 10: Magnitude of nodal error of non-intrusive PGD result with reference to standard FE result.

4260



X. Zou, P. Dı́ez, M. Conti and F. Auricchio

4 CONCLUSIONS

This work addresses a non-intrusive approach for solving multidimensional PDEs with PGD
methods taking advantage of commercial FE codes with high-maturity. The material proper-
ties are considered as extra coordinates in the multidimensional governing equations of linear
elasticity. One of the most significant highlights is in computation of large-scaled multidimen-
sional problems, the effort of developing and certifying codes for solving physical problems is
saved by the non-intrusive approach. In particular, the stiffness matrices and load vector are
also computed by the external FE software during the pre-processing.

The proposed non-intrusive PGD scheme is highly extensible and has promisingly wide ap-
plications. For example, the presented linear elasticity problems can be easily extended to non-
linear elasticity problems [10]. In addition, geometric parameters, load and boundary conditions
are also able to be taken into account as extra coordinates to be solved within the scheme.

5 ACKNOWLEDGEMENT

We acknowledge the support from the European Education, Audiovisual and Culture Exec-
utive Agency (EACEA) under the Erasmus Mundus Joint Doctorate Simulation in Engineering
and Entrepreneurship Development (SEED), FPA 2013-0043.

Dr. M. Conti acknowledges European Reasearch Council through the ERC Starting Grant
ISOBIO: Isogeometric Methods for Biomechanics (No. 259229).

REFERENCES

[1] A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes
of multidimensional partial differential equations encountered in kinetic theory modeling
of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 139, 153–176, 2006.

[2] A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes
of multidimensional partial differential equations encountered in kinetic theory modelling
of complex fluids. Part II: Transient simulation using space-time separated representations.
Journal of Non-Newtonian Fluid Mechanics, 144, 98–121, 2007.

[3] A. Ammar, The proper generalized decomposition: A powerful tool for model reduction.
International Journal of Material Forming, 3, 89–102, 2010.

[4] F. Chinesta, A. Ammar, E. Cueto, Recent Advances and New Challenges in the Use of
the Proper Generalized Decomposition for Solving Multidimensional Models. Archives of
Computational Methods in Engineering, 17, 327–350, 2010.
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Abstract. This article addresses the theoretical and numerical formulation of an algo-
rithm based on the Proper Generalized Decomposition (PGD) applied to the solution of
unsteady incompressible viscous flows. By using a separated functional description for
the space and time variables, one can formulate an algorithm which may replace the tradi-
tional incremental approach and, consequently, may reduce drastically the computational
time needed for the simulation of complex unsteady flows. The choice of spatial and tem-
poral modes for velocity and pressure is discussed and several academic applications are
provided, illustrating the benefits and challenges associated with this new computational
approach.
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1 INTRODUCTION

The Proper Generalized Decomposition (PGD) proposes a new theoretical framework
to build the continuous partial differential equations which govern the modes defining
the modal decomposition of the physical quantities of interest. Separated representations
were first introduced by P. Ladevèze ([1], [2]). This remarkable idea was widely extended
by F. Chinesta and his co-workers ([3], [4]). The separated representation combined with
the Reduced Basis concept built with a greedy algorithm is therefore a very attractive
formulation which can be used to iteratively build by successive enrichments an a priori
separated modal description of the physical fields involved in the mathematical model of
interest. In this article, one describes the use and adaptation of the PGD paradigm to build
a solution of the unsteady Navier-Stokes Equations for incompressible flows. Since one
does not want to reduce the framework of applications to simplified Cartesian-like or large
aspect ratio geometries, the separated modal decomposition concerns only the time and
spatial dimensions where the space is considered as a non-separated three-dimensional
entity. From that point of view, the objective of this work is to build a constructive contin-
uous model providing an a priori decomposition which is very similar to the well-known
a posteriori time-space SVD reconstruction. No further hypothesis except the existence
of a separated time-space decomposition has to be made, which means that the proposed
methodology is valid for unsteady flows around geometries of arbitrary complexity. The
general computational framework is the one used for the code ISIS-CFD ([5]), i.e. a gen-
eralized unstructured finite volume discretization in space and a second order accurate
discretisation in time.
The existence of a separated time-space solution for the unsteady incompressible Navier-
Stokes equations can not be theoretically established but one feels that the parabolic-
ity in time and the mixed parabolic/elliptic character in space for the unsteady incom-
pressible Navier-Stokes equations provide a mathematical background which is relatively
well suited to this separated modal decomposition. In a traditional incremental approach,
the unsteady solution is obtained by solving n time-steps quasi-steady three-dimensional
problems (where n is the number of time steps), which becomes prohibitively expensive
when the number of time steps or the global duration of the simulation are large. Replac-
ing this traditional incremental approach by a modal strategy may result in huge gains in
terms of computational efficiency if the number of modes does not grow with the num-
ber of time steps. As a matter of fact, in a separated modal representation, to compute n
time steps, one needs to compute Q ∗ N three-dimensional fields, where Q is the num-
ber of enrichments (or modes) and N is the number of (fixed-point) iterations needed to
determine each modal group. It is clear that if n >> N ∗ Q, the PGD paradigm will
become extremely attractive. Moreover, since the continuous equations used to determine
the temporal modes are simple ODEs, one can use a time step as small as needed without
any significant penalty in terms of computational time. By combining the stored spatial
and temporal modes, one can restore the full unsteady flow evolution at any time and
any point with strongly reduced storage requirements, which makes extremely easy the
a-posteriori detailed analysis of the unsteady flow. Finally, a very interesting by-product
of this formulation is a reduced order flow model which could be used in situations where
a high-fidelity solution is not necessarily needed like in active flow control, for instance.
In this article, one will describe the choices of decomposition for the variables involved
in the unsteady Navier-Stokes decomposition, the proposed general continuous formu-
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lations, the treatment of the unsteady boundary conditions and several illustrations on
simple unsteady laminar flows.

2 PGD FORMULATION OF THE UNSTEADY NAVIER-STOKES EQUATIONS
FOR INCOMPRESSIBLE FLOWS

2.1 The partial differential equations

To build the continuous PGD formulation, one starts from the following formulation
of the unsteady incompressible Navier-Stokes equations:

∂u

∂t
+ û+

∂p

∂x
= fu(x, t)

∂v

∂t
+ v̂ +

∂p

∂y
= f v(x, t)

û = Div(u
−→
U cv)− ∂

∂x
(ν
∂u

∂x
)− ∂

∂y
(ν
∂u

∂y
)

v̂ = Div(v
−→
U cv)− ∂

∂x
(ν
∂v

∂x
)− ∂

∂y
(ν
∂v

∂y
)

Div(
−→
U ) = 0

(1)

where
−→
f = (fu, f v) represents momentum source term,

−→
U cv(u, v) is the convective ve-

locity and
−→
Û = (û, v̂) is an intermediate pseudo-acceleration field.

2.2 The time space PGD decomposition

Let us suppose that the velocity, pressure, pseudo-acceleration and velocity flux field
can be expressed according to the following separated modal expansions :

u(x, t) ≈
∑i

k=1X
u
k (x)T uk (t)

v(x, t) ≈
∑i

k=1X
v
k (x)T uk (t)

û(x, t) ≈
∑i

k=1 X̂
u
k (x)T̂ uk (t)

v̂(x, t) ≈
∑i

k=1 X̂
v
k (x)T̂ uk (t)

p(x, t) ≈
∑i

k=1X
p
k(x)T pk (t)

(2)

The only hypothesis made here is that the temporal modes are identical for each compo-
nent of the vectorial fields. Otherwise, one supposes that the other dependent variables
introduced in this separated decomposition have their own temporal modes which will
have to be determined by independent differential equations.
When injected in the formulation (1), one gets the following non-linear coupled equations:
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∑i
k=1X

u
k
dTu

k

dt
+
∑i

k=1 X̂
u
k T̂

u
k +

∑i
k=1

∂Xp
k

∂x
T pk = fu(x, t)

∑i
k=1X

v
k
dTu

k

dt
+
∑i

k=1 X̂
v
k T̂

u
k +

∑i
k=1

∂Xp
k

∂y
T pk = f v(x, t)

∑i
k=1 X̂

u
k T̂

u
k −

∑i
k=1

∑i
l=1Div(Xu

k

−→
Xl)T

u
k T

u
l +

∑i
k=1 T

u
k [ ∂

∂x
(ν

∂Xu
k

∂x
) + ∂

∂y
(ν

∂Xu
k

∂y
)] = 0

∑i
k=1 X̂

v
k T̂

u
k −

∑i
k=1

∑i
l=1 Div(Xv

k

−→
Xl)T

u
k T

u
l +

∑i
k=1 T

u
k [ ∂

∂x
(ν

∂Xv
k

∂x
) + ∂

∂y
(ν

∂Xv
k

∂y
)] = 0

∑i
k=1Div(

−→
Xk)T

u
k = 0

(3)
One can write now the weak formulation in the space-time domain of these equations:∫ Tmax

0

∫
Ω

(Xu
i T

u∗
i +Xu∗

i T
u
i )
[∑i

k=1X
u
k
dTu

k

dt
+
∑i

k=1 X̂
u
k T̂

u
k

+
∑i

k=1

∂Xp
k

∂x
T pk

]
dxdt =

∫ Tmax

0

∫
Ω

(Xu
i T

u∗
i +Xu∗

i T
u
i )fu(x, t)dxdt

∫ Tmax

0

∫
Ω

(Xv
i T

u∗i +Xv∗
i T

u
i )
[∑i

k=1X
v
k
dTu

k

dt
+
∑i

k=1 X̂
v
k T̂

u
k

+
∑i

k=1

∂Xp
k

∂y
T pk

]
dxdt =

∫ Tmax

0

∫
Ω

(Xv
i T

u∗
i +Xv∗

i T
u
i )f v(x, t)dxdt

∫ Tmax

0

∫
Ω

(Xu
i T

u∗i +Xu∗
i T

u
i )
[∑i

k=1 X̂
u
k T̂

u
k −

∑i
k=1

∑i
l=1Div(Xu

k

−→
Xl)T

u
k T

u
l

+
∑i

k=1 T
u
k [ ∂

∂x
(ν

∂Xu
k

∂x
) + ∂

∂y
(ν

∂Xu
k

∂y
)]
]
dxdt = 0

∫ Tmax

0

∫
Ω

(Xv
i T

u∗i +Xu∗
i T

u
i )
[∑i

k=1 X̂
v
k T̂

u
k −

∑i
k=1

∑i
l=1Div(Xv

k

−→
Xl)T

u
k T

u
l

+
∑i

k=1 T
u
k [ ∂

∂x
(ν

∂Xv
k

∂x
) + ∂

∂y
(ν

∂Xv
k

∂y
)]
]
dxdt = 0

∫ Tmax

0

∫
Ω

(Xp
i T

p∗
i +Xp∗

i T
p
i )
[∑i

k=1 Div(
−→
Xk)T

u
k

]
= 0

(4)

whereXu∗
i , X

v∗
i , T

u∗
i , (resp. Xp∗

i , T
p∗
i ) are velocity (resp. pressure) test functions, [0, Tmax]

is the temporal interval and Ω is the spatial domain of integration.

2.3 The incompressibility condition

The incompressibility condition is a steady partial differential equation which ex-
presses the local conservation of mass:

Div(
−→
U ) = 0 (5)

Using a PGD decomposition of the velocity, one gets the following equation:

i∑
k=1

Div(
−→
X k)T

u
k = 0 (6)
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Projected on the time and space dimensions using a Galerkin projection, one gets two
equations for the spatial and temporal modes, respectively:

i∑
k=1

(

∫ Tmax

0

T pi T
u
k dt)Div(

−→
X k) = 0 (7)

and
i∑

k=1

(

∫
Ω

Xp
iDiv(

−→
X k)dV )T uk = 0 (8)

The following PGD coefficients are introduced:

ξik =
∫ Tmax

0
T pi T

u
k dt

epk =
∫

Ω
Xp
iDiv(

−→
X k)dV

(9)

which leads to: ∑i
k=1 ξikDiv(

−→
X k) = 0∑i

k=1 e
p
kT

u
k = 0

(10)

Actually, if the first mode is built such that it satisfies the steady Navier-Stokes equations
as it will be explained later on, Div(

−→
X1) = 0.

This means that the second mode satisfies the same conditions, and by recurrence, that
every spatial mode is incompressible for any k. Therefore, the PGD solution will be
decomposed on the basis of spatial modes which satisfy individually the incompressibility
condition. This means also that the temporal equation is trivially satisfied since epk = 0
and can not be used.

3 DETERMINING THE SPATIAL MODES

3.1 The PGD momentum equations

To build the spatial PDE’s and temporal ODE’s needed to determine the spatial and
temporal modes, we use the standard Galerkin projection of the equations (3) alternatively
on the spatial and temporal directions and gets a set of coupled non-linear equations. The
spatial PGD equations are defined by:∑i

k=1 αikX
u
k +

∑i
k=1 β̂ikX̂

u
k +

∑i
k=1 ζik

∂Xp
k

∂x
= δui (x)∑i

k=1 αikX
v
k +

∑i
k=1 β̂ikX̂

v
k +

∑i
k=1 ζik

∂Xp
k

∂y
= δvi (x)∑i

k=1 β̂ikX̂
u
k −

∑i
k=1

∑i
l=1 γiklDiv(Xu

k

−→
Xl) +

∑i
k=1 βik[

∂
∂x

(ν
∂Xu

k

∂x
) + ∂

∂y
(ν

∂Xu
k

∂y
)] = 0∑i

k=1 β̂ikX̂
v
k −

∑i
k=1

∑i
l=1 γiklDiv(Xv

k

−→
Xl) +

∑i
k=1 βik[

∂
∂x

(ν
∂Xv

k

∂x
) + ∂

∂y
(ν

∂Xv
k

∂y
)] = 0

Div(
−→
X i) = 0

(11)
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with the following coefficients:

αik =
∫ Tmax

0
T ui

dTu
k

dt
dt

β̂ik =
∫ Tmax

0
T ui T̂

u
k dt

βik =
∫ Tmax

0
T ui T

u
k dt

γikl =
∫ Tmax

0
T ui T

u
k T

u
l dt

ζik =
∫ Tmax

0
T ui T

p
k dt

δui (x) =
∫ Tmax

0
T ui f

u(x, t)dt

δvi (x) =
∫ Tmax

0
T ui f

v(x, t)dt

(12)

3.2 Transformation of the incompressibility condition into a Laplace pressure equa-
tion - Formulation 1

Let us now see how it is possible to transform the incompressibility condition into an
operational partial differential equation enabling the determination of the pressure spatial
modes.
As indicated before, each spatial velocity mode satisfies:

Div(
−→
X i) = 0 (13)

The modal momentum equations read:∑i
k=1 αikX

u
k +

∑i
k=1 β̂ikX̂

u
k +

∑i
k=1 ζik

∂Xp
k

∂x
= δui (x)∑i

k=1 αikX
v
k +

∑i
k=1 β̂ikX̂

v
k +

∑i
k=1 ζik

∂Xp
k

∂y
= δvi (x)

(14)

This means that :

αiiX
u
i + β̂iiX̂

u
i + ζii

∂Xp
i

∂x
= δui (x)

−
∑i−1

k=1 αikX
u
k −

∑i−1
k=1 β̂ikX̂

u
k −

∑i−1
k=1 ζik

∂Xp
k

∂x

αiiX
v
i + β̂iiX̂

v
i + ζii

∂Xp
i

∂y
= δvi (x)

−
∑i−1

k=1 αikX
v
k −

∑i−1
k=1 β̂ikX̂

v
k −

∑i−1
k=1 ζik

∂Xp
k

∂y

(15)

Using the incompressibility of every spatial modal velcity yields the so-called “Laplace
pressure equation” which couples together the spatial pressure and pseudo-acceleration
modes:

−β̂iiDiv(
−→
X̂ i)− ζii∆Xp

i = −δp∗i (16)

with:

δp∗i = δpi −
i−1∑
k=1

β̂ikDiv(
−→
X̂ k)−

i−1∑
k=1

ζik∆X
p
k (17)

It also provides the relation which should be used to update the modal velocity flux at the
control volume interface ∂Vc:

αii
−→
X i · −→n =

−−→
δi(x) · −→n − β̂ii

−→
X̂ i · −→n − ζii

−−−→
∇Xp

i ·
−→n

−
∑i−1

k=1 αik
−→
X k · −→n −

∑i−1
k=1 β̂ik

−→
X̂ k · −→n −

∑i−1
k=1 ζik

−−−→
∇Xp

k ·
−→n

(18)

where every term is reconstructed at the interface and not interpolated from cell-centered
values in agreement with the Rhie and Chow procedure to avoid any checkerboard oscil-
lations.
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3.3 Transformation of the incompressibility condition into a Poisson pressure equa-
tion - Formulation 2

If one wishes to build a pressure equation which resembles the pressure equation used
in the classic incremental formulation of the unsteady Navier Stokes equations, we should
proceed in a slightly different way which is explained now. The momentum equations are
first rebuilt by replacing the pseudo-acceleration field by its expression, which leads to :∑i

k=1 αikX
u
k +

∑i
k=1

∑i
l=1 γiklDiv(Xu

k

−→
Xl)

−
∑i

k=1 βik[
∂
∂x

(ν
∂Xu

k

∂x
) + ∂

∂y
(ν

∂Xu
k

∂y
)] +

∑i
k=1 ζik

∂Xp
k

∂x
= δui (x)∑i

k=1 αikX
v
k +

∑i
k=1

∑i
l=1 γiklDiv(Xv

k

−→
Xl)

−
∑i

k=1 βik[
∂
∂x

(ν
∂Xv

k

∂x
) + ∂

∂y
(ν

∂Xv
k

∂y
)] +

∑i
k=1 ζik

∂Xp
k

∂y
= δvi (x)

(19)

If we introduce the following source terms δu∗i and δv∗i :

δu∗i = δui −
∑i−1

k=1{αikXv
k +

∑i
l=1 γiklDiv(Xu

k

−→
Xl)− βik ∂

∂x
(ν

∂Xu
k

∂x
)− ∂

∂y
(ν

∂Xu
k

∂y
)]

+ ζik
∂Xp

k

∂x
}

δv∗i = δvi −
∑i−1

k=1{αikXv
k +

∑i
l=1 γiklDiv(Xu

k

−→
Xl)− βik ∂

∂x
(ν

∂Xv
k

∂x
)− ∂

∂y
(ν

∂Xv
k

∂y
)]

+ ζik
∂Xp

k

∂y
}

(20)
the PGD momentum equations for the current i mode read:

αiiX
u
i +

∑i
l=1 γiilDiv(Xu

i

−→
Xl)− βii[ ∂∂x(ν

∂Xu
i

∂x
) + ∂

∂y
(ν

∂Xu
i

∂y
)] + ζii

∂Xp
i

∂x
= δu∗i

αiiX
v
i +

∑i
l=1 γiilDiv(Xv

i

−→
Xl)− βii[ ∂∂x(ν

∂Xv
i

∂x
) + ∂

∂y
(ν

∂Xv
i

∂y
)] + ζii

∂Xp
i

∂y
= δv∗i

(21)
Once discretised with a finite volume discretization, the momentum equations read for
each control volume Vc:

V olc
αii

βii
Xu
c +

∑
CnbX

u
nb + CdX

u
c + V olc

ζii
βii
Discr

[
∂
∂x
Xp
]

+ SrcU = 0

V olc
αii

βii
Xv
c +

∑
CnbX

v
nb + CdX

v
c + V olc

ζii
βii
Discr

[
∂
∂y
Xp
]

+ SrcV = 0
(22)

where:
SrcU = −V olc δ

u∗
i

βii

SrcV = −V olc δ
v∗
i

βii

(23)

The indices i of the mode i are no more mentioned for the sake of simplicity. The operator
Discr stands for “Discretization of”. V olc is the volume of the cell of integration, Cnb and
Cd are the discretisation coefficients of the convective-diffusive common operator present
in both momentum equations.
In order to build a pressure equation, a new discrete pseudo-velocity field (X̃u

c , X̃
v
c ) is

introduced:
X̃u
c − 1

V olc

∑
CnbX

u
nb = SrcU

V olc
= − δu∗i

βii

X̃v
c − 1

V olc

∑
CnbX

v
nb = SrcV

V olc
= − δv∗i

βii

(24)

which leads to:

Xu
c = −Cp

(
X̃u
c + V olc

ζii
βii
Discr

[
∂
∂x
Xp
])

Xv
c = −Cp

(
X̃v
c + V olc

ζii
βii
Discr

[
∂
∂y
Xp
]) (25)
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with CDiag = Cd + V olc
αii

βii
and Cp = V olc

CDiag
.

By using the solenoidality condition, one gets and alternate pressure equation which can
be written with the following semi-discretized formulation:

−Div(Cp
−→
X̃ )−Div(Cp

ζii
βii

−−−→
∇Xp

i) = 0 (26)

3.4 Comments on the spatial formulation

In this section, we have built the spatial PGD equations which have to be solved to
determine the spatial velocity and pressure modes. In order to have spatial velocity modes
satisfying individually the incompressibility condition, we have proposed two possibili-
ties to transform the solenoidality condition into a pressure equation. The first one is built
from the continuous formulation of the momentum equations in which an intermediate
pseudo-acceleration vectorial field has been introduced. Taking the divergence of these
equations leads to a partial differential equation combining a Laplace pressure equation
and the divergence of the pseudo-acceleration field. The second option which corresponds
to the usual procedure for the finite volume approach for incompressible flows consists
in discretizing first the momentum equations and reconstructing the fluxes of the velocity
components and pressure gradient, while all the contributions of the neighboring data and
source terms are gathered into the so-called pseudo-velocity fluxes. Proceeding in this
way transforms the solenoidality condition into a Poisson pressure equation and a diver-
gence of the pseudo velocity vectorial field. In that case, the discretization coefficients of
the momentum equations enter the formulation of the spatial pressure equation through
the central coefficient Cp and the definition of the pseudo-velocity fields.

3.5 Final spatial formulation

To summarize, one gets the final coupled non-linear formulation for the spatial PGD
modes:∑i

k=1 αikX
u
k +

∑i
k=1 β̂ikX̂

u
k +

∑i
k=1 ζik

∂Xp
k

∂x
= δui (x)∑i

k=1 αikX
v
k +

∑i
k=1 β̂ikX̂

v
k +

∑i
k=1 ζik

∂Xp
k

∂y
= δvi (x)∑i

k=1 β̂ikX̂
u
k −

∑i
k=1

∑i
l=1 γiklDiv(Xu

k

−→
Xl) +

∑i
k=1 βik[

∂
∂x

(ν
∂Xu

k

∂x
) + ∂

∂y
(ν

∂Xu
k

∂y
)] = 0∑i

k=1 β̂ikX̂
v
k −

∑i
k=1

∑i
l=1 γiklDiv(Xv

k

−→
Xl) +

∑i
k=1 βik[

∂
∂x

(ν
∂Xv

k

∂x
) + ∂

∂y
(ν

∂Xv
k

∂y
)] = 0

−
∑i

k=1 β̂ikDiv(
−→
X̂ k)−

∑i
k=1 ζik∆X

p
k = −δpi (x)

or

−βiiDiv(Cp
−→
X̃ i)− ζiiDiv(Cp∇Xp

i ) = 0
(27)
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with:
δui (x) =

∫ Tmax

0
T ui f

u(x, t)dt

δvi (x) =
∫ Tmax

0
T ui f

v(x, t)dt

δpi (x) =
∫ Tmax

0
T ui Div(

−→
f (x, t))dt

αik =
∫ Tmax

0
T ui

dTu
k

dt
dt

β̂ik =
∫ Tmax

0
T ui T̂

u
k dt

βik =
∫ Tmax

0
T ui T

u
k dt

γikl =
∫ Tmax

0
T ui T

u
k T

u
l dt

ζik =
∫ Tmax

0
T ui T

p
k dt

(28)

4 DETERMINING THE TEMPORAL MODES

4.1 Comments on the pressure temporal modes

It has been noticed previously that it is impossible to build an equation to determine
the temporal modes of the pressure T pi if one starts from the original incompressibility
condition Div(

−→
U ) = 0. Moreover, if one starts from the classic semi-discretized Poisson

equation for the pressure (formulation 2), it is also impossible to build a consistent tempo-

ral differential equation since this semi-discretized equation comprises terms (Cp and
−→
X̃i)

which come from the discretisation of the momentum equations. It appears therefore that
the only valid starting point to determine the pressure temporal modes is the differential
Laplace pressure equation introduced in 3.2.

4.2 Temporal PGD ordinary differential equations

Based on the set of equations (3), the temporal PGD equations consist in a set of five
coupled non-linear algebraic differential equations:∑i

k=1 a
u
ik
dTu

k

dt
+
∑i

k=1 b̂
u
ikT̂

u
k +

∑i
k=1 e

u
ikT

p
k = dui (t)∑i

k=1 a
v
ik
dTu

k

dt
+
∑i

k=1 b̂
v
ikT̂

u
k +

∑i
k=1 e

v
ikT

p
k = dvi (t)∑i

k=1 b̂
u
ikT̂

u
k −

∑i
k=1

∑i
l=1 c

u
iklT

u
k T

u
l −

∑i
k=1 b

u
ikT

u
k = 0∑i

k=1 b̂
v
ikT̂

u
k −

∑i
k=1

∑i
l=1 c

v
iklT

u
k T

u
l −

∑i
k=1 b

v
ikT

u
k = 0∑i

k=1 a
p
ikT

p
k +

∑i
k=1 b̂

p
ikT̂

u
k = dpi (t)

(29)
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where the following coefficients have been introduced:

auik =
∫

Ω
Xu
i X

u
k dx

avik =
∫

Ω
Xv
i X

v
kdx

b̂uik =
∫

Ω
Xu
i X̂

u
k dx

b̂vik =
∫

Ω
Xv
i X̂

v
kdx

cuikl =
∫

Ω
Xu
i Div(Xu

k

−→
Xl)dx

cvikl =
∫

Ω
Xv
i Div(Xv

k

−→
Xl)dx

buik =
∫

Ω
Xu
i

[
− ∂
∂x

(ν
∂Xu

k

∂x
)− ∂

∂y
(ν

∂Xu
k

∂y
)
]
dx

bvik =
∫

Ω
Xv
i

[
− ∂
∂x

(ν
∂Xv

k

∂x
)− ∂

∂y
(ν

∂Xv
k

∂y
)
]
dx

euik =
∫

Ω
Xu
i
∂Xp

k

∂x
dx

evik =
∫

Ω
Xv
i
∂Xp

k

∂y
dx

dui =
∫

Ω
Xu
i f

u(x, t)dx
dvi =

∫
Ω
Xv
i f

v(x, t)dx

apik =
∫

Ω
Xp
i (−Div

[−−−→
∇Xp

k

]
)dx

b̂pik =
∫

Ω
Xp
i (−Div

[−→
X̂k

]
)dx

dpi =
∫

Ω
Xp
i (−Div[

−→
f ])dx

(30)

We have now five ordinary differential equations to determine three unknowns T ui , T̂ ui
and T pi . We will use the sum of the first and second equations and the sum of the third and
fourth equations to provide a system coupling together T ui , T̂ ui and T pi :∑i

k=1(auik + avik)
dTu

k

dt
+
∑i

k=1(b̂uik + b̂vik)T̂
u
k +

∑i
k=1(euik + evik)T

p
k = dui (t) + dvi (t)∑i

k=1(b̂uik + b̂vik)T̂
u
k −

∑i
k=1

∑i
l=1(ĉuikl + ĉvikl)T

u
k T

u
l −

∑i
k=1(f̂uik + f̂ vik)T

u
k = 0∑i

k=1 a
p
ikT

p
k +

∑i
k=1 b̂

p
ikT̂

u
k = dpi (t)

(31)
and these coupled non-linear differential equations will be iteratively solved with an ap-
propriate linearisation strategy. It is worthwhile to underline that the last algebraic equa-
tion provides a non-linear (actually quadratic) relation between the pressure and the ve-
locity temporal modes which is the temporal counterpart of the Bernoulli equation.
At this stage, it should be noticed that it is not necessary easy to provide accurate evalua-
tions of these temporal coefficients with a formal 2nd order accurate finite volume solver.
This means that specific discretisation schemes have to be built to provide an accurate
enough discretisation of these operators on a fully unstrctured grid. For the sake of con-
ciseness, we will not elaborate more on this topic which is however felt crucial for the
modal convergence of the PGD decomposition.

5 SPACE-TIME CONSISTENCY RELATIONS

It might be useful to notice that there are additional equations linking together the
spatial and temporal PGD coefficients. These relations are obtained, for instance, by inte-
grating over the whole flow domain the spatial modal equations. This yields the following
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relations: ∑k
l=1 αkla

u
il +

∑k
l β̂klb

u
il +

∑k
l ζkle

u
il =

∫
Ω
Xu
i δ

u
kdx∑k

l=1 αkla
v
il +

∑k
l β̂klb

v
il +

∑k
l ζkle

v
il =

∫
Ω
Xv
i δ

v
kdx∑k

l=1 β̂klb̂
u
ik −

∑k
l=1

∑k
m=1 γklmc

u
ikm −

∑k
l=1 βklb

u
ik = 0∑k

l=1 β̂klb̂
v
ik −

∑k
l=1

∑k
m=1 γklmc

v
ikm −

∑k
l=1 βklb

v
ik = 0∑k

l=1 ζkla
p
ikT

p
k +

∑k
l=1 β̂klb̂

p
ik =

∫
Ω
Xp
i δ

p
kdx

(32)

which are valid for any indices i and k. These relations establish a kind of global time-
space consistency of the PGD coefficients and can be used to ensure structural relations
which might not be verified at a discrete level, due to the influence of the spatial discreti-
sation errors on the determination of the temporal PGD coefficients.

6 COMMENTS ON THE GENERAL COMPUTATIONAL STRATEGY

This PGD algorithm is therefore comprised of four embedded loops:

1. an enrichment loop which adds new temporal and spatial modes to enrich the modal
decomposition until modal convergence,

2. a fixed point loop which ensures the mutual convergence of the couple of spatial
and temporal modes which are solved sequentially. It should be noted here that we
have chosen to converge on the non-linearity at each fixed point iteration, either
for the spatial or temporal modes. Although such a procedure is likely to be very
expensive, we preferred to use it to ensure a safe overall convergence.

3. a non-linear loop which accounts for the non-linearities present in the spatial PDE’s
and the temporal ODE’s,

4. a linear coupling loop which takes into account the linear coupling existing between
the linearized spatial momentum and pressure equations on one hand, and on the
other hand, the linear coupling between the linearized temporal equations for the
temporal velocity and pressure modes.

In this version of the ISIS-CFD code, the linear coupling between the spatial equations
is treated with a fully coupled formulation for which the fully-coupled saddle-point lin-
ear system corresponding to the linearised momentum and pressure equations is directly
solved by ad-hoc preconditioned Krylov solvers in the spirit of previous developments
performed in our team ([6]).

7 TAKING INTO ACCOUNT THE BOUNDARY CONDITIONS AND RELATED
SIMPLIFICATIONS

7.1 Satisfying unsteady boundary conditions

The PGD formulation is well posed when the boundary conditions are homogeneous.
When the unsteadiness of the flow can be reached naturally, thanks to the development of
internal instabilities in the flow like for the unsteady behind a cylinder, this peculiarity of
the PGD methodology does not pose any problem. However, when the unsteadiness of
the flow is imposed by moving boundaries, one should build a first set of modes which
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satisfy the unsteady boundary conditions. This means that the velocity boundary condition
should be written in a time space separated form in order to comply with the present
choice. For simple academic flows like the unsteady driven cavity, or the flow between two
concentric cyinders, it is easy to design a procedure to take into account the unsteadiness
of the boundary conditions.
Let us take for instance the case of a driven square cavity where the horizontal component
of the velocity is imposed at the upper wall by:

Uwall = f(t) (33)

We select the steady flow solution associated with Uwall = 1 to provide the initial spatial
modes and one multiplies this steady solution by the temporal function involved at the
upper wall of the driven cavity to build a peculiar flow solution satisfying the unsteady
boundary conditions but, of course, not the unsteady Navier-Stokes equations. The steady
flow solution Xu

1 (x), Xv
1 (x), Xp

1 (x) satisfies the steady Navier-Stokes equations and we
can use it as first spatial modes, the first temporal velocity modes being provided by
T u1 (t) = f(t) while the first pressure temporal mode has still to be specified. The first
modes are therefore designed in such a way that the unsteady boundary conditions are
satisfied, which means that the next modes just need to satisfy homogeneous Dirichlet
(velocity) or Neumann (pressure) boundary conditions.

u(x, t) = u(2)(x, t) +Xu
1 (x)T u1 (t)

v(x, t) = v(2)(x, t) +Xv
1 (x)T u1 (t)

p(x, t) = p(2)(x, t) +Xp
1 (x)T p1 (t)

(34)

However, we also need to prescribe the temporal and spatial first modes for the pres-
sure and the pseudo-acceleration in the framework of the proposed formulation. For the
pseudo-acceleration, we can simply use its definition:

b̂u11T̂
u
11 = cu111(T u1 )2 + bu11T

u
1

b̂v11T̂
u
11 = cv111(T u1 )2 + bv11T

u
1

(35)

Moreover, the fact that the first spatial mode is solution of the steady Navier-Stokes equa-
tions provides the following relations:

b̂u11 = cu111 + bu11

b̂v11 = cv111 + bv11

(36)

which leads us to the formula used to initialize the first pseudo-acceleration temporal
mode:

T̂ u1 =
(cu111+cv111)(Tu

1 )2+(bu11+bv11)Tu
1

cu111+cv111+bu11+bv11
(37)

The optimal initialisation of the first pressure temporal mode is still an open problem. To
determine the initial temporal pressure mode, we might suppose that the flow solution
based on the first PGD mode satisfies the incompressibility condition:

ap11T
p
1 + b̂p11T̂

u
1 = 0 (38)

If one supposes that the first spatial pressure mode is solution of the steady Navier-Stokes
equations:

ap11 + b̂p11 = 0 (39)
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this leads to:
T p1 = T̂ u1 (40)

But, there is no justification of the above-mentioned hypothesis and the determination of
the first temporal mode can be considered as an open question.
When the unsteady boundary conditions are more complex, one can build a time-space
Singular Value Decomposition of the unsteady boundary conditions, which leads to the
following expression:

u(bnd) =
∑N

k=1X
u(bnd)
k (x)T uk (t)

v(bnd) =
∑N

k=1X
v(bnd)
k (x)T uk (t)

p(bnd) =
∑N

k=1X
p(bnd)
k (x)T pk (t)

(41)

We can then solve N steady Navier-Stokes equations with the boundary conditions pro-
vided byXu(bnd)

k andXv(bnd)
k to initialize the spatial modes in the flow domain. Once these

modes have been determined, the remaining PGD modes will satisfy homogeneous veloc-
ity conditions. This procedure can be tedious in case of very complex unsteady boundary
conditions but this is a known limitation of the PGD paradigm.

7.2 Simplifications related with the choice of the initial temporal and spatial modes

As indicated before, when the boundary conditions are not homogeneous, it is nec-
essary to select the k first temporal and spatial modes such that the unsteady boundary
conditions are satisfied by their combination. It is interesting to notice that if, these first
k spatial modes satisfy also the steady incompressible Navier-Stokes equations and if
T̂ uk = T pk for all the k modes used to ensure the boundary conditions, then for every next
i > k mode, the following relations hold:

−Div[
−−−→
∇Xp

i ]−Div[
−→
X̂i] = 0

T̂ ui = T pi
(42)

which greatly simplifies the PGD formulation and reduces the number of independent
PGD coefficients.

8 SIMPLIFICATIONS FOR THE STOKES EQUATIONS

For the Stokes equations, the non-linear convective terms are absent. If one chooses the
first spatial mode such that it satisfies the steady Stokes equations, we have the following
relations:

X̂u
1 = −∂Xp

1

∂x

X̂v
1 = −∂Xp

1

∂y

X̂u
1 = ∂

∂x
(ν

∂Xu
1

∂x
) + ∂

∂y
(ν

∂Xu
1

∂y
)

X̂v
1 = ∂

∂x
(ν

∂Xv
1

∂x
) + ∂

∂y
(ν

∂Xv
1

∂y
)

(43)

and then, for every i:
b̂ui1 = bui1
b̂vi1 = bvi1
b̂ui1 = −eui1
b̂vi1 = −evi1
api1 = −b̂pi1

(44)
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Since T̂ u1 = T u1 , if one chooses T p1 = T u1 , this leads to the following coupled equations
for the second PGD spatial and temporal modes:

α22X
u
2 + β̂22X̂

u
2 + ζ22

∂Xp
2

∂x
= −α21X

u
1

α22X
v
2 + β̂22X̂

v
2 + ζ22

∂Xp
2

∂y
= −α21X

v
1

β̂22X̂
u
2 + β22[ ∂

∂x
(ν

∂Xu
2

∂x
) + ∂

∂y
(ν

∂Xu
2

∂y
)] = 0

β̂22X̂
v
2 + β22[ ∂

∂x
(ν

∂Xv
2

∂x
) + ∂

∂y
(ν

∂Xv
2

∂y
)] = 0

−ζ22Div[
−−−→
∇Xp

2 ]− β̂22Div[
−→
X̂2] = 0

(au22 + av22)
dTu

2

dt
+ (b̂u22 + b̂v22)T̂ u2 + (eu22 + ev22)T p2 = −(au21 + av21)

dTu
1

dt

(b̂u22 + b̂v22)T̂ u2 − (bu22 + bv22)T u2 = 0

ap22T
p
2 + b̂p22T̂

u
2 = 0

(45)

The solutions of this system are :

T p2 = T u2
T̂ u2 = T u2
(au22 + av22)

dTu
2

dt
+ (âu22 + eu22 + âv22 + ev22)T u2 = −(au21 + av21)

dTu
1

dt

−Div[
−−−→
∇Xp

2 ]−Div[
−→
X̂2] = 0

X̂u
2 + [ ∂

∂x
(ν

∂Xu
2

∂x
) + ∂

∂y
(ν

∂Xu
2

∂y
)] = 0

X̂v
2 + [ ∂

∂x
(ν

∂Xv
2

∂x
) + ∂

∂y
(ν

∂Xv
2

∂y
)] = 0

α22X̂
u
2 + β̂22(X̂u

2 +
∂Xp

2

∂x
) = −α21X̂

u
1

α22X̂
v
2 + β̂22(X̂v

2 +
∂Xp

2

∂y
) = −α21X̂

v
1

(46)

It is trivial to demonstrate by recurrence for the next temporal modes that T̂ ui = T ui
and T̂ pi = T ui , which proves that this formulation naturally provides a decomposition for
which every temporal pressure mode is equal to the velocity temporal mode, thanks to the
linearity of the Stokes equations.

9 APPLICATIONS

9.1 Analytic solutions

9.1.1 Stokes equations

A. Dumont ([7]) used in his PhD thesis the following 2D analytic solutions for the
Stokes equations:

∂u

∂t
+
∂p

∂x
− ∂

∂x
(ν
∂u

∂x
)− ∂

∂y
(ν
∂u

∂y
) + fu(x, t) = 0

∂v

∂t
+
∂p

∂y
− ∂

∂x
(ν
∂v

∂x
)− ∂

∂y
(ν
∂v

∂y
) + f v(x, t) = 0

−Div
[−→
∇p
]
−Div

[−→
Û

]
+ fp(x, t) = 0

(47)
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with:
u(x, y, t) = cos(ωx)sin(ωy)e−t

v(x, y, t) = −sin(ωx)cos(ωy)e−t

p(x, y, t) = (1− 2ω2ν)sin(ωx)sin(ωy)e−t

fu(x, y, t) = −(1− ω)(2ω2ν − 1)cos(ωx)sin(ωy)e−t

f v(x, y, t) = −(1 + ω)(1− 2ω2ν)sin(ωx)cos(ωy)e−t

fp(x, y, t) = −(
∂fu

∂x
+
∂f v

∂y
)

= −2ω2(2ω2ν − 1)sin(ωx)sin(ωy)e−t

(48)

with ω = 2π. This manufactured solution is imposed in a squared cavity [0.; 1.]× [0.; 1.]
with the following boundary conditions and the PGD decomposition converges in one
mode analytically and numerically.

