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PREFACE 

This volume contains the full-length papers presented at the VII European Congress on Computational 

Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016) that was held on June 5-10, 2016 

on the Crete Island, Greece.  

The main objective of the quadrennial ECCOMAS Congresses is to provide a forum for presentation and 

discussion of state-of-the-art advances in computational methods in applied sciences and engineering, 

including basic methodologies, scientific developments and industrial applications and to serve as a platform 

for establishing links between research groups of academia and industry with common as well as 

complementary activities. About 2,200 papers were presented at the ECCOMAS Congress by authors from 

53 countries around the world. This volume, consists of 667 full length accepted papers which will be 

indexed by SCOPUS database with access to the pdf file of the paper.  

The ECCOMAS Congress 2016 is organized by the Institute of Structural Analysis and Antiseismic Research of 

the National Technical University of Athens under the support of the Greek Association for Computational 

Mechanics (GRACM), the Institute of Research and Development for Computational Methods in Engineering 

Sciences (ICMES) and the Computer Applications and Education in Engineering Sciences (CAEES). 

The editor of this volume would like to thank all authors for their contributions. Special thanks go to the 

colleagues who contributed to the organization of the Minisymposia and to the reviewers who, with their 

work, contributed to the scientific quality of this e-book. 

 

 

M. Papadrakakis 

National Technical University of Athens, Greece 

 

V. Papadopoulos 

National Technical University of Athens, Greece  
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Abstract. In the context of three-dimensional elastic frame structures analysis with small
strains and in the presence of large rotations we present a computationally effective model
for the Euler-Bernoulli beam element. Actually, kinematical and strain measures of the beam
element are completely defined by referring to boundary nodal displacements and one finite
rotation parameter solely. In particular, the director along axis of the beam is defined directly
by nodal positions while directors along the principal axes of the cross-section are detected
by referring to the related orthogonal plane and the used rotation parameter. The definition of
local rotations, required for the evaluation of torque and flexural deformation components, is
obtained by imposing rotational compatibility and equilibrium conditions across inter-element
boundaries. The description of the finite three-dimensional rotations is well posed under widely
applicable hypotheses. The analysis of complex spatial dome structures, where matrices with
large dimension and bandwidth occur, now proves a remarkable reduction of the required arith-
metical operations with respect to the classical approaches.
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1 Introduction

Considerable work has been devoted to develop models for three-dimensional elastic frame
structures for small strains and in the presence of large rotations. In this context the co-
rotational, with minimal set parametrizations and multiplicative representations of rotations,
is the most widely exploited approach. Indeed, the large-scale calculations required by these
formulations have encouragedefficient treatments of the finite rotations. Then, those treatments,
typically based on the rotation vector of the Euler theorem to describe finite rotations, have an
economical definition of the rotated local reference system because only three parameters are
used while evaluations of the coefficients in the force vector and in the tangent stiffness matrix
are inexpensive. The evolution of the co-rotational approach can be traced by referring to the
works of Stuelpnagel [1], Belytschko and Hsieh [2], Goldstein [3], Argyris [4], Rankin and
Nour-Omid [5], Cardona and Geradin [6], Crisfield [7], Atluri and Cazzani [8], Geradin and
Rixen [9], Ibrahimbegović et al. [10] and Felippa [11].

In this context here we present an alternative and computationally effective approach. Actu-
ally, kinematical and strain measures of the beam element are completely defined by referring
to boundary nodal displacements and one finite rotation parameter. In particular, the director
along axis of the beam is defined directly by nodal positions while directors along the princi-
pal axes of the cross-section are detected by referring to the related orthogonal plane and the
only used rotation parameter. The definition of local rotations, required for the evaluation of
torque and flexural deformation components, is obtained by imposing rotational compatibility
and completeness conditions across inter-element boundaries. Finally, the description of the
finite three-dimensional rotations is well posed under widely applicable hypotheses.

Being the infinitesimal nodal rotations computed by vectorial operations among the adja-
cent elements, such a formulation requires the extra storage of an integer matrix for the node
- connected elements recognition. These connections, furthermore, increase the dimension of
elemental force vector and tangent stiffness matrix and lead to complex programming for the
imposition of rotational boundary conditions and linked applied moments. In contrast, by re-
taining similar approximation properties, the discretization uses one rotational unknown for
each element instead of three required by the classical approaches.

As regards beam element modeling, here we use a small strain - finite displacement for-
mulation of a two-node finite element based on the Euler-Bernoulli beam theory. The actual
configuration of the element is rigidly translated and rotated, and deformed according to lin-
ear interpolations for axial displacements and quadratic interpolations for torque and flexural
modes. The nonlinear motion is recovered by referring to the nodes at the boundaries of the el-
ement with three unknown displacements per node plus one unknown rotation per element. We
note that boundary conditions on rotations are imposed by assuming as known the related nodal
slopes or applied moments. It follows that, as will be discussed later, treatment of rotational
boundary conditions and external moments proves to be more complex with respect to typical
co-rotational formulations. Furthermore, the incremental rotations are restricted to the range of
validity of the described formulation. Overall the use of the presented approach requires more
implementation effort but less arithmetical operations with respect to the classical one.

2 Treatment of finite rotations

In the following, we denote with Greek indices the componentsof vectors and matrices while
Latin indices are reserved to nodes and elements identification. Letgα = {gαβ} andĝα = {ĝαβ}
be, respectively, the actual and the initial configurationof three unit mutually orthogonal vectors
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in the inertial reference basiskα = {kαβ} = {δαβ}, whereδαβ is the Kronecker delta. Then,
matrix Ĝ = [ĝ1|ĝ2|ĝ3] links ĝα andkα vectors byĝα = Ĝkα while G = [g1|g2|g3] mapskα

into gα vectors bygα = Gkα.
To obtain the updated treatment of rotations we refer to thegα(k) = G(k)kα, G(k) =

E(k)Ḡ(k), expression for the actual configuration of thegα orthonormal triad at thek-th step.
Vectorseα(k) definingE(k) = [e1|e2|e3] represent the incremental rotation from theḡα(k) pre-
viously computed configuration. The subsequentk + 1 step, afterward, refers to thēG(k+1) =
E∗

(k)Ḡ(k) updated configuration with thee∗
α(k) established configuration ofeα. The process is

initialized byḠ(0) = Ĝ.
Classically, the treatment of rotations is based on the recursive compositiongα(k) = E(k)Ḡ(k)ĝα,

E(k) = E(ψ(k)), whereψα components ofψ are the unknown rotation parameters. Following
the description given before,E(k) is the incremental rotation matrix which maps the updated
frameḡα(k) into the actual framegα(k) while Ḡ(k) = Ḡ(k)(ψ̄(k)) maps the initial framêgα into
the updated framēgα(k). Based on the rotation vectorψ = ϕφ, φTφ = 1, of the Euler theorem
to describe finite rotations, a representation of rotation operators is:

G(ψ) = I +
sinϕ
ϕ
ψ× +

1 − cosϕ
ϕ2

ψ2
×. (1)

whereI is the identity matrix. In (1)ψ× denotes the skew symmetric tensor obtained by the
components of vectorψ:

ψ× = Skew(ψ) =




0 −ψ3 ψ2

ψ3 0 −ψ1

−ψ2 ψ1 0


 . (2)

Theψ = axial(ψ×) is the converse operation of (2) that extracts theψ vector from the skew
symmetric tensorψ×.

In the use of theG = EḠ composition of rotation operators, however, we stress thatψG 6=
ψ + ψ̄ successive rotations cannot be obtained by simply adding their corresponding rotation
vectors but the solution of the inverseψG = G−1(G) problem is required. Such a problem
is defined as the operation of obtaining theψG rotation vector based on the knowledge of
theG rotation matrix and can be solved by the no ill-conditioning Spurrier algorithm [12]. By
referring to the established configurationψ∗

(k), afterwards, the updated configuration is achieved
in the subsequentk + 1 step as

G = E∗
(k)Ḡ(k), ψG = G−1(G), Ḡ(k+1) = G(ψG). (3)

The process is initialized bȳG(0) = I.

In the presented finite rotations formulation let respectively
i
u and

j
u displacement vectors at

the i andj boundary nodes of the element with lenghh, while discrete operatorss andd rest

defined bysu = (
i
u +

j
u)/2 anddu = (

j
u − i

u)/h. Then, by evaluating the vector connecting
thei andj nodes, we refer to

p1 = du + ĝ1, ǧ1 = p1/||p1|| (4)

for the first actual vector of the orthonormal basis. By referring to the given unit vectorḡ2 we
define the vectors

p2 = ḡ2 − ǧ1 · ḡ2 ǧ1, ǧ2 = p2/||p2|| (5)

ǧ3 = ǧ1 × ǧ2
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such that the basišG = [ǧ1|ǧ2|ǧ3] is orthonormal and coincides with the principal axes of the
beam element. The additional rotation in the reference space characterized by the angler about
theǧ1 axis

Gr = I + sin rǧ1× + (1 − cos r)ǧ2
1× (6)

completes now the definition of the rotation operatorG = GrǦ that linksgα andkα vectors.
We note that, in the definition of thěg2 vector in (5), the vectoršg1 andḡ2 have to form a lin-

early independent set. However this is not an actual limitation for the incremental rotationE(k).
Furthermore, rotationGr defined in (6) preserves the linearity of the vector space operations
because it has as axis of rotation the componentǧ1 = g1 of G.

3 Kinematics and energetic quantities of the beam element

Let ξ be the referential coordinate along the beam element centerline−h/2 ≤ ξ ≤ +h/2.
Global displacement vectoru(ξ) of the e element is composed of rigid and deformation com-
ponents by

e
u(ξ) =

e
u + (

e
g1 −

e

ĝ1)ξ +
e

G
e

ũ(ξ), (7)

where

e

ũ1(ξ) =
e
εξ (8)

e

ũ2(ξ) = −h
2

8

e
χ3 −

h2

24

e
γ2ξ +

1

2

e
χ3ξ

2 +
1

6

e
γ2ξ

3

e

ũ3(ξ) =
h2

8

e
χ2 +

h2

24

e
γ3ξ −

1

2

e
χ2ξ

2 − 1

6

e
γ3ξ

3.

Then, local transverse rotations in the
e

G basis are computed by

e
ϕ2(ξ) = −

e

ũ3,ξ(ξ) = −h
2

24

e
γ3 +

e
χ2ξ +

1

2

e
γ3ξ

2 (9)

e
ϕ3(ξ) =

e

ũ2,ξ(ξ) = −h
2

24

e
γ2 +

e
χ3ξ +

1

2

e
γ2ξ

2,

while local axial rotation is now defined by the expression

e
ϕ1(ξ) =

e
χ1ξ +

1

3

e
γ1ξ

2. (10)

By evaluating above relations for nodal coordinates we deduce that

e
ε =

e
g1 ·

e
p1 − 1 (11)

is the expression of the axial deformation and

e
χ = d

e
ϕ,

e
γ =

6

h2
s

e
ϕ, (12)

are the expressions of torque and shear deformations as a function of nodal displacement and
local rotations.

In the following, we refer to them andp elements respectively adjacent of the currente

element at the nodesi andj. Let, furthermore,
em

P̂ =
e

Ĝ ·
m

Ĝ and
ep

P̂ =
e

Ĝ ·
p

Ĝ rotation matrices
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that carry out the representations of vector respectively in the
m

ĝα and
p

ĝα basis with respect

to
e

ĝα. By referring to the
ei
ϕ and

ej
ϕ nodal local rotations, nodal director components are now

calculated by the vectorial operations

ei

G =
e

G(I +
ei
ϕ×),

ej

G =
e

G(I +
ej
ϕ×). (13)

We note that the first order accuracy of the (13) representations leads to local evaluations con-
sistent with the small strains hypotheses. Rotational compatibility conditions at the boundary
nodes, then, are obtained by imposing

m

G(I +
mj
ϕ×) =

e

G(I +
ei
ϕ×)

em

P̂ ,
p

G(I +
pi
ϕ×) =

e

G(I +
ej
ϕ×)

ep

P̂. (14)

Now we also define respectively the local rotations
em

θ and
ep

θ connecting directly the
m
gα and

p
gα bases with

e
gα by the relations:

e

G =
m

G
em

P̂ · (I +
em

θ ×),
e

G =
p

G
ep

P̂ · (I +
ep

θ×). (15)

Then by (14) and (15) we can evaluate at the first order:

mj
ϕ =

em

P̂ · (ei
ϕ+

em

θ ),
pi
ϕ =

ep

P̂ · (ej
ϕ+

ep

θ), (16)

with
em

θ × =
em

P̂
m

G ·
e

G − I,
ep

θ× =
em

P̂
p

G ·
e

G − I. (17)

We note that rotations
em

θ and
ep

θ are in function of the assumed nodal displacements and ele-
mental rotations unknowns. To recover expressions for the rotational deformations in (12), here
we impose equilibrium equations or consistence conditions at the nodes.

Twisting and bending momentsmα at thei node due to thee element can be expressed by
the formula

ei
mα =

e

Hαα
ei
ϕα,ξ

ei
gα. (18)

In (18) we denote withH = diag[GJ1, EJ2, EJ3] the elastic constitutive matrix of torsional

and bending stiffnesses about the principal axes. Let
i
m the applied vector moment at thei node,

then related equilibrium equation is:

ei
m =

i
m +

mj
m,

ei
m =

∑

α

e

Hαα
ei
ϕα,ξ

ei
gα,

mj
m =

∑

α

m

Hαα
mj
ϕ α,ξ

mj
g α. (19)

For clarity of presentation, in the following we refer to the case
i
m = 0. Then, for theβ

component of equilibrium equation (19) we have

m

Hββ
mj
ϕ β,ξ =

∑

α

e

Hαα
ei
ϕα,ξ

mj
g β · ei

gα. (20)

By proceeding in a similar way for the equilibrium equation at thej node and by writing rela-
tions (20) in the matrix form we obtain

m

H
mj
ϕ ,ξ =

mj

G ·
ei

G
e

H
ei
ϕ,ξ,

p

H
pi
ϕ,ξ =

pi

G ·
ej

G
e

H
ej
ϕ,ξ. (21)
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By inserting compatibility conditions
ei

G
em

P̂ =
mj

G and
ej

G
ep

P̂ =
pi

G in the (21) relations we have:

m

H
mj
ϕ ,ξ =

em

P̂ ·
e

H
ei
ϕ,ξ,

p

H
pi
ϕ,ξ =

ep

P̂ ·
e

H
ej
ϕ,ξ. (22)

In the cases of constant bending state,
e
γ = 0 and

m
γ = 0 in (12) expressions imply that

ej
ϕ = −ei

ϕ and
mi
ϕ = −mj

ϕ , respectively, and

ei
ϕ,ξ =

e
χ = −2

e

h

ei
ϕ,

mj
ϕ ,ξ =

m
χ =

2
m

h

mj
ϕ . (23)

Finally, by (16), (22) and (23), for thei node we obtain

em

A
ei
ϕ = − 1

m

h

em

P̂
m

H
em

P̂ ·
em

θ ,
em

A =
1
e

h

e

H +
1
m

h

em

P̂
m

H
em

P̂ · . (24)

Similarly, for thej node:

ep

A
ej
ϕ = −1

p

h

ep

P̂
p

H
ep

P̂ ·
ep

θ,
ep

A =
1
e

h

e

H +
1
p

h

ep

P̂
p

H
ep

P̂ · . (25)

By the (24) and (25) definitions of the local rotations we can obtain the computation of the (12)
element beam deformations in function of the assumed unknowns. We note that theA matrices
are defined by fixed quantities of the problem. Then such quantities can be computed, for each
node, at the preprocessing procedure.

If we want to achieve the complete consistence at the generici node, together with (16)

expressions we must impose the
∑

α

ei
ϕα,ξ

ei
gα =

∑
α

mj
ϕ α,ξ

mj
g α and

∑
α

ei
ϕα,ξξ

ei
gα =

∑
α

mj
ϕ α,ξξ

mj
g α

continuity conditions that, at the first order of approximation, lead to the relations:

mj
ϕ ,ξ =

em

P̂ · ei
ϕ,ξ and

mj
ϕ ,ξξ =

em

P̂ · ei
ϕ,ξξ (26)

respectively, while for thej node

pi
ϕ,ξ =

ep

P̂ · ej
ϕ,ξ and

pi
ϕ,ξξ =

ep

P̂ · ej
ϕ,ξξ. (27)

After algebraic manipulations by the above expressions the following relations are obtained:

−2
m

h
2

+ 3
m

h
e

h+
e

h
2

e

h
2 s

e
ϕ+

m

h +
e

h

2
d

e
ϕ =

em

θ , −2
p

h
2

+ 3
p

h
e

h+
e

h
2

e

h
2 s

e
ϕ−

p

h+
e

h

2
d

e
ϕ =

ep

θ. (28)

Also here, by the (28) definitions of the local rotations, we can achieve the computation of the
element beam deformations in function of the assumed unknowns.

4 Boundary conditions, multiple connections and solution scheme

Boundary conditions imposition implies a case depending implementation of the solution
process. In effect, conditions involving rotations and moments given at boundary nodes are
imposed by specializing related elements by following the formulation described in Section
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3 because we have worked with global rotation and curvature definitions. Furthermore, we
remark that only the external work of forces can be defined in the described formulation so that
moments can be modelled as forces following the motion of points of the beam element. In
particular, let vector

n
m be the spatially fixed moment applied in then node of thee element and

en
gα the related nodal basis. As described in [13], we refer to three force vectorsp(α) applied to
n and compute the external work as

Wm ==
∑

α

p(α) · (
en
gα −

en

ĝα). (29)

The variation of the functionalWm is carried out on the
en
gα vectors by consideringp(α) as

constants. Then, after variation of (29), we define thep(α) force vectors by

p(α) = −1

2

∑

βκ

eαβκpβ
en
gκ,

∑

α

en
gα × p(α) =

n
m. (30)

As can be observed in (30), applied forces are such that the resulting moment in then node is the

given
n
m vector. Simple algebraic manipulations, finally, lead to thepα =

n
m

T en
gα components.

We note that, the definitions given in (29) and (30) imply that the external force vectors are a
function of the assumed unknowns.

In the case of more elements connected to thei node, the relations in (19) of the (EF) equi-
librium based formulation become

ei
m =

i
m +

∑

m

mj
m, or

∑

α

e

Hαα
ei
ϕα,ξ

ei
gα =

i
m +

∑

m

∑

α

m

Hαα
mj
ϕ α,ξ

mj
g α. (31)

Being
ei

G
em

P̂ =
mj

G, ∀m and by assuming
mi
ϕ = −mj

ϕ , ∀m we obtain:

em

A
ei
ϕ = −

∑

m

1
m

h

em

P̂
m

H
em

P̂ ·
em

θ ,
em

A =
1
e

h

e

H +
∑

m

1
m

h

em

P̂
m

H
em

P̂ ·, (32)

and the analogous for thej node. From the implementation point of the view, at the currente
element, multiple connections are carried out by repeatingm times the assembling of internal
force vectors and stiffness matrices for each connected element. For the (CF) consistence based
formulation, instead, a master element must be assigned at the multiply connected node as
reference of related continuity conditions.

The definition of equilibrium equations is based on the classical stationary problem for the
energy functional. Because a multiplicative approach is here exploited, admissible variational
formulation and linearization must be carried out at the solution point in the respect of the
δG = δϕ×G consistent condition, whereδϕ is the spatial component of the angular variation.
A predictor-corrector scheme as described in [14] for the equilibrium path individualization is
used in the analysis. It is characterized by a predictor step obtained by the linear extrapolation
of the previously computed two solution points whenk > 0, while the first order asymptotic
extrapolation is used whenk = 0. Furthermore, the corrector is accomplished by a Newton
method based corrector scheme with minimization of the distance between the approximate
and equilibrium points as a constraint equation.

4451



S. Lopez

5 Numerical examples

Equilibrium curve of the framed dome shown in Figure 1 and analyzed in Battini [15],
Kouhia and Tuomala [16], was calculated with bothEF and CF approaches. By assuming
ε=0 orε=0.0001 two different behaviours of the structure have been considered. The dome has
been modelled by usingNmb=4,8 elements for each member, i.e. totally 18Nmb elements.

Figure 1: Framed dome: problem definition and equilibrium paths.

In Figure 1 the fundamental path and the secondary path branching out at the lowest bifur-
cation point are also displayed. Significant deformed configurations are shown in Figure 2 for
both loadings. In particular, the perfect case(a) is characterized by a symmetric behaviour
while the post-buckling mode(b) is a rotation around the central vertical axis. The detected
computational performances indicate that the presented formulation requires more implemen-
tation effort but less arithmetical operations with respect to the classical rotation vector based
approach.

6 Conclusions

In the hypothesis of large displacements and rotations and small strains, a technique to an-
alyze the behaviour of three-dimensional finite element beam frames has been presented. The
approach is based on an updated Lagrangian description of rotations and the presented formula-
tions do not use angle measures. By adopting the Euler-Bernoulli beam model, a computation-
ally effective beam element is obtained because kinematical and strain measures are completely
defined by referring to boundary nodal displacements and one finite rotation parameter solely.
The treatment of rotational boundary conditions and external moments proves to be more com-
plex with respect to the co-rotational formulations. Nevertheless, the description of the finite
three-dimensional rotations is well posed under widely applicable hypotheses, while the anal-
ysis of complex spatial dome structures, where matrices with large dimension and bandwidth
occur, now proves a remarkable reduction of the required arithmetical operations with respect
to the classical approaches.
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Figure 2: Framed dome: deformed configurations forNmb=8.
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Abstract. A new formulation to model the mechanical response of metallic strands undergo-
ing a combination of axial load and planar bending is developed. Each wire of the strand is 
modeled as an elastic curved thin rod. A kinematic model is then introduced to relate the gen-
eralized strain variables of the strand to those of the wires. The stress-strain state of the wires 
is evaluated starting from the analysis of the internal contact conditions. Friction is modeled 
through the classic Amontons-Coulomb law and the elastic tangential compliance of contact 
patches is accounted for. A non-holonomic material constitutive law in terms of the cross sec-
tional generalized stresses and strains of the Euler-Bernoulli beam theory is obtained and 
implemented within a corotational beam element explicitly conceived for nonlinear static and 
dynamic analyses of flexible structures. Numerical applications are presented to highlight the 
role of the tangential compliance mechanism on the hysteretic bending behavior of a typical 
steel strand. 
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1 INTRODUCTION 

Metallic strands can be regarded as composite elements which are made of helical wires 
twisted around a straight core and grouped in concentric layers. They are widespread struc-
tural members, used in many engineering applications, e.g. overhead electrical lines, tensile 
structures, guyed masts and towers. 

 When a strand is bent, wires tend to slip relatively one to each other, as a consequence 
of the axial force gradient generated along their length. The relative displacements are con-
trasted by friction forces, which are a function of the geometry of the internal structure, the 
material properties of the wires and the intra- and inter-layer contact pressures. If the forces 
which tend to activate sliding are greater than the friction ones, then a generic wire can ex-
perience relative displacements with respect to the neighbors. Interwire sliding phenomena 
makes the bending behavior of strands inherently non-linear and can significantly affect both 
the local response of the elements under cyclic loading (e.g. leading to the occurrence of fret-
ting fatigue and wear [11, 18]) as well as the overall structural response. In fact, bending vi-
brations of metallic strands are characterized by an hysteretic damping mechanism, as it can 
be inferred from both quasi-static [17] as well as dynamic tests [21]. 

 In the present paper, a new formulation to model the mechanical response of metallic 
strands undergoing a combination of axial load and planar bending is developed. Each wire of 
the strand is modeled as an elastic curved thin rod. A kinematic model is then introduced to 
relate the generalized strain variables of the strand to those of the wires. The stress-strain state 
of the wires is then evaluated starting from the analysis of the internal contact conditions. 
Friction is modeled through the classic Amontons-Coulomb law and the elastic tangential 
compliance of contact patches is accounted for, aiming at extending a previous authors’ 
model taking into account the gross sliding only [3, 5, 7-9]. A non-holonomic material consti-
tutive law in terms of the cross sectional generalized stress and strains of the Euler-Bernoulli 
beam theory is obtained, which can be exploited to describe cables as structural members re-
acting to a generic combination of axial force and bending. The sectional constitutive law is 
then implemented within a corotational beam element, previously developed and able to deal 
with large displacements and rotations and explicitly conceived for the nonlinear static and 
dynamic analysis of flexible structures [3, 6, 10]. 

The new mechanical model developed in this work is presented with reference to a simple 
strand made of a single layer of wires, in order to focus on the most important aspects of the 
proposed approach, while avoiding additional difficulties and cumbersome calculations 
stemming from a more complex internal geometry. 

Numerical applications of the proposed cross sectional and finite element formulations are 
then presented for the case of a well documented steel strand, extensively studied in literature 
both for a combination of axial-torsional loads [4, 15, 16, 19, 20] as well as under the com-
bined action of axial load and planar bending [9]. 

Within this context, systematic comparisons are carried out among the predictions of the 
new formulation and those of the model previously developed by the author and neglecting 
the interwire tangential contact compliance. The aim is to assess the effects of the tangential 
contact compliance on the hysteretic bending behavior of the strand. The latter, in turn, plays 
a key role in the modeling of the flexural vibrations of metallic strands.  
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2 GEOMETRY OF THE STRAND 

A strand made of a single layer of six round wires, wrapped around an initially straight 
core wire, is considered in this work (Figure 1). The core and external wires have diameters d0 
and d1, respectively. Each wire can be described as a curved thin rod, defined by the position 
of the centerline within a reference system attached to the strand centerline (axes {xi} ( i=1, 2, 
3)) as depicted in Figure 1. The centerline of the external wires is a circular helix spanned by 
the position vector:  

 ( ) ( ) ( ) ( ) ( )0 1 2 3cos sin
tan

R
R Rθ θ θ θ θ

α
= − + +x e e e  (1) 

where: {ei} are the unit vectors of the axes {xi}, R is the helix radius, i.e. the distance meas-
ured on the plane (x2, x3) from the centroid of the wire to that of the strand, α is the lay angle, 
i.e. the constant angle which the tangent vector to the helix defines with the strand centerline 
(axis x1), and θ is the swept angle, i.e. the angle which the projection of the position vector x 
on the plane x1=0 makes with the axis x1 (see Figure 1(b)). The symbol θ0 is adopted to denote 
the value of the swept angle at the strand cross section identified by the coordinate: x1=0. 

The external wires are assumed in contact with the core, but not among them. This condi-
tion, commonly referred to as radial contact condition (e.g. [1]), is typical of metallic strands. 

As a consequence the helix radius in the reference (undeformed) configuration of the 
strand is the sum of the wire radii: R=0.5(d0+d1). The lay angle must be smaller than the 
maximum value αmax, that causes contact among the wires of a layer (see e.g. [2]). 

 

 
Figure 1: Geometry of the strand. (a) Side view. (b) Cross section. 

 

3 MECHANICAL MODEL OF THE STRAND 

The response of the strand to a constant axial force Fs and bending moment distribution Ms 
is first studied. The geometric nonlinearities, which typically affect the behavior of such slen-
der structural elements, then, are fully considered within the framework of the corotational 
beam element formulation. 

A “two-stage” approach is adopted in this work to tackle the axial-bending problem. As 
outlined e.g. in [1], the solution of the bending problem is superimposed on the initial state of 
stress and deformation due to the axial load. The axial force in a generic wire of the layer 
(tangent to the wire centerline), hence, can be expressed through the sum of a first contribu-
tion due to the axial load (Fw1,a) and a second one due to the bending of the strand (Fw1,b):  

 1 1, 1,w w a w bF F F= +  (2) 
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3.1 Solution of the axial problem  

The axial response of small-diameter metallic strands is substantially linear for a broad 
range of loads corresponding to typical service conditions (see e.g. the experimental results in 
[19] and the numerical simulations in [4, 9]). Accordingly, geometric nonlinearities due to the 
variation of the internal strand geometry, such as the contraction of the wire diameters (Pois-
son’s effect) and the wire flattening (normal deformation of internal contact surfaces), can be 
practically neglected without significantly affecting the results. 

A model for the linear coupled axial-torsional response of strands has been presented in [3, 
9]. Whenever an axial load Fs is applied to the simple strand considered in the present paper, 
the axial elongation of the strand can be evaluated (under the assumption of zero torsional ro-
tations of the cross sections) as: 

 s
s

s

F

EA
ε =  (3) 

where EAs is the direct axial stiffness of the strand. By denoting as EA0 and EA1 the axial 
stiffness of the core and external wires, respectively, the strand stiffness EAs is given by: 

 ( )3
0 16 cossEA EA EA α= +  (4) 

The axial force in the wires of the layer, then, can be expressed as:  

 ( )2 1
1, cosw a s

s

EA
F F

EA
α=  (5) 

The axial force Fw1,a is the same for all wires of the layer and constant along their length.  

3.2 The contact model  

The external wires are in contact with the core along a continuous helix (linear contact) 
with the same pitch of the wire centerline (see [8, 9] for more details). A system of radial (P) 
and tangential (T) forces per unit length of the wire centerline is first defined to model the in-
teraction between a generic wire and the core, as shown in Figure 2. Then, the indefinite equi-
librium equations of the wire in radial and tangential direction are written as:  

 

1, 1,

1,

0

0,   with:  

w a w b

w b

F F
P

dF
T T P

dS

ρ

µ

+
− =


 − = ≤

 (6a, b) 

where ρ is the curvature radius of the wire centerline, which can be evaluated starting from 
equation (1) as: ρ = R/sin2(α) and µ is the friction coefficient of the contact interface. 

The radial contact force P can be obtained by solving equation (6a). By neglecting the con-
tribution Fw1,b/ρ due to the bending of the strand, the following expression is obtained:  

 1,w aF
P

ρ
≃  (7) 

While introducing a great simplification in the analysis of the interwire contact conditions, 
the approximation introduced in (7) doesn’t affect significantly the solution of the bending 
problem, as it has been shown numerically in [3] and analytically in [8] for the more general 
case of multi-layer metallic strands. 
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Figure 2: Equilibrium of an infinitesimal segment of the wire. 

The tangential force T is related to the gradient of the wire axial force through the tangen-
tial equilibrium equation (6b). Since the term Fw1,a stemming from the solution of the axial 
problem is constant along the length of the wire (see equation (5)), only the gradient of the 
bending contribution Fw1,b to the total wire axial force is present in (6b).  

The axial force gradient gives the wires the trend to slip with respect to the underlying core. 
This relative displacement is contrasted by the tangential contact force T, whose values are 
bounded by the Amontons-Coulomb inequality: T ≤ µP. As long as T < µP, the sliding be-
tween the wire and the core is prevented (no-sliding regime). Relative displacements between 
the wire centerline (which will be denoted in the following as ut) and the core, however, are 
present also in the no-sliding regime because of the tangential compliance of the contact sur-
face. Goudreau et al. [12] studied the tangential compliance mechanism between the external 
wires and the core of a strand by exploiting the solution of the Hertzian contact problem for 
two parallel cylinders, made of the same material and pressed together. Accordingly, they in-
troduced a non-linear relation between the relative displacement ut and the tangential force 
per unit length T, herein re-stated as follows:  

 ( )
2

3

1 1 ,   with:  gs
t t

T
u u P T P

P
µ

µ

 
  = − − ≤    

 

 (8) 

where ut 
gs(P) is the value of the relative displacement at the onset of gross sliding. The dis-

placement ut 
gs is a function of the normal contact force P. By denoting as CTi(P) the initial 

value of the tangential compliance of the contact surface, ut 
gs can be expressed as:  

 
( )3

2
Tigs

t

C P
u

Pµ
=  (9) 

The initial tangential compliance, in turn, depends upon the normal contact compliance 
Cn(P) of the surface, according to the following relation, first proposed by Hobbs and Raoof  
[13] and later adopted also by Goudreau et al.:  

 ( ) ( )
( )2 1

n
Ti

C P
C P

ν
=

−
 (10) 

where ν is the Poisson coefficient of the material. A closed-form expression of the normal 
contact compliance Cn(P) has been also derived by Goudreau et al. for the special case of 
v=0.3, herein re-written, by denoting as E the Young modulus of the material, as:  
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 ( ) 0 1

0

1
0.068505 1.1586ln 0.54945 1n

Ed d
C P

E P d

   
  = + +      

 (11) 

A linear approximation of the model by Goudreau et al. is adopted in this work to charac-
terize the tangential compliance between wires and core in the no-sliding regime. Based on 
the initial value of the tangential compliance, the following relation is introduced:  

 ( )
1

t
Ti

T u P
C P

µ≤≃  (12) 

3.3 Solution of the bending problem  

The nonlinear bending of multilayer strands has been studied in [3, 5, 7-9], starting from a 
description of the wire kinematics which accounts for the possible activation of gross-sliding 
phenomena, but neglects the effects of the tangential contact compliance. The aforementioned 
kinematic model will be augmented to account for the tangential compliance with the core 
wire.  

By recalling equation (1) and assuming all wires as linearly elastic, the axial strain of a ge-
neric wire, εw1, can be expressed as the sum of the strain due to the axial load and to the 
bending, i.e.:  

 1, 1,1
1 1, 1,

1 1 1

w a w bw
w w a w b

F FF

EA EA EA
ε ε ε= = + = +  (13) 

Two limit kinematic hypothesis can be introduced to evaluate εw1,b, which will be referred 
in the following as: full-stick and full-slip assumption. In the first case the tangential force T, 
due to the friction between the wire and the core, is assumed to be large enough to prevent the 
gross-sliding and the effect of the tangential compliance is neglected. As a consequence, the 
wire behaves as a part of an ideal planar cross section and the term εw1,b can be simply evalu-
ated according to the well-known Euler-Bernoulli kinematic model:  

 ( ) ( )2
1, cos sinfull stick

w b sRε α θ χ− =  (14) 

where χs is the bending curvature with respect to the axis x2 (see Figure 1). 
In the second case, instead, the wire is free to slide with respect to the core and can be con-

sidered as individually bent. Under the full-slip assumption, hence, the term εw1,b is identically 
equal to zero. By neglecting the tangential compliance, hence, the following incremental al-
ternatives can be introduced to account for the possible transition between the no-sliding and 
the gross-sliding regime:  

 
1, 1,

1,

1, 0

no sliding full stick
w b w b

w b gross sliding
w b

ε ε
ε

ε

− −

−

 == 
=

ɺ ɺ

ɺ

ɺ

 (15a, b) 

where a dot is adopted to denote the derivative with respect to a time variable t. 
Equation (15a) can be modified in order to account for the effect of the tangential compli-

ance between the external wires and the core, based on the solution of the bending problem in 
no-sliding regime which will be detailed in the following.  

By recalling the definition of the relative displacement ut introduced in Section 3.2, the 
term εw1,b can be evaluated as:  
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 1, 1,
no sliding full stick t
w b w b

du

dS
ε ε− −= +  (16) 

By observing that sin(α)dS= Rdθ  (see e.g. [8]), from equations (6b), (12), (13) and (16) 
it’s easy to derive the following equation for the axial force Fw1,b in the no-sliding regime:  

 
( )

( ) ( ) ( )
( ) ( )

2 3 22
1,

1,2 2 2
1

cos
sin

sin sin

no sliding
w b sno sliding

w b
Ti Ti

d F RR
F

d C EA C

θ α χ
θ θ

θ α α

−
−− = −  (17) 

The equation above can be easily solved under the assumption of constant curvature of the 
strand. The following expression is obtained: 

 ( ) ( )
( ) ( ) ( )

2
1

1, 2
1
2

cos   
sin

sin
1

sno sliding
w b

Ti

R EA
F

C P EA

R

α χ
θ θ

α
− =

+
 (18) 

Once the function ( )1,
no sliding

w bF θ−  is known, the corresponding axial strain can be evaluated 

and used in (15, a).  
A numerical strategy to evaluate the wire axial force ( )1,w bF θ , accounting for the possible 

transition between no-sliding and gross-sliding regime has been developed by the author in [3, 
5, 7-9] and is adopted also in this work. The numerical procedure is based on a classic Return-
Map algorithm, based on a “no-sliding prediction” and a “gross-sliding correction” (accord-
ing to the alternative kinematic equations previously discussed). The Return-Map algorithm 
delivers the value of the gradient of the wire axial force which satisfies equation (16b), over a 
discrete set of control points defined along the pitch of the wire. Then, the wire axial force is 
obtained through numerical integration along the wire length.  

Finally, starting from the knowledge of the wire axial force in all the wires of the layer the 
cross sectional moment of the strand can be evaluated, through simple equilibrium considera-
tions, as: 

 min
ind add add

s s s s sM M M EI Mχ= + = +  (20) 

The first term, Ms
ind, in (20) is linear and stems from the individual bending of the wires. It 

can be simply calculated as the product of the strand curvature and the minimum bending 
stiffness of the strand EImin. The latter can be evaluated by modeling the strand as a bundle of 
elastic curved thin rods, individually bent. The following expression can be obtained from [8]:  

 ( )3
min 0 16cosEI EI EIα= +  (21) 

The second term in (20), instead, accounts for the additional moment due to the bending 
contribution ( )1,w bF θ  to the total axial force of the wires and can be evaluated (see e.g. [8]) as: 

 ( ) ( ) ( )
6

1,
1

cos sinadd
s w b i i

i

M R Fα θ θ
=

=∑  (22) 

3.4 The corotational beam element 

The equations (3) and (20) fully define the relation between generalized stress and strain 
variables of the strand cross section, herein regarded as a plane Euler-Bernoulli beam. The 
proposed constitutive equations have been implemented within a corotational beam element 
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previously developed [3, 6, 10] to study the static and dynamic response of flexible structures 
taking into account geometrical and material nonlinearities. 

 

4 NUMERICAL APPLICATION 

The proposed strand mechanical model and beam finite element formulation are applied in 
this section to investigate the bending response of a strand made of steel wires, already stud-
ied in [9]. The geometric and material properties of the element are listed in Table 1.  

 
d0 (mm)  d1 (mm) αααα    (deg) E (GPa)  νννν    (-)  
3.94 3.73  11.8  188  0.3  

 

Table 1: Geometric and material parameters from [15]. 

The wire axial force in the no-sliding regime is shown in Figure 3 in terms of the 
amplification factor qF of the force equivalent to 1,

no sliding
w bF −  but obtained (under the full-stick 

assumption) by neglecting the tangential compliance. The factor qF is plotted in Figure 3 as a 
function of the non-dimensional axial load parameter η, defined as the ratio between the axial 
load Fs and the Rated Tensile Strength of the element (here 137 kN – see [19]). From Figure 3, 
it can be observed that the inclusion of the tangential compliance mechanism in the strand 
mechanical model leads to a reduction of 10% of the maximum value which can be attained 
by the wire axial force Fw1,b in the no-sliding regime with respect to the full-stick solution. 
The value of qF depends on the non-dimensional loading parameter η. By increasing the axial 
load, indeed, the tangential compliance is reduced, as predicted by equations (10) and (11). As 
a consequence the axial force Fw1,b tends toward the full-stick solution 1,

full stick
w bF −  for increasing 

values of axial load. However, it’s worth noting that the ratio qF: (a) doesn’t reach the unit 
value, even for very large values of the axial load, close to the RTS of the strand (for which, 
however, the assumption of linearly elastic material adopted in the proposed formulation 
ceases to be valid), and (b) is only slightly dependent on the axial load for the particular 
strand under consideration (variations of qF are in the order of 3% for axial loads ranging 
from zero to the RTS value). 

 
Figure 3: Ratio qF vs. the non-dimensional axial load η. 
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Figure 4 shows a comparison among the moment-curvature diagrams of the strand cross 
section obtained with the proposed formulation, accounting for the tangential compliance of 
the internal contact surfaces, and those obtained by considering a full-stick initial behavior of 
the wires. Results are plotted for different values of the axial load parameter η in the range 
0.1-0.25 (Figure 4(a)) and for different values of the friction coefficient µ in the range 0.3-0.7 
(Figure 4(b)), in order to cover the interval of values typically considered in literature (e.g.: [8, 
9, 14, 17]). 

 

 
Figure 4: Moment-curvature diagrams. (a) Variation of the non-dimensional axial load η. (b) Variation of the 

friction coefficient µ. 

The moment-curvature diagrams obtained with or without accounting for the tangential 
compliance mechanism are very similar, for the special strand considered in this work. In par-
ticular, the two models exhibit a similar dependency on the axial loading parameter η and on 
the friction coefficient µ. These parameters strongly influence the hysteretic bending behavior 
of metallic strands, as it has been extensively discussed e.g. in [8, 9]. The major effect of the 
tangential compliance between the core and the external wires is recognized in a reduction of 
about 10% of the value of the initial bending stiffness (i.e. the maximum bending stiffness of 
the strand section: EImax) of the cross section.  

A typical experimental test setup for the characterization of the hysteretic bending behavior 
of metallic strands has been numerically simulated, in order to investigate the effect of the 
tangential contact compliance on the overall behavior of a strand specimen. A schematic rep-
resentation of the numerical test setup is reported in Figure 5. The specimen is first loaded in 
the axial direction and then subjected to a transverse quasi-static load F. A mesh of 32 equally 
spaced corotational beam finite elements is adopted to represent the strand. Mesh refinements 
have been also considered in preliminary calculations to check the accuracy of the numerical 
model. A friction coefficient equal to 0.5 has been assumed in all the analyses.  

Figures 6(a) and 6(b) show the load-displacement curves of the strand for a monotonically 
increasing vertical load and two different values of axial load, namely: η=0.1 (Figure 6(a)) 
and η=0.2 (Figure 6(b)). The load-displacement curves obtained both with and without con-
sidering the tangential compliance are plotted in Figures 6(a) and 6(b), together with the ref-
erence elastic solutions (plotted with red dashed lines) calculated under the full-stick 
( max

full stickEI − ) and the full-slip ( minEI ) kinematic assumptions. The main effect of the tangential 
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compliance mechanism can be recognized in a reduction of the initial stiffness of the load-
displacement curves, of about 10% for the slacker strand (η=0.1) and 1% in the other case 
(η=0.2). The influence of the tangential compliance mechanism on the specimen behavior, 
hence, is similar to the influence on the cross sectional response. However, a more pro-
nounced dependency on the value of the axial load is observed for the overall specimen re-
sponse than for the individual cross section behavior.  

 

 
Figure 5: Structural scheme of the setup. 

Additional numerical tests under cyclic vertical loading have shown that, for the special 
strand considered in this paper, the tangential compliance mechanism affects very slightly 
both the shape as well as the area of the hysteresis loops.  

 

 
Figure 6: Bending behavior of the strand. (a) Monotonic loading. Load vs. displacement curve, µ=0.5 and 

η=0.10. (b) Monotonic loading. Load vs. displacement curve, µ=0.5 and η=0.20.  

5 CONCLUSIONS  

A new mechanical model to study the mechanical response of metallic cables undergoing a 
combination of axial load and planar bending has been developed for a single-layer strand. 
The proposed formulation is based on a detailed analysis of the internal contact conditions 
between the external wires and the core of the strand. Friction is modeled through the classic 
Amontons-Coulomb law and the elastic tangential compliance of contact patches is accounted 
for, aiming at extending a previous authors’ model taking into account the gross sliding only. 
A nonlinear and non-holonomic relation between the sectional generalized stress and strains 
of the Euler-Bernoulli beam theory is formulated and implemented in a corotational beam 
element suitable for nonlinear static and dynamic analyses of flexible structures. 

The proposed strand mechanical model and finite element formulation have been applied 
to characterize the hysteretic bending behavior of a common structural steel strand. Numerical 
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analyses have been carried out to show the influence of the tangential contact compliance 
mechanism between the external wires and the core, both on the cross sectional behavior as 
well as on the overall response of a strand specimen tested on a typical experimental test rig.  

For the particular strand considered in this work, it is found that the tangential contact 
compliance mainly influence the initial bending stiffness of the strand, while it has only a 
small effect on the shape of the cross sectional moment-curvature diagrams and on the overall 
hysteretic behavior. Ongoing research is devoted to the extension of the proposed formulation 
to other strand geometries, including the case of multi-layer elements.  
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Abstract. The paper discusses the application of a 2-node, three-dimensional (3D) beam-
column finite element with an enhanced fiber cross-section model to the inelastic response anal-
ysis of concrete members. The element accounts for the local distribution of strains and stresses
under the coupling of axial, flexural, shear, and torsional effects with an enriched kinematic de-
scription that accounts for the out-of-plane deformations of the cross-section. To this end the
warping displacements are interpolated with the addition of a variable number of local degrees
of freedom. The material response is governed by a 3D nonlinear stress-strain relation with
damage that describes the degrading mechanisms of typical engineering materials under the
coupling of normal and shear stresses. The element formulation is validated by comparing the
numerical results with measured data from the response of two prismatic concrete beams under
torsional loading and with standard beam formulations.
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1 INTRODUCTION

Beam-column finite elements are widely used for describing the inelastic response of struc-
tural members in large scale simulations, because of the optimal balance between accuracy and
computational efficiency they offer.

Among the different beam finite element models force-based and mixed formulations [1, 2,
3, 4] have proven superior to the classical displacement-based models under large inelastic,
cyclic deformations, even with the slight increase in computational cost for the element state
determination. In this framework, many researchers focused their efforts on the development
of an efficient, discrete fiber cross-section model [5, 6] for effectively capturing the multi-axial
coupling of the beam stress resultants under general constitutive material relations. While clas-
sical Euler-Bernoulli beam formulations assume that plane sections remain plane and normal to
the axis and are unable to capture the effect of shear and torsion, recent studies have proposed
enhanced models that account for these effects [7, 8, 9, 10]. Nonetheless, no existing model
appears to give a complete and realistic representation of the cross-section warping with the re-
sulting shear stresses and strains. According to [11] existing models fail to reproduce accurately
the interaction of the shear and normal stresses along the beam axis, the local response near the
boundaries, and the shear lag phenomenon.

This paper extends the 2-node 3D beam-column finite element (FE) in [12] to reinforced
concrete beams. The formulation by LeCorvec is based on a modified Hu-Washizu variational
potential that leads to the definition of a four-field mixed formulation. With respect to the
standard Hu-Washizu mixed formulation with only three independent fields, LeCorvec’s for-
mulation introduces as fourth additional field the out-of-plane displacements due to warping of
the element cross-section [12]. These displacements are interpolated at two independent levels:
along the axis and over the cross-section. The degrees of freedom associated with the resulting
interpolation functions constitute additional independent variables of the element allowing it to
capture the evolution of the warping displacements during the loading process, and the coupling
between the shear and torsion with the normal stress components.

To correctly reproduce the nonlinear behavior of the cross-section, a fiber discretization is
introduced. Hence, stress and strain variables are determined at each discrete fiber and then
integrated over the area to obtain the generalized section quantities. To describe the damaging
mechanisms typical of brittle-like engineering materials, the isotropic 3D damage model in
[15] is adopted. This considers the non-symmetric response, in tension and compression, and
the unilateral effect, observed during cyclic load patterns for this material type.

The proposed FE is validated by comparing the numerical results of plain concrete (PC)
and reinforced concrete (RC) beams under end torque with experimental measurements and by
confronting these results with those of standard FE beam models.

2 FINITE ELEMENT FORMULATION

This section summarizes the salient features of the 3D beam-column FE formulation in [12]
with the description of the warping displacements for the cross section under inelastic nonlinear
material response.

The FE element formulation is based on the assumption of small end node displacements
and small strains, because nonlinear geometry effects are accounted for with the corotational
formulation during the transformation of the nodal response variables.

Figure 1 shows the global FE reference system (O,X, Y, Z) together with the nodal displace-
ment vector components. These are the twelve degrees of freedom (DOFs) of a standard 3D
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beam-column element, that is three translations (listed in the vectors uI/J ) and three rotations
(listed in the vectors θI/J ) at each node:

u =
{
uT
I θT

I uT
J θT

J

}T
(1)

The corresponding nodal force components are collected in the vector:

p =
{
pT
I mT

I pT
J mT

J

}T
(2)

with pI/J and mI/J being the force and moment vectors at node I/J .

L

X
Y

Z

O
I

J

uX,I
uZ,I

u Y,I uX,J
uZ,J

uY,J

θX,I

θY,I

θZ,I

θX,J

θY,J

θZ,J

Figure 1: Global FE reference system (undeformed configuration): nodal traslation and rotation components.

By restraining the rigid body motions of the element, the basic reference system (I, x, y, z)
is introduced (Figure 2), with x parallel to the axis directed from node I to node J and y and
z lying in the plane of the element cross-section. Hence, the basic displacement vector v, also
called the element deformation vector, can be defined:

v = {ux,J θz,I θz,J θx,J θy,I θy,J}T (3)

where ux,J is the translation of node J parallel to the local axis x, θz,I/J and θy,I/J are the
rotations at node I/J about the z and y–axis, respectively, and θx,J is the rotation at node
J about the x–axis. The basic displacement vector v is obtained from the global vector u
according to:

v = ag u with ag =


−1 0 0 0 0 0 1 0 0 0 0 0

0 1/L 0 0 0 1 0 −1/L 0 0 0 0
0 1/L 0 0 0 0 0 −1/L 0 0 0 1
0 0 0 −1 0 0 0 0 0 1 0 0
0 0 −1/L 0 1 0 0 0 1/L 0 0 0
0 0 −1/L 0 0 0 0 0 1/L 0 1 0

 (4)

where ag is the kinematic matrix and L is the undeformed element length. The basic force
vector q, corresponding to the deformation vector v, is defined as:

q = {px,J mz,I mz,J mx,J my,I my,J}T (5)
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L

x

y

z

I

J
ux,J

θy,I

θz,I

θx,J

θy,J

θz,J

Figure 2: Basic FE reference system (deformed configuration): basic displacement components.

where px,J is the force at node J in the direction of the local x–axis, mz,I/J and my,I/J are the
moments at node I/J about the z and y–axis, respectively, and mx,J is the moment at node J
about the x–axis.

Because of the virtual work equivalence, the element stiffness matrix k̂ and the element force
vector p in the global system can be defined through the transpose of the matrix ag, [2]:

k̂ = aT
g f −1 ag and p = aT

g q (6)

where f is the element basic flexibility matrix, whose derivation is discussed next.
Under the assumption of the cross-section remaining rigid in plane and out of plane, the

generalized section displacement vector us(x) is defined in the basic coordinate system as:

us(x) = {u(x) θz(x) v(x) θx(x) θy(x) w(x)}T (7)

where u(x), v(x) and w(x) are the translation components of the beam axis, and θx(x), θy(x)
and θz(x) are the rotations of the cross-section (Figure 3(a)).

x

y

z

u θx

v

w

θy

θz
(a) (b)

x

y

ur,x

uP,x
uw

Figure 3: Cross-section rigid (a) and warping (b) displacements.