9.1.2 Navier-Stokes equations

The unsteady Taylor-Green vortex is an analytic solution of the unsteady Navier-Stokes
equations. It is given by:

u(x, y, t) = sin(ωx)cos(ωy)e−2ω2νt

v(x, y, t) = −cos(ωx)sin(ωy)e−2ω2νt

p(x, y, t) = 1
4
(cos(2ωx) + cos(2ωy))e−4ω2νt

(49)

with ω = 2π. In that case, the spatial and temporal modes are provided by:

Xu
1 = sin(ωx)cos(ωy)

Xv
1 = −cos(ωx)sin(ωy)

Xp
1 = 1

4
(cos(2ωx) + cos(2ωy))

T u1 = e−2ω2νt

T p1 = e−4ω2νt

(50)

As previously, the PGD decomposition converges in one mode analytically and numer-
ically. This is the first example where the temporal mode for the pressure is the square
of the temporal velocity mode, justifying the choice of independent pressure and velocity
temporal modes.

9.2 UNSTEADY FLOW BETWEEN TWO CONCENTRIC CYLINDERS

The overall procedure is validated on an academic flow configuration, the computation
of the unsteady viscous flow between two concentric cylinders (see figure1(a)). The flow
domain is limited by two cylinders and (Rin=1., Rout=3.0) and the inner cylinder is ro-
tating with a rotation velocity defined by Ω(t) = Ω0sin(2πt). The Reynolds number of
this flow is Re = 20. A structured grid composed of 180 (resp. 21) points distributed
circumferentially (resp. radially) is shown in figure 1(b) where two specific blue (A) and
red (B) points are introduced. The point A is located close to the inner rotating wall while
the point B is positioned further away in a region where the convective effects are less
prominent.
Figures 2, 3, 4 show the six first normalized spatial modes for the two components of the
velocity and the pressure.
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(a) Computational domain (b) Grid

Figure 1: Unsteady viscous flow between two concentric cylinders - Computational domain

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 2: The six first normalized spatial PGD modes for U
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 3: The six first normalized spatial PGD modes for V

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 4: The six first normalized spatial PGD modes for P
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(a) Temporal velocity modes (b) Temporal pressure modes

Figure 5: The six first normalized temporal PGD modes for the velocity and pressure

The six first normalized temporal modes for the velocity and pressure are also shown
in the figures 5.

The figures 6 show a comparison of the temporal evolution of the velocity components
and pressure at the two points mentioned before. 30 modes are used to build this PGD de-
composition. We can notice a very good agreement on the velocity components and a less
perfect agreement on the pressure, especially at points (here point A) which are located in
a region where the convective effects are significant (and therefore T ui 6= T pi ). It should
be underlined here that the discretization errors committed in the discrete evaluation of
the temporal PGD coefficients preclude any perfect agreement between the incremental
and the modal approaches for a given time and space discretization. To draw conclusions
on the solution convergence, it would be necessary to perform a systematic grid and time
convergence study, which has not yet been carried out in this preliminary study.

The figure 7(a) shows the L2 norm in space and time of the difference between the
solutions computed with the incremental and modal approaches. It is clear that the dif-
ference on the velocity fields is reduced as long as the modal content is enriched before
reaching a minimum value of 10−3 which is representative of the different discretization
errors characterizing each methodology. However, such a convergence is not observed on
the pressure field which is still affected by a systematic (but small) defect. It is surprising
to observe that the convergence on the velocity is not affected by the lack of convergence
on the pressure.
The figure 7(b) shows the evolution of the norms of the velocity (in red) and pressure
(in black) PGD modes. The modal convergence is smoother on the velocity than on the
pressure. We can notice that it is difficult to reach more than five orders of magnitude
for the Navier-Stokes equations, although a zero-machine convergence is reached without
any problem for the Stokes equations (not shown here for the sake of conciseness). It is
however interesting to assess the quality of the PGD decomposition with a reduced num-
ber of modes. Figure 8 show the temporal signal at the same points A and B for only 15
modes. One can notice that the agreement on the velocity and pressure signals is already
quite satisfactory.
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(a) Point A (b) Point B

Figure 6: Comparison between the incremental (red) and modal (blue) temporal signals for the two compo-
nents of the velocity and the pressure (30 modes)

(a) L2 Norm of the difference (b) Modal convergence

Figure 7: Modal convergence of the velocity and pressure
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(a) Point A (b) Point B

Figure 8: Comparison between the incremental (red) and modal (blue) temporal signals for the two compo-
nents of the velocity and the pressure (15 modes)

Figure 9: Evolution of the computational time to solve the unsteady Navier-Sokes equations - Comparison
between incremental (ISIS-CFD) and modal (ISIS-CFD-PGD) approaches

Finally, the figure 9 shows a comparison of the evolution of computational time with
the number of time steps, both for a classical incremental approach (ISIS-CFD) and for
the present modal decomposition (ISIS-CFD-PGD). This comparison is made for a very
modest grid and already illustrates the impressive speed-up which can be obtained with
the modal paradigm.

10 CONCLUSIONS AND PERSPECTIVES

This article has briefly described a first formulation of a time space separated PGD
decomposition applied to the unsteady Navier-Stokes equations. While the implementa-
tion of the PGD paradigm in the momentum equations is relatively straightforward for the
velocity spatial and temporal modes, the determination of the temporal pressure modal
decomposition poses a severe problem. This difficulty has to be related with the fact that
the conservation of mass is a steady constraint linking velocity gradients. It is therefore
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necessary to transform this solenoidality condition into a pressure equation. Moreover,
contrary to what is done in traditional finite volume segregated computational approaches,
the pressure equation which is used here is not a semi-discretized Poisson equation but a
Laplace pressure equation obtained by taking the divergence of the momentum equations.
The first results are encouraging although the robustness of the overall procedure should
be improved. The lack of machine-zero modal convergence for such a simple flow con-
figuration might be an issue for higher Reynolds numbers which should be understood
and solved. The test case used to illustrate this first formulation is very academic but
the formulation is written in such a way that it can be applied to arbitrary geometries on
fully unstructured grids. It is worthwhile to notice that the PGD decomposition has been
implemented into an industrial fully unstructured finite volume solver ISIS-CFD world-
wide distributed by NUMECA Int. under the name FINETM /Marine. This means that
it is feasible to introduce a PGD formulation into industrial softwares without dramatic
modifications of the code as long as a time-space separation is envisaged.
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Abstract. Accurate multi-fidelity modeling is of high importance in the present day engineering
design process. It allows to model computationally expensive simulations at a reduced cost by
combining simulations with variable fidelity levels. In this paper, a novel algorithm is proposed
to build multivariate models from variable fidelity simulations using rational functions. The
modeling is based on high-fidelity data and low-fidelity data that is sampled over a parameter
space of interest. The former is assumed to be computationally expensive and sparse, whereas
the latter is cheaper to obtain but comes at a lower accuracy. It is shown that accurate rational
models can be built at a reduced cost by combining these types of data. The effectiveness of the
algorithm is applied to several examples and confirmed by numerical results.
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1 INTRODUCTION

Nowadays, there is a growing need for accurate behavioral models in many engineering ap-
plications and research disciplines. These models mimic the input-output behavior of a system,
which is usually characterized by multiple parameters (also called variables) that describe the
physical properties of the system over a certain parameter range of interest. The availability of
such models has proven very useful for tasks like optimization, design space exploration, vir-
tual prototyping and sensitivity analysis. In order to build models, a representative set of data
samples must be collected by performing simulations. Unfortunately, as systems are becom-
ing increasingly complex, the computational cost associated with simulations gets prohibitively
high and limits the complexity of systems that can be handled.

The modeling of data with different levels of fidelity can be very useful in areas where
the computational effort of an analysis is substantial, such as in computational fluid dynamics
(CFD) and finite element (FE) analysis. The term “fidelity” refers to the rigorousness of the
simulations and the level of detail by which an underlying system is represented. For example,
depending on the mesh refinement of a system, physics-based simulations can be performed
to collect data having various accuracy levels. On one hand, a dense mesh discretization leads
to time-consuming simulations used to generate very accurate data, henceforth called high-
fidelity (HF) data. On the other hand, a coarse mesh discretization significantly speeds up the
simulations and generates data that captures the overall trend, although it is often less precise.
This type of data is called low-fidelity (LF) data. It was shown in [1, 2, 3] that accurate models
can be built at a reduced cost by combining data with different fidelity levels, hereby combining
the best of both worlds.

A well known algorithm for multi-fidelity modeling is the auto-regressive co-kriging algo-
rithm, which is a geostatistical technique that originates from mining and geology [4, 5]. It
models the HF data exactly and accounts for spatial correlation in the LF data. In the case of
linear time-invariant systems that are described by a set of differential equations, however, it is
preferable to model the data with rational functions because this model type corresponds better
to the underlying nature of the system [6]. The modeling of data using rational functions has
been studied intensively in literature, and several algorithms are available. The reader is referred
to [7, 8, 9, 10] for a survey and analysis of univariate methods. More details on algorithms for
multivariate rational modeling are provided in [11, 12, 13, 14]. In these works, it is assumed that
the data originates from a single source and that all available data samples have a comparable
level of fidelity. This is one of the key aspects that will be addressed in this paper.

This paper proposes a novel algorithm that builds multivariate models from multi-fidelity
data using rational functions. To this end, it makes use of the barycentric interpolation algorithm
which has excellent numerical properties [15, 16]. First, a multivariate rational model that
exactly interpolates the HF data is built using barycentric interpolation. Second, the remaining
model coefficients are calculated such that the (calibrated) LF data is approximated in a least-
squares (LS) sense. The algorithm is applied to model the quality factor and inductance of a
spiral inductor. Numerical results confirms the effectiveness of the approach.

2 ALGORITHM OUTLINE

The goal of the algorithm is to identify a multivariate rational function R that approximates
the behavioral response of an underlying system f . For notational convenience, it will be as-
sumed that this system depends on 2 parameters (α and β), although the extension to multivari-
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ate responses is analogous and conceptually straightforward.

R(α, β) =
N(α, β)

D(α, β)
=

I∑
i=0

J∑
j=0

cijα
iβj

I∑
i=0

J∑
j=0

c̃ijαiβj

. (1)

To ensure that R matches f as closely as possible, some data is needed to estimate the unknown
model coefficients c and c̃. To this end, the system f is simulated using different levels of
fidelity, resulting in two disjoint sets of data

HF = {(αH
k , β

H
k , fH(αH

k , β
H
k ))}KH

k=1 (2)
LF = {(αL

i , β
L
i , f

L(αL
i , β

L
i ))}

KL
i=1 (3)

The HF data is sampled on a sparse grid of KH = M ×N points that are equidistantly spaced
in the (α, β) parameter space. The LF data comprises KL data samples that can be scattered
throughout the parameter space. Taking into account the computational cost of simulations,
it is assumed that the HF data is sparse when compared to the LF data (KH << KL). To
ensure that both types of data are compatible, the ratio between HF and LF data is computed
as a calibration factor to scale the LF data accordingly [17, 18, 19]. Then, a two-step modeling
approach is proposed:

1. Compute a rational model that exactly interpolates all the HF data by using a barycentric
interpolation formula.

2. Calculate the coefficients of the model in such a way that the (calibrated) LF data is
approximated in a LS sense.

It is assumed that the HF data is too sparse in order to generate a global model with sufficient
accuracy. However, by exploiting the information that is contained within the LF data, it is
possible to control the behavior of model R inbetween the HF data samples. By combining
both types of data, a model R with good overall accuracy is obtained.

3 RATIONAL MODELING ALGORITHM

In order to facilitate a mixture of interpolation and LS approximation, the multivariate ratio-
nal function R in (1) is represented in a different functional form [20]. To fix the barycentric
representation of the rational function [15, 16], the input values of the HF data are used as the
interpolation points such that R(αH

k , β
H
k ) = fH(αH

k , β
H
k ) for k = 1, ..., KH and for any choice

of non-zero barycentric weights (w = [wk] ∈ RKH×1 with wk ̸= 0).

R(α, β,w) =
N(α, β,w)

D(α, β,w)
=

KH∑
k=1

wk

(α− αH
k )(β − βH

k )
fH(αH

k , β
H
k )

w0 +

KH∑
k=1

wk

(α− αH
k )(β − βH

k )

. (4)

The choice of w in (4) allows one to enforce additional properties to the model. In this work,
these additional degrees of freedom are exploited in such a way that the interpolation model
also approximates the LF data in a LS sense. This corresponds to finding optimal value for
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the weight w such that sum of the squared residuals is minimized. Note that a residual is the
difference between the actual function value f and the model response.

argmin
w

KL∑
i=1

∣∣∣∣N(αL
i , β

L
i ,w)

D(αL
i , β

L
i ,w)

− fL(αL
i , β

L
i )

∣∣∣∣2 (5)

Unfortunately, problem (5) is non-linear and therefore it becomes difficult to solve in a fast and
accurate way. Instead, Levi proposes to solve a linear approximation of the problem [21].

argmin
w

KL∑
i=1

|N(αL
i , β

L
i ,w)− fL(αL

i , β
L
i )D(αL

i , β
L
i ,w)|2 (6)

This way, an estimate for w can be found by solving a linear set of LS equations (7) of the form
Ax = b using the matlab operator ’\’ (mldivide). Note that this problem is overdetermined
because KL >> KH . One can the weight w0 = 1 in (4) without loss of generality.

A = [aik] ∈ RKL×KH and x = w ∈ RKH×1 and b = [bi] ∈ RKL×1

where aik =
fH(αH

k , β
H
k )− fL(αL

i , β
L
i )

(αL
i − αH

k )(β
L
i − βH

k )
and bi = fL(αL

i , β
L
i ). (7)

It is known that Levi’s formulation is biased and not equivalent to (6), because a weighting
factor 1/|D(αL

i , β
L
i ,w)|2 is omitted in each term of the summation. To improve the accuracy of

the model, the estimated weights wk are refined iteratively by applying the Sanathanan-Koerner
(SK) iteration [9] with explicit weighting as illustrated in [22].

argmin
w

KL∑
i=1

∣∣∣∣N t(αL
i , β

L
i ,w)− fL(αL

i , β
L
i )D

t(αL
i , β

L
i ,w)

Dt−1(αL
i , β

L
i ,w)

∣∣∣∣2 . (8)

This iteration multiplies each row in the LS matrix with an explicit weighting function
1/|Dt−1(α, β,w)|2, which is based on Levi’s initial (iteration step 0) or the previous (iteration
step t−1) estimate of the denominator. This way, updated values of the weights can be found in
successive steps t = 0, ..., T . The final model is then RT (α, β,w) = NT (α, β,w)/DT (α, β,w).
Although the solution of (8) is not guaranteed to converge to the solution of (5) either, the SK
iteration is known to provide good results for sufficiently high signal-to-noise ratios [22].

4 MODEL COEFFICIENT RELAXATION

In (7) it was chosen to set w0 = 1, because numerator and denominator can be divided by the
same constant value without loss of generality. In some cases, this can lead to a poor conver-
gence of the SK iteration. This problem was investigated in [23] and it was proposed to make
w0 a variable in the LS problem. This gives rise to a modified set of equations

[
A − b

]
x = 0.

To avoid the trivial null solution, one additional equation is added to the LS problem.

KL∑
i=1

(
KH∑
k=1

wk

(αL
i − αH

k )(β
L
i − βH

k )
+ w0

)
= KL. (9)
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Equation (9) is scaled in relation to the size of fL(αL, βL) in the LS problem by a scaling factor

scale =
||fL(αL, βL)||2

KL

(10)

Note that this additional equation does not impose any further constraints on the LS problem
other than preventing the trivial null solution. The reader is referred to [23] for a more details.

5 NUMERICAL RESULTS

In this example, the rational modeling of a three turn spiral inductor is considered as shown
in Figure 1. The dielectric has a thickness of 300 µm, a relative dielectric constant ϵr = 9.6 and
a loss tangent tan δ = 0.0002. The conductivity of the metallic layers is equal to σ = 5.8× 107

S/m. The spacing between conductors is equal to 10 µm.

Figure 1: Layout of the spiral inductor (Top View).

The width of the conductors W and the outer length Dout are considered as the 2 input pa-
rameters (α and β) and their corresponding ranges are shown in Table 1. The rational modeling
technique is used to model the inductance L and quality factor Q of the spiral inductor at fre-
quency freq = 2.4 GHz. The L and Q are calculated from the simulated admittance parameters
(Y-parameters) as in (11). The Y-parameters describe the electrical behavior of linear electrical
networks where the terminal currents can be expressed in terms of the terminal voltages [24].

Table 1: Range of the design parameters.

Parameter Width (W ) Outer length (Dout)

Lower bound 4 µm 140 µm

Upper bound 15 µm 210 µm

L(W,Dout) =
1

2πfreq
ℑm 1

Y12(freq,W,Dout)

Q(W,Dout) =
ℑm(Y11(freq,W,Dout))

ℜe(Y11(freq,W,Dout))
. (11)
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Figure 2: HF and LF data samples considered for the modeling using rational function.

The Y-parameters are obtained from the full-wave electromagnetic simulator Agilent Ad-
vanced Design System1 (ADS) Momentum 1, whereas the LF data are obtained using circuit
schematic ADS simulations. The circuit schematic simulations are based on analytical formulas
for the electrical behavior of the spiral inductor, whereas the electromagnetic simulations are
based on the solution of Maxwell’s equations, which is computationally more expensive. A set
of LF and a set of HF data samples are collected on a grid of 5×6 (W,Dout) and 3×2 (W,Dout)
respectively for the frequency 2.4 GHz to build the rational model. The computation time to
get LF and HF admittance parameters at one sample point in the 2D (W,Dout) parameter space
is roughly equal to 0.0301s and 0.2541s, respectively. Note that these timing results were per-
formed on an Intel(R) Core(TM) 2 Duo P8700 2.53 GHz machine with 2 GB RAM and has been
implemented in Matlab R2012b on the Windows 7 platform. For checking the accuracy of the
model, relative error is used, which is defined as follows, where f represents either L or Q.

Rel.Err =
|f(W,Dout)−R(W,Dout)|

|f(W,Dout)|
. (12)

In both cases, 5× 6 and 3× 2 samples of LF and HF are considered as shown in Figure 2. Then
using the proposed technique a rational model is obtained for the L and Q. Figure 3 (a) and (b)
plots the L and Q respectively on a denser grid of 12 × 20 and is validated with HF data on a
similar grid. The relative error (12) for L and Q is plotted in Figure 4 (a) and (b) respectively
and can be seen that the model accurately captures the true underlying system. The evolution
of the normalized root-mean-square error (NRMSE) is compared in terms of iteration count in
Figure 5. The NRMSE for Kv validation points is defined as,

NRMSE =

√
ΣKv

k=1(f(Wk,Doutk)−R(Wk,Doutk))2

Kv

max(f(W,Dout))−min(f(W,Dout))
. (13)

To illustrate the correlation of the multi-fidelity model with the samples considered for mod-
eling, the Spearman Rank Order Correlation Coefficient (SROCC) and the Pearson Linear Cor-
relation Coefficient (PLCC) is studied for both cases. In Table 2, the multi-fidelity model is

1www.eesof.com, Agilent Technologies EEsof EDA, Santa Rosa, CA.
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Figure 3: (a) and (b) plots the model obtained for inductance (L) and quality factor (Q) using the rational function.

compared with the HF and LF training samples that were used for the modeling as shown in
Figure 2. It can be seen that the samples and the model have a strong linear relationship as the
SROCC and PLCC is 0.99. The model is also compared with the HF data used for validation
and is seen that the SROCC and PLCC is equal to 0.99, which again infers that the model re-
sponse is strongly correlated with the true L and Q values, see Figure 6. Table 2 also gives the
values of the NRMSE (13) to assess the multi-fidelity model accuracy for both L and Q.

Table 2: CORRELATION OF MULTI-FIDELITY MODEL WITH THE ACTUAL SAMPLES.

Data set For Inductance (L) For Quality Factor (Q)

NRMSE SROCC PLCC NRMSE SROCC PLCC

High-fidelity training 0 1 1 0 1 1

Low-fidelity training 0.092 0.99 0.99 0.08 0.99 0.99

Validation (high-fidelity) 0.012 0.99 0.99 0.003 0.99 0.99

Thus, the proposed technique generates a rational model from the LF and HF data which is
more accurate than a model built using either the sparse HF samples or dense LF samples only.
Also the model is built at a reduced cost when compared to a model that is built from a larger
amount of HF samples only (see Table 3), leading to a speedup of 21 times.

6 CONCLUSIONS

A novel approach for multivariate modeling of systems using a combination of variable
fidelity simulations has been proposed. The algorithm first makes use of multidimensional
barycentric interpolation for computing a rational model with the HF data, and then the coef-
ficients of this model are iteratively calculated using the (calibrated) LF data in least-square
sense. It is shown that rational function models can be built at a reduced cost by combining
different types of data. The effectiveness of the technique is illustrated using a numerical result.
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Figure 4: (a) and (b) plots the relative error of the model with the original model which is the high-fidelity data.
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Figure 5: Evolution of NRMSE in terms of iteration count t.
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Abstract. This paper will show how the utilization of the Generalized Multi-Mode Scattering
Parameter Transformation for multiport S-parameters can result in the reduction of the number
of S-parameters needed to model a multiport network, and how correct choices can result in
S-parameters which exhibit improved numerical behaviour in a given parameter space. An
example of a two-port, six-line transmission line with the conductors spaced as pairs is used to
show the difference between sets of common-differential mode excitations, and sets of single-
ended excitations will be shown.
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1 INTRODUCTION

Multiport networks pose particular problems to surrogate modelling algorithms, as an N-port
network is typically described by an NxN Scattering matrix, or N2 frequency and parameter
dependent variables. In general, the parameter set can be reduced using symmetry, reciprocity,
and if applicable, the passive lossless condition, but the number of separate models required
always grow quite rapidly with N .

To exploit symmetry to obtain a reduced S-parameter set, the network has to be excited by
correct combinations of port excitations which enforce the symmetry conditions. In addition,
different sets of excitations often result in sets of S-parameters which exhibit varying behaviour
as a function of the parameter space, and a specific excitation can result in very well-behaved
S-parameters, while a different excitation can result in (for instance) resonant spikes.

To find these more optimum sets of excitations is quite difficult, as the full response of the
network has to be simulated for each full set of excitations. While commercial EM-solvers
can all calculate combined responses from any full set of excitations, they can do this only for
uncoupled ports. For coupled ports, e.g. in a multi-conductor transmission line, each different
set of excitations requires a new full 3D EM analysis, which quickly becomes prohibitively
expensive.

Recently, the author developed a transformation technique which allows for the transfor-
mation of multiport S-parameters between different sets of excitations, using only one set of
EM-analyses [1, 2]. The technique works for coupled and uncoupled ports, and is very simple
to implement. It has been implemented on multiport antennas and transmission lines. This pa-
per will show how the utilization of the transformation technique on multiport S-parameters can
result in the reduction of the number of S-parameters needed to model a multiport network, and
how correct choices can result in S-parameters which exhibit improved numerical behaviour in
a given parameter space. An example of a six-line transmission line with the conductors spaced
as pairs will be used to show difference between sets of common-differential mode excitations,
and sets of single-ended excitations.

2 S-PARAMETER TRANSFORMATIONS

The basis of equivalent port representations is the creation of new sets of port voltages and
currents which consist of linear combinations of the port voltages and currents of another port
description. A generalized procedure to do this was presented in [1], together with a number of
examples showing the implementation for classical circuit and antenna problems. Here, a brief
mathematical overview is given, and the reader is referred to [1] for details.

Consider an N-port network excited in two different ways to form two equivalent N-port
networks A and B, as shown in Fig. 1. Each network is described by an S-matrix SA,B, with port
voltages

(
V A,B

n

)
, port currents

(
IA,B

n

)
, and port impedances

(
ZA,B

n

)
indicated for both networks.

In addition, the incident
(
aA,B

n

)
and reflected

(
bA,B

n

)
waves are also shown at each port. For

the case where the port voltages and port currents of network B are linear combinations of the
voltages and currents of network A, the technique establishes a transformation from SA to SB

for an arbitrary set of port impedances (e.g. where network A consists of N single-ended ports,
each terminated by the same reference impedance, and network B of sets of differential ports
and possible single-ended ports, each terminated by a different impedance).

For the completely general case, the port voltages and currents of network B can be expressed
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Figure 1: N-port networks with ports using (a) mode set A and (b) mode set B

as linear combinations of any or all of the port voltages and currents of network A. That is,

V B
n = kv

n1V
A

1 + kv
n2V

A
2 + · · ·+ kv

nNV
A

N

IB
n = ki

n1I
A
1 + ki

n2I
A
2 + · · ·+ ki

nNI
A
N

for n = 1, ..., N

(1)

or

VB = KvVA (2a)

IB = KiIA (2b)

where VA,B and IA,B denote [N × 1] matrices containing the port voltages and currents of
networks A and B, and Kv,i are [N × N ] matrices as in (3) and (4).

Kv =

k
v
11 kv

12 · · · kv
1N

...
... . . . ...

kv
N1 kv

N2 · · · kv
NN

 (3)

Ki =

k
i
11 ki

12 · · · ki
1N

...
... . . . ...

ki
N1 ki

N2 · · · ki
NN

 (4)

From [1], Kv and Ki must be related by (5), with IN denoting an [N ×N ] identity matrix, for
conservation of power under the transformation to be guaranteed.

Kv†Ki = IN (5)

The incident and reflected waves at each port of both networks A and B can be related to the
port voltage and current at that port using the classical power-wave definitions for real port
impedances as

VA,B =
(
ZA,B) 1

2
(
aA,B + bA,B) (6a)

IA,B =
(
ZA,B)− 1

2
(
aA,B − bA,B) (6b)
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where {aA,B, bA,B} denote [N × 1] matrices containing the complex magnitudes of the incident
and reflected waves respectively, and ZA,B are diagonal matrices containing the characteristic
port impedances as shown in (7).

ZA,B =

Z
A,B
1 · · · 0
... . . . ...
0 · · · ZA,B

N

 (7)

Defining the matrices

MS =
1

2

(
ZB)− 1

2 Kv (ZA) 1
2 +

1

2

(
ZB) 1

2 Ki (ZA)− 1
2 (8a)

MC =
1

2

(
ZB)− 1

2 Kv (ZA) 1
2 − 1

2

(
ZB) 1

2 Ki (ZA)− 1
2 (8b)

the incident and reflected waves of network B can be expressed in terms of those of network A
by (9a) and (9b).

aB = MSa
A +MCb

A (9a)

bB = MCa
A +MSb

A (9b)

Finally, with bA = SAaA and bB = SBaB, it follows from (9a) and (9b) that SB can be expressed
in terms of SA by (10).

SB =
(
MC +MSS

A) (MS +MCS
A)−1 (10)

A very important special case occurs when the port impedances of network B are related to the
port impedances of network A by (11).

ZB = Kv ZA (Ki)−1 (11)

In this case, MC = 0, and the transformation in (10) simply becomes that shown in (12).

SB = MSS
A (MS)

−1 (12)

where
MS =

(
ZB)− 1

2 Kv (ZA) 1
2 (13)

Note that this special case is the one most widely used for the transformation of single-ended
S-parameters to mixed-mode S-parameters.

3 SIX-CONDUCTOR TRANSMISSION LINE

The application of the transformation to reduce model complexity can be illustrated by the
use of multi-line transmission lines, such as the six-line transmission line shown in Fig. 2. The
lines are arranged as three pairs, positioned at a fixed radius from the centre. A dielectric half-
cylinder is inserted in the centre of the line to provide a discontinuity. For this example, the line
is 50mm in length, with an outer radius of 5mm. Each conductor has a radius of 0.5mm, and is
positioned at a radius of 3mm from the centre, with each pair at a 120 degree angle with respect
to the other pairs. The dielectric disc has a permittivity of 20, and is 1mm in thickness.
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Figure 2: Six-conductor transmission line

An infinite number of sets of S-parameters can be calculated for this structure. For the
purposes of this paper, only two will be shown. Firstly, each conductor can be excited at each
of its ports, with all the others terminated in 50 ohm loads. Such an analysis can readily be
performed using a single-ended multipin waveguide feed in CST Microwave Studio, with a
fast two-dimensional analysis to solve the port impedance for each mode, and a full three-
dimensional analysis for the S-matrix. The six port modes established in this way at each port
will be denoted as SE-modes. The electric field patterns for this set are shown in Fig. 3(a). For
six lines at each of two ports, this results in a 12x12 complex S-matrix. For simplicity, only
a dependence on frequency will be used here. To model this problem using surrogate models,
144 one-variable models are therefore required. While this can be reduced substantially using
reciprocity and symmetry in the longitudinal direction, the dielectric disc reduces the number
of symmetries in the transverse plane.

Using the generalized multi-mode S-parameter transformation, various other sets of S-parameters
can be computed from the single-ended set, without any additional full-wave analyses. A typ-
ical set for this structure is the one obtained by exciting each set of two conductors with both
common-mode and differential-mode signals at each port. These excitations as well as their
respective electric field distributions are shown in Fig. 3(b) and denoted as MM-modes. To
calculate the MM S-matrix, any set of port impedances can in principle be used. Here, the
port impedance calculated for each MM-mode by a fast two-dimensional analysis in CST is
used. For this analysis, each mode of the set is excited using a multi-pin feed with the indicated
polarity.

From the two-dimensional CST analysis, and with the single-ended case represented by net-
work A (denoted SE) and the multi-mode case by network B (denoted MM), the impedance
matrices necessary for the transformation in (10) are shown in (14).

ZSE = diag (50)

ZMM = diag (138, 138, 138, 138, 138, 138, 70, 70, 70, 70, 70, 70)
(14)

From standard definitions for differential and common-mode voltages and currents, the matrices
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Figure 3: Electric field distributions for port modes

Kv,i can be constructed as in (15)

Kv =

[
Kp

1
2
|Kp|

]
Kp =


1 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 −1

 (15)

with Ki =
(
Kv†)−1 from (5).

The magnitudes of the two sets of 144 S-parameters are shown in Fig. 4. It is clear that in the
multi-mode set, a number of S-parameters are small enough to be neglected (¡-60dB across the
range), resulting in fewer parameters which need to be modelled. In addition, the non-zero S-
parameters frequently occur in identical sets, and in general show less variation as functions of
frequency than the single-ended set. This requires lower order surrogate functions for a similar
modelling accuracy. Taken in combination, the change in the choice of excitation functions will
result in a significant simplification of the required multiport surrogate model.

The given multi-mode set is of course only one example, and in general, each problem can
be analyzed in order to find the optimum transformation matrix which will result in the smallest
S-parameter set which can be modelled with the lowest order functions. The transformation
technique has very few limitations mathematically, and can be included into most surrogate
algorithms very easily as a data pre-conditioning step.

4300



Petrie Meyer

1 1.5 2 2.5 3 3.5 4 4.5 5
-60

-50

-40

-30

-20

-10

0

(a) Single-ended

1 1.5 2 2.5 3 3.5 4 4.5 5
-60

-50

-40

-30

-20

-10

0

(b) Multi-mode

Figure 4: Single-ended and multi-mode S-parameters

4 CONCLUSION

This paper shows how the generalized multi-mode scattering parameter transformation can
be used to reduce the required number and order of modelling functions required to create an
accurate surrogate model. A twelve-port, six-line transmission line problem is used here as an
example, but the technique is not limited to specific numbers or lines, or any specific sets of
excitations.
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Abstract. This paper discusses some of the recent advances in the surrogate based model-
ing and optimization of reflector antenna systems, and presents several examples. Much of the
focus is on the design of reflector systems for radio astronomy applications, where especially
tight specifications are placed on some of the important performance metrics. In several cases
the response surfaces of these performance metrics are computationally expensive to compute,
and, as an added complication, they are often conflicting and need to be optimized in a multi-
objective (MO) or Pareto framework. The large numbers of function evaluations required in
these optimization loops make direct full wave simulation in the loop intractable, and surro-
gate based methods may in these cases lead to reliable global MO optimizations. Two main
characteristics of reflector antenna responses of interest are exploited, namely their slow (or
periodic) variation with design parameters, as well as the availability of a computationally
cheap geometric optics approximation.
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1 INTRODUCTION

Reflector antenna systems are widely used in personal, commercial, scientific, and military
applications, with ever increasing demands on their performance. Due to their typically large
electrical size, the design of such systems traditionally relied heavily on approximated electro-
magnetic (EM) methods - most commonly Geometric Optics (GO) and Physical Optics (PO).
These methods tend to display increasing accuracy with electrical size of the analyzed system,
with the computational time normally scaling as N . An obvious drawback of using these meth-
ods is their inability to effectively and accurately model some of the (often important) finer
details of the structures, including feed/dish interactions, strut and supporting structure influ-
ence, and large curvatures in the dish surfaces. With the enormous increase in availability of
powerful personal and cluster computing facilities, as well as commercial computational elec-
tromagnetic (CEM) codes capable of solving a wide range of EM problems using full wave
methods, it has become tractable in recent times to, if not design, at least simulate the perfor-
mance of reflector systems much more accurately. An obvious drawback of full wave methods
is the often prohibitively slow simulation times when it is to be used in an optimization loop.

Given this framework of the availability of well-developed fast approximate methods, as well
as accurate full wave solutions, the use of surrogate based optimization (SBO) schemes for the
design of reflector antennas is an obvious extension to the classical design methods. In this con-
text SBO refers to a variety of methods used to shift the optimization task onto some surrogate
model which is based on the fast approximated model (and is therefore fast to evaluate), but
aligned in some way to the slow but accurate model (and is therefore more accurate than the
approximate model – even if just in a specific region of interest in the parameter space).

This paper will discuss some of the recent advances in this field and provide examples of how
SBO has been used to develop design methodologies for advanced reflector antenna systems.
Much of the focus will be on the design of reflector systems for radio astronomy applications,
where especially tight specifications are placed on some of the important performance met-
rics. In several cases the response surfaces of these performance metrics are computationally
expensive to compute, and, as an added complication, they are often conflicting and need to
be optimized in a multi-objective (MO) or Pareto framework. The large numbers of function
evaluations required in these optimization loops make direct full wave simulation in the loop
intractable, and SBO methods may in these cases lead to reliable global MO optimizations.

The paper is organized to first discuss the basics of reflector antenna systems analysis and
some typical performance metrics. Given this background, the difficulty in producing accurate
optimized designs will be highlighted, and discussions presented on surrogate modeling based
methods that can be used to accelerate the design process. Several examples of different design
applications will be presented, which include the design of the dish surfaces for a given feed
radiation pattern, as well as the design of feed antennas for given reflector configurations.

2 REFLECTOR ANTENNA SYSTEMS BACKGROUND

In the most general terms, a reflector antenna system may be seen (in the transmit sense) as a
transducer which transforms a spherical wavefront primary pattern, from some feed antenna, to
a collimated plane wave which is radiated as the secondary pattern. This description is helpful
in understanding the simplest approximation method used to analyze and design such systems,
namely GO. The main assumption of GO is that the reflector surfaces are electrically very large
and smooth, leading to specular reflection conditions for the ray tube approximations used to
describe the radiation patterns. From here it is straight forward to analyze and describe the basic
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Figure 1: Outline geometry of some popular reflector configurations. Top left: Symmetrical paraboloid; Top
right: Symmetrical Cassegrain; Bottom: Offset Gregorian. Ray paths, feed positions and focii for conic section
(unshaped) systems are also indicated.

mechanisms of reflector systems – the simplest of which are possibly the family of conic section
reflectors. These include the focus fed paraboloid, as well as Cassegrain and Gregorian dual
reflector systems [1]. All these systems may be symmetrical or offset, with GO based design
details available in the open literature [2, 3, 4, 5, 6], and sketches of some of the configurations
shown in Fig. 1.

To achieve optimal performance, which typically involves maximizing the gain or receiving
sensitivity (the ratio of effective aperture area and system temperature) while maintaining ac-
ceptable sidelobe levels (SLL) and cross polarization isolation (XPI), much effort has gone into
developing reflector feed antennas with suitable radiation pattern characteristics [7, 8].

Another method used to improve performance is reflector shaping. Here the reflector antenna
surfaces are shaped to provide a desired secondary pattern (normally specified as an aperture
distribution) for a given primary radiation pattern. This strategy is most often employed in dual
reflector systems, where a constant path length from the focus to the aperture can be enforced,
along with specular reflection and power conservation [9, 10, 11, 12].

When designing very high performance reflector systems, and when the reflector surfaces be-
come electrically smaller, the GO approximation no longer provides adequate accuracy. Some
examples of such designs include the design of feeds for modern radio telescopes [13], PO syn-
thesis of shaped beam reflectors for satellite applications [14], and design of small microwave
link antennas for maximum sensitivity [15]. In all of these designs some other, more accurate,
analysis method is employed in the optimization loop – mostly with a significantly design time
penalty. The slow analysis time problem becomes especially pronounced when full wave sim-
ulations are required in the optimization loop, such as when the feed antenna parameters are
varied or the reflector system is tightly coupled with the feed and not electrically large. Another
situation that impedes the simulation time is when the receiving sensitivity is a goal function of
the design. To calculate this response, the antenna radiometric noise temperature is required,
which requires integration of the secondary pattern over the full 4π steradian sphere. Some

4304



Dirk I. L. de Villiers

methods have been presented to accelerate this calculation, but at a cost in accuracy [16, 17].
The main bottleneck here is the requirement to calculate the secondary pattern over a fine angu-
lar grid, which becomes slow even for asymptotic methods such as PO. Some recent advances
have accelerated this process as well, but it is most effective for extremely large problems [18].

3 SURROGATE MODELLING METHODS IN REFLECTOR DESIGN

In many reflector antenna applications, especially where pencil beams are required as the
secondary pattern, the performance of the system is described by some derived quantities from
the secondary pattern. These are normally the gain (described in normalized form as aperture
efficiency), the receiving sensitivity, the SLL and XPI. Furthermore, these performance met-
rics are almost always conflicting, which makes Pareto base multi-objective (MO) optimization
in the design process very attractive to quantify the trade-offs. MO optimization, however,
typically requires a large number of function evaluations to converge, which may lead to unac-
ceptably long run times if the full reflector analysis is included in the optimization loop. Faster,
surrogate models are thus required to make such optimization based designs tractable.

3.1 Interpolation based models

Recently, interpolation based models have been used with some success in analysis and de-
sign of high performance reflector antenna systems. Interpolation of the response (hyper)surfaces
may be required as functions of frequency, of physical parameters, or both.

A well known effect in many reflector systems is that of chromatic aberration, where a ripple
with frequency is observed in the secondary radiation pattern amplitude close to broad-side.
The cause of the ripple is interference of radiated fields with different path lengths which arise
for a variety of reasons including coupling between the feed and the reflector or sub-reflectors in
symmetrical systems [19], or back radiation from the feed or diffraction from the sub-reflector
in offset systems [20]. Directly resolving the ripple in, for instance, the aperture efficiency will
require a large number of samples in frequency. A Gaussian Process (GP) based interpolation
scheme was suggested in [21], which is able to resolve the frequency ripple in offset Gregorian
systems using only a fraction of the samples required for Nyquist convergence. An example of
the possible performance is shown in Fig. 2, where the specific example is the offset Gregorian
reflector system described in [21].

Figure 2: GP interpolation results for the aperture efficiency of an offset Gregorian system as a function of fre-
quency. The training points are indicated as dots, the predicted response as a solid line, and the target response as
a dashed line. The target response is mostly not visible as it is behind the interpolated response. Example taken
from [21].
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Frequency response interpolation is mostly used for detailed analysis of different responses
using full wave simulations to model all the interactions between die reflector surfaces and feed.
In the optimization based design context, some scalarization is normally performed over the
frequency axis. It turns out that, for most design parameters of interest, the scalarized responses
are often smooth functions. Some examples from the literature include aperture efficiency as
a function of subtended angle in focus fed paraboloids [22], as well as receiving sensitivity,
aperture efficiency, SLL and XPI of classical and shaped offset Gregorian systems [23, 24]. An
example of some typical response surfaces is given in Section 4. Given these smooth responses
as functions of design variables, interpolation based surrogate models can easily be constructed.
All optimizations, including MO ones, are then performed on the interpolant instead of the
actual simulation models [25].

3.2 Multi-fidelity models

In the above section on interpolation models, the allocation of a base set to ensure a con-
verged interpolant is an important part of the model design, and may still require significant
simulation time. This is because all the simulations are performed at the level of a fine model
– meaning here the simulation model is as accurate as required for the specific design. The
fine model may be GO or PO for the main beam if the reflectors are very large electrically,
but in smaller systems, or when receiving sensitivity is required, these models are no longer
sufficiently accurate. In this case they may be used as a faster coarse model, to augment the
(limited) information from the accurate fine models obtained via, for instance, full wave simu-
lations. Surrogate modeling, in this context, attempts to align the fully sampled coarse model
to the sparsely sampled fine model over some region of interest in the design space. This is
the multi-fidelity modeling scenario, and it is very well suited to reflector design problems –
mainly due to the availability of a physics based (often GO) coarse model which is very fast to
evaluate.

Examples of multi-fidelity modeling and design of reflector systems again include modeling
of frequency and geometric parameters. In the case of frequency variations, the ripple men-
tioned in the previous sub-section may also be modeled using a multi-fidelity approach. Since
the physical cause of the ripple is well understood, the period of the ripple may be estimated
from the physical configuration of the system. This idea was implemented for the aperture ef-
ficiency of an offset Gregorian system in [26], where the amplitude of the ripple was estimated
using PO simulations which did not include the main reflector. The response constructed in
this way therefore used a multi-fidelity model description – the fine model is the full system
simulated at a few points in frequency, and the coarse model is constructed using simulations of
only the feed and sub-reflector, along with GO, to estimate the expected fields in the direction
of the main beam. The models were aligned using a regression scheme, as well as band-limited
sampling theory. An example of the possible performance is shown in Fig. 3, where the specific
example is the offset Gregorian reflector system described in [26].

Multi-fidelity models have also been successfully used in MO optimization and entire do-
main modeling of reflector systems in terms of their geometric parameters. Here the correlation
between coarse GO and fine PO or full wave models is exploited by aligning the coarse mod-
els to the fine models, in regions of interest in the design space, using two general methods.
The alignment methods used are space mapping (SM) [27] as well as regression through the
residuals between the coarse and fine models. SM based methods are demonstrated for MO op-
timization problems in [28], where the shaped surface of an offset Gregorian system is designed
for maximum aperture efficiency and minimum SLL, and in [29], where a feed antenna for a
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Figure 3: Multi-fidelity modeling results for the aperture efficiency of an offset Gregorian system as a function of
frequency. The training points are indicated as dots, the coarse model as a solid black line, the fine model as a
dashed line, and the aligned surrogate model as a solid red line. Example taken from [26].

classical Cassegrain system is designed for the same goals. Implicit SM has also been used
to accurately model the SLL and aperture efficiency of blocked aperture symmetrical reflector
systems over the full design space [30]. The residual regression method was used to model
the radiometric noise temperature, used in the receiving sensitivity calculation, of a variety of
reflector systems in [31], and for the MO optimization of feed antennas for an offset Gregorian
system in [25].

In all these examples interpolation of the coarse model over the parameter space is also
employed. An illustrative example is shown in the following section to highlight the main steps
in a multi-fidelity MO optimization design procedure.

4 EXAMPLE

An example that illustrates both the interpolation and multi-fidelity modeling schemes, in
the MO optimization context, is that discussed in [28]. In this problem the shape of the dishes,
described by two parameters σ and b, is to be optimized for maximum aperture efficiency and
minimum SLL. A fixed feed pattern is assumed, and details of the geometry is provided in [28].
GO is used as a coarse model, and a PO simulation using the commercial package GRASP [32]
is used as the fine model. The optimization algorithm involves the following steps:

1. Allocate a base set X ′
B, as a grid over the full parameter space, and evaluate the coarse

model c(X ′
B).

2. Construct a Kriging interpolant [33] through c(X ′
B) to obtain the coarse model over the

full parameter space x as c(x).

3. Allocate an initial fine model base set XB and evaluate the fine model f(XB).

4. Construct a SM based surrogate model s(x) using multi-point parameter extraction [27]
at XB.

5. Identify the Pareto front on s using some multi-objective evolutionary algorithm (or a grid
search – the model evaluation is fast enough).

6. Sample the Pareto front obtained in step 4 to obtain a new base set XB; evaluate the fine
model at XB and compare to the corresponding surrogate model samples.
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7. If the termination condition is not satisfied, return to step 4.

Termination of the algorithm is based on the least squares distance between the Pareto set rep-
resentations obtained in consecutive iterations. The important point here is that the surrogate
model is aligned to the fine model only in the region of the estimated Pareto front – it may
be quite inaccurate away from the front. Therefore the method is best suited to problems with
smooth response surfaces, such as those encountered here. The method is illustrated in Figs. 4
and 5, where the improved alignment of the surrogate model is obvious along the Pareto front
for the second iteration. Also note how the Pareto set representation lies on the surrogate model
surface after the second iteration, indicating very good alignment with the actual fine model in
this region.

5 CONCLUSIONS AND FUTURE WORK

This paper provided a summary of some recent advances in surrogate modeling of reflector
antenna systems. Two main characteristics of reflector systems that allow relatively simple, ac-
curate and low cost surrogate models to be developed, are the slow (or periodic) variation of the
most important performance metrics as functions of the design parameters, as well as the avail-
ability of simple GO models of these responses. These characteristics have been exploited for
some simple design cases, and a proof of concept established. Future work include a multitude
of extensions to the current design and analysis methods, mostly working towards extending the
MO optimization algorithm to more realistic, higher dimensional, design problems. Here more
sophisticated sampling schemes should be employed to establish and update the interpolants,
while allowing exploration of the search space away from the Pareto front [34].
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(a) (b)

(c) (d)

(e) (f)

Figure 4: The evolution of the first iteration of the MO optimization algorithm using interpolation and multi-fidelity
based models. The left column shows aperture efficiency, and the right the SLL. Dots indicate the coarse model
base set X ′

B , circles the fine model base set XB , and stars the sampled Pareto set representation. The surface
shows the smooth surrogate model. Steps 1-3 are illustrated in (a,b), step 4 in (c,d) and step 5 in (e,f).
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(a) (b)

(c) (d)

Figure 5: The evolution of the second and final iteration of the MO optimization algorithm using interpolation and
multi-fidelity based models. The left column shows aperture efficiency, and the right the SLL. Dots indicate the
coarse model base set X ′

B , circles the fine model base set XB , and stars the sampled Pareto set representation. The
surface shows the smooth surrogate model. Step 4 is illustrated in in (a,b) and step 5 in (c,d).
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Abstract. Many parametric spectral methods are based on the classical algorithm of the
French engineer G. de Prony for exponential analysis. A drawback of this method is that it can-
not take into consideration any discontinuities due to the starting and ending of the exponential
components at different instants.

We introduce a short-time Prony method that allows to extract the characteristics from such
a signal and we illustrate the new method on a number of power system signals. All parameters
in the signals can be extracted with high accuracy and we show how to monitor the occurrence
of the transients dynamically.
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1 INTRODUCTION

A transient is used to refer to any signal or wave that is short lived. Transient detection has
applications in many highly dynamic signals such as power line analysis, speech and image
processing, turbulent flow applications, to name just a few. In a power system signal, transients
are observed as short lived high-frequency oscillations superimposed on the voltages or currents
of the fundamental frequency which is 50/60 Hz, as well as exponential components. They can
be caused by lightnings, equipment faults, switching operations and so on.

Transient detection is a relatively common problem in many applications. They are often
sinusoidal in nature and a lot of research has gone into the automation of their detection. We
analyze how a sparsity based method can contribute to the power system analysis. A drawback
of the standard Prony method for exponential analysis, is that it does not take into consideration
the discontinuities due to the switching, in other words due to the exponential components to
start and end at different instants.

In Section 2 the standard Prony method is recalled, while in Section 3 a short-time version
of it is developed. The latter is applied successfully to a number of power signal simulations
in Section 4. We use a damped sinusoidal model that is related to the phenomena typically
observed at power system plants.

2 THE STANDARD PRONY METHOD

Let ψi, ωi, βi and γi respectively denote the damping, frequency, amplitude and phase in each
component of the signal

Φ(t) =
n∑
i=1

αi exp(φit), αi = βi exp(i γi), φi = ψi + i 2πωi. (1)

Let us assume that the frequency content in (1) is limited by

|=(φi)/(2π)| = |ωi| < Ω/2, i = 1, . . . , n,

as required by the Shannon-Nyquist theorem, and let Φ(t) be sampled at the equidistant points
tj = j∆ for j = 0, 1, . . . , 2n− 1, . . . with ∆ ≤ 1/Ω. In the sequel we denote

fj := Φ(tj), j = 0, 1, . . . , 2n− 1.

The aim now is to find n, φ1, . . . , φn, α1, . . . , αn from the measurements f0, . . . , f2n−1, f2n, . . .
and the form (1) of the model for Φ(t). The inherent structure present in (1) allows to separate
the computation of the nonlinear parameters φi from that of the linear parameters αi, as already
dsicovered by the French engineer de Prony [7].

Let us define the Hankel matrices

H(r)
n :=

 fr . . . fr+n−1
... . . . ...

fr+n−1 . . . fr+2n−2

 , r ≥ 0. (2)

It is known [3, p. 603] that
detH(r)

ν = 0, ν > n, (3)
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and it is proved in [5] that, in the absence of noise,

detH(r)
n 6= 0,

detH(r)
ν = 0 only accidentally, ν < n. (4)

From these statements the number of components n can be obtained as the (numerical) rank of
H

(r)
ν for ν > n. In practice, when the signal Φ(t) is affected by noise, the numerical rank is

determined as the number of singular values of H(r)
ν that rise above the noise level. In (4) this

means that one finds n singular values clearly above the noise level and the remaining ν − n at
or below the noise level.

We further denote
λi := exp(φi∆), i = 1, . . . , n.

The λi can be retrieved [4] as the generalized eigenvalues of the problem

H(1)
n vi = λiH

(0)
n vi, i = 1, . . . , n (5)

where vi are the generalized right eigenvectors. Then from the values λi, the φi can uniquely be
retrieved because of the restriction |=(φi∆)| < π.

To conclude, one finds the αi from the interpolation conditions

n∑
i=1

αi exp(φitj) = fj, j = 0, . . . , 2n− 1, (6)

either by solving the system in the least squares sense in the presence of noise or by solving a
subset of n consecutive interpolation conditions in case of a noisefree Φ(t). Note that

exp(φitj) = λji

and that the coefficient matrix of (6) is therefore a Vandermonde matrix.
We now present a reformulation of the exponential analysis problem using tools from rational

approximation theory [1].
With fj = Φ(tj) we define the noisefree

F (t) =
∞∑
j=0

fjt
j. (7)

Since

fj =
n∑
i=1

αi exp(jφi∆) =
n∑
i=1

αiλ
j
i ,

we can rewrite

F (t) =
n∑
i=1

αi
1− tλi

. (8)

So we see that F (t) is a rational function of degree n− 1 in the numerator and n in the denom-
inator, with poles 1/λi. From Padé approximation theory we know that the Padé approximant
rn−1,n(t) to F (t) of degree n− 1 in the numerator and n in the denominator, reconstructs F (t),
in other words

rn−1,n(t) = F (t).
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The partial fraction decomposition (8) is related to the Laplace transform of the exponential
model (1), which explains why this approach is known as the Padé-Laplace method. When the
signal Φ(t) is noisy, then the samples equal fj + εj instead of fj where εj denotes a noise term.
Let us denote the noisy series by

F (t) + ε(t) =
∞∑
j=0

(fj + εj)t
j.

It is clear that the Padé approximant rn−1,n(t) does not reconstruct F (t)+ε(t) now as the latter is
not a rational function anymore. For a novel way to make use of the Padé-Laplace reformulation
in this situation, we refer the reader to [2].

3 A SHORT-TIME PRONY METHOD

When the model (1) changes dynamically across the time window used to collect the samples
fj , due to the fact that exponential components are switched on or off during the sampling,
then the standard Prony method or its Padé-Laplace reformulation cannot be applied. In this
section we adapt the model to allow for the components to start and/or end during the time of
observation, to

Ψ(t) =
n∑
i=1

αi exp(φi(t)) (u(t− si)− u(t− ei)) , (9)

where si and ei are the start and end times of the i-th signal component and u(t) is the unit step
function. For ease of notation we still denote fj for the time sample at time tj = j∆. From the
context it will always be clear whether fj comes from Φ(t) as in (1) or Ψ(t) as in (9). We also
retain the notation λi = exp(φi∆), i = 1, . . . , n.

We now combine the sampling of (9) with a window function w(j − r) that is only nonzero
in the time interval [r∆, (r + 2ν − 1)∆] with ν ≥ n(r) where n(r) denotes the number of
exponential components switched on somewhere in the course of the time interval [r∆, (r +
2ν − 1)∆]. Obviously n(r) ≤ n. In our experiments we used the rectangular window function

w(j − r) =

{
1, r ≤ j ≤ r + 2ν − 1,

0, elsewhere.

The Hankel matrix H(r)
ν as defined in (2), makes use of the samples fr, . . . , fr+2ν−1 of (9). We

consider its (numerical) rank stable when it does not alter while increasing r to r + ρ with
ρ > 0. Note that during the inspection of the (numerical) rank of the matrices H(r)

ν , . . . , H
(r+ρ)
ν ,

the early samples shift out of the matrix while they are being replaced by new samples. When
we observe that the (numerical) rank of H(r)

ν does not change in the time window [r∆, (r +
ρ + 2ν − 1)∆], then the standard Prony method can be applied to extract the characteristics of
the n(r) components active in that time window. When the (numerical) rank of H(r)

ν fluctuates
while increasing r, we know that components are being switched on or off, and the extraction of
their characteristics using Prony’s method should be postponed to a stable time window because
the signal is not following a model of type (1) in the observed window.

The width of the time window here is related to the number n(r) of components in (9) that
are switched on in the considered time interval. A smaller time window allows more easily to
find stable intervals, while a larger time window allows to work with more components. This
is very similar to a similar conclusion for the short-time Fourier transform, where a narrow
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window gives good time resolution but poor frequency resolution and a wide window gives
better frequency resolution but poor time resolution.

Then some words on the numerical computation of the φi and αi in practice, from noise
corrupted samples fj . When the largest time window of stability for the computation of ν
generalized eigenvalues in total (comprising the n(r) active ones representing the signal space
and ν − n(r) additional ones modeling the noise space), is [r∆, (r + ρ + 2ν − 1)∆], then the
λi = exp(φi∆) present in that time window are computed in the least squares sense rather than
from (5),

H
(r+1)
ν+bρ/2c,νvi = λiH

(r)
ν+bρ/2c,νvi, i = 1, . . . , ν, (10)

where the subscript of the Hankel structured matrix now indicates its dimension. Several popu-
lar exponential analysis implementations that can be used for this purpose are given in [9, 8, 4].

To adapt the Padé-Laplace formulation to work with a window function, we consider

F (t− r∆) =

n(r)∑
i=1

αi
1− (t− r∆)λi

, tr ≤ t ≤ tr+ρ+2n(r)−1.

Since this time interval delivers enough samples fj for the computation of the Padé approximant
rn(r)−1,n(r)(t− r∆), namely at least 2n(r), the reformulation still holds.

4 SIMULATION RESULTS

We describe some experiments that illustrate the use of the short-time Prony method. The
considered synthesized electric signals are taken from [6]. Since these are a linear combination
of switched cosine functions, more precisely

Ψ(t) =

n/2∑
i=1

βi cos(2πωi(t) + γi) exp(ψi(t− si)) (u(t− si)− u(t− ei)) , (11)

each term is represented by 2 exponential terms with complex conjugate values φi. The char-
acteristics of the test signals are given in Table 1. Besides the start and end moments si and ei
of each component in seconds, we also list the sample numbers Si and Ei at which the switch
occurs. All signals are monitored for a total time span of 128 samples, numbered from 0 to
127. The sampling rate is given by 1/∆ (in Hz) where ∆ is the time step. Each signal is then
corrupted by 32 dB white Gaussian noise, which for some test signals is quite a lot more than
in [6]. After extracting the frequencies ωi and damping factor ψi, the computed coefficient
βi exp(−ψisi) needs to be corrected using the si obtained from the singular value plots, in order
to have the correct amplitude βi.

In Figure 1 the four test signals are graphed over the entire observation window. We remark
that all signals are dead at t = 127∆, in other words f127 = 0. For each noise corrupted signal
we graph in Figure 2 the dynamic evolution of the numerical rank of a particular Hankel matrix
by displaying how the ν singular values of H(r)

ν change when r is ranging from 0 to 129 − 2ν

(the value of r is on the x-axis). We display respectively the singular values of H(r)
4 for Ψ1(t),

H
(r)
6 for Ψ2(t), H(r)

6 for Ψ3(t) and H(r)
8 for Ψ4(t), and this for 0 ≤ r ≤ 129−2ν. Let us discuss

these graphs before turning to the reconstruction of the signal parameters.
In Ψ1(t) the Hankel matrices H(0)

4 to H(30)
4 indicate a numerical rank of zero. Then there

is a switch from no components at all to one component at sample 37 which enters the Hankel
matrix H(31)

4 for which neither statement (3) nor statement (4) hold. Nothing can be deduced

4317



Annie Cuyt, Wen-shin Lee and Min-nan Tsai

n βi γi ωi ψi si Si ei Ei 1/∆
Ψ1(t) 1 1.000 −π/2 480 -0.080 0.0308 37 0.1059 127 1200
Ψ2(t) 3 1.000 −π/2 60 0.000 0.0000 0 0.0308 37 1200

1.000 3π/4 60 0.000 0.0308 37 0.0625 75
1.000 −π/2 60 0.000 0.0625 75 0.1059 127

Ψ3(t) 3 1.000 0 50 0.000 0.0000 0 0.0200 30 1500
0.250 π/2 100 -0.100 0.0200 30 0.0533 80
0.100 38π/100 300 0.030 0.0447 67 0.0847 127

Ψ4(t) 4 1.000 0 60 0.000 0.0000 0 0.0333 40 1200
0.500 π/2 60 0.000 0.0333 40 0.0917 110
0.050 −37π/100 180 0.000 0.0417 50 0.0833 100
0.200 −π/2 360 -0.100 0.0500 60 0.1059 127

Table 1: Signal parameters for the four test signals.
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Figure 1: The signals Ψ1(t) (top left), Ψ2(t) (top right),Ψ3(t) (bottom left), Ψ4(t) (bottom right).
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Figure 2: The dynamic singular value plots for Ψ1(t) (top left), Ψ2(t) (top right), Ψ3(t) (bottom left), Ψ4(t)
(bottom right).

from the singular value behaviour to H(36)
4 . From H

(37)
4 on only one component is present and

this for the remainder of the interval. The numerical rank is stable and equal to 2. The single
component can be identified from the signal samples fr, 37 ≤ r ≤ 126.

In Ψ2(t) three different components show up, but consecutively: the switches happen at the
time samples indexed 37, 75 and 127. So the numerical rank of the observed Hankel matrix
is unstable while samples from different signals move out and in because the conclusions (3)
and (4) do not hold during the short time span of the instability. To be more precise: sample 37
enters H(r)

6 for r+ 10 = 37, sample 75 enters H(r)
6 for r+ 10 = 75 and sample 127 enters H(r)

6

for r + 10 = 127. So the numerical rank instability is observed for 27 ≤ r < 37, 65 ≤ r < 75
and at r = 117. Except for these unstable rank windows, the numerical rank equals 2. Each of
the components can be identified separately: the first fromH

(r)
ν with 0 ≤ r and r+2ν−2 ≤ 36,

the second one fromH
(r)
ν with 37 ≤ r and r+2ν−2 ≤ 74, the third one fromH

(r)
ν with 75 ≤ r

and r + 2ν − 2 ≤ 126.
The results for Ψ3(t) and Ψ4(t) are more interesting. In Ψ3(t) the exponential model (1)

is interrupted from H
(20)
6 to H(29)

6 for a first time. But the first exponential component can be
computed from the samples 0 to 29. Likewise the second component can be computed from the
samples 30 to 66. In H(57)

6 sample 67 sneaks in. From H
(67)
6 to H(69)

6 components two and three
strictly follow (1) but this window involving the samples 67 to 79 is barely enough to allow
their identification. However, exponential component three can be computed from the samples
80 to 126.

In Ψ4(t) a similar situation arises, but now there is a sufficiently large window of stability,
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n βi γi ωi ψi
Ψ1(t) 1 1.006 -1.565 479.99 -0.250
Ψ2(t) 3 1.013 -1.570 60.05 -0.784

1.013 2.339 60.05 -0.764
1.016 -1.597 60.05 -0.735

Ψ3(t) 3 1.004 0.015 50.02 -0.377
0.257 1.563 100.04 -2.347
0.117 1.224 299.92 -6.417

Ψ4(t) 4 1.006 0.009 60.03 -0.391
0.503 1.557 60.04 -0.319
0.058 -1.613 181.08 10.250
0.202 -1.567 360.00 -0.519

Table 2: Reconstructed signal parameters for the four test signals.

namely from H
(60)
8 to H(85)

8 when r + 14 = 99, to allow for the identification of the last three
components while they strictly adhere to model (1). The numerical rank is stable and equal to 6
in that window. The remaining first component can be identified from the samples 0 to 39 since
H

(r)
8 indicates a stable numerical rank of 2 for 0 ≤ r ≤ 25.
All reconstructions of αi and φi have been made from the largest stable time windows, as

mentioned in (10) and can be found in Table 2. The displayed values are an average of recon-
structions over a 100 different noise realizations. We remark that the damping factors ψi are
more noise sensitive than the other parameters.

5 CONCLUSION

We have introduced a short-time Prony method that allows to extract the characteristics from
a signal in which the exponential components are switched on and off, a situation that the
standard Prony method is unable to deal with. The new method was illustrated on a number
of power system signals taken from [6]. All parameters in the sinusoidal model (9) could be
extracted with high accuracy and the occurrence of the transient could be monitored from the
dynamics of the singular values of particular Hankel matrices.
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élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de
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Abstract. An overview is given on recent developments in the modeling of radiation proper-

ties of antennas by means of Gaussian process (GP) regression.  Two widely differing appli-

cations are considered, namely modeling of the (possibly detrimental) effects of using a finite 

substrate/ground plane on the gain pattern of a microstrip patch antenna; and characterizing 

the highly oscillatory aperture efficiency responses of an offset Gregorian reflector system. It 

is shown that GP modeling performs well with respect to both problems, with interesting gen-

eralization behaviour observed in the case of the reflector system. 
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1 INTRODUCTION 

Gaussian process (GP) regression [1] has in recent years been shown to be suitable for the 

modelling of highly nonlinear input characteristics of microwave antennas, notably input re-

flection coefficient as a function of design variables and frequency [2]. The robustness of 

these models has been verified through incorporating them into optimization frameworks that 

included space mapping [3] and genetic algorithms [4]. 

A Gaussian process is a stochastic process that can be viewed as a generalization of the 

Gaussian probability distribution to functions, and is characterized in full by its mean and co-

variance functions. During GP regression, the calculations required for learning and in-

ference can be carried out using standard Gaussian probability distribution mathematics. Ad-

vantages over neural networks – a widely used modeling approach in electromagnetics –

include easier implementation and interpretation since the optimization of far fewer parame-

ters (in the order of the dimension of the input vectors) is required compared to the number of 

weights in a multi-layer perceptron. Furthermore, GP regression can automatically take into 

account the relative importance of input features when making predictions (a degree of flexi-

bility not available under kernel methods such as standard support vector regression).  

The present paper aims to give an overview of developments in the relatively recent area of 

GP modeling of antenna radiation characteristics. Two problem types – significantly different 

in nature – are considered. In the first instance, GP regression is applied to modeling the ef-

fects of finite substrate/ground plane size on the gain patterns of a microstrip patch antenna 

(finite substrate effects are often of practical interest when dealing with microstrip antennas). 

The operating frequency is fixed, and gain is predicted as a function of spatial direction. It is 

found that GP regression employing a suitable covariance function is well suited to this task, 

and important ripples that arise in principal plane patterns can be accurately accounted for. 

The second problem involves modeling the aperture efficiency responses of offset Gregorian 

reflector systems against frequency. These responses are of a quasi-periodic nature and highly 

oscillatory, and it would be expected that many training points would be needed to yield mod-

els with good predictive accuracy. It is shown that GP regression using a suitably constructed 

composite covariance function can significantly lessen the expected training data burden. Fur-

thermore, it is demonstrated that a disproportionally large part of the training data can be con-

centrated in a section of the input space where data are relatively inexpensive to obtain (i.e., at 

lower frequencies). The resulting GP model can capture the underlying response structure to 

such an extent that accurate predictions can be made in (higher-frequency) sections of the re-

sponse containing multiple adjacent cycles and no training points. 

2 BACKGROUND TO MODELING WITH GAUSSIAN PROCESSES 

2.1 Standard Gaussian Process Regression 

A Gaussian process (GP) is a set that consists of an infinite number of random variables of 

which any finite subset has a jointly Gaussian distribution; it can be viewed as a distribution 

over functions. It is a natural extension of the jointly Gaussian distribution to the case where 

the mean vector is infinitely long and the covariance matrix is of infinite dimension. Nota-

tionally, ( ) ~ ( ( ), ), )(x x x x'f GP m k , where f(x) is a sample function, x and x' are positions in 

RD
 space, and m(x) and k(x, x') are mean and covariance functions defining the GP [1].  

Hyperparameters determine the properties of the mean and covariance functions (this is the 

only parameterisation that is involved). The covariance function k(x, x') gives the covariance 
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between the random output variables f(x) and f(x'). Standard covariance functions include the 

squared-exponential (SE) covariance function  

  22 1, ' exp
2

x xSE fk r
 
 
 
 

  ;                 (1) 

and the rational quadratic covariance function [1]: 
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where xk and x'k are the kth components of input vectors x and  x' of dimension D, and {τk| k = 

1, ..., D} are indicative of how quickly change occurs along the corresponding dimensions of 

the input space. 2

f  governs the overall variance of the process and α is a scaling parameter. 

2

f , α, and {τk| k = 1, ..., D} are referred to as hyperparameters; they can be optimized through 

a process which finds the hyperparameters for which the negative log marginal likelihood is a 

minimum. The log marginal likelihood is given by [1] 

11 1
log ( | ) log | | log 2

2 2 2
y y y

T n
p X K K         (4) 

where K = (X, X) is the n×n matrix of covariances evaluated between all possible pairs of n 

training outputs using the covariance function, X is the D×n matrix of training input vectors 

xi, |K| is the determinant of K, and y is the training target vector. 

Making predictions requires constructing the prior distribution, which is a jointly Gaussian 

distribution over the n random variables that represent the training outputs (in column vector 

f), and the 
*n  random variables representing the test outputs (in *f ); in this work the distribu-

tion is assumed to have zero mean: 

*

* * * *

( , ) ( , )
~ ,

( , ) ( , )

f
0

f

K X X K X X
N

K X X K X X

    
    

    
         (5) 

In (5), N(a,b) denotes a multivariate normal distribution with mean vector a and covariance 

matrix b; 
*( , )K X X is the 

*n n matrix of covariances evaluated between all possible pairs of 

n training and *n test outputs; and *X  is a matrix containing the test input vectors (other sub-

matrices have similar definitions). The posterior distribution (also multivariate Gaussian) is 

then obtained by conditioning the test outputs on the known training outputs y. Hence 

* *| , , ~ ( ,Σ)f y mX X N , with mean vector m and covariance matrix Σ [1] 
1

*( , ) ( , )m yK X X K X X            (6) 
1

* * * *( , ) ( , ) ( , ) ( , )K X X K X X K X X K X X   (7) 

The mean vector m contains the most likely output predictions associated with the test input 

vectors in *X , while the diagonal of the covariance matrix Σ gives the predictive variances. 

2.2 Gaussian Process Modeling of Quasi-Periodic Responses 

Standard covariance functions, e.g., (1)—(2), are not sufficiently expressive to readily 

model highly oscillatory responses of the sort considered in Section 3.2. However, it was 

demonstrated [5] that a composite covariance function kC(x,x') defined as  
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had the requisite flexibility. In (8) – where a one-dimensional input space is assumed – 

kSE(x,x') is the squared-exponential function (1), and kPER(x,x') is a periodic covariation func-

tion, suitable for modeling functions that are comprised of exact repetitions of a basic function 

[1]:  
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In (9), the hyperparameter λ determines the intervals between repetitions, θ is a length-scale 

parameter, and 2

f is defined as above. 

3 MODELING EXAMPLES 

3.1 Modeling of finite substrate size effects on gain patterns of microstrip patch an-

tennas 

Fig. 1 illustrates the geometry of a probe-fed rectangular patch antenna on a single-layer 

dielectric substrate backed by a ground plane of the same planar footprint as the dielectric 

substrate.  The patch had length L and width W, and the planar dimensions of the dielectric 

substrate/ground plane were Dx and Dy in the x and y directions respectively. The substrate 

height was fixed at h = 0.8 mm, its dielectric constant εr was 4.34, and its loss tangent was 

0.02. The probe feed was positioned at yf  = 3.6 mm.  

The aim was to establish whether E (φ = 90°) and H (φ = 0°) plane frontal gain patterns 

(corresponding to the half-space z  > 0) could be accurately modeled as a function of four var-

iables: substrate/ground plane dimensions Dx and Dy, and patch size L and W; hence the de-

sign vector was u = [Dx Dy L W]T. The design space was specified by the variable ranges 0.5λ0 

≤ Dx ≤ 3λ0, 0.5λ0 ≤ Dy ≤ 3λ0, 12.6 mm ≤ L ≤ 15.4 mm, and 8.64 mm ≤ W ≤ 10.56 mm (λ0 was 

the free-space wavelength at the operating frequency of 5.02 GHz). Since GP regression al-

lows for single model outputs only, it was necessary to set up separate models for the gain in 

each of the principal planes. Of particular interest was the GP models’ ability to predict the 

pattern distortion that is well known to occur for finite substrate/ground planes (as opposed to 

the ideal case of the patch being supported by an infinite substrate). 

In order to construct a training data set, 70 design vectors u were selected from the design 

space using Latin hypercube sampling (LHS). For each principal plane model, 10 elevation 

angles (i.e., θ values) per geometry were randomly selected from the range -90° ≤ θ ≤ 90° 

such that elevation angles in general differed from geometry to geometry. This yielded n = 

700 training input vectors { [ ] [ ] | 1,..., }x uii i xi yi i i iD D L W i n   . The corresponding target 

outputs yi were gain values in the E or H plane – denoted below as GE and GH; these were ob-

tained by means of simulation with the time-domain solver in CST Microwave Studio [7]. 

Test data consisted of 20 new LHS-selected geometries with 61 equally spaced elevation an-

gles per geometry, resulting in n* = 1220 test data points. (In order to verify the simulation 

setup, the radiation patterns of a related case study [8] were reproduced using the CST solver.) 

Next, four candidate Gaussian process models were trained for each of the GE and GH pat-

terns, each model using a different covariance function that included the squared exponential 

(1), rational quadratic (2), and two Matérn type covariance functions [1]. A Gaussian likeli-

hood function and a prior with a zero mean function was assumed throughout. From each set 

of four models, the model which produced the lowest negative log marginal likelihood (4) 

was selected as the optimal model, and used to make predictions on the test data. In both the 
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GE and GH cases, the rational quadratic covariance function (2) models produced the lowest 

negative log marginal likelihood.  

The models’ predictive accuracies are summarized in Table 1 in terms of percentage root-

mean-square-errors (RMSEs) normalized to the test target ranges, and linear correlation coef-

ficients R [6]. In spite of the significant variations in planar dimensions and consequently 

shape of the substrate, high accuracies were obtained, with RMSEs of about 1.75% for each 

of GE and GH. Figure 2 gives simulated and predicted patterns (E and H plane) for a geometry 

from the test data set, namely Dx = 2.57λ0, Dy = 1.85λ0, L = 13.52 mm, W = 9.16 mm. The 

agreement between simulated and predicted patterns is good, and the E-plane pattern ripples 

are well represented.  

Dx

W

L

εr, h

x

y

Dy z

yf

Figure 1: Probe-fed microstrip patch antenna on ground-plane-backed single-layer dielectric substrate. 

GE

(n = 700, n* = 1220)

GH

(n = 700, n* = 1220)

%RMSE 1.751 1.750 

R 0.9977 0.9958 

Table 1. Predictive errors of GP models for gain patterns on test data (n: number of training points; 

n*: number of test points) 

(a) (b) 
Figure 2: Comparison of simulated (_____) and predicted (- - -) radiation patterns for microstrip patch antenna test 

geometry with Dx = 2.57λ0, Dy = 1.85λ0, L = 13.52 mm, W = 9.16 mm. 

(a) E-plane pattern  (b) H-plane pattern. 
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3.2 Modeling of aperture efficiency ripple in reflector antennas 

Consider the offset Gregorian antenna with geometry shown in Fig. 3, which may be de-

signed using the equations given in [9]. 

Using physical optics and physical theory of diffraction in the commercial code GRASP 

[6], we simulated the aperture efficiency of a system with Ds = 3.8 m, Dm = 15.5 m, dg = 1.0 

m, θe = 50°, fed by an ideal Gaussian feed pattern with a -10 dB edge taper at θe, over the fre-

quency range 0.7325 GHz to 1.5475 GHz. The efficiency responses, as function of frequency, 

typically display rapidly varying oscillations modulated by a slowly varying envelope. For 

example, the response in Fig. 4 shows four ‘periods’ of the slowly-varying envelope. The os-

cillatory response of the aperture efficiency (or directivity anywhere in the vicinity of the 

main beam) of the system is caused by interference between the direct reflected rays (shown 

in Fig. 3 at the edges of the reflectors as ρS1,2 + ρM1,2 + ρA1,2) and the diffracted rays from the 

sub-reflector (shown in Fig. 3 at the edges of the reflectors as ρD1,2 + ρD1,2). The period of the 

oscillation is dependent on the specific geometry and separation between the dishes. A full 

description of this mechanism is provided in [9], [10]. 

A training data set was generated by selecting 28 equally-spaced points within the interval 

spanning the first ‘period’ of the slowly-varying envelope, i.e., 0.7325 GHz ≤ f ≤ 0.95 GHz 

(Interval 1), as well as 26 points randomly selected from the interval spanning the remaining 

three periods, i.e., 0.95 GHz < f ≤ 1.5475 GHz (Interval 2). We postulated that thoroughly de-

scribing the first period by means of training points would enable the regression – via use of 

the composite covariance function (8) – to capture most of the essential rapidly varying struc-

ture of the response and that fewer data points would therefore be necessary for subsequent 

repetitions along the remainder of the input space (i.e., frequency).  

Figure 3. Symmetry plane cut view of a typical offset Gregorian reflector system. 

Fig. 4 shows predictive results for GP models trained as described above. In spite of the 

generally non-uniform distribution of points in Interval 2, with significant stretches of the re-

sponses receiving minimal training points in some cases (e.g., the third period in Fig. 4), pre-

dictive results were excellent, with normalized root-mean-square-errors (RMSEs) of 0.74% 
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achieved (RMSEs were normalized to the target range).  Similar results were also found for a 

variety of other distributions of training points, with more details given in [5]. 

 
Figure 4. Target (- - -) and predicted responses (—), and training data points (•) for a randomly selected train-

ing data set. There were 28 training data points in the interval 0.7325 GHz ≤ f ≤ 0.95 GHz,  

and 26 randomly selected training data points in the interval 0.95 GHz ≤ f ≤ 1.5475 GHz.  

The test prediction normalized root-mean-square error was 0.74%. 

  

 

 

4 CONCLUSIONS 

GP regression has been shown to yield very accurate predictions for two diverse antenna 

modeling problems, namely gain patterns of a microstrip patch antenna subject to finite sub-

strate/ground plane effects; and highly oscillatory aperture efficiency responses of an offset 

Gregorian reflector system. In the reflector system case, computations were extremely effi-

cient as far as training data requirements are concerned. With respect to the reflector system, 

results are shown only for a 1-D case here, but work is ongoing on extending the method to 

larger dimensional spaces, and testing it on more reflector system examples. Applications 

may include global optimization as well as sensitivity analysis with respect to variations in the 

mechanical structure of the system – an important problem in high performance systems such 

as radio telescopes and space antennas which are required to operate in very harsh environ-

mental conditions. 
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Abstract. This work is concerned with scattering analysis of electrically large, conducting ob-
jects, using the physical optics (PO) approximation. Such analysis is important for radar cross
section (RCS) calculations. Scattering objects are represented by a mesh of sub-wavelength
sized triangle elements. Upon the mesh, the induced surface current density is represented
by standard divergence-conforming basis functions. This is the mesh-based PO approach. It
can be applied to take only a single reflection off the scatterer into account, as well as to take
multiple, internal reflections into account. Both plane wave and point source illuminations
are considered. The paper discusses computational challenges with regards to the fast and
robust implementation of mesh-based PO analysis methods. These challenges are shadowing
determination, in which the visibility of mesh elements with respect to source locations must be
determined, as well as the fast evaluation of observed fields. A multi-level, buffer-based algo-
rithm for efficient, single-reflection shadowing determination is outlined. It is also shown how
the recursive field calculations required in the multiple-reflection PO, can be accelerated with
the aid of the multilevel, fast multipole method (MLFMM), when the scattering object does not
support any internal shadowing. Preliminary results illustrate the current status of this ongoing
work on the acceleration of mesh-based PO analysis methods.
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1 INTRODUCTION

This work is concerned with scattering analysis of electrically large, conducting objects,

using the physical optics (PO) approximation [1]. Such analysis is important for radar cross

section (RCS) calculations. Scattering objects are represented by a mesh of sub-wavelength

sized triangle elements. Upon the mesh, the induced surface current density is represented by

standard divergence-conforming basis functions also used in the Method of Moments (MoM).

This is the mesh-based PO approach [2, 3]. This approach can be applied to take only a single

reflection off the scatterer into account (when illuminated by a plane wave or point source

[Hertzian dipole]), as well as to take multiple, internal reflections into account. In the multiple-

reflection case, the PO approximation is applied iteratively. In the interest of brevity, the paper

will only be concerned with the standard RWG-type of mixed first-order, edge-associated basis

functions, as employed in e.g. [2].

The paper starts off by briefly reviewing the above mesh-based PO analysis methods in Sec-

tion 2. The computational challenges for the efficient (fast and robust) computer implementation

of these methods are also discussed in Section 2. These include shadowing determination and

the fast evaluation of observed fields. The main contribution of this paper follows in Sections 3,

4 and 5. Solutions are proposed to some of these challenges. Preliminary results are included, to

illustrate the current status of this ongoing work on the acceleration of mesh-based PO analysis

methods.

2 REVIEW OF MESH-BASED PHYSICAL OPTICS FOR PEC SCATTERERS

2.1 The PO approximation

Firstly, it is noted that for a magnetic field H inc, incident upon an infinite perfect electrically

conducting (PEC) half space, the exact solution of the induced surface current is

J s = 2n̂×H inc (1)

where n̂ is the unit normal vector at the interface, pointing away from the PEC region. This

simple result is the inspiration for the PO approximation [1, 4], which states that the surface

current on a PEC object can be approximated in terms of the incident magnetic field and the

outward-pointing unit vector to the surface, as follows:

J s =

{
2n̂×H inc

0
for visible surfaces

for shadowed surfaces.
(2)

The status of a location as being visible or in shadow, is established by determining whether

there is line-of-sight visibility to the source, or not. For an incident plane wave as source, this

means visibility towards infinity, along the negative of the incident direction. For a point source,

visible status means an unobstructed view of the source point, from the given position on the

scatterer surface.