To describe the warping of the cross-section, the assumption of a rigid cross section is par-
tially removed, by accounting for the out-of-plane deformations of the cross section, which still
remains rigid in its plane. Hence, the displacement uP (x, y, z) at the generic point P is ex-
pressed as the composition of the rigid part ur(x, y, z) = as(y, z) us(x) and the displacement
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uw(x, y, z) due to the warping (Figure 3(b)):

uP (x, y, z) =


uP,x(x, y, z)
uP,y(x, y, z)
uP,z(x, y, z)

 = as(y, z) us(x) + uw(x, y, z) (8)

where as(y, z) is the compatibility operator, defined as:

as(y, z) =

 1 −y 0 0 z 0
0 0 1 −z 0 0
0 0 0 y 0 1

 (9)

By applying the same operator, the strain vector is also evaluated as the sum of the rigid part
εr(x, y, z) = as(y, z) e(x) and that associated to the warping εw(x, y, z):

ε(x, y, z) =


εx(x, y, z)
γxy(x, y, z)
γxz(x, y, z)

 = as(y, z) e(x) + εw(x, y, z) (10)

The generalized section deformation vector e(x) is:

e(x) =



εG(x)
χz(x)
γy(x)
χx(x)
χy(x)
γz(x)


=



u′(x)
θ′z(x)
v′(x)− θz(x)
θ′x(x)
θ′y(x)
w′(x) + θy(x)


(11)

where εG(x) is the axial strain, χz(x) and χy(x) are the curvatures, χx(x) the torsion rate of
twist, and γy(x) and γz(x) the shear strains. As a consequence of the assumption that the
section remains rigid in its plane, the warping displacement field has non-zero values only in
the x direction, i.e.

uw(x, y, z) = {uw(x, y, z) 0 0}T

Hence, the vector εw(x, y, z) of the strains due to the warping displacements uw(x, y, z) be-
comes:

εw(x, y, z) =
{

∂uw(x,y,z)
∂x

∂uw(x,y,z)
∂y

∂uw(x,y,z)
∂z

}T

(12)

The stress components that are work conjugate with the strain quantities in ε(x, y, z) are
collected in the stress vector σ(x, y, z) = {σx(x, y, z) τxy(x, y, z) τxz(x, y, z)}T , where σx
is the normal stress along the beam axis direction, and τxy and τxz are the shear stresses in
the plane of the cross-section parallel to the y and z–axis, respectively. With the virtual work
equivalence the generalized stress vector s(x) is:

s(x) =

∫
A

aT
s (y, z)σ(x, y, z) dA =



N(x)
Mz(x)
Ty(x)
Mx(x)
My(x)
Tz(x)


(13)
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where A is the cross-section area, N(x) the axial stress, Mz(x) and My(x) are the bending
moments, Mx(x) the torsional moment, and Ty(x) and Tz(x) the generalized shear stresses.

From the element equilibrium in the undeformed configuration the stress vector s(x) can be
expressed in terms the basic element force vector q:

s(x) = b(x) q + sp(x) , b(x) =



1 0 0 0 0 0

0 x
L
− 1 x

L
0 0 0

0 − 1
L
− 1

L
0 0 0

0 0 0 1 0 0

0 0 0 0 x
L
− 1 x

L

0 0 0 0 1
L

1
L


(14)

where b(x) is the equilibrium matrix and sp(x) the generalized section stresses under element
loading. In addition to these forces, the force field pw(x, y, z) is work conjugate with the warp-
ing displacement uw(x, y, z) and arises at cross-sections with constrained warping displace-
ments. In the element formulation in [12] the warping displacements uw are treated as internal
DOFs that are condensed out during the element state determination, as described in the next
section. Consequently, only the standard twelve DOFs in (1) are associated with the global
DOFs of the structural model.

2.1 Warping displacement interpolation

The study in [12] interpolates the warping displacement field uw(x, y, z) along the element
axis x independently from the interpolation over the cross-section. The Gauss-Lobatto integra-
tion rule is used along the element axis using nw points and 1D Lagrange polynomials Ni(x). At
each Gauss-Lobatto point xi, the warping displacements are interpolated over the cross-section
by subdividing it into several rectangular patches with a regular distribution of interpolation
points in each, for a total of sw points (Figure 4). This approach defines a set of mw 2D inter-
polation functions Mj(y, z) for the warping DOFs.

(a) (b) (d)

z
y

z

y
z

y

sw = 12 sw = 10 sw = 12

Rect. 2:
2 x 2 pnts

Rect. 3:
2 x 2 pnts

(c)

z
y

sw = 8

Rect. 1:
3 x 1 pnts

Rect. 3:
3 x 1 pnts

Rect. 2:
1 x 4 pnts

Rect. 1:
2 x 3 pnts

Figure 4: Warping interpolation points over the element cross-section.

This study explores the use of Hermite polynomials for the warping displacements in addi-
tion to the Lagrange polynomials used in [12]. For the Lagrange polynomials only one internal
DOF is required at each integration point of the warping displacement uw (Figure 5(a)) and the
total number mw of warping DOFs is equal to the number sw of integration points. In contrast,
Hermite polynomials required three internal DOFs at each integration point, one for the warp-
ing displacement uw, and two for the derivatives ∂uw/∂y and ∂uw/∂z (Figure 5(b)). In this
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case the total number mw of warping DOFs is equal to three times the number sw of integration
points, mw = 3 sw.

Henceforth, uw,ij denotes the generic j-th warping DOF at section xi, coinciding with the
displacements uw for Lagrange polynomials, and with the displacements uw and their deriva-
tives for Hermite polynomials:

{uw,1, uw,2, uw,3, . . . } = {upnt 1w , upnt 2w , upnt 3w , . . . } Lagrange

{uw,1, uw,2, uw,3, . . . } = {upnt 1w , ∂upnt 1
w

∂y
, ∂upnt 1

w

∂z
, . . . } Hermite

(15)

(a) Lagrange polynomial for uw (b) Hermite polynomial for ∂uw/∂y

Figure 5: Example of polynomial interpolation function in a cross-section composed by a set of rectangular por-
tions: L-shaped section of Figure 4(b), mw = 10 for Lagrange and mw = 30 for Hermite.

The interpolation of the warping displacement field uw(x, y, z) thus is:

uw(x, y, z) =
nw∑
i=1

Ni(x) uw,i(xi, y, z) =
nw∑
i=1

Ni(x) M(y, z) uw,i (16)

with the following expression for the interpolation of uw,i(xi, y, z) at section i:

uw,i(xi, y, z) =
mw∑
j=1

Mj(y, z)uw,ij = M(y, z) uw,i (17)

uw,i is a column vector with all mw warping DOFs uw,ij at section i (following the order in
Equation (15)) and M(y, z) is a row vector with all mw shape functions Mj(y, z) defined over
the cross-section.

It is important to point out the following difference between Lagrange and Hermite poly-
nomials. Because for the Lagrange polynomials all warping DOFs correspond to warping dis-
placement values the condition of warping restraint uw,ij = 0 can be applied to each polynomial
separately, so that even a single point or a specific portion of the cross-section can be restrained.
In contrast, for the Hermite polynomials some of the warping DOFs are the derivatives of the
warping displacement field in the cross-section. This requires the restraint of all displacements
of the particular cross-section at the same time, thus ensuring that uw = ∂uw/∂y = ∂uw/∂z =
0 is satisfied on the cross-section.

The vector pw,i collecting the warping forces pw,i at the points located on the i-th section can
be defined, which is work conjugated with uw,i.
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2.2 Element variational formulation

This section describes the main aspects of the element formulation and focuses on the role
played by the warping DOFs in the governing equations.

The equations governing the element state determination are derived on the basis of a mod-
ified Hu-Wahizu variational principle, depending on the four independent fields us(x), e(x),
σ(x, y, z) and uw(x, y, z) [12]:

Π(us, e,σ, uw) =

∫
V

σT as [e(us)− e] dV +

∫
V

W (e, εw) dV − uT p−
∫ L

0

uT
s ps dx (18)

whereW (e, εw) is the internal potential energy and ps denotes the loads along the element axis.
The stationarity of Π with respect to the four independent fields gives the following governing
equations:

Stationarity with respect to: Governing equation:

us(x) aT
g q = p + prp (19a)

e(x) σ(x, y, z) = σ̂[ε(x, y, z)] (19b)

σ(x, y, z) v =

L∫
0

bT (x) e(x) dx (19c)

uw(x, y, z) pw,i =

L∫
0

∂Ni

∂x
sxw dx+

L∫
0

Ni s
yz
w dx (19d)

The first three (19a), (19b) and (19c) are the equations of the standard three-field mixed for-
mulation [4], and govern the element equilibrium, the material constitutive law and the element
compatibility, respectively. The vector prp collects the nodal forces under element loading.
Equation (19d), represents the section equilibrium equation under warping displacements. The
stresses sxw and syzw are the generalized stresses due to section warping, as defined by the integral
of the material stresses σ(x, y, z) over the cross-section:

sw(x) =

{
sxw(x)
syzw (x)

}
=


∫
A

[ax
w(y, z)]T σ(x, y, z) dA∫

A

[ayz
w (y, z)]T σ(x, y, z) dA

 (20)

with ax
w(y, z), ayz

w (y, z) being 3×mw matrices of the following form:

ax
w(y, z) =

 M(y, z)

0

0

 , ayz
w (y, z) =

 0
∂M(y,z)

∂y

∂M(y,z)
∂z

 (21)

The nonlinear system of equations (19) are solved by iteration of their linearized form [12].

3 CORRELATION STUDIES

This section discusses the correlation study of two specimens for validating the 3d beam for-
mulation. The Matlab toolbox FEDEASLab [16] is used for investigating the capability of the
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model to represent the damage evolution of frame members when relevant warping deforma-
tions arise. To this end, two different prismatic beams under end torsional loads are considered,
from the experimental tests of plain concrete specimens by [17] and of RC specimens by [18]. In
this framework, advantages and disadvantages of the use of Hermite polynomials vs. Lagrange
polynomials for the warping interpolation functions are discussed.

The Gauss-Lobatto integration rule is adopted for the integrals along the element axis to-
gether with a fiber discretization of the cross-section using the mid-point rule [6]. The nonlin-
ear material relation of the following section is used for each concrete fiber and the classical J2
plasticity model is used for the steel bars.

3.1 Damage model

In this study the constitutive behavior of concrete is described with the damage material
model in [15]. The model uses a scalar damage variable D to define the relation between the
strain tensor E and the stress tensor Σ:

E =
(1 + ν)Σ− ν tr(Σ) I

E(1−D)
(22)

where E in the material Young modulus and ν the Poisson ratio, and I is the second order
identity tensor. The damage variable D, bounded in the range [0 1], where D = 0 correponds
to initial undamaged state and D = 1 to the complete degraded state, is a function of a single
variable Y , which is the combination of two strain measures Yt and Yc for cracking (tensile
state) and crushing (compressive state), respectively. The combination gives:

Y = r Yt + (1− r) Yc with r =

∑〈
ˆ̄σi
〉
+∑

|ˆ̄σi|
∈ [0; 1] (23)

where ˆ̄σi are the principal effective stresses.
The evolution law for D is defined by the following exponential relation:

D = 1− Y0(1− A)

Y
− Ae−B(Y−Y0) (24)

where Y0 = r ε0,t + (1− r) ε0,c is the initial threshold for Y and A and B are material param-
eters, also defined from the combination of the tensile and compressive parameters, At/c and
Bt/c, respectively according to:

A = At

(
2 r2 (1− 2k)− r (1− 4k)

)
+ Ac

(
2 r2 − 3 r + 1

)
(25)

B = rqBt + (1− rq)Bc with q = r2 − 2r + 2 (26)

k is a parameter for calibrating the asymptotic stress value at large shear deformations and is
set equal to 0.7 throughout the following simulations.

Figure 6(a) and 6(b) shows the resulting stress-strain constitutive relation and the damage
evolution law with the material parameters in the first row of Table 1.

3.2 Plain concrete and RC beams subjected to end torsional loads

Two prismatic beams under pure torsion are used for the validation of the 3d beam formula-
tion. Both specimens have a total length of 160 cm, and are divided into three parts: two end
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(a) Uniaxial stress-strain relation.
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Figure 6: Damage constitutive law for concrete.
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Figure 7: Beams subjected to end torsional loads: specimens geometry.

regions of length Le, reinforced so as to remain elastic, and a middle part of length L undergo-
ing cracking and damage (Figure 7). For pure torsion a torsional moment Mx is applied at both
ends with a particular arrangement that allows the beam cross-sections to undergo warping.

The plain concrete (PC) and the reinforced concrete (RC) cross-section in Figure 7 are con-
sidered for the central damaging part of the beam. The geometrical parameters are: L = 60 cm
for the former one (Le = 50 cm) and L = 100 cm for the latter one (Le = 30 cm). Only the
middle part is modeled in the numerical analysis, using one FE with one warping interpolation
point located along the axis, nw = 1 (Figure 7), as a uniform warping distribution is expected
in this direction. Three Gauss-Lobatto quadrature points are used for the integration along the
FE with a uniform fiber discretization made of 86 fibers at each point. The material parameters
are given in Table 1. Modulus E is not specified in the two reference papers, thus it is adjusted
to reproduce the measured initial stiffness. For the steel bars, which are modeled as additional
fibers, the following material parameters are used: Young modulus E = 210000 MPa, Pois-
son coefficient ν = 0.3, yield stress fy = 560 MPa, isotropic hardening Hi = 0.001E and
kinematic hardening Hk = 0.01E.

Four different warping DOFs distributions in Figure 8 are considered. The first two adopt
Lagrange polynomials, L1(12) and L2(30) and the other two use Hermite polynomials, H1(12)
and H2(30) with the total number of internal DOFs in parentheses.
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E [MPa] ν ε0,t At Bt ε0,c Ac Bc

PC 25 000 0.20 0.000055 0.98 7 000 0.000200 1.30 600

RC 30 000 0.20 0.000100 0.98 11 000 0.000200 1.50 600

Table 1: Beams subjected to end torsional loads: material parameters for concrete.
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Figure 8: Warping DOFs distribution over the cross-section of the T-shaped beams (”L” = Lagrange interpolation
functions, ”H” = Hermite interpolation functions and the number in the parentheses indicates the total number mw

of warping DOFs).

Figure 9(a) compares the global response for the four warping distributions with the exper-
imental results for the plain concrete beam. The H2(30) model gives the best solution, since it
adopts cubic interpolation functions in the y and z direction. The L2(30) model uses the same
number of warping DOFs and, although it provides parabolic interpolation functions (cubic
only in the y direction for the web), it gives a solution that agrees very well with the solution of
the H2(30) model. The L1(12) model with linear interpolation functions, slightly overestimates
the element strength, with a significantly smaller number of warping DOFs. Finally, the H1(12)
model, which uses the same number of warping DOFs with linear interpolation functions as the
L1(12) model, underestimates both the stiffness and the strength of the element. These results
lead to the conclusion that Lagrange polynomials are a good compromise between accuracy
and computational efficiency. In fact, with a small number of warping DOFs these interpolation
functions give satisfactory solutions, whereas for the Hermite polynomials high order interpola-
tion polynomials are required over the cross section. For sections composed of thin rectangular
segments, as is the case for the commercial steel profiles, linear Lagrange polynomial prove
computationally superior (see [12]) to the Hermite polynomials which require many warping
DOFs for good results.

Figure 9(b) compares the results of the H2(30) model with the experimental results in [17]
and with the analytical results of the same study under the assumption of a rigid cross-section.
The response under the assumption of a rigid cross-section results from a value of J = 6 774 cm4

for the polar moment of area based on the semi-analytical solution with Fourier series.
Figure 9(b) shows that the rigid section assumption overestimates the peak load, since the

damage distribution over the cross-section is not captured correctly. In fact, Figure 10 shows
that the distribution of damage variable D is similar to that for a circular section where warping
is not possible. Instead, in the presence of warping the damage distribution is much more
diffused over the whole cross-section. Figure 11 shows the γxy distribution. Note that the
section warping gives rise to parabolic distributions of the shear strains γxy and γxz over the
section. In contrast, the rigid section assumption is associated with in a linear distribution of
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Figure 9: Response of the T-shaped plain concrete beam: moment vs rotation per unit length.
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Figure 10: Evolution of the damage over the plain concrete T-shaped cross-section with and without warping.

these strains in the y and z direction.
Similar observations result for the RC beam whose global response is shown in Figure

12. The response under the assumption of a rigid cross-section results from a value of J =
32 642 cm4 for the polar moment of area based on the semi-analytical solution with Fourier se-
ries. The response of the plain concrete beam with the H2(30) model is superimposed on the
same figure for contrast. The comparison shows that the reinforcing bars increase the member
strength slightly under high values of torsional deformation, when the concrete is completely
damaged. The experimental response shows greater strength under intermediate deformations,
as the beam transitions from the uncracked to the fully cracked state, but this transitory behavior
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Figure 11: Shear strain in the plain concrete section -
Model with warping, H2(30) - θx/L = 0.007.
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Figure 12: Numerical vs experimental response for the
RC beam: moment vs rotation per unit length.

due to rough cracks and dowel action is not accounted for in the present numerical model.

4 CONCLUSIONS

• The paper extends an existing 3d enhanced fiber beam element formulation with warping
degrees of freedom to the analysis of concrete beams under torsion with warping by
incorporating a constitutive material law with damage.

• Two examples demonstrate the capabilities of the element for describing the inelastic
response of plain concrete and RC members under torque, as well as the resulting shear
strain-stress and damage distributions over the cross-section.

• The numerical analyses show the importance of the interaction between the warping de-
formations and the damage progression. In fact, the standard elements, that account for
the torsional effects in a simplified way, give unrealistic results and overestimate both the
strength and the ductility of the structure.

• The 3d enhanced fiber beam element proves to be robust and accurate and has signif-
icantly lower computational cost than shell and brick finite elements, while delivering
results of excellent accuracy for the local response of the structural members.
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Abstract. It is important study, that is concerned with the development of the concepts and 
methods of classical stability theory in reference to the problems of  designing and computing 
for singularly perturbed class systems , generated by engineering practice. The various aspects 
of complex systems dynamics are considered. Methods of the modelling and analysis on the 
generalized methodology base, coupling the stability theory ideas and asymptotic theory 
manners, are elaborated. Non-traditional, extended approach, formed on A.M.Lyapunov’s 
theory  methods, on brilliant ideas of  N.G.Chetayev, P.A.Kuzmin, V.V. Rumyantsev, 
K.P.Persidskiy, is worked out. It gives universal tool   that makes it possible to come near to 
the solving of fundamental problems in general modelling theory, in designing/computing. 
The effective algorithm of engineering level is constructed, which is perspective for 
multidisciplinary systems.  Besides all investigated objects are interpreted from unified 
positions as singular ones; effectual non-traditional technology of modelling, that uses 
principally non-linear approach, is established; the simple schemes of decomposition of 
original systems (models) and of dynamic properties are worked out; the generalization of the 
reduction principle, well-known in stability theory, is got for general qualitative analysis. 
This manner is permitting to construct the hierarchical sequence of simplified systems (and 
models) as comparison ones; to determine the conditions of the qualitative equivalence 
between original and shortened systems; to find the areas of their acceptability for analytical 
or computer- analytical analysis in designing of engineering objects. 

Keywords: Complex Systems, Stability Theory, Singularity, Modelling. 
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15-08-00393). 

1 INTRODUCTION 
The first fundamental rigorous results in this direction were obtained by H.Poincare and by 

A.M.Lyapunov. In classical works of A.M.Lyapunov the comparison method (general method 
of qualitative analysis) was developed with the strong justification for the solving of stability 
problems. This method led to the reduction principle, well-known one in stability theory 
(A.M.Lyapunov, K.P.Persidskiy,…), and to the comparison principle (R.Bellman-V.Matrosov). 

There is the direct methodological connection between stability theory and singular 
perturbations theory (I.S.Gradstein, N.G.Chetayev); between modelling problems and 
parametric stability theory (N.G.Chetayev, P.A.Kuzmin). With reference to Mechanics 
problems, formulated here, it leads to the singularly perturbed problems, with various 
singularities types, with specific critical cases. This research is formed on accepted here basic 
proposition about global, in-depth fundamental, connection between the singularly perturbed 
problems (and modelling problems in Mechanics) and the stability methods of Lyapunov’s 
theory. Such tenet is ascending to well-known stability postulate (N.G.Chetayev), and 
singularity postulate (L.K.Kuzmina), with the extending statement about stability with 
parametric perturbations on singular case. All original objects may be treated from unified 
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view point of systems of singularly perturbed class. The object state may be described by the 
equations with small (or big) parameters. The original mathematical model (as example, in 
Lagrange’s form) may be represented in standard form, as singular model, with small 
parameters in different powers. For this it is necessary to construct the corresponding non-
linear, non-singular, evenly-regular transformation of variables. It is postulated 
(L.K.Kuzmina), that such suitable transformation exists always, and it may be constructed by 
special, non-formal manners. Besides the original dynamic problems are solved as singular 
ones; shortened (approximate) systems are introduced as subsystems of s-level (s-systems); 
reduced models are obtained as asymptotic s-models. Here these s-systems are also singularly 
perturbed ones. It is non-traditional approach, combining the methods of stability theory and 
perturbations theory that allows to come near to the solving fundamental problem of 
modelling ,designing, computing in Mechanics via understanding it as problem of singularly 
perturbed class. 

Following to ideas of N.G.Chetayev’s, in accordance with Lyapunov’s methods, the 
singular problems may be solved (stability, proximity, optimality, quickness,…) both for non-
critical and for critical cases; with simple and multiple roots;… Also for singular systems with 
the peculiarities (critical spectrums) the reduction conditions may be determined. In these 
cases the direct use of known results of singular perturbations theory (A.N.Tikhonov, 
A.Naifeh,…) is non-suitable: eigen-values of corresponding matrices are zero- and imaginary 
ones. Mechanical systems, modelling the technical objects, are “quasi-Tikhonov’s systems” 
(N.N.Moiseev). Therefore special, novel, manners are necessary. Methods, based on 
Lyapunov’s methodology, Chetayev’s ideas, elaborated here, give powerful tool; bring new 
interesting results, perspective both for perturbations theory (singular problems in specific, 
critical cases are solvable) and for applications to Mechanics, for general modelling theory. 

2 INITIAL GENERAL PRINCIPLES OF METHODOLOGY 
It is well known [1-16], many applied investigations lead to the mathematical problems, 

having important general features: the reduction of the order of the differential equations, the 
loss of continuity, boundary condition. We shall call the singular systems such ones, when the 
transition to the reduced system is accompanied by the lowering of the model order, with the 
structural change. For these systems the initial mathematical model may be presented in 
standard form of system with the singular perturbations. It enables to consider the original 
objects on typical scheme, to construct by regular manners the “idealized” mechanical-
mathematical models, that are interesting for engineering applications, to get strict conditions 
of their acceptability in dynamics. 

For singularly perturbed objects a motion consists of components of various multi-
scale classes, from fast to slow, and their differential equations (mathematical models) 
can be led to the form of equations with small parameters before higher derivatives. 
Therefore in practice for analysis of such systems the reduced models of lower order are 
being used as working models. Let the differential equations of the perturbed motion of 
considered system can be led to a form (let consider the systems with the steady states 
set) 

),,()( ytY
dt
dyM µµ = (1) 

where Txzy ,= , z, x are m-, n-dimensional vectors; µ > 0 is a small dimensionless 

parameter; )()( , µµ jiMM = ; TytXxPytZytY ),,()();,,(),,( µµµµ += ; )()( , µµ jiPP = ; 
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Mi,j, Pi,j are submatrices of the appropriate sizes; Z(t, µ, y), X(t, µ, y) are non-linear vector-
functions, holomorphic (in appropriate domain) on the totality of variables z, x, in which 
coefficients are continuous, limited functions of t, µ; Z(t, µ, z, 0)= 0, X(t, µ, z, 0)= 0; 

IM i
ji

αµµ =)(, , ri ≤≤ α0 ; I are identity matrices. We shall be able to consider the 
critical cases of system (1), where z are critical variables [1]. Taking into consideration 
in (1) only members containing µ in power not more than s, s < r, we shall receive the 
shortened approximate system of type 

),,()( ytY
dt
dyM ss µµ = (2) 

We shall call (2) the shortened system of s-level, s-system (s-approximation on µ). 
For singularly perturbed systems that are considered here, the order of system (2) is 
lower than order of full system (1). In applications to mechanics this shortened system 
leads to the reduced model as the asymptotic model of s-level. From the point of view of 
mechanics a transition to the reduced model is accompanied by a decrease of freedom 
degrees number. The system (2) is system of differential-algebraic equations. 

We shall be able to obtain the sequence of asymptotic models (as designing-basic 
models) in mechanics, corresponding the sequence of shortened s-systems (s=0,1,2,…r-1). 
The following problem is important both for the theory and applications: in which cases 
and under what conditions it is possible to reduce the system (1)analysis  to shortened s-
system? The similar problem for equations with small parameter under higher 
derivatives was considered by many authors [2-8]. We shall show the solving of some 
concrete problems of mechanics on examples of systems with big and small papameters, 
that lead to particular cases of the system (1) of special class, that are not embraced by 
already known fundamental results. This methodology allows to realize the parallel 
computing in engineering for original very complex system.  

3 MECHANICAL SYSTEMS WITH NONRIGID ELEMENTS 
As an example of such technical/mechanical system we shall consider the systems of 

gyrostabilization, modelling ones as mechanical (or electromechanical) systems with 
controlling gyroscopic elements. Here there is a critical case of zero roots. We shall 
solve a stability problem of the steady motion for such system, supposing that the 
elements of the system are not absolutely rigid (we neglect the mass of elastic elements). 
Differential equations of perturbed motion we shall accept in a form of Lagrange’s 
equations (as in [5, 15]) 

M
M

MMMM q
dt

dq
Qcqqgbqa

dt
d &&& =′′=+++    ,)( (3) 

Here 
T

M qqqqq 4321 ,,,=  is n - dimensional vector of mechanical generalized 
coordinates, where q1 is l-dimensional vector of the gyroscopes precessions angles; q2 is 
(m-l)-dimensional vector of angles deviations of own rotations of gyroscopes from their 
values in steady motion; q3 is (s-m)-dimensional vector of stabilization angles, s=m+l; q4 
is (n-s)-dimensional vector of elastic elements deformations; a, b, g  are square n×n -
matrices of forms of the system kinetic energy, dissipative function of friction forces, 
gyroscopic coefficients accordingly; jicc ,= , jibb ,=   (i, j=1,...,4),  cij and bij are 
submatrices of an appropriate sizes; b44 is square (n-s)×(n-s) -matrix of dissipative 
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function of internal friction forces in material of elastic bodies; c44 is square (n-s)×(n-s) 
-matrix, corresponding to potential energy of elasticity forces. 

We assume that all functions in (3) are holomorphic (on the totality of their variables) 
in certain area. 

For solving of this problem (and choosing of a reduced model) we shall lead 
equations (3) to a form (1) with singular perturbations. For this, first, we must introduce 
in equations (3) a small parameter, using physical considerations. We suppose, that the 
elements of the considered systems are of a sufficiently high rigidity and according to 
that  2

4444 / µ∗= cc , µ/4444
∗= bb , where µ>0 is a small parameter. Now, using the 

constructed transformation of variables 

M

T

M
T qgbgbqaaz 0

2
0
2

0
1

0
121 ,, +++= & , M

T qaaa &3211 ,,=κ ,   Mqa &42 =κ ,   qj=qj,   (j = 1, 4)  
where ai, bi, gi (i = 1,…,4) are submatrices of matrices a, b, g correspondingly, we shall lead 
equations (3) to the singularly perturbed form. This transformation is the non-linear, non-

singular under condition that 0
3,2

2,1

0
,

0
, ≠+

=

=

j

ijiji gb , evenly regular [6], not changing the 

statement of the stability problem. System (3) in new variables has a form (1) 

 ),,,()()(),,,,( xztXP
dt
dxMxztZ

dt
dz

µµµµ +==       (4) 

where 
Txxxx 321 ,,= , Tqx 111 ,κ= , x2=κ2, x3=q4; α1=0, α2=2, α3=0;  )()( 22 µµµ ii PP ′=   

(i=1,2). 
The characteristic equation has m zero-roots. Other roots can be found from the 

equation d(λ, µ)=0. We assume the shortened system of 0-level (degenerated system) as 
an approximate one for a system (4), marking it (4′) without writing. In old variables it 
is the system 

 ∗∗∗∗∗ =+++ Qqcqgbqa
dt
d && )( ,  q

dt
dq &=  (5) 

where  
Tqqqq 321 ,,=  is s-dimensional vector of generalized coordinates, describing the state 

of an absolutely rigid system; a*, b*, c*, g* are s×s-matrices of absolutely rigid system. 
The equation (5) describes a motion of an idealized model of mechanical system. This 

model corresponds to an approximate system (4′) of 0-level. We shall call it a “limit 
model”. A problem: in what conditions a transition from the initial model (3) to its 
idealized model (to absolutely rigid system) is possible in qualitative analysis, 
designing, computing? Using methods of stability theory [1, 2], combined with the 
singular perturbations methods [7,8] and introducing the differential equations for 
deviations that respond to non-critical (basic) variables x, we can find out the 
acceptability conditions for transition validity from system (4) to the system (4′) in 
concrete dynamical problems. After returning to old variables, taking into account the 
properties of the considered mechanical system, we receive the corresponding 
statements. 

3.1 Stability problem 
When the stability property for reduced model (5) will be ensuring same property for 

original (full) model (3)? 
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Theorem 1. If  0,0 0
31

3,2

2,1

0
,

0
, ≠≠+

=

=
cgb

j

ijiji  and all roots (except m zero roots) of 

characteristic equation of reduced system (5) have negative real parts, then with 
sufficiently small values of µ (sufficiently high rigidity of the system elements) the zero 
solution stability of the full system will be succeeding from the zero solution stability of 
reduced system (5). And reduced system (5) has integral 

Bqqq
gb
gb

q
a
a

=+
+

+
+

∗∗

∗∗

∗

∗

),(
0

2
0

2

0
1

0
1

2

1 && ϕ  

and full system (3) has integral of Lyapunov: 

AqqFq
gb
gb

q
a
a

MMMM =+
+

+
+ ),(

0
2

0
2

0
1

0
1

2

1 && . 

3.2 Estimations of approximate solutions 

Let )4...1(),,(),,( === itqqtqq iiii µµ &&  be the solution of system (3) with the initial 
conditions ),(),,( 0000 µµ tqqtqq iiii && == ;we shall designate )(tqq ii

∗∗ = , ),(tqq ii
∗⋅∗⋅ = (i 

=1,…4) as the solution of approximate system (5), defined by the initial conditions 
),( 00 tqq jj

∗∗ =  )( 00 tqq jj
∗∗ = &&  (j=1, 2, 3), where 0,0 44 ≡≡ ∗∗ qq & . 

Making use of stability theory methods we can prove the following statement: 
Theorem 2. If the characteristic equation for system (5) has all roots in the left half-
plane (except m zero roots) for d(0, 0)≠0, then under sufficiently big stiffness of the 
system elements (i.e. µ  is sufficiently small) there exists such a µ∗-value for ξ>0, η>0, 
γ>0  given in advance (no matter how small ξ and γ are), that in a perturbed motion: 

,ξ<− ∗
ii qq  ξ<− ∗

ii qq &&  (i=1,…,4) when 0<µ<µ* for t≥t0+γ, if ,00
∗= jj qq ∗= 00 jj qq && , 

(j=1,2,3) ηη << 4040 , qq & . 
It should be pointed out that while demonstrating and using variables z, x we 

introduce deviations a=z−z∗, b=x−x∗ and consider a differential equation for b. The 
analysis of these equations as well as the integral structure enable to derive the 
statement of Theorem. 

These results, complementing already known [9], justify for the systems, considered 
here, admissibility of approximate limit model (as asymptotic model of 0-level) and 
determine the conditions, under which the considered transition is correct (in a meaning, 
adopted here). 

Remark. According to this we can introduce other approximate model (as designing-
basic model) for (3). This is asymptotic model of 1-level (µ-approximation), that has (s+(n-
s)/2) of freedom degrees (if in (4) take into consideration members containing µ in power 
not more than 1). This model is new one (it is very interesting result). 

System (4) belongs to the special critical case, when all eigenvalues of matrix P22, 
corresponding to the fast  x2, are zero. 

4 SYSTEMS WITH FAST ROTORS 
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Using the same asymptotic approach, we can solve a problem of the transition strict 
substantiation to a reduced (approximate) model for the mechanical systems with the fast 
rotors (gyroscopes) [13]. No-giving the formulas and computations here, we note only the 
some results. In this case original mathematical model is accepted in a form of Lagrange’s 
equations [5]; big parameter is introduced through gyroscopic forces [5, 13]; the necessary 
transformation of state variables is constructed; the initial equations are reduced to standard 
form (1). The reduced models are got on our scheme. According to elaborated method, by 
strict mathematical manner we obtained the known (precessional) model and new («limit») 
model (as shortened model of 1-st level and 0-level, correspondingly). The conditions of 
acceptability of these models are determined. 

5 SYSTEMS WITH SMALL DELAY TIME 
Here the electromechanical systems (EMS), modelling the gyrostabilization systems, 

are investigated. Original model is presented in general form of Lagrange-Maxwell 
(Gaponov) equations [14]. The problems: the constructing of reduced model; and their 
acceptability (in corresponding sense) for these systems. For case of fast-acting systems, 
interpreting ones as singularly perturbed system, according to our method, we solve 
these problems. The required transformation is constructed; the reduced models (two 
types) are obtained; the domains of acceptability are determined. 

6 CONCLUSION 
In the applications to engineering practice the elaborated methods are very effective, those are 
enabling to construct the acceptable shortened  submodels(as s-approximations) by strict 
mathematical way; to substantiate strongly their correctness in dynamics, including 
Lyapunov’s critical cases; to consider specific cases, inherent for mechanical systems; to 
evaluate the corresponding errors in such transition-simplifying. It is allowing  to realize the 
using of parallel supercomputing in designing processes on modern computing machines . 
The elaborated methods are illustrated on examples from engineering practice, from 
Mechanics. In framework of this approach it is considered actual problems for fast gyros 
theory, electromechanical systems, robotic systems; mechanical systems with the friction, 
non-holonomic systems; Newton’s model of point mass dynamics,… 
New elegant outcomes are obtained, that are interesting both for theory and for applications, 
both in general theory of singularly perturbed systems and in applied engineering problems. 
Also this approach is very perspective from gnosiological view point, for general knowledge 
theory, with revealing interesting new models, with possibility for investigation of the original 
complex multi-scale system with using   analytical or computer- analytical parallel 
methods from first steps of engineering designing. 
Finally as some additional remarks we notice that by analogy with these systems, using the 
same methods, other singularly perturbed problems and systems of mechanics may be 
considered. 
The subject-matter of investigations is general problem of modelling in mechanics. The 
development of mathematical modelling questions of mechanics is closely concerned with 
actual tasks of mechanical systems dynamics, of differential equations theory with big and 
small parameters, of stability theory. In one’s turn it is generating new trends in mathematics, 
interesting mathematical   and  mechanical problems. 
The received results are generalizing and supplementing ones, known in theory of 
perturbations; these results are developing interesting applications in engineering. With 
reference to Mechanics and engineering applications  the rigorous theoretic justification is 
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obtained for considered approximate models and theories, both traditional (K.Magnus, 
A.Andronov, D.Merkin,…) and new ones; the separation of state variables on different-
frequency groups is developed from first stages of designing; the acceptability of approximate 
theories, models is discussed, including “exotic” Aristotle’s model in Dynamics. 
Deep philosophical aspect of idealization problem in Mechanics is highlighted. 

The author is grateful to Russian Foundation of Fundamental Investigation for support in this research.(15-08-00393). 
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Abstract. Due to the substantial increase of the size of current and future wind turbine designs,
the blades tend to be quite flexible, resulting to large displacements and finite rotations under
the action of the aerodynamic loading. As a result, the geometry of the blades changes, in some
cases the flap deflection exceeds 10% of the blade radius, and thus, geometrically non-linear
effects of significant importance take place.
Two geometrically non-linear models are available in the multi-body hydro-servo-aeroelastic
tool hGAST [1, 2], the first employs a 2nd order Euler-Bernoulli beam approach and the second
is based on a non-linear sub-body modeling of the blades. In the present paper, a degenerate-
continuum based Timoshenko beam approach is presented, which has been implemented in the
code. The main kinematic assumptions are that the cross-section remains plane and rigid in its
own plane, hence, the cross-sectional out-of-plane and in-plane warpings are neglected. The
material is assumed homogeneous, isotropic, linear and elastic.
Comparisons between the non-linear models and the linear one are presented. The basic out-
come from the analysis of a three-bladed rotor, with aerodynamic and structural properties
same to the 5MW NREL reference wind turbine, is that the non-linear models result to a signif-
icant difference in torsional response compared to the linear model, due to the bending-torsion
non-linear coupling. This could be an important aspect for the design of the blades, since it
contributes to passive load reduction strategies.
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1 INTRODUCTION

In bibliography, geometrically non-linear beam theories could be separated into two cate-
gories: a degenerate-continuum beam theory [3, 4, 5] and a geometrically exact beam theory
[6, 7]. The first category, which has been inspired by the work done for shells (first introduced in
1968 by Ahmad et al. [8]), is directly derived from the 3D-continuum. The strain-displacement
relations used are written in a strong sense, i.e. at the material particle level. The second
category, which has been introduced by Reissner [6] for the plane case and by Simo [7] for the
spatial case, deals with the problem formulation at a beam theory level. The strain-displacement
relations used are written in a weak sense, i.e. at the reference point of the beam. These gener-
alized strain measures do not spoil the geometric exactness, as this is expressed via the resultant
form of the differential equilibrium equations at the deformed state. Actually, Reissner [9] had
proposed a formulation in 3D before Simo, but, using a rotation matrix simplification to derive
the required strain-displacement relations, he spoiled the geometric exactness [10]. Many finite-
element developers of the beam theories, e.g. Jelenić & Crisfield [10], Cardona & Geradin [11],
Ibrahimbegović [12], based their approach on the geometrically exact beam theory.

The more flexible wind turbine blades of modern design lead to a strong coupling between
aerodynamics and structural dynamics, namely the aeroelasticity. Thus, the structural models
used in aeroelasticity of the blades need to account for the exact geometry of the deformed
shape, so that an accurate input for the aerodynamics load estimation may be provided. A
review on the structural models used in aeroelasticity of the blades is given in [13]. As far as
the 1D structural models are concerned, linear beam models had been used for long. Important
terms which consider certain non-linearities were included, i.e. coupling-type terms associated
with the centrifugal forces. Today, two non-linear beam theory models for rotor blades are
used: One is the moderate deflection beam model [9, 14] based on ordering schemes, and, the
other is the large deflection beam model [15, 16] developed according to the aforementioned
geometrically exact beam theory.

As far as the aerodynamics is concerned, the aerodynamic model, used to transform the wind
flow field to loads on the blades, is a (BEM) Blade-Element Momentum model, which accounts
for dynamic inflow, yaw misalignment, and dynamic stall effects [17].

In this work, a Total Lagrangian beam approach based on the degenerate-continuum con-
cept, for using it in aeroelasticity, is presented. The difference compared to the beam theory
model presented in [3, 4, 5] is that before the element interpolation is performed, an analytical
integration over the cross-section is carried out to reduce the 3D integration to a 1D integration.
The same procedure is followed in [18] for an Updated Lagrangian formulation. The paper out-
line is as follows: In section 2, the kinematics and kinetics of the degenerate-continuum based
beam formulation are presented. An important issue is how to represent the finite rotations of the
cross-section. In the present work, the rotational vector representation technique is used to avoid
the non-uniqueness problem associated to the Euler angles one [19]. The exponential mapping
of the skew-symmetric matrix of the rotational vector is evaluated to update the cross-sectional
orientation. Consistent linearization of the configuration state is presented in the following,
needed to construct a step-by-step analysis, in the context of a Total Lagrangian formulation.
In section 3, the linearized equilibrium equation is presented, from which the beam matrices
are derived after the discretization procedure, using the finite element method. In section 4, the
numerical results from the three-bladed 5MW NREL [20] rotor motion, under uniform inflow
conditions, are presented. Comparisons are given between the three options of the geometri-
cally non-linear modeling (degenerate-continuum based, 2nd order Euler-Bernoulli, sub-body
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approach models) and the linear one.

2 DEGENERATE-CONTINUUM BASED TIMOSHENKO BEAM APPROACH

2.1 Assumptions

• The cross-section of the beam remains plane and rigid inside its own plane, hence, warp-
ing is not included. However, the warping displacement behavior could be added to the
assumed deformations.

• Shear deformation is taken into account, and, it is assumed constant in the cross-section
as a consequence of the previous non-warping assumption.

• The initial reference line of the beam is assumed, for the sake of simplicity, straight.

• The material is homogeneous, isotropic and linear elastic.

2.2 Basic kinematics

The reference bases used in kinematics are (fig. 1),

• Ej , j = 1− 3, is the orthonormal body-attached reference basis (which is rotating in the
context of the blade dynamics)

• Vi(ξ), i = r, s, t, is the orthonormal moving basis, attached to each cross-section

where, ξ is the arc-length variable along the reference line of the beam.

't=0'

0Vs

0Vt

't'
tVs

tVt

E1

E2

E3

O

,x

,y

,z

0Vr

tVr

Fig. 1: Initial and deformed configuration of the beam.
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2.2.1 Initial configuration state

The initial cross-sectional orientation is expressed via the initial orthogonal transformation
ξ → 0Λ(ξ) ∈ SO(3), SO(3) is the special orthogonal group, thus, the moving frame basis at
the initial (undeformed) state (fig. 1) is given by,

0Vi(ξ) =
0Λij(ξ)Ej (1)

The triads 0Vi(ξ), i = r, s, t are directed along the axes shown in fig. 1, which are parallel to
the reference basisEj , j = 1− 3, (in blade dynamics the origin of these triads is located on the
pitch axis of the blade). The basis vectors 0Vi(ξ), in general, depend on ξ due to the presence
of initial curvatures and/or twist. In the present, because of the straight beam assumption,
these vectors are constant along the beam. The corresponding position vectorR of an arbitrary
material particle (ξ, η, ζ) of the undeformed beam is given by,

R(ξ, η, ζ) = R0(ξ) +
0ΛT ·


0
η
ζ

 = R0(ξ) + η · 0Vs + ζ · 0Vt (2)

where,R0(ξ) is the position vector of the undeformed beam reference point.

2.2.2 Current configuration state

In a similar way, the deformed cross-sectional orientation is expressed via the orthogonal
transformation ξ → tΛ(ξ) ∈ SO(3), thus, the moving frame basis at the current (deformed)
state (fig. 1) is given by,

tVi(ξ) =
tΛij(ξ)Ej (3)

The Bernoulli hypothesis of the plane cross-sections remaining planar after deformation and
retaining their shape and area is assumed to hold, thus, the corresponding position vector tr of
an arbitrary material particle (ξ, η, ζ) of the deformed beam is given by,

tr(ξ, η, ζ) = tr0(ξ) +
tΛT (ξ) ·


0
η
ζ

 = tr0(ξ) + η · tVs(ξ) + ζ · tVt(ξ) (4)

where, tr0(ξ) is the position vector of the deformed beam reference point.

2.3 Updated (trial) configuration state

The update of the configuration state w.r.t. the displacements is conventional, i.e. additive,
due to their vectorial nature. To update the configuration state w.r.t. the rotations, the cross-
sectional orientation at configurations t+∆t and t are related via the rotational (pseudo)-vector
θ(ξ) (fig. 2), which rotates the base vectors tVi(ξ) into the base vectors t+∆tVi(ξ) around the
axis 1

θ(ξ)
· θ(ξ) for the angle θ(ξ), through

t+∆tVi(ξ) = Λ(ξ) tVi(ξ) = exp(θ̂(ξ)) tVi(ξ), i = r, s, t (5)

where, the rotation matrix Λ(ξ) is given by,

Λ(ξ) = exp(θ̂(ξ)) = I +
sinθ

θ
θ̂ +

1− cosθ

θ2
θ̂θ̂ (6)
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where θ̂(ξ) is the skew-symmetric matrix formed by the components of the rotational vector
θ(ξ) (θ̂(ξ) = −eijk θ

kEiE
T
j ; eijk is the permutation symbol). The above formula is the well-

known Rodrigues formula. Details about the derivation of the formula one could find at [3, 21].

Fig. 2: Geometric interpretation of the exponential map, TtΛSO(3): tangent plane at tΛ [22].

2.3.1 Strain and stress measures at the updated (trial) configuration state

By subtracting the position vector at t = 0, given in eq. (2), from the position vector at
t + ∆t, given in eq. (4) for t = t + ∆t, for an arbitrary material particle (ξ, η, ζ) of the beam,
the displacement field at t+∆t is written as follows,

t+∆tu(ξ, η, ζ) = t+∆tu0(ξ) + η · t+∆t∆Vs(ξ) + ζ · t+∆t∆Vt(ξ) (7)

where, t+∆tu0(ξ) is the updated displacement of the beam reference point, and, t+∆t∆Vs(ξ),
t+∆t∆Vt(ξ) are the differences between the initial and the updated cross-sectional directors.

To know the stress condition contributing to the geometric stiffness in the context of the
Newton-Raphson iterative procedure, the internal forces and moments of the beam at the trial
state t +∆t need to be evaluated. To do so, the steps below are followed (for convenience, the
variables ξ, η, ζ are omitted from the RHS),

1. The material particle (ξ, η, ζ) global displacement gradients are evaluated,{
t+∆tu,x

t+∆tu,y
t+∆tu,z

t+∆tv,x
t+∆tv,y

t+∆tv,z
t+∆tw,x

t+∆tw,y
t+∆tw,z

}T

where, t+∆tu, t+∆tv, t+∆tw are the components of the updated displacement (eq. 7) w.r.t.
the reference basis E, while, (,) denotes the spatial derivative relative to the x, y, z coor-
dinates.

2. Using the coordinate transformation of a 2nd order tensor [23], the global displacement
gradients are rotated to get the initial local ones, i.e. relative to the initial cross-sectional
basis 0V .

3. The components of the Green strain tensor [3, 4] are evaluated. Because of the assumption
that the cross-sectional shape does not change during deformation, the only remaining
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components of the Green strain tensor are,

t+∆tϵξξ(ξ, η, ζ) =
t+∆tuξ,ξ +

1

2
(t+∆tuξ,ξ)

2 +
1

2
(t+∆tvη,ξ)

2 +
1

2
(t+∆twζ,ξ)

2

t+∆tϵξη(ξ, η, ζ) =
1

2
(t+∆tuξ,η +

t+∆tvη,ξ +
t+∆tuξ,ξ

t+∆tuξ,η +
t+∆tvη,ξ

t+∆tvη,η

+ t+∆twζ,ξ
t+∆twζ,η)

t+∆tϵξζ(ξ, η, ζ) =
1

2
(t+∆tuξ,ζ +

t+∆twζ,ξ +
t+∆tuξ,ξ

t+∆tuξ,ζ +
t+∆tvη,ξ

t+∆tvη,ζ

+ t+∆twζ,ξ
t+∆twζ,ζ) (8)

where, t+∆tuξ,
t+∆tvη,

t+∆twζ are the updated displacements of an arbitrary material par-
ticle w.r.t. the cross-sectional basis 0V , while, (,) denotes the spatial derivative relative to
the ξ, η, ζ coordinates.

4. The internal forces/moments that arise in the geometric stiffness due to the 2nd Piola-
Kirchhoff normal stress t+∆tSξξ(ξ, η, ζ) are defined as,

t+∆tFξξ(ξ) =

∫
0A

t+∆tSξξ d
0A, t+∆tMηη(ξ) =

∫
0A

ζ · t+∆tSξξ d
0A

t+∆tMζζ(ξ) =

∫
0A

η · t+∆tSξξ d
0A, t+∆tMξξ1(ξ) =

∫
0A

η2 · t+∆tSξξ d
0A

t+∆tMξξ2(ξ) =

∫
0A

ζ2 · t+∆tSξξ d
0A, t+∆tMξξ3(ξ) =

∫
0A

ηζ · t+∆tSξξ d
0A (9)

where, 0A is the initial cross-sectional area, t+∆tSξξ(ξ, η, ζ) = E · t+∆tϵξξ, E is the
Young’s modulus, t+∆tFξξ(ξ) is the normal force, t+∆tMηη(ξ), t+∆tMζζ(ξ) are the bend-
ing moments, and, t+∆tMξξ1−3(ξ) lead to the effective torsional moment components due
to the bending, all referred to the initial state. A geometrical interpretation of the last
internal moment is given in [24].
The internal forces/moments that arise in the geometric stiffness due to the 2nd Piola-
Kirchhoff shear stress t+∆tSξη(ξ, η, ζ),

t+∆tSξζ(ξ, η, ζ) are defined as,

t+∆tFξη(ξ) =

∫
0A

t+∆tSξη d
0A, t+∆tFξζ(ξ) =

∫
0A

t+∆tSξζ d
0A

t+∆tMξξ4(ξ) =

∫
0A

ζ · t+∆tSξη d
0A, t+∆tMξξ5(ξ) =

∫
0A

η · t+∆tSξζ d
0A (10)

where, t+∆tSξη(ξ, η, ζ) = G · (2t+∆tϵξη), t+∆tSξζ(ξ, η, ζ) = G · (2t+∆tϵξζ), G is the
shear modulus, t+∆tFξη(ξ), t+∆tFξζ(ξ) are the shear forces, and, t+∆tMξξ4−5(ξ) lead to
the torsional moment components, all referred to the initial state.

By performing the cross-sectional integration analytically, the internal forces and mo-
ments are derived in relation with the cross-sectional properties and a resultant form of
the strain measures.

Remark: At the updated configuration t+∆t,

- ’Rotations’ contribute in the internal elastic energy are depicted in the difference

t+∆t∆Vi(ξ) =
t+∆tVi(ξ)− 0Vi, i = s, t (11)
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- ’Curvature’ measures contribute in the internal elastic energy are depicted in the deriva-
tive of the above difference along the beam arc-length, ϑt+∆t∆Vi(ξ)

ϑξ
, i = s, t:

ϑ(t+∆tVi(ξ)− 0Vi)

ϑξ
=

ϑ(exp(θ̂(ξ)) tVi(ξ))

ϑξ
(12)

where the orientation update relation (5) has been used.

For the differentiation of the exponential mapping we refer to [25], where a family of
trigonometric functions, that have been used, facilitate the procedure significantly.

2.4 Perturbation of the configuration state at t+∆t

To construct the perturbed configuration state at t+∆t,

- The perturbed position of the reference line relative to t+∆tr0(ξ) is constructed as,

t+∆t,ϵr0(ξ) =
t+∆tr0(ξ) + ϵ δu0(ξ) (13)

where, δu0(ξ) = δu0i(ξ)Ei is a vector field, interpreted, for ϵ > 0, as superposed in-
finitesimal displacement onto the reference line [22].

- The perturbed orthogonal transformation relative to t+∆tΛ(ξ), which consists of the cross-
sectional basis t+∆tV (ξ) as given in eq. (5), is constructed by two ways (fig. 3),

a)

t+∆t,ϵΛ(ξ) = exp(ϵδΨ(ξ))t+∆tΛ(ξ) = exp(ϵδΨ(ξ))exp(θ̂(ξ)) tΛ(ξ) (14)

where, δΨ(ξ) is a skew-symmetric tensor field, interpreted, for ϵ > 0, as superposed
infinitesimal rotation (spin) onto the moving frame [22]. The eq. (5) has been used
above, in the form t+∆tΛ(ξ) = exp(θ̂(ξ)) tΛ(ξ).

b)
t+∆t,ϵΛ(ξ) = exp(θ̂(ξ) + ϵδθ̂(ξ)) tΛ(ξ) (15)

where, δθ̂(ξ) is a skew-symmetric tensor field, interpreted, for ϵ > 0, as infinitesimal
rotation that can be added to the previous rotation.

To get a relation between the axial vectors δψ(ξ) and δθ(ξ) of the skew-symmetric matrices
δΨ(ξ) and δθ̂(ξ) respectively, the Rodrigues formula is used in eqs. (14, 15) and then, the
derivative with respect to the scalar parameter ϵ is taken, for ϵ = 0 [26],

δψ(ξ) = T (θ)δθ(ξ) (16)

where,

T (θ) =
sinθ

θ
I +

1− cosθ

θ2
θ̂ +

θ − sinθ

θ3
θ ⊗ θ (17)

For the derivation of the transformation T (θ) (named as the tangential transformation because
is a linear map between tangent spaces, fig. 3) see [3, 11, 27].
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Fig. 3: Rotation increments and their projection onto the manifold SO(3) [11, 26].

2.4.1 Virtual strain measures

By employing the directional derivative onto the perturbed configuration state (eqs. 13, 14),
the variation of the configuration state (δr0(ξ), δΛ(ξ)) is derived,

δr0(ξ) =
d

dϵ

∣∣∣∣
ϵ=0

t+∆t,ϵr0(ξ) = δu0(ξ) (18)

δΛ(ξ) =
d

dϵ

∣∣∣∣
ϵ=0

t+∆t,ϵΛ(ξ) = δΨ(ξ) t+∆tΛ(ξ) (19)

Thus, the virtual displacement for an arbitrary material particle (ξ, η, ζ) is written as,

δu(ξ, η, ζ) = δu0(ξ) + η · δVs(ξ) + ζ · δVt(ξ) (20)

where, δu0(ξ) is the virtual displacement of the beam reference point and δVi(ξ) = δΛij(ξ)Ej ,
i = r, s, t, j = 1−3. Specifically, by using eqs. (16, 17, 19), the virtual cross-sectional directors
are given as follows,

δVs(ξ) = δΨ(ξ)t+∆tVs(ξ) = δψ(ξ)× t+∆tVs(ξ) = (T (θ)δθ(ξ))× t+∆tVs(ξ) (21)

δVt(ξ) = δΨ(ξ)t+∆tVt(ξ) = δψ(ξ)× t+∆tVt(ξ) = (T (θ)δθ(ξ))× t+∆tVt(ξ) (22)

By substituting eq. (21) and eq. (22) in eq. (20), the material particle virtual displacement is
written in relation with the unknown variables δu0(ξ) and δθ(ξ). The steps (1) and (2) from the
section 2.3.1 are followed to get the initial local infinitesimal displacement gradients. Following
[4] for a Total Lagrangian formulation, the corresponding components of Green-Lagrange strain
tensor are given by,

- The linear virtual strain components are (for convenience the variables ξ, η, ζ are omitted
from the RHS),

δeξξ(ξ, η, ζ) = δuξ,ξ +
t+∆tuξ,ξ δuξ,ξ +

t+∆tvη,ξ δvη,ξ +
t+∆twζ,ξ δwζ,ξ

δeξη(ξ, η, ζ) =
1

2
(δuξ,η + δvη,ξ +

t+∆tuξ,ξ δuξ,η +
t+∆tvη,ξ δvη,η +

t+∆twζ,ξ δwζ,η

+ t+∆tuξ,ηδuξ,ξ +
t+∆tvη,η δvη,ξ +

t+∆twζ,η δwζ,ξ)

δeξζ(ξ, η, ζ) =
1

2
(δuξ,ζ + δwζ,ξ +

t+∆tuξ,ξ δuξ,ζ +
t+∆tvη,ξ δvη,ζ +

t+∆twζ,ξ δwζ,ζ

+ t+∆tuξ,ζ δuξ,ξ +
t+∆tvη,ζ δvη,ξ +

t+∆twζ,ζ δwζ,ξ) (23)
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where, δuξ, δvη, δwζ are the components of the virtual displacement for the material par-
ticle (ξ, η, ζ), eq. (20), rotated to the cross-sectional basis 0V , and, (,) denotes the spatial
derivative relative to the ξ, η, ζ coordinates.

- The non-linear virtual strain components are (for convenience the variables ξ, η, ζ are
omitted from the RHS),

δηξξ(ξ, η, ζ) =
1

2
(δu2

ξ,ξ + δv2η,ξ + δw2
ζ,ξ)

δηξη(ξ, η, ζ) =
1

2
(δuξ,ξδuξ,η + δvη,ξδvη,η + δwζ,ξδwζ,η)

δηξζ(ξ, η, ζ) =
1

2
(δuξ,ξδuξ,ζ + δvη,ξδvη,ζ + δwζ,ξδwζ,ζ) (24)

3 VIRTUAL WORK EQUATION FOR A TOTAL LAGRANGIAN FORMULATION

The equilibrium equation of the body at (t+∆t, ϵ) is given by [4],∫
0V

0ρ t+∆t,ϵr̈Gk δukd
0V +

∫
0V

t+∆t,ϵSij δ
t+∆t,ϵϵij d

0V =

∫
0V

t+∆tfG
k δuk d

0V

+

∫
t+∆tSf

t+∆tfS
k δuS

k d
t+∆tS (25)

where, 0V is the initial volume, 0ρ is the mass density referred to the initial state, t+∆t,ϵr̈Gk,
k = ξ, η, ζ is the acceleration of the particle due to all the inertia effects [2], i.e. the ac-
celeration of the body origin, the Coriolis acceleration, and, the acceleration due to the body
deformation, δuk =

{
δuξ, δvη, δwζ

}T are the virtual displacements, t+∆t,ϵSij , i, j = ξ, η, ζ ,
are the 2nd Piola-Kirchhoff stress components, δt+∆t,ϵϵij are the virtual strains, t+∆tfG

k is the
gravitational load and t+∆tfS

k is the surface aerodynamic load, where t+∆tSf corresponds to the
last calculated surface area.

For the linearization of the internal virtual work (2nd term of the LHS of the above relation
25), the iterative decompositions for stresses and strains are used,

t+∆t,ϵSij =
t+∆tSij + dSij (26)

t+∆t,ϵϵij =
t+∆tϵij + dϵij, dϵij = deij + dηij (27)

where, t+∆tSij = Cijrs
t+∆tϵij , Cijrs expresses the material constitutive behaviour, t+∆tϵij are

given by eq. (8), dSij = Cijrs dϵij , deij is the linear strain part, given by the same relations as
the corresponding virtual strain components (eqs. 23), and dηij is the non-linear strain part, the
variation of which is related to the geometrical stiffness. While variation and linearization can
commute, the variation δdηij is given by the chain-differentiation of eqs. (24).

Substituting in relation (25) the iterative decompositions (26) and (27), and following the
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linearization process as it is presented in [4], the linearized equilibrium equation is derived,

∫
0V

0ρ t+∆t,ϵr̈Gk δukd
0V +


∫

0V

Cijrs ders δeij d
0V︸ ︷︷ ︸

⇒Kmat

+

∫
0V

t+∆tSij δdηij d
0V︸ ︷︷ ︸

⇒Kgeom

 =

∫
0V

t+∆tfG
k δuk d

0V +

∫
t+∆tSf

t+∆tfS
k δuS

k d
t+∆tS −


∫

0V

t+∆tSij δeijd
0V︸ ︷︷ ︸

⇒Fint

 (28)

To construct the under-braced integrals, one has to substitute the strain components ders, δeij
and δdηij in eq. (28). By performing analytical integration over the cross-sectional area, the 1D
form of the linearized virtual work is derived. After discretization, the matrices Kmat, Kgeom

and the vector Fint are constructed. The first matrix refers to the resistance due to the linear
constitutive behaviour of the material, while, the second one refers to the resistance due to the
non-linear geometrical stiffness.

As far as the numerical implementation is concerned, one has to note two issues. The first
is that the developed finite element is based on a quadratic interpolation, using a 2nd order
Lagrange polynomial, of both the displacement and the rotation parameters, while, the second
is that the mass matrix is evaluated using the initial configuration of the body, and thus, it is
calculated prior to the step-by-step solution. Time integration is performed using the Newmark
2nd order implicit method [4].

4 NUMERICAL RESULTS

Time domain non-linear aeroelastic simulations for the isolated rotor of the 5MW NREL
reference wind turbine [20] are performed, using the multi-body hydro-servo-aeroelastic tool
hGAST [1, 2]. The present non-linear Degenerate-Continuum based Timoshenko beam model
(non-linear DC) is compared to the 2nd order Euler-Bernoulli beam model (non-linear EB),
the sub-body beam model (non-linear SB) and the linear one (linear). The transverse shear
effect was neglected in view of enabling direct comparison with the 2nd order Euler-Bernoulli
model. The 2nd order Euler-Bernoulli beam model accounts for moderate deflections by using
an ordering scheme acted on the cross-sectional rotations [14, 28]. The sub-body modeling
is an extension of the multi-body formulation to the body level. It consists of dividing the
body (blade) into sub-bodies, which are subsequently treated as beam elements. At the sub-
body level, local deflections and rotations are assumed small, and thus, the use of a linear
Timoshenko beam model is justified, while by imposing kinematic and dynamic continuity
between consecutive sub-bodies at their connection points, large deflections and rotations are
gradually built [28]. The linear model accounts for the non-linear tension-bending coupling
effect, which is added in the analysis of rotating bodies, since the centrifugal force increases
their bending stiffness.

Uniform inflow conditions are considered at the rated wind speed of 11.4m/s, where the
deflections are expected to attain their maximum value and, in turn, the non-linear effects will
be more pronounced. The rotor is operated at fixed rotational speed of 12rpm and at zero pitch
angle (open loop operation, i.e. the controller is not active), corresponding to average operating
conditions at the rated wind speed. The results are presented in terms of time histories, after the
initial transients are damped.
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In fig. 4, the blade tip twist angle is presented. The three non-linear models (non-linear
DC, non-linear EB, non-linear SB) predict higher amplitudes of the twist angle variation as
compared with the linear model. This is linked to the bending-torsion coupling effect [28] which
is predicted only by the non-linear models. Although the twist angle amplitude as predicted by
the non-linear SB model is ∼ 20% reduced compared to the other two non-linear models, the
phase of the signal is in perfect agreement between the three of them. Moreover, the non-linear
models result to an increase of the twist angle mean value (∼ 0.4o for the non-linear SB model
and ∼ 0.25o for the other two non-linear models) compared to the linear model (∼ 0.1o).

The increase in the amplitude of the twist angle affects the flapwise deflection (fig. 5) through
the corresponding change in the effective angle of attack. So, in fig. 5, the three non-linear mod-
els depict a phase shift of the flapwise deflection signal compared to the linear model, following
the phase of the torsion angle. Moreover, the non-linear DC and non-linear EB models predict
the same amplitude of the flapwise deflection variation, although the non-linear DC model re-
sults to a slightly reduced mean value compared to the non-linear EB model. The non-linear SB
model shows reduced amplitude of the variation (∼ 25%) compared to the other two non-linear
models, and slightly reduced compared to the linear model. The flapwise deflection mean value
predicted by the non-linear SB model is identical to this of the linear modeling.

In fig. 6, the blade tip edgewise deflections are presented. As expected, the agreement be-
tween the four models is good, since the edgewise direction of the blade is stiff compared to
the flapwise one, and, the corresponding loads are driven just by the gravity. In fig. 7, the blade
tip extension is presented. The linear model predicts a positive extension due to the centrifugal
force, while, the three non-linear models consistently predict the virtual axial shortening of the
blade due to the bending.

Regarding the loads, the non-linear models predict considerably higher amplitude of the
blade root torsion moment due to the bending-torsion coupling, as seen in fig. 8. The linear
model results to an almost constant torsion moment, independent of the azimuth position of the
blade. Its mean value is reduced about 40% compared to all the non-linear beam models, which
predict almost the same mean values of the torsion moment. The amplitude of the variation
is identical for the non-linear DC and non-linear EB models, while, the non-linear SB model
predicts reduced amplitude (∼ 30%).

In similar with the flapwise deflections (fig. 5), the amplitude of the flapwise bending mo-
ment at the blade root (fig. 9) is clearly affected by the increase in the amplitude of the twist
angle (fig. 4). This is depicted in the results of all the non-linear models. Specifically, the non-
linear DC model predicts a slightly increased amplitude of the variation (∼ 5%) compared to
the non-linear EB model, while, the other models follow with ∼ 20% reduced amplitude for the
non-linear SB model and ∼ 70% reduced amplitude for the linear one, compared to the non-
linear DC model. The mean value of the flapwise moment is almost the same for the non-linear
DC, the non-linear EB and the linear model, while, the non-linear SB model predicts slightly
increased mean value. A good agreement between the three non-linear models is obtained in
the phase of the signal (which again follows the phase of the twist angle variation).
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Fig. 4: Time history of the tip twist angle.
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Fig. 5: Time history of the tip flapwise displacement.
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Fig. 6: Time history of the tip edgewise displacement.
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Fig. 7: Time history of the tip extension.
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Fig. 8: Time history of the root pitching moment.
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Fig. 9: Time history of the root flapwise bending moment
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5 CONCLUDING REMARKS

A Total Lagrangian degenerate-continuum based Timoshenko beam approach was presented.
The important features are that there is no constraint in the magnitude of displacements and
rotations and that the beam model may be easily extended to a general curved beam. The
main kinematic assumption is that the cross-sectional plane remains planar and rigid during
deformation, although warping can be included in the formulation.

The present beam approach was implemented in the multi-body hydro-servo-aeroelastic tool
hGAST. The stiffness of the beam is derived by retaining all the geometrical non-linear terms
from the Green strain tensor, while, the beam inertia is taken into account using the initial
configuration. The aeroelastic analysis of the three-bladed rotor of the 5MW NREL reference
wind turbine was performed. The numerical results compare four modelings, the present beam
approach, the 2nd order Euler-Bernoulli, the sub-body and the linear one, to assure the validity
of the present formulation. The comparisons show that the present formulation works well,
while the non-linear coupling effects compare well with the 2nd order Euler-Bernoulli beam
theory model. The basic outcome from the analyses is that the geometrical non-linearity is
significant w.r.t. the torsion-bending coupling terms and this is shown mainly in the torsional
response, which is the basic factor for the determination of the aerodynamic loading.
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[26] A. Ibrahimbegocić, F. Frey, I. Koz̆ar, Computational aspects of vector-like parametriza-
tion of three-dimensional finite rotations, International Journal for Numerical Methods in
Engineering, 38, 3653-3673, 1995.

[27] J. C. Simo, L. Vu-Quoc, On the dynamics in space of rods undergoing large motions - A
geometrically exact approach, Computer Methods in Applied Mechanics and Engineering,
66, 125-161, 1988.

[28] D. I. Manolas, V. A. Riziotis, S. G. Voutsinas, Assessing the importance of geometric
nonlinear effects in the prediction of wind turbine blade loads, Journal of Computational
and Nonlinear Dynamics, 20(4), ASME, 2015.

4502



ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

DYNAMICS OF WIND TURBINE BLADES USING A
GEOMETRICALLY-EXACT BEAM FORMULATION

Celso Jaco Faccio Júnior1, Alfredo Gay Neto1

1Polytechnic School at University of São Paulo
Av. Prof. Almeida Prado tv. 2, n. 83

celsojf@gmail.com, alfredo.gay@usp.br

Keywords: Wind Turbine, Blade, Beam, Finite Element Method.

Abstract. On wind energy context, the blades of horizontal axes wind turbines have, in their
majority, a closed multicellular thin-walled cross section, which varies along the blade length
due to aerodynamic requirements. If one wants to analyze the structural behavior of such
blades, a dynamic model is necessary. Such models are desirable, since it is important the de-
velopment of lighter and more flexible wind turbine designs. The desirable results of the models
include evaluating the possible large deflections along time, the internal loads along the blade
length and natural frequencies experimented by the structure. Moreover, one can address the
magnitude and frequency of the reactions lying at the top of the turbine tower structure, due to
the action of the blades. In order to model the blades with a small number of degrees of free-
dom, geometrically-exact beam elements are employed. The equivalent properties to be input
in the model, however, are not straightforward to be obtained. This is one of the goals of the
present work. A pre-processor was developed to evaluate the cross sections properties of a wind
turbine blade. It calculates all the necessary input data to represent the blade as an equivalent
beam and, generates an input file with data of the model to be solved in the geometrically-exact
GIRAFFE dynamic simulator. Since dealing with multicellular thin-walled cross section, it is
important to evaluate the centroid, the barycenter, the shear center, the inertia properties, and
the equivalent specific mass. All these properties may vary along the blade length. It is possible
to manipulate the blade profile, changing the number of cells, thickness, materials involved,
shape of the external shell and webs positioning. The developed pre-processor, together with
the dynamic simulator, can be used to predict large displacements in a dynamic simulation of
wind turbines.
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1 INTRODUCTION

The idea of using the kinetic energy provided from wind is not new. There are registers of
windmills dated even from medieval times. However, the current increase for energy demand,
has made of the wind energy one of the most important renewable energy resources. One of the
issues raised during the last years is the structural design that best fits on the role of extracting
the kinetic energy from wind. Although many innovative designs are being proposed, the most
common still used is the horizontal axis wind turbine (HAWT).

HAWT are structures which usually are made by some slender bodies, composed mainly
by a foundation, a tower, a nacelle a rotorhub and blades. It comes that HAWT have been
presenting good results on energy production. Although many issues, such as the local wind
flow may affect an HAWT, it has been seen that the energy production is directly associated
with the diameter of the rotor and the design of the blades. As expected, a large rotor diameter
produces more energy. For example, a HAWT 41 m rotor diameter may produce 600 kW, while
a 66 m rotor may produce up to 1500 kW (Hau, 2013). Unlikely the rotor diameter, there is no
straightforward relation between the blades airfoil design and the energy production. In fact,
the relation between the shape of the blade and the energy production is much more complex
and plays a major role, since it is the structure responsible for extracting the wind energy. The
blade shape is influenced by aspects such as:

• Rotor diameter;

• Aerodynamic loads;

• Gravitational loads;

• Fluid structure interaction;

• Others.

An accurate modeling of those aspects should result in a structure able not just to resist to
internal and external forces, but also that has the best use of the materials and gives the mini-
mum maintenance. It follows that modern blade of HAWT’s are becoming more slender, more
flexible and composite made. All of those questions lead to a huge complexity when modeling
and simulating HAWT. These models should be able to handle dynamics, nonlinearities and
instability.

Deal with all the variables that compose the problem on a high-hierarchy context (e.g.: finite
elements solids) may result on non-practical solution time and on hard to evaluate inputs and
outputs. On the other hand, beam-like modeling presents, generally, fast solution time and
easier to handle inputs and outputs. Although beam-like models present some simplifications,
a huge amount of works proves that they are very representative and still useful.

Despite of the inherent simplifications, there are different beams theories that may apply,
accordingly to the problem to be solved. Depending on the slenderness and on the cross section
characteristics, one may choose to represent the structure using the Bernoulli-Euler beam, the
Timoshenko beam, the Vlasov’s beam (when warping plays a role), among other theories - refer
to (Gere and Timoshenko, 1997), (Timoshenko and Goodier, 1951) and (Vlasov, 1961) for the
classical theories here referenced.

4504



Celso Jaco Faccio Junior, Alfredo Gay Neto

1.1 The geometrically-exact beam model

When presenting the distinct beam theories, always one has a kinematic assumption regard-
ing the behavior of the beam cross-sections. The Bernoulli-Euler beam theory is known as the
classic beam theory. Their main assumption is that the beam cross-section moves as a rigid
body and that it keeps orthogonal to the beam axis. On the Timoshenko beam theory the beam
cross-section has rotation degrees of freedom around the beam axis, leading to distortion due
to shear. The Timoshenko-Vlasov theory has the non-uniform Vlasov torsion in addition to
the Timoshenko beam theory hypothesis. Therefore, it is necessary to introduce the concept of
bimoment and bishear as a consequence of the non-uniform torsion of the beam.

The geometrically-exact beam theory may consider Bernoulli-Euler, Timoshenko or more
elaborated kinematic assumptions of the cross-section. The main feature of such model is that
the cross-section movement may present finite rotations and large translations in space. We here
mention some works, basis of current developments: the first developments on this theory were
presented on Simo (1985), Simo and Vu Quoc (1991) and Pimenta and Yojo (1993). Although
the rotation tensors were expressed by Yojo (1993) using the Euler parameters, the development
using Rodrigues parameters were after presented on Pimenta and Campello (2001).

The geometrically-exact beam theory plays a very important role on high-nonlinear engineer-
ing structures, such as offshore risers and slender wind turbines. A geometrically-exact model
for static offshore risers for oil exploitation was presented by Gay Neto et al. (2014a), which
was used to study the riser stability under torsion by Gay Neto and Martins (2013), Gay Neto
et al. (2014b) and Wriggers et al. (2015). On these models, the contact between the riser and
the seabed is considered, and in some cases a rolling beam to flat surface contact model is used,
as presented by Gay Neto et al. (2014a).

x2

x1

x3

Figure 1: Beam axis notation.

Although all the complexity involved on the development of the geometrically-exact beam
formulation, a linear constitutive equation regarding the cross section of a warping-free beam
element is given by:

σ =Dε, (1)

where σ is a vector that collects the generalized stresses (internal loads) of the beam and is
defined as:
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σ =


N1

N2

N3

M1

M2

M3

 , (2)

where N1, N2 and N3 are the components of the internal force and M1, M2 and M3 are the
components of the internal moment. The variable ε is a vector that collects the generalized
strains of the beam and is defined as

ε =


η1
η2
η3
κ1
κ2
κ3

 , (3)

andD is the constitutive matrix of the beam as follows

D =


GA 0 0 0 0 G(Ss

1 − S1)
0 GA 0 0 0 G(−Ss

2 + S2)
0 0 EA ES1 −ES2 0
0 0 ES1 EI11 −EI12 0
0 0 −ES2 −EI12 EI22 0

G(Ss
1 − S1) G(−Ss

2 + S2) 0 0 0 GIt

 , (4)

where E is the material Young Modulus, G is the material Shear Modulus, A is the beam cross-
section area, S is the first order moment of inertia, I is the second order moment of inertia, It
is the torsion stiffness and Ss

1 and Ss
2 are given by:

Ss
1 = A(g2 − s2) (5)

Ss
2 = A(g1 − s1), (6)

where the (g1, g2) are cross-section centroid coordinates and (s1, s2) are the shear center co-
ordinates. The subscript numbers indicate from which axis the property is calculated and the
12 subscript is used to refer to the product of inertia. Figure 2 presents a generic beam section
located at an arbitrary pointO, the centroid g in green and the shear center s in red.

1.2 Wind Turbine Blade Cross-Section Profiles

As commented in Section 1, HAWT blades design may be very complex due to all the re-
quirements that it should satisfy such as the dynamic loads, the materials involved, the manu-
facturing process and others. Due to all of these needs it is very common to have blades with
varying cross sections along their length. This solution permits each blade section to be de-
signed according to their specific requirements. It is also very common the usage of two webs,
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O 
g (g1,g2) 

x1 

x2 

s (s1,s2) 

Figure 2: Beam cross-section.

in order to improve the mechanical properties of the cross section. A typical HAWT blade pro-
file is presented in Figure 3, where one may observe an outer shell in black color and two webs
in red color.

Figure 3: Typical HAWT blade profile.

The first profiles used on HAWT blades were designed by the Nation Advisory Committee
for Aeronautics (NACA). The results, however, were not as expected. It was proved then that
an aeronautical profile is not necessarily the best profile for an HAWT (Burton et al., 2011).

The early developments of profiles for specific use on HAWT began with a partner work with
the National Renewable Energy Laboratory (NREL) and Tangler and Somers (1995). This work
produced some families of profiles for specific stall-regulated, variable pitch and variable-rpm
wind turbines. Some of the NREL profiles information is available on their website (https:
//wind.nrel.gov/airfoils/). Other families of airfoils designed for HAWT are the
Risø airfoils family (Fugslang and Bak, 2004) and the Delft airfoils family (Timmer and van
Rooij, 2003).

1.3 Shear Center and Shear Stresses on Thin-Walled Beams

As presented on subsection 1.1, a necessary property to evaluate the constitutive matrix D
is the shear center of the beam cross-section. The shear center is a specific point in the cross
section where shear forces may be applied, producing no twist. Although this simple definition,
the distribution of the shear stresses may be very complex regarding the material of the cross
section, thickness considerations and the number of cells. More definitions about the shear
center are found in works such as Pilkey (2002) and Fung (1993). The shear center referred to
an arbitrary originO may be defined, assuming the known shear stresses distribution q = q̂(A)
from an applied shear force magnitude V , with components V1 and V2, in the cross-section
plane. It is also possible to calculate each coordinate of the shear center separately. To calculate

4507

https://wind.nrel.gov/airfoils/
https://wind.nrel.gov/airfoils/


Celso Jaco Faccio Junior, Alfredo Gay Neto

the s1 it is necessary to apply a shear force parallel to the axis 2 such as V2. An analogue process
also applies for the other beam section axis. Therefore, the shear center coordinates are:

s1 =
1

V2

∫
A

|r × q|dA (7)

s2 =
1

V1

∫
A

|r × q|dA, (8)

where r measures the distance between the originO to the s element. Figure 4 presents a beam
section, an arbitrary originO and a thin-walled element s of the beam.

O x1 

x2 

s

Figure 4: Beam thin-walled section and element s.

Thus, the major difficult arises from finding the shear stress distribution on the cross sec-
tion of the beam. On this work, in order to reduce the complexity on finding the shear stress
distribution, the thin-walled hypothesis is adopted. Furthermore, on this work the shear center
follows the definition presented on Megson (2014) and expands it to a multicellular profile. The
hypothesis adopted is that since the force is applied at the shear center each cell should have
zero twist.

The thin-walled approach allows the consideration of constant stresses across the thickness
of the beam. Other simplifications of this hypothesis is that squares and higher order terms
of t are neglected on the section properties calculations and that the section is represented by
its mid-line. Regarding the thin-walled assumption, according to Megson (2005) there is no
exactly definition for a thin-walled structure, however it is pointed that the approximations are
reasonably accurate for section which the ratio

tmax

b
< 0.1 (9)

where tmax is the maximum thickness of the section and b is a typical cross section dimension.

1.4 Torsion on Thin-Walled Beams

The last missing parameter for the constitutive matrix D presented on Subsection 1.1 is the
torsion stiffness It. The torsion stiffness may be interpreted as the axial rotation stiffness of a
given beam cross-section to an applied pure torque. It is defined as
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GIt =
T

θ
(10)

where T is the applied torque, G is the Shear Modulus and θ is the rate of twist of the section.
Moreover, in order to calculate the torsion stiffness it is necessary to evaluate the rate of twist
response to an applied torque. It is possible to prove, by equilibrium conditions, that a closed
section thin-walled beam subject to a pure torque T , without axial constraints, has solution only
for a constant shear flow q. On the case of a constant shear flow the rate of twist per unit length
may be expressed as

θ =
q

2GA

∮
ds

t
, (11)

where A is the enclosed area of the cell, ds is the differential thin-walled element and t is the
thickness of the s element. Therefore, the torsion stiffness calculation of a single thin-walled
profile may be summarized as:

1. Define a convenient rate of twist θ.

2. Calculate the equivalent shear flow q.

3. Calculate the torsion equivalent T .

4. Use equation 10 to calculate the torsion stiffness GIt.

Although this simple process for the calculation of a single cell torsion stiffness, the multi-
cellular torsion stiffness calculations are quite more complex. This work follows the the multi-
cellular torsion stiffness definition presented by Shama (2010). The main hypothesis presented
on this work is that each cell has the same twist per unit length. This condition generates one
additional equation for each cell and makes the problem determined.

2 WIND TURBINE FEM MODEL

2.1 GIRAFFE

The GIRRAFE platform represents an advance on a previous finite element code named
”FemCable”, which main motivation was a finite element simulation of offshore structures,
more specifically, the simulation of oil explotation risers. More information about the FemCable
and their use is available at Gay Neto (2012).

The Generic Interface Readily Accessible for Finite Elements (GIRAFFE) is a generic plat-
form for finite element analysis specially suitable for structural problems which may include
translational and rotational DOFs and possible multiphysics applications (Gay Neto, 2015). Al-
though GIRAFFE is not a fully generic platform, it was developed using the C++ object oriented
language in a such way that new formulations, including translational and rotational DOFs, may
be easily incorporated.

Furthermore, one of the finite element formulations available in GIRAFFE is the geometrically-
exact beam presented on the subsection 1.1 which makes it a properly tool for the analysis of a
highly nonlinear problem such as an HAWT dynamic simulation.
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2.2 Wind Turbine Program

Although the simplicity of an beam-like model, some difficulties may arise to the assembly
of an HAWT blade model. Some of the possible difficulties are:

• Varying airfoil shape along the blade.

• Calculation of geometric properties such as torsion stiffness and shear center of each
cross-section.

The varying airfoil shape nature of an HAWT blade maybe an important issue since it has
a huge variation along the length due to all structural requirements. Furthermore, the common
use of webs on the cross section of HAWT blades may turn the calculation of the geometric
properties such as the torsion stiffness and the shear center into a very laborious task.

In order to help on these issues it was developed a C# program with a GUI that helps on the
geometric description of the blades for an HAWT. The program uses the thin-walled approxi-
mation and defines the profile by a set of points and the webs by the index of these points. The
program interface is presented on Figure 5.

Figure 5: Wind Turbine GUI.

Some of the main features of the program are:

• Instant calculation of airfoil profile geometric properties.

• Permits the creation of a group of airfoil profiles.

• Permits the definition of any point as the beam axis.

• Exports all the necessary information to build the constitutive matrix for the GIRAFFE
geometrically-exact beam formulation.
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2.3 FEM Model Description

The aim of this subsection is to describe, in detail, all the characteristics that defines the wind
turbine finite element model in analysis. This work presents dynamic simulation of the blades
of an HAWT based on gravitational loads and a prescribed rotation on the central node of the
wind turbine.

Some characteristics of the finite element model are:

• 3 equally-spaced wind turbine blades;

• 9 m length blade;

• 30 equally-spaced nodes per blade, total of 91 nodes;

• 3-node beam elements, total of 45 beam elements;

• 100 s simulation with integration time step of 0.01 s;

• 9.81 m/s2 gravity acceleration to the negative z direction;

• Newmark integration method as presented on Ibrahimbegovic and Mikdad (1998) and
Ibrahimbegovic and Mamouri (2000) with β = 0.28 and γ = 0.54.

In order to have a more realistic model, the local axis of each blade section is rotated on
its containing plane. Table 1 summarizes the local vectors e1 and e3 that defines the local
orientation of the cross-sections.

Blade e1 e3
1 (0, 0.9701, 0.2425) (1, 0, 0)
2 (−0.2100, 0.9701,−0.1212) (−0.5, 0, 0.8660)
3 (0.2100, 0.9701,−0.1212) (−0.5, 0,−0.8660)

Table 1: Local axis orientation of the blades.

The material properties of the blades has the following characteristics

• Young Modulus E = 200 GPa;

• Poisson coefficient ν = 0.3;

• Density ρ = 7500 kg/m3;

Although there is a known airfoil profile variation along the length of an HAWT blade, this
work describes the blade using 4 profiles. The selection of these profiles is based on the NREL
typical blades profiles described on Burton et al. (2011) for an stall regulated HAWT with
diameter from 10 to 20 m. All the airfoil information used is available at the NREL website
(http://wind.nrel.gov/airfoils/). The adopted thickness of the outer shell and
the webs is 0.05 m. Table 2 summarize the profiles used on each beam section from 1 to 15 of
the blade starting from the central node to the tip of the blade.
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Beam Airfoil Profile
1-2 16 point discrete circle (0.5 diameter)
3-7 NREL S807

8-12 NREL S805A
13-15 NREL S806A

Table 2: HAWT blade profiles.

Figure 6 presents the profiles used along the blade’s length, their webs in red and the beam
axis in green. The horizontal axis of of the profiles on Figure 6 represent the beam axis 1 and
the vertical axis represent the beam axis 2 (see notation in Figure 1).

In order to evaluate the dynamics of the wind turbine structure some elements of the model
will be monitored. In other words, these elements will have their displacements and reactions
monitored on every time step of the simulation. On this work the monitored elements will be:

• Central wind turbine node (node 1);

• Tip node of each blade (nodes 31, 61 and 91);

• Beam element number 12;
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Figure 6: Profiles used to describe the HAWT blade.

Figure 7 presents the wind turbine model and the monitors highlighted in red. The horizontal
axis represents the x global orientation while the vertical axis represents the z global orientation
and node 1 is at (0, 0, 0).
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Figure 7: Wind turbine finite element model with monitors in red.

3 RESULTS

As previously described this dynamic simulation is induced by a prescribed rotation on the
central node of the wind turbine. Although this simplification, the node 1 prescribed rotation
expressed in radians is divided in 4 steps, described as follows:

• Step 1 - The rotation velocity increases from t = 0s to t = 20s according to the function
φ1(t) = 15 sin(0.025πt− π/2) + 15;

• Step 2 - The rotation is velocity is maintained constant from t = 20s to t = 60s, φ2 =
15 + 1.2(t− 20);

• Step 3 - The rotation decreases from t = 60s to t = 80s according to the function
φ3(t) = 15 sin(0.025πt− π/2) + 63;

• Step 4 - The rotation ceases from t = 80s to t = 100s, φ4 = 78

Figure 8 presents a graphic that describes the node 1 rotation versus time. It is possible to
note on this graph all the steps described previously.

On wind turbines the rotation of the blades yields on very important dynamic loads for the
tower. These loads have huge influence on the structural behavior of an HAWT since they
are crucial to evaluate aspects such as peak loads and fatigue. On this simulation the interface
between the tower and the blades is monitored on node 1. Although the gravitational and inertial
loads acting on the xz plane that contains the wind turbine blades, the axial peak forces occurred
on the y direction. Figure 9 presents the y forces along time for node 1.

These peak loads may come from the way that the geometry of the blades was described. It
follows that the centroid of each blade may not lie on the xz plane and that the axis of each
blade is twisted on the plane of its cross section.
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Figure 8: Node 1 rotation versus time.
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Figure 9: Force y along time.

It is also important to note that the peak loads occurs on step 1 and 3 that are the ones where
there is change on the rotation velocity. This result is very interesting since the energy of a
wind turbine comes from the motion resistance of the turbine inside the nacelle. Moreover,
large force peaks may come from a severe acceleration/breaking operation applied to the rotor.

Figure 10 presents the z forces along time. It is seen on this graphic that the loads on the z
direction are very relevant and include a non-null average, due to the structure self-weight. On
steps 3 and 4 when the turbine is at a constant rotation speed and the turbine is stopped, the z
direction force is the main force acting on node 1.
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Figure 10: Force z along time.

Figure 11 presents the node 1 x forces along time. This graphic shows that although there are
peak loads on steps 1 and 3, the highest peak loads are on step 4. The peak loads experienced
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Figure 11: Force x along time.

on step 4 occurs due to the excitation of the blade tip and is considerably relevant.
One way to confirm the cyclic behavior of the dynamic model is by the analysis of the nodal

displacement of each blade’s tip. Figure 12 presents the x direction displacement of the nodes
31, 61 and 91.
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Figure 12: Displacement x along time of nodes 31, 61 and 91.

It is possible to note from this graphic that the turbine behaves as expected regarding the
cyclic position of the coordinates. It is also interesting to note the node displacements when the
turbine stops. Figure 13 presents a graphic of the x displacement of node 91 from t = 80s to
t = 100s. On this graphic is seen that the node position still oscillating, however tending to stop.
This behavior was expected since there is an inherent numerical dumping on the simulation
process due to the choice of Newmark integration parameters.
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Figure 13: X displacement of node 91 from t = 80 to t = 100.
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Figure 14: Y displacement of node 91 .

It is also interesting to see that the tip of the blade has out of plane displacements that appears
from the geometry issues already discussed. Figure 14 presents the graphic that shows the out
of plane displacement y of node 91. It seen that even when the wind turbine is at constant speed
(step 2), there is an out of plane oscillating behavior of the node.
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Figure 15: Bending moment around element axis 2 along time.

Despite of all the possible analysis of an HAWT dynamic simulation, the main usual goal
is to evaluate the generalized stresses (tension, bending moment and torsion moment) acting
on a specific part of the blade. On this simulation the part of interest on the blade structure is
represented by the beam element 12. The bending moments around element axis 2 along time
is shown on Figure 15. On this graphic is possible to note that the peak loads occurs when there
is change on the rotation velocity of the wind turbine. It is also interesting to note that this
bending moment still oscillating even when the rotation speed is constant (step 2).
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Figure 16: Bending moment around element axis 1 along time.
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Figure 17: Torsion moment along time.

The bending moment around element axis 1 along time is presented on Figure 16. As other
results, the peak loads are on steps 1 and 3. However the oscillating moment on step 4 indicates
that the beam is still in movement.

Finally, the torsion moments along time is presented on Figure 17. Despite of the peak loads
on steps 1 and 3, the torsion moments on step 4 are very relevant. Therefore, it is possible to
assume that the stopping process of an wind turbine should be soft enough to avoid the possible
high torsion moments on the blade.

4 CONCLUSION

The main conclusion of this work is that the GIRAFFE platform and the Wind Turbine pro-
gram are very promising tools to evaluate the dynamics of an HAWT. The GIRAFFE geometrically-
exact beam regarding the possibility of any cross section and beam axis position turns it into
a very suitable tool for this kind of simulation. Furthermore, the user-friendliness of the Wind
Turbine Program on handling defined cross sections and geometric properties calculations on a
GUI is a very helpful tool for HAWT simulations.

Although on this simulation the aerodynamic loads were not included, it was seen that the
variation of speed of an HAWT induces very relevant internal loads on the structure.

4.1 Future Works

Some of the possible advances regarding this work are:

• Verification of the thin-walled hypothesis;

• Verification of the shear center precision using shell elements;

• Verification of the torsion stiffness precision using shell elements;

• Inclusion of the aerodynamic loads.
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Abstract. In this paper, an extended formula for the critical velocity of a uniformly moving 

load is derived. It is assumed that the load is traversing an infinite beam supported by finite 

depth foundation under plane strain condition. The critical velocity is extracted by parametric 

analysis applied on the analytical solution of the steady state deflection beam shape. Results 

obtained are compared with the previously published results of this author, where simplified 

assumptions were implemented on the shear contribution. It is confirmed that there is an in-

teraction between the beam and the foundation and thus the critical velocity is dependent on 

the mass ratio defined as the square root of the fraction of the foundation mass to the beam 

mass. Several options for damping are also analysed and results of displacement fields are 

compared with finite element simulations. In order to obtain steady-state form of the finite 

element results, the enhanced moving widow method is implemented in software ANSYS.  
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1 INTRODUCTION 

The response of rails to moving loads is important research topic of high-speed railway 

transportation. If simple geometries of the track and subsoil are considered, it can be assumed 

that the track structure acts as a continuously supported beam resting on a uniform layer of 

springs. Two distinct interpretations are used, either the beam is modelled by the rail and the 

layer of springs represents the underlying remainder of the track structure, or an equivalent 

beam encompassing the whole track is used and the spring layer stands for the subgrade or 

foundation. The stiffness of the spring layer along the length of the beam is named as the 

track modulus and defines Winkler’s model, which is often referred to as a “one-parameter 

model”. Such a simplified model was traditionally used to estimate the critical velocity of 

moving trains.  

The first solution of steady-state dynamic response of an infinite beam on elastic founda-

tion traversed by moving load was presented by Timoshenko [1]. In [2], the moving coordi-

nate system is introduced to convert the governing equation to ordinary differential equation 

that can be solved by the Fourier integral transform. In [3], the concept of the dynamic stiff-

ness matrix is implemented. Two semi-infinite beams are solved for and connected by conti-

nuity equations. Then the critical velocity can be determined as the velocity that ensures the 

nullity of the determinant of the dynamic stiffness matrix. This concept was extended to finite 

and infinite beams with sudden change in foundation stiffness [4]. 

If the beam is modelled as the rail, the classical formula, predicts very high critical velocity, 

giving impression that is unreachable by high-speed trains and consequently no attention was 

paid to this fact during expansions of high-speed railway network. Unfortunately, practical 

experience showed that the realistic critical velocity can be much lower [5] and should be re-

lated to the wave-velocity of propagation in the foundation. Therefore, in further investiga-

tions the spring layer was replaced by elastic half-space and the critical velocity was 

determined as the Rayleigh-wave velocity of propagation [6]. 

Nevertheless, it is important to release, that only finite active depth of the foundation soils 

should be included in the analysis. Under such assumption, it was shown in [7] that there is an 

interaction between the beam and the foundation. In [7] only simplified plane models of the 

foundation were used for analyses of finite and infinite beams, but it was confirmed that the 

critical velocity is not given either by the classical formula from [2] or by the lowest wave-

velocity of propagation in the foundation, but there is a smooth transition between these two 

extreme values governed by the mass ratio. For a low mass ratio, the critical velocity ap-

proaches the classical formula and for a higher mass ratio, it approaches the lowest wave-

velocity of propagation in the foundation. In this paper generalizations, in conformity with [8] 

are derived. It is proven that in such extension, the final results depend on the interface condi-

tion between the beam and the foundation.  

2 CRITICAL VELOCITY 

The critical velocity of the load traversing an infinite Euler-Bernoulli beam on an elastic 

foundation is given by the classical formula [2] 

 4
2

4
cr

kEI
v

m
  (1) 

where m  and EI  stand for the mass per unit length and the bending stiffness of the beam, 

respectively, and k  for the Winkler constant of the foundation. If the beam is modelled by the 

rail, then Eq. (1) predicts a critical velocity that is generally much higher than the one ob-
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served in reality. The main reason is related to the fact that there is no mass in the foundation 

and thus no wave propagation is possible. Several works have been published on this subject 

replacing the spring layer by an elastic half-space and concluding that the critical velocity cor-

responds to the Rayleigh-wave velocity of propagation, which is the slowest wave-velocity 

[6]. 

Nevertheless, better estimation should account for the active finite depth of the foundation, 

which can either be the actual depth at which a stiff substratum is located or a depth after 

which no appreciable soil deformations occur. Under simplified assumptions on a plane mod-

el under plane strain conditions, it was derived in [7] that the critical velocity is governed by 

the mass ratio according to approximately 

  
2

2
1

2 s
cr cr s sV v

M


 


 
   

 
 (2) 

where 
crV  is the new value of the critical velocity, 

s  is the shear ratio defined as /s s crv v 

with 
sv  being the shear-wave velocity, and M is the mass ratio defined as the square root of 

the foundation mass to the beam mass. Thus, for a low mass ratio, the critical velocity ap-

proaches the classical value 
crv  and for a higher mass ratio, it approaches the velocity of 

propagation of shear waves in the foundation. In this simplified model horizontal displace-

ments were neglected and therefore the Rayleigh velocity could not be detected. Due to the 

proximity of these two velocities defined by the approximate formula  

 
0.87 1.12

1

R

s

v

v









 (3) 

where   is the soil Poisson ratio and 
Rv  is the Rayleigh-wave velocity, this does not have to 

be considered a disadvantage.  

In this paper new results are derived in conformity with [8]. Deductions from [8] are sim-

plified by considering only a constant moving force, thus the analytical solution can be re-

stricted only to its steady-state part. Final results of the critical velocity, which can then be 

extracted by parametric analyses, are dependent on the interface condition between the beam 

and the foundation. However, there is only a small difference between the three possibilities: 

the previously published approximate formula (2) and results according to two options for the 

interface condition. Namely, results with the interface condition in form of zero horizontal 

displacement give values very similar to Eq. (2) and results obeying the zero shear stress con-

dition have the asymptotic tendency to slightly lower velocity, the velocity of propagation of 

Rayleigh waves. 

Deflection shapes and adequacy of the interface condition are analysed by finite element 

results. In order to obtain steady-state form of the finite element results, the enhanced moving 

widow method is implemented in software ANSYS as described in [9]. 

3 THE MODEL AND ITS SOLUTION  

It is assumed that the load is traversing an infinite beam supported by a foundation of finite 

depth H, as depicted on Figure 1. It is further assumed that: (i) the beam obeys linear elastic 

Euler-Bernoulli theory; (ii) the beam vertical displacement is measured from the equilibrium 

deflection caused by the beam weight; (iii) the foundation is represented by a finite strip of 

width b under plane strain condition; (iv) the foundation soil is linear elastic homogeneous 

material. 
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Figure 1: Infinite beam on an elastic foundation of finite depth subjected to a moving load. 

The governing equations for determination of the beam deflection shape and displacement 

fields in the foundation soil are given by 

     ,tt        u u u  (4) 

          , , ,, , , ,xxxx b t ttEIw x t c w x t mw x t p x t P x vt      (5) 

where  ,x zu uu  is the displacement field in the foundation,  ,   are Lame’s constants of 

the soil,   is the soil density and t is the time. Overall this paper, derivatives will be desig-

nated by the corresponding variable symbol in the subscript position, preceded by a comma. 

Moreover,   is the gradient and   is the Laplace operators applied on spatial variables x, z. 

Further, P is the moving load, v is its velocity, p is the foundation pressure and 
bc  is the vis-

cous damping coefficient of the beam. The unknown beam deflection  ,w x t , spatial coordi-

nate z and P are assumed positive when acting downward. Spatial coordinate x is positive to 

the right, the load travels from the left to the right and finally,   is the Dirac delta function. 

Damping in the soil can be assumed as hysteretic 

  0 1 i h    ,  0 1 i h     (6) 

or viscous 

  0 ,1 s tc    ,  0 ,1 s tc     (7) 

where 
h  is the loss factor of the soil and 

sc  is the coefficient of the viscous damping in the 

soil. 

The solution method follows these steps: firstly, the governing equations for the soil layer 

are expressed in terms of displacement potentials. Then all equations are simplified by intro-

duction of moving coordinates and leaving only the terms that contribute to the steady-state 

part of the solution. After that several dimensionless variables are introduced to facilitate the 

equations manipulation and posterior results analyses. The main solution method is the single 

Fourier transform, which allows analytical solution of all displacement and stress components 

in the frequency domain. The inverse transform is accomplished numerically. Dimensionless 

variables allow identifying results for all possible input data combinations. Except for the 

damping values, which define viscous damping in the beam, viscous and hysteretic damping 

in the foundation, results depend only on the mass ratio M, the velocity ratio / crv v  , the 

shear ratio 
s  and soil Poisson’s ratio  .  

P
v

H

Rigid base
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4 THE ENHANCED MOVING WINDOW METHOD 

Finite element confirmation of steady-state analytical predictions in infinite media is gen-

erally a complicated issue because it is difficult to choose the correct (i) size of the model, (ii) 

size of the finite elements; (iii) type of the boundary conditions and (iv) a method that would 

allow deflection fields stabilization. The model itself must be large enough in order to elimi-

nate satisfactorily transient effects due to a sudden placement of the load on the structure and, 

on the other hand, small enough to be computationally accessible. The edges of the finite ele-

ments must be sufficiently small in order to represent adequately propagating waves. The 

boundary conditions are even more delicate issue. The dynamic analysis of solids of infinite 

dimensions with discrete methods such as finite elements calls for the use of special boundary 

that are normally referred to as absorbing, non-reflecting or transmitting boundaries. The pur-

pose of these special boundaries is to prevent wave reflections at the edges of the mathemati-

cal models used, which, by necessity, must remain finite in size. A number of these 

boundaries have been proposed in the past with recourse to various mathematical or physical 

principles. Unfortunately, none of the transmitting boundaries can fully prevent all possible 

reflections under the full range of possible incident angles. 

Some of the difficulties named above could be overcome by implementation of the moving 

window method. In the moving window method the load is kept still, and the finite element 

model of the railway track moves in the direction opposing the originally assumed load 

movement. This can be achieved by several ways. Either the finite elements are altered in or-

der to implement the effect of the load velocity [10], or results are shifted against the load.  

A shift of results is impossible in commercial finite element software, because such an op-

eration is usually protected against inappropriate usage. Implementation of the enhanced mov-

ing window method in commercial finite element software ANSYS is described in [9]. The 

method is tested on one-, two- and three-dimensional models. It is shown that the steady-state 

response of an infinite structure can be obtained with sufficient accuracy, which significantly 

reduces the calculation time by reduction of both, the model size and the analysis time.  

When the model is large enough, periodic boundary conditions can be used on the front 

and rear faces of the model. Regarding the bottom face, other considerations must be taken. A 

reduction of the model depth by representative springs and viscous boundary is used here ac-

cording to [11]. These distributed elastic springs are defined as:  

 0 02
nk

H h

 



, 0

tk
H h





 (8) 

where 
nk  and 

tk  are spring stiffnesses in the normal and tangential directions, respectively 

and h is the depth that is modelled by finite elements. These elastic boundaries allows intro-

duction of absorbing boundaries, which help to stabilization of the results. 

5 NUMERICAL RESULTS  

Final results are shown in Figure 2 for shear ratio 0.5 and soil Poisson ratio 0.2. It is seen 

that results from [7] and new results with zero displacement interface condition are quite 

proximate, especially regarding the asymptotic value for higher mass ratio. When zero shear 

is admitted at the interface, than the asymptotic tendency directs to lower velocity. In such a 

case the ratio given by Eq. (2) indicates that this velocity is the Rayleigh-wave velocity of 

propagation. 

Deflection shapes were confirmed by the finite element results exploiting the enhanced 

moving window method. One case is shown in Figure 3. The case presented considers two 
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rails supported by soft foundation with input data summarized in Table 1. In the first part of 

Figure 3 finite element solution is compared to the analytical solution with zero horizontal 

displacement interface condition. It is seen that the coincidence is very good. The other part 

compares the analytical solutions for the two interface conditions. It can be observed that the 

zero shear condition allows for higher displacements. 

 

 

Figure 2: Critical velocity as a function of the mass ratio for shear ratio 0.5: previous estimate according to Eq. 

(2) (grey), solution with zero displacement interface condition (black dashed), solution with zero shear interface 

condition (black dotted). 

Property Value 

Beam bending stiffness EI  (MN·m
2
) 12.8 

Beam mass per unit length m  (kg·m
-1

) 120 

Soil Young’s modulus 
sE  (MN·m

-2
) 10 

Soil Poisson’s ratio   0.3 

Soil density   (kg·m
-3

) 1850 

Active depth H  (m) 12 

Moving force P  (kN) 200 

Velocity v  (m·s
-1

) 50 

Table 1: Numerical data used with a unit strip width of the soil. 

a) 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

V
el

o
ci

ty
 r

at
io

Mass ratio

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

-30 -20 -10 0 10 20 30

D
is

p
la

c
e
m

e
n
t 

[m
]

Distance from the force [m]

4525



Zuzana Dimitrovová 

b) 

Figure 3: Deflection shapes comparison: a) finite element solution (grey) and solution with zero displacement 

interface condition (black dotted); b) solution with zero shear interface condition (grey) and solution with zero 

displacement interface condition (black dotted). 

In addition, shear stress and horizontal displacement were extracted in the vertical cut be-

low the load from the finite element solution. It is seen that it is more adequate to assume zero 

horizontal displacement at the interface between the beam and the foundation. 

6 CONCLUSIONS  

In this contribution, the critical velocity of a uniformly moving load on a beam supported 

by a finite depth foundation was analysed. Generalizations of the method published in [7] 

were derived. The new approach follows developments in [8] but simplifies the analysis by 

admitting only a constant moving force. Analytical results for the deflection beam shape and 

displacement fields in the foundation are obtained by the Fourier transform. The inverse trans-

form is accomplished numerically. 

Final results of the critical velocity are then extracted by parametric analyses. It is con-

firmed that there is an interaction between the beam and the foundation, and thus there is a 

smooth transition between the classical value of the critical velocity and the lowest velocity of 

wave propagation in the foundation, depending on the assumptions adopted. However, the 

new results are dependent on the interface condition between the beam and the foundation. 