2.2 The single-reflection PO method

The single-reflection PO method (SRPO) employs the PO approximation directly, to estab-

lish an approximate solution for the induced current density on a PEC scatterer. In order to

achieve this, two tasks must be performed: (i) shadowed and visible parts of the scatterer must

be identified; and (ii) in the visible regions, the known incident field must be mapped to a

description of the surface current. The second of these tasks is quite straightforward in the
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mesh-based PO context: a local projection procedure is used to obtain the RWG basis function

coefficient values, such that they best approximate the tangential components of the incident

field according to (2) (see e.g. [2]). This is an O(N) task, where N denotes the number of mesh

elements. The first task is much more challenging, with regards to computational efficiency.

2.3 The multiple-reflection PO method

The first step in the multiple-reflection PO method (MRPO) is to calculate the SRPO solu-

tion. This solution is denoted by J (0). It is obtained in the illuminated regions of the scatterer’s

surface, according to the PO approximation and the local projection procedure:

J (0)(r) = 2n̂×H i(r). (3)

In the case where multiple reflections are important, the cumulative radiation from parts of

this current distribution is significant towards other parts of the object. Additional currents are

induced according to the PO approximation, which represent a second reflection. In general,

the current after l additional reflections is found by way of the following recursive expression

[5]:

J (l)(r) = J (0)(r) + 2n̂× −
∫

S

δ(r′)J (l−1)(r′)× R̂
e−jkR

4πR

(

jk +
1

R

)

dS ′ (4)

where R = r−r′, R = |R|, R̂ = R/R; r′ and r relate to the position vectors of the source and

observation points, respectively, on the scatterer’s surface. The scatterer’s surface is denoted by

S. The symbol −∫ represents the principle value integral. The factor δ(r′) is the shadowing

coefficient, which takes on the value of either 1 or 0, depending on whether the current source

point is visible to the observation point, or not.

In other words, the currents re-radiate iteratively, to excite a new set of PO currents at each

reflection. The iteration process can be stopped after a pre-specified number of reflections

based on the number of expected significant reflections supported by a given model, or until an

adequately converged solution is obtained.

2.4 Computational challenges

For the mesh-based SRPO, the main challenge is to determine the shadowing status of each

mesh edge, with respect to the illuminating source. A naı̈ve approach would involve considering

each edge in turn, and testing all elements for shadowing relative to the source. This would

require O(N2) operations (O(N) tests per edge, of which there are a total of O(N)). Given

that the other main task is projection, the cost of which is O(N), shadowing is clearly the

bottleneck. This cost can be reduced by making use of the field-of-view buffer concept [6, 7, 3].

A buffer plane is defined upon an eikonal surface of the incident wave. This plane is subdivided

into buffer boxes and each mesh element is listed in those boxes into which parts of it project.

To test the shadowing status of a given point, it is also projected into the buffer to determine

the box it falls into. Subsequently, only shadowing checks need to be performed against those

elements which are listed for that particular buffer box. The present authors have been working

on efficient shadowing algorithms which employ this general concept [8, 9]. The present status

of this ongoing work is reviewed in Sections 3 and 4.

For the mesh-based MRPO, there are two main challenges. The first challenge is the calcula-

tion of subsequent incident fields due to the induced surface current, by way of (4). When using

standard integration, the cost of this step is O(N2), since at every mesh edge, the field must

be calculated due to all other mesh elements. This step could be accelerated with a fast field

4332



Dao P. Xiang and Matthys M. Botha

calculation method. Indeed, this has been done using the fast far field approximation (FaFFA)

[10, 11], which reduces the cost to O(N5/3). However, seeing that field calculation at a speci-

fied set of points can be viewed as a Method of Moments (MoM) type of matrix-vector product,

the multilevel, fast multipole method (MLFMM) [12] could be used to reduce the cost of this

step even further, to O(N logN). Ongoing work in this direction, is reviewed in Sections 5.

The second challenge for the mesh-based MRPO, is efficient shadowing determination. The

shadowing status of all mesh edges, as observed from every mesh edge projection point, is

required. A naı̈ve approach would require O(N2) operations for every projection point (as ex-

plained above) and hence O(N3) operations in total. Furthermore, the shadowing data would

require O(N2) storage space, except if calculated on-the-fly. To reduce this cost to a practically

feasible scale, is a challenging task. There are however various problems of practical interest

where all projection points are visible to all induced current sources. In such cases the shadow-

ing information is trivial and acceleration of the field calculations do suffice. In this paper, the

application focus of the MRPO is on such cases.

3 ACCELERATION OF SHADOWING DETERMINATION FOR THE SRPO WITH
PLANE WAVE ILLUMINATION

3.1 Method

In this case, the eikonal surfaces are flat planes transverse to the direction of propagation of

the incident wave. The buffer plane is chosen to be such a surface. The steps followed in the

shadowing determination algorithm are as follows:

1. Triangles are projected into the buffer plane and the overall buffer bounding box is estab-

lished, as well as bounding boxes for each projected element.

2. The objective of the algorithm is to separate triangles into small groups in the buffer

plane, according to a buffer plane subdivision. Therefore, divide the plane into buffer

boxes of which the size is proportional to the average mesh size. If a box is found which

contains an excessive number of elements, then that box is again subdivided according to

the same procedure. This yields a multi-level subdivision, capable of handling strongly

inhomogeneous meshes as well. In case of a homogeneous mesh, only the first-level

subdivision is typically necessary.

3. Now project each edge mid-point into the buffer and do shadowing testing against only

those elements listed in the specific buffer box. This yield the visibility status of each

corresponding, edge-associated basis function.

Above, some technical details of the algorithm are omitted in the interest of brevity. Also, the

above description assumes that no grazing incidence is present. Grazing incidence occurs when

the propagation direction of the incident plane wave is close to tangential to certain constituent

surfaces of the scatterer. In such cases many elements may end up being listed in individual

buffer boxes. The grazing triangles must then be handled with a custom procedure, similar to

the one noted in [8].

3.2 Results

Figure 1 shows examples of the meshes used for shadowing evaluation testing. All meshes

represent the same simple model, but will serve to illustrate the capabilities of the algorithm.

The series of meshes are of a sphere which is inhomogeneously meshed and progressively
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refined, as explained in the figure. These progressively refined meshes are used to generate

the shadowing determination runtime results shown in Figure 2, as a function of the number

of mesh elements. On the same computational platform, results were also generated with the

commercial mesh-based PO solver available as part of the FEKO software suite [13]. The

direction of incidence is set to be aligned with the point around which the mesh is refined.

The results show that the proposed, multilevel buffer subdivision scheme is significantly more

efficient than the commercial solver. This is due the effective separation of mesh elements in the

buffer, through appropriate localized subdivision. The observed time scaling for the proposed

method is of O(N).

Figure 1: Progressively refined meshes of a conducting sphere. The sphere has a radius of 1m. The meshes are all

inhomogeneous with a relative element size reduction factor of 100, around a single point.
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Figure 2: Shadowing determination runtime as a function of the number of mesh elements, for plane wave illu-

mination of the inhomogeneous meshes shown in Figure 1. The proposed method is compared to a commercial

solver.
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4 ACCELERATION OF SHADOWING DETERMINATION FOR THE SRPO WITH
POINT SOURCE ILLUMINATION

4.1 Method

In this case, the eikonal surfaces are spheres centred around the illuminating point source

and the spherical coordinate system variables (θ, φ) are used to describe point locations in the

buffer. Otherwise, the general procedure is the same as discussed above for the plane wave case.

It is important to note that even in the case of a homogeneous mesh, the projected representa-

tion in the buffer plane is often inhomogeneous, due to the specific properties of the spherical

coordinate system. This is a further important motivating factor for the recursive buffer subdivi-

sion approach. In the interest of brevity, a discussion on the case of grazing incidence for point

source illumination will be deferred to a future publication.

4.2 Results

The set of progressively refined meshes described in Figure 1 is again used. The point

source is placed normally above the point on the sphere around which the refinement is centred,

at a height of 10−2 m. Figure 3 shows the shadowing determination runtime as a function of

the number of mesh elements. Again, the results show that the proposed, multilevel buffer

subdivision scheme is much more efficient than the commercial solver and that the cost scales

as O(N).
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Figure 3: Shadowing determination runtime as a function of the number of mesh elements, for point source illu-

mination of the inhomogeneous meshes shown in Figure 1. The proposed method is compared to a commercial

solver.
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5 MLFMM-BASED ACCELERATION OF INDUCED CURRENT CALCULATION IN
THE MRPO

5.1 Method

To calculate the next solution according to the iterative MRPO expression (4), the obser-

vation point r must be placed at each edge mid-point in the mesh. Collectively, this can be

expressed as a system of linear equations:

I(l) = I(0) + AI(l−1) (5)

where I(l) represents the vector of current coefficients after l additional reflections and I(0)

represents the vector of current coefficients corresponding to the initial, single-reflection PO

current. The dimension of square matrix A is O(N). The cost of conventionally evaluating the

matrix-vector product AI(l−1) is thus O(N2).
The matrix A in (5) can be split up into a sparse near-interaction matrix and the remaining

far-interaction part, per the specifications of the MLFMM algorithm [12]:

I(l) = I(0) +
(
Anear + Afar

)
I(l−1). (6)

The cost of the matrix-vector product AnearI(l−1) is O(N). Using the MLFMM, the matrix-

vector product AfarI(l−1) has cost O(N logN) (see e.g. [12] for further details). This can be

compared with the scaling achieved using FaFFA acceleration, which as noted already, is given

as O(N5/3) in [11].

5.2 Results

Consider the trihedral structure shown in Figure 4. It is illuminated by a plane wave with

incident angles θinc = 45◦ and φinc = 45◦. It is homogeneously meshed with mesh size of

λ0/10, where λ0 denotes the free space wavelength. On the illuminated side, all triangles are

visible to each other, thus shadowing determination is trivial and consequently, the MRPO can

be accelerated with the MLFMM in this case. Three reflections are incorporated with the MRPO

(l = 2). Figure 5 shows how the runtime for the solution scales as a function of the number

of mesh elements. Different data points are obtained by varying the excitation frequency (and

thus wavelength) and remeshing (the frequency range used is 0.5GHz to 2.25GHz). Clearly,

the standard MRPO scales as O(N2), due to the conventional evaluation of the matrix-vector

product in (5). The MLFMM-accelerated MRPO has much lower runtime and as N becomes

larger, the relative saving becomes increasingly significant. Note that O(N logN) behaviour

cannot be clearly observed in these preliminary accelerated results. This is ongoing work and

further tests are still being conducted.

6 CONCLUSIONS

Computational challenges with regards to the fast implementation of mesh-based PO meth-

ods for scattering analysis of conducting objects, were discussed. Both single-reflection and

multiple-reflection formulations were considered. These challenges are efficient shadowing de-

termination and efficient calculation of observed fields. A multi-level, buffer-based algorithm

for efficient, single-reflection shadowing determination was outlined and results were presented

for a strongly inhomogeneous mesh. The results exhibit linear time scaling and are superior

to the runtimes achieved with the commercial PO solver in FEKO. It was further shown how

the recursive field calculations required in the MRPO, can be accelerated with the aid of the
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Figure 4: Conducting plate, trihedral model. The plate dimensions are all 1m.
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Figure 5: Runtime as a function of the number of mesh elements, for the conventional and MLFMM-accelerated

MRPO implementations.

MLFMM. Preliminary results demonstrate significantly reduced runtime, when the scattering

object does not support any internal shadowing.
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Abstract. The design and optimization of axially symmetric power combiners usually rely
on computationally expensive full-wave simulations. Circuit models are often used to reduce
the computational cost, however, full-wave parameter sweeps or optimization are usually still
required. Surrogate based optimization utilizing circuit models offers an effective means to
reduce the computational cost, since the circuit model can be aligned to the full-wave model,
usually resulting in fewer full-wave simulations being required. This paper presents some of the
recent advances in using Space Mapping, which is a surrogate based optimization technique,
for the design and optimization of axially symmetric power combiners.
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1 INTRODUCTION

Power combiners and dividers have numerous applications and are frequently used in com-
munications and radar systems as part of power amplifier and antenna configurations. Since
the introduction of the modern personal computer and electromagnetic analysis software, the
design of power combiners/dividers, especially axially symmetric types, has been facilitated by
full-wave simulation [1–9]. However, the relatively high computational cost of full-wave simu-
lations limits the amount of the parameter space that can be searched within a reasonable time
and cost, thereby possibly limiting the performance that can be attained.

Circuit modelling can be used to various extents to accelerate the design process. For ex-
ample, circuit modelling can be used for parts of the device with known circuit models, and
the rest modelled by full-wave simulation, as is done in [7, 8]. This method reduces the size of
the full-wave problem being solved, but it might not be straight-forward to divide the problem
into appropriate parts, and full-wave parameter sweeps or optimization are still required to find
optimal parameter values. Alternatively, circuit models for the entire device can be constructed,
in which case full-wave parameter sweeps or optimization would likely be needed to relate
physical dimensions to circuit element values [1, 3, 6]. Empirical data can be used to extract
equations for the conversion of dimensions into element values, but these would also require
full-wave parameter sweeps in addition to having a fixed and limited range of parameter values
where adequate accuracy can be achieved [9].

The use of equivalent circuit models can be exploited, perhaps most effectively, by using
Space Mapping [10,11], which is a surrogate based optimization method. By using this method,
the optimization burden is moved from the accurate but slow full-wave simulation and placed on
the circuit model, which is less accurate, but much faster to evaluate. The use of Space Mapping
for the design of conical transmission line power combiners was recently demonstrated in [12],
where an optimal design was obtained after only four iterations, requiring only four full-wave
simulations. This paper presents guidelines for the Space Mapping based design and optimiza-
tion of axially symmetric power combiners supporting transverse electromagnetic (TEM) mode
propagation. A specific design example of a coaxial line power combiner with an improved
fractional bandwidth of 133 % is presented.

2 EQUIVALENT CIRCUIT MODEL DESCRIPTION

Axially symmetric power combiners generally allow for a large number of devices to be
combined with lower losses compared to other power combiner types with the same number
of input ports [1, 13]. Non-resonant axially symmetric combiners typically have the added
advantage of being able to support TEM modes, and can therefore offer high output port return
losses over relatively wide bandwidths when the input ports are excited symmetrically. For
these types of combiners the output port is generally referred to as the central port and the input
ports as peripheral ports. The design of such a combiner is mostly focussed on obtaining a
well-matched transition from the peripheral ports into the combining structure, as well as from
the combining structure to the central port. Since ideal transmission lines can be used to model
TEM transmission lines, the only non-trivial parts to be modelled are where discontinuities or
gradual changes between different transmission line sizes or types occur in the physical structure
of the combiner. Examples of some of these discontinuities and gradual changes and how they
can be modelled can be found in [1,5,8,14–16]. In most cases, some form of equivalent circuit
model can be deduced or found in literature. The requirements of equivalent models used for
design or optimization with Space Mapping are that they must be much faster to evaluate than
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(a) (b)

Figure 1: The uncompensated (a) and compensated (b) peripheral coaxial lines used for the
input ports of a coaxial power combiner.

the full-wave models and that they can be linked to physical attributes of the structure, similar
to how a shunt capacitance is linked to a step discontinuity in a coaxial line. As an example, it
will be shown how a circuit model of a coaxial combiner can be obtained. This model will be
used for the design example in Section 4.

2.1 Equivalent circuit model of a coaxial combiner

The configuration of the combiner must first be established before it is possible to construct
an equivalent circuit model. An appropriate configuration will consist of parts that allow for
well-matched transmission, and with equivalent circuit models that are either known or are easy
to deduce. It has been demonstrated that the inductance of extended center conductor pins
of peripheral coaxial lines (see Fig. 1a), which would normally adversely affect transmission,
can be effectively compensated for by using a ring (see Fig. 1b) in the oversized combining
coaxial line [6]. The ring-compensated peripheral port transition is therefore an appropriate
candidate, since it allows for a well-matched transition, and it is relatively straight-forward to
deduce an equivalent circuit model that corresponds well with the physical attributes of the
transition, as will be shown in Section 2.1.1. The oversized combining coaxial line can simply
be modelled by using ideal transmission lines and shunt capacitances where step discontinuities
are introduced for impedance matching purposes. For this design the outer conductor radius will
be kept constant and steps will only occur in the inner conductor. The only remaining part of the
combiner to be modelled is a transition from the oversized combining coaxial line to the smaller
central output port, usually with dimensions corresponding to a standard coaxial connector type.
These types of transitions can be physically tapered coaxial lines with a constant impedance [6],
or in some cases the impedance can also be tapered, possibly making more efficient use of the
overall size of the combiner [3]. For this design, an impedance tapered transition will be used,
for which it is straight-forward to deduce an equivalent circuit model, as will be shown in
Section 2.1.2. The physical layout of the chosen combiner configuration is shown in Fig. 2, and
its equivalent circuit model will now be developed.

4341



Ryno D. Beyers, Dirk I. L. de Villiers

Ht

lbs lr ls4 ls3 ls2 ls1

Rbs

Rr Rs4 Rs3 Rs2 Rs1

RO,t2
RO,t1

RI,t1

Figure 2: The physical layout of the coaxial combiner with the chosen configuration.

2.1.1 Peripheral coaxial line transition

The ring-compensated peripheral transition proposed in [6] and shown in Fig. 1b shortens
the extended center conductor pins of the peripheral coaxial lines, thereby reducing their induc-
tance. It also introduces two step discontinuities, modelled using shunt capacitances, on either
side of the peripheral ports inside the oversized combining coaxial line. An additional effect,
not taken into account in [6], is that there will be a change in characteristic impedance of the
oversized combining coaxial line due to the holes that are made for the outer conductors of the
peripheral coaxial lines. However, this perturbance can simply be modelled by using two short
transmission lines, one on either side of the peripheral coaxial lines, with appropriately adjusted
impedances. The resulting equivalent circuit model is shown in Fig. 3.

lr/2
Zr

lr/2
Zr

Lind/N

Cr1 Cr2

Figure 3: The equivalent circuit model of the peripheral transition.

Note that all circuit element values can be calculated directly from physical dimensions,
except for Lind and Zr, which will be implicit parameters in the Space Mapping based opti-
mization. The length lr is simply equal to the length of the ring, and the shunt capacitances,
Cr1 and Cr2, can be determined by using the information presented in [14]. The values of Cr1

and Cr2 can in general be different, since the coaxial line sections on either side of the ring can
have different inner conductor radii.
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Figure 4: The impedance tapered transition between the central output coaxial line and the
oversized combining coaxial line. Note that the figure is rotationally symmetric around the
z-axis.

2.1.2 Central impedance tapered coaxial line transition

Even though the central port transition is usually referred to as a tapered coaxial line, it
more closely resembles a conical transmission line, and can likely be more accurately mod-
elled as such. A conical transmission line typically consists of two conductors that intersect
on the axis of rotational symmetry, forming a transmission line with a constant impedance. An
impedance tapered conical line with its conductors tapered at a constant rate (therefore con-
taining no curves, as shown in Fig. 4) would have conductors that do not intersect on the axis
of symmetry, and the standard formula for calculating the impedance of a conical transmission
line cannot be used. Instead, the tapered transmission line can be approximated by dividing
one of the conductors (the lower one, numbered with subscript 1, is chosen here) into K sec-
tions and using the simple algorithm described below, with reference to Fig. 4, to determine the
impedance and length of each (k-th) section:

1. Draw a line (see lineDE) tangential to the conductor from the current position,D(x1,k,y1,k),
to the axis of symmetry, E(0,ck).

2. Draw a circle centred at E(0,ck), the intersection of line DE with the axis of symmetry,
with a radius equal to the distance from the circle origin to the current position on the
conductor, D(x1,k,y1,k).

3. Find the point of intersection between the circle and the other conductor, F (x2,k,y2,k).

4. Draw a line (see line FE) from the point of intersection on the second conductor to the
circle origin.
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5. Use the angles of the two lines, θ1,k and θ2,k, to calculate the approximate impedance of
the current section using the formula for a conical transmission line:

Zk = 60log
[

cot(θ1,k/2)

cot(θ2,k/2)

]
. (1)

6. Estimate the transmission length of the current section by computing the distance from
the mean of the current two points on the conductors, G(xme,k,yme,k) to the mean of the
next two points on the conductors, (xme,k+1,yme,k+1).

The approximated response of the transition can now be obtained by constructing a circuit with
K cascaded ideal transmission lines with impedances and lengths as calculated using the above
algorithm.

The accuracy of the circuit model is tested by considering a few different transitions and
comparing the circuit model response with full-wave simulations. Fig. 5 shows the approxi-
mated impedance profiles of the transitions generated using the parameter values given in Ta-
ble 1. Transitions 1 and 2 have standard 7/16 connector dimensions for the smaller coaxial line,
and Transition 3 has standard N-type dimensions. Fig. 6 shows good agreement between the
full-wave and simulated responses of the all the considered transitions.

Transition 1 Transition 2 Transition 3
Parameter Value Units Parameter Value Units Parameter Value Units
RI,t1 3.5 mm RI,t1 3.5 mm RI,t1 1.52 mm
RO,t1 8 mm RO,t1 8 mm RO,t1 3.5 mm
RI,t2 42 mm RI,t2 52 mm RI,t2 20.5 mm
RO,t2 60 mm RO,t2 60 mm RO,t2 40 mm
Ht 120 mm Ht 300 mm Ht 180 mm

Table 1: Parameter values for the three transitions used to test the equivalent circuit model of
the impedance tapered transition.
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Figure 5: The approximated impedance profiles of the three transitions.
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Figure 6: The responses of the circuit model and full-wave simulations.

2.1.3 Complete circuit model

The equivalent circuit models for all parts of the chosen combiner configuration have now
been obtained, and can be used to model the entire combiner shown in Fig. 2. The resulting
circuit is shown in Fig. 7. The transmission line lengths ls1, ls2, ls3, ls4, lr, and lbs can be used
directly from the physical dimensions of the combiner. The impedances Zs1, Zs2, Zs3, Zs4,
and Zbs can be calculated from the inner and outer radii of the respective parts of the combiner
using:

Z = 60log
[
Router

Rinner

]
. (2)

The step capacitances Cs12, Cs23, and Cs34 can be calculated using the same method as for
Cr1 and Cr2 by using the information in [14]. Note that the transmission length of the tapered
section, lt, is not equal to the parameter Ht shown in Figs. 2 and 4. The transmission length
lt and impedance profile Zt of the central impedance tapered coaxial line transition can be
determined from the physical dimensions of the combiner by using the algorithm described in
Section 2.1.2. The only parameters with unknown values at this point are Zr and Lind, which
will be implicit parameters in the Space Mapping based optimization.

Output port

lt
Zt

ls1
Zs1

ls2
Zs2

ls3
Zs3

ls4
Zs4

lr/2
Zr

lr/2
Zr

lbs
Zbs

Lind/N

N input ports

Cs12 Cs23 Cs34 Cr1 Cr2

Figure 7: The equivalent circuit model of the entire combiner.
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3 OPTIMIZATION STRATEGY

The advantage of using Space Mapping based optimization is that the optimization burden is
shifted from the full-wave model (fine model) to the circuit model (coarse model). This is made
possible through the alignment of the coarse model with the fine model before being optimized
to reach any chosen design goals. The alignment of the coarse model with the fine model can be
done using a combination of different methods, however, for this application only multiplicative
and additive implicit space mapping (ISM) will be used.

The optimization strategy employed here is essentially the same as in [12]. The goal of the
optimization is to obtain the vector of parameter values, x, resulting in the lowest cost of the
fine model response, Rf , given the design objective function, U , and therefore

x∗
f = argmin

x
U (Rf (x)) . (3)

Since the main concern when designing axially symmetric combiners that support TEM mode
propagation is impedance matching, the response, Rf , is usually the central (output) port re-
flection coefficient, S11, and the objective function, U , defines the desired return loss over the
frequency band of interest. Instead of directly optimizing the fine model, ISM produces an
approximate solution,

x(i+1) = argmin
x

U
(
R(i)

s (x)
)
, (4)

which should lead to a solution of (3), where R
(i)
s (x) is the aligned coarse model (surro-

gate model) response at the i-th iteration. The surrogate model is constructed by optimizing
the implicit parameters, xp,

(
xp = [Zr Lind]

T for the coaxial combiner in Section 2.1
)

to fit the
coarse model response onto the fine model response. However, the implicit parameters are
not optimized directly: The coefficients G and H are optimized and the implicit parameters
calculated using

x(i)
p (x) = Gx + H , (5)

where G is an mxn-matrix, and H is an mx1 matrix, with n the number of design parameters
in x and m the number of implicit parameters in xp. The response of the surrogate model can
then be obtained using

R(i)
s (x) = Rc

(
x,x(i)

p (x)
)
. (6)

As explained in [12], equivalent circuit models for these types of devices are expected to be good
representations of their physical structures, and information gained from previous iterations
can be used to improve the surrogate models. The previous iterations are therefore taken into
account by extracting values for G and H using

x(i)
p (x) = argmin

G,H

i∑
k=0

wk

∥∥Rf

(
x(k)

)
−Rc

(
x(k),x(i)

p (x(k))
)∥∥ , (7)

where wk = w
(k+1)
0 . Generally w0 > 1 to give the more recent iterations more weight, since

it is expected that they will be closer to the optimum point in the parameter space, but w0 = 1
will likely also produce acceptable results.

Each iteration consists of the optimization of the surrogate model, the evaluation of the fine
model at the obtained parameter values, and the re-alignment of the coarse model with the
fine model, generating a new surrogate model as outlined in (4) - (7). Note that while each
iteration may consist of many coarse model evaluations, only a single fine model evaluation is
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required. The iterations are repeated until the fine model response reaches the objective or a
preset maximum number of iterations are completed. It should be noted that if the parameter
extraction is performed using (7), the coarse model evaluation time increases with each iteration
due to the increasing number of responses taken into account in (12).

4 DESIGN EXAMPLE: A COAXIAL COMBINER WITH IMPROVED BANDWIDTH

The design of an axially symmetric power combiner using surrogate based optimization
will now be illustrated by using the coaxial combiner configuration shown in Fig. 2 and its
equivalent circuit model shown in Fig. 7. The circuit model is analyzed using MATLAB, and
the fine model evaluations are done using Computer Simulation Technology (CST) Microwave
Studio (MWS) [17]. The inner and outer conductor radii of the central output coaxial port,
RI,t1 and RO,t1, are chosen to be the same as the standard 50 Ω N-type connector, and the outer
conductor radius of the oversized combining coaxial line,RO,t2 is chosen to be 26 mm. Standard
50 Ω SMA connector dimensions are chosen for the peripheral feeding coaxial lines, and all the
remaining physical dimensions are optimizable parameters. The input parameter vector is thus

x = [Ht Rs1 ls1 Rs2 ls2 Rs3 ls3 Rs4 ls4 Rr lr Rbs lbs]
T , (8)

and the implicit parameter vector is

xp = [Zr Lind]
T . (9)

The parameter space is limited to

xmin = [22 9 5 15 5 20 5 20 5 23 3 13 7]T (10)

and
xmax = [130 20 30 22 30 25 30 25 30 25.5 3.5 23 25]T , (11)

with all values listed in the same order as in (8), and dimensions given in mm. The input
parameter vector x contains 13 parameters, and according to (5) the matrix G takes all of these
parameters into account in the calculation of xp. This is entirely unnecessary, and as a matter
of fact unwanted, since it causes the implicit parameters to be dependent on parameter values
they should obviously not be dependent on. For this design, the implicit parameters, Zr and
Lind, are only dependent on the compensation ring radius, Rr. The matrices in (5) are thus
reduced to take only Rr into account, resulting in a much more consistent surrogate model
being constructed for each iteration. The design objective is to obtain a return loss of greater
than 15 dB from 1.3 to 6.5 GHz. The objective function is defined as

U(Rf (x)) =
1

iM − im

iM∑
i=im

|max{Rf (x, fi)− (−15), 0}| , (12)

where Rf (x, fi) is the central port reflection coefficient, SdB
11 , at frequency fi, which is at in-

dex i in the frequency vector. The indices im and iM correspond to the frequencies 1.3 and
6.5 GHz in fi, respectively. For the ISM parameter extraction and the surrogate model opti-
mization w0 = 1.1 is chosen, and a global search is first performed using the Population Based
Incremental Learning (PBIL) algorithm [18], followed by a local search using the Nelder-Mead
simplex search [19]. Given the minimum and maximum values of Rr, some initial values for
the implicit parameters are estimated as Zr = 4.5 Ω and Lind = 2 nH, using the formula for
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Figure 8: The responses of the surrogate (dashed) and fine (solid) models before alignment.
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Figure 9: The responses of the surrogate (dashed) and fine (solid) models after 3 iterations.

the impedance of a normal unperturbed coaxial line as given in (2) and the 1 nH per mm rule of
thumb. The optimization procedure is executed and the responses of the coarse and fine model
are shown in Fig. 8, before the coarse model is aligned. The objective function defined in (12) is
shown in Fig. 10 versus iteration number. After 3 iterations the optimization converged and pro-
duced the responses shown in Fig. 9, where the fine model response reaches the design objective
of a reflection coefficient better than−15 dB over a 133 % bandwidth from 1.3 to 6.5 GHz. The
resulting parameter values are listed in Table 2.

5 CONCLUSIONS

This paper presented guidelines for the design and optimization of axially symmetric power
combiners. A complete equivalent circuit model of a coaxial combiner was derived using the
guidelines. The derived equivalent circuit model was used as a coarse model in a Space Mapping
based optimization procedure to design a combiner with improved bandwidth performance. The
design objective was to obtain a central port reflection coefficient of better than−15 dB from 1.3
to 6.5 GHz. The optimization procedure converged after 3 iterations and a full-wave simulated
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Parameter Value Units Parameter Value Units Parameter Value Units
Ht 117.66 mm ls3 17.34 mm Rr 23.93 mm
ls1 20.68 mm Rs3 20.02 mm lr 3.07 mm
Rs1 15.11 mm ls4 18.59 mm Rbs 14.08 mm
ls2 19.42 mm Rs4 22.38 mm lbs 9.09 mm
Rs2 17.25 mm

Table 2: Parameter values for the three transitions used to test the equivalent circuit model of
the impedance tapered transition.
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Figure 10: The objective cost after each iteration.

reflection coefficient of better than −15 dB over a 133 % bandwidth from 1.3 to 6.5 GHz was
obtained, compared to a measured reflection coefficient of −12 dB over a 112 % bandwidth
from 0.52 to 1.86 GHz obtained in [6].
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Theory 

Abstract. Polymer nanocomposites with the addition of a small percentage of graphenes as 

reinforcement have demonstrated tremendous potential to serve as next generation functional 

or structural materials due to their combination of high specific surface area, strong 

nanofiller-matrix adhesion and the outstanding mechanical properties of the sp2 carbon 

bonding network in graphene. While the majority of the work on graphene based composites 

has been focused on quantifying their mechanical properties, the vibration characteristics of 

graphene composites has not yet been investigated. This paper presents an analytical study on 

the flexural vibration of polymer beams reinforced with uniformly distributed graphene 

nanoplatelets (GPL). Based on the assumption that each graphene nanoplatelet acts as an 

effective rectangular solid fiber, the Halpin-Tsai model for fiber-reinforced composites is 

modified to predict the Young’s modulus of the GPL/epoxy nanocomposites. Governing 

equations of motion are derived within the framework of linear elastic strain-displacement 

relationship and Timoshenko beam theory to account for transverse shear strain. The 

influences of GPL weight fraction, beam slenderness ratio and boundary conditions on the 

natural frequencies and associated mode shapes are investigated in detail. It is found that 

adding a very small amount of GPLs into the polymer matrix can effectively lead to a 

remarkable increase in beam stiffness hence the natural frequencies of the nanocomposite 

beams, and that the rate of frequency change of the beam is independent of the slenderness 

ratio.   
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1 INTRODUCTION 

Compared to carbon nanotubes (CNTs), graphene and its derivatives have demonstrated 

favorable advantages when used as reinforcing fillers in composites. For example, the 

ultimate strength and Young’s modulus of graphene and its derivatives can reach up to 1 TPa 

and 130 GPa, respectively [1]. A recent experimental study [2] showed that with the same 

weight fraction of additives, i.e. 0.1±0.002%, Young’s modulus of graphene based epoxy 

nanocomposites was 31% greater than that of pristine epoxy while an increase of 3% was 

observed when CNT fillers are used. This remarkable reinforcing effect stems from 

graphene’s excellent mechanical properties and very high specific surface areas [2-7]. In 

addition, graphene’s derivatives, i.e. graphene nanoplatelets, are in abundance in nature. This 

significantly expedites the engineering applications of graphene based composites due to their 

superior mechanical properties but moderate cost [8].   

Extensive theoretical and experimental research work has been done on the fabrication and 

characterization of mechanical properties of graphene based nanocomposites. Rafiee et al. [2] 

fabricated functionalized graphene sheet (FGS)/epoxy nanocomposite and found this 

composite offers significant improvements in mechanical properties compared to those of 

CNT reinforced epoxy composites. Lee et al. [9] successfully synthesized FGS/epoxy 

nanocomposite whose strength was increased by approximately 30-80% at a loading of 1.6 

wt%. Martín-Gallego et al. [10] studied the reinforcement of graphene and observed the 

significant improvement in mechanical properties of FGS-epoxy composites. Graphene is 

usually present in the form of agglomerates due to van der Waals force and the dispersion 

state is crucial to the performance of the composites. Tang et al. [6] discussed the effect of 

graphene dispersion on the mechanical properties of graphene/epoxy nanocomposites. They 

found the nanocomposites with highly dispersed graphene exhibit higher strength and better 

fracture toughness. This significant enhancement was also observed in other previous studies 

[1, 5, 7]. Among the theoretical studies, Rahman and Haque [11] investigated the mechanical 

properties of graphene platelet (GPL)/epoxy nanocomposites by molecular mechanics (MM) 

and molecular dynamics simulations (MD). Significant improvement in Young’s modulus and 

shear modulus of the composites was observed. Cho and co-workers [12] predicted the elastic 

constants of graphite using MM and determined the elastic constants of graphite/epoxy 

nanocomposites by using Mori–Tanaka micromechanical model. Xiang et al. [13] also 

developed a micromechanics model for graphene/polymer nanocomposite based on Mori–

Tanaka method. Spanos et al. [14] used a micromechanical finite element approach to obtain 

the mechanical properties of the composites reinforced with uniformly distributed graphenes. 

They found that their mechanical properties depend on the dimensions and volume fraction of 

graphenes as well as on the stiffness of the interphase between the two constituents. Chandra 

et al. [15] presented a multiscale model for vibration frequency analysis of graphene/polymer 

composites and observed exceptional vibrational behaviour and large stiffness of graphene 

reinforced composites. 

It should be pointed out that although there has been a fast growing interest in graphene 

based polymer composites, the majority of the previous work is primarily focused on the 

material fabrication and characterization. Studies on the structural behaviour are very limited 

in number. This paper presents an analytical study on the flexural vibration of polymer 

nanocomposite beam in which GPLs are uniformly dispersed in epoxy matrix. Theoretical 

formulations are established within the framework of Timoshenko beam theory and linear 

strain-displacement relationship. The modified Halpin-Tsai model is used to predict the 

Young’s modulus of the GPL/epoxy nanocomposites. A detailed parametric study is 
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conducted to discuss the influences of GPL weight fraction, beam slenderness ratio and 

boundary conditions on the natural frequencies and associated mode shapes of the beam.  

2 GOVERNING EQUATIONS 

2.1 Equations of motion 

Shown in figure 1 is a GPL/epoxy nanocomposite beam with length l, width b and 

thickness h, subjected to a distributed dynamic load q(x, t). According to Timoshenko beam 

theory, the bending moment M and shear force Q are given as 

 

Figure 1: Schematic configuration of a GPL/epoxy nanocomposite beam. 
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where shear correction factor α = 5/6, Ec and Gc are the effective Young’s modulus and shear 

modulus of the beam, A and I are the area and second moment of the cross-section, and φ 

represents the cross-sectional rotation, respectively. The governing equations of the beam can 

be derived as 
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where ρ is the mass density of the beam. Combining equations (2) and (3) and eliminating φ 

leads to the equation of motion 
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where q = q0cos(ωet) with q0 and  e being the amplitude and radian frequency of the 

transverse load. Introducing the following dimensionless quantities 
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equation (4) can be cast into the following dimensionless form 

   

        (   )
 

 
 

   

              

          (  )                     (6) 

where      √    ⁄  is the dimensionless excitation frequency. 

2.2 Halpin-Tsai model for GPL/polymer nanocomposites 

Assuming that GPLs serve as effective rectangular solid fillers uniformly dispersed in the 

polymer matrix, the effective Young’s modulus of the nanocomposite can be approximated by 

employing modified Halpin-Tsai micromechanics model as [2, 16-18] 
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where EM is Young’s modulus of the matrix, Veff,GPL is GPLs’ volume fraction,   

(         )     ,    
(          ⁄ )  

(          ⁄ )  
 and    

(          ⁄ )  

(          ⁄ )  
 in which lGPL, wGPL, hGPL 

and EGPL are the length, width, thickness, and Young’s modulus of GPLs, respectively. Given 

the mass density of GPLs ρGPL and that of polymer matrix ρM, GPLs’ volume fraction in the 

nanocomposite can be approximated as 

  
GPL M

GPL
GPL

GPL GPL1

f
V

f f 


 
                                       (8) 

where fGPL is the weight fraction of the GPLs in the composite.  

Equation (7) was used to estimate the effective Young’s modulus of GPL/polymer 

nanocomposites and has been experimentally validated by Rafiee et al. [2]. It is assumed that 

Poison’s ratio is ν = 0.4 due to the fact that the mechanical behavior of the nanocomposite is 

weakly dependent on Poisson’s ratio. This is verified in our numerical simulations which 

indicate that Poison ratio has a very limited effect on the vibration of the beam.  

3 SOLUTION 

3.1 Free vibration 

For free vibration, the governing equation is reduced to 

   

        (   )
 

 
 

   

              

                                  (9) 

For harmonic vibration, the transverse displacement can be written as 

  (   )   ( )                                                     (10) 

where      √    ⁄  is the dimensionless linear natural frequency with   being the natural 

frequency of the beam. Substituting equation (10) into (9), the solution to the resulting 

differential equation is 

 ( )         (   )        (   )       (   )       (   )           (11) 

where 
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and C1 to C4 are unknown constants to be determined by associated boundary conditions.  

In this paper, clamped-clamped (C-C), clamped-hinged (C-H) and hinged-hinged (H-H) 

beams are considered, with the following boundary conditions  

a) C-C beam:  ( )   ( )  
𝑑 ( )

𝑑 
 

𝑑 ( )

𝑑 
   ; 

b) C-H beam:  ( )   ( )  
𝑑 ( )

𝑑 
  ( )   ;  

c) H-H beam:  ( )   ( )   ( )   ( )   . 
The boundary conditions for each case will result in an algebraic equation, i.e. 

[H(ωl)]{χ}={0}. H(ωl) is a matrix dependent on  ωl while χ is a vector consisting of the four 
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unknown coefficients. The non-trivial solution of χ requires the determinant of the H(ωl) be 

zero, from which the natural frequencies and the associated mode shapes can be obtained. 

3.2 Forced harmonic vibration 

For forced harmonic vibration, the transverse displacement is approximated as 

 (   )   ( ) ( )                                                    (13)  

where  (X) is the mode shape obtained from free vibration analysis and S(τ) denote the 

vibration characteristics to be determined. Substituting equation (13) into equation (6) and 

applying Galerkin method, the governing equation becomes 
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The dynamic response of the beam under transverse loading is obtained as 

       0 0 0
0 2 2

cos sin cosl l
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              (16) 

4 RESULTS AND DISCUSSION  

Table 1 compares our results with the previous data [19] for the natural frequency of a 

homogeneous beam whose Young’s modulus, mass density and Poisson’s ratio are E = 70 

GPa, ν = 0.33 and ρ = 2780 kg/m
3
, respectively. Excellent agreement is observed.  