Only small differences occur between the three possibilities: the previously published results 

in [7] and results according to two options for the interface condition. Results with the inter-

face condition in form of zero horizontal displacement give values very similar to the ones 

published in [7] and results obeying the zero shear stress condition have the asymptotic ten-

dency to slightly lower velocity, the velocity of propagation of Rayleigh waves. 

Deflection shapes and adequacy of the interface condition were analysed by finite element 

results exploiting the enhanced moving widow method implemented in software ANSYS. It 

was confirmed that, if the model considers the beam axis coincident with the soil upper sur-

face, which is the common finite element approach, then it is more adequate to assume that 

the horizontal displacements are zero at the interface.  
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Abstract. The paper gives a critical review and new accomplishments of the displacement-

based zigzag theories for laminated composite and sandwich structures, with special 

emphasis to the underlying ideas, relative strengths and weaknesses. Some numerical results 

substantiate the conclusions.   
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1. INTRODUCTION 

Composite laminates and sandwich structures are characterized by high stiffness-to-weight 

and strength-to-weight ratios and by the possibility to be tailored according to the particular 

application. Sandwich structures exhibit further promising properties such as high-energy 

absorption, impact resistance, noise and vibration reduction, excellent damping behavior, [1, 

2]. Due to these appealing properties, in the last thirty years an increasing number of high-

performance and lightweight primary load-bearing structures in the aerospace, automotive, 

nuclear, naval and civil constructions, are comprised of relatively thick composite laminates 

and sandwich structures with one hundred or more layers. Such structures are inherently 

heterogeneous and anisotropic and may suffer unwanted failure due to transverse shearing and 

out-of-plane stretching.  

As failure predictions call for an accurate evaluation of the stress field within each layer of 

laminated composite and sandwich structures, affordable computational costs for these 

structures are the main concern. In order for the computational costs to be affordable, accurate 

computational models for multilayered composite and sandwich structures need to be 

independent of number of layers and of their micro-structure. 

Different approaches have been adopted to face these modeling challenges [3]. A first 

broad classification could be the following one: three-dimensional (3D) models and two-

dimensional (2D)  models. Example of 3D models can be found in [4,5,6,7,8,9]. The 

reduction of the 3D model to the 2D model rely generally on the use of the axiomatic 

approach, that is, on the a-priori assumed trough-the-thickness distribution of the primary 

variables. In the displacement-based approach [10,11],  the primary variables are generalized 

displacements (displacement, rotation, etc.);  in the mixed approach [12],  both generalized 

displacements and stresses (generally, out-of-plane stresses) are adopted as primary variables.  

Following [3], the 2D plate/shell models can be divided into Equivalent Single Layer 

(ESL) models (also known as Smeared Laminate models) and Layer-wise (LW) models 

according to the type of kinematics assumed. 

Equivalent Single Layer (ESL) (also known as Smeared Laminate) models are generally 

based on a smooth expansion (generally, a power series expansion) over the whole laminate 

thickness of the displacement field in terms of the thickness-wise co-ordinate. This means that 

the kinematics along the thickness is assumed to be at least C
1
-continuous and independent of 

the laminate lay-up. As a consequence, the multilayer structure is substituted with a plate/shell 

made by an equivalent single layer. While computationally not expensive, ESL models are 

generally not  accurate, especially when through-the-thickness distribution of strains and 

stresses are the main concern and the laminate is highly heterogeneous.  

Among the displacement-based ESL models, the most popular are the Classical Lamination 

Plate Theory (CLPT), based on the Kirchhoff’s plate theory [13] and the First-order Shear 

Deformation Theory (FSDT), based on the Mindlin’s and Reissner’s plate theories [14,15] . 

Both CLPT and FSDT make use of a linear expansion of the in-plane displacement. In 

addition to the weaknesses of the ESL models, it is well-know that FSDT needs ad hoc shear 

correction factors to yield accurate results [14,15,16,17,18]. As well-known, CLPT and FSDT 

perform relatively well in predicting global quantities, such as, transverse displacement, 

fundamental natural frequency and buckling load for thin and moderately thick laminates that 

have a relatively low degree of transverse heterogeneity; however, their accuracy diminishes 

rapidly when they are used to predict the displacement and stress fields in highly 

heterogeneous and/or thick composite and sandwich laminates [11,19,16,20,21]. Improved 

predictions can be obtained using higher order through-the-thickness expansions of the 

displacements and/or stresses [22]. Computationally efficient analytical models for beams, 
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plates and shells that account for transverse shear and thickness-stretch deformations have 

recently been advanced in [23,24,25]. Reviews on the ESL theories are given in  [26,27,28]. 

Contrary to the ESL models, Layer-wise (LW) models  [3,29,30,31,32,33,34,35,36] make 

a-priori assumptions on the distribution of the displacement and stress fields within each 

layer. Limiting the discussion to the displacement-based approach, LW  models postulates a 

C
0
-continuous kinematics, that is a distribution of displacements (first of all, in-plane 

displacements) continuous along the thickness with first derivative showing a jump at layer 

interfaces (the reason of this discontinuity will be explained hereinafter). According to [26], 

the LW models are further divided into (i) layer dependent models, wherein the number of 

kinematic variables increases with the number of layers; and (ii) layer independent models, 

wherein the number of variables remains constant and independent on the number of layers. 

Hereafter in this paper, the terminology Layer-wise (LW) models will be adopted only to 

indicate the layer dependent LW models, while the terminology Zigzag (ZZ) models will be 

adopted for the layer independent LW models.  

Layer dependent LW models [29,30,31,34] are generally very accurate but 

computationally costly; in these models the number of unknowns increases with the number 

of layers, as in 3D models. As we said, in order for the computational costs to be affordable 

(this is especially relevant for nonlinear and/or progressive failure analysis of thick laminates 

made up of hundreds of layers), computational models for multilayered composite and 

sandwich structures need to be independent of number of layers and of their micro-structure, 

while preserving the ability to take into account the distortion of cross-section typical in 

composite laminate and sandwich structures. 

From the above, we easily understand the strong interest for computational models 

allowing to take into account the layered nature of the composite laminates and sandwich 

structures, while preserving the affordable computational cost of the ESL models. 

To date, ZZ models seem  to be the best candidates to meet these requirements, 

[37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66

,67]. In fact, they attempt to combine the advantages of ESL and LW models. In the ZZ 

models (as in ESL models), the number of kinematic unknowns does not depend on the 

number of layers. The in-plane displacements combine the smooth (generally, polynomial) 

functions defined across the entire laminate thickness (linear [37,38,39,40,41,52,55,56,57] or 

higher-order polynomial, [42,43,44,45,46,51,53,58,59] with the piecewise linear (i.e., zigzag) 

distributions. The zigzag contributions enable a more realistic modeling of the in-plane cross-

sectional distortion in multilayered composites, giving rise to a computationally efficient 

theory for the modeling of relatively thick laminated composite and sandwich structures. The 

zigzag model predictions are often as accurate as those obtained by the computationally 

expensive LW and higher-order models. LW-based zigzag models have also been explored in 

[30,31].  

Extensions of the kinematics of the Di Sciuva’s First-order zigzag theory (linear zigzag 

model) include, among other: (i) extension to the linear  [41] and nonlinear [48] multilayered 

shell theory; (ii) general lamination lay-up [42,47,49]; (iii) satisfaction of the shear stress-free 

boundary conditions on the top and bottom surfaces [44,46,50]; (iv) polynomial expansion of 

the global part to any degree [47,49]; (v) extension to the dynamics, buckling   [16,47,49,48]; 

(vi) thermal effects [68],[69]; (vii) sublaminates approach [68,69,70,71,72,73,74]; (viii) 

inclusion of von Kármán geometrically nonlinear effects [16,48,49]; (ix) extension to the 

nonlinear theory of laminated composites with damaged interfaces [49,68,69,74,75,76]; (x) 

inclusion of the transverse normal strain and stress [74,77,78]; (xi) visco-elastic effects [79]; 

(xii) active control of beams, plates and shells [80]. 
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Averill [55] pointed out two drawbacks of the classical zigzag models, (1) the transverse 

shear stresses derived from the constitutive equations vanish erroneously along clamped 

boundaries, and that (2) C
1
-continuous finite element approximations are required for the 

transverse deflection variable leading to a type of approximation that is particularly 

undesirable for plate and shell finite elements. 

In an attempt to resolve the aforementioned drawbacks of the classical zigzag models, 

Tessler, Di Sciuva and Gherlone developed the Refined Zigzag Theory (RZT), 

[61,62,63,64,65,66,67] that makes use of a set of novel zigzag functions and uses FSDT as a 

baseline. The transverse shear stresses are allowed to be discontinuous along the ply 

interfaces; this relaxation of stress continuity permits more accurate predictions of all 

response quantities including the transverse shear stresses that provide accurate average 

values of the ply-level stresses. RZT overcomes the key drawbacks of the original zigzag 

theories, i.e., (1) transverse shear stresses and forces do not vanish erroneously along clamped 

edges, and (2) since the strains are defined in term of first derivatives of the kinematic 

variables, computationally efficient C
0
-continuous finite elements are readily formulated. The 

RZT has shown to be very accurate over a wide range of aspect ratios and material systems, 

including thick laminates with a high degree of transverse shear flexibility and heterogeneity 

[61,62,63,64,65,66,67].  

Another first-order zigzag theory largely used in the literature [53,58,81,82,83,84,85] is the 

Murakami’s zigzag theory [52], which shares with RZT the same kinematics, but different 

zigzag functions. As will be seen later, Murakami’s zigzag functions are basically of 

geometrical nature, in the sense that  the  jump in their thickness-wise derivative depends only 

on the thickness of each layer, when the same jump in the derivative of the RZT zigzag 

functions depends on the lay-up and on the transverse shear elastic compliance of the layers. 

In closing this introductory overview of the zigzag approaches for the analysis of 

laminated composite laminates and sandwich structures, it should be noted that they belong to 

the more general modern approaches, known either as Multi-scale or Global-local approaches 

[86,87,88,89,90,91,92], where the displacement field within each layeris represented as a 

superposition of a layer-wise field, defined over each layer, and a global field spanning the 

entire laminate. Thus, the governing equations exhibit explicit coupling between effects 

associated with different (global and local) length scales. This multi-scale representation 

allows the accuracy of layer-wise theories to be achieved at a reduced computational cost 

[88]. It also facilitates the use of highly refined kinematic descriptions in regions of critical 

interest with reduced-order descriptions elsewhere in the structure, and affords a straight-

forward means of transitioning between such descriptions. The distribution of available 

computational resources in this manner can improve both accuracy and efficiency, and can be 

carried out adaptively to maximize its potential benefits.  

Aim of this paper is to give a review of the first-order displacement-based zigzag theories 

for composite laminates and sandwich structures, with special emphasis to the underlying 

ideas, relative strengths and weaknesses. First, the basic ideas on which rests the first-order Di 

Sciuva’s zigzag theory are presented. This will serve as a starting point for introducing the 

main concern of the paper: a rewiev and comparison of the first-order Refined Zigzag Theory 

(RZT) and the first-order Murakami’s Zigzag theory. The paper ends with the presentation of 

some Numerical results and the Conclusions. 
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2. GEOMETRICAL PRELIMINARIES 

 

We consider a multi-layered plate of constant thickness   , built-up of a finite number N 

of linearly elastic anisotropic layers, each of them exhibiting different mechanical properties, 

see Figure 1. The layers are joined by N-1 interfaces and may be either perfectly bonded or 

have displacement jumps across the interface due to interfacial damage. The points of the 

plate are referred to a global orthogonal Cartesian co-ordinate system (x ,z), with   
         ) the reference plane of the plate and z the thickness-wise co-ordinate.  In the 

body of paper, Italic indices range from 1 to 3, Greek indices range from 1 to 2 and the 

summation convention on the repeated indices on a monomial expression is adopted. In 

general, superscript (k) placed in brackets on the right of any quantity identifies its affiliation 

to the layer k. The layer k has a constant thickness,      . The coordinates of the bottom and 

top faces and of the mid-surface of the kth layer are denoted by   
   

,   
   

 and   
   

, 

respectively. The interfacial coordinate between the kth and (k+1)th layers is denoted by     . 

    , so that         
   

   
     

  

 

       
 

Fig. 1-Geometry and layer numbering of the multilayered plate. 

 

For further convenience, we introduce non-dimensional local layer coordinates,  
   

, 

such that  
   

        , and k   … N,  

 

                           
   

 
 
   

   
   

 
    

 
   

   
   

 
       with   

   
      

   
   

   
 . 

 

The origin of this local layer coordinate is located   
   

abroad the coordinate system. 
 

3. CONTACT AND BOUNDARY CONDITIONS 

 

In order to understand the assumed kinematics of zigzag models for multilayered plates, 

we recall some important issues from 3D theory of elasticity. From 3D theory of elasticity it 

is well known that displacements and stresses must satisfy interlayer continuity conditions at 

the interface between two perfectly bonded layers and boundary conditions on the top and 

bottom surfaces.  
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3.1 Interlayer continuity or contact conditions 

 

(i) continuity of the displacement field (geometric) 

 

  
        

       
          

                                               (1) 

 

(ii) continuity of the transverse shear and normal stresses and of the gradient of the 

transverse normal stress (static) 

 

   
        

        
          

                                             (2) 

 

     
        

          
          

                                             (3) 

 

where   
         is the displacement component along the             co-ordinate axis, 

and     are the components of the stress tensor. 

3.2 Boundary conditions on the top (T) and bottom (B) surfaces 

If the bottom and top surfaces of the laminate are loaded only by the pressure     
          

and     
         , then on the bottom (B) and top (T) surfaces of the laminate the following 

boundary conditions apply: 

(i) On the transverse shear stresses (free-transverse shear stresses boundary 

conditions) 

   
   
     

   
     

   
     

   
                                            (4) 

 

(ii) On the transverse normal stress and its gradient 

 

   
        

        
         ;            

        
        

                        (5) 

                

 

     
        

          
        

                                               (6) 

i.e., the transverse normal stresses must be equals to the applied pressure and  the transverse 

shear stresses and the gradient of the transverse normal stress must vanishe. 

4. EQUIVALENT SINGLE LAYER (ESL) THEORIES 

As we said, Equivalent Single Layer (ESL) theories are generally based on a smooth 

expansion (generally, a power series expansion) over the whole laminate thickness of the 

displacement field in terms of the thickness-wise co-ordinate.  

As a general expression for the expansion, we can assume the following one [41], 
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                                         …                    (7) 

 

where          stands for any set of a-priori chosen linearly independent functions. Generally, 

they are assumed to be a power series of z,  

 

                                                                              (8) 

 

or their orthogonal corresponding Legendre’s polynomial of first kind. They are known as 

polynomial theories. 

This means that the kinematics along the thickness is assumed to be at least C
1
-continuous 

and independent of the laminate lay-up. As a consequence, the multilayer structure is 

substituted with a plate/shell made by an equivalent single layer.  

Almost all the polynomials theories assume 

 

                                                                        (9) 

 

In addition, many theories make the further assumption,              In order to 

emphasize the order of expansion adopted for the in-plane displacement (i=1,2) and the 

transverse displacement (i=3), the following notation is adopted,         order polynomial 

theory.  

 

4.1 ESL First-order Shear Deformation Theory-FSDT 

 

This theory assumes the following kinematics [3,14,15],  

 

           
           

                            

           
                                                 

                      (10) 

         

Following the previous terminology, this ESL First-order shear deformation theory is a 
       order polynomial theory. 

 

4.2 ESL Third-order Shear Deformation Theory-TSDT 

 

Most of the third-order shear deformation theories start by  assuming the following 

kinematics [10] 

 

           
           

            
            

                            

           
                                                                                                     

       (11) 

         

Following the previous terminology, this ESL Third-order shear deformation theory is a 
       order polynomial theory. 

Requiring the transverse shear stresses to vanish on the top and bottom surfaces of the plate 

(    ), the number of generalized in-plane displacements reduces from 4 to 2. For 

example, one  well-known TSDT is Reddy’s TSDT [3,22]. In this theory, for the in-plane 

displacements the following expression is assumed 
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                                    (12) 

 

where 

   
   
     

 

   
    

          
   
                                       (13) 

 

In Eq.(13) and in the following,       
    

   
  

 

While computationally not expensive, ESL models are generally not  accurate, especially 

when through-the-thickness distribution of strains and stresses are the main concern and the 

laminate is highly heterogeneous.  

5. FIRST-ORDER DI SCIUVA’s ZIGZAG THEORY-DSCZZT 

Guided by these constraints, the majority of zigzag theories attempt to model accurately 

the transverse shear deformability and cross-section warping by satisfying the continuity 

constraints on the displacement field (Fig.2a) and on the inter-laminar shear stresses (Fig.2b). 

In other words, the displacement field is C
0
 -continuous across the plate thickness, as well as 

the transverse shear stresses. 

 

     

(a)                                                              (b) 

 

Fig. 2 - Thickness-wise distribution of the (a) in-plane displacements and (b) transverse shear 

stresses. Both the distributions are of the zigzag type, that is, their derivative along z is 

discontinuous at the interface (zigzag behavior). 

As most of the plate theories assume constant transverse displacement in the z-direction 

and zero transverse normal stress, the contact conditions on the transverse normal stress and 

its gradient (Eqs. 5-6) are a-priori satisfied, thus reducing the interface static contact 

conditions to the transverse shear stresses (Eq. 4). For material possessing a plane of elastic 

symmetry parallel to the reference plane of the plate, Hooke’s law allows to write these 

contact conditions in terms of transverse shear elastic coefficients and transverse shear strains. 

   
     

   
        

        
       

   
          

                                        (14) 

 

where                  are the transverse shear components of the strain tensor and              

and    
     

the transverse shear components of the elasticity tensor.  

From Eq. (14) we easily deduce that in general the contact conditions on the transverse 

shear stresses cannot be met when the transverse shear elastic coefficients vary between two 

adjacent layers. Usually, the thickness-wise distribution of the elastic coefficients in 
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laminated plates are piecewise constant functions of the thickness coordinate. Then, if the 

through-the-thickness distribution of the in-plane displacements are assumed to be smooth 

functions, i.e., at least  C
1
 -continuous functions of the z-coordinate, the transverse shear 

stress will have jumps across the interfaces proportional to the jumps in the transverse shear 

elastic coefficients. We conclude that in order to be the transverse shear stresses  

continuous at the interfaces,  the transverse shear strains must have a jump at the 

interfaces.   
      By taking into account the expression of the transverse shear strain, we conclude that the  

gradient of the in-plane displacements must be discontinuous at the interfaces, that is the 

in-plane displacements need to be      continuous, that is,     
        

     

    
          

          Figure 4 shows graphically this. 

       

       (a)                                              (b)                                               (c) 

Fig. 3 - Typical thickness-wise distributions of (a) transverse shear elastic stiffness 

coefficients, (b) transverse shear strains, and (c) transverse shear stresses, in a laminated 

structures if the in-plane displacements are assumed to be at least  C
1
 -continuous functions of 

the z-coordinate. 

                      
(a)                                             (b)                                         (c) 

Fig. 4 - (a) C
0
 -continuous in-plane displacements (zig-zag pattern); (b) Jumps in the 

transverse shear strains; (c) C
0
 -continuous transverse shear stresses (zig-zag pattern). 

Zigzag theories seek to meet this requirements by adopting a kinematics having a number 

of generalized displacements as the corresponding ESL theory [16,37,38,40]. To do this, the 

in-plane displacement field within each layer is taken to be composed of the superposition of 
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global and local contributions, while the transverse displacement is assumed to be constant 

over the thickness.  

 

  
            

            
                 

            
                               (15) 

 

In Eq.(15)    
         gives the global kinematics (see, Eq. 7) and    

         the local 

enrichment.   

In order to introduce the underlying ideas of the zigzag theories without excessive 

mathematical formalism, I will refer to the First-order zigzag plate theory. 

In this zigzag theory, the Global kinematics is the same as that of the ESL First-Order 

Shear Deformation Theory (Eq. 10), that is, a linear expansion of the in-plane displacements 

(Figure 5(a)) [16,37,38,40]. 

 

 

             

(a)                                                                      (b) 

Fig. 5 - (a) Global ESL FSDT and (b) local enrichment in the Di Sciuva’s FSDZZT. 

 

The local enrichment, known as zigzag function,  is given by the expression   

 

   
            

               
      

                                           (16) 

 

where   
   

       k               d d             and 

 

 
               

          
         

  

 

is the Heaviside unit function. 

Eq. (16) is the expansion for the local enrichment used to model multilayered plates by 

enforcing the continuity of the transverse shear stresses at the interfaces (    contribution), 
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as is evident from the analytical expression and from the graphs shown in figure 5(b) for the 

case of a three-layer laminate.  

It is easy to convince that the zigzag local enrichment, 

(a) is a continuous piece-wise linear function of the z coordinate (it satisfy a-priori the 

interface continuity conditions on the displacements); 

(b) has piece-wise constant first derivative;  

(c) adds N-1 unknown generalized displacements    for each coordinate directions; 

(d) is zero on the first layer. 

 

Fig. 6 - Global ESL FSDT (             ), local zigzag enrichment   (              )  and  resulting 

kinematics (             ) of Di Sciuva’s FSDZZT. 

 

Figure 6 shows the global contribution (ESL FSDT), the zigzag function relative to the 

contrivìbution of the first interface (see, Fig. 5(b)) and the resulting kinematics adopted in 

First-order Di Sciuva’s zigzag theory-FSDZZT, [16,37,38,40]. 

Since this zigzag function satisfy a-priori the interface continuity conditions on the 

displacements, it adds N-1 unknown generalized displacements for each co-ordinate 

directions. By taking into account that there are N-1 interface continuity conditions on the 

transverse shear stresses to be satisfied, it follows that, by satisfying these contact conditions, 

we can compute the N-1 unknowns generalized displacements    in terms of the global 

generalized displacements. 

For example, for laminates with layers of orthotropic materials, the result is the following 

one,[16,37,38,40] 

 

   
            

           
                

              
                            (17) 

 

where 

       
                                                                           (18) 

 

17 
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is the shear strain at reference plane and the zigzag function has the following very simple 

expression  

 

     
   

       
            

      
                                              (19) 

 

where 

  
     

   
     

   
                

      
                                            (20) 

 

are the interface continuity constants. They are functions only of the transverse shear elastic 

coefficients.  

Note that this first-order zigzag plate theory as five unknowns, as in ESL FSDT! This is 

the strength of the Di Sciuva’s  zigzag theory. On the other hand, because of the fulfilment of 

the continuity conditions the model estimates constant transverse shear stresses across the 

plate thickness. Thus, it is not able to fulfill the conditions of zero transverse shear stresses on 

the top and bottom plate surfaces. This is the weakness of this zigzag theory.   

 

6. FIRST-ORDER REFINED ZIGZAG THEORY-RZT 

 
As anticipated in the Introduction, in addition to the advantages highlighted above, and to 

the following ones (i) no shear correction factors are required, (ii) very accurate distribution 

of the transverse shear stresses are obtained from the integration of the local equilibrium 

equations, (iii) finite elements based on the First-order Shear Deformation Zigzag Theory are 

free from  shear locking effects, the Di Sciuva’s First-order Shear Deformation Zigzag Theory 

also suffers some deficiencies due to the fulfillment of  the contact conditions of the 

transverse shear stresses. These weaknesses can be summarized as follows, (i) constant 

transverse shear stresses distribution along the plate thickness, (ii) classical clamped boundary 

conditions give zero transverse shear strains and, thus, zero transverse shear stresses at the 

clamped edges, when these last are obtained from the constitutive equations, (iii) due to the 

presence of     (see, Eqs. (17) and (18)) in the in-plane displacement field,    shape 

functions are required, in formulating beam, plate and shell finite elements. FSDT requires    

shape functions.  

The first and third deficiency are specific of the First-order Shear Deformation Zigzag 

theory, i.e., higher-order zigzag theories does not suffer of these drawbacks. The second apply 

in the general case. The third deficiency, concerning the need for    finite elements, has been 

addressed and solved in [93] in the framework of the Third-order Shear Deformation Zigzag 

theory. 

To overcome the first two drawbacks, Tessler, Di Sciuva and Gherlone in a series of recent 

papers [61,62,63,64,65] advanced a new version of the first-order zigzag theory,  named  

Refined Zigzag Theory-RZT. 

Concerning the kinematics, the starting point is the same as in the Di Sciuva’s first-order 

shear deformation zigzag plate theory, that is,  Eq.(15), as the same is the global contribution, 

Eq. (17a) (that of the first-order shear deformation theory) and the local enrichment, that is, a 

piecewise linear zigzag function, whose starting mathematical expression is 

       
         

        
           

        
                            (20) 
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where       
        and      

       stand for the displacements on the bottom and top surfaces of the 

layer k, and 

    
   
  

 

 
    

              
   
  

 

 
    

               
              (21) 

 

are linear Lagrange’s interpolation polynomials. 

So, the zigzag enrichment adds 2N unknowns generalized displacements for each co-ordinate 

directions,    
         and     

                
Let us summarize what has been achieved. For each co-ordinate directions, we have 2N 

unknown generalized displacements and 2(N-1) constraints (interface continuity conditions). 

This result in 2 free generalized displacements. In RZT this freedom has been exploited by 

adding the condition that the local contribution is zero on the top and bottom surfaces of the 

whole plate, as depicted in figure 7 for a three-layer laminate. 

 

                                             

Fig. 7 – Refined Zigzag function for a three-layer laminate. 

 

Where is the difference? The difference is in the expression of the refined zigzag function, 
          

In an attempt to overcome the drawbacks of Di Sciuva’s first-order zigzag theory, i.e.,  

transverse shear stresses are constant over the whole thickness of the plate, transverse shear 

stresses vanish at clamped end and     shape functions are required in the finite element 

formulation, in the Refined zigzag  theory the continuity conditions on the transverse shear 

stresses are partially relaxed.   

Generalizing the previous results of the Di Sciuva’s first-order zigzag theory, FSDZZT,  

Eq. (17b), RZT starts by writing the local kinematics in the following way 
 

    
              

                                                          (22) 
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where   
    is the amplitude of the zigzag function. Note that it is independent of the other 

kinematic variables, then in RZT the number of independent generalized kinematic variables 

is greater than that of the ESL FSDT; specifically, they are 4 for the beam and 7 for the plate 

and shell.  

As a consequence, transverse shear stress reads (orthotropic material) 

 

   
       

        
   

         
 

 
   
     

         
          

                      (23) 

with   given by Eq. (18). Now we introduce the auxiliary transverse shear strain measure 

[61],   

              
                                                    (24) 

Note that when  

                
                                                 (25) 

and RZT reduces to  Di Sciuva’s FSDZZT.  

Substituting Eq. (24) into Eq. (23), yields  

   
    

 

 
   
           

 

 
   
     

          
         

                          (26) 

As anticipated, instead to require the transverse shear stress to be continuous at the interfaces, 

in the Refined Zigzag Theory we require to be continuous only the underlined term in Eq. 

(26), that is  

   
     

          
                                                     (27) 

Satisfying the interface static continuity condition, Eq. (2), yields  

       
       

   

   
                                                     (28) 

As before, there are two free additional conditions to uniquely determine the zigzag function. 

As we said, in the RZT the following two additional conditions 

     
             

                                                       (29) 

are imposed (see, Fig. 7). As a consequence,  we obtain 

  

   
  

 

   
     

 

  
    

  
   

   
     

 
                                           (30) 

Note that the slope of zigzag function depends on the lay-up and on the transverse shear 

elastic compliance of the layers. 
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7. FIRST-ORDER MURAKAMI’S ZIGZAG THEORY-MZT 

A first-order zigag theory formally identical to the first-order ZZT has been advanced by 

Murakami [52].   

Murakami’s zigzag theory (MZT) shares with the RZT the same global displacement field, 

Eq. (18a) and a formally identical local enrichment, Eq. (22), the difference being in the 

expression of the zigzag functions. Following Eq. (22), we write the local contribution as 

 

   
   
           

        
                                                  (31) 

where 

       
   

    
    

   

 
          

 
            

   
        

       
   

 
                           (32) 

So, RZT and MZT have the same number of independent kinematic variables. From the 

above, it is evident that Murakami’s zigzag function depends only on the thickness of each 

layer; it is independent on the mechanical properties of  layers. Figure 8 gives plots of the 

global contribution (ESL FSDT), the zigzag function and the resulting kinematics, for RZT 

and MZT, for a three-layer symmetric laminate. 

                                                    

    (a)                                                                            (b) 

Fig. 8 – Kinematics of (a) RZT and (b) MZT.  (            )  global contribution (ESL FSDT),   

               (            )  local contribution (zigzag function), (           )  resulting kinematics, for  a          

three-layer symmetric laminate. 
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8. NUMERICAL RESULTS 

In order to substantiate the accuracy of the first-order zigzag theory and show the relative 

performances of RZT and MZT, in this Section some numerical results are quoted. Further 

comparisons can be found in [84,85,94,[95]. 

All the numerical results presented in this Section refer to the bending, under transverse bi-

sinusoidal loading, and natural frequencies of symmetric (0/90/core/90/0) square sandwich 

plates of side a. The faces are comprised of two-layer regular cross-ply laminate (0/90) having 

thickness equal to 0.1 times the total thickness of the sandwich plate.  

    Table 1 gives the mechanical properties of unidirectional lamina with respect to the 

corresponding mechanical properties of core, the geometry and the boundary conditions of the 

sandwich plates under investigation. 

 

   
   

  
   

    
   

  
   

        
   

 
   

  Boundary 

conditions 

Sandwich (1)             6 8 Simply supported  

Sandwich (2)                10 8 Fully clamped 

 

Table 1- Geometry, material data and boundary conditions of the sandwich plates. 

 

 

8.1 Bending of sandwich plate  

 

Figures 8 and 9 refer to sandwich plate (1) under transverse sinusoidal loading 

 

   
             

   

 
   

   

 
                                                   (33) 

Numerical results as estimated by the 3D theory of elasticity [4], [5], the ESL FSDT, the 

RZT, and the MZT are compared. 

Figure 9 shows estimates for the normalized transverse deflection at the center of the plate 

as a function of the span-to-thickness ratio a/2h and figure 10 shows the normalized in-plane 

displacements and transverse shear stresses. With the exception of 3D, the transverse shear 

stresses are evaluated by integration of the 3D local equilibrium equations. Concerning shear 

correction factors, as noted in the Introduction, no shear correction factors have been used in 

RZT and MZT, i.e.,   
    

   . In the ESL FSDT, in addition to the case,   
    

   , ad 

hoc shear correction factors are used,    
           

        . They have been evaluated 

following the approach proposed by Ferreira [98]. It is of interest to note that these values are 

very different from those usually adopted in ESL FSDT,   
 

 
     

  

  
   Moreover, in order to 

enhance some weakness of the MZT, the unidirectional orthotropic lamina is assumed to have 

equal transverse shear stiffness in the principal orthotropic directions 1 and 2, that is,     

       
It is concluded that,  (i) RZT is very accurate in predicting global (transverse displacement) 

and local (thickness-wise distribution) of displacement and normal in-plane stresses (not 

shown in figure). Even when considering the integrated shear stresses, clearly emerges the 

greater accuracy of the predictions made by RZT than MZT and ESL FSDT. Moreover, these 

results show that (i) ESL FSDT improves its accuracy if a suitable shear correction factor is 
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adopted (fig. 9);  (ii) MZT predicts the same deflections of the FSDT model with unitary 

shear correction factors (fig. 9).  

A point of interest is the behavior of MZT for this specific sandiwch construction. As we 

said, the orthotropic unidirectional lamina constituting the faces has        . This means 

that the faces are free of zigzag effect (that is, the actual in-plane displacement doesn’t change 

slope in the faces), while the zigzag effect will be present at the interface between core and 

face. This behavior is very well caught  by RZT theory, while MZT completely fails (fig. 10, 

top). What happens is this. Having to vanish the zigzag effect in the case of two adjacent 

layers having the same transverse shear stiffness  (this is the case for the faces in our 

sandwich), since the MZZ functions are independent of the transverse shear stiffness of the 

layers (see, Eq. (32)), in order to vanish the zigzag effect in the faces, the amplitude of the 

zigzag function, i.e.,   
    in Eq. (31), should be zero. This implies zero contribution of the 

zigzag effect on the whole thickness and, as a consequence, the same trend of the in-plane 

displacements provided by ESL FSDT (Fig. 10, top). This deficiency also affects the 

distribution prediction of transverse shear stresses (Fig. 10, bottom). 

 

8.2 Natural frequencies of square sandwich plate 

Aim of this investigation is to assess the reliability of the RZT changing the problem under 

investigation. Here we investigate the natural frequencies of sandwich plate (2), which is 

different from sandwich plate (1) for material characteristics of the faces and core, aspect ratio 

and boundary conditions (table 1). Note that  in this sandwich the core is stiffer than sandwich 

(1) and the plate is fully clamped. As a consequence, the ad hoc shear correction factors are 

changed. They are    
           

        . 

Figure 11 show the estimated free undamped frequencies for the lowest six modes (m is 

the number of half waves in the     direction and n that in the     direction).  As for the 

bending problem of sandwich (1), RZT provides estimates very close to the 3D elasticity for 

all modes. FSDT with ad-hoc shear correction factors is also accurate, even if its accuracy 

decreases for higher modes (fifth and sixth), indicating the need to introduce other values of 

the correction factors as the modal number increases. 

 

9. CONCLUDING REMARKS 

 

Aim of this paper is to give a review of the first-order displacement-based zigzag theories 

for composite laminates and sandwich structures, with special emphasis to the underlying 

ideas, relative strengths and weaknesses. To do this, the Di Sciuva’s first-order zigzag theory, 

the first-order Refined Zigzag Theory, and the Murakami’s first-order zigzag theory have 

been reviewed and numerically compared. It is shown that RZT and Murakami’s Zigzag 

theory share the same kinematics, but different zigzag functions. Specifically, unlike RZT 

zigzag functions, Murakami’s zigzag functions are basically of geometrical type, in the sense 

that the jump in their thickness-wise derivative depends only on the thickness of each layer 

(see, Eq. (32)), when the same jump in the derivative of the RZT zigzag functions depends on 

the lay-up and on the transverse shear elastic compliance of the layers (see, Eq. (28)). This 

makes Murakami’s zigzag functions approach generally unreliable, especially when the 

laminate does not present a repetitive or periodic lay-up, as pointed out by the same 

Murakami [52] and recently also by Gherlone [84], Iurlaro et al [85], [94] and Iurlaro [95]. In 

extreme cases, like that of sandwich taken used for the numerical assessment presented in this 

paper, the Murakami’s zigzag approach completely fails, in the sense that  Murakami’s zigzag 
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functions do not give any contribution and Murakami's approach provides the same incorrect 

results of FSDT with unitary shear correction factors. On the contrary, also for this sandwich 

plates, RZT provides a very accurate estimates. 

From the present numerical investigation and others available in the open literature [61, 

62,63,64,65,66,67], it seems reasonable to draw the conclusion that RZT is very accurate in 

predicting global (transverse displacement) and local (thickness-wise distribution) of 

displacement and normal in-plane stresses.  

By taking into account the additional strength of RZT, mainly, the possibility to develop 

   beam [97,98,99,100,101,102,103], plate and shell finite elements, [104,105,106,107,108], 

like ESL FSDT, in my opinion RZT represents, among the first-order zigzag theories, the best 

compromise between computational efficiency and numerical accuracy.   

 

 

 
Fig. 9 - Normalized transverse deflection at the center of the plate as a function of the span-

to-thickness ratio a/2h. 
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Fig. 10 – Normalized in-plane and transverse shear stresses. With the exception of 3D, the 

transverse shear stresses are evaluated by integration the 3D local equilibrium equations. 

.  

 

                  Fig. 11 – Natural frequencies for sandwich plate (2). 
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Abstract. General approach for constructing the computer models of the multibody system dy-
namics with unilateral constraints and friction is under consideration. Base dynamical abstrac-
tions, classes, are described which provide a model building using object-oriented paradigm for
the design of dynamic objects virtual prototypes.

Contact tracking block is the most important one of any algorithm for simulation the me-
chanical contact. This block provides permanent computations of the contact point/patch where
the process of bodies mechanical interaction takes place. A general formulation of contact in
algebraic and/or differential forms is under analysis.

The omni directional wheel dynamical testbench is under construction then. This model
is built in a way such that the wheel disc equipped by rollers along its rim keeps its vertical
orientation permanently. Such an arrangement of the virtual testbench provides indeed the
simulation of the wheel motion like it is a part of any virtual omni vehicle.

Using the omni wheel permanent vertical orientation we are able to build up an efficient
algorithm for contact tracking between the roller and the floor. The case of so-called angled
(being preliminarily rotated) rollers is also included. The angle of roller inclination to the
wheel plane is possible to be varied, as a parameter of the dynamical problem, in frame of wide
range of its values. This approach is a natural generalization of its previous version which was
implemented for the case of zero angle of the roller prerotation.
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1 INTRODUCTION

A construct of the omni vehicle dynamical model has been presented in [1], see also pa-
pers [2, 3]. Concept of an omni wheel was proposed in [4]. Simplified model for mounting
of roller on the wheel disk has been considered there: the roller axis of symmetry assumed to
belong to the disk, or equivalently an angle of inclination, denote it byψ, for the roller axis to
the wheel plane is equal to zero.

In engineering applications nevertheless one may encounter frequently a situation withψ >
0. We proposed in [1] fast algorithm for tracking a contact provided the omni wheel keeps
vertical orientation of its plane (in frame of the whole vehicle construct). Thus actual is a task
for building up the contact tracking algorithm also for the case ofψ > 0. This task has been
completed in this paper. To reach this goal we accept the working model of a virtual testbench
consisting of one wheel equipped by rollers along its rim. One can see easily this simplification
has mostly methodical nature and does not prevent us to integrate all the construct back into the
whole vehicle having generally several omni wheels already analyzed previously [1].

2 GENERAL DESCRIPTION OF THE MULTIBODY DYNAMICS MODEL
ARCHITECTURE

2.1 Object-oriented concept

First of all, in frame of the general approach let us build up the multibody system (MBS)
dynamical model using object-oriented paradigm with Modelica language [5]. Consider the
MBS consisting ofm+1 bodiesB0, . . . , Bm. Represent it as a setB = {B0, . . . , Bm}. HereB0

assumed to be a base body. We supposeB0 to be connected with an inertial frame of reference,
or to have a known motion with respect to the inertial frame of reference. For example one can
imagine the base body as a rotating platform, or as a vehicle performing its motion according
to a given law. For definiteness and simplicity we suppose in the following text that all state
variables describing the rigid bodies motion always refer to one fixed inertial coordinate system
connected to the base body by default.

Some bodies of the MBS assumed connected by mechanical constraints. Suppose all con-
straints compose the setC = {C1, . . . , Cn}. We include in our considerations constraints of the
following types: holonomic/nonholonomic, scleronomic/rheonomic, bilateral/unilateral.

Thus one can uniquely represent a structure of the MBS via a undirected graphG = (B, C, I).
HereI ⊂ C×B is an incidence relation setting in a correspondence the vertex incident to every
edgeCi ∈ C of the graph. According to physical reasons it is easy to see that for any mechanical
constraintCi there exist exactly two bodiesBk, Bl ∈ B connected by this constraint.

It is clear that consideration of the graphG does not provide a structural information suffi-
cient for the MBS dynamics description. Indeed, in addition to the force interaction represented
usually by wrenches between bodiesBk, Bl through the constraintCi there exist kinematic con-
ditions specific for different kinds of constraints. Wrenches themselves can be represented in
turn by constraint forces and constraint torques couples. These forces and couples are connected
by virtue of Newton’s third law of dynamics.

Thus if the system of ODEs for translatory-rotary motion can be associated with the object of
a model corresponding to rigid body, then the system of the algebraic equations can be naturally
associated with the object of a model corresponding to constraint. Note that according to above
consideration the set of algebraic equations comprises relations for constraint wrenches, and
kinematic relations depending on the certain type of constraints.

Thus all the “population” of any MBS model is reduced to objects of two classes:RigidBody
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(objectsB0, . . . , Bm), Constraint(objectsC1, . . . , Cn). According to this approach simulation
of the whole system behavior reduces to permanent information interaction between the objects
of two considered types. Within the frame of Newton’s laws of dynamics one can construct the
MBS as a communicative network for this interaction. In this case the objects of bodies “feel”
the action of other ones through corresponding objects of constraints.

Physical interactions are conducted in models due to objects splitted also in two classes of
ports: WrenchPort,KinematicPort. The first one is to be used to transfer wrench. In addition,
WrenchPorthas to be used for transferring the information about current location of the point
constraint force acts upon.

In our idealized model the force interaction between bodies supposed exactly at a geometric
point. Its coordinates are fed outside constraint object throughWrenchPortpermanently in time.

Now it is possible to describe an architecture of information interactions within the particular
constraintCi corresponding to an individual edge of graphG, see Figure 1.

Figure1: Architecture of constraint

KinematicPortis to be used to transfer the data of rigid body kinematics: configuration (po-
sition of center of mass, orientation), velocity (velocity of the center of mass, angular rate), and
acceleration (acceleration of the center of mass, angular acceleration) containing in particular
information about twist. When getting force information through portsW1, . . . , Ws from the
incident objects of classConstraintthe object of classRigidBodysimultaneously generates, due
to an integrator, kinematic information being fed outside through the portK. On the other hand
every object of classConstraintgets kinematic data from the objects corresponding to bodies
connected by the constraint under consideration through its two “input” portsKA, KB. Simul-
taneously using the system of algebraic equations this object generates information concerning
wrenches, and transmits the data to “output” portsWA, WB for the further transfer to objects of
bodies under constraint.

In base classRigidBodydynamics of rigid body is described here by means of Newton’s
differential equations for the body mass center, and by Euler’s differential equations for the
rotary motion. Note that to be able to have an invariant description of the rotary motion one can
use an excellent tool: quaternion algebraH. In this case we “lift” the configuration manifold
from SO(3) to S3 ⊂ H and then implement dynamics of rotation in flat spaceH ∼= R4 taking
into account thatS3 is an invariant manifold of the rotary dynamics redefined onH. In this way
we have only one flat chartH for the underlying due to double covering configuration manifold
SO(3), and need not in any special choices of the configuration angles or anything like that.

The double coveringS3 → SO(3), q 7→ T mentioned implemented inside theRigidBody
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classby the known formula

T =
1

|q|2 ·



q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)
2 (q0q3 + q1q2) q2

0 − q2
1 + q2

2 − q2
3 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3


 ,

whereq0, q1, q2, q3 are the Euclidean coordinates of the quaternionq and|q| is its Euclidean
norm. The rotation matrixT is fed outside the object through theKinematicPortpermanently
in time. The Euler equations are constructed using quaternion algebra in a way described in [6].

Note that according to our technology of the constraint construction two connected bodies
are identified by convention with the lettersA andB fixed for each body. All kinematic and
dynamic variables and parameters concerned one of the bodies are equipped with the corre-
sponding letter as a subscript.

All objects of the classConstraintmust have classes-inheritors as subtypes of a correspond-
ing base class. According to Newton’s third law this superclass must contain the equations of
the form

FA + FB = 0, MA + MB = 0. (1)

in its behavioral section. Here arraysFA, MA andFB, MB represent constraint forces and
torques “acting in directions” of bodiesA andB correspondingly. Kinematic equations for
different types of constraints are to be added to Eqs. (1) in different classes-inheritors corre-
sponding to these particular types of constraints.

2.2 Example of a joint constraint

ClassJoint plays an important auxiliary role in the future model of an omni wheel we will
build. Joint is a model derived from the base classConstraint. Remind [7] that in order to make
a complete definition of the constraint object behavior for the case of rigid bodies one has to
compose a system of twelve algebraic equations with respect to (w. r. t.) twelve coordinates of
vectorsFA, MA, FB, MB constituting the wrenches acting upon the connected bodies.

First six equations (1) always present in the base modelConstraintdue to Newton’s third
law. For definiteness suppose these six equations are used to express six components ofFB,
MB depending onFA, MA. Thus six components ofFA, MA remain unknown. To determine
them each constraint of rigid bodies need in six additional independent algebraic equations.
These equations can include components of force and torque directly, or be derived from the
kinematic relations corresponding to specific type of the constraint.

In the case of the joint constraint being investigated here let us represent the motion of the
bodyB as a compound one consisting of the bodyA convective motion w. r. t. an inertial frame
of reference, and a relative motion w. r. t. the bodyA. An absolute motion is one of the bodyB
w. r. t. the inertial system.

Define the joint constraint with help of the following parameters: (a) a unit vectornA defin-
ing in the bodyA an axis of the joint; (b) a vectorrA fixed in the bodyA and defining a point
which constantly stays on the axis of the joint; (c) a vectorrB fixed in the bodyB and defining
a point which also constantly stays on the axis of the joint. The main task of the base joint class
is to keep always in coincidence the geometric axes fixed in each of the bodies.

First of all one has to compute the radii vectors of the points fixed in the bodies w. r. t. inertial
system

Rα = rOα + Tαrα (α = A,B),
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where[7] rOα is the position of theα-th body center of mass,Tα is its current matrix of rotation.
The joint axis has the following components

nAi = TAnA

in the inertial frame of reference. According to the equation for relative velocity for the marked
point of the bodyB defined by the positionRB we have

vBa = vBe + vBr, vBa = vOB
+ [ωB, TBrB] , vBe = vOA

+ [ωA,RB − rOA
] , (2)

wherevBa, vBe, vBr are an absolute, convective, and relative velocities of the bodyB marked
point,ωA, ωB are the bodies angular velocities.

Furthermore, according to the computational experience of the dynamical problems simu-
lation the precompiler work is more regular if the kinematic equations are expressed directly
through accelerations. Indeed, otherwise the compiler tries to perform the formal differentiation
of equations for the velocities when reducing an index of the total DAE system. Frequently this
leads to the problems either in time of translation or when running the model.

Thus using the known Euler formulae for the rigid body kinematics and the Coriolis theorem
we obtain an equations for the relative linear acceleration in the form

aBa = aOB
+ [εB, TBrB] + [ωB, [ωB, TBrB]] , aBa = aBe + 2 [ωA,vBr] + aBr,

aBe = aOA
+ [εA,RB − rOA

] + [ωA, [ωA,RB − rOA
]] , aBr = µnAi,

(3)
whereaBa, aBe, aBr are an absolute, convective, and relative accelerations of the bodyB
marked point,εA, εB are the bodies angular accelerations,vBr is a relative velocity of the
bodyB marked point,ωA, ωB are the bodies angular velocities.

We also need in an analytic representation of the conditions that the only projections of the
bodies angular velocities and accelerations having a differences are ones onto the joint axis.
Corresponding equations have the form

ωB = ωA + ωr, εB = εA + [ωA,ωr] + εr, εr = λnAi, (4)

whereωr, εr are the relative angular velocities and accelerations.
Besides the kinematic scalarsµ, λ we will need in their reciprocal valuesF = (FA,nAi),

M = (MA,nAi) correspondingly. Note that the class described above is a partial one (doesn’t
yet complete the constraint definition) and can be used to produce any imaginable model of
the joint type constraint. To obtain a complete description of the joint model one has to add to
the behavioral section exactly two equations. One of them is to define one of the valuesµ, F
(translatory case). Other equation is intended to compute one of the valuesλ, M (rotary case).

Consider one example of joint classes among others being derived from theJoint model for
the particular, revolute, type of joint being applied in the omni wheel construct. This model
FixedIdealJointis defined by the equations

µ = 0, M = 0

and prevents the relative motion along the joint axis but allows free rotation about it. It is exactly
a revolute joint without any control for the rotary motion.

It is clear one can create a lot of other different combinations of equations to construct the
joint constraints of any desirable type needed in engineering applications. The only issue one
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hasto take into account when constructing the kinematic pair that if there exists an obstacle for
the relative motion eliminating one DOF then it causes an additional scalar kinematic equation
“lifted” to the level of accelerations. Reciprocally if the corresponding motion is possible then
the developer has to include the scalar equation instead imposing the condition on the matching
generalized effort, force or torque what applicable.

2.3 Bond graph concept

Referring for the details to the papers [8, 9] let us give here a brief outline of the multibond
graph scheme concerning the general constraint architecture under consideration, see Figure 2.
Remind that each multibond is a pair comprising twist as its flow component, while the wrench
plays a role of the effort component.

Figure2: Architecture of constraint: bond graph representation

Describing Figure 2 first of all one has to highlight the multibond true nature. Considering
the rigid body as a mechanical system with six degrees of freedom (DOFs) we note that the flow
part, twist, of any multibond represents an object tangent to configuration manifoldD = R3 ×
SO(3) which is in turn the rigid body displacement group [10]. In such a way the multibond
effort component representing the wrench of reaction forces is indeed the cotangent object,
1–form, at the same point ofD. Thus the multibond power is a natural pairing, the value of
1–form, wrench, evaluated on the configuration manifold tangent vector, twist.

In the way under description we follow the ideas of the paper [10] leaving the rigid body
kinematics unsplitted to its translatory and rotary parts. To this end we go farther than the usual
approach for the bond graph applications when frequently the developer first keeps in his mind
the equations and then builds up the corresponding bond graph. Unlike to this we first construct
the bond graph connecting it to the physical nature of the problem, and then the system of DAEs
is to be assembled mostly by compiler without any participation of the developer. In this latter
case physical invariance of the model independent on the choice of (generalized) coordinates is
maintained.

Regarding the general scheme depicted in Figure 2 with its connection to the family of the
joint constraint classes we can conclude that the equations (3), (4) together implement implic-
itly the constraint transformer, central modulated transformer in triangleC of Figure 2, to the
joint local coordinate system and four scalar flow constraints forbidding relative translatory and
rotary motions in the direction orthogonal to the joint axis. For derived classes only two free
scalar bonds remain.
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Herewe encounter the known complementarity rules [11] in a way similar to one described
in [8, 7]. In our context the variables in the pairs(µ, F ), (λ,M) are mutually complement,
where one ofµ, λ is to be utilized for the flow constraint and one ofF , M is used to compose the
effort constraint. All the variables mentioned complete the set of constraints for the remaining
yet unused joint axis creating thus two final scalar constraint elements in the bond graph of
Figure 2.

Namely, equations (3) implementing the Coriolis theorem for accelerations simultaneously
implement, in an implicit manner, two scalar flow constraints,FC-elements, from the bottom left
corner of the multibond graph model in Figure 2. These flow constraints are constructed, due
to compiler restrictions, using accelerations instead of velocities being used in a classic bond
graph approach. The constraints have an obvious kinematic sense: they prevent the relative
motion of the bodyB marked point in two directions normal to the joint axis fixed in the body
A.

In addition, the equations (4) implement two other scalar flow constraints, this time for the
rotary motion. These constraints forbid the relative rotation of the bodyB w. r. t. bodyA about
two axes each normal to the joint axis mentioned above which is rigidly connected with the
bodyA.

Note, that the construct of equations (3) and (4) is such that they allow the bodyB relative
motion along and about the joint axis of the bodyA thus implementing the kinematic pair with
two DOFs. Returning to Figure 2 of the general constraint multi-bondgraph we can conclude
that the vertical multibond attached to 0-junction implements flow variables corresponding to
the relative bodyB motion w. r. t. bodyA in inertial coordinates. Such a description sup-
poses an existence of the special coordinates reference frame connected with the bodyA at its
joint constraint marked point. The transformation to these coordinates is implemented exactly
via corresponding transformer, central in the triangle blockC. The transformer itself nests in
formulae of equations (3) and (4).