 

 

C-C  H-H 

Present Ref [19]  Present Ref [19] 

5.5933 5.59  2.4674 2.47 

 

Table 1: Comparison of linear natural frequency. 

In what follows, the dimensions, mass density, Young’s modulus and weight fraction of 

GPLs are lGPL = 2.5 μm, wGPL = 1.5 μm, tGPL = 1.5 nm, ρGPL = 1.06 g/cm
3
, EGPL = 1.01 TPa, 

and fGPL = 1.5%, respectively [2]. Young’s modulus of the epoxy matrix is EM = 3.0 GPa. 

Table 2 lists the first three dimensionless frequencies of the nanocomposite beams with 

different end supports. The associated mode shapes are displayed in figure 2. As expected, the 

frequencies are the highest for a C-C beam and the lowest for an H-H beam. The significant 

reinforcing effect of GPLs on the dynamic characteristics of the beam is clearly evidenced by 

over 60% increase in the natural frequencies as compared to those of pristine epoxy beams.  
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Mode 
C-C C-H H-H 

Pure epoxy Composite Pure epoxy Composite Pure epoxy Composite 

1 0.3090 0.5057 0.2031 0.3426 0.1151 0.2108 

2 0.8715 1.4060 0.7000 1.1351 0.5445 0.8918 

3 1.7247 2.7665 1.4822 2.3823 1.2571 2.0263 

Table 2:  Dimensionless natural frequency of composite beam. 

 

0.0 0.2 0.4 0.6 0.8 1.0

  mode 1

 mode 2

 mode 3

  

H-H
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Dimensionless length

C-C

 

Figure 2: Mode shapes for nanocomposite beams with different boundary conditions. 

The dimensionless fundamental frequency of a C-C beam versus slenderness ratio is shown 

in figure 3. It is easily understood that the frequency decreases as the slenderness ratio 

increases. At the same slenderness ratio, the natural frequency of the beam with GPL 

reinforcement is higher than that of the pure epoxy beam. This is due to the significantly 

increased effective Young’s modulus of the beams when reinforced with GPLs, regardless of 

the end supports of the beams.  
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Figure 3: Variation of dimensionless fundamental frequency with beam slenderness ratio. 
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Figure 4: Effect of slenderness ratio on frequency change 
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Figure 5: Effect of GPL weight fraction on frequency change. 

Figure 4 presents the effect of slenderness ratio on the frequency change (fc–f0)/f0, where fc 

and f0 denote the natural frequencies with and without GPLs. It is seen that the frequency gain 

is the highest for H-H beam (82.5%) whereas the lowest for C-C beam (63%). The rate of 

frequency change, however, is independent of the slenderness ratio for all beams. As revealed 

by figure 5, the frequency gain is almost doubled as the GPL weight fraction increases from 

0.5% to 1.5%. 

Figure 6 shows the dimensionless free vibration amplitudes of C-C, C-H and H-H beams 

under initial condition  ( )   .  and  ̇( )   . The vibration period, which is the lowest 

for the C-C beam among the three beams considered, becomes smaller when the beam is 

reinforced with GPLs. Figure 7 presents the dynamic responses of the same beams under a 

harmonic load QE = 0.001. As can be seen, the H-H beam has the highest vibration amplitude.  

Compared with the pure epoxy beam, the maximum vibration amplitude is considerably 

reduced with the addition of 1.5% w.t. GPLs into the epoxy matrix, confirming once again the 

remarkable reinforcing effect of GPLs on the dynamic performance of the beams. It should be 

also noted that this effect is most prominent in H-H beams. This is consistent with the 

observations obtained in natural frequencies. 
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Figure 6: Dimensionless free vibration response of beams with different end supports. 
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Figure 7: Dimensionless forced vibration response of beams with different end supports. 

5 CONCLUSIONS  

 Free and forced vibrations of GPL reinforced nanocomposite beam have been 

analytically investigated within the framework of Timoshenko beam theory. 

 The addition of a very small amount of GPLs can significantly improve the free and 

forced vibration performance of the nanocomposite beams. 

 The rate of frequency change increases at a higher GPL weight fraction but is 

independent of the slenderness ratio of the beam. 

 Among the three boundary conditions considered, the reinforcing effect of GPLs is more 

significant for an H-H beam than the other two. 
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Abstract. This paper studies the influence of the superstructure and foundation parameters of

offshore wind turbine (OWT) systems, as well as of the soil profile, on the magnitude of the as-

sociated soil-structure interaction (SSI) phenomena. The analyses are carried out by assuming

characteristic properties of real OWTs and of soil profiles based on North Sea boreholes. To

do so, a simplified substructuring model is proposed for the computation of the fundamental

frequency and equivalent damping of OWTs founded on monopiles including the SSI effects.

The whole superstructure is reduced to a three-degrees-of-freedom system through its modal

mass and height, while the foundation stiffness is represented by impedance functions. The

pile impedance functions are computed by a time-harmonic integral model that makes use of

Green’s Functions for the layered halfspace to represent the soil behaviour, while the pile is

represented by finite elements as a Timoshenko beam and treated as a load-line within the soil.

The obtained results confirm the necessity of considering the SSI effects for an accurate esti-

mation of both the fundamental frequency and equivalent damping of the soil-structure system.

Regarding the pile dimensions, the pile diameter plays a significant role on the magnitude of the

SSI effects, while the pile length has almost no influence. On the other hand, the results high-

light the importance of a good knowledge of the soil profile, as high differences are produced

between the homogeneous and variable-with-depth profiles, even when both present the same

mean shear velocity. The superficial soil layers are found to be the ones of crucial importance

when evaluating the SSI effects on the dynamic properties of OWT systems.
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1 INTRODUCTION

Wind energy has become in the last decades a viable and sustainable solution to the con-

tinuously increasing energy demand. Offshore wind turbines (OWT) present some advantages

over their onshore counterparts: better wind conditions, terrains with less occupancy, and lower

noise and visual impact on the population. This, together with the advances in the generators

technology, has produced a significant increment of offshore wind farms in the recent times.

Among the different foundations systems that are used for OWT constructions, the monopile is

preferred over the jacket or gravity-based foundations due to its simplicity and cost-efficiency.

The accurate estimation of the fundamental frequency of the OWT system is a keystone of

the design stage of these constructions. The fundamental frequency has to be kept away from

the excitation frequency content in order to prevent resonance effects. There are three principal

frequencies to avoid: the wind and wave frequencies (<0.1 Hz), the rotor frequency (1P) and

the blade-passing frequency (2P or 3P). Recommendation codes advise to place the system

fundamental frequency outside the ±10% range of the aforementioned frequencies [1]. In order

to correctly estimate the tower-foundation system fundamental frequency, the soil stiffness has

to be taken into account as the soil-structure interaction (SSI) effects can significantly reduce

the system fundamental frequency value. The dynamic characterization, i.e. computation of the

modified fundamental frequency and damping, of OWT structures including the SSI effects has

been the object of study for numerous recent works [2–21].

In his early work, Zaaijer [2] compared different methodologies used to estimate the struc-

tural fundamental frequency taking into account the soil effects. A Finite Element Method

(FEM) model including the American Petroleum Institute (API) p-y, t-z, Q-z curves was taken

as reference method and different foundation systems, such as monopiles, gravity footings and

jackets, were assumed. The best results were obtained by using impedance matrices, as inertia

effects in the foundation and non-linear soil-structure interaction were negligible. Thus, stiff-

ness matrix models are applicable for pile foundations under loading conditions relevant for the

fatigue analysis. The obtained numerical results were compared with measures from two wind

farms, resulting in acceptable predictions of the fundamental frequencies. However, Zaaijer

found that, as known from offshore practice, the models tend to underpredict the foundation

stiffness and, therefore, the system fundamental frequency. In the same work, Zaaijer also stud-

ied the sensitivity of the system fundamental frequency to variations in different parameters of

soil, structure, foundation and environment, obtaining that soil parameters dominate the uncer-

tainty of the natural frequency. The effect of the uncertainties in the soil profile was also studied

by Carswell et al. [8] through probabilistic methods focusing on the Serviceability Limit State

(SLS). They concluded that the system reliability shows the same sensibility to load as to soil

uncertainty.

Adhikari and Bhattacharya [3] enhanced the Bernoulli model developed by Tempel and

Molenaar [22] in order to include the effects of a flexible foundation and the tower axial load.

The pile foundation was represented by two frequency-independent springs simulating the lat-

eral and rotational stiffness. They illustrated the analytical results with numerical examples

and applied their model to real turbines. Later Bhattacharya and Adhikari [9] evaluated the

lateral and rotational foundation stiffness by direct measurement and compared their results

with those obtained from a small-scale prototype and from a FEM model. They observed that

analytical and FEM results overestimated, in general, the system natural frequency. More re-

cently, Arany et al. [4] further developed their model by including the cross-coupling term in

the foundation stiffness and using the Timoshenko theory to model the tower. They concluded
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that the cross-coupling spring term has a significant effect on the natural frequency, while the

Timoshenko beam model does not significantly improve the results, being the slender beam as-

sumption accurate enough. The effect of including the cross-coupling term was also studied by

Zania [5]. She presented an analytical iterative method to obtain the equivalent modified period

and damping due to SSI effects based on the pile impedance functions from Novak and Nogami

[23]. She concluded that disregarding the off-diagonal terms and the frequency dependency

of the impedance matrix is inappropriate, since it results in a non-conservative overestimation

of the fundamental frequency and underestimation of damping. This effect was more evident

as the height of the system increases. This conclusion might explain why Bhattacharya and

Adhikari [9] find that natural frequencies tend to be overestimated, disagreeing with what was

previously exposed by Zaaijer [2].

One of the drawbacks of using the impedance functions is that they are intrinsically defined

in the frequency-domain. Implementation into time-domain models allowing non-linear analy-

sis can be done by adopting methodologies such as lumped-parameter models (LPM) [24], as

done by Damgaard et al. [10, 11]. They developed different LPM to represent the impedance

functions of gravity [10] and monopile [11] foundations and implemented such models in the

aeroelastic code HAWC2. By studying the reference NREL 5MW OWT [25], they concluded

that the side-side response is more affected by the SSI than the fore-aft vibration for gravity

foundations; and that the SSI effects are critical in the design of OWT on monopiles as they

have a great impact on the fatigue damage equivalent moment at seabed. Their LPM was used

in a later work [12] to study the effect of changes in the soil properties on the system fundamen-

tal frequency, damping and fatigue loads in parked conditions. The changes of soil stiffness,

soil damping and the presence of sediment transportation at seabed were shown to be critical.

Bisoi and Haldar [6] made use of the p-y curves to represent the soil-pile interaction in a FEM

model that included wind and wave loads. They compared three soil profiles (homogeneous,

linear and parabolic) obtaining that the natural frequency marginally changes between them.

The three profiles presented the same properties at a depth equal to the pile diameter. They also

found that the effect of soil non-linearity increases for higher wind speeds. Damgaard et al.

[13] obtained the OWT fundamental frequency and damping by using both experimental data

from rotor-stop tests and a Winkler approach based on the p-y curves. The Winkler approach

together with a hysteresis loop method reasonably estimated the modal soil material damping.

Bhattacharya et al. [14] carried out small scale tests of OWT founded on monopiles and

tripods. They illustrated that the natural frequency of the overall system shifts with the number

of cycles of loading due to the softening or stiffening of the foundation. Lombardi et al. [7] fur-

ther studied this relation for monopiles on clay soils, obtaining that the fundamental frequency

decreases while the damping increases with the number of cycles of repeated loading. The drop

in the natural frequency is higher when the forcing frequency is close to the system natural

frequency.

Damgaard et al. [15] studied the influence of the water pore pressure on the estimation of

the tower fundamental frequency by combining a Kelvin and a bidimensional FEM models.

They compared the numerical results with experimental free-vibration tests, obtaining a better

agreement when the permeability of the soil was considered. Yu et al. [16] also investigated

the effect of the presence of water in the soil on the dynamic behaviour of OWT founded on

monopiles and gravity foundations by executing earthquake centrifuge tests. They demonstrated

that the SSI plays a significant role in the seismic behaviour of OWT, affecting the structural

settlement, foundation response and fundamental frequency of the system. They remarked the

difficulty of the observation and analysis, specially if soil liquefaction is produced.
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Bisoi and Haldar [17] addressed the optimization of the structural mass for 2 and 5 MW

OWT founded on monopiles in clay. The SLS, fatigue life and resonance avoidance criteria

were checked and p-y curves were used to model the soil-pile interaction. They found that the

rotor and nacelle mass and the tower height play a crucial role on design, while the embed-

ded depth of the monopile beyond the critical length has a marginal impact. Myers et al. [18]

analysed when the strength (resistance in operational and extreme conditions) or stiffness (res-

onance avoidance) criteria govern the design of monopiles for OWT, and presented optimum

pile sections that satisfied these demands. If a fixed base was assumed, the strength criterion

controlled the design; but when the soil flexibility was included, the stiffness criterion became

important in two of the three studied sites, corresponding to deeper water depths.

Despite most of the studies focus on the tower lateral vibrations, there are several works

related to other vibration modes. Kjørlaug and Kaynia [19] studied the vertical seismic response

of the NREL 5MW OWT, showing that the tower could amplify up to two times the vertical

accelerations at the seabed. On the other hand, Tibaldi et al. [20] showed that, in addition to the

structural modes, the blade and additional aeroelastic modes can play a significant role in the

structural response during operational conditions.

An interesting associated phenomenon is highlighted, for instance, by Hu et al. [21], who

showed the tendency of the system to easily get stuck in resonance, exposing the necessity of a

good estimation of the system fundamental frequency in generators with variable rotor speed.

2 PROBLEM DEFINITION

OWT structures founded on monopiles consist of the assembly of three parts: the tower, a

transition piece and the pile. The tower is usually a conical hollow beam that supports the rotor

and generator nacelle. The monopile is a cylindrical hollow beam that is driven into the seabed,

so part of it lays under the soil while another part stays submerged and also can reach the sea

level. Both the tower and monopile are connected through a transition piece, being the access

point to the structure, usually employed for maintenance and repair activities.

The whole system can be divided into two different parts: the foundation and the (su-

per)structure. The foundation corresponds to the pile length embedded in the seabed and is

the part of the system that interact with the soil. On the other hand, the structure corresponds

to the part of the system above soil. In some cases, only the structure is analysed during the

design stage of the OWT system by considering an infinitely rigid base. If this assumption is

made, the dynamic behaviour of the superstructure can be represented by its fixed-base funda-

mental frequency fn and modal damping ratio ξ. However, as the soil does not behave as an

infinitely rigid body, the SSI effects modify the foundation-structure dynamic properties: re-

ducing the fundamental frequency and changing (increasing or decreasing) the damping ratio.

This work aims to quantify these changes by computing the system fundamental frequency f̃n
and equivalent damping ratio ξ̃ including the SSI effects.

2.1 Structure definition based on real OWT data

As mentioned before, the superstructure consists of three components: tower, transition piece

and monopile (above soil). A set of real OWT structures that have been studied in the literature

is taken as starting point in order to stablish the dimensions and properties of the systems under

analysis. The first group (OWTs 1-12) corresponds to different constructions from wind farms

built in the United Kingdom [26]; while OWTs 13-16 are four OWT systems that have been

recursively studied by some authors [2–7]. As no detailed information was accessible about the
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dimensions of the transition piece, in this study only the tower and pile lengths are considered.

The tower is defined by the tower heigh Ht, tower base Dbot and tip Dtop external diameters,

and tower thickness ratio δt, which represents the ratio between the inner and outer diameters

of the tower cross-section. The thickness ratio is assumed to present the same value along

the tower, so thicker walls are located at the tower base. The mass of the rotor and nacelle

components is represented by a punctual mass MRNA. Table 1 shows the values of the tower

variables for the set of OWT systems analysed.

OWT MRNA (103 kg) Ht (m) Dtop (m) Dbot (m) δt (%)

1-2 Vestas 2MW-V66 80 60-78 2.3 4.2 98.0

3-4 Vestas 3MW-V90 111 8-105 2.3 4.2 98.0

5-6 Vestas 2MW-V80 94 60-100 2.3 4.2 98.0

7-8 Siemens SWT-3.6-107 220 80-96 2.3 4.2 98.0

9-10 Vestas 2MW-V80 94 60-100 2.3 4.2 98.0

11-12 Siemens SWT-3.6-107 220 80-96 2.3 4.2 98.0

13 Lely A2 NM41-2bladed 32 41.5 1.9 3.2 99.0

14 North Hoyle 2MW-V80 100 70 2.3 4.0 97.6

15 Irene Vorrink 600kW 36 51 1.7 3.5 99.0

16 Walney S1 3.6MW 234 83.5 3.0 5.0 97.9

Table 1: Tower dimensions for the studied OWT systems.

The monopile is defined by the above-soil pile height Hp, the pile embedded length Lp, the

pile external diameter Dp, and the pile thickness ratio δp, which represents the ratio between

the inner and outer diameters of the pile cross-section. Table 2 shows the values of the pile

variables for the set of OWT systems analysed. Due to lack of specifications, the pile height is

assumed to be equal to the water level. Both the tower and monopile are assumed to be made of

steel (Young’s modulus E = 210 GPa, density ρ = 7850 kg/m3 and Poisson’s ratio νp = 0.25).

OWT Hp (m) Lp (m) Dp (m) δp (%)

1-2 Vestas 2MW-V66 11 15 3.5 97.4

3-4 Vestas 3MW-V90 10 28 4.3 97.9

5-6 Vestas 2MW-V80 20 31 4.2 97.6

7-8 Siemens SWT-3.6-107 19 11 4.7 97.7

9-10 Vestas 2MW-V80 21 33 4.0 98.2

11-12 Siemens SWT-3.6-107 25 30 4.7 97.7

13 Lely A2 NM41-2bladed 4.6 21 3.7 98.1

14 North Hoyle 2MW-V80 11 33 4.0 97.5

15 Irene Vorrink 600kW 3.8 19 3.5 98.4

16 Walney S1 3.6MW 20 31 4.2 97.6

Table 2: Monopile dimensions for the studied OWT systems.

2.2 Foundation definition based on real OWT data

The foundation consists of the portion of the monopile embedded in the seabed. Thus, the

same properties that are shown in Table 2 define the dimensions of the foundation of each OWT

system.
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As can be seen from the collected data, there is no apparent relation between the dimensions

of the structure and foundation or between the pile diameter and embedment length. In order to

contemplate different possibilities and to study the effect of the foundation dimensions on the

SSI effects, a set of three pile diameter values (Dp = 3, 4 and 5 m) combined with a set of three

pile embedment lengths (Lp = 15, 25 and 35 m) will be considered in the parametric analysis

carried out in section 5. The pile thickness ratio is obtained as a function of the pile diameter

following the API recommendations [27]:

δp ≈ 98−
1.274

Dp

(%) (1)

Finally, as the Timoshenko beam theory is used to model the pile (see section 3.2), the shear

coefficient αp = 0.5 for hollow circular cross-sections is assumed.

2.3 Soil profile definition based on real boreholes

Attempting to study the SSI effects for soil profiles close to real seabed, two typical boreholes

(Nelson Field and Hutton TLP) of the North Sea [28] are selected as reference profiles in this

work. As these soils consist of different layers of clay and sand, two additional soil profiles

formed only by clay or sand are also included in the analyses. The profiles are presented in

terms of the shear wave propagation velocity cs, which is obtained as a function of the material

and depth z through the expression provided by Ohta and Goto [29]:

cs(z) = 78.98z0.312





1.000 clay

1.260 fine sand

1.286 medium sand



 (m/s) (2)

Fig. 1 shows the evolution with depth of the aforementioned soil profiles together with their

mean value cs,30 [30], as this value is a common choice to characterize the soil. Additionally,

a homogeneous profile with cs = 180 m/s (close to the Nelson Field mean shear velocity) is

also included in the study in order to contrast whether the homogeneous assumption is a valid

option.

For depths greater than 80 m, the shear velocity is kept constant with depth (halfspace do-

main). For all profiles, depth-independent soil density ρs = 1800 kg/m3, soil Poisson’s ratio

νs = 0.35 and soil hysteretic damping ratio ξs = 5% are assumed. Nevertheless, in section 5.1

the influence of the soil Poisson’s ratio is studied by varying its value between 0.35-0.49, as

higher ratios are commonly used to represent saturated soils.
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Figure 1: Soils profiles used in the study. Evolution with depth of the shear wave velocity and cs,30 mean value.
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Figure 2: Three-step methodology illustration.

3 METHODOLOGY

Fig. 2 depicts the proposed three-step methodology for the dynamic characterization of

the foundation-structure system: on one hand, the superstructure is represented by a single-

degree-of-freedom whose mass, height and stiffness are determined by the modal properties

of the OWT structure; on the other hand, the monopile foundation stiffness is represented by

a set of impedance functions. The scope of this study is to analyse the lateral fundamental

mode of vibration, so both steps can be reduced to two-dimensional problems. Finally, both the

superstructure and foundation representations are coupled together into the final substructuring

model.

3.1 FEM formulation for the modal characterization of the structure

In order to obtain the mass and height that will characterise the superstructure system a modal

analysis is made based on a FEM representation of it. The choice of FEM instead of using ana-

lytical expressions is made due to the combination of the tapered (tower) and cylindrical (pile)

sections of the OWT structure. Furthermore, with the FEM one can easily assume different

properties for each element in order to include additional mass or stiffness due to constructive

elements. As the effects of the foundations are not included at this step, the structure is assumed

to be placed on an infinitely rigid base.

The structure is modelled as Bernoulli beams by using two-node Hermitian elements with

four degrees-of-freedom corresponding to the lateral displacements and rotations. An enough

number of constant-section elements are used for both the conical and cylindrical lengths, based

on a convergence study. The rotor and nacelle punctual mass MRNA is included at the tower tip

node. For the submerged pile elements, the hydrodynamic water added mass and the mass of

the water inside the pile are also included through a modified density. This mass inclusion does

not affect the results of the fundamental mode of vibration [5], even though the system total

mass is significantly increased.

Considering time-harmonic displacements and forces, the system equation of motion results

in:

(K− ωM)u = Fext (3)

where K and M are the global stiffness and mass matrices obtained by the assembly of the

elemental ones; u is the vector of nodal displacements and rotations and Fext is the vector of
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external nodal loads. The structure modal analysis is made by solving the eigenvalues prob-

lem |K− ω2
M| = 0, so the fixed-base fundamental frequency ωn and its modal shape φn are

obtained as the smallest eigenvalue and its eigenvector respectively. Then, the base shear effec-

tive modal mass M∗ and height H∗ of the structure to a base acceleration excitation [31] are

computed as:

M∗ =

(
φ

T
nMι

)2

φ
T
nMφn

; H∗ =
h
T
Mφn

φ
T
nMι

(4)

being ι the influence vector and h the height vector (having the node height in the displacement

terms and unitary value in the rotation ones). The base shear effective modal mass represents

the mass of a single-degree-of-freedom that is equivalent to the studied system in producing the

same base shear force at the fundamental frequency. The base shear effective modal height cor-

responds to the height of the aforementioned modal mass for which the modal mass vibrating at

the fundamental frequency produces the same base overturning moment as the studied system.

This modal parameters are chosen to represent the whole structure as the base shear force and

moment are the excitation forces that affect the foundation.

3.2 Foundation impedance functions

The foundation stiffness is modelled through a set of four impedance functions: the hori-

zontal KHH , rocking KRR and coupled horizontal-rocking KHR, KRH terms. Each term Kij

relates the force or moment in direction i with the displacement or rotation in direction j. The

impedance functions are frequency-dependent and its real and imaginary components corre-

spond to the stiffness and damping terms, respectively.

For the computation of the monopile impedance functions, a previously developed three-

dimensional time-harmonic model [32] is used. The model represents the soil behaviour through

an integral formulation based on the dynamic reciprocal theorem and making use of Green’s

Functions for the multilayered halfspace [33], while the pile is modelled as a Timoshenko beam

though FEM. Both formulations are coupled assuming that the pile is a load line acting within

the soil and imposing compatibility (welded boundary condition in the pile-soil interface) and

equilibrium (on the pile-soil interaction tractions) conditions, resulting in a system of linear

equations where the pile displacements, pile head external forces and soil-pile interaction trac-

tions are the system unknowns. In order to compute each impedance term, the corresponding

pile head displacements are prescribed and the system of equations is solved for the pile head

forces.

3.3 Substructuring simplified model for the dynamic characterization of the system

At this point, the structure and foundation have been reduced into a single-degree-of-freedom

mass and a set of impedance functions respectively. Both are coupled together resulting in a

three degrees-of-freedom model where the unknowns are the mass deflection u relative to the

base and the base lateral displacement ub and rotation θb (see Fig. 2). In order to find the

dynamic characteristics of the system, a ground lateral acceleration is assumed as the external

excitation yielding the following equations of motion:







K∗ u−M∗ω2 (u+ ub +H∗θb) = −M∗u̇g

KHH ub +KHR θb −M∗ω2 (u+ ub +H∗θb) = −M∗üg

KRH ub +KRR θb −M∗ω2H∗ (u+ ub +H∗θb) = −M∗ügH
∗

(5)
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The term K∗ = ω2

nM
∗(1 + 2iξ) represents the structural lateral stiffness corresponding to

the fundamental mode. The structural damping is also represented by its complex component

as the modal damping factor ξ is included. The lateral ground acceleration üg is used as the

system excitation as the modal mass and height are obtained under the same assumption.

An equivalent single-degree-of-freedom oscillator reproducing the system response is searched

for computing the flexible-base fundamental frequency ω̃n and damping ξ̃ of the system [34, 35].

An hysteretically damped oscillator is assumed and the equivalence is established in terms of

the maximum value of the base shear force per effective seismic force [31] transfer function :

Q(ω) =

∣
∣
∣
∣

ω2

nu

üg

∣
∣
∣
∣
≈

∣
∣
∣
∣

1

(1− ω2/ω̃2
n) + 2iξ̃

∣
∣
∣
∣

(6)

By iteratively solving eq. 5, the flexible-base fundamental frequency is obtained as the fre-

quency at which the maximum value of the transfer function Qm is produced, while the equiv-

alent damping factor is calculated as ξ̃ = 1/(2Qm).
The proposed simplified model is validated against an enhanced FEM model including the

foundation stiffness. For that purpose, eq. 3 is modified by adding into the stiffness matrix

the foundation impedance functions in the terms corresponding to the ground node, and by as-

suming an horizontal base acceleration as excitation Fext = −Mιüg. Then, the flexible-base

fundamental frequency is obtained as the frequency where the maximum value of Q(ω) takes

place. Differences below 1% are produced for the studied soils between the proposed method-

ology and the enhanced FEM formulation, revealing the ability of the three-step procedure to

correctly capture the foundation-structure system fundamental frequency.

4 MODAL CHARACTERIZATION OF THE STUDIED OWT STRUCTURES

Table 3 shows the modal parameters obtained for the set of studied OWT structures once

the procedure presented in section 3.1 is applied. Most of the constructions present fixed-base

fundamental frequencies between 0.2-0.5 Hz, agreeing with the typical range for medium-sized

OWT constructions. Additionally, OWTs 14 and 16 present higher fundamental frequencies

due to their limited size (see Table 1) that makes them more rigid structures. The modal height

and mass are strongly related to the physical dimensions of the structure, being the first about

85-90% of the system total height and the later around 30% of the system total mass.

OWT fn (Hz) H∗ (m) M∗ (103 kg)

1 0.53 60.8 170

2 0.37 75.4 188

3 0.35 80.1 206

4 0.23 100 232

5 0.49 66.3 216

6 0.24 100 239

7 0.25 91.0 329

8 0.19 105 341

OWT fn (Hz) H∗ (m) M∗ (103 kg)

9 0.42 65.2 236

10 0.22 98.7 258

11 0.24 94.3 355

12 0.19 109 363

13 0.83 43.2 46

14 0.42 70.8 203

15 0.61 51.3 51

16 0.26 89.1 469

Table 3: Modal parameters for the studied OWT systems.

A strong relation between the modal parameters and the fixed-base fundamental frequency

is found when analysing the obtained results. Thus, a second order polynomial fitting can be

used to express the modal mass and height as functions of the fixed-base fundamental frequency
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Figure 3: Modal parameters for the studied set of OWTs (crosses). Modal height and mass fitting expressions as a

function of the fixed-base fundamental frequency (red lines). Relation between the modal height and mass through

the fitting expressions (blue lines).

without significant errors, as shown in Fig. 3. The proposed polynomials allow to study a range

of structures that follow the typical dimensions for OWT on monopile constructions instead of

just a finite set of systems.

For illustration purposes, the variations in the system fundamental frequency and damping

due to the SSI effects assuming a foundation consisting of a pile with Lp = 25 m and Dp = 4
m embedded in the Nelson Field profile are plotted in Fig 4 against the fixed-base fundamental

frequency. The crosses are obtained by using the real modal parameters of the studied OWT

structures, while the continuous lines are obtained by assuming the relation between the modal

mass or height and the fixed-base fundamental frequency given by the fitting polynomials. The

results show that the use of the fitting expressions adequately follows the behaviour of the real

structures.
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Figure 4: Variations in the system fundamental frequency and damping due to SSI effects. Comparison between

the results of the fitted (line) and actual (crosses) modal parameters. Pile foundation with Dp = 4 m and Lp = 25
m embedded in the Nelson Field soil profile. Structural modal damping ξ = 1%.

4.1 Influence of the modal parameters on the system dynamic properties

In order to explain the results obtained in Fig. 4, the effects of each one of the modal param-

eters have to be analysed individually. Fig. 5 presents the variations in the system fundamental

frequency and damping due to the SSI effects assuming a fixed value of two of the modal param-

eters while varying the other. Different pairs of constant parameters are employed in order to

contemplate different combinations and their values are chosen in order to be within the studied

ones. The same foundation dimensions and soil profile as in Fig. 4 are considered.

Attending to Fig. 5, all modal parameters increase the SSI effects if their values augment.

On one hand, an increment in the system stiffness is produced if the modal mass or fixed-base
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Figure 5: Influence of the modal parameters on the fundamental frequency and damping variations. Pile foundation

with Dp = 4 m and Lp = 25 m embedded in the Nelson Field soil profile. Structural modal damping ξ = 1%.

fundamental frequency increase while the other remains unaltered. Then, if the system stiffness

augments, the soil will be relatively softer yielding higher frequency and damping variations.

On the other hand, the increment of the SSI effects with the structural height has been reported

in numerous studies, eg. [5, 34]. Now, the shape of the previous curves can be explained

considering that in the their first part, the SSI effects increase owing to the increment in the

fixed-base fundamental frequency, while in the last part the effect of the reduction in the modal

mass and height has more importance.
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Figure 6: Influence of the fixed-base structural modal damping on the damping variations. Pile foundation with

Dp = 4 m and Lp = 25 m embedded in the Nelson Field soil profile.

Finally, in Figs. 4 and 5 a structural modal damping ξ = 1% was assumed, as a typical

value for studying OWT structures [36]. However, if another damping ratio is considered, the

SSI effects does not change it to the same extent, as illustrated by Fig. 6. The figure shows

the relation between the flexible and fixed-base damping ratios that is obtained by assuming

different modal damping ratios (ξ = 1-8%). Again, the same foundation and soil as in the

previous results are considered. For a modal damping ξ = 3% virtually no variations are seen.

As the modal damping goes away from this value, the variations become stronger: increasing

the flexible-base damping ratio for ξ < 3% and decreasing it otherwise. Nevertheless, the

4371
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frequency range at which the system is more sensitive to the SSI effects, i.e. stronger variations,

is almost the same.

5 INFLUENCE OF THE SSI EFFECTS ON THE SYSTEM DYNAMIC PROPERTIES

Figures 7 and 8 present the variations in the fundamental frequency and damping of the sys-

tem due to the SSI effects as a function of the structure fixed-base fundamental frequency. The

pile dimensions and profiles introduced in section 2 are used in order to define the foundation

characteristics, while the polynomial fittings of the modal parameters presented in section 4

together with a modal damping ξ = 1% are used to define the structures.
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Figure 7: Variations in the system fundamental frequency and damping due to SSI effects. Results grouped by soil

profile.

First, Fig. 7 shows the results corresponding to the same soil profile in each graph in order

to manifest the effects of the monopile dimensions. Attending to the results, the pile diameter is

found to play a significant role as its dimension is strongly related to the foundation stiffness: the

higher the diameter, the stiffer the foundation yielding lower variations in the system frequency

and damping. On the contrary, the pile length plays a minor role in the magnitude of the SSI

effects as the results slightly vary between one value to other, being the damping variations

more affected by this factor. The small influence of the pile length is explained assuming that

the highest lengths are over the pile critical length.

On the other hand, Fig. 8 shows the results corresponding to all the studied soils in the

same graph in order to analyse the differences between each profile. As mention before, the

results marginally change depending on the pile length, thus only the curves corresponding to

one length value are presented. The results for the Nelson Field, Hutton TLP and Clay pro-

files are virtually the same, showing that the superficial layers of the profiles are the ones that

govern the studied problem. As expected, for harder soils (in terms of the cs of the superficial

layers), the variations in the system fundamental frequency and damping are reduced. It is im-

portant to notice that significant differences are produced between the variable profiles and the

homogeneous assumption, despite that all soils present close values of the cs,30 mean velocity.
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5.1 Influence of soil Poisson’s ratio

Fig. 9 presents the variations in the fundamental frequency and damping of the OWT system

for the Nelson Field profile and considering different values of the soil Poisson’s ratio. This

analysis is made in order to show the influence of this parameter on the SSI effects, as high

Poisson’s ratios are commonly used to represent saturated soils. Values of νs between 0.35-0.49

are used, while the rest of soil properties have the same values introduced in section 2.3.
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Figure 9: Variations in the system fundamental frequency and damping due to SSI effects. Influence of the soil

Poisson’s ratio.

The results of Fig. 9 show that increasing the soil Poisson’s ratio has almost no influence on

the SSI effects, as recently found by Daamgard et al. [12]. As the Poisson’s ratio augments, the

soil becomes slightly more rigid and, therefore, the variations in the system fundamental fre-

quency and damping are marginally reduced. However, practically the same results are obtained

for the extreme cases of νs = 0.35 and 0.49. This effect is seen for all the studied profiles.

6 CONCLUSIONS

This work introduces a simplified substructuring model to analyse variations in the funda-

mental frequency and damping of OWT-monopile systems due to the SSI effects. Only the

fundamental mode of the superstructure is taken into account in terms of the base shear ef-

fective modal mass and height, while the foundation stiffness modelling is addressed through

impedance functions. The proposed methodology agrees well with the results of a more elabo-

rated FEM formulation that takes all modes into account.
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The effect of real soil profiles are studied based on typical boreholes of the North Sea,

while relations between the modal mass or height and the fixed-base fundamental frequency

that are characteristic for the studied type of constructions are obtained based on data from real

OWT systems found in the literature. The results showed reductions of 5-20% in the system

fundamental frequency, revealing the importance of the consideration of the SSI effects when

analysing the dynamic behaviour of this type of structures.

Finally, the soil profile is found to play a fundamental role in the magnitude of the SSI effects,

specially the superficial layers. The use of a homogeneous soil with mean properties close to

the actual profile is not valid to study the SSI effects as significantly smaller variations in the

system fundamental frequency and damping are produced under this assumption.
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Abstract. The method of the dynamic analysis of special cars with a high gravity centre is 

presented in this article. The method proposed by the authors includes a comprehensive math-

ematical model of the car, and this model is supplemented with the models of uneven road 

surface, algorithms to determine the contact point between the tire and the road surface, and 

programs to perform computer simulations. In the article the mathematical model of the coop-

eration between road surface and tires are discussed in details. As it is known the road acts on 

the tire in a form of the reaction forces which should be applied in the concrete point named 

“contact point C”. Thus, it is very important to determine this point location correctly. For this 

purpose the special mathematical models of the road surface and the algorithms to define the 

contact point location are developed. Two mathematical models of the road are discussed –

continuous and discrete one. Two algorithms to find the location of the contact point are pre-

sented, as well. According to the conception of the authors names of the algorithms refer to the 

essence of the matter of the procedures assumed. The first of them – named Plane – can be used 

considering the continuous model of the surface, and the second – named 4Points – in the case 

of the discrete model of this surface. 
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1 INTRODUCTION 

While designing special cars with a high gravity centre (Figure 1), which move along the 

uneven road surface and are prone to a loss of stability (e.g. rollover), an essential issue is to 

take a preparation phase into account and to investigate a mathematical model of a constructed 

car.  

Figure 1 Technical rescue vehicle of fire service as an example of a special vehicle with a high gravity centre 

While considering motion of these type of cars on uneven road surface an important issue 

is to determine cooperation between road surface and tires. In this case a mathematical road 

surface model and also special algorithms for determine a location of contact point are needed. 

Computer simulations of a motion of this model, performed in a case of different variants 

of constraints, can predict a lot of potential threats, and the conclusions drawn from them can 

constitute important guidelines for car designers. It is important for the prepared mathematical 

model of the car to be a sufficiently accurate representation of the real system. According to the 

car designers the computer simulations of an appropriately prepared mathematical model enable 

to shorten time of testing on a real prototype of the car, and also to reduce costs of the designing 

process.  

2 MATHEMATICAL FORMALISM 

For needs of the dynamics analysis, vehicles with high gravity centre can be modeled as 

multibody systems in a form of open kinematic chains. In this case the location (the position 

and orientation) of particular bodies should be know. Authors of the proposed method use joint 

coordinates basing on the approach applied in robotics. The proposed method is based on use 

of the homogenous transformation matrices with dimensions 4x4, which enable to make trans-

formations between the assumed coordinate systems (related with bodies) [1]. 

If a position of any point 𝐴 in the given coordinate system {𝑗}, expressed by position vector 

𝐫𝐴
{𝑗}

 of dimensions 3x1, is known, then the position of this point in the coordinate system {𝑖} 

can be determined by the position vector 𝐫𝐴
{𝑖}

 of dimensions 3x1 (Figure 2) using only one 

arithmetic operation, namely multiplication: 

𝐫𝐴
∗ = 𝐓{𝑗}

{𝑖}{𝑖}
𝐫𝐴

∗{𝑗}
 (1) 
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where: 𝐫
{𝑖}

𝐴
∗ = [ 𝐫

{𝑖}
𝐴

1
], 𝐫

{𝑗}
𝐴
∗ = [ 𝐫

{𝑗}
𝐴

1
] - position vectors of dimensions 4x1, named vectors of 

homogenous coordinates, determining the position of point 𝐴 in the system {𝑖} and {𝑗}, 

respectively, 

𝐓{𝑗}
{𝑖}

= [
𝐑{𝑗}

{𝑖}
𝐫𝑗

{𝑖}

0 0 0 1
] – the transformation matrix of dimensions 4x4 from the  coor-

dinate system {𝑗} to the system {𝑖}, 

𝐑{𝑗}
{𝑖}

= [

�̂�𝑗 ⋅ �̂�𝑖 �̂�𝑗 ⋅ �̂�𝑖 �̂�𝑗 ⋅ �̂�𝑖

�̂�𝑗 ⋅ �̂�𝑖 �̂�𝑗 ⋅ �̂�𝑖 �̂�𝑗 ⋅ �̂�𝑖

�̂�𝑗 ⋅ �̂�𝑖 �̂�𝑗 ⋅ �̂�𝑖 �̂�𝑗 ⋅ �̂�𝑖

] – the rotation matrix of dimensions 3x3 from the co-

ordinate system {𝑗} to the system {𝑖} (elements of this matrix are dot products of the 

versors). 
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Figure 2. Determining the 𝐴 point position in the coordinate system {𝑖} and {𝑗} 

3 MATHEMATICAL MODEL OF THE CAR 

In the vehicle model, assumed in the form of open kinematic chain, 12 subsystems as rigid 

bodies were distinguished: frame, cabin, engine, car body, front and rear axle, two axle stubs, 

wheels connected by 6 spring-damper elements, respectively (Figure 3). 
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Cabin 

Frame 

Vehicle body 

Front bridge Wheel with tire 

Engine 

Stub axles 

Rear bridge 

Figure 3 Components of the modelled car 

The structure of the discussed chain can be considered as a tree structure, in which each body 

has a determined number of degrees of freedom (dof) in relation to the preceding body (see 

Figure 4). The vehicle model in question has 19 degrees of freedom. 

Figure 4 Models of the sub-assemblies forming the tree structure of the considered multibody system, where: (𝑝) 

– body number in the multibody system; �̃�(𝑝), �̃�(𝑝), 𝑧(𝑝), �̃�(𝑝), �̃�(𝑝), �̃�(𝑝) – generalized coordinates of this body

(𝑝 = 1, … ,12) described in relation to the preceding body 

The frame model is a root of the tree, and its motion is described in respect to a global reference 

coordinate system {0}. the generalized coordinates of the frame model are displacements of the 

origin of the coordinate system {1} – longitudinal �̃�(1) , lateral �̃�(1) , and vertical �̃�(1)  deter-

mined in the coordinate system  and the successive angles of rotation of this model around 

the axis (unit vectors) �̂�(1), �̂�(1), and �̂�(1) of the coordinate system – yaw �̃�(1), pitch �̃�(1),
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and roll �̃�(1). The other models of sub-assemblies are connected directly or indirectly with the

frame respectively.  

In the doctoral dissertation [10], the detailed description of the process of mathematical mod-

eling of the analyzed vehicle leading to formulation of the equations of motion is presented, 

and they can be written as: 

   









wqD

qqfDrqqA




T

tt ,,,
(2) 

where:  𝑡 – time, 𝒒, �̇�, �̈� – vectors of generalized coordinates, velocities and accelerations of 

considered mathematical model; 𝑨 – mass matrix; 𝑫 – matrix of coefficients corresponding to 

particular reaction forces; 𝒓 – vector of unknown reaction forces; 𝒇 – vector of generalized 

forces and derivatives of kinetic energy, potential energy, Rayleigh’s dissipation function; 𝒘 – 

vector of right sides of constraint equations. 

To determine reaction forces and moments of interacting of the road surface on the vehicle 

wheel tires Pacejka’s tire model was used [8]. Those reactions are applied at a contact point 𝐶 

of the tire model with the road surface. Detailed algorithms for modeling of the road surface, 

and algorithms which allow determining the position of contact point 𝐶 in the coordinate sys-

tem  are presented in next section. 

4 MATHEMATICAL MODEL OF THE UNEVEN ROADS 

For the purpose of the developed method, two ways of road surface modeling including 

occurrence of possible unevenness of any shape, were proposed.  

4.1 The continuous model of the road surface 

In the continuous model, the Bicubic interpolation [5] was used for the mathematical repre-

sentation of the road surface, thus for determining the three dimensional interpolation surface. 

The input data are here the points in the three dimensional space – so called control points 

(interpolation nodes). The points located between these nodes are searched.  

Let 
jiP,
  and P   mean the xy plane projections of the control point ),,(, iiiji zyxP  and the 

searched point ),,( PPP zyxP  respectively, being on the interpolated surface, of which first two 

coordinates Px  and Py  are known. Then, the third coordinate 
Pz  of the searched P point is de-

termined by transforming the given grid cell specified by points jiP,
 , jiP ,1

 , 1,1 


jiP 1, 

jiP , into 

the square of the side length equal to 1 (Figure 5). 
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Figure 5 Transforming the selected grid cell 

After transformations, coordinate zP is calculated according to the formula: 


 


3

0

3

0

,),(),(
i j

i

P

i

PjiPPPPPP yxayxfzyxfz , (3) 

where: 1;0

1

1




























ji

jP

P

ii

iP
P

yy

yy
y

xx

xx
x x̅P =

xP-xi

xi+1-xi

y̅P =
yP-yj

yj+1-yj

} ∈ 〈0; 1〉 are the new coordinates of point P . 

Formula (3) contains 16 unknown coefficients ai,j, which are determined according to the 

method described in the doctoral dissertation [10].  

From analyses made within the scope of the cited doctoral dissertation, it results that smooth 

interpolation surfaces are obtained when the continuous model is used, and they have an ad-

vantageous influence on efficiency of the calculation process performed in the scope of the 

analysis of the vehicle dynamics. However, the continuous model does not allow imitating un-

evenness of the road surface, which fragments are flat in some places (e.g. a vehicle drives 

through a speed bump on one side, and on the other it drives over the flat surface). In such a 

case, the discrete model should be taken into account. 

4.2 The discrete model of the road surface 

In the discrete model of the road surface developed by the author of the cited doctoral 

dissertation, it was assumed that this surface is modelled by the surface area built out of trian-

gles (Figure 6). 
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}0{ Ẑ

X̂
Ŷ

Figure 6 Example of the road surface fragment modelled by triangles 

A number of triangles and their sizes are selected to represent the real shape of the road 

surface as accurately as possible. 

The surface area made of the triangles can be defined on the basis of two sets: 

1.  ),,(...,),,,(,...),,,( 1111

)(

nnnniiii

P zyxPzyxPzyxPS  – a set of all points from

which the triangles are built, where ),,( iiii zyxP Pi(xi, yi, zi); 

2.  )()()1()( ...,,...,, mivS vvv – a set of 3-element vectors defining all the triangles, that

is  Tiiii vvv )(

3

)(

2

)(

1

)( v , where }...,,1{,, )(

3

)(

2

)(

1 nvvv iii   are indexes of the points 

(from the S(P)set) being vertexes i -th of this triangle. It means mathematically that

for each element of the )(vS  set a mapping function, which indicates that the )(i
v

element from the )(vS set describes a triangle of vertexes )(
3

)(
2

)(
1

,, iii
vvv

PPP , was deter-

mined in a form of: },,{ )(
3

)(
2

)(
1

)(
iii vvv

i PPPv v(i) ↦ {P
v1

(i) , P
v2

(i) , P
v3

(i)}. 

It should be emphasised that one element (a point) from the S(P)set can be a common ele-

ment (a point) for two or more triangles simultaneously. 

As in the continuous model, a position of the ),,( PPP zyxP  point being in the surface area 

in question is searched and its coordinates Px  and Py  are known (Figure 7). The 
Pz  coordinate 

of point P can be determined in a way described further in this article. 

Let point P be in the area of the k triangle of vertexes P
v1

(k) , P
v2

(k) , P
v3

(k)  (Figure 7). 

Px
Py

Pz

),( PP yx

),,( PPP zyxP

)(
2
k

v
P

)(
1

k
v

P

)(
3
k

v
P

k 

z

x

y

Figure 7 Position of the searched point P on the surface area modelled by the trianglesP 
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The vertexes of this triangle determine the plane of which the normal equation has the fol-

lowing form:  

0)()()()(  kk

x

k

x

k

x zeyexe  , (4) 

where: 
)(k

xe , 
)(k

ye , )(k

ze  – elements of the )(ˆ k
e  versor normal to the k  triangle surface area, 

 l

k

zl

k

yl

k

x

k zeyexe )()()()(  , where l  should be taken as any number from set  )(

3

)(

2

)(

1 ,, kkk vvv . 

Versor )(ˆ k
e  can be determined by the vector product: 

)(

3,1

)(

2,1

)(

3,1

)(

2,1)(ˆ
kk

kk

k

pp

pp
e




 , (5) 

where: 

p1,2
(k)

– the vector with the beginning in point )(
1

kv
P  and the end in point )(

2
kv

P , 

)(

3,1

k
p  – the vector with the beginning in point P

v1
(k) and the end in point )(

3
kv

P . 

Having the plane equation determined in (4), the searched zP coordinate of the point P  can 

be determined from the formula: 

)(

)()()(

k

z

k

P

k

yP

k

x

P
e

yexe
z


 , (6) 

for 0)( k

ze , excluding the situation when the k triangle plane is perpendicular to the xy plane 

– those cases do not concern this work.

In the described procedure, it was assumed that the vertexes of the triangle, on which there is 

point P, are known. However, identification of this triangle is not a trivial task. It becomes 

especially difficult in a case of computer simulations where short time of calculations is usually 

significant. Therefore, it is essential to develop an appropriate algorithm of the triangle identi-

fication of the surface area in question. The trivial solution of the triangle identification problem 

consists of searching the whole set of triangles )(vS and checking if the searched element is in 

the surface area of this triangle. In this case, for each triangle ( mk ...,,1 ) the plane equation (4) 

should be determined, and it should be checked if the P point is in its fragment specified by 

vertexes P
v1

(k) , P
v2

(k) , P
v3

(k). Such an algorithm does not belong to efficient regarding calculating, 

and because of three dimensionality it may prove to be problematic. Much better results can be 

obtained by reducing the problem to a two dimensional issue and narrowing appropriately the 

set of the searched triangles. In this work, the developed algorithm was divided into two stages: 

“reducing the problem to a two dimensional issue” and “limiting the search set”. These stages 

are detailed explained in doctoral dissertation [10]. 

4.3 Normal versor to modeled road surface 

Each of the presented road surface models can be characterized by an equation of the as-

sumed mapping surface in the form of: 

𝑧 = 𝑧(𝑥, 𝑦). (7) 

In further considerations it is assumed that in any point 𝑃  of this surface of coordinates 

𝑥𝑃, 𝑦𝑃, 𝑧𝑃 determined in any immovable coordinate system {0} assumed, being a reference sys-

tem (Figure 8), normal versor �̂� to this surface is known. 
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),,( PPP zyxP

Figure 8. Normal versor �̂� to the mapping surface in point 𝑃(𝑥𝑃 , 𝑦𝑃 , 𝑧𝑃)

According to the suggestions presented in work [3], in the case of the continuous model of the 

road surface, in the neighborhood of point 𝑃 (Figure 9), it is assumed that there are four auxil-

iary points of the coordinates determined in reference system {0} as: 

𝑃(𝑥+)(𝑥𝑃 + 𝛥, 𝑦𝑃, 𝑧(𝑥𝑃 + 𝛥, 𝑦𝑃)),

𝑃(𝑥+)(𝑥𝑃 − 𝛥, 𝑦𝑃, 𝑧(𝑥𝑃 − 𝛥, 𝑦𝑃)),

𝑃(𝑦+)(𝑥𝑃, 𝑦𝑃 + 𝛥, 𝑧(𝑥𝑃, 𝑦𝑃 + 𝛥)),

𝑃(𝑦−)(𝑥𝑃, 𝑦𝑃 − 𝛥, 𝑧(𝑥𝑃, 𝑦𝑃 − 𝛥)).

(8) 

Then, the normal versor can be determined according following formula: 

�̂�  =
𝐫(𝑥) × 𝐫(𝑦)

| 𝐫(𝑥) × 𝐫(𝑦)|
, (9) 

where:  𝐫(𝑥) – vector with the origin in point 𝑃(𝑥−) and the end in point  𝑃(𝑥+),

𝐫(𝑦) – vector with the origin in point  𝑃(𝑦−) and the end in point 𝑃(𝑦+),

Δ [m] – short distance  (in the work it was assumed Δ = 0,01 m). 

P ),( yxzz 

)( yP

)( yP
)( xP

)( xP

)( y
r

)( x
r

ê
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}0{

Figure 9. The continuous model of the road surface – determining normal versor �̂� to the mapping surface in 

point  𝑃(𝑥𝑃 , 𝑦𝑃 , 𝑧𝑃)
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In the case of the discrete model of the road surface, based on the triangles or rectangles 

implemented, the normal versor �̂� can be determined on basis of the known basic geometrical 

relationships. 

5 ALGORITHMS OF ITERATIVE DETERMINING THE CONTACT POINT 

POSITION 

While analyzing vehicle dynamics forces and reaction torques, acting on models of their 

tires from the road surface, must be considered appropriately. In real conditions the tire contact 

with this frequently uneven surface takes place within the definite area.  When the tire is mod-

eled, the contact surface is usually limited to a point [3], [4], [9]. The authors of this work 

followed also this procedure, assuming that the modeled tire – considered in a form of a de-

formable rim – will contact with the mapping surface of the road surface in a definite point 

As it is known in any point of the mapping surface a plane tangent to it can be placed. In 

this method, as it was done by the authors of articles [3], [4], [9], [11], it has been assumed that 

the tire will be modeled in a form of a deformable rim, obtained as a result of a longitudinal cut 

of this tire in its symmetry plane. This rim in the deformable part adheres to the mapping surface 

– even so for needs of the model it is assumed that its contact with this surface takes place in

the definite point (it is the 𝐶 contact point). In a non-deformable form this rim is a circle of the 

𝑂 symmetry center, overlapping with the symmetry center of the non-deformed tire. In the con-

tact point 𝐶 there is also plane Π – tangent to the mapping surface (Figure 10). On basis of the 

suggestions included in work [11], in addition to the reference system {0} mentioned already, 

two local coordinate systems – {𝑤} and {𝑟} were assumed. The movable system {𝑤} is con-

nected with the rim. Its origin was placed in the 𝑂 symmetry center of the non-deformed rim, 

versor �̂�𝑤 overlaps with its axis of rotation (and therefore, also with the axis of rotation of the 

modeled tire), and versor  �̂�𝑤 remains parallel to plane Π during the whole time of vehicle mo-

tion. The origin of immovable system {𝑟} overlaps with the contact point 𝐶, its versor �̂�𝑟 is 

normal to plane Π – and also to the mapping surface (angle 𝛾 between it and  versor �̂�𝑤 is an 

inclination angle of the tire), whereas versor �̂�𝑟 lying  in this plane remains pararlel to versor 

�̂�𝑤 of the {𝑤} system during the vehicle motion. While modeling an interaction of the road 

surface on the tire, it is assumed that in the contact point 𝐶 the following forces and reaction 

torques are applied: 𝐅𝑥 – the reaction force longitudinal, 𝐅𝑦 – the reaction force lateral, 𝐅𝑧 – the 

reaction force normal to the mapping surface (plane Π), 𝐌𝑥 – the overturning torque, 𝐌𝑦 – the 

rolling resistance torque, 𝐌𝑧 – the aligning torque. Their directions are consistent with the di-

rections of versors of the {𝑟} system. Values of these forces and torques are calculated by use 

of formulas offered by so called the Pacejka tire model [6], [7], [8] taken into account in the 

method proposed. 
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Figure 10. Location of local systems  {𝑤} i {𝑟} 

While performing an analysis of the vehicle dynamics, it is assumed that a position of the {𝑤} 

system origin is known at any time of its motion (as known, identical with the O symmetry 

center of the non-deformed rim) and orientation of its versor �̂�𝑤 in the {0} reference system.  

The authors of the article also made the same assumption [4].  Additionally, the position of the 

contact point 𝐶, being the beginning of the {𝑟} system in this system and orientation of versors 

of this system in the {0} reference system must be known. Iterative determination of this posi-

tion and orientation is a subject of the algorithms presented in this work.  When a distance of 

origins of systems {𝑤} and {𝑟} is known, values of forces and reaction torques acting on the 

tire from the road surface   can be determined by use of the Pacejka tire model. Knowledge 

about orientation of versors of the  {𝑟} system in the {0} reference system will allow to find 

directions of acting of these forces and torques – this information is needed to make an analysis 

of the dynamics of the vehicle in question while using the Pacejka tire model mentioned or 

other tire models, relying on the similar assumptions regarding a way of applying forces and 

torques.  

Two algorithms, intended for determining the position of the contact point 𝐶 and orientation 

of the vectors of the {𝑟} coordinate system were proposed.  In accordance with intention of the 

authors the names of the algorithms are to refer to the essence of a procedure assumed in each 

case. The Plane algorithm is designed for the continuous model of the road surface, whereas 

the 4Points algorithm –for the discrete model of this surface.  

6 ALGORITHM PLANE 

Determining the position of the contact point 𝐶 by the Plane algorithm refers to performing 

a definite number of iterations.  Execution of the first of them is presented in Figure 11. 
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Figure 11. The Plane algorithm – the first approximation of the position of the contact point 𝐶 

In the neighborhood of the 𝑂 symmetry center of the non-deformed rim (Figure 11(a)) 

a start point 𝑃𝑆 of coordinates 𝑥𝑆, 𝑦𝑆, 𝑧𝑆, defined in the {0} reference system is selected. In this 

work it has been assumed that it is the 𝑂 point. Then, coordinates of the 𝐶0 point, being an 

orthogonal projection to the mapping surface, are determined in this system: 

𝐶0 = (𝑥𝐶0
, 𝑦𝐶0

, 𝑧𝐶0
) = (𝑥𝑂 , 𝑦𝑂 , 𝑧(𝑥𝑂 , 𝑦𝑂)). (10) 

A next step is to determine plane Π0 tangent to the mapping surface in the 𝐶0 point. A point-

normal equation of this plane can be presented in the following form (similar to eq. 4): 

𝑒𝑥
(0)

𝑥 + 𝑒𝑦
(0)

𝑦 + 𝑒𝑧
(0)

𝑧 + 𝛿(0) = 0, (11) 

where: 𝑒𝑥
(0)

, 𝑒𝑦
(0)

, 𝑒𝑧
(0)

 are components  of the  �̂�(0) versor normal to the mapping surface

in the 𝐶0 point determined in the {0} reference system, 

𝛿(0) = −( 𝑒𝑥
(0)

𝑥𝐶0
+ 𝑒𝑦

(0)
𝑦𝐶0

+ 𝑒𝑧
(0)

𝑧𝐶0
).

Point 𝐶1
′(𝑥𝐶1

′ , 𝑦𝐶1
′ , 𝑧𝐶1

′ ), in which straight line 𝑙(0) going through the 𝑂 points pierces plane Π0

perpendicularly, is determined next . Its coordinates in the {0} reference system can be deter-

mined by the position vector (Figure 11(b)) as: 

𝐫𝐶1
′ = 𝐫𝑂 − 𝑑0 �̂�

(0)
, (12) 

where: 𝑑0 = |𝑒𝑥
(0)

𝑥𝑂 + 𝑒𝑦
(0)

𝑦𝑂 + 𝑒𝑧
(0)

𝑧𝑂 + 𝛿(0)| – a distance of points 𝑂 and 𝐶1
′.

As a result, these coordinates can be presented as: 

𝐶1
′(𝑥𝐶1

′ , 𝑦𝐶1
′ , 𝑧𝐶1

′ ) = 𝐶1
′(𝑥𝑂 − 𝑒𝑥

(0)
𝑑0, 𝑦𝑂 − 𝑒𝑦

(0)
𝑑0, 𝑧𝑂 − 𝑒𝑧

(0)
𝑑0). (13) 

Then, the coordinates of point 𝐶1, being the first approximation of the contact point 𝐶, are de-

termined:  

𝐶1(𝑥𝐶1
, 𝑦𝐶1

, 𝑧𝐶1
) = 𝐶1 (𝑥𝐶1

′ , 𝑦𝐶1
′ , 𝑧(𝑥𝐶1

′ , 𝑦𝐶1
′ )). (14)

To determine 𝑛-th approximation of the position of the contact point 𝐶 the algorithm can be 

generalized to 𝑖 = 1, … , 𝑛 iterations writing formulas (13) and (14) as: 
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𝐶𝑖
′ (𝑥𝐶𝑖

′ , 𝑦𝐶𝑖
′ , 𝑧𝐶𝑖

′) = 𝐶1
′(𝑥𝑂 − 𝑒𝑥

(𝑖−1)
𝑑𝑖−1, 𝑦𝑂 − 𝑒𝑦

(𝑖−1)
𝑑𝑖−1, 𝑧𝑂 − 𝑒𝑧

(𝑖−1)
𝑑𝑖−1) (15) 

and: 

𝐶𝑖(𝑥𝐶𝑖
, 𝑦𝐶𝑖

, 𝑧𝐶𝑖
) = 𝐶𝑖 (𝑥𝐶𝑖

′ , 𝑦𝐶𝑖
′ , 𝑧 (𝑥𝐶𝑖

′ , 𝑦𝐶𝑖
′)). (16) 

The 𝑛 value is determined by the criterion: 

√(𝑥𝐶𝑛−1− 𝑥𝐶𝑛
′ )

2
+ (𝑦𝐶𝑛−1− 𝑦𝐶𝑛

′ )
2

+ (𝑧𝐶𝑛−1− 𝑧𝐶𝑛
′ )

2
≤ 휀, (17) 

where: 휀 –  an assumed acceptable absolute error of calculations. 

The versor �̂�𝑟
(𝑛)

 of the {𝑟} system in the reference system {0} can be determined by the formula 

(Figure 10): 

�̂�𝑟
(𝑛)

=
�̂�𝑤 × �̂�(𝑛)

|�̂�𝑤 × �̂�(𝑛)|
, (18) 

and then other versors as: 

�̂�𝑟
(𝑛)

= �̂�𝑟 × �̂�(𝑛),

Z𝑟
(𝑛)

= �̂�(𝑛).
(19) 

7 ALGORITHM 4POINTS 

As it has been found out the Plane algorithm is used in the case of the continuous model of 

the road surface. However, in the case of the discrete model when some fragments of the surface 

are flat, determining the position of the contact point 𝐶 by its use may not be accurate enough. 

Such a situation is presented in Figure 12. 
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Figure 12. The Plane algorithm – the determined positions of the contact point 𝐶: a) at beginning of running the 

modeled tire over unevenness, b) after covering distance Δ𝑥 

While considering the position of the modeled tire presented in Figure 12(a), it can be 

noticed that the contact point 𝐶 is the orthogonal projection of the symmetry center 𝑂 of the 

non-deformed rim on the flat fragment of the road surface. It can be stated that condition (17), 
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determining completion of calculations, is met after the first iteration, because already then it 

is √(𝑥𝐶𝑛−1− 𝑥𝐶𝑛
′ )

2
+ (𝑦𝐶𝑛−1− 𝑦𝐶𝑛

′ )
2

+ (𝑧𝐶𝑛−1− 𝑧𝐶𝑛
′ )

2
= 0 < 휀.  Here, an undesirable effect is

too late reaction of the rim to changeable surface profile. Since the Plane algorithm does not 

allow to take the rim contact with the road fragment of the curvilinear profile (marked in the 

figure) into account early enough, so a direction of the normal reaction force 𝐅𝑧 (acting on the 

rim in accordance with the  �̂�𝑟 versor direction) turns out to be incorrect. It can be stated that 

this direction “does not keep up with a new situation on the road”. The normal reaction force 

changes its direction after the modeled tire has covered the Δ𝑥 distance (Figure 12(b)) – so too 

late – and this change is rather rapid. Therefore, it has been required to develop an algorithm, 

which would enable to determine an appropriate position of the contact point 𝐶, ensuring that 

shape changes of the mapping surface are considered early enough, what would provide more 

accurate direction of the 𝐅𝑧 normal reaction force, because closer to real one.    

At the beginning of realization of the new algorithm named 4Points in planes �̂�𝑤, �̂�𝑤 

and �̂�𝑤, �̂�𝑤 of the {𝑤} system there are four auxiliary points 𝑂(𝑥+), 𝑂(𝑥−), 𝑂(𝑦+), 𝑂(𝑦−) assumed,

respectively (Figure 13). 
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Figure 13. Algorithm 4Points – positions of the auxiliary points 

Coordinates of them in the {𝑤} system can be determined by the position vectors of the homog-

enous coordinates: 

𝐫
{𝑤}

𝑂(𝑥+)
∗ = [ 𝐫𝑂(𝑥+)

{𝑤}

1
] , 𝐫𝑂(𝑥+)

{𝑤}
= [

Δ𝑥
0

−Δ𝑧
], 

𝐫
{𝑤}

𝑂(𝑥−)
∗ = [ 𝐫𝑂(𝑥−)

{𝑤}

1
] , 𝐫𝑂(𝑥−)

{𝑤}
= [

−Δ𝑥
0

−Δ𝑧
], 

(20) 
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𝐫
{𝑤}

𝑂(𝑦+)
∗ = [ 𝐫𝑂(𝑦+)

{𝑤}

1
] , 𝐫𝑂(𝑦+)

{𝑤}
= [

0
Δ𝑦

−Δ𝑧
], 

𝐫
{𝑤}

𝑂(𝑦−)
∗ = [ 𝐫𝑂(𝑦−)

{𝑤}

1
] , 𝐫𝑂(𝑦−)

{𝑤}
= [

0
−Δ𝑦
−Δ𝑧

],

where: Δ𝑥, Δ𝑦, Δz [m] – distances resulting from tire size (in the work the following values were 

assumed: Δ𝑥 = 0,17, Δ𝑦 = 0,07, Δz = 0,1). 

Then, the vectors of the homogenous coordinates determining the position of the auxiliary 

points in the {0} reference system, can be determined as: 

𝐫
𝑂(𝑥+)
∗ = 𝐓𝑤 𝐫

𝑂(𝑥+)
∗{𝑤}

, 𝐫
𝑂(𝑥+)
∗ = [𝐫

𝑂(𝑥+)

1
] , 𝐫

𝑂(𝑥+) = [

𝑥𝑂(𝑥+)

𝑦𝑂(𝑥+)

𝑧𝑂(𝑥+)

], 

𝐫
𝑂(𝑥−)
∗ = 𝐓𝑤 𝐫

𝑂(𝑥−)
∗{𝑤}

, 𝐫
𝑂(𝑥−)
∗ = [𝐫

𝑂(𝑥+)

1
] , 𝐫

𝑂(𝑥−) = [

𝑥𝑂(𝑥−)

𝑦𝑂(𝑥−)

𝑧𝑂(𝑥−)

], 

𝐫
𝑂(𝑦+)
∗ = 𝐓𝑤 𝐫

𝑂(𝑦+)
∗{𝑤}

, 𝐫
𝑂(𝑦+)
∗ = [𝐫

𝑂(𝑦+)

1
] , 𝐫

𝑂(𝑥+) = [

𝑥𝑂(𝑦+)

𝑦𝑂(𝑦+)

𝑧𝑂(𝑦+)

], 

𝐫
𝑂(𝑦−)
∗ = 𝐓𝑤 𝐫

𝑂(𝑦−)
∗{𝑤}

, 𝐫
𝑂(𝑦−)
∗ = [𝐫

𝑂(𝑦−)

1
] , 𝐫

𝑂(𝑦−) = [

𝑥𝑂(𝑦−)

𝑦𝑂(𝑦−)

𝑧𝑂(𝑦−)

], 

(21) 

where: 𝐓𝑤 – a known transformation matrix from system {𝑤} to reference system {0}. 

In further procedure auxiliary points 𝑂(𝑥+), 𝑂(𝑥−), 𝑂(𝑦+), 𝑂(𝑦−) are projected on the mapping

surface (Figure 14(a)), and next the homogenous vectors, determining coordinates of their pro-

jections 𝑂′(𝑥+), 𝑂′(𝑥−), 𝑂′(𝑦+), 𝑂′(𝑦−) in the  {0} reference system are determined as:

𝐫
𝑂′(𝑥+)
∗ == [

𝐫
𝑂′(𝑥+)

1
] , 𝐫

𝑂(𝑥+) = [

𝑥
𝑂′(𝑥+)

𝑦
𝑂′(𝑥+)

𝑧
𝑂′(𝑥+)

] = [

𝑥𝑂(𝑥+)

𝑦𝑂(𝑥+)

𝑧(𝑥𝑂(𝑥+) , 𝑦𝑂(𝑥+))
], 

𝐫
𝑂′(𝑥−)
∗ == [𝐫

𝑂′(𝑥−)

1
] , 𝐫

𝑂(𝑥−) = [

𝑥𝑂′(𝑥−)

𝑦𝑂′(𝑥−)

𝑧𝑂′(𝑥−)

] = [

𝑥𝑂(𝑥−)

𝑦𝑂(𝑥−)

𝑧(𝑥𝑂(𝑥−) , 𝑦𝑂(𝑥−))
], 

𝐫
𝑂′(𝑦+)
∗ == [𝐫

𝑂′(𝑦+)

1
] , 𝐫

𝑂(𝑦+) = [

𝑥𝑂′(𝑦+)

𝑦𝑂′(𝑦+)

𝑧𝑂′(𝑦+)

] = [

𝑥𝑂(𝑦+)

𝑦𝑂(𝑦+)

𝑧(𝑥𝑂(𝑦+) , 𝑦𝑂(𝑦+))
], 

𝐫
𝑂′(𝑦−)
∗ == [𝐫

𝑂′(𝑦−)

1
] , 𝐫

𝑂(𝑦−) = [

𝑥𝑂′(𝑦−)

𝑦𝑂′(𝑦−)

𝑧𝑂′(𝑦−)

] = [

𝑥𝑂(𝑦−)

𝑦𝑂(𝑦−)

𝑧(𝑥𝑂(𝑦−) , 𝑦𝑂(𝑦−))
], 

(22) 

On basis of formula (9)  the versor normal to plane Π, including the projections of the auxiliary 

points can be determined as: 

�̂� =
𝐫

𝑂′
(𝑥)

× 𝐫
𝑂′
(𝑦)

|𝐫
𝑂′
(𝑥)

× 𝐫
𝑂′
(𝑦)

|
, (23) 

where: 𝐫
𝑂′
(𝑥)

= 𝐫𝑂′(𝑥+) − 𝐫𝑂′(𝑥−) – vector of origin in point 𝑂′(𝑥+) and end in point 𝑂′(𝑥−),

𝐫
𝑂′
(𝑦)

= 𝐫𝑂′(𝑦+) − 𝐫𝑂′(𝑦−) – vector of origin in point 𝑂′(𝑦+) and end in point 𝑂′(𝑦−).

4391



On basis of the determined normal versor �̂�  and one of any selected auxiliary points 

𝑂′(𝑥+), 𝑂′(𝑥−), 𝑂′(𝑦+), 𝑂′(𝑦−) the Π plane mentioned is sought for,  of which the point-normal

equation has a from: 

𝑒𝑥𝑥 + 𝑒𝑦𝑦 + 𝑒𝑧𝑧 + 𝛿 = 0, (24) 

where: 𝑒𝑥, 𝑒𝑦, 𝑒𝑧 are the components of the versor �̂� normal to plane Π determined in the  {0}
reference system, 

𝛿 = −(𝑒𝑥𝑥𝑂′(𝑥+) + 𝑒𝑦𝑦𝑂′(𝑥+) + 𝑒𝑧𝑧𝑂′(𝑥+)) if the selected point is 𝑂′(𝑥+).
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Figure 14. Algorithm 4Points – determining the orthogonal projections of the auxiliary points on the mapping 

surface 

The sought contact point 𝐶 is determined as a point in which straight line 𝑙 going through the 

point 𝑂 pierces the plane Π perpendicularly (Figure 14(b)). Its coordinates in the  {0} reference 

system are determined as  the components of the position vector: 

𝐫𝐶 = 𝐫𝑂 − 𝑑0�̂�, (25)

where: 𝑑0 = |𝑒𝑥 𝑥𝑂 + 𝑒𝑦 𝑦𝑂 + 𝑒𝑧 𝑧𝑂 + 𝛿 | – a distance of points  𝑂 and 𝐶. 

As a result the coordinates of the contact point 𝐶 can be determined as: 

𝐶(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 ) = 𝐶(𝑥𝑂 − 𝑒𝑥 𝑑0, 𝑦𝑂 − 𝑒𝑦 𝑑0, 𝑧𝑂 − 𝑒𝑧 𝑑0). (26) 

Using this algorithm for the case illustrated in Figure 12(a), the position of the contact 

point 𝐶 can be determined as presented in Figure 15. The corrected direction of reaction force 

𝐅𝑧 is presented in this figure. 
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Figure 15. Algorithm 4Points – determining the position of the contact point 𝐶 and the corrected direction of 

normal reaction force 𝐅𝑧

The versor directions of the {𝑟} system are determined in a similar way as in the case of the 

Plane algorithm, that is according to relationships (18) and (19). 

8 COMPUTER SIMULATIONS 

A technical rescue vehicle, which can drive in the terrain conditions, was used for the anal-

ysis. Its physical model in a form of multibody system of open structure, built by use of joint 

coordinates defining a relative position of the modeled components, and a mathematical model 

corresponding to it, developed on basis of Lagrange equations formalism by use of homogenous 

transformation matrices [2], is presented in the doctoral dissertation [10].  Program Blender [12] 

was used to model the uneven road surface and to develop a model of the vehicle used in the 

computer animations.  

In each case considered the modeled vehicle moved in the direction consistent with versor 

�̂� of the  {0} reference system. The vehicle initial speed was 5 km/h, and simulation duration 

time was 6s. 

Example I 

The assumed continuous model of the road surface in a form of a grid of control points 

is presented in figure 16. The boundary values of the coordinates of those points in the {0} 

reference system were following: 𝑥𝑚𝑖𝑛 = −2; 𝑥𝑚𝑎𝑥 = 49; 𝑦𝑚𝑖𝑛 = −8; 𝑦𝑚𝑎𝑥 = 8; 𝑧𝑚𝑖𝑛 =
−0,8; 𝑧𝑚𝑎𝑥 = 1,2. 

}0{ Ẑ

X̂

Ŷ
 2,10  z  

Control points 

 08,0  z

Figure 16. The control point grid in the case of the continuous model of the road surface 
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Within the computer animation performed vehicle drives over the uneven road surface 

of the shape as shown in Figure 17 were simulated. 

)a )b

Figure 17. Some screen shots made during the computer animation: 
a) a phase of the vehicle going up to unevenness, b) a phase of going down from unevenness

Some examples of the calculation results which concern determining a vertical course 

of the gravity center displacement of the vehicle model (towards versor �̂� of the {0} reference 

system) – taking the Plane algorithm into account – are presented in Figure 18. 

Figure 18. A course of the vertical displacement of the vehicle gravity center in the case of considering the con-

tinuous model of the road surface 

This diagram was compared with the vertical course of this center, determined by using 

the 4Points algorithm.  The results obtained are almost identical. Therefore, it may be concluded 

that in the case of smooth unevenness a selection of the algorithm has a slight influence on the 

computer simulation results obtained.   

Example II 

The assumed discrete model of the road surface in the form of the grid of the control 

points is presented in Figure 19. It consists of two flat fragments adjacent to a bump. Since there 

are no inclination of the surface in the direction consistent with versor �̂� of the {0} reference 

system, its model was made by use of rectangles placed as shown in the figure. The assumed 

boundary values of the grid points coordinates were following: 𝑥𝑚𝑖𝑛 = −2; 𝑥𝑚𝑎𝑥 = 11,5; 

𝑦𝑚𝑖𝑛 = −2; 𝑦𝑚𝑎𝑥 = 2; 𝑧𝑚𝑖𝑛 = 0; 𝑧𝑚𝑎𝑥 = 0,2. 
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Flat fragments ( 0z ) 

Bump ( 2,00  z ) 

}0{
Ẑ

X̂

Ŷ

Figure 19. The discrete model of the road surface made by use of rectangles 

Within the computer animation performed a drive of the vehicle over the bump was 

simulated (Figure 20). 

)a )b

Figure 20. Some screen shots made during the computer animation: 
a) a phase of the vehicle going up the bump, b) a phase of the vehicle going down from the bump

Some examples of the calculations results which concern determining the vertical dis-

placement course of the gravity center of the vehicle model – considering algorithm 4Points – 

are presented in Figure 21(a). Two phases of motion can be differentiated here when first front 

wheels and then rear wheels of the vehicle drive over the bump.    

Figure 21. A course of the vertical displacement of the vehicle gravity center when the discrete model of the road 

surface made by use of rectangles is considered 

b) c) a) 
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By analyzing the results in Figure 21(a), it can be noticed that when the 4Points algo-

rithm is used, the displacement of the gravity center of the vehicle while its going up to the 

bump, takes place earlier than in the case of the Plane algorithm – the dashed line is visible 

before the solid line (Figure 21(b)). The analogical situation can be observed during the vehicle 

going down from the bump. In this case the 4Points algorithm is more „sensitive” to the une-

venness profile change behind the wheels – the dashed line is visible behind the solid line 

(Figure 21(c)). Therefore, the thesis is confirmed that in the case of overcoming unevenness, 

where the road fragments are flat, better results are obtained when the 4Points algorithm is used. 

Within realization of the doctoral dissertation [10] a number of test computer simula-

tions, verifying effectiveness of the presented algorithms with reference to the assumed models 

of the road surface, were made. The computer results were verified positively after comparing 

them to the experimental test results made on the test track.   

9 CONCLUSIONS 

The presented algorithms have a general significance and that is why they can be used in 

future in the case of considering more advanced tire models. In order to sum up this article it 

should be emphasized that the development of the presented algorithms was only a part of the 

task undertaken by the authors. These algorithms with the tire models were included into the 

advanced mathematical model of the selected terrain vehicle, developed with view to perform-

ing an analysis of its dynamics. This model with the prepared models of the road surface and 

the developed computer programs constitute a prototype of a technical rescue vehicle. Accord-

ing to the authors, the observations made during the computer simulations of its motion can aid 

a process of designing of this type of vehicles in the future. In addition to the statements pre-

sented, the authors would like to point out to wide use – in the case of the proposed method – 

of possibilities of the Blender program, especially while developing the road surface models, 

and also a vehicle model used in the computer animations. 
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Abstract. This paper deals with spatial discretization of dynamical systems, such that the
resulting discretized model is structured as a set of interconnected subsystems. We start by dis-
cretizing a dynamical system using an appropriate method (e.q. the finite element method) and
discuss a general framework for partitioning a single discretized system into two interconnected
systems. As it turns out, partitioning the discretized system into a set of interconnected systems
appears to be a straightforward extension of the proposed procedure — we simply recursively
apply the procedure. When doing so, we derive a general condition for preserving the inter-
connection structure, i.e. a necessary condition on the discretized system matrices such that
the interconnection graph between the resulting subsystems matches the interconnection graph
between the respective physical subdomains of the original system. This framework allows us
to address a local discretization error (i.e. an error in a subsystem) influence on the overall sys-
tem response. Furthermore, by considering a series of successively finer discretizations of an
individual subsystem, we are able to construct a series of successively finer discretized system
models with respective uncertainties.
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1 INTRODUCTION

Spatial discretization of partial differential equations [1] describing a dynamical system has
been one of the cornerstones of structural dynamics, vibration systems modeling, wave propa-
gation studies, and so on for several decades. As the result, a plethora of techniques for mod-
eling and simulation of dynamical systems, such as the finite element method [2, 3], have been
extensively researched and established. Virtually all of the analysis techniques based on dis-
cretization rely on the assumption that a series of successively finer spatial discretizations of the
system converge to the ”accurate” mathematical model of the system. In this setting, choosing
a spatial discretization which is accurate enough for a problem at hand usually boils down to
a-posteriori analysis, i.e. addressing the error between a chosen discretization and an ”accurate”
model, usually a very fine discretization of the entire system.

On the other hand, robust control theory of dynamical systems adopts inherently different
mathematical modeling paradigm — a dynamical system is approximated by a nominal system
(e.q. linear time invariant system) and an uncertainty model [4]. The uncertainty model is typ-
ically a system with dynamic behaviour which confines a difference in behaviour between the
nominal and the original system due to nonlinearities, neglected dynamics, discretization errors
and so on. Roughly speaking, we are designing a simple model which captures all system be-
haviours, as opposed to structural dynamics approach where a (hopefully accurate) detailed and
complex mathematical model is constructed. Structured control schemes, such as distributed
and decentralized control [5], introduce additional mathematical modeling requirements. In
structured control applications, a mathematical model of a system to be controlled comprises
of a number of (possibly uncertain) interconnected dynamical systems, as shown in Figure 1.
Thus, the mathematical model exhibits a certain structure, usually represented by a graph —
graph vertices are subsystems and graph edges represent subsystems connections.

subsystem 3

subsystem 2

subsystem 1

subsystem 4

Figure 1: Structured representation of a dynamical system.