The derived joint class example described above is to close the system of kinematic equa-
tions (3) and (4) completing them by two scalar additional equations, each playing a role of an
eitherFC-element, likeµ = 0, or EC-element, likeM = 0. Any time to be able to construct
a consistent system of equations for the total model we have to follow the guidelines similar to
ones of the complementarity rules.

These latter correspond to the notions of the bond graph theory in a natural way. Indeed,
the theory of bond graphs is based on the energy interactions. Every our multibond being an
energy/power conductor reflects complementarity by its twist/wrench duality. To close the total
DAE system for the model under development we have to “close” or rather to “seal” each free
scalar bond inEC/FC-element of the blockC in Figure 2 by the corresponding one scalar
equation for flow or effort variable. Thus here we outline the main rule to compose equations
for the models of constraints for MBS of any type in a consistent way when applying the object-
oriented approach.

3 GENERAL DESCRIPTION OF THE CONTACT TRACKING ALGORITHM

We outline here general approach for implementing contact tracking algorithm in case of
the unilateral constraint. As it was already mentioned we use the so called complementarity
rules [11] as a base for the unified description of the unilateral constraint. Taking into account
complementarity rules one can see easily that any constraint always is defined by the three scalar
equations. To derive these equations consider first local geometry of the problem, see Figure 3.
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Figure3: Area of Constraint

Outer surfaces supposed to be defined with respect to principal central axes of corresponding
bodies by the equations

fα (rα) = 0 (α = A,B).

Then in inertial frame of reference for the whole MBS these equations will take the form

gα(r0) = 0 (α = A,B),

where
gα (r0) = fα [T ∗

α (r0 − rOα)] (α = A,B),

with rOA
, rOB

being a vectors of masscenters positionsOA, OB for the bodiesA andB, and
TA, TB mean an orthogonal matrices for current bodies orientations. An asterisk denotes con-
jugating what equivalent to inverting of matrix for the case of orthogonality. Thus the functions
gA(r0), gB(r0) depend upon the time indirectly through the variablesrA, rB, TA, TB.

Constraint object of our model is to compute at each current instant positions of the points
PA andPB which are the nearest ones for interacting bodiesA andB. By virtue of above
assumptions such points are to be evaluated in a unique way. Denote the radii vectors of these
points with respect to inertial frame of reference byrPA

, rPB
. Then using simple geometric

considerations for the coordinates of the mentioned vectors one can derive the following system
of algebraic equations

grad gA (rPA
) = λ · grad gB (rPB

) ,
rPA

− rPB
= µ · grad gB (rPB

) ,
gA (rPA

) = 0,
gB (rPB

) = 0.

(5)

Here the first equation is a condition of the collinearity for the normals to outer surfaces at
the points being computed. The second condition requies the pointsPA, PB to be relocated on
the straight line collinear to the normals above.

One can verify easily that one can compute the gradients using the formulae

grad gα (rPα) = Tα grad fα [T ∗
α (rPα − rOα)] , (6)

4560



IvanKosenko, Sergey Stepanov, Kirill Gerasimov, and Mikhail Stavrovskiy

whereα = A,B. It easy to see the system (5) consists of eight scalar equations and has eight
scalar unknown variables:xPA

, yPA
, zPA

, xPB
, yPB

, zPB
, λ, µ. Variablesλ, µ are an auxiliary

ones. And the variableµ plays a role of contact detector at that: ifµ > 0 then bodies are
disconnected, otherwise ifµ ≤ 0 then bodies are in contact. Equations (5) one uses either
without or with a presence of the contact of bodiesA, B. In a latter case one uses the equation
µ = 0 instead of one of the surfaces equations.

According to computational experience it is more reliable and convenient if one use equa-
tions of constraint in a differential form than in an algebraic one (5) instead. Such an approach
is used frequently also when analyzing the properties of mechanical systems.

Analytical computations show that one can substitute the equations (5) by the differential
ones of the form

drPA

dt
= vA,

drPB

dt
= vB,

dλ

dt
= vλ,

dµ

dt
= vµ, (7)

wherethe variables of right hand sides are calculated implicitly by help of system of linear
algebraic equations of the form

[ωA, grad gA] + TA Hess fAT ∗
A (vA − vPA

)−
λ {[ωB, grad gB] + TB Hess fBT ∗

B (vB − vPB
)}−

vλ grad gB = 0,
vA − vB−

µ {[ωB, grad gB] + TB Hess fBT ∗
B (vB − vPB

)}−
vµ grad gB = 0,

gradgA · vA − gradfAT ∗
AvPA

= 0,
gradgB · vB − gradfBT ∗

BvPB
= 0.

(8)

When using this latter, i. e. differential form of a constraint one needs to set a consistent
initial values for the variablesrPA

, rPB
, λ, µ at the start time instant of simulation. VectorsvPA

andvPB
in the system (8) of algebraic linear equations are the velocities of a nearest points of

the bodies and are computed according to Euler’s formula

vPα = vOα + [ωα, rPα − rOα ] (α = A,B). (9)

MatricesHessfA, HessfB are ones of Hesse for corresponding functions and have the form

Hess fα =




∂2fα

∂x2
α

∂2fα

∂xα∂yα

∂2fα

∂xα∂xα

∂2fα

∂yα∂yα

∂2fα

∂y2
α

∂2fα

∂yα∂zα

∂2fα

∂zα∂xα

∂2fα

∂zα∂yα

∂2fα

∂z2
α




,

with α = A,B. Normal vector

nA =
grad gA

|grad gA| (10)

will play an important role in the further course. Normal for an outer surface of the bodyA is
chosen here for definiteness. One can use the vectornB as well.
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Figure4: The omni wheel vertically aligned: (a) lateral view; (b) front view.

4 VIRTUAL OMNI WHEEL TESTBENCH ARRANGEMENT

4.1 Preliminaries

Let us consider an omni wheel now. Omni wheel for the case ofψ = 0 is shown in Figure 4.
There one can see the lateral view, fragment (a), of the wheel being equipped by four axisym-
metrical rollers, each having a shape of the circular spindle. These rollers have been enumerated
by their numbers. Each roller is connected to the wheel by a joint which axis coincides with the
roller axis of rotation. These latter axes both are orthogonal to the wheel radius exiting from the
central pointO and passing through the the roller central point. So it is possible for the wheel to
have a free rolling in direction perpendicular to its plane. Corresponding contacting curve with
respect to the wheel coordinate system, being a circle in the case shown, has a coloured high-
lighting. This curve has a circular shape provided the wheel plane keeps its vertical orientation.
Front view of the omni wheel is shown in fragment (b).

For the case ofψ = 0 being shown in Figure 4 a roller outer profile, generatrix, along its axis
of rotation has evidently a circular shape, see Figure 4, fragment (a), again. This shape provides
smooth transfer from one roller to another while the motion occurs. Evidently ifψ 6= 0 then it
is not the case. Thus, the contact tracking algorithm for the case ofψ = 0 implemented in [1]
turned out to be simple enough. In the case ofψ > 0 it becomes visibly complicated. And its
implementation on Modelica language is the main goal of this paper.

Other details of Figure 4 are the following:R is the omni wheel radius,R1 is the distance
between the wheel central pointO and the roller central point,α is the half roller angular length
from the viewpointO. Unit vectors{i, j,k} of the base being connected with the wheel are
shown in their initial positions.

In engineering applications one may encounter frequently a situation withψ > 0. We pro-
posed in [1] fast algorithm for tracking a contact provided the omni wheel keeps vertical orien-
tation of its plane (in frame of the whole vehicle construct). Thus the task for building up the
contact tracking algorithm also for the case ofψ > 0 is of interest. This task has been completed
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in this paper. To reach this goal we accept the working model of a virtual testbench consisting
of one wheel equipped by rollers along its rim. One can see easily that this simplification has
mostly methodical nature and does not prevent us from integrating all the construct back into
the whole vehicle having generally several omni wheels previously analyzed [1].

So let us consider an omni wheel, see Figure 4 its lateral and front views with four rollers,
which is able to keep vertical orientation of its plane. We will see later how to arrange an imple-
mentation of such a servo-constraint. Note in addition, that in the case ofψ > 0 a generatrix of
the roller outer surface will not be a segment of the circle anymore. It is represented by a more
complicated curve. Moreover, point break of contact on the roller surface does not correspond
to the surface tip for the case ofψ > 0 as it took place for the simple case ofψ = 0. To
arrange correct simulation on event of the contact exchange between rollers one has to truncate
the roller surface properly.

4.2 Model of the omni wheel dynamics

Vehicle equipped by omni wheels might be replaced by a wrench consisting of force and
torque in the multibody, rigid, representation. The force supposed to act at the wheel center.
Thus approximately we can analyze the omni wheel dynamics with the wrench applied instead
of a remainder of the vehicle.

Moreover, the vehicle, or a separated wheel, performs in our example motion on the horizon-
tal floor for simplicity. Thus, the wheel being embedded into the vehicle in the simplest case
should be aligned vertically. To express such an alignment analytically we can connect with the
wheel the base{i, j,k} originating from the wheel center. Both unit vectorsi, j lie in the wheel
plane, and unit vectork is normal to it. Thus the vertical alignment of the wheel is equivalent
to horizontal alignment for the vectork. Analytical condition for this is

k · nA = 0,

where unit vectornA is vertical, or normal to the floor. In other words, letT ∈ SO(3) be the
matrix of transformation from base{i, j,k} to the inertial absolute coordinate system. Then
components of vectork are exactly the components of the matrixT = (tij)

i,j=3
i,j=1 third column.

Thus one can express condition of the wheel vertical alignment in the form

t23 = 0.

This latter equation shows that the omni wheel multibody system undergoes the geometrical
servo constraint. It is easy to see that this constraint may be implemented via control effort,
rotating torqueM directed such as to prevent rotation of the wheel plane w. r. t. horizontal line
belonging to this plane.

For details of the torque vectorM computation note that this vector has to be directed along
horizontal line passing through the wheel center and belonging to its plane. Directing unit
vectorl for this line has to satisfy the equation

l = k× nA/|k× nA|.
Hence

M = λl

and the multiplierλ is simply a value of torque balancing the wheel vertical orientation. In the
wheel model torqueM has to be added to other torques applied to the wheel under simulation.
The valueλ is exactly the Lagrange multiplier corresponding to the servo-constraint above.
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It is easy to see the servo-constraint plays here a role of the virtual testbench for investigating
the omni wheel dynamics. The remainder of the whole vehicle model is replaced simplistically
by the wrench being applied to the wheel. The whole omni wheel dynamics visual model is
seen in Figure 5

Figure5: The omni wheel dynamics visual model.

As one can detect here the model of the omni wheel multibody system has been implemented
using original multibody dynamics class library developed previously [7, 9]. One can use this
library independently or with help of the knowm Modelica Standard Multibody class library
or with any other Modelica library. The better way being recommended for such use is the
following one. Firstly, one can implement mechanical subsystems of the whole system under
implementation. For instance, mechanisms having tree structure are modeled in a better way
using Modelica Standard Multibody Library while mechanical subsystems including unilateral
constraints with friction are better implemented using the aforementioned library of classes.
Secondly, the only issue remained is to implement proper interfaces using models of ports
mapping corresponding signals being tranferred from one subsystems to another.
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5 IMPROVED CONTACT TRACKING ALGORITHM

5.1 Implicit contact tracking algorithm

We will assume in the further course that the wheel plane keeps its vertical orientation per-
manently. We have to introduce auxiliary orthonormal bases:b1 = {i1, j1,k1} and b2 =
{i2, j2,k2}. Intermediate baseb2 characterises partially position and orientation of the roller,
while the baseb1 relates to the omni wheel.

The baseb2 coordinate system has its originOB at the roller central point. The unit vector
i2 is directed along the roller axis of rotation, see Figure 6, fragment (a). The unit vectorj2 is
directed orthogonally toi2 and lies simultaneously in the vertical plane. The third unit vector
k2 of the baseb2 is defined in a natural way as

k2 = i2 × j2.

Figure6: Contact tracking scheme: (a) lateral view of the omni wheel with a roller has been rotated about line
OAOB by the angleψ, (b) lateral view of the individual roller.

Remind here that all unit vectors are computed w. r. t. given fixed (absolute) coordinate
system. We assume that positions and orientations are known for all bodies belonging to the
multibody system for any instantt ∈ [t0, t1] of simulation process. Therefore, we have

i2 = TB · (1, 0, 0)T , ρ = (rOA
− rOB

) / |rOA
− rOB

| ,

whereTB is the roller current orientation matrix.
Origin of the baseb1 coordinate system is located at the pointOA (= O in Figure 4) of the

wheel center. The unit vectori1 is oriented horizontally and belongs to the wheel plane. The unit
vectork1 is orthogonal to the wheel plane and is identical to one of the wheel connected base
vectors. We assume that using a controller the vectork1 permanently maintains its horizontal
state. Supposing vectork1(t) known we also havej1(t) = (0, 1, 0)T andi1(t) = j1(t)× k1(t).

Consider now relations providing baseb2 construction. Unit vectori2 has been built above.
During roller and the floor contact the vectori2(t) can not become vertical. Moreover, if the
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roller distortiontakes place, its angle of rotationψ > 0 about axisOAOB is fixed non-zero, then
the conditioni2 6= (0, 1, 0)T is fulfilled permanently. So we can assume that the condition

c = i2 × (0, 1, 0)T 6= 0

is also fulfilled.
Thus, we can definek2 = c/|c|. And after this we can setj2 = k2 × i2. Geometrical

constraints, conditions of orthogonality to be exact, play important role in the omni wheel kine-
matics

ρ · i2 = 0, ρ · k1 = 0.

These equations actually apply to computing the unit vectorρ and we have their differential
versions

d

dt
ρ · i2 + ρ · d

dt
i2 = 0,

d

dt
ρ · k1 + ρ · d

dt
k1 = 0.

The valuecβ = cos β = i2 · (0, 1, 0)T of cosine for the angleβ of the roller axis inclination
to vertical(0, 1, 0)T plays also an important role in the contact tracking algorithm. If current
value of the variablecβ is less than some limiting parametercβ max, and simultaneously if an
altitude of the pointOB defining position of the roller center is less than valueR of the wheel
radius then the contact takes place. Otherwise no contact occurs.

Note here that in order to arrange the unilateral constraint in the multibody system dynamics
model the developer usually has to implement something like hybrid automata construct. In
our omni wheel model, on the contrary, this is not the case. It turned out sufficient to imple-
ment “simple” “if” construct to switch states “contact” and “no contact” for each individual
roller, and simultaneously to advance forward “contact” state from one roller to its neighbour.
The whole picture looks like from time to time neighbouring rollers mutually exchange their
states. One can find details of the unilateral constraint implementation in [1]. Merely note
that “if”-alternatives are the following: (a) “contact” state corresponds to zero-valued relative
acceleration of two contacting surfaces at the point of contact, (b) “no contact” branch corre-
sponds to the zero-valued reaction mutual for both bodies at contact. All this is according to the
Signorini rule. “if”-condition depends on the roller orientation variables.

Essential role in all these computations plays a contact tracking algorithm. Generally, its im-
plementation reduces to computation of the contact point/patch which enables computing forces
at contact. Usually, one considers contact of two surfaces participating in rigid/elastic interac-
tion of two massive bodies. As a rule, such algotithms are pretty expensive and noticeably slow
the whole simulation process. Fortunately, in case of omni wheels we found here the simplest
way to make this computation as fast as possible using “elementary” geometric considerations.

We can also easily see from the Figure 6 that the pointPB of contact between roller and floor
is obtained using formula

rPB
= rOB

+ R1ρ−Rj1 + µk1,

where the scalarµ is to be computed. Here the valueR1 is the distance between pointsOA and
OB. The scalarµ can be computed if we multiply the last equation byk2 using dot-product.
Thus we have

µ = [Rj1 · k2 −R1ρ · k2] /k1 · k2

since the vectorrPB
− rOB

lies in vertical section of axis-symmetrical surface of the roller, and
the vectork2 by construction is orthogonal to this section. As a result the positionrPB

of the
contact pointPB is uniquely computed.
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5.2 Explicit contact tracking algorithm

Yet another way to obtain current positionrPB
of the contact pointPB, or more accurately:

the roller point closest to the floor, is an application of the following chain of equations. This
chain is simply understood from geometrical scheme shown in Figure 6, (a) and (b).

rPB
= rOB

−mi2 − hj1,

wherem = R1 sin q/ cos q/ cos ψ, h = R − R1/ cos q, q is the current value for angle of
deviation of the vectorρ from direction of the vectorj1. So we have

cos q = ρ · nA, sin q = (nA × ρ) · k1.

Here we give explanations of some details of Figure 6. Fragment (a) corresponds to the
lateral projection of the wheel and likewise the distorted roller projection. This latter object
is shown here in a general position. Furthermore,PB is the current contact point between the
roller and the horizontal floor,n is a projection of the roller axial line segment onto the wheel
plane. We can see easily that this projection is computed by the formulan = m cos ψ because
the roller axis is turned aboutOAOB by the angleψ, see fragment (b) for the roller axial vertical
lateral section. Thus, we have to pass two straight line segments from the roller centerOB to
reach the pointPB: (a) the segment of the roller axis of lengthm; (b) the segment down the
vertical of lengthh. As we already mentioned above all variables needed are computed through
known variables using explicit formulae.

Figure7: Contact model by stages of inheritance.

In case ofψ > 0, distortion exists, for both implicit and explicit algorithms not all the length
of the roller surface generatrix is necessarily in contact. So really we have to cut tips of rollers
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to provide regular simulation process. Length of the tip to be cut we can obtain for instance
empirically or compute it explicitly. Indeed, one can easily see from Figure 6 that the real roller
length should be computed by the formula

L = 2R sin α/ cos ψ.

“Ideal” switching of contact takes place in this case: exactly at the instant of contact loss for
current roller a contact immediately arises for the “next” roller in direction of the wheel rolling.

5.3 Computer implementation

Model of the omni wheel testbench virtual prototype is a container class including the fol-
lowing objects instantiated: (a) disk of the wheel; (b) objects of rollers mounted along the wheel
rim; (c) objects of joints connecting rollers and the wheel disk; (d) objects of contacts connect-
ing objects of rollers and the object of the horizontal floor surface; (e) model of base body as a
horizontal floor.

Figure8: Comparison of dynamics for the roller No. 1 central point, its velocityy-coordinate, for cases of: explicit
(blue curve) and implicit (red curve) algorithm of contact tracking.

Let us analyse in more details a structure of contact model. This model has many similarities
with contact models previously considered [7]. Nevertheless important differencies exist. One
of them mentioned above with regard to organization of the contact class using simple and
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efficient construct [1]. Note that in case ofψ > 0 the point of contact creates a curve with
discontinuities at instances of rollers changes. However, this circumstance does not prevent the
process of regular simulation.

Finally, we apply rigid point contact model as part of the simplest omni wheel model. For
this we use the base class for constraint/contact models having only equations of Newton’s third
law as a behavioral section [9].

We use class of the contact tracking model on the second stage of inheritance, see Figure 7.
Cases of this class organization have been analysed above. Coordinates of nearest pointsPA

andPB at contact for each pair (floor, roller) are computed as a result for this class functionality.
Class for computing all kinematical characteristics at contact needed “works” in case of

contact existence on the next stage of inheritance. On the third stage class for computing the
reactions at contact is “turned on”. Reactions are the following: (a) normal reaction; (b) tan-
gent force of friction; (c) torque of reactions (zero in the current consideration though it is not
difficult to compute torque for several contact models).

To verify an approach for building up the models under analysis we compare the omni wheel
dynamics in cases of implicit and explicit algorithms. The wheel performs free motion (com-
bining rotation and sliding) with the only restriction: keep vertical alignment of the wheel disk.

Roller No. 1 central point, its mass center, altitude was analyzed and verified. More accu-
rately we examiney-coordinate of the point velocity. Both models turned out almost identical:
in the worst case we have a divergence: in accelerations of order10−8, in velocities of order
10−7, in position of order10−6 over the time span being equal to 10 units of time. Results of
simulation for velocities are shown in Figure 8. Other divergencies for the roller No. 1 central
point acceleration and position at time = 10units are shown in Figure 9 and 10 respectively. As
expected the model with explicit contact tracking algorithm is faster approximately in1.5 times.

Figure9: Divergence fory-components of acceleration.

6 CONCLUSIONS

• Two contact tracking algorithms were proposed: implicit and explicit. As expected the
second algorithm turned out to be faster almost in1.5 times. Both algorithms are simple
(and efficient) even in simpler case of rollers without any distortion.

• In case of distorted rollers contact curve becomes discontinuous at instants of rollers
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Figure10: Divergence fory-components of position.

change. But simulation process maintains its regularity.

• Both algorithms generate identical dynamics.

• Process of the contact model design using technology of “vertical separation” outlined
above has an evident motivation and allows a simple generalization both for the normal
force computation and for the tangent friction force model.
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Abstract. In this paper we investigate the solid system with internal rotating eccentrics as a 

movers. The system moves in plane with dry friction. Massive eccentrics rotating with varia-

ble angular velocity convert rotational motion into uneven translational. The motion is 

caused by inertia forces and friction between the system and the rough surface and occurs in 

short steps or slides. The equations of motion are derived under assumption of decreasing 

linear dependence of electric motor torque on angular velocity. We consider the motion of the 

platform and the pendulum, and then the resulting system is presented in a convenient form 

for numerical integration in MatLab. Runge–Kutta fourth-order method is used. Tracking of 

labels applied to the system is performed using time-lapse video and Adobe After Effects. The 

results of numerical integration of math model are presented and compared with experi-

mental data obtained using a tracking program. 
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1 INTRODUCTION 

An interest in solid systems driven by inner movements of masses without outer movers, 

such as wheels, chain tracks, or legs, arises in last decade. A new class of mechanisms (robots, 

mechatronic systems) able to move in a resisting medium without external movers due to 

movement of internal bodies attracts attention [1-12]. 

In study [1] there is a very simple mechanical model: an absolutely rigid body that can 

move along a horizontal line; inside the body, there is a movable mass that also moves hori-

zontally. Such a motion realized as a result of the specific periodic relative motions of a mate-

rial point inside the body. The internal motion parameters providing for a maximum average 

velocity of the system as a whole are determined. 

In paper [2] they deal with a class of vibration-driven models that simulate the dynamics of 

vibration-driven mobile robots, which mean autonomous mechanisms consisting of a body 

and movable internal masses. Moving under the action of drives, the internal masses interact 

with the robot body and the body, in turn, interacts with the external environment. By control-

ling the motion of internal masses, they can control the force of reaction of the external envi-

ronment acting on the robot body, providing its motion in the desired direction and regulating 

the velocity. Vibration-driven robots are simple in design and do not require special limbs, 

such as wheels, chain tracks, or legs. In particular, this makes them promising for movement 

not only on surfaces but also within dense media resisting pressure (e.g., in soil), as well as in 

pipes. Presumably, micro robots of this type can be applied in medicine in order to deliver 

drugs or a diagnostic sensor to an affected area. 

In work [3] the controlled horizontal motion of a body in the presence of dry friction forces 

is investigated. Control is accomplished by means of a movable mass that can move within 

the body in a bounded range. 

In study [4] for three forms of resistance forces they have calculated the periodic transla-

tional motion of a two-mass system consisting of the main body (the container), interacting 

with the medium, and an internal moving mass. They have considered simple motions of the 

internal mass with respect to the container, called two-phase motion, and a corresponding 

piecewise-constant relative velocity of the internal mass. They have shown that as a result of 

simple motions of the internal mass with respect to the body, the system is displaced as a 

whole. The principle of motion considered in this paper was realized in a number of experi-

mental models. The internal displacements were obtained by means of a pendulum system 

and a rotating mass. Mobile mini-robots, moving inside a tube, have been designed and suc-

cessfully tested. Experiments have confirmed the practical realizability of the principle de-

scribed above for displacing bodies in resistant media. 

In paper [5] the dynamical system consisting of a rigid body and an internal mass is inves-

tigated. The rigid body can move along a rough horizontal plane with a piece-wise linear re-

sistance law due to the special periodic internal motions. A three-phase control is constructed 

and the motion of the body relative to the environment is controlled by varying the relative 

acceleration of the internal mass. The relationships between the control parameters for the re-

alization of a directed velocity-periodic motion of the rigid body are established through both 

theoretical and numerical methods. Optimal and practical parameters of the internal motion, at 

which the maximal mean velocity of the body is reached, are determined. 

In work [6] a periodic motion of the internal body relative to the main body, which gener-

ates the motion of the main body with periodically changing velocity and the maximum dis-

placement for the period, is constructed for a wide class of laws of resistance of the 

environment to the motion of the main body. The principle of motion considered is appropri-

ate for mobile mini- and micro-robots. The body (housing) of such robots can be hermetically 
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sealed and smooth, without protruding parts, which enables these robots to be used for the 

non-destructive inspection of miniature engineering structures such as thin pipe-lines, as well 

as in medicine. 

In study [7], optimal control problems are solved for two types of vibrationally excited 

mobile systems. First, a three-body articulated system moving in a horizontal plane is consid-

ered. The system consists of a rigid body (main body) to which two links are attached by rev-

olute joints. All three bodies interact with the environment with the forces depending on the 

velocity of motion of these bodies relative to the environment. The system is controlled by 

highfrequency periodic angular oscillations of the links relative to the main body. This system 

models the swimming of some animals. The equation of motion of this system is derived and 

analyzed. Second, a two-body system moving along a horizontal line in a nonlinear resistive 

medium is considered. One of the bodies (the main body) interacts with the environment and 

with the other body (internal body), which interacts with the main body but does not interact 

with the environment. The environment resists the motion of the main body with a force that 

depends on the velocity of the main body relative to the environment. A periodic optimal mo-

tion of the internal body relative to the main body is defined by solving an optimal control 

problem. 

In paper [8] they investigate two systems consisting of a spherical shell rolling without 

slipping on a plane and a moving rigid body fixed inside the shell by means of two different 

mechanisms. In the former case the rigid body is attached to the center of the ball on a spheri-

cal hinge. They show an isomorphism between the equations of motion for the inner body 

with those for the ball moving on a smooth plane. In the latter case the rigid body is fixed by 

means of a nonholonomic hinge. Equations of motion for this system have been obtained and 

new integrable cases found. 

Paper [9] is concerned with the motion of a cubic rigid body (cube) with a rotor, caused by 

a sudden brake of the rotor, which imparts its angular momentum to the body. This produces 

an impulsive reaction of the support, leading to a jump or rolling from one face to another. 

The robot, called by them M-block, is 4 cm in size and uses an internal flywheel mechanism 

rotating at 20 000 rev/min. Initially the cube rests on a horizontal plane. When the brake is set, 

the relative rotation slows down, and its energy is imparted to the case. 

This paper [10] deals with the problem of a spherical robot propelled by an internal om-

niwheel platform and rolling without slipping on a plane. The problem of control of spherical 

robot motion along an arbitrary trajectory is solved within the framework of a kinematic mod-

el and a dynamic model. A number of particular cases of motion are identified, and their sta-

bility is investigated. An algorithm for constructing elementary maneuvers (gaits) providing 

the transition from one steady-state motion to another is presented for the dynamic model. A 

number of experiments have been carried out confirming the adequacy of the proposed kine-

matic model. 

In work [11] they consider the motion of a system consisting of a rigid body and internal 

movable masses on a rough surface. The possibility of rotation of the system around its center 

of mass due to the motion of internal movable masses is investigated. To describe the friction 

between the body and the reference surface, a local Amontons-Coulomb law is selected. To 

determine the normal stress distribution in the contact area between the body and the surface, 

a linear dynamically consistent model is used. As examples they consider two configurations 

of internal masses: a hard horizontal disk and two material points, which move parallel to the 

longitudinal axis of the body symmetry in the opposite way. Motions of the system are ana-

lyzed for selected configurations. 

In work [12] the two-dimensional motion of a system consisting of a hollow rigid body, 

resting on a rough plane, and two internal mobile point masses, capable of moving parallel to 
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the longitudinal axis of symmetry of the body is considered. Friction in the contact area is 

modelled by a local Amontons–Coulomb law. A dynamically matched linear model is used to 

describe the normal stress distribution. The possibility of achieving rotation of the system by 

a certain relative motion of internal masses is investigated. Two control laws for the movable 

masses are considered: piecewise-linear and harmonic, for which the equations of motion are 

integrated numerically for different values of the parameters of the control laws. 

In our work we consider solid system consisting of a rigid nesting frame with two internal 

masses in the form of eccentrics (unbalanced massive wheels). Eccentrics rotate with variable 

angular velocity and have no contact with external medium. Nesting frame has a contact with 

a rough surface with dry friction and moves short steps (or slides) in plane due to rotating ec-

centrics. 

2 EXPERIMENTS 

We constructed a model of solid system with two unbalanced wheels in Moscow Institute 

of Physics and Technology at the Chair of Theoretical Mechanics. 

The solid system was designed in SolidWorks program. From a practical point of view, we 

decided to use open-source building platform (Makeblock, mechanical parts and motors). The 

result of modeling is presented on Fig.1. 

 

Figure 1: CAD-model of the solid system. 
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Assembly of the system has led to the result shown in the Fig. 2. Open-source microcon-

troller (Arduino) sets the velocities of motors rotating two eccentrics. Rigid nesting frame 

stays on four legs with rounded plastic foots. 

 

Figure 2: Experimental-model of the solid system (view from above, bottom view). 

One of the wheels is placed along the longitudinal axis of symmetry, another one – in 

transversal position. The main parameters of the model are presented in Table 1. 

 

Characteristics  Value 

Total weight 1.825 kg 

Weight of wheels 0.5 kg 

Average angular speed of the wheels 125 rpm 

Eccentricity of longitudinal wheel  3.5 cm 

Eccentricity of transversal wheel 2.5 cm 

The longitudinal distance between the points of contact with the surface 13.1 cm 

The transversal distance between the points of contact with the surface 11.3 cm 
 

Table 1: Parameters of the model. 

First part of experiment was devoted to testing of the system on different rough surfaces. 

Characteristics of surfaces are presented in Table 2. 

 

№ Type  Characterisation Coef. of friction 

1 Laminated  

chipboard 1 

Smooth,  

with microscopic uniform embossing 

0.31 

2 Glass Smooth 0.52 

3 Laminated  

chipboard 2 

Smooth,  

with the moth-eye pattern "under the tree" 

0.35 

4 Plywood Very rough, non-uniform 0.34 

5 Plastic Slightly rough, uniform 0.32 
 

Table 2: Characteristics of surfaces. 

Two series of experiments were conducted. First, the longitudinal motion of the body was 

studied (the transversal wheel does not rotate) for two types of rotation (back and forth). The 

results are shown in Fig. 3, where all measurements were made for 11 revolutions of the 
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wheel with average angular velocity 125 rpm. In the second series, the rotational motion was 

experienced (only the transversal wheel is rotating) in similar conditions. The results are pre-

sented in Fig. 4. 
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Figure 3: Longitudinal displacement of the body (back and forth) on different surfaces. 
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Figure 4: Rotational motion of the body on different surfaces. 

It can be seen that both displacement and rotation angle are diminishing with increasing of 

the coefficient of friction. Note that if this coefficient were zero, no displacement would occur. 

In this series of experiments the glass was the most difficult material in terms of repeatabil-

ity – relative measurement error was the highest compared to other materials. Conversely, the 

most predictable was the laminated chipboard surface. That is why in the second part of ex-

periments, we decided to use laminated chipboard only. 

4577



Sergey V. Semendyaev, Alexey A. Tsyganov 

Second part of experiment was devoted to tracking of the system on the rough surface. The 

longitudinal motion of the body was studied (the transversal wheel does not rotate) for one 

type of rotation (forth). 

Tracking of labels applied to the system is performed using time-lapse video and Adobe 

After Effects program. Video frame rate was 60 frames per second. The results of tracking 

experiments are presented on Fig. 5 (displacement of the system body in meters, time in sec-

onds). Observation of the movement is accomplished by means of contrasting markers on the 

system components. Recording is done on camera. The resulting video is processed in the 

software. It uses the standard function "Tracking". In the case of tracking robot position out-

put data are contingent pixels that are converted into millimeters (60 px = 10 mm). To control 

the time periods and synchronization in the experiment it was used a stopwatch accurate to 

hundredths of a second. 
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Figure 5: Experimental data obtained using a tracking system in Adobe After Effects program, displacement of 

body in dependence of time 

As we can see, the movement takes place at a constant average speed. Approximately peri-

odic movement occurs sliding forward with some setback. 

Such movement can be explained qualitatively as follows. Wheel rotates with variable an-

gular velocity. There are two phases: first, when wheel moves same direction as acceleration 

of gravity; and the second, vice versa. In first case wheel is accelerated, in second – slows 

down. Uneven rotational movement of the wheel is converted into a non-uniform translational 

movement of the base frame, since there are unequal movement pulses differently compen-

sated by friction forces between foots and surface. 

The nature of the movement is in good agreement with the results of mathematical model-

ing, which are presented in the next section. 
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3 MATHEMATICAL MODELING 

First consider the simplified system, shown in Fig.6. A hollow case of mass m with flat 

basement carries a mathematical pendulum of mass m1 and length a, suspended at the point O
’
. 

The external forces include normal reaction N, friction force F, and moment M, applied to the 

pendulum. Note that while the reaction forces N and F have passive character, the moment M 

is created by a motor, attached to the case, and ensures the movement of the system. 

 

 

Figure 6: Mechanical model of the system with single unbalanced wheel. 

We set coordinates x and y of point O
’ 
and angle   between the pendulum axle and vertical 

as generalized coordinates. The equations of motion in the Lagrangian form are: 

     

1

2 2 2 2

1 1

1
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1 1
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 Since y=const, the second equation (1) follows: 

  2

1 1( ) sin cos .N m m g am         (2) 

A physically plausible form of system (1) is: 

   0 1
1 0

1

, ( ) , cos , ,
dv m ad

m m F T Fx M v x a
dt dt m m

          


 (3) 

where 0v  is velocity of the centre of gravity. 

We will make the assumption of a decreasing linear relationship between torque of the mo-

tor and the angular velocity of its rotation (Fig. 7): 

 0 0 0, , , , 0.M M k M k const M k     (4) 

This kind of dependence usually takes place in direct current motors as in our work. 
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Figure 7: The dependence of the torque of the motor from its angular velocity. 

As a result, we obtain the following system of equations for the motion of the platform and 

the pendulum: 
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The system is represented as (if 0  ): 
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Then the system (6, 7) (taking into account also the case 0  ) is solved numerically in 

MatLab program. Runge–Kutta fourth-order method is used. The results are shown in Fig. 8. 

4580



Sergey V. Semendyaev, Alexey A. Tsyganov 

 

Figure 8: Numerical integration in MatLab, displacement of body in dependence of time. 

Graph of body diplacement x (meters) from the time t (seconds) in Fig. 8 is obtained by 

numerical integration at the following conditions (Table 3): 

 

Parameter  Value 

The reduced length of the pendulum  0.06 m  

Body weight (without pendulum)  1.325 kg 

The pendulum weight  0.5 kg 

The coefficient of friction 0.3 

Acceleration of gravity 9.8 m/s
2
 

0M  0.341 N·m 

k 0.020 N·m·s 

Table 3: Parameters in numerical integration. 

Though this model can move, it has visible shortcomings. First of all, the rectilinear trajec-

tory is unstable: due to unaccounted disbalances the body will deviate. Obviously, in practice, 

it is impossible to attach a cargo to the body, keeping ideal symmetry. Further, the practical 

needs are not restricted by rectilinear motion: usually mobile devises move along a prescribed 

curve. Our aim is to create a robot which could perform stable rectilinear or curvilinear mo-

tion. The key problem is to let the body move more accurately and to adapt to the surfaces 

with different coefficients of friction. This problem can be described in next paper. 
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4 CONCLUSIONS 

 The motion of body with rotating internal wheels in interaction with external environ-

ment in form of rough surface can be used as the principle for the motion of mobile ro-

bots. 

 Robotic mechanisms of this class, being isolated from external environment in shell, can 

be used in extreme conditions, with strong pollution of surrounding space, in aggressive-

ness of environment (for example, on another planet or in chemically active environ-

ment). 

 The movement of the system is studied with the help of mathematical modeling and nu-

merical integration and is compared with experimental data obtained by tracking method. 
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Abstract. The principal aim of this paper is to evaluate the non-regular dynamic behavior of 

a vehicle involved in a collision with a fixed obstacle. Firstly, the model used for the 

wheels/ground interaction is the linear model. In addition, we established the constraints 

equations relating to holding contact with the ground and those concerning conditions of 

Ackermann.  The obtained results had been compared with those given by the Pc-Crash soft-

ware. We noted a good correlation for various scenarios. After validation, we used this model 

in the case of collision vehicle/fixed obstacle. A comparison of the simulation and experi-

mental results confirmed the good agreement between the model and the real system of 

Crash-Test. 
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1 INTRODUCTION 

The modeling and simulation of the dynamic behavior of vehicle today are a scientific 

theme that has progressed rapidly under the impetus of vehicles industries. Thanks to their 

potential, this discipline has become an indispensable tool for improving the performance of 

vehicle. 

However, in some situations, particularly those characterized by a non-regular vehicles dy-

namics (rollover, crash, sudden change in certain parameters of the roadway, demining opera-

tion by an intervention vehicle ...), the equations governing the movement of system lead to 

differential and algebraic equations are difficult to solve. 

Most mechanical systems subjected to non-permanent excitations can be modeled by non-

smooth dynamical systems. This non-regularity can originate in the batch-term control, in the 

interaction of the environment with the system and in problems of sudden change in system 

parameters. This loss of regularity, in the late 1970s, Michelle Schatzman [1] and Jean 

Jacques Moreau [2] started researching a mathematically consistent formulation for modeling 

the dynamic behavior of non-regular mechanisms. 

In the case of vehicle, the non-regular dynamic situations can be classified into three categories:  

i) Non-regular dynamic situations caused by discontinuities of control parameters (sudden 

change of steering angle, sudden braking action...).  

ii) Non-regular dynamic situations caused by discontinuities in the system/environment in-

teraction (collision vehicle/fixed barrier, collision vehicle/vehicle, rollover, skidding, ground 

roughness, slope change in a way, sudden change in the parameters road…). 

iii) Non-regular dynamic situations caused by discontinuities of some parameters of the ve-

hicle (sudden change of the damping coefficient or stiffness of the suspension system ...). 

The objective of this work is the development of a comprehensive approach to dynamic     

behavior modeling of the vehicle taking into account the problems of irregular dynamics in    

collision between the vehicle and a fixed obstacle. In addition, the validation of the results of 

this approach compared with those given by appropriate software. 

2 VEHICLE DYNAMIC MODEL 

2.1 Geometric description of the system 

In the present study, the structure of the considered mobile robot is composed of a vehicle 

(Figure 1) which is supposed rigid body fixed to the chassis and suspended via the suspension 

system composed of a spring and damper (ki is the stiffness and bi is the damping coefficient). 

Unsuspended masses are negligible compared to the suspended masse. In addition, the caster, 

toe and tilt angles of the kingpin are not considered. The anti-roll bar is not modeled. The 

braking is applied to all wheels and the load transfer is considered. 
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Figure 1: Vehicle model. 

The system is moving on a road to which is attached a frame  00 00 0
, , ,O x y z  . Let 

 , , , vv vv v
G x y z   be the mobile frame linked to the robot chassis, 

v
G  the original center of 

gravity of the robot. The axis vx  is perpendicular to the plane of longitudinal symmetry of the 

vehicle, facing the left side, the axis is perpendicular to 
v

y  and directed towards the front of 

the vehicle.  

The configuration of the vehicle frame versus the fixed reference 0 is defined by six parame-

ters: three cartesian coordinates (x, y, z) of the center of gravity and the three angles (φ1: roll, 

φ2: pitching and φ3: yaw) orientation of the v with respect to reference 0. The rotation ma-

trix of v relatively to 0 is: 
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With:    cos , sin , 1..3
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The kinematic wrenches of the vehicle frame relative to the reference, expressed in the vehi-

cle frame are given by the following relationships: 
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                                                               (2) 

In order to take into account the efforts of wheels/ground interaction, we attach to each wheel, 

a frame  , , ,xi yi zii i
C e e e   placed at the wheel/ground contact point. The unit vectors of i 

are defined, according to the normal in  of the wheel i contact with the ground plane and its 

steering angle, by the following expressions: 
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With 
in  the vector normal to the wheel plane. These vectors are defined by 

 sin cos 0
v T

i i i
v    for the front wheels of the vehicle and  0 1 0

v T

iv   for the oth-

er wheels. 

The transition matrix of the wheel/ground interaction frame (i/0) is defined by the following 

relationship: 

0 0 0
0 | | 1...4xi yi zii
P e e e for i  

  
                                                (4) 

In this, the elongations of the springs are modeled by the variables id , for i = 1...4. The vec-

tor of the generalized coordinates q  contains the kinematic variables of translation and orien-

tation of the vehicle, the variables characterizing the elongation of the springs and the two 

front wheels steering angles δ1 and δ2. The vector q  is thus defined as follows: 

 1 2 3 1 2 3 4 1 2
, , , , , , , , , , ,q x y z d d d d      

2.2 Constraints equations 

The constraints equations of a vehicle are defined by the conditions linked to Ackermann 

steering system and the wheels/ground holding contact conditions of the vehicle. They are 

developed bellows. 

2.2.1 Ackermann Conditions 

During the movement of the vehicle along a curve, the steering angles are linked to the 

existing of yaw speed 
zv

w and the radius of curvature of this curve by the following equations: 
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                                              (5) 

With:
v

L : vehicle wheelbase; 
w

L : rear track; 
xv zv

R V w The curvature radius calculated 

on the rear track of the robot center and 
xv

V : longitudinal velocity. 
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2.2.2 Wheels/ground holding contact conditions (WGHCC) 

WGHCCs of a vehicle are defined by the following algebraic equations: 

 
0 0 0 0 0

0 0
0 1...4vii v v i w i

O C O G G C r n z d for i


                              (6) 

With rw: the radius of the wheels. 

The conditions (6), derived twice with respect to time, can be expressed as follows: 

0v cvJ X B                                                                (7) 

With: vJ    is the Jacobean matrix inherent to the WGHCC of the vehicle; 

cvB are the acceleration constraints vector of  WGHCC of the vehicle.  
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: The operator of the vector cross product. 

2.3 Motions equations 

The main forces acting on a vehicle in motion are wheels/ground interaction forces, the 

dynamic forces, gravity and the aerodynamic forces. In this model, we consider only the dy-

namic forces, gravity, and wheel/ground interaction efforts for simplification reasons. 

Interaction efforts applied to each wheel of the system are represented in the reference related 

to wheels by the vector  xi yi zi
F F F . These three components are linked together by a de-

pendency relationship defined by the wheels/ground interaction efforts of the linear model [3] 

[4] [5] [10] [22]. Taking account of the forces applied on the vehicle, the twelve following 

equations of motion is obtained as follows: 
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                                      (11) 

With
0

g : the gravitational acceleration;
v

v
w : Angular acceleration of the vehicle expressed in v 

frame; v

Gv
 is the tensor of inertia of the robot; mv is the mass. 

and: 

   0
1...4

i v
v

v
i i i i i i i

P F z k d L b d for i                                             (12) 
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With 
0iL : Initial spring length of the wheel i. 

By grouping the various equations of constraints and motion of the system (car-like robot), we 

obtain the following differential-algebraic system describing the dynamics of our system: 

 A X B                                                                        (13) 
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The numerical integration equations, with the consideration of the initial conditions, de-

scribe the dynamic behavior of the vehicle for a given time history of acceleration (or braking) 

and steering data. In this work, we used the Euler method for integrating these differential 

equations. 

3  RESULTS 

To discuss the reliability of obtained results we will validate them by comparison with 

those given by Pc-crash® accidents simulator [21]. Then, we will present some examples of 

applications of the modeling approach for different complex scenarios. In these examples, the 

applied geometrical and inertial parameters of the vehicle are summarized in Table 1. 

 

Parameters Car like robot  
Mass m 950 Kg 

Moment of inertia Ixx 1072 Kg/m² 

Moment of inertia Iyy 1342 Kg/m² 

Moment of inertia Izz 1342 Kg/m² 

Height of center of gravity 0.50 m 

Front track 1.41 m 

Rear track 1.41 m 

front wheelbase 1.04 m 

Rear wheelbase 1.50 m 

Front suspension stiffness 9.97 KN/m 

Rear suspension stiffness  6.79 KN/m 

Front dumping  897.28 N.s/m 

Rear dumping 611.01 N.s/m 

Coefficient of friction 0.70 

Radius wheel 0.25 m 

Table 1: Geometrical and inertial parameters of the vehicle. 

 

Scenario 1: Acceleration and deceleration on a straight path: 
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This scenario is described as follows (Figure 2): i) an acceleration phase for 4 seconds; ii) a 

constant speed phase for 2 seconds and iii) a deceleration for 4 seconds (the braking is distrib-

uted on the front and rear wheels). The simulation results by the developed application and 

those given by PC-Crash are illustrated in figures 3 and 4. These figures show a good correla-

tion between the results obtained by the dynamic model developed and those given by the 

software of Pc-Crash. 

Scenario 2: Dynamics of the robot during the course of a turn: 

 This scenario is described as follows: i) linear movement for 2 seconds at constant speed       

S = 15 m/s and ii) turning for 8 seconds with 100m of curvature radius. The obtained simula-

tion results are illustrated in figures 5 to 6. The curves plotted in these figures show a very 

satisfactory correlation between the results of our developed model and those given by Pc-

Crash. 

 

Figure 2: Speed of the vehicle. 

               

Figure 3: (a) Vertical and (b) longitudinal forces wheels 
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Figure 4: (a) Pitching angle and (b) elongation of spring of suspension 

               

 Figure 5: (a) Vertical and (b) longitudinal forces wheels 

               

Figure 6: (a) Pitching angle and (b) roll angle 

In the results for these two scenarios, we have already met with non-regularities of certain pa-

rameters (Figure 3b and 5b). In the first scenario, the irregular dynamic is caused by disconti-

nuities of longitudinal acceleration, while for the second scenario; is approved by the sudden 

change in curvature radius. 

4 APPLICATION TO COLLISION 

Vehicle dynamic in normal operating mode remains predominant in the literature because 

it is usually sufficient to study a wide operating range, for this; we found a very little literature 

treating the irregular dynamic of the vehicle. However, the modeling of non-regular dynamic 
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behavior of the vehicle will explain the phenomena which are introduced into the phase of an 

accident (the investigation of road accidents), and the operation of these models in vehicle 

construction or in mission planning an intervention autonomous vehicles. 

To find a solution to our problems, we will be simply made to realize, first, an analytical 

study of the constraints equations and motions equations and, secondly, the resolution process. 

The approach should ensure convergence and allow the user to obtain the desired response at 

the instants for any case. 

Simulate a collision type of accident is to replicate the response of the vehicle involved in 

the accident, before, during and after the collision. This simulation requires the development 

and implementation of three models:  

i)   The collision detection model. 

ii)  The collision force calculate model. 

iii) The model of the dynamic behavior of objects (vehicle, pedestrians ...) colliding. 

In this work, we opted for a representation, not polyhydric, very simple based on modeling of 

vehicle and obstacles in the form of rectangular objects. The algorithm that we used for colli-

sion detection is based on the calculation of the distance between the rectangular objects. The 

distance between parallelepipeds is the smallest between the edges of the facets with respect 

to each other. The distance in the configuration illustrated in Figure 7, is given by: 

 2 5/

j i j

i j i i
L R P P z                                                         (14)   

Either Li/j the smallest distance between the two parallelepipeds, whichever is negative, the 

objects collide. Otherwise, the objects are separated. 

 
Figure 7: Calculating the distance between two parallelepipeds. 

The second step of processing a collision problem is to calculate the collision forces. The 

methods used to assess these forces can be classified into three categories: the constraints 

methods, pulse-based methods and penalties methods. We chose a penalty method for the fol-

lowing reasons: i) penalties methods are implemented in several simulation software and       

ii) simplicity implementation. In this method, the collision force applied by the object i on the 

j item to the collision point, is given by:    

                   /

/
/ / / / / / / /

/

i j

i ji j i j i j i j i j i j i j j i

i j

v
F k l b l n and F F

v


 
        
 
 

                              (15) 

With /i jn  the common normal to the contact surfaces; 
/i j

k and 
/i j

b are the coefficients of stiff-

ness and damping of the two objects at the point of collision; /i jv the relative sliding velocity 
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at the contact point; 
/ /i j i j

l l dt : is the velocity of interpenetration. The value of this speed is 

calculated by a numerical derivation of 
/i j

l . 

      / / /i j i j i j
l t dt l t dt l t dt    (16) 

4.1 Simulation algorithm of vehicle’s collision 

The simulation process starts with the initial conditions (position, orientation and vehicle 

velocity). During its movement, the vehicle is subjected to the force of gravity, the 

wheels/ground interaction efforts and inertia forces. The collision forces are not taken into 

account if there is a collision between the vehicle and its environment. It is therefore neces-

sary to detect whether there is a collision or not. In a collision, it is necessary to calculate the 

impact point, the normal to the surfaces in this point and the interpenetration distance, and 

evaluate the collision forces. Then, these forces are taken into account in the vehicle dynamics. 

Once the full dynamic is calculated, the overall configuration system is updated. 

4.2 Simulation of collision vehicle/fixed obstacle 

To simulate the non-regular dynamic behavior of a vehicle collision phase. The vehicle in 

rectilinear motion with constant speed, it collides with a fixed obstacle (a wall) considered a 

perfectly rigid body. The angle α is the orientation between the vehicle speed and the normal 

to the wall (Figure 8), we considered two cases of collision: 

Case 1: a frontal collision for α = 180 ° 

Case 2: an oblique collision for α = 170 °. 

Figure 8: Collision of a vehicle with the wall. 

a) Longitudinal position b) Linear velocity
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c) Collision forces d) Pitching angle

e) Vertical forces f) Elongation of springs

Figure 9: Results obtained of frontal collision vehicle/wall.

a) Vehicle trajectory b) Collision forces
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c) Yaw angle d) Roll angle

e) Vertical forces f) Pitching angle

Figure 10: Results obtained of an oblique collision vehicle/wall.

The results obtained for the first case are illustrated in Figure 9. We note, in phase collision, a 

sharp decrease of the robot speed (Figure b). Then after the crash phase, a movement of the 

vehicle to the rear until the stoppage of vehicle (Figure 9a). This frontal collision, causes an 

inclination of the vehicle backward (change in the negative pitch angle (Figure 9d)), which 

causes an increase of the vertical forces applied to the rear wheel and a decrease in those front 

wheels (Figure 9f). 

In the second case, the vehicle changes its direction after the collision (Figure 10a) and obvi-

ously, the longitudinal component of force is higher than that of the transversal component 

(Figure 10b). The vehicle is moving at an angle of 50 ° with respect to the yaw axis and then 

stabilizes at that angle (Figure 10c), and unlike the first case, we observe a change in the roll 

angle due to the orientation of the wall (Figure 10d).  

Before the collision, the vertical forces applied on the same axle are identical. After that, we 

find that the vertical forces on the right side conversely increases the left side (Figure 10f), 

which shows that the point of application of the collision is in the driver's side. 