This paper addresses the following issue: How to construct a spatial discretization of a dy-
namical system, such that its discretized model has a structure corresponding to a given graph?
We begin by providing a general framework for partitioning a discretized mechanical system
into a series of interconnected mechanical systems. Then, we derive a necessary condition
which, if met, allows us to use the partitioning procedure for constructing structured discretized
model of a system.
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2 PARTITIONING A SPATIALLY DISCRETIZED SYSTEM INTO A SET OF SUB-
SYSTEMS

Without loss of generality, we discuss a case of partitioning a single discretized mechanical
system into two interconnected mechanical systems. As it turns out, partitioning a system into a
series of interconnected systems may be viewed as a straightforward extension of the procedure.

Let us consider a mechanical system spatially discretized by means of the finite element
method. In particular, we consider a linear time invariant (LTI) second order system

Mq̈ + Cv q̇ +Kq = Bdd,
z = Cx+Dd,

(1)

where M , Cv and K are mass, viscous damping and stiffness matrices, respectively, B, C and
D are input, output and feed-through matrices, respectively, and x = ( q̇T qT )T are state
variables. The matrices B, C and D are input, output and feed-through matrices, and d and z
are input and output vectors, respectively.

The system (1) may be rewritten as the equivalent first order descriptor system

Eẍ = Ax+Bw,
z = Cx+Dw,

(2)

with

E =

(
M 0
0 F

)
, A =

(
−Cv −K
I 0

)
, B =

(
Bw

0

)
, (3)

where F may be any nonsingular matrix (usually chosen to be the identity matrix I).

dp zp dk zk

subsystem p subsystem k

Figure 2: Partitioning the discretized system.

To partition the system (1) into two interconnected systems, we begin by identifying the
boundary that separates the degrees of freedom (DOFs) of the two subsystems, which we denote
by subsystem p and subsystem k, as shown in Figure 2. Typically, when dealing with spatially
discretized system by means of FEM, this is equivalent to identifying the nodes (with respective
DOFs) belonging to either subsystem p or subsystem k. More formally, we reorder the state
variables x̃ such that x̃ = ( (xp)T (xk)T )T , where xp and xk denote the state variables for
the subsystem p and subsystem k, respectively. In the similar fashion, we reorder the inputs w
and the outputs z such that w̃ = ( (wp)T (wk)T )T and z̃ = ( (zp)T (zk)T )T , where p and
k denote the variables for the subsystem p and subsystem k, respectively.

Furthermore, we assume that a single component di of the input vector d = ( d1 d2 · · · dn )T

acts either on subsystem p or the subsystem k, but not on the both subsystems. If this is not
the case, i.e. if the signal di acts on both subsystems, it can be split into two signals (dp)i and
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(dk)i acting on subsystems p and k, respectively. Equivalently, if the output signal zi originates
form both subsystems, it can be split into two output signals (zp)i and (zk)i originating from
subsystems p and k, respectively. We also assume that the feed-through matrix D maps the
inputs that act on a single subsystem only to the outputs that correspond to the same subsystem
– if this is not the case, the matrix D may be modified in the similar fashion as described above.

The above described procedure may be accomplished by constructing a permutation matrix
P pk such that

x̃ =

(
xp

xk

)
= P pkx, d̃ =

(
dp

dk

)
= P pkd, z̃ =

(
zp

zk

)
= P pkz. (4)

By multiplying the equation (2) by the matrix P pk from the left and taking into the account (4),
we obtain

Ẽ ¨̃x = Ãx̃+ B̃d̃,

z̃ = C̃x̃+ D̃d̃,
(5)

where

Ẽ = P pkE(P pk)T , Ã = P pkA(P pk)T , B̃ = P pkB(P pk)T ,

C̃ = P pkC(P pk)T , D̃ = P pkD(P pk)T ,
(6)

where

Ẽ =

(
Epp Epk

Ekp Ekk

)
, Ã =

(
App Apk

Akp Akk

)
. (7)

Due to our previous assumptions (i.e. a single input acts only on the subsystem p or the
subsystem k, a single output originates only from the subsystem p or the subsystem k and the
feed-through matrix maps the inputs that act on a single subsystem only to the outputs that
correspond to the same subsystem), the matrices B̃, C̃ and D̃ are block-diagonal

B̃ =

(
Bp 0
0 Bk

)
, C̃ =

(
Cp 0
0 Ck

)
, D̃ =

(
Dp 0
0 Dk

)
. (8)

Consequently, we have two subsystems that are coupled through both matrices Ẽ and Ã. The
subsystem p is defined by

Eppẋp + Epkẋk = Appxp + Apkxk +Bpdp,
zp = Cpxp +Dpdp,

(9)

and the subsystem k is defined by

Ekpẋp + Ekkẋk = Akpxp + Akkxk +Bkdk,
zk = Ckxk +Dkdk.

(10)

We eliminate ẋk from (9) and ẋp from (10), and after some manipulation we finally obtain
two interconnected subsystems. The subsystem p is defined by

Epẍp = Apxp + vpk +Bpdp,
zp = Cpxp +Dpdp,

wpk = Cpkxp +Dpkdp,
(11)
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Gp

dp zp dk zk

wpk vkp

vpk wkp Gk

Figure 3: Interconnected systems.

where

Ep = Epp − Epk(Ekk)−1Ekp, Ap = App − Epk(Ekk)−1Akp,

Cpk = Akp − Ekp(Epp)−1App, Dpk = −Ekp(Epp)−1Bp.
(12)

In the similar fashion, the subsystem k is defined by

Ekẍk = Akxk + vkp +Bkdk,
zk = Ckxk +Dkdk,

wkp = Ckpxk +Dkpdk,
(13)

where

Ek = Ekk − Ekp(Epp)−1Epk, Ak = Akk − Ekp(Epp)−1Apk,

Ckp = Apk − Epk(Ekk)−1Akk, Dkp = −Epk(Ekk)−1Bk.
(14)

By setting vkp = wpk and vpk = wkp, the subsystems p and k are interconnected LTI systems
with corresponding transfer functions Gp and Gk, as shown in Figure 3.

Note that the terms Epk and Ekp in the above equations are due to the coupling terms in the
inertia matrices of the subsystems p and k. To be more specific, the terms Epk and Ekp are due
to the nondiagonal terms in the inertia matrices of the finite elements that contain DOFs from
both subsystems p and k. Consequently, if the inertia matrices of the finite elements that contain
both xp and xk are lumped (i.e. diagonal), the terms Epk and Ekp vanish and the interconnected
subsystems are defined by

Eppẋp = Appxp + vpk +Bpdp,
zp = Cpxp +Dpdp,
wpk = Akpdp,

(15)

and
Ekkẋk = Akkxk + vkp +Bkdk,

zk = Ckxk +Dkdk,
wkp = Apkdk.

(16)

Partitioning an arbitrary discretized system into a set of interconnected systems appears to be
a straightforward extension of the above described procedure — we simply recursively apply the
procedure to divide the resulting subsystems into a desired set of (new) subsystems. However,
if we also require that the interconnection graph between the resulting subsystems matches
the interconnection graph of the respective physical domains, the inertia matrices must meet a
certain condition. We illustrate this in the following example.
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3 EULER BEAM AS A STRUCTURED DISCRETIZED SYSTEM

Consider an Euler beam subject to a series of concentrated loads, as shown in Figure 4. If the
distance between each two adjacent loads equals l, and the beam properties (flexural rigidityEI ,
cross section area A and density ρ) are constant, we may view the beam as an assembly of four
identical segments, which we denote by 1 through 4. The remaining parts of the beam on the
left and the right side are denoted by L and R, respectively. By specifying the desired outputs
(e.q. beam displacements at the positions of the loads) and after the discretization, as described
in the previous sections, we end up with the LTI second order system (1) which represents the
entire beam.

For the purpose of our discussion, we wish to partition the resulting LTI system into a set
of subsystems, such that each subsystem represents individual beam segments (L, R and 1
thorough 4). Furthermore, we also require that the interconnection graph for the resulting sub-
systems matches the interconnection graph for the actual beam segments, as shown in Figure 5.
Without making any assumptions regarding the beam discretization, we proceed by recursively
partitioning the LTI system that represents the entire beam.

f1 f2 f3 f4

1 2 3 4

l l l l

L R

Figure 4: Euler beam as an assembly of segments.

GL
wL1 v1L

vL1 w1L

d1 z1

w12 v21 w23 v32 w34 v43 w4R vR4

v12 w21 v23 w32 v34 w43 v4R wR4

d2 z2 d3 z3 d4 z4

G1 G2 G3 G4 GR

Figure 5: Euler beam as a series of interconnected systems.

First, we partition the system into the subsystem GL that represents the segment L, and
the subsystem GK that represents the remaining segments (segments 1 through 4 and R). The
resulting interconnected systems are shown in Figure 6, and the subsystems are defined as

• subsystem GL:
ELẍL = ALxL + vLK ,

wLK = CLKxL,
(17)

• subsystem GK :
EK ẍK = AKxK + vKL +BKdK ,

zK = CKxK +DKdK ,
wKL = CKLxK +DKLdK .

(18)

Now, let us take a closer look at the signal vKL = wLK = CLKxL. Observe that the matrix

CLK = AKL − EKL(ELL)−1ALL (19)
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GL

vKL

wKL

dK zK

GK

wLK

vLK

Figure 6: First partition of the beam.

contains the term −EKL(ELL)−1ALL, which has no special structure (i.e. it is full) due of the
presence of (ELL)−1. The fact that ELL represents a part of the inertia matrix which is sparse
and banded does not help here — its inverse is full matrix, as we illustrate on the Figure 7.
Consequently, the matrix CLK is full and all state variables xL are fed via vKL to all DOFs of
the subsystem K.

Figure 7: Nonzero entries of the inertia matrix (left) and its inverse (right).

Next, let us further partition the subsystem GK into a subsystem G1 that represents the beam
segment 1 and a subsystemGM that represents the beam segments 2 through 4 andR. Due to the
fact that xL are fed to all DOFs of the subsystems G1 and GM , i.e. the subsystems that make up
the subsystem GK , we have the interconnection graph shown on Figure 8. Further partitioning
of the system would result in a set of subsystems where each subsystem is connected to all
remaining subsystems.

GL

wL1

G1

d1 z1

GM

w1M

vL1 v1M

dM zM

v1L

w1L

vM1

wM1

wLM vLM wML vML

Figure 8: Second partition of the beam.

To remedy this, let us go back to the equation (19). Recall that when the inertia matrices of
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the finite elements that contain both xL and xK are lumped, the terms EKL vanishes and we
have sparse and structured

CLK = AKL. (20)

In this case, the state variables xL are fed via vKL only to the DOFs of the subsystem K which
belong to the elements that contain DOFs from both subsystems L and K. In other words, only
the states exchanged between the systems are the states of the DOFs at the boundaries between
the systems. By taking this requirement into the account, recursive partitioning of the system
results in a set of subsystems with the desired interconnection structure shown in Figure 5.

Thus, we conclude our discussion with a general condition for preserving the interconnection
graph for a partitioned discretized system: an interconnection graph for a set of subsystems
obtained by partitioning a discretized system of will have the same interconnection graph as the
subdomains of the discretized system if the elements that represent the boundaries between the
subsystems have lumped inertia matrices.

4 CONCLUSIONS

In the discussion above, we have presented a general framework for partitioning a linear
time-invariant system system (e.q. a system obtained by means of the finite element method)
into a set of interconnected systems. In doing so, we have derived a general condition for
preserving the interconnection structure, i.e. a necessary condition on the discretized system
matrices such that the interconnection graph between the resulting subsystems matches the
interconnection graph between the respective physical subdomains. This framework allows us
to address a local discretization error (i.e. an error in a subsystem) influence on the overall
system response — for a possible approach, please refer to [6]. Furthermore, by considering a
series of successively finer discretizations of an individual subsystem, we are able to construct
a series of successively finer discretized system models with respective uncertainties.
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Abstract. This paper presents an asymptotically exact cross-sectional framework cou-
pled with spectrally formulated one-dimensional (1-D) finite element model for the study
of wave propagation in thin pre-twisted anisotropic strips. The cross-sectional model
used here is based on the dimensional reduction of laminated shell theory to nonlin-
ear 1-D theory using the variational asymptotic method (VAM). A linearized version
of this model (zeroth-order asymptotic analysis) is used in the development of a 1-D
spectral finite element (SFE) for a pre-twisted strip. Within this modeling framework,
an exact dynamic stiffness matrix is derived, as the governing equations are solved us-
ing the exact interpolating functions in frequency-wavenumber domain. Compared to
regular three-dimensional (3-D) finite element (FE) analysis, this model requires less
computation cost since single element is sufficient to capture the frequency response of
the strips. For numerical validation of the model, the natural frequencies of the strip
without delamination are compared to the data available in literature. Finally, the de-
veloped framework is used to simulate wave propagation due to modulated sinusoidal
pulse input.

4406



Maloth Thirupathi, Mira Mitra and P. J. Guruprasad

1 INTRODUCTION

Thin pre-twisted beams, made of laminated composites, are increasingly being used
in helicopter rotor blades, wind turbine blades and propellers. In the case of heli-
copter rotor blades they are used to accommodate the centrifugal force along with flap-
ping, lead-lag, and torsional motion using a flexible structural component known as
flexbeams. This allows for the design of a rotor system that is independent of bearings
making the design bearing-less [1]. However, the design of flexbeams and flexbeam like
structures found in other applications is challenging owing to the nonlinearity that arises
because of the large displacements and moderate rotations. This geometrical nonlinear-
ity problem coupled with the anisotropy at the material scale adds to the complexity of
the design. This challenge is further compounded when the design has to account for
damages typical of laminated composites, e.g., delaminations [2]. Generally, it is desir-
able to develop a structural health monitoring (SHM) strategy, preferably online, which
can aid in the early diagnosis of damages. Over the last few decades, SHM techniques
based on dynamic identification techniques (see [3]) have gained prominence. In par-
ticular, wave propagation based technique is being extensively used owing to its ability
to identify smaller defects, and potential to be used for online SHM [4]. The primary
objective of the present work is towards the development of a computationally efficient
model, which can not only accurately describe the overall deformation characteristics
of the pre-twisted strip but also capture its dynamic behavior. It is envisaged that such
a model will be an ideal framework based on which SHM system for damage detection
in pre-twisted anisotropic strips can be developed.

For structures with one of it’s dimensions much larger than the other two, simple
beam models are often used in the preliminary design stage because they can provide
valuable insight into the behavior of the structures with much less effort. These models,
in general, are developed onadhoc assumptions. These traditional ‘ordering scheme’
based methodologies can be circumvented when the exact kinematics of the beam refer-
ence line displacement and cross-sectional rotation is accounted for in the development
of the geometrically-exact equations of motion.Adhoc methodologies have been re-
placed by rigorous beam modeling (easily extendable to plates and shells) technique,
incorporating the kinematics as described above, through the variational asymptotic
method (VAM) [5, 6]. It has also been used to model pre-twisted anisotropic strips
both in the absence and presence of delaminations [2, 7]. The present work extends
the scope of these studies to investigate vibration and wave propagation in pre-twisted
strips.

Owing to the importance of pre-twisted anisotropic strips, considerable work has
been done on studying the vibration and dynamic characteristics of pre-twisted strips.
For brevity, only few important works are reported here. Rosard [8], Anliker and
Troesch [9], Gupta and Rao [10] investigated the free vibration characteristics of pre-
twisted beams. Carnegie and Thomas extended these works to investigate the coupled
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bending vibration of pre-twisted beam [11]. More recently, Filizet al. [12] devel-
oped a 3-D model to investigate the dynamics of pre-twisted beam using the spectral-
Tchebychev solution. Even though much work has been done on vibration and dynamic
behavior of pre-twisted strips, not much work has been done on wave propagation in
these structures, in particular.

Conventional finite element (FE) analysis of pre-twisted anisotropic strips is difficult
due to lack of computational resources. This takes us to the realm of frequency domain
analysis and in particular, spectral analysis. This spectral analysis is used to construct a
frequency domain based matrix methodology proposed by Doyle [13], which is called
spectral finite element (SFE) method. The first steps in the development of SFE involves
the transformation of the governing wave equations from time domain to frequency-
wavenumber domain using discrete Fourier transform (DFT). This process converts the
governing coupled partial differential equations (PDEs) into a set of ordinary differential
equations (ODEs) in the spatial domain which can be solved by standard methods. The
resulting complex shape function matrix is a linear superposition of all the wave modes.
Following the conventional FE method, the complex dynamic stiffness matrix is then
formed which is exact. As shown in [13], this process leads to an efficient model suitable
for use within the framework of automated FE method. The primary difference between
conventional FE and SFE methods is that at the elemental nodes spectral amplitudes
of the nodal variables are determined at each frequency steps in SFE method. On the
contrary, pseudo-static variables are evaluated at each time steps or eigen frequencies in
standard FE technique.

In the current paper, SFE has been developed to find the natural frequencies of pre-
twisted anisotropic strips based on dimensional reduction of laminated shell theory to
a one dimensional non-linear beam theory, and validated with the data available in lit-
erature. Later, it is used to simulate wave propagation using narrow banded modulated
sinusoidal pulse as input. As mentioned earlier, though SFE has been used extensively
for vibration and wave propagation study of composite beams and laminates [14], it has
not been developed for pre-twisted beams.

The manuscript is organized as follows. Section 2 provides the mathematical for-
mulation of the governing equations using VAM. In Section 3, The SFE formulation is
described briefly. The numerical results are presented in Section 4. The paper ends with
a section on important conclusions.

2 MATHEMATICAL FORMULATION

The development of the kinematics for this problem follows the procedure enumer-
ated in [7]. Here, the details are omitted and only the general procedure is enumerated.
The overall deformation of a cross-section contains all forms of warping and location
moderate rotations. Following the classical laminated shell theory, the 3-D strain mea-
sures are related to 2-D strain measures byΓαβ = ǫαβ+x3ραβ, where,ǫαβ are membrane
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strains andραβ aremiddle surface bending curvatures. Starting from the kinematics,
then applying VAM in an iterative manner, relations between membrane strains and
beam 1-D strains are obtained. The strip, being considered a 2-D elastic body, it’s strain

energy density can be written asU2D =
1

2
ǫT [AB|BD]ǫ. Here,A, D, B are the famil-

iar membrane, bending, and coupling stiffness matrices, respectively. The 1-D strain
energy density can be obtained by integrating the 2-D strain energy density along the
width direction. However, the unknown warping terms, which are functions ofx2 have
to be predetermined to carry out the integration which can be done at any given order
employing variational minimization principles. In doing so, a9 × 9 stiffness matrix is
obtained, where the first4× 4 terms represent the linear stiffness matrix (obtained from
zeroth order approximation). The above described procedure can also be followed to
determine the cross-sectional stiffness terms in the presence of delamination [2].

In the present work, focus is limited to linear analysis. Hence, the kinetic energy of
the beam, including three translation degrees of freedom (DOF) and rotation aboutx1,
excluding the other variables for contributing to higher order terms, can be determined
as

K =
1

2







u̇1

θ̇1
u̇3

u̇2







T 





ρA 0 0 0
0 ρIp 0 0
0 0 ρA 0
0 0 0 ρA













u̇1

θ̇1
u̇3

u̇2







(1)

Applying Hamilton’s principles, the governing equations can be written as,

S11
∂2u1

∂x2
1

+ S12
∂2θ1
∂x2

1

− S13
∂3u3

∂x3
1

+ S14
∂3u2

∂x3
1

= ρA
∂2u1

∂t2
(2)

S12
∂2u1

∂x2
1

+ S22
∂2θ1
∂x2

1

− S23
∂3u3

∂x3
1

+ S24
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∂x3
1

= ρIp
∂2θ1
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(3)

S14
∂3u1

∂x3
1

+ S24
∂3θ1
∂x3

1

− S34
∂4u3

∂x4
1

+ S44
∂4u2

∂x4
1

= −ρA
∂2u2

∂t2
(4)

−S13
∂3u1

∂x3
1

− S23
∂3θ1
∂x3

1

+ S33
∂4u3

∂x4
1

− S34
∂4u2

∂x4
1

= −ρA
∂2u3

∂t2
(5)

where,Sij are the stiffness terms, which can be readily determined for healthy and
delaminated pre-twisted strips [2, 7],ρ is the material mass density,A cross-sectional
area andIp is the polar moment of inertia. Since the sectional resultants are conjugates to
the 1-D beam strains in terms of the 1-D strain energy density, the stiffness constitutive
law is obtained, which serve as boundary conditions. For this problem, they can be
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written in compact form as,
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γ11
κ1

κ2

κ3







(6)

where,F1 is the resultant axial force,M1 being the twist,M2, M3 are the bending
moments about 2 and 3 axes respectively.

2.1 SPECTRAL FINITE ELEMENT (SFE) FORMULATION

The SFE formulation begins by assuming a solution for the displacement field. In
particular, using discrete Fourier transformation (DFT), the displacement vectors can be
represented as,

u(x1, t) =
N∑

n=1

û(x1, ωn)e
−iωnt (7)

where,i =
√
−1, ωn is the frequency atnth samplingpoint andN is the Nyquist point

in the fast Fourier transform (FFT) used for numerical implementation. Substituting
Eq. 7 in Eq. 2-5, a set of ODEs are obtained for the Fourier coefficients,û1(x1), θ̂1(x1),
û3(x1) andû2(x1), and can be solved, since it contains constant coefficients, by writing
ũ1e

−ikx1, θ̃1e−ikx1, ũ3e
−ikx1 and ũ2e

−ikx1, respectively. Here,k is the wave number
in x1 direction, yet to be determined and̃u1, θ̃1, ũ3 and ũ2 are unknown constants.
Substituting these forms in the ODEs, a polynomial eigenvalue problem (PEP) is posed
to find (k,v) as below

Ψ(k)v =
(
k4
A

4 + k3
A

3 + k2
A

2 + kA+A0

)
v = 0, v 6= 0, (8)

where,Aiǫ C
4×4, k is an eigenvalue andv is the right eigenvector. For brevity, the

explicit expressions are not given in the paper. SinceA
4 is singular [16],Ψ(k) is

not regular and admits infinite eigenvalues [15]. This PEP can be solved to find the
wavenumbers by several methods available. The one adopted in this paper is lineariza-
tion of PEP method.

Following the solution of the PEP problem given by Eq. 8, the displacements pre-
sented in Eq. 7 can also be written in a compact form in frequency-wavenumber domain,
as,

u(x, t) =
N∑

n=1

û(x1, ωn)e
−iωnt =

N∑

n=1

(
12∑

j=1

ũje
−ikjx

)

e−iωnt (9)

where,kj is the wavenumber associated with thejth mode of wave atωn. The generic
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displacement vector at anyx1 locationcan be given explicitly as,

û(x1, ωn) =







û1(x1, ωn)

θ̂1(x1, ωn)
û3(x1, ωn)
û2(x1, ωn)







=







R11 R12 . . . R1 11 R1 12

R21 R22 . . . R2 11 R2 12

R31 R32 . . . R3 11 R3 12

R41 R42 . . . R4 11 R4 12






[D]







c1
c2
...
c11
c12







(10)
where,[D] is diagonal matrix of order12× 12 and can be expressed as,

[D] =

{
e−ikjx j odd
e−ikj(L−x) otherwise

(11)

where,L is length of the element. The entries associated withj = 1, 3, ...9, 11 and
j = 2, 4, ...10, 12 contribute respectively to forward and backward propagating waves.
It is to be noted that all these expressions are evaluated at a particular value ofωn. The
R4×12 matrix is called amplitude ratio or eigenvector matrix, obtained as the solution
of the PEP given by Eq. 8.c = {c1, c2, . . . , c12} are unknowns constants, to be found
out by applying boundary conditions. These unknowns are written in terms of nodal
displacements, namely,x = 0 andx = L.

Eq. 10 can be written as,

û(x1, ωn) = [R] [D]c = [T 1(x1, ωn)]c (12)

Eq. 12 at the two nodes,i.e.,x1 = 0 andx1 = L gives

ûe =

[
T 1(0, ωn)
T 1(L, ωn)

]

c = [T2]c (13)

where,[T 2] is a non-singular12×12 complex matrix and represents the local wave char-
acteristics of the displacement field. Further, Eq. 7 can be used to eliminate unknown
constantsc from Eq. 13 as,

û(x1, ωn) = [T 1(x1, ωn)][T 2]
−1
ûe = [ζ(x1, ωn)]eûe, (14)

where,[ζ(x1, ωn)]e is the exact element shape function matrix that connects the nodal
displacement vector to the generic displacement vector at arbitrary location along the
length of the beam.

Next, using the forced boundary conditions given in Eq. 6, and adding the additional
shear or transverse forcesF2 = dM3

dx1

andF3 = dM2

dx1

for the additional DOF, the force
vector can be computed in the terms of unknown constantsc as,

f̂ = [P (x1, ωn)] c (15)
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Eq. 15 is evaluated at two nodes, and the nodal force vectors areobtained as,

f̂ e =

{
f̂ 1

f̂ 2

}

=

[
P (0, ωn)
P (L, ωn)

]

c =

[
P (0, ωn)
P (L, ωn)

]

[T 2]
−1
ûe = [Ke] ûe (16)

where,[Ke] is the exact dynamic stiffness matrix atωn relating the nodal displacements
and forces in frequency domain.

3 NUMERICAL RESULTS AND DISCUSSION

First, the natural frequencies of the pre-twisted anisotropic strips are extracted from
the the exact dynamic stiffness matrix given in the formulation. A structurally coupled
AS4/3501 − 6 graphite-epoxy strip is considered for obtaining the natural frequencies
of the beam. The beam material and geometrical properties are as given below in Table
1 and 2, respectively.

Property Value
E11(GPa) 142
E22/E33(GPa) 9.8
G12(GPa) 6.0
G13/G23(GPa) 4.8
ν12 0.3
ν13/ν23 0.34
ρ (kg/m3) 1580

Table 1: Material properties of AS4/3501-6 graphite epoxy composite.

Dimension Value
Length (m) 0.56
Breadth(m) 0.03
Thickness (m) 0.0147

Table 2: Geometrical properties of AS4/3501-6 graphite epoxy composite test specimen.

The natural frequencies of the beam are plotted with different pretwist values and are
compared with the data from [17] and are shown in the Figure 1. The first nine modes
shown are in the order of first, second, and third flapwise bending (F1, F2, F3), first
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Figure 1: Natural frequencies of the beam marked by the sharp peaks.Data points show are from
Ref. [17].

torsion (T1), fourth flapwise bending (F4), second torsion (T2), fifth and sixth flapwise
bending (F5, F6), and third torsion (T3). It is observed that pretwist affects the free
vibration characteristics of the strip and the current model predictions agree well with
those presented in [17].

Next, AS4/3501 − 6 graphite epoxy beam is considered with a pre-twist ofk1 =
0.05 rad/in; for wave propagation analysis. To get rid of the reflected wave forms
from the boundaries a semi-infinite beam is considered for the wave propagation anal-
ysis. This configuration will result in bending-twist coupling. A torsional loading of
sinusoidal pulse modulated at5 kHz is applied at the free end. Figure 2 shows the tor-
sional response at a distance from the free end under the torsional loading. The bigger
blob represents the torsional mode and the smaller blob represents the flap-wise flexural
mode.
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Figure 2: Torsion response due to modulated sinusoidal input

4 CONCLUSIONS

Wave propagation in pre-twisted anisotropic strip is modeled using spectral finite el-
ement method. The framework developed combines the advantages of beam modeling
using variational asymptotic method and capturing the dynamics from spectral formula-
tion. The model developed is validated by determining the natural frequency of the strip
as a function of pretwist and comparing with results available in the literature. Model
predictions are in good agreement with literature. Wave response simulated using the
framework is presented to highlight the capability of the technique to investigate wave
characteristics with application to structural health monitoring.
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Abstract. In the design and sizing of guyed lattice metallic structures used in transmission 

lines (TL) as a way of simplification, static analyzes are usually carried, where the dynamic 

actions are represented by "equivalent static loads". However, the static response to this type 

of structure is not the most appropriate, since such structures are lightweight, slender and 

that are always subject to dynamic nature action, except the own weight. Therefore, a dynam-

ic analysis is critical to get a more precise result in terms of efforts on the bars and nodal 

displacements. In this context, this paper deals with the development of a computational rou-

tine in Fortran, for obtaining the dynamic response of guyed metallic towers of TL, submitted 

to dynamic action of broken cable. For the solution of this problem is used the Direct Integra-

tion Method of the equations of motion, explicitly, whit central finite differences. In the output 

result files, the axial forces in all the bars are displayed along the time and the nodal dis-

placements are recorded at certain intervals of time during the analysis, in order to facilitate 

the structural behavior viewing with animation in post-processing programs. The accuracy of 

the dynamic response is evaluated by analyzing the isolated guyed tower, subjected to an 

impulsive load, comparing the fundamental frequency, calculated on the top of tower dis-

placements obtained in the time domain, at the same frequency determined by an modal 

analysis. Knowing that the method is conditionally stable, the stability is evaluated by analyz-

ing two responses of the same model, obtained with two different integration time intervals 

and smaller than the critical interval, which must be identical 
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1 INTRODUCTION 

The main actions operating over transmission lines structures (TL) are dynamic in nature, 

such as wind and cable breakage. The wind is the main action and must be carefully consid-

ered in the design phase. The cable breakage, though occurring less frequently, is one of the 

actions that can take the tower to collapse, including causing the phenomenon known as 

"ripple effect" in which many towers collapse in sequence. 

The rupture of a cable or bundle of cables, generates forces in the longitudinal towers TL, 

while in the wind action, the forces on the towers can be longitudinal or transverse. In the 

design of a tower, these actions should be considered as dynamic actions, however, for sim-

plicity, are usually regarded as "equivalent static". Currently, this is no longer justified but, 

due to the great advances in numerical methods and in the computational area, making it 

possible to obtain the response of the structure through a dynamic analysis, which would 

provide the obtainment of more realistic results and consequently the design of a more effi-

cient and economical structure. 

The mechanical model usually adopted in TL metal lattice towers project is quite simple, 

using space frame elements on main legs and spatial lattice in the diagonal bracings, rigid 

joints (support or bezels) and pinned or fixed connections. The answer is usually obtained 

through a static and linear analysis. It should be noted that in some types of towers, for exam-

ple, guyed towers, or freestanding towers with great height the nonlinear geometric analysis is 

common. 

Determining the effects of the dynamic nature actions on TL towers is a complex task, giv-

en the range of variables involved and its randomness. The use of methods that result in more 

proximity to reality is essential to design the towers safely, seeking to maintain the efficiency 

and economy in their design. 

Therefore, a program for performing a dynamic analysis of TL structures, in a simplified 

and precise manner, becomes necessary. The explicit direct integration method (DIM) of the 

equations of motion, with central finite differences, which presents a relatively simple formu-

lation, can be used for the response over time in the towers bars, the cable elements and 

insulators of a TL, also allowing to treat physical and geometrical non-linearities with relative 

ease, besides the advantage of not requiring the assembly of the global stiffness matrix, since 

the integration is carried out at element level [1]. It is worth mentioning that the analysis is 

restricted to structures that can be discretized with the bar elements, in this case, spatial lattice 

elements. 

2 OBJECTIVE 

The main objective of this work is to develop a computational routine in FORTRAN, for 

the analysis of a complete excerpt of TL, including all the components in the model (towers, 

guy-wires, lightning rod cables, conductor cables and insulators chains) to obtain the dynamic 

response, in the time domain, using the direct integration method (DIM) of equations of mo-

tion explicitly applied to transmission lines with guyed lattice towers and subjected to cable 

breakage (conductor or lightning rod). 

To this end, an adjustment in the routine developed by [2] was made, which allows the 

analysis of freestanding towers. 

Then, the routine is tested in a numerical model of a full TL excerpt, considering all of its 

components with three guyed towers and four spans, simulating a dynamic loading from the 

rupture of a cable (conductor or lightning rod) in the model. The response is obtained in terms 

of displacements of the nodes and effort on the bars of the towers along the analysis time, 

besides the visualization of the frame moving in the time, from the set of nodal coordinates of 
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the entire TL portion generated at certain time intervals and visualized in post-processing 

programs. 

3 EXPLICIT DIRECT INTEGRATION METHOD 

In the solution of dynamic problems the explicit direct integration methods (DIM) have 

been frequently used, however, in TL structures analysis their application is not very com-

mon. The DIM theory is presented next, in a nutshell, explicitly, using central finite 

differences. 

For the solution of the nodal coordinate vector of the structureIn which: 𝒒(𝑡) is the vector 

of nodal coordinates at time “𝑡”, �̇�(𝑡) is the vector of nodal velocities at time “𝑡”, �̈�(𝑡) is the 

vector of nodal acceleration at time “𝑡”, 𝑭(𝑡) is the vector of nodal external forces at time “𝑡” 

and M, D and S are the matrices of mass, damping and stiffness of the structure, respectively. 

Using the central finite differences to solve the equations of dynamic equilibrium, the 

equation for obtaining the nodal coordinates of the structure at each instant of time, in the 

directions x, y and z is summarized as follows: 

[
1

∆𝑡2
𝑴 +

1

2∆𝑡
𝑪] 𝒒(𝑡+∆𝑡) = 𝑭 [𝑲 −

2

∆𝑡2
𝑴] 𝒒(𝑡) − [

1

∆𝑡2
𝑴 −

1

2∆𝑡
𝑪] 𝒒(𝑡−∆𝑡) (2) 

in which: 𝑡 is the time (in seconds) and ∆𝑡  is the integration time interval (in seconds). 

After the system state is known at time “(𝑡)” and “(𝑡 − ∆𝑡)”, it is possible to calculate the 

second member of the equation (2), and then determine the system state in the next time 

interval “(𝑡 + ∆𝑡)”. To begin the process, the initial conditions “𝒒(𝑡)" and “�̇�(𝑡)” must be 

specified, since:  

𝒒(0−𝑡)  =  𝒒(0−𝑡)  −  ∆𝑡 �̇�(0)  +  
 ∆𝑡2 

2
 �̈�(0) (3) 

The acceleration vector “�̈�(0)” in the above equation can be calculated from Equation (1), 

considering the time 𝑡 = 0: 

�̈�(0) = 𝑴−1(𝑭(0) − 𝑪 ∙ �̇�(0) − 𝑲 ∙ 𝒒(0)) (4) 

 

When a discrete mass matrix "M" and damping matrix "C" proportional to the mass matrix 

are used, therefore, "M" and "C" diagonal, the resulting matrix which multiplies “𝒒(𝑡+∆𝑡)”in 

Eq. (2) will also result diagonal, and the problem is reduced to n algebraic equations whose 

solution is trivial. This is when the explicit method happens. Consequently, as only space truss 

elements will be used in the model, there will be no need to form the global stiffness matrix 

K, for the integration can be performed in the element level without the need to use a solution 

process of equations systems to determine the vector “𝒒(𝑡+∆𝑡)”, resulting in a significant 

reduction of the computational effort compared to implicit methods. Thus, the equation of 

central finite differences to calculate the displacement at any node of the structure in the 

directions x, y and z at time (𝑡 + ∆𝑡),  is given by: 

𝑞(𝑡+∆𝑡)  =  
1

 𝑐1 
 [

 ∆𝑡2 

𝑚
 𝑓(𝑡)  +  2 𝑞(𝑡)  −  𝑐2 𝑞(𝑡−∆𝑡)] (5) 

in which: 𝑓(𝑡) is the component of the resulting nodal force in the corresponding direction (in 

Newton) at time 𝑡, 𝑞(𝑡) is the coordinated of linear displacement of the structure node in the 

direction  x, y or z (meters) at time 𝑡 and m is the nodal mass (in kg). Being: 
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𝑐1  =  ( 1 +
 𝑐𝑚 ∆𝑡 

2
 ) (6) 

𝑐2  =  ( 1 −
 𝑐𝑚 ∆𝑡 

2
 )

 
(7) 

where: 𝑐𝑚 is the damping coefficient proportional to the mass or proportionality constant  

(𝑐𝑚 = 𝑐/𝑚)  and  𝑐  is the structural damping coefficient (in N.s/m). Substituting Equations 

(6) and (7) in Equation (5), finally the central finite difference equation results in: 

𝑞(𝑡+∆𝑡)  =  
1

 (1 +  
 𝑐𝑚 ∆𝑡 

2 ) 
 [ 

 ∆𝑡2 

𝑚
 𝑓(𝑡)  +  2 𝑞(𝑡)  − (1 −

 𝑐𝑚 ∆𝑡 

2
) 𝑞(𝑡−∆𝑡) ] (8) 

The resulting nodal force component 𝑓(𝑡) is composed by the gravitational forces 𝑓𝑔(𝑡) 

(Own weight and external nodal forces) and the axial forces  𝑓𝑎(𝑡) in the lattice elements, due 

to axial deformation. The proportionality constant 𝑐𝑚 must be adjusted so that the ratio of 

critical damping () is the same as the structure analyzed. For each integration step, that is, in 

the evaluation of Eq. (8) for all nodes in all directions, the updated nodal coordinates lead to 

axial deformation of the elements, which react with axial forces which oppose to the dis-

placement. For an axial stiffness element “𝐸 𝐴” and length “𝐿” the axial force at a time t is 

given by: 

𝑓𝑎(𝑡)  =  𝐸 𝐴 [
 𝐿(𝑡) − 𝐿(0) 

𝐿(0)
 ] (9) 

where: 𝐸 is the longitudinal elastic modulus of the lattice material, 𝐴 is the transverse section 

of the element, 𝐿(0) is the lattice element length at time  𝑡 = 0  and 𝐿(𝑡) is the lattice element 

length in a given time 𝑡. 

Therefore, for obtaining the resulting nodal force components 𝑓(𝑡), the axial force 𝑓𝑎(𝑡) 

must be multiplied by director cosines of the element axis in the deformed state, and such 

components added with the respective gravitational force 𝑓𝑔(𝑡) in the directions x, y and z, 

acting on the node under consideration at time 𝑡. It should be noted that, since the nodal coor-

dinates are updated at each integration step, the geometric nonlinearity is always considered. 

According to [3], the convergence and accuracy of the solution depend primarily on the in-

tegration time interval ∆t adopted, therefore the method is conditionally stable. Then, 

according to [4], for this stability to be ensured, it is necessary that: 

∆𝑡 ≤  ∆𝑡𝑐𝑟𝑖𝑡  =  
2

 𝜔𝑛 
 =  

2

 2 𝜋 𝑓𝑛 
 =  

 𝑇𝑛 

𝜋
 (10) 

where: ∆𝑡𝑐𝑟𝑖𝑡 is the critical integration time interval, 𝑓𝑛 is the corresponding structure natural 

frequency of vibration with 𝑛 degrees of freedom (in Hz), 𝜔𝑛 is the BIGGEST angular fre-

quency of vibration of the structure with 𝑛 degrees of freedom (in rad/s) and 𝑇𝑛 It is 

SMALLEST structure natural period of vibration with 𝑛 degrees of freedom (in seconds). In 

determining “∆𝑡” through Eq. (10) the difficulty consists in calculating “𝑇𝑛”, which corre-

sponds to the way of vibration associated with the largest eigenvalue of the structure “𝜆𝑛” (Or 

higher natural vibration frequency “𝑓𝑛”). However, according to [5], for the case of structures 

formed by lattice components, the critical time interval “∆𝑡𝑐𝑟𝑖𝑡” can be given, approximately, 

by the following equation: 
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∆𝑡𝑐𝑟𝑖𝑡  =  
 𝐿𝑚𝑖𝑛(0) 

√
 𝐸 
𝜌

 
(11) 

in which: 𝐿min(0) is the initial length of the shortest lattice bar (meters) at time  𝑡 = 0, 𝐸 is the 

longitudinal elastic modulus of the material (in N/m²), 𝜌 is the specific mass of the material 

(in kg/m³). 