4.3 Validation results of the frontal collision vehicle/wall 

The validation of the collision model was performed by comparison with those given 

experimentally Crash-test [24]. For this, we have considered a vehicle of mass m = 2000 Kg 

in rectilinear motion with constant velocity v = 13.42 m/s. In this validation, we considered that 

the collision vehicle/wall is composed of two phases: 

i) A deformation phase with stiffness K1 = 1. 243 106 N / m2.
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ii) A restitution phase with a stiffness K2 = 896.6 103 N / m2.

The collision force applied by the wall on the vehicle, is defined by the following relationship: 

 

 
1
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0

0

/ /

/

/ /

w v v w v

w v

w v p v w v

k l x if l
F

k l l x if l

  
 

   

(17) 

With 
/w v

l the penetration distance of the vehicle in the wall; 
p

l : Distance from permanent de-

formation. 

a) Penetration distance (Crash-test) [24] b) Penetration distance (our model)

c) Penetration velocity (Crash-test) [24] d) Penetration velocity (our model)

e) Penetration acceleration (Crash-test) [24] f) Penetration acceleration (our model)

Figure 11: Validation results of the collision model vehicle/wall. 

Our simulation results and those given by experimental measurement Crash test are presented 

in Figure 11. We find, from these results, that the curves of the displacement, velocity and 
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acceleration of penetration are substantially the same compared with those of the experiment. 

We can say that the modeling of the head-on collision of a vehicle against a wall is correct. 

5 CONCLUSION 

In this work, we introduced the steps necessary for dynamic modeling of the vehicle. The 

first step relates to the mechanical system description. In this step, the vehicle is considered as 

a rigid body connected to the ground via the suspension system. The second step is devoted to 

the generation of system constraints equations to know the wheels/ground holding contact 

conditions and the Ackermann steering. The third step relates to the generation of the motions 

equations. While the final step is devoted to solving the system of differential and algebraic 

equations by the Euler explicit method. The validation results of the developed dynamic mod-

el was carried out by comparison with those given by the PC-Crash software. We show that 

the results are very satisfactory. Subsequently, we focused our study on the non-regular be-

havior of a vehicle during a collision with a fixed obstacle. We have proposed a method based 

on the evaluation of the distance to vehicle /obstacle interpenetration. The collision force is 

calculated, thereafter, via a penalty method. The results of this method are validated experi-

mentally with those given by Crash-test. These results show the affinity of the developed 

model. Moreover, the choice of model validation was not trivial but rather conditioned by the 

availability of middle address the same problems. 
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Abstract. Underplatform dampers (UPDs) are widely used as a source of friction damping
and are frequently incorporated into compressors and turbines for both aircraft and power-
plant applications to mitigate the effects of resonant vibrations on fatigue failure.
The need for reliable models of UPDs has led to a considerable amount of literature in the last
three decades. The standard approach is to fine-tune and experimentally validate the UPDs
models by comparing measured and calculated vibration response of blade pairs. With this
approach one cannot investigate the damper behaviour directly and no measurements of the
contact parameters can be undertaken. The experimental-numerical method proposed by these
authors overcomes this problem through the combined use of purposely developed tools:

• a test rig capable of measuring directly the damper working parameters (i.e. damper
hysteresis cycle and kinematics);

• error estimates of measured and derived forces and displacements ;

• a numerical routine representing the damper between the platforms solved either in the
time or in the frequency domain;

• a robust procedure for the estimation of friction and stiffness parameters at the contact
from experimental data.

These tools combined together offer concrete prospects of success in damper simulation and
design. On one hand, they allow mapping the values of contact parameters under different
working conditions (i.e. frequency, centrifugal load and presence/absence of damper rolling),
thus ensuring valuable predictions both at the design and at the simulation stage. On the other
hand the experimental-numerical method offers a clear understanding of all contact events
(stick, slip, lift) which take place during the cycle, and on how they influence the damping
performance. This deeper insight is the basis to actual design and optimization criteria.
Purpose of the paper is to illustrate the tools and methods through the analysis of a family
of rigid bar dampers with a curved-flat cross section. A series of diagrams fit to describe the
damper behaviour will be presented and used to estimate relevant friction contact parameters.
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Figure 1: Laboratory three-point damper a- IP hysteresis cycle b- Tangential/Normal force ratio during the cycle
c- Contact Forces Diagram

1 INTRODUCTION

The dedicated damper routine developed by the AERMEC group [1, 2, 3] combines numer-
ical simulation with a trustworthy experimental approach for these reasons:

• experimental observations can be used as a benchmark to draw the appropriate values of
contact parameters (local friction coefficients and contact stiffness) to be used as input
to a numerical model which represents the dynamics of the damper between the two
platforms.

• the validated routine becomes a design and optmization tool.

The outcome of the design and optimization tool are highly dependent on friction interface
parameters, as demonstrated in [4]. Trustworthy predictions cannot prescind from the experi-
mental investigation of friction interface parameters, and studies on the measurement of friction
coefficients and contact stiffness values appear in the literature to this day [5].
The first part of the paper will illustrate the test rig and the numerical model applied to a three-
point laboratory damper shown in Fig. 1a-b. It will be shown how experimental data can
be used to understand the damper behaviour and then to estimate friction contact parameters.
Moreover, it will be highlighted how the simplified configuration of the three-point laboratory
damper (three equal non-conforming contacts with known positions) makes the tuning process
easier.
The second part of the paper will instead focus on two real optimized curved-flat dampers,
whose configurations (i.e. angles and depth of cut) were chosen following the pre-optimization
technique presented in [6]. The purpose of the paper is to highlight the additional effort nec-
essary to correctly model differenct contact interfaces (both conforming and non-conforming)
and to propose a robust data-processing technique to estimate contact parameters.

2 THE TEST RIG

The experimental investigation here summarized takes advantage of a test rig (Fig.2) pur-
posely developed at the AERMEC lab [1] representing a damper between two platforms.
The damper is loaded by a deadweight simulating the centrifugal force. The cable holes are
properly oriented and pass through the damper center of mass: their sections shrink down to
match the cables’ diameter in correspondence of the center of mass to exactly reproduce the
loading conditions encountered on a bladed disk.
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Figure 2: Experimental setup featuring a- the three point laboratory damper and b- a curved-flat damper

Table 1: Uncertainty on experimental data

Quantity Standard deviation
Right contact force (NR,TR) 3%(0.5N)
Left contact force (NL,TL) 3− 5%(0.7− 0.9N)

Left c. force application point 0.5 mm
Platforms relative movement (wLP − wRP ) 0.08µm

Rotation (β) 5%(0.6 · 10−4rad)

The left blade platform, which serves as input motion to the system, is connected to two perpen-
dicular piezoelectric actuators. The actuators are capable of reproducing any in-plane periodic
displacement, however the cases analyzed in this paper all reproduce the typical blades’ In-
Phase (IP) motion. The right blade platform, connected, by means of a tripod, to two force
sensors measures the contact forces transmitted between the platforms, through the damper. A
laser head measures the platforms’ relative displacement and damper kinematics.
The forces transmitted between the platforms through the damper are measured and related to
the measured relative platform movement in order to record the damper hysteresis loop (e.g
shown in Fig.3).
A complete description of the test rig components, calibration procedures and the error esti-
mation techniques can be found in [1, 7]. Table 1 lists all the measured and derived quantities
together with their level of uncertainty. These results led the authors to believe that the accuracy
of force and kinematic measurements offers a trustworthy basis on which to build the contact
parameter estimation technique.

3 UNDERSTANDING AND SIMULATING A LABORATORY THREE-POINT DAMPER

3.1 Relevant Diagrams

The hysteresis cycle in Fig.3a plots the force (vertical componentin the I-P case) transmitted
to the right platform plotted as a function of the corresponding component of the relative dis-
placement between platforms. Reference points on the hysteresis loop have been marked by a
symbol and a number, repeated on the corresponding points on other diagrams: they are useful
to guide the analysis of the cycle by cross-comparison.
For each hysteresis cycle (Fig.3a) a set of experimental diagrams can be produced to investigate
the damper behavior. Numerical results (dashed line) are shown together with their experi-
mental match (solid line). The experimental results allow to validate the numerical model (by
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Figure 3: Laboratory three-point damper a- IP hysteresis cycle b- Tangential/Normal force ratio during the cycle
c- Contact Forces Diagram

Figure 4: Laboratory three-point damper a- Rotation against time. b- Kinematic reconstruction from marker 1 to 2
. c- Kinematic reconstruction from marker 5 to 6

comparing the two sets of results) and to estimate the contact parameters used to obtain the
simulated cycle. These diagrams are:

• T/N force ratios (Fig. 3b) : it represents the ratio of the total tangential and normal force
components on the left and right contact surfaces plotted as a function of time. The flat
portions of each line may indicate a slip phase subject to cross-confirmation by other
diagrams - on an interface: in such case the ratio T/N will represent a friction coefficient.

• Contact forces diagram (Fig. 3c): it represents -) the vectors of forces transmitted between
the platforms -) the damper surfaces and their points of application.

• Damper rotation (b) against time (Fig. 4a).

• Damper kinematic reconstruction (i.e. Fig. 4b-c): a visual representation of damper
positions with magnified (x 100) displacements and rotation.

3.2 The damper numerical routine

The interpretation of experimental results is quite complex because it requires to relate the
behaviour of forces and motions in order to assess the working mode in each part of the hys-
teresis cycle. A numerical model is then necessary to analyze each tract of the hysteresis cycle
by precisely identifying stick or slip conditions and the related exchanged forces, as shown in
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Figure 5: Damper numerical routine featuring a Laboratory damper b Curved-flat damper

Table 2: Step by step analysis of the cycle in Fig. 3-4

Stage TL/NL NL position DL1 DL2 TR/NR DR

1-2 Varying on DL2 Separation Stick Varying Stick
2-3 ≈ Constant b/w DL1 and DL2 Slip+ Slip+ Varying Stick
3-4 Constant on DL1 Slip+ Separation Constant Slip−
4-5 Constant on DL1 Slip+ Separation Varying Stick
5-6 Varying b/w DL1 and DL2 Slip+ Stick Varying Stick
6-1 Constant on DL2 Separation Slip+ Varying Stick

Table 2. A functional scheme of the numerical model adapted to both damper configurations is
shown in Fig. 5. All contact interfaces are modeled using an Iwan-type contact model which re-
quires three contact parameters: normal and tangential contact stiffness and friction coefficient.
A complete description of the damper numerical routine, which can be solved either in the time
or in the frequency domain, can be found in [1] and [2].

3.3 Estimation of contact parameters

3.3.1 Friction coefficients

Friction coefficients are estimated using the T/N force ratios (Fig. 3b). The right one poses
no problem since there is only one contact point on that side of the damper. The left surface is,
on the other hand, the result of the combination of the two contact points. Initially µL1 = µL2 is
assumed, and by considering in addition another tract where only one of the left contact points
is actually in contact and is slipping (e.g. stage 3-4 for µL1 and stage 6-1 for µL2 referring to
Fig. 3b-c) µL1 and µL2 can be determined. The resulting values of friction coefficients are in
this case : µL1 = 0.22, µL2 = 0.34 and µR = 0.4.

3.3.2 Contact stiffness values

Since all contact points share the same geometry it is here assumed that they all share the
same normal and tangential stiffness values kn and kt. The normal contact stiffness kn was
estimated using the normal displacement-normal force curve of a cylinder pressed against a
plane[9]-[10].
The tangential contact stiffness was estimated using the full-stick (all contact points in contact
and in stick) cycle slope of the OP hysteresis cycles (here not shown)[1]. It shold be noted that
this slope is the same in all investigated cases and does not change when the platform starts
closing. This due to the fact that during that stage all contact points are repeatably in the same
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contact condition. The cycle slope is a composite effect of normal and tangential stiffness
values at all contacts. The resulting values of contact stiffness are in this case : kn = 2.4N/µm,
kt = 1.6N/µm.

4 LIMITS OF THE CURRENT PRACTICE ON LABORATORY UPDs INVESTIGA-
TION

The methods developed for the three-point laboratory damper are successful in exploring
and understanding its behaviour, however several shortcomings still remain to be tackled.

1. The laboratory damper here analyzed is a non-optimized configuration (i.e. large rolling
motion caused by contact point lift-off minimizes the dissipated energy per cycle).

2. In order for the design tool to be effective, its simulation capabilities have to include
dampers with other geometries (i.e. curved-flat damper as shown in Fig.1)

These authors have tackled point 1 in [6], by proposing a pre-optimization method for curved-
flat UPDs. This method was successful in identifying and excluding those damper configu-
rations (choice of θL, θR and h shown in Fig. 1c) leading to undesirable damper behaviour
(contact point lift-off, jamming etc.).
Concerning point 2, a few successful attempts to model curved-flat UPDs have been presented
by these authors [2, ?]. However some of the assumptions made for the three-point laboratory
damper are not valid for other damper geometries, for instance:

• number of contact points on the flat side;

• position of the contact points on the flat side;

• contact stiffness values of the flat side are potentially different from those representing
the cylindrical contact point.

These differences make the tuning procedure described in 3.3 not completely suitable when
estimating contact parameters relative to the curved-flat dampers-platforms interface. The pur-
pose of this paper is to overcome these shortcomings by proposing a new method with a solid
experimental basis and a fine data processing technique.

5 EXPLORING CURVED-FLAT DAMPERS

5.1 Selected configurations

As mentioned before the selected damper configurations are the result of a pre-optimization
process which aims at maximizing the dissipated energy [6]. The parameters which influence
the damper behaviour are (see Fig.1):

• the non-dimensional ”residual radius” h/r;

• the angles of the platforms θR and θL.

• the value of the friction coefficients µR and µL;

The selected damper configurations are:

• A: θL = 550, θR = 650, h/2 = 0.2
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Figure 6: a Hysteresis cycles and b Damper rotation signals for an applied centrifugal load of CF = 4.65kg and a
5 Hz ±30µm IP imposed displacement

• B: θL = 350, θR = 650, h/2 = 0.2

While h/r,θL and θR are parameters the designer can act upon, friction coefficients are unknown
constraints measured a-posteriori.
Figure 6 shows the hysteresis cycles and the rotation signals for the two curved-flat damper con-
figurations and for the above mentioned laboratory damper. The boundary conditions imposed
to the dampers (i.e. centrifugal load, imposed displacement and frequency) are the same for all
three cases. The results shown here were produced by a 5 Hz excitation because the signals are
cleaner and easier to manipulate. However, it should be noted that contact stiffness values did
not change for all investigated frequencies (i.e. up to 160 Hz).
Severe differences are noted among the three configurations:

• force levels: the curved-flat damper which display a set of friction coefficients (µR =
0.65, µL = 0.5) and (µR = 0.78, µL = 0.5) for configurations A and B respectively,
ensure slip force levels higher than those encountered for the laboratory damper (µR =
0.4, µL ≈ 0.3).

• Configuration A (i.e. choice of angles and parameter h/r) manages to avoid lift-off com-
pletely, as shown by the rotation signal in Fig. 6, and thus to maximize the dissipated
energy.

• Configuration B does encouter some lift-off and therefore a larger rotation, it is however
a significant improvement if compared to the laboratory damper.

6 CONTACT PARAMETERS ESTIMATION FOR CURVED-FLAT DAMPERS

Both the pre-optimization technique presented in [6] and the damper numerical routine itself
need a robust model of contact interfaces. The purpose of this section is to present the new
configuration introduced in the numerical routine to model a curved-flat damper and the new
experimental capabilities developed at AERMEC to estimate the relevant contact parameters.
This section will focus on the contact point position and on the contact stiffness values. The
technique to estimate friction coefficients developed for the three-point laboratory damper can
be applied without further modifications to any other damper configuration.
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Figure 7: Curved-flat damper a- IP hysteresis cycle b- Tangential/Normal force ratio during the cycle c- Contact
Forces Diagram

6.1 Contact points number and position

While the number and position of contact points used to model the laboratory UPD (see Fig.
5a) was determined by the damper configuration itself, while the flat portion of the curved-flat
damper requires additional attention. A few successful attempts to model a curved-flat UPD
using only two contact points on the left side have been carried out in the past [2]. However,
without additional experimental evidence the system is under-determined and selecting the po-
sition of the contact points and the contact stiffness values requires a cumbersome case-by-case
fine-tuning procedure. Section 6.1.2 proposes a novel method to estimate the normal contact
stiffness per unit length. Therefore it is sensible to envision a series of contact points uniformly
distributed over the contact interface, the higher the number of contact points, the finer the
representation of the interface.

6.1.1 Contact stiffness values

As mentioned before the contact stiffness tuning technique developed for the laboratory
damper is not valid anymore. While the normal contact stiffness on the right (i.e. cylindri-
cal) side can still be deduced using the normal displacement-normal force curve of a cylinder
pressed against a plane[9]-[10], the remaining unknowns (ktL, ktR and knL) need additional
information which can only be provided by a robust experimental basis.

6.1.2 Normal contact stiffness at the flat interface

Referring to Fig. 8 it is possible to write the expression of the rotation β at a given instant in
time as:

β =
n(x)

x− (L
2
− 3a)

(1)

where n(x) is the displacement in the normal direction at a given position x of the flat interface.
The reference system x is parallel to the contact and its origin lies in the middle of the flat
interface. Let us divide the flat interface into k segments each ∆x long. If the normal stiffness
is uniformly distributed the normal stiffness pertaining to one of these segments is:

kni =
dknL
dx
·∆x 1 ≤ i ≤ k (2)
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If the force per unit length q(x) is known, e.g. q(x) = qmax

3a
· (x − (L

2
− 3a)), it is possible to

substitute the expression of n(x) inside Eq. 1.

β =
q(x) ·∆x

dknL

dx
∆x · (x− (L

2
− 3a))

(3)

where a represents the distance between NL application point and the nearest flat surface edge,
as shown in Fig. 8b. If the force is uniformly distributed q(x) will act on a portion of flat surface
3a long.
It is possible to express q(x) as a function of the moment M produced by the resultant NL

around the origin shown in Fig. 8a.

M =
∫ L

2

L
2
−3a

qmax

3a
(x− (

L

2
− 3a)) · x · dx (4)

=
3

2
qmax · a · (

L

2
− a)

Substituting Equ. 4 in Equ. 3, it is possible to express dknL

dx
as:

dknL
dx

=
q(x)

β
(5)

=
2M

9a2 · (L
2
− a)

(6)

Figure 8c plots 2 ·M against 9a2 · (L
2
− a) for the case shown in Fig. 7. The slope highlighted

in the figure is the normal contact stiffness per unit length. The shape is slightly distorted:

• for low values of rotation/moment: this is due to the fact that the assumption made in
Equ. 3 (i.e. that rotation and moment signals in time are synchronous) is not perfectly
true due to minor distorsions caused by spurious movements of the left platform;

• close to markers 1/5: during those stages the left contact force resultant NL application
point is close to the lower edge, a situation similar to lift-off where the length of a− > 0
.

The resulting values of dknL

dx
for both configurations of curved-flat UPDs are reported in Table

6.1.2. The results have been repeated on both tracts (i.e. ascending and descending) of the shape
in Fig. 8c and repeated using repeated independent measurements.

6.1.3 Tangential Contact Stiffness values

The tangential contact stiffness values are derived directly from experimental data. The
available laser heads are pointed on damper and platform protrusions purposely machined to be
perpendicular to the contact surfaces, as shown in Fig. 9a.
The laser signal is then plotted against the corresponding tangential force (TR or TL respec-
tively), as shown in Fig. 9 b and c for the curved-flat damper (configuration A). It should be
noted that the tangential force on the cylindrical side TR is measured using the load cells, while
the tangential force resultant on the flat side TL is reconstructed using the procedure described
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Table 3: Flat interface normal contact stiffness per unit length

Damper configuration Centrifugal Load Repetition dknL

dx
(N/mm2) σ(N/mm2)

A 4.65 kg 1 18900 1387
A 4.65 kg 2 19004 1831
A 8.65 kg 1 18054 847
A 8.65 kg 2 19393 669
B 4.65 kg 1 1334 362
B 4.65 kg 2 1231 79
B 8.65 kg 1 6412 558
B 8.65 kg 2 6586 581

Figure 8: a- Scheme representing the flat surface model. b- Force component NL and corresponding force per
unit-length on the flat surface at marker 3 for the cycle in Fig. 7a. c- Flat interface normal contact stiffness per unit
length relative to the cycle shown in Fig. 7.

Figure 9: a- Functional scheme representing the experimental procedure used to estimate the tangential contact
stiffness values b- Hysteresis at the right contact c- Hysteresis at the left interface
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Figure 10: Curved-flat damper a- IP hysteresis cycle b- Tangential/Normal force ratio during the cycle c- Contact
Forces Diagram

in Fig.1a.

For each contact interface the stages corresponding to a stick state are identified using the
Tangential/Normal force ratio diagram (i.e. in Fig. 7b). The stages are ”1-3” and ”4-5” for the
right interface and ”1-2” and ”4-5” for the left one. Out of these tracts only those highlighted
in Fig. 9 b-c are used to estimate the tangential stiffness values. In particulare stage 2 − 3
for the right interface and stage ”1-2” for the left one are neglected due to spurious platforms’
movements.
For each identified tract the central portion of the slope is singled out and fitted using a least
square method. The resulting values are plotted against their respective normal load levels at
the interface (see Fig. 10) , together with their standard deviation.
It should be noted how the right tangential stiffness (i.e. on the cylindrical side) is not influenced
by variations of the normal load, while the one on the flat side increases with increasing normal
load. This may be due to the conforming nature of the flat contact interface.

7 CONCLUSIONS

This paper focuses on a coupled experimental-numerical approach to investigate, simulate
and understand under-platform dampers behaviour. The paper highilights the strengths of this
method, but also its limits concerning the estimation of friction contact parameters, with a par-
ticular emphasis on contact stiffness values.
A novel procedure and data processing technique is therefore proposed to overcome these limits
and give reliable indications to the damper designer concerning the values of contact parameters
to be used as input to the damper numerical routine. A sample of results is discussed in order
to show, in practice, the technique to estimate the contact parameters (tangential stiffness on
the cylindrical side and both tangential and normal contact stiffness on the flat interface) start-
ing from the experimental results. Each measured quantity is assigned a level of uncertainty
and the data processing technique gives an indication of the reliability of each derived quan-
tity. These authors believe that this work constitutes a reliable basis to build a design tool (i.e.
validated damper numerical routine) capable of giving trustworthy predictions in the frame of
asymmetrical damper design and optimization.
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Abstract. This work is devoted to the development of a new dynamic substructuring method
inspired by classic fixed-interface component mode synthesis, in order to compute the steady-
state vibrations of dissipative, nonlinear structures. For each substructure, the displacement
field is sought as a multiharmonic oscillation made of standard static mode shapes, supple-
mented by the eigenvectors of the nonlinear complex modes of the substructure computed with
fixed-boundary conditions. The method eventually leads to a strongly reduced nonlinear alge-
braic system, easily solved by iterative solvers. The procedure is tested on a lumped parameter
model of bladed disk subjected to dry friction nonlinearities, with or without structural mis-
tuning, and proves very efficient in terms of computational cost. These results emphasize the
promising capabilities of this new reduced-order modeling technique to tackle such nonlinear
systems exhibiting high modal density.
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1 INTRODUCTION

Reduced-order modeling has always been a key problematic in computational mechanics.
Despite the soaring hardware and software capabilities offered by modern electronics and com-
puting, finite element analysis of large scale industrial systems remains challenging when some
complex and nonlinear phenomena are to be included in the design process. Component mode
synthesis (CMS) methods [1, 2, 3, 4] have been widely used in structural dynamics, but can
unfortunately prove ill-suited to the study of nonlinear systems when a large number of degrees-
of-freedom (DOF) are impacted by strong nonlinear effects. For such systems, standard tech-
niques may indeed fail to find a satisfying compromise between order-reduction and accuracy,
due to the lack of representativity of the reduction basis. From this perspective, owing to their
ability to capture the essence of the nonlinearities [5, 6], nonlinear complex modes are inter-
esting candidates in devising new effective and efficient approaches to reduce nonlinear models.

In bladed-disk dynamics, the loss of cyclic symmetry of the structures, referred to as mistun-
ing, has been a leading subject of research, first tackled by a few authors in the 1960s [7, 8, 9, 10]
and widely studied since then [11]. This phenomenon mainly denotes the discrepancies be-
tween the blades of the assembly, resulting for instance from the manufacturing process and
in-operation wear, but which can also be intentionally introduced in the nominal design. Even
though the mistuning of cyclic structures is known to potentially induce a significant increase
in the vibration level, it has also proved, indeed, to improve the robustness of the design against
hazardous instabilities such as flutter. In order to perform quantitative analyses on industrial
models, several mistuning dedicated reduced-order modeling techniques have been devised to
efficiently handle large scale systems [12, 13, 14, 15]. Unfortunately, most of them are not ap-
plicable in the presence of nonlinearities, hence the need for further endeavours devoted to the
reduced-order modeling of nonlinear, mistuned cyclic structures.

In the present paper, a new approach is proposed to build reduced-order models of nonlinear
and dissipative systems. The method does not require any cyclic or nearly-cyclic symmetry
assumption, and can thus be directly applied to the study of strongly mistuned bladed-disks.
The procedure mimics a standard Craig-Bampton CMS, but makes use of the notion of non-
linear complex modes to build nonlinear superelements, including all internal nonlinear DOFs
in the reduction basis. The resulting algebraic system can thus be much smaller than that of
a standard harmonic balance method (HBM), which requires to retain all nonlinear DOFs as
master coordinates. The flexibility of nonlinear complex modes [5, 6, 16] makes this reduction
technique suitable for the study of a broad range of nonlinearities, dissipative and non-smooth
ones included.

In Section 2, the main steps of the computation of nonlinear complex modes are first re-
minded, and the nonlinear superelement equations are derived. A lumped-parameter model of
bladed-disk exhibiting dry friction nonlinear elements is then used in Section 3 to illustrate the
capability of this new technique. First, the method is tested on a tuned system, and is then used
to synthesise the response after application of a random mistuning pattern. Section 4 presents
the performance of the procedure, and its potential limitations.
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2 NONLINEAR COMPONENT MODE SYNTHESIS

This section aims at summarizing the main steps to build a nonlinear superelement. The
computation of nonlinear complex modes is briefly reminded in Section 2.1, and the notion
is illustrated on a basic 2-DOFs system. In Section 2.2, the system of equations defining a
nonlinear superelement are then derived. As mentioned in the introduction, this new reduced-
order modeling procedure shares some similarities with classic CMS methods, and is hereafter
referred to as CNCMS, for component nonlinear complex mode synthesis.

2.1 Nonlinear complex modes

The concept of nonlinear mode is nowadays well established in the community of nonlinear
dynamicists. A comprehensive review listing all major contributions and techniques applica-
ble to structural dynamics is proposed in [17]. Nonlinear complex modes are an extension
of nonlinear normal modes to dissipative systems, that aims at taking advantage of numerical
and frequency-based formulation such as the harmonic balance method to compute the free
vibrations of damped nonlinear structures. First introduced in [5], they have proved tremen-
dously interesting to study all sorts of nonlinear systems [6, 16, 18], and are fundamentals to
the reduced-order modeling technique presented here. Only a brief reminder is provided here
to introduce some notations, but more details can be found in [5, 6, 16, 18].

Nonlinear complex modes refer to pure or pseudo-oscillations of the system of nonlinear
differential equations (1). The terms are defined in a classic manner, with M the mass ma-
trix, C the viscous damping matrix, K the linear stiffness matrix, and fnl a term of nonlinear
restoring and dissipative forces.

Mẍ(t) + Cẋ(t) + Kx(t) + fnl(x, ẋ) = 0 (1)

The n-th mode xn is approximated by a truncated series of damped oscillations of fundamental
frequency ωn and modal damping βn, such that with λn = −βn + iωn and c.c. referring to the
complex conjugate terms,

xn(t) =
1

2

{
nh∑
k=1

x̂n,ke
ktλn + c.c.

}
(2)

Similarly to standard Galerkin methods, the approximation (2) is then substituted into the gov-
erning equations (1), and the orthogonality of the residual to the subspace spanned by the func-
tions {ek = eiktωn}, ∀k ∈ [[1, nh]], is enforced, with respect to the inner product (3) where g(t)
is the complex conjugate of g(t). In order to take advantage of the orthogonality property of the
complex exponential functions, the solution is assumed to be undamped over the period T used
in the inner product, which has proved to have a negligible effects on the accuracy of the results
(see [5] for further information).

〈f |g〉 =
2

T

∫ T

0

f(t)g(t)dt , with T =
2π

ωn
(3)

The resulting algebraic system (4) is the eigenproblem corresponding to the nonlinear com-
plex mode xn, where the term 〈fnl|ek〉 potentially couples all the equations. This system is
underdetermined and must be supplemented with two equations, classically in the form of a
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phase condition and a continuation scheme, which are not detailed here. The interested reader
is referred to [18] for further information.

∀k ∈ [[1, nh]] :[
(kλn)2M + (kλn)C + K

]
x̂n,k + 〈fnl|ek〉 = 0

(4)

The flexibility of nonlinear complex modes arises, among other things, from their applicabil-
ity to a broad range of nonlinearities, including non-smooth forces. This is made possible and
easy to implement by means of the alternating frequency-time scheme (AFT) proposed in [19],
and widely used in conjunction with harmonic balance methods [5, 16, 18]. This procedure
uses direct (F) and inverse (F−1) Fourier transforms to compute 〈fnl|ek〉 from the time-domain
definition of the nonlinear terms.

To exemplify nonlinear complex modes, let us now consider the academic system on Fig-
ure 1 subjected to a dry friction force, with the lumped-parameters taking their values in Table 1.
Figure 2 shows the variations of the first natural frequency and corresponding modal damping
as a function of the displacement amplitude |x1|. These so-called backbones are thoroughly
explained in previous papers [5, 6, 18] and will not be discussed here. However, it should be re-
membered in the following sections that nonlinear complex modes are functions of a parameter
describing the intensity of the nonlinear effects, here the amplitude of vibration |x1|, and that
the modes of friction-damped systems exhibit an optimum damping point, corresponding to a
maximum dissipation arising from the nonlinearity.

k1

c1

m1

k2

c2

m2

fnl(ẋ2)

x1(t) x2(t)

Figure 1: 2-DOFs dry-friction damped model

– (unit) m (kg) c (Ns/m) k (N/m)
DOF1 1 0.5 640
DOF2 0.02 0.5 40

Table 1: Values of the lumped-parameters for the 2-DOFs system

2.2 Nonlinear superelement

This section is dedicated to the derivation of the equations governing one superelement, built
by means of nonlinear complex modes. Each substructure being treated indepedently, the non-
linear superelement could be perfectly used in conjunction with standard CMS superelements
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Figure 2: Nonlinear natural frequency and modal damping of the 2-DOFs model

using linear modes. This reduced-order model is devoted to the study of forced vibrations aris-
ing from harmonic or multi-harmonic excitations, of the form given in Eq. (5) where Ω is the
fundamental forcing frequency.

fe(t) =
1

2

(∑
k

〈fe|ek〉eikΩt + c.c.

)
(5)

The displacement of the substructure is sought as a multi-harmonic oscillation (6) made of
nonlinear eigenvectors ϕn,k corresponding to fixed-interface nonlinear complex modes, supple-
mented by linear static modes ψs,k as in a standard fixed-interface CMS [1]. The generalized
coordinates qn and ps corresponding to the nonlinear complex modes and static modes, respec-
tively, are the new unknowns of the problem.

x(t) =
1

2

(∑
n

qn
∑
k

ϕn,k(|qn|)eikΩt +
∑
s

ps
∑
k

ψs,ke
ikΩt + c.c.

)
(6)

The relation between the nonlinear eigenvectors ϕn,k and the k-th harmonics x̂n,k in Eq. (2) is
given by Eq. (7).

x̂n,k = qnϕn,k (7)

In the following, the vectors ψs,k are all taken equal to the standard static modeshapes of a
Craig-Bampton CMS, given by Eq. (8) when the DOFs are partitionned into a set of internal
(subscript i) and boundary (subscript b) DOFs, although different vectors could be used.

∀k ∈ [[1, nh]] :

ψs,k = −K−1
ii Kib with K =

[
Kii Kib

Kbi Kbb

]
(8)
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As mentioned in Section 2.1 for the 2-DOFs model, the modal parameters ϕn,k and λn are
functions of a parameter describing the activation of the nonlinearity. In Eq. (6), this parameter
is the amplitude |qn| of the coordinate of the corresponding mode. In theory, since the mode
is complex, two variables should be used to describe its variations (i.e. the real and imaginary
parts of qn), but it was shown in [5] that chosing only the amplitude |qn| yields excellent results
for dry-friction nonlinearities. In the following equations, the dependency of ϕn,k and λn on
|qn| is implied.

In accordance with Galerkin methods, the approximation (6) is substituted into Eq. (1), af-
ter addition of the external forcing fe from Eq. (5) on the right hand side, and the residual is
orthogonalized to the subspace spanned by the functions {ek = eikΩt} with respect to the inner
product (3). The operation yields,

∀k ∈ [[1, nh]] :[
(ikΩ)2M + (ikΩ)C + K

]{∑
n

qnϕn,k +
∑
s

psψs,k

}
+ 〈fnl|ek〉 = 〈fe|ek〉

(9)

As performed in [6] in a modal synthesis procedure, the term 〈fnl|ek〉 is replaced by the sum
of the analogous vectors in the eigenproblem (4), which yields the set of equations (10), where
the second line accounts now for 〈fnl|ek〉. The matrix K̃ differs from the matrix K owing to the
fixed boundary conditions enforced during the computation of the modes.

∀k ∈ [[1, nh]] :∑
n

[
(ikΩ)2M + (ikΩ)C + K

]
qnϕn,k

−
∑
n

[
(kλn)2M + (kλn)C + K̃

]
qnϕn,k

+
∑
s

[
(ikΩ)2M + (ikΩ)C + K

]
psψs,k

−〈fe|ek〉 ≈ 0

(10)

Finally, the residuals (10) are orthogonalized to the subspace spanned by the basis vectors ϕn,k
and ψs,k with respect to the classic Hermitian form in Cn. The whole process leads to the
set of algebraic equations (11) governing the motion of a substructure, where •† refers to the
Hermitian transpose.

∀k ∈ [[1, nh]] :

ρk =

[
Φ†n,k (ZkΦn,k − ξk) Φ†n,kZkΨs,k

Ψ†s,k (ZkΦn,k − ξk) Ψ†s,kZkΨs,k

]{
q
p

}
−

{
Φ†n,k〈fe|ek〉
Ψ†s,k〈fe|ek〉

}
= 0

(11)

with Zk = [(ikΩ)2M + (ikΩ)C + K] and ξk =
[
MΦn,kΛ

2
nk

2 + CΦn,kΛnk + K̃Φn,k

]
the

dynamic stiffness matrix and the term arising from the substitution of each 〈fnl|ek〉 from the
eigenproblems, Φn,k and Ψs,k the matrices made of the column vectors ϕn,k and ψs,k, Λn a
diagonal matrix made of the nonlinear eigenvalues distributed along the diagonal, and q and p
the column vectors listing the general coordinates qn and ps respectively.
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The reduced-order order model of the global system is eventually built by coupling the sub-
structures through the generalized coordinates corresponding to the static modeshapes, ps. If
more than one harmonic is kept in the series expansion (2), which is typically the case for
strong and non-smooth nonlinearities such as contact and friction, the resulting system is over-
determined. However, one could, as a first approximation, discard the equations for which
〈fe|ek〉 = 0, which has proved to have a neglictible impact on the accuracy of the results. In the
case of a mono-harmonic excitation, as in Section 3, the resulting system of equations is thus
square.

Whether the system dealt with is over-determined or square, it is clearly nonlinear due to
the dependency of the modes over the amplitude of their coordinates |qn|, and must be solved
iteratively by standard routines available in most commercial computing softwares. In practice,
ϕn,k and λn are known for discrete values of |qn| from the nonlinear mode computation per-
formed beforehand, and it requires now that they be interpolated at each iteration of the solver,
which is readily achieved by linear or cubic interpolations.

3 NUMERICAL EXAMPLES

The dynamic substructuring method derived in Section 2 is now tested on a lumped-parameter
model of bladed-disk, first on a tuned system, and then on the mistuned model, in order to
demonstrate its efficiency in dealing with such complex and rich systems.

3.1 Lumped-parameter model

The cyclic model devised in this section aims at being representative of the phenomenology
encountered in bladed-disk dynamics. It consists of identical sectors such as shown on Fig-
ure 3, with structural parameters taking the values reported in Table 2. The viscous damping
parameters are defined so as to set the linear modal damping ratio of the first mode to 0.1%.
Throughout the study, the maximum harmonic number nh is set to 5, which has proved to pro-
vide a sufficient accuracy for the purpose of such analyses, and the nonlinear force arising from
the dry-friction element is modeled by a hyperbolic tangent law [18].

– (unit) Tip Middle Root Disk Ground
m (kg) 0.2 0.3 0.4 1.2 –
c (Ns/m) 1.3 0.7 26.7 33.3 0.4
k (106·N/m) 2 1 40 50 0.6

Table 2: Values of the parameters for the fundamental sector

In order to obtain clear and legible response curves for the mistuned system in Section 3.3,
a model with only 12 sectors is used throughout Section 3.2 and Section 3.3. However, the
performance of the method are appraised in Section 4.1 for 72 sectors, so as to deal with a more
significant number of nonlinear DOFs, and thus assess the practical capabilities of the CNCMS.

3.2 Tuned system

The superelement of one sector is built from one nonlinear complex mode and two static
modeshapes. Of course, for this tuned case, cyclic boundary conditions could have been applied
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Figure 3: Fundamental sector of the cyclic model

to compute the mode, thus restricting the study to cyclic solutions. The system is first subjected
at the blade tips to a travelling wave excitation, standard in bladed-disk dynamics, with 6 nodal
parameters and for various excitation levels. In accordance with the linear theory of cyclic
systems, the frequency response exhibits one resonance corresponding to the double mode with
6 nodal diameters. Figure 4 shows the perfect agreement of the solution obtained by CNCMS
with the reference, computed by means of a classic harmonic balance method (HBM), even for
a strong activation of the nonlinearities. The shift of the resonance toward lower frequencies
as the amplitude of the response increases is characteristic of friction damped systems, and is
a direct consequence of the evolution of the nonlinear natural frequencies that can be observed
on Figure 2.

3.3 Mistuned system

An interesting application of the reduced-order modeling technique presented in this paper
is the study of nonlinear and mistuned cyclic structures. In order to prove that the method can
effectively handle such systems, the lumped-parameter model of Section 3.1 is modified by
defining a new type of sector, with different tip and middle stiffness values, so as to shift the
first natural frequency by 5% from that of the initial sector. The values taken by the structural
parameters of this new sector are reported in Table 3. The fundamental sector A of the tuned
model and this new sector B are then distributed according to a randomly generated pattern
given in Table 4. The first nonlinear complex mode of each sector type is computed and used to
build two different nonlinear superelements, which are then assembled in accordance with the
mistuning pattern to build the reduced-order model.

The response of the mistuned system is computed for a travelling wave excitation with 6
nodal diameters, at a strong nonlinear level, and compared to the reference on Figure 5. As
a consequence of the mistuning pattern, the response non longer exhibits one single peak, the
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Figure 4: Response to a travelling wave excitation with 6 nodal diameters, for 5 excitation amplitudes (CNCMS in
blue solid lines and HBM in black dashed lines)

– (unit) Tip Middle Root Disk Ground
m (kg) 0.2 0.3 0.4 1.2 –
k (106·N/m) 1.8 0.9 40 50 0.6

Table 3: Values of the parameters of sector B

Sector 1 2 3 4 5 6 7 8 9 10 11 12
Type A B A A B B B A A B A B

Table 4: Mistuning pattern
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travelling wave exciting now all the modes in the frequency range. Even though some small dif-
ferences can be observed, the accuracy of the solution synthesised by CNCMS is very satisfac-
tory. The origin of these differences is adressed in Section 4.2, and should be put in perspective
with the complexity of the response and the computational efficiency of the method, discussed
in Section 4.1.
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Figure 5: Response of all the blades of the mistuned system for a travelling wave excitation with 6 nodal diameters
(CNCMS in blue solid lines, HBM black dashed lines)

4 DISCUSSION

This section briefly discusses the performance of the proposed reduced-order modeling tech-
nique. The efficiency of the method in terms of computational effort is first appraised, as well
as the actual order-reduction obtained. The range of validity of the assumptions made is also
adressed.

4.1 Performance

Figure 6 shows the ratio of the time required to compute the solution on a model with 72 sec-
tors by HBM, normalized by the time required by CNCMS, for different excitation amplitudes
F . Even close to the linear domain (F=1N), the CNCMS is about already 80 times faster than
the HBM, and is up to 190 times faster when the system is extremely nonlinear (F=10N). Close
to the optimum damping point (F=5N), mentioned in Section 2.1 and where it can be interesting
to operate industrial systems, the ratio is close to 135, which highlights the outstanding poten-
tial of the CNCMS. The local maximum observed for F=4N also points out that the pattern of
the nonlinear effects, besides the excitation level, can impact the performance of standard HBM
methods when compared to the CNCMS.

The computational efficiency of the method clearly stands out in this study. It should how-
ever be pointed out that on the relatively small lumped-parameter model used here, the reduction
capability of the CNCMS was not fully taken advantage of. On a larger model, the reduction
arising from the use of nonlinear complex modes, allowing to drop all internal DOFs, would
indeed be significantly more effective, and the computational performance of the method might
prove even more impressive.
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Figure 6: Computation time ratio between HBM and CNCMS

4.2 Limitations

In Section 3, some very small differences between the results obtained by CNCMS and
the HBM reference could be observed. This could be explained by the fact that the model
used here does not fully satisfy the assumptions made to derive the nonlinear superelement
equations. In Eq. (6), the approximation of the displacement field for a given substructure uses
indeed linear static modeshapes to account for the motion of the boundaries, which is quite
understandable when it comes to actual blade-disk friction. On the lumped-parameter model
of Section 3, however, the dry-friction elements are directly linked to the boundaries, which
makes this approximation a bit bold. Nevertheless, the HBM reference curve is accurately
approximated eventually, which allows to appraise the robustness of this new method.

5 CONCLUSION

The dynamic substructuring technique presented in this paper, the CNCMS, proved very
promising for the study of forced vibrations in nonlinear structures. The method proved to han-
dle quite well cases of neighboring resonant modes, and excellent computational performance
has been obtained on a phenomenological model of mistuned bladed-disk, with a computation
time about 135 times smaller than with standard and state-of-the-art HBM methods. Although
devised initially in order to provide a new and efficient way to tackle problematics in bladed-disk
dynamics, and allow to combine the presence of nonlinearities and mistuning, the procedure is
flexible and could be applied to other types of nonlinear systems. Furthermore, the similarities
between the CNCMS and the classic fixed-interface CMS perfectly allow to combine the two
methods to build nonlinear and linear superelements, respectively, and build a hybrid reduced-
order model by assembling these superelements.

Future prospects of this work could involve testing the procedure on other kind of non-
linearities, such as large deformation, or extend it to other CMS methods such as free-interface
CMS. The implementation of the method on a large-scale 3D-model is an ongoing project of
the authors, in view of assessing its potential for real, industrial structures.
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Abstract. This paper focuses on the application of time integration methods to rotor-stator
assembly modeled by Finite Element Method. In particular the average acceleration method
(which is implicit) and the central differences method (which is explicit) are examined. Both
belong to the Newmark’s time integrator family and are widely used. It is found that the first
one is unstable due to the periodic kinematic constraints linking the rotating to the non rotating
parts of the structure. A proposed remedy is to add numerical damping leading to the implicit
HHT and α-generalized schemes. Concerning the integration with an explicit scheme, it is
demonstrated that a classical implementation lead to a vanishingly small critical time step
because of the strong gyroscopic effects. An exact implementation of this kind of scheme is
proved to maintain the value of the critical time step.
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1 INTRODUCTION

The need to fully control the dynamical behavior of rotors is motivated by rotors machinery
more and more complex operating in more and more severe conditions. Modeling capacities
are often wished to ensure the lowest cost of design and maintenance and the highest safety
margins.

To this end, this work focuses on the computation of the time response of a three-Dimensional
Finite Element model (3D-FE model) enabling to represent the behavior of a complex rotor-
stator assembly.

First, a three-Dimensional modelin the Finite Element software Cast3M [1] is considered,
following the work of Combescure and Lazarus [2]. As pointed out by Geradin and Kill [3] and
Chatelet et al. [4], compared to one-dimensional models (1D models), 3D-FE models exhibit
better accuracy for evaluating stiffness of disc and wheel-shaft assembly. They are also required
when dealing with non-axisymmetric geometry like bladed disc. They however imply an higher
computational cost and some reduction techniques are necessary in industrial cases.

Time integration methods is widely viewed as the more direct manner to predict the dynamic
response of a mechanical structure to a given loading in presence of some non-linearities. This
general fact remains true in rotordynamics as pointed out by Genta [5] Alternatives in the fre-
quency domain (like the Harmonic Balance Method for example) exist but their use is not
always straightforward.

Hence, the present paper aims at presenting the specificity of time-integration methods when
applied to a 3D rotor-stator assembly, exhibiting some little known numerical instabilities and
their possible remedies.

2 MODELING 3D ROTOR-STATOR ASSEMBLY

2.1 Equation of motion of a 3D rotor-stator assembly

The more ”natural” approach to model the vibrations of a rotor discretized by non-beam-
element is to consider its motion in the rotating frame R′ = {O′, e′1, e

′
2, e

′
3}. This one is rep-

resented on figure 1. A simple rotation defined by the angular velocity Ω around the first axis
(e1 = e′1), links this frame to the non-rotating Galilean frameR.

The position and displacement of a point P defined in the rotating frame by its relative
coordinate can be expressed in the inertial frame by the rotation of angle Ωt and the translation
of the origin s = OO′. Following Argyris [6] for example, the position y of P is given by the
coordinate x+ u inR′, and the coordinate y of this point inR are expressed by:

y = OP = OO′ +O′P (1)

y = s+ [R](x+ u)

where [R] =
[
e′1 e′2 e′3

]
is the orthonormal matrix of the basis vectors of R′ expressed in R,

and s is the coordinate of OO′ inR.
To deal with vibrations, velocity and acceleration have to be computed. The derivation of

basis vector is simply:

ė′i = Ω ∧ e′i (2)

Then velocity and acceleration in the inertial frame can be derived as:

ẏ = ṡ+ ẋ+ u̇ (3a)

ẏ = ṡ+ [R]u̇+ Ω ∧ ([R] (x+ u))
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Figure 1: Definition of non-rotating (also called inertial) and rotating frames

ÿ =s̈+ [R]ü+ Ω̇ ∧ ([R] (x+ u)) + Ω ∧ Ω ∧ ([R] (x+ u)) + 2Ω ∧ ([R]u̇) (3b)

[R]T ÿ =[R]T s̈+ ü+ Ω̇∧ (x+ u) + Ω ∧ Ω∧ (x+ u) + 2Ω∧u̇

The third term of the Right-Hand-side of Eq. (3b) is the Euler term and is zero as long as
the spin speed is constant. The fourth term refers to the centrifugal effect acting in the radial
direction. The last therm of the RHS is the probably the most characteristic of Rotordynamics as
it refers to the Coriolis effect which produces a pseudo-acceleration in a direction perpendicular
to the relative velocity.

The geometry of the rotor is discretized in the rotating frame with standard finite element
shape functions:

x =
∑
i

Ni(x)xi (4)

Isogeometric element are considered and displacements, velocity and acceleration are approxi-
mated in the same space of functions:

u(x, t) =
∑
i

Ni(x)ui(t)

u̇(x, t) =
∑
i

Ni(x)u̇i(t) (5)

ü(x, t) =
∑
i

Ni(x)üi(t)
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The weak form of the mechanical problem for the domain D of boundary ∂D = ∂DF ∪∂Du
is given by Eq. (6).

∀δv ∈ V 0 = {δv, so that δv = 0 sur ∂Du},∫
D
ρü · δv dD +

∫
D
σ : δe(v) dD =

∫
D
f
d
· δv dD +

∫
∂DF

F d · δv dΓ (6)

Injecting the kinematic of the rotor in the weak form of the problem, supposing that equi-
librium due to centrifugal forces is verified by a static motion generating a constant state of
stress σ0, and using the discretized approximation of these quantities, dynamic equilibrium is
obtained:

[M ]ü′ + [ΩG+ Cvisc]u̇
′ + [Kelas + Ω2Kcent +K(σ0)]u′ = F ′

ext (7)

where the Coriolis effect is G.
For the non-rotating part (i.e. the stator), the geometry and displacement are expressed in the

inertial frame. Then, the discretized equations of motion reduce to :

[M ]ü+ [Cvisc]u̇+ [Kelas]u = Fext (8)

2.2 Linking the rotating to the non-rotating frame

As depicted by figure 1, a simple change of frame enables to establish the constraint equation
between the degrees of freedom of the rotor and ones of the stator. to equal their relative
displacements : U1

U2
U3

 =

1 0 0
0 cos Ωt − sin Ωt
0 sin Ωt cos Ωt

 ·
U1′

U2′

U3′

 (9)

U = R(Ωt) · U ′

A Lagrange multiplier Λ is introduced to recast the constraint : 0 −I R
−IT 0 0
RT 0 0

 ·
Λ
U
U ′

 =

0
0
0

 (10)

soit L(Ωt) · q = 0

3 NEWMARK TIME INTEGRATION SCHEMES

3.1 Basic equations of the Newmark scheme

A large number of literature exists about time integration scheme and the Newmark’s scheme
that seems to be one of the most used in structural dynamic community (see the books of
Hughes [7], Géradin [8], Argyris [6] or Zienkiewicz [9] for example). It is often presented as a
truncated Taylor development of local quantities which is not presented here for sake of clarity.

A recurrence formula links displacement, velocity and acceleration at time tn+1 :

ün+1 =
1

β∆t2
(un+1 − un)− 1

β∆t
u̇n + (1− 1

2β
)ün (11)

u̇n+1 =
γ

β∆t
(un+1 − un) + (1− γ

β
)u̇n + ∆t(1− γ

2β
)ün
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Introducing these expressions in the dynamic equilibrium, one gets :[
1

β∆t2
M +

γ

β∆t
C +K

]
(un+1 − un) = F ext

n+1 −Kun (12)

− C
(

(1− γ

β
)u̇n + ∆t(1− γ

2β
)ün

)
−M

(
− 1

β∆t
u̇n + (1− 1

2β
)ün

)
3.2 Properties of the Newmark scheme

The accuracy and stability of the Newmark scheme depend on the value of the parameters γ
and β. Table 1 sums up the stability conditions of some different schemes for a 1-dof system
subjected to no external loading.

Scheme γ β ∆tc/∆t
e

Central difference 1/2 0 2
Fox and Goodwin 1/2 1/12 2.45
Linear acceleration 1/2 1/6 3.46

Average acceleration 1/2 1/4 ∞
Modified average acceleration 1/2 + α 1/4(1 + α)2 ∞

Runge-Kutta 4 - - 2
√

2

Fu-De Vogelaere - - 2
√

2

Table 1: Critical time step of some time integration schemes

where ∆te = min(∆xe)√
E/ρ

is the caracteristic time of an element of Young modulus E, density ρ

and internodal distance ∆xe.
The application of the central difference method to rotordynamic will be presented in the

next section. Then, the average acceleration method will be considered in section §5.