According to Eq. (11), the integration time interval “∆𝑡” that should be adopted for a struc-

ture of the lattice type, basically depends on the initial length of the shortest lattice bar and the 

speed of sound in the material used in the bar. It is important to note that Eq. (11) serves only 

to give an approximate idea of the value of “∆𝑡”. In order that the accuracy of the results is 

proved, without calculating the largest eigenvalue of the structure, the obtainment of at least 

two identical responses with two different values of “∆𝑡 ≤  ∆𝑡𝑐𝑟𝑖𝑡” is necessary. In the analy-

sis of metal lattice towers according to [6] in order that the method stability is ensured, the 

time interval between integration steps (∆𝑡) must be of the order of 10
-5

 to 10
-6

 seconds, 

which requires between 100,000 and 1,000,000 integration steps for each second of analysis 

of the structure. 

4 METHODOLOGY 

The dynamic response of the structure in the time domain is obtained through a numerical 

routine developed in FORTRAN and adapted from [3] to allow analysis of guyed TL metal 

lattice towers. The routine uses the direct integration method (DIM) of the equations of mo-

tion, explicit, using central finite differences. The application routine is performed in three 

stages, called: pre-processing, processing and post-processing. 

In the pre-processing stage, the input data of the complete excerpt of TL are provided, in-

cluding the towers, the insulator chains, conductor cables, lightning rods and guy-wires, with 

their discretizations informing the geometric properties of every element, the mechanical 

properties of the materials and the cable element selected to break. 

In the second step, called processing, from the input data informed, the structure is ana-

lyzed, and the dynamic response in the time domain is obtained. 

In the final step called post-processing, the results can be viewed, from the output file gen-

erated in the previous step, in terms of displacements at the top of the towers and effort in 

elements, in addition to the structure movement visualization over time of analysis with the 

aid of a post-processing program. 

4.1 Cable breakage simulation  

The total time set for the analysis of the complete excerpt of TL is 40 seconds. The own 

weight loads of the towers and the cable elements are applied gradually from 0 to 100% of 

their value for a 5 second time interval (t = 0 a 5 s). At this same time interval, the initial 

deformation is applied to give the desired prestressing to the guy-wires, also gradually. The 

time interval of 5 to 20 seconds is used to dampen any vibration induced in the numerical 

model. The rupture of the selected cable element occurs at time 20 seconds (t = 20 s) and the 

remaining 20 seconds of analyzes are spent in obtaining the structure dynamic response over 

the time. In Fig. 1 the conductor cable elements are shown (breakage hypothesis 1) and of 

lightning rod (breakage hypothesis 2) selected to break in the model 
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The cable elements which must break, both the conductor cable and the lightning rod, are 

situated near tower 2, the line span 2, between towers 1 and 2, specifically the  element 2422 

for the conductor cable 1 and the 2022 for the lightning rod 1, as shown in Fig. 1. 

The definition of span 2 for the cable breakage, near tower 2 was made with the objective 

of minimizing the return of the conductor cables and lightning rods vibrations that can occur 

close to the extremity nodes of the model, when the cable breakage happens, since these 

nodes are defined as immovable. The tower 2 is the one that is farthest away from the extrem-

ities, and therefore, selected for the analysis of efforts and displacements. 

The breakage of a cable in the TL full numerical model is introduced into routine nullify-

ing the axial force (𝑓𝑎(𝑡)) acting on the selected element to break in a moment of time, 

specified, in the case of this analysis at t = 20 s. 

 

 

 

 

 

 
 

 
(b) 

              Conductor cable element ;                 Lightning rod cable element             Guy-wire element; 

              Tower element;                                 Insulator element; 

              Conductor cable element 1 selected to break (breakage Hypothesis 1); 

              Lightning rod cable element 1 selected to break (breakage Hypothesis 2). 

 

Figure 1: Selected items to break in the dynamic analysis: (a) top view of the full TL model  (b) model view in 

3D perspective. 

(a) 

 

Lightning rod cable element 1 

(Breakage hypothesis 2) 

Conductor cable element 1 

(Breakage hypothesis 1) 

TOWER 1 TOWER 2 TOWER 3 
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For the viscous damping (proportional to the nodal mass) defined by the constant cm (con-

stant that relates the damping with the nodal mass), present in the equations (6) and (7), the 

values cm = 3 and cm = 2 were adopted for the elements of the towers and insulators, respec-

tively. For cable elements, where the damping has a more significant role in the dynamic 

response, the value of cm = 1 was adopted. The values of the constant cm, for each node of the 

structure, have been defined based on a parametric study by [7]. It should be noted that the 

constant cm must be adjusted so that the critical damping ratio () is close to the one of the 

actual structure, in the case of metal lattice towers it varies from 3% to over 10%. Table 1 

shows the main input data of the numerical routine for the excerpt in question. 

 

 

Table 1: Basic input data in the routine in FORTRAN for the dynamic analysis by explicit direct integration 

in the full TL excerpt. 

For the application of DIM, the developed program makes it possible to discretize the 

structure only with space truss elements, which is considered as a limitation, since lattice 

towers when modeled with only space truss elements may have an interior hypostatization. 

This problem can be circumvented with the use of dummy rods with an axial stiffness such as 

to avoid instability of the structure and to not significantly alter the results. The calibration 

and evaluation process of the dummy bar inserted in the numerical model is described in [8]. 

The evaluation of the response accuracy and stability of the numerical method is done in 

two ways, namely: comparison of the fundamental frequency of a model with only one tower, 

without cables or insulators, with the modal analysis of the same model and of the model 

dynamic response verification using two different time intervals of integration (∆𝑡1 and ∆𝑡2), 

smaller than ∆tcrit, which should result identical. 

4.2 Evaluation of the method accuracy 

To evaluate the accuracy of the numerical method, a model with only one tower, without 

cables or insulators, is subjected to an impulsive horizontal load on top, in order to obtain the 

horizontal displacement of the structure in the direction of the force applied over time analy-

sis. Thus, it is possible to determine the frequency of vibration associated with this mode and 

compare it with that obtained in a modal analysis with the same model of isolated tower. This 

evaluation is done in two horizontal directions, X and Z. 

Gravitational acceleration 9,81 m/s² 

Constant  cm  applied to the tower nodes 3,0 

Constant  cm  applied to the insulators nodes 2,0 

Constant  cm  applied to the cables nodes 1,0 

Total analysis time 40 s 

Time interval for application of the own weight and prestressing of stays 0 to 5 s 

Time interval for the damping of induced vibration 5 to 20 s 

Instant of time set for the cable breakage 20 s 

Time interval for the structure response analyses 20 to 40 s 

Total number of nodes in the model 1836 

Total number of elements in the model 4012 

Integration time intervals used in the analyses 2,5E-06 and 4,0E-06 s 

Initial deformation in the stays 1 and 3 (Pair 1) 1,452840E-03 m/m 

Initial deformation in the stays 2 and 4 (Pair 2) 1,452083E-03 m/m 
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The application of the impulsive load is performed as follows: the bearing of the structure 

own weight is applied gradually from, 0 to 100%, in a time interval from 0 to 5 seconds. At 

the same time, the initial deformation is imposed for the stays prestressing, also gradually. 

After that, at time t = 5 seconds, the application of horizontal load in the direction X starts, 

increasingly, during 5 seconds, reaching its maximum value in t = 10 s. Then, the load value 

is kept constant for 5 more seconds and stopped abruptly in t = 15 s, putting the structure in 

free vibration for 5 more seconds, until it reaches t = 20 s, that is the final time of this analy-

sis. With the displacements at the top of the tower in the direction X, over time in the last 5 

seconds of analysis it is possible to obtain the vibration frequency of the isolated tower asso-

ciated with this mode. In order to obtain the frequency of vibration of the tower in the other 

horizontal direction the same procedure is performed, however, with the impulsive load ap-

plied in the direction Z. 

Table 2 shows the results of vibration frequencies found in the modal analysis and the val-

ues found in the dynamic analysis by the DIM with impulsive loads. 
 

*   Frequencies obtained with modal analysis for the isolated tower model; 

** Frequencies obtained with dynamic analysis by the DIM for the model with the isolated tower and impul-

sive forces. 

 

Table 2: Comparison of vibration frequencies of guyed tower S1E2 in the directions X and Z, obtained in 

modal analysis and by the DIM with impulsive forces 

From the results shown in Table 2 for the model with the isolated guyed tower, it can be 

seen that the DIM is quite accurate. 

4.3 Evaluation of the method stability 

To evaluate the direct integration method stability, two different integration time intervals 

were used (∆𝑡1 e ∆𝑡2) for the same model of isolated tower, smaller than the critical time 

integration (∆𝑡𝑐𝑟𝑖𝑡) of the structure. 

The values of the integration time interval (∆𝑡), adopted in the analyses of the isolated 

tower, are shown in Table 3. 
 

 

 

 
 

Table 3. integration time intervals adopted for the dynamic analysis of the isolated tower 

The results of the model analyzed were identical for both ∆t values used, both for the vi-

bration frequencies in the direction X and in the direction Z, confirming the method stability. 

Modal Form 
Frequency (Hz) 

Variation (%) 
Modal An. * DIM** 

Bending in the direction X 2,739 2,611 4,57 

Bending in the direction Z 3,662 3,649 0,19 

∆𝑡1 ∆𝑡2 

2,50E-06 s 4,00E-06 s 
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5 NUMERICAL EXAMPLE 

The model used as an example for application of the DIM consists of a complete excerpt of 

TL, consisting of three guyed towers, called S1E2, with their respective chains of insulators 

and stay cable, four spans of conductor cables and lightning rods with 500 m long, with a total 

excerpt of 2000 m. The towers are on the same level, that is, the cables suspension points are 

positioned at the same height. At the extremities of the TL excerpts (in x = 0 m and 

x = 2000 m), cables are fixed on fixed nodes, that is, with all degrees of freedom to the trans-

lation (X, Y, Z) restricted. The same occurs in the anchor points of the stays and at the feet of 

the towers. The numerical model consists of 1902 actual tower bar elements, 9 insulator 

elements, 1012 cable elements, (conductors, lightning rods and stays) and 1089 elements of 

fictitious tower bars. Thus, the complete excerpt results in a total of 1836 nodes and 4012 

elements. 

Fig. 2 shows the complete TL model excerpt analyzed, identifying the numbering of the 

three guyed towers and of the four cables spans. 

 

 

 

 

 

 

Figure 2: Top view of the TL excerpt analyzed, consists of three towers and four cables spans 

The model is subjected to the breaking action of a conductor cable in a first analysis and in 

a second analysis to the breaking action of a lightning rod. 

5.1 Towers and insulators chains 

The guyed towers S1E2 are of suspension (tangent), single circuit 230 kV, with arrange-

ment of the conductor cables in an asymmetric triangular shape and two lightning rods. They 

are metal lattice structures with a total height of 43.5 meters. The central mast has a square 

cross-section, with 130 x 130 cm. Each tower has four stay cables which ensure the stability 

of the structure, divided into two pairs, where each pair is fixed on the tower in symmetric 

points positioned between the trunk and the head of the tower. Each stay cable has a total 

length of 39.65 m. The silhouette and the spacing between the cable anchor points (founda-

tions of the stay cables) and their connection points in the body of the tower are detailed in 

Figures 3 and 4. 

The stays anchoring happen at 17.0 m from the central mast axis, in the direction X and 

15.0 m in the direction Z (model global horizontal axis) as can be seen in Fig. 4. 

The insulator chains in the numerical models adopted were considered with a single ele-

ment, able to withstand only tensile stresses. They are suspended at the extremities of the 

arms of the conductor cables and are shaped with a length of 2.70 meters. 

 

Conductor Cable 

Lightning Rods 

Tower 1 Tower 2 Tower 3 

Excerpt = 2000m 

500m 500m 500m 500m 
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5.2 Conductor cables, lightning rods and stay cables 

Regarding the mechanical performance of the conductor cables and lightning rods used in 

TL, linear and nonlinear stress-strain relationships can be used. For non-linear relationships, 

the expressions are given by a polynomial of 4th degree, similar to those employed by [9, 10]. 

In this work, the behavior of the cables was considered to be linear. Thus, the stress-strain 

diagram of the conductor cables and lightning rods for a constant temperature is a straight 

line. For the stay cables the behavior was also considered to be linear. 

     

Figure 3: Front, side and perspective view of the guyed tower S1E2 with the structural configuration of the 

elements and other geometric details (dimensions in millimeters) 

Perspective 
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Figure 4: Top view of the guyed tower S1E2, with the distances between the anchoring points of the four stays 

(dimensions in millimeters). 

The conductor cables used in the model are made of aluminum steel-reinforced IBIS type 

(CAA/ACSR – Aluminum Conductor Steel Reinforced) consisting of 26 aluminum wires in the 

outer layer and beam with 7 steel wires (26/7 cables). The lightning rods used are of steel type 

Extra High Strength (EHS - Extra High Strength) with seven 3/8 inch steel cables. For the 

stays EHS wire ropes of 37 wires13/16'' are used. The mechanical properties of the cables 

used are detailed in Table 4. 

 

Properties 
Conductor 

cables  
Lightning rods Stay cables 

External diameter 19,89 mm 9,14 mm 20,20 mm 

Cross-sectional area 234,00 mm² 51,08 mm² 320,00 mm² 

Linear weight 7,98 N/m 3,98 N/m 19,42 N/m 

Modulus of elasticity 74515 N/mm² 172369 N/mm² 120000 N/mm² 

Ultimate tensile strength (𝑇𝑟𝑢𝑝) - 

UTS 
72506,0 N 68502,6 N 328000,0 N 

 

Table 4: Properties of IBIS type conductor cables, AAC/ACSR (aluminum cable with steel core), 26/7 wires, 

lightning rod of EHS type (7-wire) 3/8'' and stay cables EHS wire rope type (37 wires) 13/16'' 

In order that the conductor cables and suspended lightning rods are properly modeled with-

in a TL span, the distorted characteristic of the cables should be taken into account, which in 

turn has the format of a catenary. The maximum deflection that the cables will reach when 

subjected to own weight loads and the initial tension should also be considered. The configu-

ration of the catenary, in relation to the center of the wire span (central axis) is given in two 

ways: symmetrical or asymmetrical. The difference depends on the height of the cable sus-

pension points. The catenary is considered symmetrical when the suspension points are given 

in the same height, where the vertex is located (center of the span), which is the point where 

the maximum deflection (𝑓𝑒) occurs. When the suspension supports are in unequal heights, 

then the catenary is asymmetrical and the maximum deflection does not occur at the center of 

Z 

Longitudinal 

to the line 

Transverse to 

the line 

X Y 
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the span, as illustrated in Fig. 5. The deflection is due to the span length, the temperature and 

the tensile level applied to the cable when installed in the TL suspension points. 

 

Figure 5: Cable suspended between the supports "1" and "2" with different heights [2] 

The suspension points were considered all of the same height (B = 0), that is, all catenaries 

are symmetrical. 

In the case of the suspended conductor cables in transmission lines, their catenary, in the 

EDS condition (Every Day Stress), is designed for an initial design tension around of 20% of 

its ultimate capacity of tension (UTS - Ultimate Tension Stress). This value is recommended 

by [11]. For the lightning rods, the value adopted for the design tensile strength, in the theo-

retical position, must be calculated for a theoretical catenary deflection "𝑓𝑒𝑝" equal to 90% of 

the maximum deflection "𝑓𝑒" of the conductor cables in the span under consideration. It is 

noteworthy that, according to the [11], the recommended value for the design initial tension in 

the lightning rods is of the order of 14% of UTS condition. 

At the initial time of the analysis (𝑡 = 0), the weight force is not taken into account in the 

initial coordinates of the catenary points. Thus, there are two catenaries, one without consider-

ing the weight force (own weight), called initial catenary, and another after the application of 

own weight, called theoretical catenary. In this condition, after the application of the weight 

force in the structure, the cable must be positioned so that it is subjected to a design tensile 

strength (𝑇𝑝), equivalent to a percentage of breaking strength in the cable traction (𝑇𝑟𝑢𝑝), with 

the theoretical catenary (𝑓𝑡𝑒ó𝑟𝑖𝑐𝑎) and maximum deflection (𝑓𝑒). The value for the design 

tensile strength of the conductor cables and lightning rods used in the study was calculated by 

Equations (12) and (13), respectively: 

𝑇𝑝 = 0.20 ∙ 𝑇𝑟𝑢𝑝   (20% for the conductor cables) (12) 

𝑇𝑝𝑝 = 0.1175 ∙ 𝑇𝑟𝑢𝑝   (11.75% for the lightning rods) (13) 

The catenary of the conductor cables IBIS AAC/ACSR 26/7 and lightning rods EHS 3/8"  

adopted in the project (Table 4) in the initial condition (before application of weight force) 

and theoretical (after the application of weight force) considering a span L = 500 meters and 

with B = 0, were determined considering the formulations presented in [8]. Additional details 

can be found in [12]. The results of the catenaries in the theoretical and initial conditions of 

the conductor cables and lightning rods are shown in Figures 6 and 7, respectively. 

fteoric 
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Figure 6: Catenary in initial and theoretical condition for a conductor cable IBIS AAC/ACSR 26/7 considering a 

span of 500 m between towers and gap between the cables suspension points equal to zero (B = 0) 

 

Figure 7:  Catenary in initial and theoretical condition for a lightning rod EHS 3/8 '', considering a span of 500 m 

between towers and gap between the cables suspension points equal to zero (B = 0) 

5.3 Stay cables prestressing 

The initial prestressing that must be applied to the stay cables of the S1E2 tower, responsi-

ble for ensuring the stability of the structure central mast, produces a tensile strength in these 

cables of approximately 13% of its breaking load, according to recommendations of the [13], 

which suggests values between 8 and 15% of the cable rated load capacity. In fact, the initial 

prestressing in the stay cables, applied through a deformation in the cable elements is of the 

order of 17% of its breaking load, and this value is reduced to 13% after the application of the 

tower own weight, of the conductor cable and lightning rods and their own prestressing, 

which causes the central mast to shorten, thereby reducing the initial prestressing. 

In the numerical routine, the initial prestressing in stay cable is applied through a constant 

initial deformation which is added to the deformation of the element when calculating the 

axial force in the cable element. As the tower has an asymmetrical silhouette, its structure 

naturally has the center of gravity displaced from the central axis of the mast. Thus, the appli-
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cation of a different prestressing on each side, or each pair of stays is necessary, in order to 

keep the structure in its upright position. 

To determine the amount of prestressing to be applied, a calibration process was done, 

where the first initial deformation value adopted for the stays was that capable of producing 

prestressing of 17% of the breaking load on the cables, applied equally on the four stays of the 

tower. The calibration was made by changing the values of the initial deformation, and conse-

quently of the prestressing in the stay pairs, and by monitoring the horizontal displacement in 

the direction X of the nodes of the stays arms tip, which should be close to zero, in order to 

maintain the structure of the central mast vertical. This process was carried out considering 

only the central mast own weight, so the structure construction process could be represented 

accurately. The own weight of conductor cables, insulators and lightning rods were applied 

after calibration of stays. So, as expected, when the own weight of the conductor cables and 

lightning rods were applied a relief occurred in the prestressing of the stay cables. The relief 

is generated because of the central mast shortening caused by the own weight of the structure, 

conductor cables and lightning rods and by the application of prestressing. The values ob-

tained for the initial deformation applied to each pair of stays, so as to ensure that the central 

mast remains vertical, are shown in Table 5. 
 

Element Initial Deformation 

Pair 1 (stays 1 and 3) 1,452840E-03 m/m 

Pair 2 (stays 2 and 4) 1,452083E-03 m/m 

 

Table 5: Initial deformation values applied to the pairs of stays 

5.4 Analysis Results 

The results obtained for tower 2 analyzed in the numerical routine and subjected to con-

ductor cable and lightning rod breakage in terms of displacement and normal stresses in the 

bars, are presented below. The results of a static analysis of the isolated model of the same 

tower, which uses the "equivalent static loads" in the cable breakage simulation, is used as a 

comparator in terms of maximum displacements at the top and normal stresses on the bars. 

5.4.1 Displacements 

The results for the displacements at the top of the tower 2 resulting from the dynamics of 

the conductor cable and the lightning rod breakage in the longitudinal direction of the line (Z) 

are depicted in Fig. 8 along with the respective displacements obtained in static analysis. 
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Figure 8: Longitudinal displacements in the node 251 of Tower  2 for the two cases of breakage (conductor 

cable 1 and lightning rod 1) 

5.4.2 Stress in the elements 

The normal stresses in stays 1 and 3, for the pair 1 of Tower 2 (adjacent to the breaking 

point) of the TL excerpt, for the conductor cable breakage hypothesis, are shown in Fig. 9. 

 

Figure 9: Normal tensile stress in stays 1 and 3 (pair 1) of tower 2 for the conductor cable 1 breakage hypothesis  

For the stays 2 and 4, relating to the pair 2 of the tower 2 in the TL excerpt, for the con-

ductor cable breakage hypothesis, the values of normal stresses are shown in Fig. 10. 

0 5 10 15 20 25 30 35 40 
-2 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

Time (s) 

D
is

p
la

c
e
m

e
n

t 
(c

m
) 

  

  Conductor Dynamics An. 

Lightning Rod Dynamics An. 

Conductor Static An. 

Lightning Rod Static  An. 

0 5 10 15 20 25 30 35 40 0 

10 

20 

30 

40 

50 

60 

70 

80 

Time (s) 

N
o
rm

a
l 
T

e
n
s
ile

 (
N

) 

  

  

STAY 1 Dynam. An. 
STAY 3 Dynam. An. 
STAY 1 Static An. 
STAY 3 Static An. 

4430



Thiago Brazeiro Carlos, João Kaminski Jr. 

 

Figure 10: Normal tensile stress in stays 2 and 4 (pair 2) of Tower 2 for the conductor cable 1 breakage 

hypothesis  

Fig. 11 shows the normal stresses on the main leg 173 of the tower 2 positioned below the 

fixing supports of stays, for the conductor cable breakage hypothesis. 

 

Figure 11: Normal stress on the main leg 173 of tower 2 for the conductor cable 1 breakage hypothesis 

In Fig. 12 the stresses of the diagonal bracing 483 of the tower 2 are given, which is situat-

ed in the region of the most significant stresses for this type of bar (above the stays fixing 

corbels) for the conductor cable breakage hypothesis.  
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Figure 12: Normal stress in the diagonal bracing 483 of tower 2 for the conductor cable 1 breakage hypothesis 

In Figures 13 and 14, the stresses on the bars located in the upper arm that supports the 

conductor cable which breaks, in tower 2 are illustrated. 

 

Figure 13: Normal stress in the bar 601 of the arm of conductor cable 1 in tower 2, for the conductor cable 1 

breakage hypothesis. 
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Figure 14. Normal stress in the bar 609 of the arm of conductor cable 1 in tower 2, for the conductor cable 1 

breakage hypothesis 

The correct functioning of the routine during the gradual application of own weight loads 

and prestressing on the stay cables (t = 0 to 5 s), time to damp possible vibrations (t = 5 20 s), 

the instant of breakage of the selected cable element (t = 20 s) and finally, during the interval 

for obtaining the dynamic response of the structure at the time (t = 20 to 40 s) can be observed 

by the results presented. 

5.4.3 Post-processing 

After the results of the dynamic analysis of the complete TL excerpt are obtained, the re-

sults output files generated in the routine in FORTRAN in terms of nodal displacements over 

the time of analysis, can be seen in post-processing programs, making it possible to see the 

movement of the structure over time. Fig. 15 shows the nodal coordinates of the complete TL 

excerpt for all time instants determined along the analysis (0 to 40 seconds). 

 

Figure 15: Animation tables of the numerical model of the complete TL excerpt, submitted to conductor cable 

breakage (illustration background) 
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From the set of nodal coordinates of all the TL excerpt, generated at certain instants of 

time, for the conductor cable breakage hypothesis, the post-processing tool also allows the 

development of video simulation, from start to finish of analysis (0 to 40 s), where the behav-

ior of the tower adjacent to the breaking point can be observed, as well as the deflection 

variations in the cables adjacent spans. 

6 CONCLUSIONS 

This work presents a computational routine developed in FORTRAN language able to gen-

erate and analyze a complete segment of a TL, consisting of metal guyed towers and 

including all components subjected to dynamic actions. 

The results showed that the routine is very efficient and easy to use, and can become an 

excellent tool for designers to obtain the dynamic response of TL structures, in order to verify 

the obtained sizing with a conventional static analysis, especially when new types of towers 

and cable arrangement is proposed. 

In validation processes by vibration frequencies comparison and normal stresses on the el-

ements by impulsive loads, it was found that the numeric routine used for the dynamic 

solution for the cables breakage problem, using the DIM, is accurate for the analysis, once 

these processes converged. Moreover, the accuracy of the results was also tested using two 

different integration times (∆𝑡1 and ∆𝑡2), which indicated the stability of direct integration 

method. 

Because of the large amount of elements (4012) in the dynamic model of the TL excerpt,  

with an integration interval (∆𝑡) of 4,0E-06 s, the time invested in the processing of dynamic 

cable breakage  analysis was relatively long, a bit over seven hours, considering a PC with 

Intel Core i5 and 4GB of RAM processor. 

One should take into account the simplifications considered in programming and that their 

responses come from an approximate numerical solution, since this is an issue with many 

variables to be further investigated. It is necessary for the program development to be contin-

ued so that it can be applied in a more complete program that mainly allows the use of gantry 

elements plan, simplifying and increasing the accuracy of the models in analysis.  

Finally, it is essential that more studies on this subject are conducted with models increas-

ingly realistic and considering other types of guyed towers, besides conducting experimental 

tests to confirm the accuracy of the results. 
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Abstract. The problem of transformation optics for longitudinal and flexural waves in monodi-
mensional elastic systems is analyzed. System of finite dimensions are considered and it is
shown that, under appropriate interface conditions, eigenfrequencies in finite systems remain
unchanged while eigenmodes can be tuned depending on the applied geometric transformation.
Eigenfrequency analysis can be used in cloaking problem in order to demonstrate the quality of
the cloak.
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1 INTRODUCTION

Transformation optics has been applied for the design of cloaking models for acoustic and
electromagnetic waves [1, 2, 3, 4, 5, 6, 7, 8, 9].

Cloaking for elastic waves brings new challenges regarding the physical interpretation of
equations and boundary conditions in the cloaking region. In particular, the governing equations
for elastic waves in the vector problem of elasticity and for flexural waves governed by fourth-
order differential equations, are not invariant under transformation. The vector problem of
elasticity have been analyzed in [10, 11, 12, 13] and it has been shown that in order to enforce
invariance of transformed equation, polar materials involving non symmetric Cauchy stress are
needed.

The theoretical analysis, the design and the physical interpretation for the cloaking of flex-
ural waves has been addressed in [14, 15, 16, 17, 18, 19]. In particular, [17, 18] have shown
that transformed equation for Kirchhoff plates corresponds to an inhomogeneous anisotropic
material in presence of pre-stress. The results has also been obtained following an asymptotic
procedure from three-dimensional vector elasticity. In [19] the effect of internal boundary con-
ditions for nearly perfect cloak has been detailed.

In general, the quality of the cloak is addressed qualitatively by implementing numerically
or experimentally a plane wave, or a wave generated by a point source in an infinite medium,
and checking on the shadow generated by a cloaked defect. In [20] the quantitative scattering
measure has been introduce in order to evaluate the effectiveness of the cloak.

Here, we suggest the analysis of eigenfrequencies and eigenmodes as an advanced and sim-
plified tools in order to demonstrate the quality of the cloaking and of the transformation. Such a
vision drastically simplify the experimental and numerical implementation avoiding the neces-
sity to introduce Perfectly Matched Layers, which can only been obtained approximatively for
flexural waves. In particular, we consider a simple monodimensional Euler-Bernoulli beam sub-
jected to longitudinal and flexural waves and we demonstrate that under transformation eigen-
frequencies remain unchanged and eigenmodes can be perturbed simply changing the adopted
transformation. Again, two possible quantitative measures can be considered in order to check
the quality of the effect. The perturbation of the field in the untransformed domain as in the
scattering measure or the values of the eigenfrequencies after transformation.

Also, the analysis within a finite domain is important because it enhances the contribution of
the non-propagating part of the waves which is often disregarded in cloaking problems. Flexural
waves are governed by fourth-order differential equations, ordinary for beam and partial for
plates. The solution is the superposition of propagating waves, solution of Helmholtz equation
and non propagating waves, solution of the modified Helmholtz equation [21, 22, 23, 24, 25].
The boundary conditions in finite system couple the solutions of the Helmholtz and modified
Helmholtz equations.

The paper is organized as follows, In Section 2 we report the time-harmonic equations of
motion for longitudinal and flexural waves, in Section 3 we report the transformed equations
and we discuss the conditions for the automatic satisfaction of interface conditions. In Section
4 we report the anlytical and numerical eigenfrequency analysis for longitudinal waves in a rod
and flexural waves in a beam. Different transformations are discussed and detailed.

2 EQUATIONS OF MOTION IN ELONGATED BEAM STRUCTURES

We apply the transformation to one-dimensional elongated structures. We restrict the at-
tention to time-harmonic regime. We consider slender structure such that the behavior can be
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described within the classical Euler-Bernoulli beam model. The longitudinal displacement is
U(X) and the transverse displacements are V (X) and W (X). The structure has Young’s mod-
ulus E, density ρ, cross sectional area A, second moments of inertia JY and JZ .

Time-harmonic equation of motion for longitudinal waves in a rod is the following Helmholtz
equation for the longitudinal displacement U(X)

[EAU ′(X)]
′
+ ρAω2U(X) = 0, (1)

where ω is the radian frequency.
The time-harmonic equations of motion for flexural waves are the following equations for

the transverse displacements V (X) and W (X)

[EJZ V
′′(X)]

′′ − ρAω2V (X) = −T ′Y (X)− ρAω2V (X) = 0,

[EJY W
′′(X)]

′′ − ρAω2W (X) = −T ′Z(X)− ρAω2W (X) = 0. (2)

Note that the transverse shears are given by TY (X) = − [EJZ V
′′(X)]′ for the component along

Y and TZ(X) = − [EJY W
′′(X)]′ for the shear component along Z.

3 TRANSFORMED EQUATION

In order to transform the domains we apply a coordinate transformation x = G(X), having
inverse X = g(x). Capital letters indicate quantities defined in the untransformed domain,
lower case letters refer to quantities in the transformed domain. Implementation of coordinate
transformation within the equations of motion (1) and (2) lead to the transformed equations of
motion.

The transformed equation of motion for longitudinal waves has the form[
EAu′(x)

]′
+ ρAω2u(x) = 0. (3)

In Eq. (3) u(x) is the transformed longitudinal displacement. We assume u(x) = U(X).
The transformed Eq. (3) involves non-homogeneous longitudinal stiffness EA = EA/g′(x)
and non-homogeneous linear density ρA = g′(x)ρA. The axial force N(X) = EAU ′(X)
transforms to n(x) = EAu′(x), which results to be equal to N(X).

The transformed equations of motion for flexural waves have the form

[ty(x) + EJZ n(x)v
′(x)]

′
+ ρA(x)ω2v(x) = 0,

[tz(x) + EJY n(x)w
′(x)]

′
+ ρA(x)ω2w(x) = 0. (4)

In Eqs. (4) v(x) and w(x) are the transformed transverse displacements, that we assume such
that v(x) = V (X) and w(x) = W (X). The transformed shear forces and axial force have the
form

ty(x) = m′z(x) = −
[
EJZ(x)v

′′(x)
]′
,

tz(x) = m′y(x) = −
[
EJY (x)w

′′(x)
]′
,

n(x) =
3(g′′(x))2 − g′′′(x)g′(x)

(g′(x))5
, (5)

respectively. The transformed bending moments are mz(x) = −EJZ(x)v′′(x) and my(x) =
−EJY (x)w′′(x). Eqs. (4) involve non-homogeneous bending stiffnesses EJZ = EJZ/(g

′(x))3

and EJY = EJY /(g
′(x))3 and non-homogeneous linear density ρA = g′(x)ρA.
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3.1 Interface boundary conditions

Transformation affects also boundary conditions, which have to be checked in order to avoid
any perturbation of the fields corresponding to the homogeneous problems.

At interface points Xi between untransformed and transformed domains the condition Xi =
g(xi) = xi assures that the same interface point is shared between the different domains.

Concerning longitudinal waves the essential interface condition on displacement U(Xi) =
u(xi) and the natural condition on axial force N(Xi) = n(xi) are automatically satisfied.

In relation to flexural waves essential interface conditions V (Xi) = v(xi) and V ′(Xi) =
v′(xi) are automatically satisfied if g′(xi) = 1; while natural conditions MZ(Xi) = mz(xi) and
TY (Xi) = ry(xi), with MZ the bending moment in the untransformed domain and ry(x) =
ty(x)+EJZ n(x)v

′(x), require the additional conditions g′′(xi) = 0 and g′′′(xi) = 0 in order to
be automatically satisfied. Therefore, in every point xj in which we want to identify the condi-
tion in the transformed domain with a condition in the untransformed domain inXj the relations
g(xj) = Xj plus g′(xj) = 1, g′′(xj) = 0, g′′′(xj) = 0 have to be imposed to the transformation.
The same conditions hold for the flexural waves in the other direction involving displacement
w(x), rotation w′(x), bending moment my(x) and force component along z, rz(x).

4 EIGENFREQUENCY ANALYSIS

In this Section we compute eigenfrequencies and eigenmodes for longitudinal and flexural
waves in a domain in which we introduce a transformation, and we compare the results with the
eigenfrequencies and eigenmodes in a homogeneous system in absence of the transformation.

4.1 Longitudinal waves

We consider an homogenous rod of length 2L fixed at his ends. The solution of the Helmholtz
equation (1) is

U(X) = A1e
iαX + A2e

−iαX , (6)

where α = ω
√
E/ρ.

For fixed-fixed boundary conditions U(±L) = 0 the eigenfrequency need to satisfy the con-
dition sin(2αL) = 0 leading to the well-known results ω =

√
ρ/E(nπ)/(2L), with n positive

integer. The corresponding eigenmodes are sin[nπ(X + L)/(2L)].
Now, we introduce a second structure having the same homogeneous properties for −L ≤

X ≤ 0, while the right half 0 ≤ X ≤ L is transformed into the domain 0 ≤ x ≤ l by generic
transformation G(X) with inverse g(x). The transformation g(x) has to satisfy the conditions
g(0) = 0 and g(l) = L. The problem is solved by{

U(X) = B1e
iαX +B2e

−iαX , for − L ≤ X ≤ 0,
u(x) = B3e

iαg(x) +B4e
−iαg(x), for 0 ≤ x ≤ l.

(7)

The solution is found by satysfying the boundary conditions

U(−L) = u(l) = 0 (8)

and the interface conditions

U(0) = u(0), EAU ′(0) = EA(0)u′(0). (9)
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The system of boundary and interface conditions has the form
e−iαL eiαL 0 0
1 1 −1 −1
iα −iα −iα iα
0 0 eiαg(l) e−iαg(l)



B1

B2

B3

B4

 =


0
0
0
0

 . (10)

The condition of determinant equal to zero for the matrix in Eq. (10) is

−4α sin(2αL) = 0, (11)

which gives exactly the same eigenfrequencies as in the homogeneous case.

Figure 1: Eigenmodes for longitudinal waves in a rod. (a) Homogeneous rod of length 2L. (b-d) The rods are
subjected to a geometric transformation in the domain 0 ≤ X ≤ L. (b) Rod subjected to the linear transformation
(12) with l/L = 0.2. (c) Rod subjected to the linear transformation (12) with l/L = 2. (d) Rod subjected to the
non linear transformation (13) with l/L = 0.2.

The eigenmodes for the homogeneous problem and the problem with transformation are
given in Figure 1. We consider different transformation. We start with two linear transforma-
tions given by

ga(x) =
L

l
x, (12)

where we consider the two cases l/L = 0.2 and l/L = 2. Then, we show the results for the
nonlinear transformation

gb(x) =
e−100x − 1

e−100l − 1
L, (13)
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From the comparative analysis in Figure 1 it is shown that the eigenmodes are the same in
the homogenous domain while u(x) = u[G(X)] = U(X) in the non-homogenous ones. The
eigenmodes in the transformed domains can be tuned by changing the transformation g(x),
which can be linear or not.

4.2 Flexural waves

Referring to the homogeneous problem as in Section 4.1, the solution of the equation of
motion (2)a has the form

V (X) = C1e
iβX + C2e

−βX + C3e
−iβX + C4e

βX , (14)

in which β = [(ρA)/(EJ)]1/4
√
ω is the frequency parameter. If we consider a simply supported

beam the boundary conditions V (−L) = V (L) = 0 and MZ(−L) = MZ(L) = 0 lead to the
eigenfrequencies

ω =
(
nπ

2L

)2
√
EJZ
ρA

, (n positive integer number). (15)

The corresponding eigenmodes are V (X) = sin[nπ(X + L)/(2L)].
We consider now the second structure having the same homogeneous properties for −L ≤

X ≤ 0, and the transformation X ∈ [0, L]→ x ∈ [0, l]. The transformation g(x) has to satisfy
the conditions g(0) = 0, g(l) = L, g′(0) = g′(l) = 1, g′′(0) = g′′(l) = 0 and g′′′(0) = g′′′(l) =
0. In order to satisfy the 8 conditions a polynomial of degree 7 has been implemented.

The problem is solved by{
V (X) = D1e

iβX +D2e
−βX +D3e

−iβX +D4e
βX , for − L ≤ X ≤ 0,

v(x) = D5e
iβg(x) +D6e

−βg(x) +D7e
−iβg(x) +D8e

βg(x), for 0 ≤ x ≤ l.
(16)

The solution is found by satysfying the boundary conditions{
V (−L) = v(l) = 0,
MZ(−L) = mz(l) = 0,

(17)

and the interface conditions 
V (0) = v(0),
V ′(0) = v′(0),
MZ(0) = mz(0),
TY (0) = ry(0).

(18)

The system of boundary and interface conditions takes the form

[
A1 A2

A3 A4

]


D1

D2

D3

D4

D5

D6

D7

D8


=



0
0
0
0
0
0
0
0


, (19)
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Figure 2: Eigenmodes for transverse waves in a beam. (a) Homogeneous beam of length 2L. (b) The beam are
subjected to a polynomial geometric transformation in the domain 0 ≤ X ≤ L, with l/L = 0.75.

where

A1 =


e−iβL eβL eiβL e−βL

−β2e−iβL β2eβL −β2eiβL β2e−βL

1 1 1 1
iβ −β −iβ β

 (20)

A2 =


0 0 0 0
0 0 0 0
−1 −1 −1 −1
−iβ β iβ −β

 (21)

A3 =


EJZβ

2 −EJZβ2 EJZβ
2 −EJZβ2

iEJZβ
3 EJZβ

3 −iEJZβ3 −EJZβ3

0 0 0 0
0 0 0 0

 (22)
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A4 =


−EJZβ2 EJZβ

2 −EJZβ2 EJZβ
2

−iEJZβ3 −EJZβ3 iEJZβ
3 EJZβ

3

eiβg(l) e−βg(l) e−iβg(l) eβg(l)

EJZβ
2eiβg(l) −EJZβ2e−βg(l) EJZβ

2e−iβg(l) EJZβ
2e−βg(l)

 (23)

Then, setting to 0 the determinant of the matrix in Eqs. (18), we obtain

256(EJ)2β10 sinh(2βL) sin(2βL) = 0. (24)

Eq. (24) gives exactly the same eigenfrequencies of the homogeneous system.
The eigenmodes for an homogeneous beam and a not homogenous beam are given in Figure

2 parts (a) and (b), respectively. Again, the displacement in the transformed domain are v(x) =
v[G(X)] = V (X).

5 CONCLUSIONS

Eigenfrequencies and eigenmodes for longitudinal and flexural waves in slender beam struc-
tures subjected to geometric transformation are detailed. It is shown that eigenfrequencies are
invariant under transformation, while eigenmodes depend on the applied transformation law.
Eigenfrequency analysis in finite system can help in the design and implementation of cloaking
devices with particular attention to elastic waves.
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