4 AN EXPLICIT SCHEME : THE CENTRAL DIFFERENCE METHOD

4.1 Classical approximation of the central difference method

Choosing γ = 1
2
, β = 0, the displacement at time n + 1 only depends on quantities at time

n :

un+1 = un + ∆tu̇n +
∆t2

2
ün (13)

Introducing the velocity at the mid step :

u̇n+ 1
2

=
un+1 − un

∆t
(14)

which enables to write :

u̇n+1 =
∆t

2
ün+1 + u̇n+ 1

2
(15)
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the equation of motion to solve at each time step is simply :[
M +

�
�
�@
@
@

∆t

2
C

]
ün+1 = F ext

n+1 −Kun+1 − Cu̇n+ 1
2

(16)

A very common practice in code implementation is to neglect the term ∆t
2
C on the Left-

Hand-Side of equation (16). This leads to the ”classical” central difference scheme. This as-
sumption is generally justified by the relatively low effect of damping compared to the inertial
one and to the stiffness. Combined to a lumping technique, it has the advantage to keep the
operator diagonal, so that no matrix has to be inverted.

However in the case of rotordynamics, the matrix C includes viscous and gyroscopic (Cori-
olis matrix) effects. That is why it is proposed here to consider the ”Full” central differ-
ence scheme which does not neglect the participation of this term and compute the inverse of[
M + ∆t

2
C
]
. This strategy is adopted only in the case where the spatial description is reduced

by modal approach.
The effect on the performance of the scheme is evaluated on the basis of the following ex-

ample.

4.2 Application to a rotor modeled by 3D FE

A rotor constituted of a shaft and four short blades is considered (see figure 2.

Figure 2: 3D mesh of the rotor test case

An unbalance excitation generated by a blade loss is simulating by applying an equivalent
force to the model. Displacement evolution with time for different time step ∆t are given
figure 3a.

Figure 3a demonstrates that the application of the ”Full” central difference scheme maintain
the critical time step to an acceptable value, whereas the ”classical” assumption that neglect
C on the LHS drastically decrease it and causes unstable behavior for ∆t ≥ T

256
(where T =

2π/Ω).
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Figure 3: Displacement evolution with time for various time step and the explicit central differ-
ence method

5 AN IMPLICIT SCHEME : THE AVERAGE ACCELERATION METHOD

5.1 Application to a 4 degree of freedom problem

A very simple model with 4 degree of freedom is presented here to illustrate the behavior of
the average acceleration scheme when used to compute the response of a rotor-stator assembly.
The model is depicted on figure 4.

stator rotor

Figure 4: 4 dof rotor-stator system

Only the first modes are considered for the rotor and the stator (respectively the first flexural
modes along y and z and the rigid body mode along y′ and z′). The introduction of the two
kinematic constraints linking rotating to non-rotating parts adds two Lagrange multipliers to
the system. Hence, the vector of unknown is :

qT =
(
λy λz uy uz u′y u′z

)
(17)
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and the equation of motion is :

Kq + Cq̇ +Mq̈ = F (18)

withK =


0 0 1 0 − cos Ωt sin Ωt

0 0 1 − sin Ωt − cos Ωt
k 0 0 0

k 0 0
k′ 0

sym k′

 C =


0 0 0 0 0 0

0 0 0 0 0
c 0 0 0

c 0 0
c′ 0

sym c′



andM =


0 0 0 0 0 0

0 0 0 0 0
m 0 0 0

m 0 0
m′ 0

sym m′


An unbalance loading is applied to the rotor along the y′-direction :

F = (2πΩ)2 · r(t) ·
(
0 0 0 0 f 0

)T (19)

with a linear ramp variation during the half of the first period :

r(t) =

{
2Ωt if 0 ≤ t < 1

2Ω

1 else
(20)

Numerical values used in for this test case are given table 2.

m m’ k k’ c c’ f Ω
1E3 1E3 6E6 0 31E3 0 1

(2πΩ)2
5 Hz

Table 2: Numerical value of the 4-dof system

Solving equation (19) with the average acceleration method lead to the results of figure 5.
As there is no physical source of instability in the proposed model, the simple 4-dof example

presented here proved the instability of the Newmark average acceleration method for this class
of linear but with periodic constraints problem ! This is contradictory with the unconditionally
stable reputation of this scheme for linear problem. Evolution of Lagrange multipliers suggests
that the periodic constraint is the source of numerical divergence of the solution.

A single article of 1989 written by Cardona and Géradin [12] demonstrates that some kine-
matics constraints may lead to infinite eigenvalues of the amplification matrix. Time integration
of systems with a relative important participation of kinematic constraints is then not an easy
task. This explains why a great amount of literature can be found about time-integration in
flexible multibody dynamics [13].

Three solutions can be adopted to treat this problem :

• When possible, eliminate the constraints (and the associated variables),

• Derive two times the constraint equation and add mass and damping terms so that the
constraint becomes an overdamped system,
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(d) Evolution of the residual of the dynamic equilibrium

Figure 5: Results of the average acceleration method for the 4-dof system

• Use a scheme which presents naturally numerical damping.

The last one will be discussed in the following subsection.
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5.2 Adding numerical damping to the scheme

Three scheme with numerical damping have been implemented in Cast3M and tested on the
4-dof test case :

• Modified average acceleration with α=0.05

• HHT with α=0.05

• α-generalized with ρ∞=0.9048

The spectral radius (identified as the highest eigenvalue of the amplification matrix) and the
numerical damping are plotted for these scheme figure 6. Figure 6 shows that high frequencies
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Figure 6: Characteristics of some schemes

are considered as spurious and attenuated by these schemes.
The HHT (from Hilber-Hughes-Taylor [10]) and the α-generalized [11] methods are methods

closed to the Newmark’s one, but a weighting of elastic, viscous and inertial forces over time
step is performed in order to control the damping. The general equation of motion to solve is
no more (8) but :

(1− αm)Mün+1 + αmMün + (1− αf )Cu̇n+1 + αfCu̇n + (1− αf )Kun+1 + αfKun (21)
= (1− αf )F ext

n+1 + αfF
ext
n

where αm = 0 for the HHT method. The Newmark parameters are adjusted to maintain second
order accuracy :

γ =
1

2
+ αf − αm et β =

1

4
(1 + αf − αm)2 (22)

For the α-generalized method, the spectral radius ρ∞ ω∆t → ∞ can be chosen and the coeffi-
cients αm and αf deduced as :

αm =
2ρ∞ − 1

ρ∞ + 1
et αf =

ρ∞
ρ∞ + 1

(23)

Using one of the three aforementioned scheme leads to a slightly damped stable solution as
depicted by figure 7a.
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Figure 7: Results obtained with numerical damping

The stationary value of the UY’ displacement as a function of the spectral radius for the
HHT and α-generalized methods and for two values of time step is given figure 7b. For this
very simple 4-dof system, the analytic solution at steady state is UY’=1.922E-7. Observation
of this figure indicates that :

• with the HHT scheme, instability is observed for too small values of αf and this critical
value depends on time step,

• with the HHT scheme, the amplitude of vibration tends to decrease with the spectral
radius, which is counter-intuitive !

• with the α-generalized scheme, the system is always stable even if ρ∞ = 1 (no dissipa-
tion) !

• with the α-generalized scheme, the finale amplitude increase with the spectral radius but
remains a finite value,

• a better solution is found for smaller time step and for respectively large and small radius
for HHt and α-generalized schemes.

5.3 Application to 3D rotor-stator assembly

A system very close to the 4-dof previously studied system is considered. The 3D FE mesh
of this system is given figure 8.

Average acceleration method is first used with two spatial discretization :

• FE dof : the Finite Element degree of freedom,

• CMS dof : a Component Mode Synthesis method (Craigh Brampton) is used to reduce
the number of dof.

Mode shapes used in CMS are plotted figure 9.
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Figure 8: FE mesh : the stator is on the left (pink) and the rotor is on the right (light blue)

(a) Eigenmode (first flexion of the rotor) (b) Eigenmode (first flexion of the stator)

(c) Static solution (lateral displacement imposed to the
rotor)

(d) Static solution (lateral displacement imposed to the
stator)

Figure 9: Mode shape constituting the CMS base

The displacement evolution with time for both spatial discretization is given figure ??.
Whereas FE-dof based response remains stable, it seems that CMS-dof based solution become
unstable like the 4-dof system.
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Application of the numerically damped HHT and α-generalized methods enables to get ride
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of this instability as it is shown on figures 10.
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(b) α-generalized method

Figure 10: Results of time integration applied to 3D rotor-stator assembly

Once again, the HHT method seems efficient for a ”just stable” value of parameter αf =
0.005, whereas the α-generalized method is the closest to the reference for an high damping
value (ρ∞ = 0).

6 CONCLUSIONS AND PERSPECTIVES

Two kinds of numerical instabilities have been highlighted for both the central difference and
the average acceleration method.

The first one concerns the drop of the critical time step when neglecting the gyroscopic term
in the operator computing the acceleration at the next time step. A simple remedy is to use the
full formulation but it could be expensive if the inversion of a large matrix have to be performed.

For implicit scheme, matrix inversion is naturally done and the time step is expected to be
greater. However the kinematic constraints to link the rotating to the non-rotating parts intro-
duce a numerical instability which has to be dissipated. HHT and α-generalized methods have
been found to do this task under the condition to choose appropriately the numerical damping.

As this choice may not be obvious in every situations, combination of an explicit integrator
with a component mode synthesis method seems to be the most attractive way to model complex
3D rotor-stator assembly.
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Future development will concern the integration of nonlinear component (bearing, squeeze-
film, rotor-stator contact, ...) in the models.
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Abstract. We are interested in fast techniques for calculating a periodic solution to viscoelastic
evolution problems with a space-time periodic condition of ”rolling” type. Such a solution is
usually computed as an asymptotic limit of the initial value problem with arbitrary initial data.
We want to invent a control method, accelerating the convergence. The main idea is to modify
our problem by introducing a feedback control term, based on a periodicity error, in order to
accelerate the convergence to the desired periodic solution of the problem.

First, an abstract evolution problem has been studied. From the analytic solution of the
modified (controlled) problem, an efficient control has been found, optimizing the spectrum of
the problem. The proposed control term can be mechanically interpreted, and its efficiency
increases with the relaxation time.

In order to confirm numerically the theoretical results, a finite element simulation has been
carried out on a full 2D model for a steady rolling of a viscoelastic tyre with periodic sculpture.
It has demonstrated that the controlled solution converges indeed faster than the non-controlled
one, and that the efficiency of the method increases with the problem’s relaxation time, that is
when the memory of the underlying problem is large.
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1 INTRODUCTION

In industrial applications, in order to avoid the inversion of very large matrices, dynamic
periodic state are often computed as the asymptotic limit solution of an initial value evolution
problem with arbitrarily chosen initial data. In such cases, one is not really interested in the
evolution history, but only in convergence time. Computations can take a lot of time for ”vis-
cous” problems, when memory effects are very large. Then the convergence time becomes a
significant parameter for industrial implementations, and developing methods accelerating con-
vergence is of current interest.

For such problems, even if the asymptotic limit is periodic, the solution of the initial value
evolution problem is not. Thus the periodicity of the desired solution can be considered as an
extra information (observation), which makes possible to apply control techniques. In other
words, we want to use this information to construct a filter for the evolution problem. This
modifies the original evolution problem through a control term based on the observation error.
In this framework, the present work is dedicated to the development of acceleration methods
for the solution of periodic problems. This kind of problems can be faced, for instance, in the
cardiac contractions modeling [2]. Another example is a steady rolling of a viscoelastic tyre [1]
with a periodic sculpture. In this case, the steady state satisfies a ”rolling” periodicity condition:
the state at any point is the same that at the corresponding point of the next sculpture motive
but one time period ago. It means the periodicity condition includes shift both in time and
space. For such problems, we consider such a space-time periodicity as an observation and we
use it for developing an accelerating method. The main idea is to modify the original problem
by introducing a feedback control term [2, 3, 4] based on a periodicity error,which accelerates
convergence to the stable periodic solution of the problem.

In the following section, we present an analytical analysis of an abstract problem, in order to
find out an optimal form of the control. After introducing a delayed feedback control term based
on the observation error (in an abstract form), we find the solution to the modified problem, in
order study the influence of the control on the convergence rate. Then, we propose the optimal
control, optimizing the spectrum of the problem and minimizing the convergence time. The
proposed control can be mechanically interpreted. And the efficiency of the method increase
with the convergence time of the problem.

The last section applies the technique to a full viscoelastic problem. There we consider
the steady rolling of the viscoelastic tyre with a periodic sculpture. The numerical simulation
results are presented, comparing both controlled and non-controlled solutions in a simplified
2D framework.
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2 ANALYTICAL ANALYSIS

2.1 General problem

Let us consider a general evolution problem with space-time periodic condition:

∂tu+ Au = f (1)
u(t) = Hu(t− T ) (2)

defined on a Hilbert space V with scalar product 〈·, ·〉. We make two fundamental assumptions
which are usually satisfied for time periodic viscoelastic problems:

• the operator A is V -elliptic, namely there exists a constant C > 0 such that ∀u ∈ V
〈Au, u〉 ≥ C‖u‖2

• the operators A and the space shift H can be diagonalized in the same basis.

In practice, the solution of such problems is usually computed as an asymptotic limit of the
solution to the initial value evolution problem (1) with an arbitrary initial condition. Due to
the ellipticity condition, this asymptotic limit exists. In the frame of this work, we are going to
propose an optimal control method, accelerating the convergence of the initial value problem
solution to the solution of (1)-(2).

2.2 Controlled problem

We can consider the condition (2) as an observation and use it to construct a control method.
So we modify the initial value problem by introducing a feedback control term [3, 4], based on
the observation error, as follows:

∂tu(t) + Au(t) +

control term︷ ︸︸ ︷
G
u(t)−Hu(t− T )

= f, (3)

u(t) = φ(t), t ≤ 0. (4)

Above φ(t) represents the initial data, and u(t)−Hu(t−T ) is the observation error. Moreover,
the gain operator G which acts on this observation error has to be properly identified. It is clear
that the solution u(t, x) to the modified problem (3) converges to the solution of the original
problem (1). The question is whether there exists a gain operator G, providing the fastest
convergence to the time periodic asymptotic limit. This amounts to analyze the influence of the
gain operator G on the (vanishing) asymptotic behavior of the homogeneous solution of (3).
Thus we have to find the solution of the homogeneous controlled problem as a function of G,
which will yield the optimal choice of G by minimizing the real part of the spectrum of the
problem. We assume that the gain operator can be expressed as an analytical function G(A,H)
of the evolution and shift operators. Then if A and H are diagonalizable in the same base, G is
also diagonalizable in this base.

Theorem 1. Since A, G and H are diagonalizable in the same base {vp(x)}p∈Z, the homoge-
neous solution to the controlled problem (3) is simply given by

u(t, x) =
∑
p,k∈Z

cp,k e
λp,ktvp(x) (5)

where the coefficients cp,k are defined from the initial data, and the inverse relaxation time λp,k
can be expressed in terms of eigenvalues of A, G and H .
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Proof. We write the solution u(t, x) in the base {vp(x)}p∈Z, where A, G and H are diagonaliz-
able:

u(t, x) =
∑
p∈Z

up(t)vp(x) (6)

where up(t) are the coordinates of u(t, x) in this base. Let αp, γp and σp be the eigenvalues of
A, G and H respectively, associated to the same eigenfunction vp(x). Then up(t) satisfies

∂tup(t) + (αp + γp)up(t)− (γpσp)up(t− T ) = 0, ∀p ∈ Z (7)

This is a simple delay-differential equation [5, 6, 7]. We are looking for its solution in the
exponential form up(t) = eλpt. The characteristic equation for λp is

λp + (αp + γp)− (γpσp) e
−Tλp = 0. (8)

Multiplying this by TeT (λp+αp+γp), this characteristic equation takes the form:

T (λp + αp + γp) e
T (λp+αp+γp) = T (γpσp) e

T (αp+γp) (9)

To represent a solution of this equation, one have to introduce a Lambert W function [8, 10, 11,
7]. It is a complex-valued function denoted by W [z] and satisfying W [z] eW [z] = z (∀z ∈ C).
The Lambert W function will be described in more details in the next paragraph. For the time
being, simply note that the Lambert function W is multivalued and has an infinite number of
branches Wk, k ∈ Z. Then, we can rewrite the equation (9) in terms of Wk as :

T (λp + αp + γp) = Wk

[
T (γpσp) e

T (αp+γp)
]
, k ∈ Z. (10)

So the characteristic equation (8) has an infinite number of roots, corresponding to different
branches Wk of the Lambert function :

λp,k = − (αp + γp) +
1

T
Wk

[
T (γpσp) e

T (αp+γp)
]
, k ∈ Z, p ∈ Z. (11)

Thus, the general solution to (7) is

up(t) =
∑
k∈Z

cp,ke
λp,kt, ∀p ∈ Z (12)

Assembling all components of the eigenbase, we then obtain the solution (6) to the controlled
problem (3):

u(t, x) =
∑
p∈Z

∑
k∈Z

eλp,ktcp,kvp(x) (13)

with λp,k as defined by (11). Coefficients cp,k are to be found from the initial data.
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2.3 A few properties of the Lambert W function

Let us take a brief overview on the Lambert W function [8, 9, 10, 11, 7] with its infinite
number of branches Wk, k ∈ Z. For any branch, its first derivative is given by

d
dz
Wk [z] =

Wk [z]

z(Wk [z] + 1)
, k ∈ Z (14)

Their real values have some order [10, 11]. The rightmost value corresponds to the so called
principal branch W0:

max
k∈Z
<Wk [z] = <W0 [z] , ∀z ∈ C. (15)

This real value of this principal branch is bounded from below by−1 and reaches the minimum
at z = −1

e
, i.e.

<W0 [z] ≥ −1, ∀z ∈ C, (16)
W0

[
−1
e

]
= −1. (17)

Inside the circle |z| < 1
e
, the principal branch can be decomposed in power series [9]

W0 [z] =
∞∑
n=1

(−n)n−1

n!
zn, |z| < 1

e
(18)

The real part of the principal branch <W0 is plotted on Figure 1 (in this section, all plots are
extracted from Mathematica 10.0).

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re

Im

Figure 1: Real part of the principal branch of Lambert W function.

We can also define a Lambert operator W as follows : for any linear operator A, the Lambert
W operator function of A is a linear operator W [A], such that W [A] eW [A] = A. Under minor
assumptions on the operator A, one can also prove that this operator has an infinite number of
branches Wk, k ∈ Z, with a principal branch W0.
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2.4 Main result: the optimal control

The next theorem presents the main result of the current paper, namely the characterization
of the optimal control for the problem (3).

Theorem 2. Under the assumptions of paragraph 2.1, the optimal gain operator for the prob-
lem (3), providing the fastest convergence to the asymptotic solution, is given by

G =
1

T
W0

[
−1
e
e−TAH−1

]
, (19)

where W0 denotes the operator form of the principal branch of the Lambert W function.

Proof. According to Theorem 1, the solution of the controlled problem takes the exponential
form (5) with inverse (complex) relaxation time defined by (11). When all λk,p have negative
real part, the solution converges in time to the asymptotic limit, corresponding to the periodic
solution of the problem. By properly constructing the eigenvalues of G in (11), we can control
the problem’s inverse relaxation times λk,p. Decreasing their real part, we accelerate the con-
vergence. The optimal control, providing the fastest convergence, moves all eigenvalues λk,p on
the left as much as possible. According to (15), for any p ∈ Z we have <λ0,p = maxk∈Z<λk,p.
Therefore, we need to optimize the principal branches λ0,p:

λ0,p = −αp +
1

T

W0

[
Tσpγp e

T (γp+αp)
]
− Tγp

︸ ︷︷ ︸
control term

, p ∈ Z. (20)

The second term in the right part characterizes the convergence rate of the controlled problem.
For the non-controlled solution (γp = 0, ∀p), this term is equal to zero. Convergence slows
down, if it is real value is positive, and accelerates, if it is negative. When its real value is mini-
mal, λ0,p is moved to the left as much as possible, and the associated γp is optimal. Therefore,
for each p ∈ Z we need to compute γp, which minimizes the control term:

γp = arg min
γ
<
W0

[
Tγ eTγσpe

Tαp
]
− Tγ

, p ∈ Z. (21)

Let us fix p and make the change of variable:

γp =
1

T
W0 [z] , yielding z = Tγpe

Tγp . (22)

We therefore have to solve the following minimization problem:

Find z ∈ C minimizing < J(z), (23)
J(z) = W0 [ηz]−W0 [z] ,

where η = σpe
Tαp is a given complex number constructed from the eigenvalues of A and H .

The minimizers cancel the derivatives of the cost function J , which from formula (14) satisfy :

d
dz
J(z) =

W0 [ηz]

z(W0 [ηz] + 1)
− W0 [z]

z(W0 [z] + 1)
(24)

=
J(z)

z(W0 [ηz] + 1)(W0 [z] + 1)
(25)
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There are two candidates, where the derivative takes infinite values:

W0 [z] = −1 ⇔ z = −1
e

(26)

or

W0 [ηz] = −1 ⇔ z = − 1
ηe

(27)

The point z = 0 makes no interest, since it corresponds to the non-controlled case. From (16)
we also have

<J(−1
e
) = <W0

[
−η
e

]
+ 1 ≥ 0 (28)

<J(− 1
ηe

) = −
(

1 + <W0

[
− 1
ηe

])
≤ 0 (29)

Hence we conclude that the solution of the minimization problem (23) is given by the critical
point z = − 1

ηe
, that is

γp =
1

T
W0

[
−1
e
σ−1
p e−Tα

]
(30)

In operator terms, this yields

G =
1

T
W0

[
−1
e
H−1e−TA

]
. (31)

Corollary 2.1. If the inverse of the shift H is weakly contracting ‖H−1‖ ≤ 1, the optimal
control takes the explicit form

G = − 1

T

∞∑
n=1

cn ·
(
H−1e−TA

)n
with cn =

nn−1

n! en
. (32)

Proof. Since A is elliptic, then <αp > 0 and |e−αp| ≤ 1. If ‖H−1‖ ≤ 1, then |σ−1
p | ≤ 1.

Therefore

| − 1
e
σ−1
p e−αp| < 1

e
, ∀p ∈ Z. (33)

So γp in (30) can be decomposed in the power series (18):

γp =
1

T
W0

[
−1
e
σ−1
p e−Tα

]
(34)

=
1

T

∞∑
n=1

(−n)n−1

n!

(
−1
e
σ−1
p e−Tα

)n
(35)

= − 1

T

∞∑
n=1

nn−1

n! en
(
σ−1
p e−Tα

)n
(36)

yielding the claimed statement.

Remark 2.1. In practice, the norm of the shift operator or of its inverse is unity. We can
therefore use (32) for calculating G, usually restricting ourselves to the first five terms.
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Remark 2.2. Note that e−tA is a fundamental solution of the non-controlled problem, i.e.
u(t, x) = e−tAu(0, x), when G = 0. That is e−TA plays role of the T -shift in time for the
non-controlled solution. Thus the proposed control can be interpreted as a correction of the
present solution by canceling all the future T -shifted periodicity errors :

G∆u(t) ' − 1

T

∞∑
n=1

cnH
−n∆u(t+ nT ) (37)

where the periodicity error
∆u(t) = u(t)−Hu(t− T ) (38)

2.5 Efficiency of the method

We have developed an optimal control for an abstract evolution problem, accelerating conver-
gence to the periodic solution. Now we want to estimate the efficiency of the proposed control,
that is how fast does the controlled solution converge in comparison with the non-controlled
one. This is based on a direct calculation yielding

λ0,p = −αp +
1

T

W0

[
Tγpσpe

T (αp+γp)
]
− Tγp

 (39)

= −αp −
1

T

1 +W0

[
−1
e
σ−1
p e−Tαp

] (40)

= −αp −
1

T
g (log σp + Tαp) (41)

where we define the spectral control term by

g(z) = 1 +W0

[
−1
e
e−z
]

(42)

The real part of g(z), z ∈ C on the right half-plane <z ≥ 0 is represented on Figure 2, and its
restriction on the real axis is detailed on Figure 3.

Figure 2: Real part of g(z) on the complex right half-plane z ∈ C, <z ≥ 0.
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0.6

0.8

1.0
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g(x)=1+W0[-
1

ⅇ
ⅇ-x]

1 - ⅇ-x

Figure 3: Function g(x) = 1 +W0

[
− 1

e e
−x
]

on the real half-line x ≥ 0.

A direct calculation then yields

1 +
g(<(log σp + Tαp))

T<αp
≤

∣∣∣<λ0,p<αp

∣∣∣ ≤ 1 +
g(<(log σp + Tαp) + iπ)

T<αp
(43)

For the proposed optimal control, we therefore see that the gain increases when the real part of
the spectrum of the operatorA goes to zero (see Figure 4). In other words, the method gets more
and more efficient when the problem gets more and more viscous, as represented on Figure 4,
which computes the approximate minimal gain as the function of the eigenvalues ofA, obtained
by replacing the control term g by its real approximation

√
1− e−x.

1 2 3 4 5
x

0.5

1.0

1.5

y

y=
1-ⅇ-x

x

Figure 4: Estimation of the slowest convergence rate: y - gain, x - spectrum of A.
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3 APPLICATION: STEADY ROLLING OF A VISCOELASTIC PERIODIC WHEEL

3.1 Model problem

The present section is dedicated to the application of the developed control method to a model
problem, in order to justify on practice the theoretical results discussed in the previous section.
It considers a steady rolling problem of a 2D viscoelastic tyre [1] presenting a space periodic
sculpture. In our approach the periodicity of the sculpture is represented not by a modification
of the geometry but by a space periodic modification of the Young’s modulus. Thus our model
problem considers the steady rolling of a simple viscoelastic ring, with a Young’s modulus
periodic as a function the angle. We apply a rotating lateral force, representing the contact
force applied by the soil. In contrast with the real contact model, we suppose herein that this
lateral force is a given function of time and space. Viscoelasticity implies that we deal with an
evolution problem in terms of strains. We are interested in the established space-time periodic
state, which is the asymptotic limit of the initial value problem with an arbitrary initial state.
Applying the optimal control method described in the previous section, we expect to accelerate
the convergence to the desired periodic solution.

In more details, let us consider a steady rolling of a wheel (Figure 5, left) with an angular
velocity ω. A given force, presenting a ground contact pressure, is applied to the outer border
Γ1 and normal to its surface. In Lagrange (material) configuration, it moves along the exterior
boundary with angular velocity −ω. In a Lagrangian frame, its normal component takes the
form f(t, x) = f(Rωtx), with f(x) quadratic on part of the boundary and zero elsewhere as
shown on Figure 5, right. The notation Rωt represents a rotation of angle ωt around the origin.

Figure 5: Left: 2D tyre. Right: Normal pressure

On the inner boundary Γ0, a zero displacement condition is imposed. Thus, in the absence of
mass forces, the momentum conservation law writes:

divσ = 0, in Ω (44)
σ n |Γ1

= f n, u|Γ0
= 0, (45)

where u is the displacement field and σ is a Cauchy stress tensor, n denotes a unit normal to
the boundary.

The material is considered to be viscoelastic and nearly incompressible. We assume that we
are in small strains. The viscoelastic constitutive law is of Kelvin-Voight type :

σ (t, x) = η ∂tε (t, x) +K(x) ε (t, x) (46)

4647



Ustim Khristenko, Patrick Le Tallec

where ε is the strain tensor

ε =
1

2

(
∇u+ (∇u)>

)
= ∇su, (47)

η is a scalar viscosity coefficient; K is the fourth-order elasticity tensor:

K ε = λ tr ε1 + 2µε , (48)

where Lamé coefficients λ and µ are expressed via Young’s modulus E and Poisson’s ratio ν:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(49)

Given a nearly incompressible material, the Poisson’s ratio is taken close to 0.5. As it was
mentioned above, the periodic structure of the wheel is represented by the angular periodicity
of the Young’s modulus E(x). Namely, there is an angle ωT = 2π/M (where M is the number
of sculpture motives), such that

E(x) = E(RωTx). (50)

Herein, we have simply taken E(x) = E0

(
1 + cos

[
2π
ωT

arg x
])

, where E0 is the mean of
Young’s modulus. We are looking for a ”rolling” periodic solution, i.e. a solution satisfying
the following space-time periodicity condition:

u(t, x) = R−1
ωT u(t− T,RωTx). (51)

In other words, the state at any point is the same that the one at the corresponding point of the
next sculpture motive but one time period ago. Let us therefore define the space shift

H = R−1
ωT u(t− T,RωTx) (52)

Altogether, we are looking for the displacement field u(t, x) which satisfies :

div
[
η∇s∂tu+K ∇su

]
= 0, in Ω[

η∇s∂tu+K ∇su
]
· n = f n, on Γ1 (53)

u = 0, on Γ0

u(t) = Hu(t− T ).

3.2 Controlled problem

Let us introduce the space V0 = { v ∈ H1(Ω)2 | v = 0 on Γ0} and let us define the
operators C and K as follows: ∀v ∈ V0∫

Ω

Cu · v =

∫
Ω

η∇su : ∇sv (54)∫
Ω

Ku · v =

∫
Ω

K∇su : ∇sv (55)
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Then the system (53) writes:∫
Ω

(C∂tu+Ku) · v =

∫
Γ1

f n · v, ∀v ∈ V0, (56)

u(t) = Hu(t− T ).

The associated controlled problem is∫
Ω

(
C∂tu+Ku+ G

u(t)−Hu(t− T )
) · v =

∫
Γ1

f n · v, ∀v ∈ V0 (57)

u(t) = u0(t), t ≤ 0

with arbitrary initial data u0. According to Theorem 2, the optimal gain operator takes the form

G = − 1

T
C
∞∑
n=1

cn e
−nT(C−1K)H−n, cn =

nn−1

n! en
. (58)

If we proceed with the finite element discretization, it can be quite expensive to compute
an exponential of the matrix associated to the operator C−1K. So we need to simplify this
expression.

3.3 Simplified controlled problem

Let u∗ be the periodic solution of the problem (53), that is the true displacement, and σ∗ =
η∇s∂tu∗ +K ∇su∗ be the true Cauchy stress. Associated to this true stress tensor σ∗, the true
strain tensor ε∗ = ∇su∗ is the solution of the first order differential equation

η ∂tε +K ε = σ∗ (59)
ε (t) = Hε (t− T ) (60)

If we suppose that we know the true stress tensor σ∗, we can apply the optimal feedback control
of the previous section to this problem, leading to the associated controlled problem:

η ∂tε +K ε + η G
ε −Hε(t− T )

= σ∗ (61)

ε(t) = ∇su0(t), t ≤ 0

with arbitrary initial data u0. According to Theorem 2, the optimal gain operator has the form

G = − 1

T

∞∑
n=1

cn e
−nT

(
η−1K

)
H−n, cn =

nn−1

n! en
, (62)

Note that the strain estimator ε is not necessarily a displacement symmetric gradient any more
and that we do not know the value of the true periodic stress. However, its initial value and its
asymptotic limit is a gradient, and we know the divergence of the true stress field. Hence, we
decide to decompose the strain estimator into a symmetric gradient and a zero divergence field

ε = ∇su+ ε̃ , (63)
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and to take the divergence of the strain controlled problem, omitting all terms in ε̃ , which leads
to the new controlled system

div
[
η ∂t∇su+K ∇su+ η G

∇su−H∇su(t− T )
] = 0[

η ∂t∇su+K ∇su+ η G
∇su−H∇su(t− T )

] · n = f n, on Γ1 (64)

u = 0, on Γ0

u(t) = u0(t), t ≤ 0

It is seen that u∗ is the asymptotic limit for this problem, i.e. u → u∗, and thus (64) is a
controlled system associated to the initial model problem (53) with a simplified gain operator,
applied to the strain field and computed by the formula

G = − 1

T

∑
n

cn e
−nT

(
η−1K

)
H−n, cn =

nn−1

n! en
. (65)

In this way, we have applied the developed optimal control method to the viscoelastic consti-
tutive law. We may have sacrificed a part of the control ”optimality” to the simplicity of its form.
In practice, for a plane strain problem, introducing the reduced Lamé coefficients λ̃ = −nTλ/η
and µ̃ = −nTµ/η, the exponential coefficients in the gain operator (65) are defined by

e
−nTη−1K

[
ε11 ε12

ε12 ε22

]
= eλ̃+2µ̃ sinh λ̃(ε11 + ε22)1 + e2µ̃

[
ε11 ε12

ε12 ε22

]
(66)

3.4 Numerical results

The controlled and non-controlled evolution problems have been solved numerically, in order
to compare their rates of convergence and to justify in practice that the controlled one is really
faster. The numerical simulation has been carried out in MatLab R2014a by the finite elements
method with P1 elements on a conforming triangular mesh (Figure 6), ωT -periodic with respect
to rotation. It represents a tyre with 15 motives, i.e. ωT = 2π/15. The periodic Young’s
modulus is in the form: E(x) = E0 (1 + cos [15 arg x]), where E0 is a homogeneous stiffness.
An undeformed state is taken as initial data, that is u(0, x) = 0.

We carry out several pairs of simulations (controlled and non-controlled cases) with different
values of viscosity coefficient, in order to verify if the efficiency estimation from paragraph 2.5
holds. The gain of the control method is represented by ratio n0/nc of the iteration numbers for
non-controlled and controlled problem respectively. The gain values corresponding to distinct
viscosity coefficients are presented in Table 1. These results are depicted on Figure 7. We can
see that the efficiency indeed increases with the viscosity coefficient.

On Figure 8 there are plotted some simulation results: l2-norm evolution of numerical so-
lution (left column) and periodicity error (right column) with distinct viscosity coefficients
(η = E0, 3E0, 8E0 respectively). The abscissa ticks correspond to the number of ωT -periods.
Dashed vertical lines mark the convergence time, that is the moment when the periodicity error
becomes less than the specified accuracy. The large visible oscillations of the solution are asso-
ciated with 2π-periodicity of the tyre, while the oscillations associated with ωT -periodicity are
of a much smaller scale and aren’t quite visible on the plot.
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Figure 6: Periodic mesh, representing a tyre with 15 motives

Viscosity relax.time−1 Gain
η E0T/η n0/nc

0.1E0 8.378 1.19
0.5E0 1.676 1.38
E0 0.838 1.62
2E0 0.419 2.05
3E0 0.279 2.41
4E0 0.209 2.72
5E0 0.168 2.97
8E0 0.105 3.33

Table 1: Convergence time ratio with respect to viscosity coefficient.

1 2 3 4 5 6 7 8

E0T

η

0.5

1.

1.5

2.

2.5

3.

3.5
Conv.time ratio

Figure 7: Convergence time ratio (gain) as the function of the inverse relaxation time.
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Figure 8: Results: l2-norm of the numerical solution (left) and of the periodicity error (right) for η = E0, 3E0, 8E0

respectively.
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4 CONCLUSION

In this paper, we have developed a new control method for calculating viscoelastic evolution
problems while accelerating the convergence of its solution to the asymptotic limit, which is
time periodic. The method is similar to the feedback control methods, using the eigenvalue
assignment technique [3, 4]. From another perspective, it can be interpreted as an observer-
controller filtering method, where the space-time periodicity condition plays the role of the
observation [2]. It turns out that the proposed control term actually acts like the correction of
the present solution by the future periodicity errors (37).

As seen from the construction of the optimal control, its mathematical properties use the
Lambert W function. In this way, we have estimated the dependence of the convergence ac-
celeration on the relaxation rate. In fact, the acceleration increases with the memory of the
problem. So the developed method might not be efficient for fast converging problems (which
is not really of interest) but becomes more and more efficient for the slowly converging prob-
lems.

The developed control method has been tested on a full 2D model problem. It has been
applied to the steady rolling of a viscoelastic tyre with a periodic sculpture. An approach,
when the optimal control is applied to the viscoelastic evolution law, has been formulated. In
this case, the control term is quite simple and cheap to compute. The numerical solution of
the problem has justified the theoretical results: for a very viscous material, we have indeed
obtained a significant acceleration of convergence.
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Abstract. Although gears have been used in mechanical industry for a long time and first 

systematic research activities, aimed at understanding gear meshing, started in the ‘50s, still 

nowadays a lack of accurate description for several physical phenomena represents a 

limitation for transmission design. One of the main causes of such limitations is the three-

dimensional (3D), local and non-linear nature of contact problems. Given the complexity of 

these problems, a variety of modelling techniques with different levels of fidelity and required 

computational effort have been set up. Among the available methodologies, analytical 

modelling, which has been developed for a vast variety of applications from the early days of 

gear dynamics research, still attracts the interest of researchers thanks to the low 

computational requirements and to the capability to efficiently describe specific phenomena. 

Among analytical models, one-dimensional (1D) description aims at studying the torsional 

gear vibrations around the rotational axes and can be used to simulate either gear whine or 

gear rattle phenomena. 

The aim of this paper is to illustrate a numerical approach, based on 3D (Finite Element) FE 

simulations, to estimate the mass and inertia properties of a 1D gear pair model. The 

proposed approach is based on pre-strained modal analyses, carried out on the 3D FE model 

of a pair of meshing gears, from which the variable meshing stiffness and modal mass values 

in a given system configuration are derived and used to calibrate the equivalent 1D model. An 

application example of the proposed method is provided by analyzing a pair of identical spur 

gears, for which the 1D model is created and used to estimate the dynamic TE at different 

rotation speeds and under constant external load in steady-state conditions. 
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1     INTRODUCTION 

In the field of mechanical transmissions, simulation tools are acquiring ever more 

importance in the industrial development process that aims at achieving products of high 

quality at affordable costs, as to stand the competitive pressure of globalized markets. The 

dynamic behavior of gears has a direct influence on the performance of the entire system 

in terms of acoustic emissions and durability. The recent trend for lightweight design 

stresses even more the necessity to include a proper dynamic behavior as one of the main 

design targets. The gears themselves bring different challenging problems and difficulties 

at the design stage [1]. Typical non-linear phenomena [2] due to contact stiffness and 

clearance has to be well predicted in the initial design phase in order to reduce the 

development time and increase product quality. Given the complexity of these 

phenomena, a variety of modelling techniques with different levels of fidelity and 

required computational effort have been developed in the last decades. Three are the main 

model categories which can be identified: analytical, Finite Element (FE) and Multibody. 

Analytical models have been developed for a vast variety of applications[3-6]. They 

started from the early days of gear dynamics research, with a single gear pair and a single 

degree of freedom (DoF), and evolved until today’s more refined 3D formulations. 

Ongoing research is still exploring analytical models since they provide low 

computational requirements, thanks to their lumped parameter formulation, and can be 

tailored to efficiently describe specific applications. 

For these reasons, analytical formulations can be usefully employed, especially for 

analyses involving long operational time, where the simulation time and cost required by 

more detailed simulations would be prohibitively high. To achieve an analytical 

formulation of gear meshing, a one-dimensional (1D) description can be used with the 

aim of studying the torsional gear vibrations around the rotational. Such a simplified 

representation can be used to simulate either gear whine or gear rattle phenomena. 

Rotating masses are lumped into inertia moments and associated to the related rotational 

DoFs. Connectivity between the DoFs can be set by means of translational spring-damper 

elements by expressing rotations as equivalent displacements along the line of action, 

which represents the so called Transmission Error (TE) between the meshing gears. A 1D 

analytical model, which considers both clearance-type nonlinearity due to backlash and 

angle-varying mesh stiffness was proposed by Blankenship and Kahraman [3] to address 

the contact loss phenomenon in steady-state forced response. 

When a 1D modeling approach for gear meshing analysis is used, simulation results can 

be found in a significantly shorter simulation time, as compared to the detailed FE 

simulations, but a higher approximation level in the description of the dynamic behavior 

of the engaging gears is paid. This means that, in order to use in a proficient way an 

analytical model, an a-priori knowledge of the system is required to prevent from 

neglecting important effects [7] or wasting efforts in modelling irrelevant phenomena.  

The dynamic behavior of two engaging gears is strongly related to the variable meshing 

stiffness of the teeth in contact[8, 9]: a poorly approximated representation of the meshing 

stiffness in the simulation model causes poor results in terms of accurate prediction of the 

real behavior. In particular, an inaccurate representation of the meshing stiffness can 

result in a poor prediction of the dynamic response excited by orders coexisting with the 

fundamental meshing order in the system. 

The purpose of this works is not to develop new analytical models but to present an 

alternative approach to improve the predictive accuracy of an existing 1D model without 

increasing its computational cost. From the simulation point of view, FE formulations 

proved a reliable tool in predicting the static and dynamic behavior of mechanical system 
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in a detailed manner, at the cost of high computational times. For this reason, the idea 

behind this work is to combine 3D FE modeling with a one DoF analytical model for 

dynamic simulation of gear meshing. This way, computationally demanding FE 

simulations are used in a model preparation phase to derive the gear pair meshing 

stiffness and resonance frequencies with high accuracy for a discrete number of different 

positions of the gears along the meshing cycle. A modal mass value is also then derived 

from the previous estimated quantities for each analyzed position along the meshing 

cycle. Model data derived from FE simulation is then used to define the parameters 

(equivalent inertia and instantaneous meshing stiffness) defining the 1D analytical model.  

The resulting 1D model is then used to simulate the dynamic behavior of a pair of 

identical gears in different operating conditions. 

 

2     ANALYTICAL MODEL 

 

One of the simplest models that allow predicting the dynamic torsional behavior of a 

pair of cylindrical gears is proposed in [3] and shown in Figure 1.  

 
 

Figure 1: Dynamic representation of the 1D model of meshing cylindrical gears. 

 

The dynamic behavior of this one DoF system, which considers a pair of identical gears, 

is ruled by the following equation of motion: 

�̈� + 2𝜁�̇� + 𝑘[𝑃𝑂𝑆(𝑡)]𝑔[𝑥(𝑡)] = 𝐹(𝑡)                                  (1) 

where x is the linear relative displacement of the contact points on the two meshing teeth 

along the line of action and represents the dynamic Transmission Error (DTE) in the 

system, �̇� and �̈� are its first and second time derivatives; 𝜁 is a damping coefficient 

introduced in the model in order to take into account friction losses between the teeth; the 

model parameter 𝑘[𝑃𝑂𝑆(𝑡)] is intended to represent the variable meshing stiffness as 

function of the instantaneous position of the teeth in the meshing cycle POS(t), which is 

computed a priori with non-linear FE simulations and stored in a mono dimensional look-

up table with the corresponding position in the meshing cycle[10, 11].  

With this formulation it is also possible to model the backlash b between the gears 

introducing the restoring function 𝑔[𝑥(𝑡)] which is the following function of the relative 

displacement between the teeth: 
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                                         𝑔[𝑥(𝑡)] = {
𝑥(𝑡) − 𝑏,

0,
𝑥(𝑡) + 𝑏,

       

𝑥(𝑡)   > 𝑏,
|𝑥(𝑡)| ≤ 𝑏,
𝑥(𝑡)  < −𝑏.

                                   (2) 

 

The restoring function acts as a switch for the meshing stiffness, by bringing its value to 

zero when the relative displacement is below the backlash threshold. This situation means 

that there is no contact between the teeth and consequently no elastic meshing force. 

When the instantaneous relative displacement assumes a value higher than the imposed 

backlash, the restoring function allows to consider only the effective penetration between 

the teeth in contact, subtracting the backlash from the estimated relative displacement. 

The external force 𝐹(𝑡) in equation (1) represents the loading force in the system. In 

general, a time-varying load can be considered in the model, but it is considered to be 

constant in the work presented in this paper, based on the assumption that the imposed 

value of torque transmitted by the gears is constant.  

The instantaneous acceleration value �̈� is computed numerically by using a Runge-Kutta 

algorithm, implemented in a Simulink model, that solves the following equation: 
 

                                                    𝐹 − (𝑘𝑔 + 𝑐�̇�) = 𝑀𝑒𝑞�̈�                                                     (2) 

 

The relative gear velocity and displacement are obtained by integrating acceleration and 

velocity respectively. The terms on the left side of equation 2 represent the force 

contribution due to external excitation, elastic force and damping force. The values of the 

last two contributions are calculated at each time step by multiplying the relative speed 

and penetration by the damping coefficient, assumed constant, and by the actual value of 

meshing stiffness respectively, which instead is dependent on the actual position of the 

gears along the meshing cycle. The latter is calculated, along with the equivalent mass 

𝑀𝑒𝑞, through a series of FE dynamic analyses of the two gears in different positions along 

the meshing cycle, as it will be illustrated in section 3. 

 

3    FE MODEL 
 

In order to enable the use of the analytical model described in section 2 and illustrated 

in Figure 1, the values of model parameters, such as meshing stiffness, damping 

coefficient and equivalent mass must be determined before the simulation starts.  

The approach proposed in this work to obtain an estimate of these parameters is based on 

detailed static and dynamic FE simulations[12]. 

As illustration example, a simple mechanical transmission, consisting of a pair of 

identical gears already analyzed in [3] and with main geometric properties listed in table 

1, is analyzed. 

 

 

Parameter Value 

Normal module 3 mm 

Normal pressure angle 20 deg 

Pitch diameter 150 mm 

Root diameter 142.5 mm 

Facewidth 25.4 mm 
 

Table 1: Gears specifications. 
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The proposed approach is based on a pre-processing phase in which the variable stiffness, 

and equivalent mass are computed from FE simulations, for different positions along the 

meshing stiffness. The 3D gear geometry was generated according to the geometrical 

parameters listed in table 1 and discretized with hexagonal elements for the FE analyses 

[13], as shown in figure 2. Data needed for 1D simulation are calculated using the pre-

strained modal approach, carried out on a series of models, which represent the gears in 

discrete angular positions along the meshing cycle. In every position, a two-step FE 

simulation is carried out, starting from calculating teeth static deflection resulting from 

the application of a 300 Nm torque on the driving gear and by fixing all the DoFs of the 

center of rotation of the driven gear. This way, the static deflection of the teeth for 

different gear pair configurations is obtained, which is later used in combination with the 

results of a modal analysis, aimed at calculating the fundamental rotational resonant 

frequency of the system, to estimate the 1D model parameters. 

 

Figure 2: FE model of the analyzed gear pair, used to derive parameter values to be used in the 1D model. 

 

The rotational (torsional) stiffness of the 1D model is calculated according as: 

 

 𝑘∅ =
𝑇

∅
 (3) 

where 𝑇 is the applied torque and ∅ the angular displacement of the statically loaded gear 

along the rotational axis. Another parameter derived from the simulation results is the 

equivalent mass, which is calculated as modal mass in the 1D model by using the 

following equation: 

 𝑀𝑒𝑞 =
𝑘∅

𝜔2
 (4) 

where 𝜔2 is the square of fundamental torsional frequency estimated for the 3D model.  

Using this expression, 𝑀𝑒𝑞 and 𝑘∅ have been computed, which are used as model 

parameter data for the 1D model at the later stage. Figure 3 shows the calculated 

rotational stiffness and first resonant frequency estimated for the gear pair model in 

different angular positions along the meshing cycle. From these simulation results, it 

appears clear that the static and dynamic characteristics of a meshing gear pair depend 

very strongly on the instantaneous configuration. Figure 4 shows the first mode shape of 

the gears in two different angular positions, in which one and two teeth pairs are in 

contact. The figure shows also the frequency values of the first resonance in the two 

configurations, which were identified for these models through a pre-strained modal 

analysis. It can be seen that the difference is as high as 400 Hz, which is about 20% of the 

lower value.  
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a b 

Figure 3. Rotational stiffness (a) and fundamental frequency (b) values for the analyzed gear pair. 

 

 

Figure 4. First resonant frequency and mode shape for a gear pair in two different angular configurations 

 

4    RESULTS 

 

Once the 1D model parameters are calculated, different analyses can be carried out by 

solving equation 2 and predict the dynamic behavior of the gear pair. In this paper we 

show the results of analyses that have been performed by operating the input gear with a 

constant speed until steady state was obtained. This process was repeated for different 

increasing and decreasing rotational velocities. Figure 5 shows a comparison between the 

DTE computed for an angular velocity of 600 rpm (a) and of 4200 rpm (b). The different 

shape of the two curves proves that this model is able to catch dynamic effects of gear 

meshing on DTE, which are not relevant at low rotational speed. The figure shows also 

that when the meshing frequency is close to the resonant frequency of the system, as in 

the case of figure 5-b, the DTE signal is dominated by the meshing order. In this case the 

first order of the rotational speed corresponds to the natural frequency of the gear pair. 

 

  
a b 

   Figure 5. Dynamic transmission error (DTE) for different angular speeds: 600 rpm (a) and 4200 rpm (b) 
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Effects of system non-linearity due to backlash between the meshing teeth is visible in 

figure 6, where the contact force along different meshing cycle is plotted. Contact losses 

between the teeth are shown by values of the meshing force close to 0 in figure 6-a, where 

elastic force is imposed to be zero by to the restoring function, while the damping force is 

still acting. Figure 6-b shows the trend of the contact force when no contact loss occurs, 

and minimum values are far away from zero. 

 

  
a b 

Figure 6: Dynamic meshing force for in case of contact loss a) and without contact loss b) 

 

Other effects that can be analyzed using this proposed simulation approach are the jump 

phenomena in the RMS value of the computed DTE, due to the clearance type non-

linearity (Figure 7).  

Due to the backlash between the gear teeth, different branches of RMS curves for the 

computed DTE are obtained when the rotational velocity changes, corresponding to 

different states of the system. The lower branch is obtained for slightly increasing speed 

while the upper branch is obtained for decreasing speed. 
 

 
 

Figure 7: RMS of DTE plotted against meshing frequency 

 

By considering the curves reported in figure 7 it is possible to recognize an almost-linear 

trend in the regions distant from the jumps frequency. The onset of contact loss causes a 

knee in the curve, recognizable as a softening effect compared to the almost-linear trend, 

which is a well-known behavior described in literature [3]. 

 

5     CONCLUSIONS 

This work shows the possibility to use analytical model to describe complex 

phenomena related to gear dynamics. In the proposed approach the lack of accuracy of 

analytical and semi-analytical meshing stiffness formulations is covered by the use of FE 
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simulations which allow to have a realistic description of the meshing process. A high 

computational efficiency is reached by limiting the FE simulations in a preparation phase. 

The simplicity of the analytical formulation makes this model suitable for 

computationally efficient analyses, in those cases where the numerical complexity of FE-

based models requires unaffordable computational time. 

Classical jump-up phenomena are predicted by the model and agree with the classical 

trend shown in literature. 

The 1D model described in this work takes into account only the relative rotation between 

the two gears bodies, under the assumption that the other relative displacements can be 

neglected during the simulation. The flexibility of the proposed approach for FE-based 

estimation of model parameters makes it applicable also to more complex analytical 

models for gear dynamic simulations, which allow taking into account additional relative 

displacements between the gears. 
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Abstract. The present study deals with the effects of contact characteristics on the vibratory 
response of a beam associated with several rubbing devices. Experimentally different contact 
configurations are tested by varying the contact area size and roughness of samples. For each 
tests, the frequency response functions (FRF) are measured and compared. Numerically, tem-
poral calculations are presented and compared to measured data, using Masing’s contact 
model with updated parameter values and averaged estimated values. 
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1 INTRODUCTION 

The optimization of the vibratory response of structures in presence of rubbing is always very 
delicate due to the highly nonlinear behavior induced by dry friction occurring at the interfac-
es. Sticking, macro or micro slipping between interfaces have major effects on both natural 
frequencies and damping properties. 
Due to the diversity of contact configurations, friction models are often very case dependent 
and cannot be efficiently used without identifying: the type of friction occurring at the inter-
faces (based on the shape of the hysteresis curve) and contact parameters such as friction co-
efficient or joint stiffness. Those information may be obtained from specific experimental 
analyses or from available databases. In [1] for example, the authors propose estimated fric-
tion coefficients and contact stiffness values based on a very large experimental campaign 
they carried. 

There is always a need for better understanding of rubbing mechanisms leading to optimal 
configurations and for more physics-based models than the classical and simple Coulomb or 
Masing models. A promising way concerns models that take into account material and geo-
metrical properties of contacting surfaces, surface roughness data, and contact loading [2-4]. 
These models are based on the pioneer work of Greenwood and Williamson on rough contacts 
[5]. Knowing the behavior of an individual spherical asperity pressed against a flat surface it 
is possible, thanks to statistical summation, to simulate the global behavior of two rough flat-
on-flat rubbing surfaces. 

In the present study, a test rig has been developed to measure the dynamic response of a steel 
beam associated with several friction configurations. The set-up allows punctual or surface to 
surface contact cases. In the case of surface to surface contact, devices with various area size, 
shape and roughness were tested in order to assess their influence on the overall response. 
Numerically, temporal calculations are presented and compared to the measured data using 
different contact models with updated parameter values and averaged estimated values. 

2 THE TEST RIG 

The studied structure is a cantilever steel beam with a rectangular cross section of 0.008 m 
by 0.04 m and a length of 0.50 m. At the free end, the beam may be associated with different 
rubbing devices (Figure 1).  

The experimental set-up allows the measurement of the displacement at 0.35 m of the 
clamped end of the beam by mean of an accelerometer (measured signal integrated twice). 
The excitation force provided by a shaker is measured by a force sensor located at the end of 
the shaker’s push rod. The normal and tangential contact forces are also given by a force sen-
sor. Two categories of devices were chosen in order to allow punctual contacts or surface to 
surface contacts (Figure 2). Sine sweeps (harmonic excitation) were performed at constant 
excitation force amplitude within the [15-130] Hz frequency range and for various normal 
contact forces. 
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Figure 1: Experimental set up – cantilever steel beam. 

a) Punctual contact b) Surface to surface contact

Figure 2: Rubbing devices. 

Figure 3 gives an example of typical measured FRFs for the punctual contact case. The 
classical influence of normal contact load is exhibited.  

For a high normal load (Fn=40N associated to an excitation force of 2 N) contact is stuck. 
The FRF exhibits a linear behaviour with a peak resonance at 86 Hz. As the normal load is 
lowered (from 30 N to 0.25 N) relative displacement is allowed at the contact (presence of 
stick/slip) and vibrational amplitudes around the 86 Hz resonance peak are damped, becoming 
nearly flat. Finally, for Fn=0.1 N contact is in a slip state and a high resonance peak is again 
observed at 24Hz (free configuration).  

In Figure 4, an example of the measured tangential forces in stick and stick/slip states is 
shown. When contact is stuck, the tangential force is proportional to displacement (sinusoidal 
signal). On the other hand, when contact is in a stick/slip state, the tangential force is propor-
tional to displacement in the stuck phase and keep the limit value of ±µFn (µ friction coeffi-
cient) in the slip phase. 
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Figure 3: FRF vs normal load. 

a) Stick contact state b) Stick/slip contact state

Figure 4 : Measured tangential force. 

3 DYNAMIC RESPONSE OF THE STRUCTURE 

Only the results associated to surface to surface contact configurations are presented here. 
The different samples considered were made of various contact areas (13x13 mm2, 9x9 mm2, 
13x5 mm2, 5x5 mm2, Figure 5) and two surface finish, one rough and one smooth. Surface 
finish is described by the average roughness (Ra) defined in [6]: 
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a ∫= (1) 

where ( )xz  represents the height of asperities and L the sampling length.

In Figure 6, the profiles of the 13x13 mm2 samples are presented. The smooth one has a 
Ra of 0.714 µm while the rough one has a Ra of 3.76 µm. Regarding the external forces, nor-
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mal loads were varied within the range [0.1 – 80] N and the excitation force amplitude re-
mained at 2N. 

Figure 5: Samples 

a) Profile of the smooth 13x13 mm2 sample : Ra=0.714 µm

b) Profile of rough 13x13 mm2 sample : Ra=3.76 µm

Figure 6: Profiles of the 13x13 mm2 specimens. 

Figure 7 gives the FRFs associated to the four smooth samples for a normal load of 2N. 
As clearly shown responses are identical and contact area size does not affect significantly the 
dynamics of the assembly. The same observations were made when assessing the influence of 
surface roughness. 

4668



d
B

 A
m

p
li

tu
d

e 
[m

]

Figure 7: Area size influence on the FRFs for the smooth samples with Fn=2 N. 

The overall effect of area size is illustrated in Tables 1 and 2 while the effect of roughness 
is shown in Tables 3 and 4. Results reported concern surfaces 13x13 mm2 and 5x5 mm2. Dis-
crepancies are illustrated via three quantities: maximum displacement amplitudes, frequency 
at which the maximum amplitudes are obtained and damping ratios. 

Fn=0.1 N Fn=2 N Fn=10 N Fn=80 N 
Amplitude differ-
ences. 

-5.2 % 0.7 % 1.5 % 0.8 % 

Frequency at max 
amplitudes. 

0 % 3 % -1.1 % 0 % 

Damping ratio 
differences. 

-0.44 % 0.91 % 0.27 % 

Table 1: Effect of area size: 13x13 mm2 smooth versus 5x5 mm2 smooth. 

Fn=0.1 N Fn=2 N Fn=10 N Fn=80 N 
Amplitude differ-
ences. 

4 % 1.7 % 1.3 % 3.3 % 

Frequency at max 
amplitudes. 

0 % 0 % 0 % 1.6% 

Damping ratio 
differences. 

6.9 % 0.59 % 0.81 % 

Table 2: Effect of area size: 13x13 mm2 rough versus 5x5 mm2 rough. 

As shown in Tables 1 and 2, discrepancies between surfaces 13x13 and 5x5 are limited. 
Variation in maximum displacement amplitudes does not exceed 5.2 % and frequencies of the 
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maximum amplitudes as well as damping are not affected significantly, with one exception 
for Fn=2 N with 6.9 % discrepancy on damping. 

Fn=0.1 N Fn=2 N Fn=10 N Fn=80 N 
Amplitude differ-
ences. 

-0.31 % 2.4 % 0.85 % -0.2 % 

Frequency of the 
maximum ampli-
tudes. 

0 % 5.8 % 2.8 % 1.6 % 

Damping ratio 
differences. 

-11.3 % -1 % 0 % 

Table 3: Influence of roughness: 13x13 mm2 smooth versus 13x13 mm2 rough. 

Fn=0.1 N Fn=2 N Fn=10 N Fn=80 N 
Amplitude differ-
ences. 

8.4 % -1.5 % -1 % 2.32 % 

Frequency of the 
maximum ampli-
tudes. 

0 % 5.8 % 4 % 1.6 % 

Damping ratio dif-
ferences. 

-4.1 % -1.36 % 0.81 % 

Table 4: Influence of roughness: 5x5 mm2 smooth versus 5x5 mm2 rough. 

The former conclusions remain when considering the effects of roughness on the dynam-
ics of the assembly as shown in Tables 3 and 4. 

4 NUMERICAL MODELLING 

A finite element model of the structure has been constructed using beam, shell and 8 nodes 
brick elements. For the contact interface, zero thickness elements are used with Masing’s tan-
gential contact model. Masing’s model is a combination of a Coulomb’s contact model with a 
spring representing contact stiffness as illustrated in Figure 8 for a single dof mass-spring sys-
tem. The tangential contact force Ft is given by: 

( )
( ) ( ) contact stickingfor    

contact slippingfor  

zxdkFnxsgnF

FnxsgntF

t −+−=

=

µ
µ
&

&

(2) 

where µ is the friction coefficient, nF  the normal contact load, dk  the contact stiffness,x the 
mass displacement, x& its velocity and z the internal slipping variable. 
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Figure 8: Masing’s contact model in case of  a 1 dof mass-spring system 

Due to nonlinearity, solutions are obtained using a Newmark time integration scheme with 
Newton-Raphson iterations. Two different set of parameters (µ and kd) are considered. The 
first is obtained using model updating from experimental data. The second considers estimat-
ed averaged values obtained from [2], as in this reference authors suggest values representing 
a best compromise when experimental data are not available: friction coefficient of 0.66 and 
contact stiffness of 3e7 N/m. Table 5 gives the parameters used for the smooth surface with an 
area of 13x13 mm2 for models 1 and 2. Parameters suggested in [2] are higher than the identi-
fied values. 

Friction coefficient Contact stiffness 
Model 1 0.45 3.9e5 N/m 
Model 2 0.66 3e7 N/m 

Table 5: Parameter for the smooth 13x13 mm2 surface 

Figure 9: Models 1 and 2 versus experiments 

Fn=0.1 N Fn=80 N 

Fn=10 N 

Fn=2 N 

Fn=2 N 

Fn=10 N 
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Figure 9 gives numerical and experimental results. In the case of model 2, comparisons are 
limited to two normal loads, due to calculation time. Results clearly show that model 1 repro-
duces with good accuracy the experimental FRFs while there is a shift of 10 Hz between 
model 2 and experiments. Minimal discrepancy is obtained when reaching the maximal dis-
placement amplitudes for both models. A 10 Hz frequency shift is not dramatic considering 
that no experimental data is available, but illustrates the need for accurate parameter estima-
tion. 

Numerical studies were made for the other configurations of contact area size and rough-
ness and confirm little to no influence of these parameters on the dynamic response of the as-
sembly. An example of comparison between surface 13x13 and 5x5 is shown in Table 6. 
 

 Fn=0.1 N Fn=2 N Fn=10 N Fn=80 N 
Amplitude differ-
ences. 

0 % 1.4 % 2.2 % -3.1 % 

Frequency of max 
amplitudes. 

0 % 0 % 0 % 0 % 

Damping ratio dif-
ferences. 

 1.7 % 1.6 % 0.23 % 

 
Table 6: Contact area size effect on the FRF – smooth 13x13mm2 versus smooth 5x5 mm2 

 
In order to examine a broader range of configurations, numerical calculations were per-

formed for higher normal loads (120 – 160 – 200 N) and excitation loads (2 – 20 – 40 - 100 
N). In Figure 10, smooth surface 13x13 and rough surface 13x13 are compared for Fn=120 N 
and Fex=40 N. The maximal amplitude discrepancy is 6.1 % and it appears that the smooth 
surface dissipates significantly more energy than the rough one. Other calculations show an 
increase of the influence of contact characteristics for higher external loads (Fn and Fex). 
However, the observed discrepancies for maximum amplitude remain limited and do not ex-
ceed 10% for instance. 

 
 

 
 

Figure 10: Smooth surfaces (red) versus rough surface (blue)  
for 13x13 sample, Fn=120 N and Fex=40 N. 
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5 CONCLUSIONS 

This study focuses on the dynamics of a beam associated with rubbing devices. Both ex-
perimental and numerical results are presented. Different configurations were tested in order 
to assess the effect of contact area size and roughness of the assembly. It was shown that the 
influence of such characteristics is limited when considering the discrepancies on maximum 
amplitude of displacements, frequencies of peak displacements and damping ratios. For the 
configurations considered, the behaviour remain globally in the frame of macro-slip. 

Numerically, calculations with Masing’s model were done. In the case where experi-
mental data is available, the numerical model and experiments agree very well and confirm 
the fact that contact area and roughness have limited effects on the FRFs. On the other hand, 
when measured data are not available, the correlation between the model (using averaged es-
timated values) and experiments is more delicate as a shift between the peak frequencies is 
observed. This is due to the fact that the contact stiffness estimation is too high. However a 
good agreement was noticed for maximum amplitudes. This last results emphasize that work 
for a better estimation of contact parameters is still needed. A model which does not require 
prior experimental friction tests such as in [5] is under development.   
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Abstract. In this study, an analytical approach based on the Rayleigh method is adopted to 

calculate the first resonant frequency of a 46-m-high concrete mobile phone mast system, by 

considering the geometric stiffness, functions of the concentrated forces, and self-weight of 

the structure. It is important to bear in mind that actual structures are more complex than 

simple systems such as beams and columns because the properties of actual structures vary 

with their length. The mast is done in concrete its nonlinear behavior is linearized reducing 

the flexural stiffness and the ground is taken into account as distributed springs. Under geo-

metric nonlinearity, the vibration frequency of the fundamental mode is calculated analytical-

ly and, for comparison, a finite element method (FEM)-based computer simulation is 

performed. Finally, the structural stiffness is evaluated. The results of the analytical approach 

are found to differ slightly from those of the FEM-based model. 
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1 INTRODUCTION 

Lee [1] relates that because beams are basic structural components, studies on free vibra-

tion of linear elastic beams under various conditions have been extensively reported for sever-

al decades. Accurate prediction of the natural frequencies of structures or structural 

components is important, especially in the design of structures subjected to dynamic loads. In 

various structural engineering fields, including civil, architectural, mechanical, and aeronauti-

cal engineering, tapered members, for example, are frequently used in structural designs for 

economical, aesthetic and geometrical reasons, goes on he. 

The dynamic bending of such systems, which mingles with the flexural vibration of 

beams/columns, was initially investigated by Daniel Bernoulli in the late 18th century. The 

vibrations of Euler–Bernoulli beams have long been studied, since around 1750, Strutt [2]. As 

a beam, a column represents a continuous structural member, and its vibrations are governed 

by nonlinear partial differential equations, relates Norouzi [3], for which exact analytical solu-

tions cannot be found, Awrejcewicz [4]. 

To investigate of the behavior of a continuous system with infinite degrees of freedom re-

quires discretization techniques in which the structure is transformed into subsystems defined 

by points called joints. The discretization of differential equations was initialized by Euler 

through the first order discrete approximation. The Euler method is a one-step discrete meth-

od. Eventhough, this method provides a very low computational accuracy, one still used such 

a method in numerical computations because it is very simple to use, affirm Guo [5]. In fact, 

the discretization methods lead to the resolution of an algebraic problem for an initial contin-

uous eigenvalue problem. The possibility to solve automatically the algebraic problem using a 

computer makes the discretization approach advantageous as compared to the initial continu-

ous one, comments Challamel et al [6]. 

 However, continuum systems can be associated with a system having a single degree of 

freedom, thereby restricting the mode in which the system will deform, and express the prop-

erties of such a system as functions of the generalized coordinates. This technique was adopt-

ed by Rayleigh [7] in his classic study of elastic system vibration, and his equations were 

found to be valid in the entire domain of the problem. However, actual structures are more 

complex than simple beams and columns, because their properties vary with their length and 

apply that method require a special attention. In order to evaluate the application of the Ray-

leigh method to an actual structure was selected one piece of concrete with high slenderness, 

for which the frequency of the first vibration mode was calculated analytically and by a com-

putational model using the finite element method (FEM). 

2 CHARACTERISTICS OF THE 46-M-HIGH CONCRETE MAST 

The structure is a concrete pole with high slenderness (slenderness of 334) with 46 m high. 

It has a hollow circular section of external diameter ext and thickness of the wall of each 

segment t. The geometric details can be seen in shown in Figure 1 and Figure 2. In the struc-

ture there is a set of antennas and one platform on top, which totalize a mass of 1097.76 kg. 

There is even ladder, cables and guardrail, from 6 up to 46 m of height, which gives the struc-

ture an additional mass distributed of 40 kg/m. The lateral soil was represented by distributed 

spring stiffness (Km) equal to 2668.93 kN/m
3
. The density adopted for reinforced concrete 

foundation was 2500 kg/m
3
, while the superstructure is considered to 2600 kg/m

3
 concrete to 

be centrifuged. The foundation is of the kind shaft, relatively deep, with the following charac-

teristics: base diameter 140 cm, shaft diameter 80 cm, length of shaft 580 cm and 20 cm base 

height. The concrete resistance is 45 MPa for the post, and 20 MPa for the foundation. Be-

cause the material has a nonlinear behavior or physical nonlinearity of concrete for is neces-
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sary take it into account. What will be done following the recommendations from Brazilian 

Association for Standardization [8], which preconize um reducer factor of 0.5. 

 

  

Figure 1: Mobile phone mast system (46 m high). 
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Figure 2: Geometric of the 46-m-high concrete mast (measurements in centimeters). 

3 SYNTHETIC MATHEMATICAL DESCRIPTION 

Below is described synthetically the mathematical bases of the Rayleigh Method. The 

basic concept underlying that method is the principle of conservation of energy in mechanical 

systems; therefore, it is applicable to linear and nonlinear structures according to Clough [9]. 

Temple [10] suggested that the fundamental principles developed by Rayleigh are applicable 

to both linear and nonlinear continuous systems with finite degrees of freedom. The purpose 

is to determine the fundamental period of vibration and to analyze the stability of elastic sys-

tems with the precision required for engineering problems. Toward this end, the principle of 

virtual work must be described by adequately chosen generalized coordinates and by a func-

tional form that describes the first mode of vibration. At the end of the calculation, the equa-

tion of motion is written in terms of the generalized coordinates, from which one can extract 

the generalized elastic and geometric properties of the system. However, it is important to 

have in mind that for actual structure the integrals obtained by the method should be resolved 

within the limits established for each interval, i.e., the generalized properties calculated for 
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each segment of the structure, with special attention to the geometric stiffness because each 

part must consider the normal force distributed in its range as well as forces that operate in the 

upper segments. 

Consider the well-known trigonometric function 

( ) 1 cos .
2




 
   

 

x
x

L
 (1) 

Applying the principle of virtual work and its adequate derivations, the dynamic properties 

of interest of the system can be obtained as follows. The conventional stiffness is given by 
2

2

0 2

0

( )
,

 
  

 

L

d x
K EI dx

dx
 (2) 

where E is the elastic modulus and I is the inertia of the section. The geometrical stiffness ap-

pears as a function of the axial load, which includes the self-weight, and it is expressed as 
2

0

( )
( ) ,

 
  

 

L

g

d x
K N x dx

dx
 (3) 

where N(x) is a function of the normal force given by  0( ) .    N x m m L x g  

If is necessary to consider the soil participation on the vibration of the system, one way is 

to associate it as distributed springs along of the height, for that should take the Eq.(4), where 

k(x) is the spring parameter. 

2

0

( ) ( ) . 
L

mK k x x dx  (4) 

The total generalized mass is given by 0 , M m m  where m0 is the tip lumped mass at the 

element joint and 

 
2

0

( ) ,

L

m m x dx   where m is the mass per unit length (5) 

Finally, the natural cyclical frequency should be calculated as 

,
K

M
  since 0 ,g mK K K K    (6) 

For further details on the development of this specific analytical procedure, readers may re-

fer to our previous work, Wahrhaftig [11].  

4 RESULTS AND DISCUSSION 

4.1 Geometric definitions and parameters of the Rayleigh method 

The following ordered referring to the heights in the structure are defined: 1L 0.2 m , 

2L 6.0 m , 3L 12.0 m , 4L 19.0 m , 5L 46.0 m . On the base foundation, one has: 

1D = 140 cm , 
2

1 1A D
4


 , 

4

1 1I D
64


 . On the shaft 2D = 80 cm , 

2

2 2A D
4


 , 

4

2 2I D
64


 . 

The variable diameter on the segment between the base and the shaft is obtained by linear in-

terpolation on the variable segment, doing: 2 1
1 1

1

D D
D (x) x D

L


   . So, the area and inertia 

of the section are given by 
2

1 1A (x) D (x)
4


 and 

4

1 1I (x) D (x)
64


 . Being D3 and e3 the ex-
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ternal diameter and thickness of the initial section, one has
3D = 80 cm  and 

3t = 13 cm . Then, 

the internal diameter, area and inertia of the section are: 
3 3 3d = D 2t ,  2 2

3 3 3A D d
4


   and 

 4 4

3 3 3I D d
64


  . Similarly, D5, t5, d5, A5 and I5 are the external diameter, the thickness, 

area and inertia to the last segment. Between these two segments there is a segment with vari-

able section, of thickness equal to the previous (t4 = t3), such diameter can be obtained by lin-

ear interpolation similarly as done previously, using the 

expression  4 3
4 3 3

4 3

D D
D (x) x L D

L L


  


. Therefore,

4 4 4d (x) D (x) 2t  , 

 4 4

4 4 4A (x) D (x) d (x)
64


  and  4 4

4 4 4I (x) D (x) d (x)
64


   are, respectively, the internal 

diameter , the area and the inertia of the variable section on that correspondent segment. 

The parameters of the analytical procedure are listed in Table 1. 

 

Table 1. Parameters of analytical procedure. 

Parameter Value 

Elastic modulus of the mast concrete reduced E = 18782971011 MPa 

Elastic modulus of the foundation concrete reduced E1 = 12521.98 MPa 

Density of structure and  foundation concrete ρ = 2600 kg/m
3
, ρ1 = 2500 kg/m

3
 

Lumped mass at the top m0 = 1097.76 kg 

Additional distributed mass per unit height em  = 40 kg/m 

Spring parameter ks = 2668.93 kN/m
3
 

Gravitational acceleration g = 9.806650 m/s
2
 

 

4.2 Calculation of generalized mass of the Rayleigh method 

Sub-indices in Roman numerals are introduced from this point on to prevent ambiguity in 

notation. The generalized mass is calculated using the following integrals. 
1

2

1

0

( ) ( ) 
L

Im m x x dx , where 2 1
1 1

1

( ) 
 

  
 

I

A A
m x A

L
; 

2

1

2

2 ( ) 
L

II

L

m m x dx , where 2 1IIm A ; 
3

2

2

3 ( ) 
L

III

L

m m x dx , where 3 III em A m ; 

4

2

4

3

( ) ( ) 
L

IV

L

m m x x dx , where 4( ) IV em A x m  and  2 2

4 4 4( ) ( ) ( )
4


 A x D x d x ; 

and 

4

2

5 ( ) 
L

V

L

m m x dx , where 5 V em A m . 

(7) 

The generalized distributed mass is given by 
5

1

 i

i

m m and the total generalized mass is 

given by 0 . M m m  The total generalized mass of the structure is 7848.06 kg. 
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4.3 Calculation of generalized geometric stiffness by Rayleigh method 

To compute the generalized geometric stiffness, it is necessary to determine the normal 

forces for the parts defined in the geometry. From the top to the bottom of the structure, the 

axial forces are 

0 0 ,F m g  

4

5 , 
L

V

L

F m gdx
4

3

4 ( ) , 
L

IV

L

F m x gdx   

3

2

3 , 
L

III

L

F m gdx
2

2

1

, 
L

II

L

F m gdx  and 
1

1

0

( ) , 
L

IF m x gdx  

(8) 

where g is the gravitational acceleration. The generalized axial force F is given by
5

0

,


 i

i

F F  

and the geometric stiffness is calculated as follows: 

4

2

5 0 ( ) ( ) ,
  

    
   


L

g V

L

d
K F m L x g x

dx
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3

2

4 0 5 4( )( ) ( ) ,
  

     
   


L

g IV

L

d
K F F m x L x g x

dx
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2

2

3 0 5 4 3( ) ( ) ,
  

      
   


L

g III

L

d
K F F F m L x g x

dx
 

3

2

2

2 0 5 4 3 2( ) ( ) ,
  

       
   


L

g II

L

d
K F F F F m L x g x

dx
 and 

3

2

2

1 0 5 4 3 3 1( )( ) ( ) .
  

        
   


L

g I

L

d
K F F F F F m x L x g x

dx
 

(9) 

Thus, the generalized geometric stiffness Kg of the structure is given by
5

1

.g gi

i

K K


  The 

generalized geometric stiffness of the structure is 2.630744 kN/m. 

4.4 Calculation of generalized conventional stiffness by Rayleigh method 

The elastic geometric components are 

1
2

2

01 1 1 2

0

( ) ( ) ,
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d
K E I x x dx

dx
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2
2

02 1 2 2
( ) ,
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d
K E I x dx
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K EI x dx
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2
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04 4 2
( ) ( ) ,

 
  

 

L
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d
K EI x x dx

dx
 

and 

4

2
2

05 5 2
( ) .

 
  

 

L

L

d
K EI x dx
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(10) 

The generalized elastic stiffness is given by the sum of the above components, as 
5

0 0

1

i

i

K K


 .The generalized conventional stiffness is 8.068271 kN/m. 
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4.5 Calculation of generalized spring stiffness by Rayleigh method 

Once that ks is the spring factor, such value, for this specific case, is ks = 2669 kN/m
3
, the 

distributed springs, in the first and second segments are given by 1 1( ) ( ) sk x k D x and 

2 2( )  sk x k D . The generalized spring stiffness, designed by Km, is calculated by means of fol-

low equations: 
1 2

1

2 2

1 2

0

( ) ( ) ( ) ( ) .   
L L

m

L

K k x x dx k x x dx  (11) 

So, the generalized stiffness of the structure can be finally determined by the algebraic sum 

of the precedents parcels, so that is the total stiffness obtained by: 0 g mK K K K   . The 

generalized total stiffness is 6.560661 kN/m. 

4.6 Calculation of frequency by Rayleigh method 

The frequency of the first mode calculated numerically using Eq. (8) is 0.132477 Hz. If the 

geometric stiffness is not considered, linear analysis, the frequency is 0.172238 Hz. 

4.7 Solution from a computational model based on the fem 

The formulation corresponding to the finite element method (FEM) in relation to the math-

ematical procedure is the geometric nonlinear formulation. Then, the problem representing 

the modal analysis is resolved as 

   2det - 0   K M  (12) 

with [K] being the stiffness matrix, composed by the conventional and geometric parcels and 

[M] is the mass matrix. In the classical modal analysis, this information is related to the natu-

ral frequencies of the system (eigenvalues), clears Shiki [12]. For comparison, a computation-

al model based on the FEM was developed according to SAP2000 (Integrated software for 

structural analysis and design, Analysis Reference Manual, Computer and Structures, Inc., 

Berkeley, California, USA), a commercial software packed. The forces and parameters listed 

in Table 1 were applied to the model with the corresponding masses. The material was as-

sumed to be isotropic, homogeneous, elastically linear, and with the parameters used in the 

analytical investigation in addition to a Poisson’s ratio of 0.2. The spring value also was as-

signed to the foundation. The structures analyzed were modeled using 40 bar elements with 

constant and variable cross sections, as appropriate. 

The modal analysis was performed over the stiffness came from a nonlinear static prepro-

cessing. The first natural frequency calculated by FEM without geometric nonlinearity is 

0.169961 Hz, and with geometric and material nonlinearity is 0.141285 Hz.  

5 CONCLUSIONS  

 This study employed an analytical procedure based on the Rayleigh method to calculate 

the initial undamped frequency of a 46-m-high concrete mast under geometric nonlineari-

ty. Computational modeling based on finite element method (FEM) was performed for 

comparison. 

 It was observed that the geometric stiffness represents 32.61% of the conventional stiff-

ness. This implies that the reduction in the stiffness reduces the frequency in 15.51%. 

The same analysis using the FEM represents a reduction of 30.28%. 
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 When calculated analytically by the Rayleigh method, under geometric nonlinearity, the 

vibration frequency of the first natural mode was only 3% greater than that obtained by 

the FEM using a compatible formulation (0.145517 Hz for the former and 0.141285 Hz 

for latter). When computed without the geometric stiffness component, this frequency 

was 0.172238 Hz and 0.184065 Hz for both methods. So, one notes that the analytically 

solution based on the Rayleigh method has a good approximation with the nonlinear 

formulation based on the geometric matrix from the FEM. The results showed that there 

were no absolute differences between both solutions. 
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Abstract. In this paper we consider the lowest edge-based mimetic finite difference (MFD)
discretization in space for Maxwell’s equations in cold plasma on rectangular meshes. The
method uses a generalized form of mass lumping that, on one hand, eliminates a need for linear
solves at every iteration while, on the other hand, retains a set of free parameters of the MFD
discretization. We perform an optimization procedure, called m-adaptation, that identified a
set of free parameters that lead to the smallest numerical dispersion. The choice of the time
stepping proved to be critical for successful optimization. Using exponential time differencing
we were able to reduce the numerical dispersion error from second to fourth order of accuracy
in mesh size. It was not possible to achieve this order of magnitude reduction in numerical dis-
persion error using the standard leapfrog time stepping. Numerical simulations independently
verify our theoretical findings.
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1 Introduction

A variety of numerical techniques are available in the literature for the simulation of Elec-
tromagnetic (EM) wave propagation in linear dispersive media, the gold standard being the
Yee Finite difference Time Domain (FDTD) method [6]. EM wave propagation in a medium is
modeled by Maxwell’s Equations, a vector system of Partial Differential Equations (PDEs), that
govern the evolution of the EM field, along with appropriate constitutive equations for the re-
sponse of the medium to the EM field. The Yee scheme is a FDTD method that simultaneously
discretizes Maxwell’s equations along with the constitutive laws for the medium to produce a
second order accurate discretization in space and time. However, the second order numerical
dispersion errors that arise in the discrete solution obtained using the Yee scheme can lead to
large errors over long time integration on electrically large domains. Thus, the construction
of numerical methods with high order numerical dispersion errors for linear dispersive media,
which is the goal of this paper, is crucial to the accurate simulation of EM waves in such media.

In this paper, we consider the simulation of EM waves in a cold isotropic plasma, a type of
linear dispersive medium. The model for cold plasma is based on the Auxiliary Differential
Equation (ADE) approach in which an Ordinary Differential Equation (ODE) for the evolution
of the time derivative of the macroscopic polarization (polarization current density) is appended
to Maxwell’s equations to produce a hybrid PDE-ODE system. The evolution ODE for the
polarization current density models the averaged response of the material to the electromagnetic
field. We present the construction of a dispersion minimized numerical method for Maxwell’s
equations in a cold plasma by performing a novel optimization procedure, called m-adaptation,
on a family of numerical methods for the cold plasma model based on the Mimetic Finite
Difference (MFD) method in space and Exponential Time Differencing (ETD) in time.

MFD methods are a flexible family of methods that are based on general polygonal and poly-
hedral meshes, see [7] for a comprehensive review. The word mimetic indicates the fact that
they mimic/preserve in the discrete settings some properties of the continuous equations. The
MFD construction is generally non-unique and leads to a parameterized family of methods with
equivalent properties, such as stencil size and base convergence rate among others. Many of the
classical discretizations are contained within the MFD family, e.g. Yee scheme on rectangular
elements. The number of parameters characterizing the scheme grows rapidly with the dimen-
sion, the number of vertices in a polygonal element, and the order of the discretization. The
parameterized nature of the family of MFD methods presents an opportunity for optimization
for some desired properties. M-adaptation, as introduced in [4, 5], is the process of selecting an
optimal member of the family of mimetic schemes for a selected optimization criteria (in this
case, minimization of numerical dispersion). In [5] other optimization criteria were analysed.

We have previously considered the problem of optimizing numerical dispersion error in mod-
els of electromagnetic wave propagation in free space [1]. In this earlier work, we started with
the parameterized family of MFD schemes that all have second (base) order of numerical dis-
persion error on rectangular meshes. Through m-adaptation we produced a method that has
fourth order numerical dispersion error. The present paper extends our prior work to a cold
plasma model which, as discussed above, appends an additional evolution equation for the po-
larization current density to Maxwell’s equations. The extension of m-adaptation to the cold
plasma model proved to be non-trivial, as illustrated by our first failed attempt presented in the
appendix section of this paper. It turns out, that for linear dispersive media, the choice of the
time discretization scheme is critical for the m-adaptation technique to produce a high order
method. The Leapfrog time differencing method, which we previously employed in [1] for the
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case of EM propagation in free space, does not allow m-adaptation to produce a higher order
method for the cold plasma model. Instead, replacing the Leapfrog time differencing with ETD
allows for successful optimization over the family of fully discrete MFD schemes. The optimal
Exponential Time Mimetic Finite Difference (ETMFD) method, produced by m-adaptation, has
a fourth order numerical dispersion error as compared to the (base) second order error for the
rest of the ETMFD schemes in this family on rectangular meshes.

The ETD method was originally introduced in computational electromagnetism as a scheme
for handling stiff problems, such as computing the electric and magnetic fields in a box sur-
rounded by perfectly matched layers [2]. For these problems, explicit time-stepping, for ex-
ample the Leapfrog time differencing method, requires an extremely small time step in order
to be stable. On the other hand implicit schemes that are unconditionally stable can be costly
to implement in three dimensions. ETD involves an exact integration of some of the lower
order linear terms in the governing equations, and higher order accuracy can be obtained by
using a higher order discretization of the resulting integral terms. However, the ETD approach
has been shown to offer no major advantages over the time averaging of the lower order linear
terms in the Yee scheme, for alleviating stiffness. In some cases, ETD may be less efficient by
necessitating smaller step sizes [8].

We would like to emphasize that the reason for the choice of ETD in our work is not for
handling stiffness, but rather that it is a good candidate for a time discretization method which
allows for successful optimization in the m-adaptation technique. In contrast to other numer-
ical methods for the cold plasma model that use ETD discretization only for the equation of
polarization current density [3], our ETMFD method is a discretization of a hyrbrid PDE-ODE
system modeling the evolution of the polarization current density and electric field forced by
spatial derivatives of field variables.

The outline of the paper is as follows. In Section 2 we present first and second order PDE
models for cold plasma, and the corresponding weak formulations. The lowest order edge based
MFD discretization for the electric field and current density on rectangular meshes is presented
in Section 3, while the exponential time difference discretization for scalar and vector equations
is presented in Section 4. In Section 5 we present a fully discrete ETMFD family of discretiza-
tions that employs a generalized form of mass-lumping to produce a fully explicit scheme to
avoid the need for linear solves at every time step. In Section 5.1 we derive the numerical
dispersion relation for this family of discrete schemes and choose the set of MFD parameters
that produces a method with the lowest numerical dispersion error. This optimization requires
numerical dispersion properties derived in Sections 3 and 4. In Section 6 we present results
of numerical simulations that independently validate our theoretical results. In Section 7 we
present some concluding remarks. Finally, in Appendix A, we demonstrate that a straightfor-
ward extension of our ideas developed in [1] does not allow the m-adaptation process to reduce
numerical dispersion error, thus, demonstrating the novelty of the ETMFD method presented in
this paper.

2 Maxwell’s Equations in a Cold Plasma

The Cold Plasma (CP) model is a special case of the Lorentz model [6] governing the evo-
lution of electromagnetic waves in partially ionized gases without magnetization effects. It
consists of Maxwell’s equations along with evolution equations for the time derivative of the
macroscopic electric polarization field. This time derivative is called the polarization current
density. Suppose Ω ⊂ R2 and T > 0. Maxwell’s equations governing the evolution of wave
propagation on Ω × [0, T ] relate the electric field intensity E, and the magnetic flux density B
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as

∂

∂t
E = c2

0 curl B − 1

ε0
J, (2.1a)

∂

∂t
B = −curl E, (2.1b)

where c0, and ε0, are the speed of light, and the electric permittivity of free space, respectively.
The vector J is the polarization current density and is modeled by the evolution equation

∂

∂t
J + ωiJ = ε0ω

2
PE. (2.2)

Here ωi is the ion collision frequency and ωP is the plasma frequency. For a vector field f =
(fx, fy)

T and for a scalar field f we define the scalar (curl) and vector (curl) curl operators as
follows,

curl(f) :=
∂

∂x
fy −

∂

∂y
fx, curl(f) :=

(
∂

∂y
f,− ∂

∂x
f

)T
.

All the fields in the system (2.1)-(2.2) are functions of position x = (x, y)T and time t ∈ [0, T ].
We also assume perfect electrical conductor (PEC) boundary conditions.

E× n = 0, on ∂Ω× [0, T ], (2.3)

where n is a unit outward vector to the boundary Ω. The equations (2.1) and (2.2) are subject to
appropriate initial conditions.

The first order equations (2.1-2.2) can be written in an equivalent second order formulation,
which we call the Maxwell-CP Model, by eliminating the magnetic flux density field B as

∂2

∂t2
E = − 1

ε0

∂

∂t
J− c2

0 curl curl E, in Ω× (0, T ],

∂

∂t
J = −ωiJ + ε0ω

2
pE, in Ω× (0, T ],

E× n = 0, on ∂Ω× (0, T ],

(2.4)

along with appropriate initial conditions. We will construct a MFD discretization based on this
second order formulation.

2.1 Variational Formulation

The MFD discretization, just like a finite element formulation, will be constructed based on
the weak form of (2.4). To this end, we consider the Sobolev spaces

L2(Ω) = [L2(Ω)]2,

H(curl,Ω) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)},
H0(curl,Ω) = {v ∈ H(curl,Ω),v × n = 0, on ∂Ω}.

The weak formulation of (2.4) is obtained in a standard way. Multiply the first, and the second
equation, in (2.4) by test functions, φ ∈ H0(curl,Ω), and ψ ∈ L2(Ω), respectively, and integrate
over the domain Ω. The weak formulation reads
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Find E ∈ C2([0, T ]; H0(curl,Ω)), and J ∈ C1([0, T ]; L2(Ω)), subject to appropriate initial
conditions, such that for all φ ∈ H0(curl,Ω) and ψ ∈ L2(Ω) we have

[Ett,φ]E + c2
0 [(curl E), (curl φ)]F +

1

ε0
[Jt,φ]E = 0, (2.5)

[Jt, ψ]E + ωi [J, ψ]E − ε0ω
2
p [E, ψ]E = 0, (2.6)

where the bilinear forms are defined as follows:

[J,E]E :=

∫
Ω

J · E dΩ, [J,E]F :=

∫
Ω

J E dΩ. (2.7)

Here (J,E) are vector functions, and (J,E) are scalar functions.

2.2 Dispersion Relation

In this paper our aim is to construct a numerical method for the Maxwell-CP model (2.4) that
is the optimal method chosen from a family of schemes by minimizing for numerical dispersion
error. Thus, in this section, we present a brief overview of continuous and numerical dispersion
relations and their connections to symbols of differential operators.

Given a plane wave
u(t,x) := ei(k·x−ωt)u0, (2.8)

a continuous or discrete dispersion relation is a relation between the frequency ω and the wave
vector k, under which u, or its restriction to a discrete grid, is a solution of a continuum PDE,
or its discrete approximation, respectively.

Consider an abstract linear equation

Lt{u} = Lx{u}, (2.9)

where Lt and Lx are linear operators corresponding to time and space, respectively, and u
is either a continuous plane wave (2.8) or its discrete representation. For example, Lt and Lx

could be the continuous differential operators Lt{u} = ∂2

∂t2
u and Lx{u} = 4u or their discrete

approximations.
As it turns out, for all linear operators Lt and Lx (continuous or discrete) considered in this

paper the plane wave (2.8) is a generalized eigenfunction, i.e.

Lt{u} = T (ω)u and Lx{u} = S(k)u, (2.10)

where T (ω) and S(k) are square matrices acting on u0, i.e.

T (ω)u = ei(k·x−ωt) T (ω)u0 and S(k)u = ei(k·x−ωt) S(k)u0.

If T (ω) and S(k) were scalars, they would be eigenvalues and u would be the eigenfunction of
Lt and Lx. Since, in general, they are not scalars we refer to u as a generalized eigenfunction
and call T (ω) and S(k) - symbols of linear operators Lt and Lx, respectively.

Substituting (2.10) into (2.9) and cancelling the exponential terms ei(k·x−ωt) on both sides we
obtain a dispersion relation written in terms of symbols of linear operators

T (ω)u0 = S(k)u0. (2.11)
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In this work we are primarily concerned with dispersion error, which can be defined as
the absolute value of the difference between the frequency ω(k), solution to the continuous
dispersion relation, and its discrete counterpart, ω∆t,h(k), solution to the discrete dispersion
relation. There are other ways in which the dispersion error can be defined as discussed in
Section 6. Dispersion error is the result of frequency dependent speed of propagation of plane
waves in the discretized grid regardless of whether the continuum solution has such frequency
dependent propagation or not. In particular, the speed of propagation of waves in the discrete
grid always differs from that in the continuum case and is commonly observed as non-physical
oscillations in discrete solutions. Thus, if T∆t is a discrete approximation of T , and Sh is a
discrete approximation of S then we have

T∆t − Sh = T − S +O(hα). (2.12)

Where ∆t > 0, h > 0 are mesh resolution parameters. It will be our goal to find T∆t and Sh so
that α is as large as possible reducing the discrepancy in wave speed.

3 Mimetic Finite Difference Discretization in Space

A mimetic finite difference discretization of the continuous variational formulation (2.5-2.6)
has the form

[(Eh)tt,φh]E + c2
0 [(curlh Eh), (curlh φh)]F +

1

ε0
[(Jh)t,φh]E = 0, (3.1)

[(Jh)t, ψh]E + ωi [Jh, ψh]E − ε0ω
2
p [Eh, ψh]E = 0. (3.2)

Here Eh, and Jh, are discrete approximations of the solutions E, and J, respectively; φh and ψh
are discrete test functions; curlh is a discrete linear operator approximating its continuous coun-
terpart curl. The bilinear forms [·, ·]E and [·, ·]F are discrete approximations of the continuous
bilinear forms [·, ·]E and [·, ·]F defined in (2.7). We will now make all of the above precise.

3.1 Discrete Spaces and Interpolation

Let T be a polygonal partitioning (mesh) of the domain Ω. Let E , and F , be the set
of all edges e, and faces (cells) f , respectively, of the mesh T . In the discrete form every
function will be represented in terms of a finite number of values called degrees of freedom
(DoF) assembled into a vector (e.g. Eh, Jh) assuming some ordering of these DoF. Each DoF
will be associated either to an edge or to a face/element. The DoF of scalar functions (e.g.
curl E) will be associated with faces only (one DoF per face) and can be interpreted as an
average value of the function over the face/cell. The DoF of vector functions (e.g. E and J) will
be associated with edges only (one DoF per edge) and can be interpreted as an average value of
the tangential component of the vector function along the edge. See Figure 1 for illustration.

We will denote the discrete space corresponding to vector functions as Eh and the discrete
space corresponding to scalar functions as Fh. We define interpolation operators IEh , and IFh ,
as linear operators that for each function in H(curl,Ω), and L2, assigns a vector of DoF in Eh,
and Fh, respectively.

The interpolation operator IEh , and the vector of DoF for vector functions are defined as

IEh : H(curl,Ω)→ Eh, Ee :=
1

|e|

∫
e

E · τ e de, (3.3)

IEh(E) = Eh :=
(
Ee

)
e∈E

, (3.4)
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Figure 1: Illustration of DoF for vector functions, marked as E, and scalar functions, marked asB on a rectangular
element centered at the origin.

where τ e is a counter-clockwise tangent to the edge e. The interpolation operator IFh for scalar
functions, and the vector of DoF for scalar functions are defined as

IFh : L2 → Fh, Bf :=
1

|f |

∫
f

B df, (3.5)

IFh(B) = Bh :=
(
Bf

)
f∈F

. (3.6)

3.2 Discrete Inner Products and the Adjoint Curl

Discrete bilinear forms [·, ·]E and [·, ·]F can be represented by square matrices and are defined
through a standard assembly process

(Eh)
TME Dh = [Eh,Dh]E :=

∑
f∈F

[Eh,Dh]E ,f =
∑
f∈F

(Eh,f )
TME ,fDh,f , (3.7)

(Bh)
TMFMh = [Bh,Mh]F :=

∑
f∈F

[Bh,Mh]F ,f =
∑
f∈F

(Bh,f )
TMF ,fMh,f , (3.8)

where [Eh,Dh]E ,f and [Bh,Mh]F ,f are to be defined locally on each face f .
For scalar functions the definition for the local bilinear form is the simplest

[Bh,Mh]F ,f := |f |BT
h,fMh,f , i.e. MF ,f = |f |, (3.9)

where |f | is the area of the face f .
Next, we define the discrete curlh operator as a mapping from the discrete space Eh, ap-

proximating vector functions, to the discrete space Fh, approximating scalar functions. The
definition will be made locally on each face f through the identity

[ψh, curlhEh]F ,f =

∫
f

ψ curl(E) df, (3.10)

which must hold for any constant ψ and any vector function E whose local discrete representa-
tion on the face f is Eh,f . Identity (3.10) defines curlh uniquely since the RHS of (3.10) can be
expressed in terms of the vector of DoF Eh,f of E on the face f only using integration by parts∫

f

ψ curl(E) df = ψ
∑
e∈∂f

∫
e

E · τ e de, (3.11)
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where τ e is a counter-clockwise tangent to the edge e of the face f . The edge integrals in (3.11)
are exactly the DoF of E, defined in (3.3), up to orientation of the edges. On a rectangular
element the local matrix curlh is a column vector of length four given by

curlh,f =
1

∆x∆y
(∆x,∆y,−∆x,−∆y)T . (3.12)

The construction of the mass matrix ME contains many details that are not necessary for per-
forming dispersion reduction analysis that is the center point of this paper. Therefore, we limit
ourselves to presenting the final form of the matrix on a rectangular mesh and refer interested
readers to [1] for all details.

In fact, instead of computing ME ,f we compute an approximation to its inverse

WE ,f ≈M−1
E ,f , WE ,f =

1

4∆x∆y


1 + 4w1 4w2 1− 4w1 −4w2

4w2 1 + 4w3 −4w2 1− 4w3

1− 4w1 −4w2 1 + 4w1 4w2

−4w2 1− 4w3 4w2 1 + 4w3

 . (3.13)

Here w1, w2 and w3 are free parameters. Different values of these parameters give rise to differ-
ent numerical schemes, as discussed in [1]. In particular, this family of matrices WE ,f contains
the Yee-scheme as one of its members. In order to recover the famous Yee-FDTD stencil,
WE = 1

2∆x∆y
I, one has to take w1 = w3 = 1

4
and w2 = 0.

Our global matrices are then assembled in the usual way for every face f . As we are consid-
ering a second order formulation we introduce the following discrete curl-curl operator,

Ah = (curlh)TMF curlh. (3.14)

This matrix can be assembled from local matrices (curlh,f )T∆x∆y curlh,f .

3.3 Discrete in Space Continuous in Time Formulation on Rectangular Meshes

A discrete in space continuous in time formulation of the second order Maxwell-CP system
is as follows:
Find Eh ∈ C2([0, T ],Eh ∩H0(curl,Ω)) and Jh ∈ C1([0, T ],Eh) such that:

∂2

∂t2
Eh +

1

ε0

∂

∂t
Jh = −c2

0WEAhEh,

∂

∂t
Jh = −ωiJh + ε0ω

2
PEh.

(3.15)

3.4 Dispersion Analysis for Discrete in Space Continuous in Time Formulation

To obtain dispersion relations we assume plane wave solutions for the electric field and the
polarization current density. Thus, in the discrete in space and continuous in time formulation
(3.15), we represent the spatially discrete electric field, Eh(t), and polarization current density,
Jh(t), as

Eh(t) = IEh
(
E0e

i(k·x)
)
E(t),

Jh(t) = IEh
(
J0e

i(k·x)
)
J(t).

(3.16)

Here E0 and J0 are two-dimensional vectors that specify the initial intensity and the orientation
of the corresponding vector fields. The continuous plane wave vector fields are characterized
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by the wave vector k (whose magnitude we refer to as the wave number k) and the vectors E0

and J0. In the spatially discrete setting a similar characterization is made. We use Ui to denote
a DoF for either the electric field or polarization current density. The role of the vectors E0 and
J0 is assumed by two DoF associated with two adjacent orthogonal edges, as depicted in Figure
2. The DoF U1 is associated to a horizontal edge, while the DoF U2 is associated to a vertical
edge. Other DoF, Ui, for the waves of the form (3.16) can be written in terms of U1, U2, and the
exponent ei(k·∆xi) as

Ui = U1e
i(k·∆xi) for a horizontal edge ei,

Ui = U2e
i(k·∆xi) for a vertical edge ei,

(3.17)

where ∆xi is the “shift”-vector from the center of the edge e1 or e2 to the center of the edge
ei, respectively. In particular, the vector of four DoF (U1, U2, U3, U4)T , corresponding to the
element f , can be written in terms of the vector of the first two DoF (U1, U2)T and k = (kx, ky)

T

as follows: 
U1

U2

U3

U4

 = S
(
U1

U2

)
, where S =


1 0
0 1

eiky∆y 0
0 e−ikx∆x

 . (3.18)

In the semi-discrete formulation (3.15), we perform several multiplications of waves of the
form (3.16) by global matrices A and W assembled from identical local matrices Af and Wf .
The following result presents a simple way of performing such a multiplication.

Lemma 1. Consider the result of multiplication

V = ZU, (3.19)

where the global matrix Z is assembled from identical local matrices Zf and the vector of DoF
U has the form (3.17) Then the vector of DoF V also has the form (3.17) The vector of two
DoF (V1, V2)T characterizing the vector V depends linearly on the vector of two DoF (U1, U2)T

characterizing the vector U; the two-by-two matrix corresponding to the linear mapping has
the form (S∗ZfS): (

V1

V2

)
= (S∗ZfS)

(
U1

U2

)
, (3.20)

where S was defined in (3.18) and S∗ is a conjugate transpose of S.

Proof. The fact that V satisfies (3.17) follows immediately from the fact that U satisfies (3.17).
The linear relation between (V1, V2)T and (U1, U2)T is a direct consequence of the linear relation
(3.19). The main point of the lemma is to show that the linear relation (3.20) is given by the
two-by-two matrix (S∗ZfS).

Consider the two elements f1 and f2 that determine the value of V1 and the two elements f1

and f3 that determine the values of V2, as shown in Figure. 2. The value of V1 is a sum of the
contributions from the elements f1 and f2

V1 =
[

1 0 0 0
]
ZfS

[
U1

U2

]
+
[

0 0 1 0
]
ZfS

[
e−ik2∆yU1

e−ik2∆yU2

]
=

=
[

1 0 e−ik2∆y 0
]
ZfS

[
U1

U2

]
.

(3.21)
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Here the product ZfS(U1, U2)T is a size four vector of contributions from the element to the
four DoF of V, while multiplication on the left by (1, 0, 0, 0) extracts the first component of this
vector.

Similarly, to (3.21) we get the expression for V2

V2 =
[

0 1 0 0
]
ZfS

[
U1

U2

]
+
[

0 0 0 1
]
ZfS

[
e−ik1∆xU1

e−ik1∆xU2

]
=

=
[

0 1 0 e−ik1∆x
]
ZfS

[
U1

U2

]
.

(3.22)

Combining (3.21) and (3.22) and recalling the definition (3.18) of the transformation matrix S
we obtain the final result (3.20).

f f

f

VU1 1

V 2
U

2

U
ik

4
=

e-
x
D

x

U ik
3=e Dyy U1

U
2

U
2

U
2

Figure 2: Three cells used to assemble the contributions after multiplication by a uniform matrix.

For a rectangular mesh the two discretization parameters are h = ∆x, which without loss of
generality we assume to be the smallest of ∆x and ∆y, and the aspect ratio of the elements

γ =
∆y

∆x
. (3.23)

The characterization of waves by two DoF (3.17) and the wave vector k together with
Lemma 1 suggests rewriting the first equation in (3.15), only in terms of two DoF associated to
two orthogonal edges e1 and e2, as

∂2

∂t2
E(e1,e2) +

1

ε0

∂

∂t
J(e1,e2) = −c2

0WEAhE(e1,e2). (3.24)

In the above we use the DoF notation introduced in (3.3), with U(e1,e2) := (Ue1 , Ue2)
T , for

U = E or U = J. Here WE and Ah are 2× 2 matrices defined as

WE = S?WE ,fS and Ah = S?Ah,fS. (3.25)

Performing dispersion analysis on the semi-discrete system (3.24) yields a 2× 2 eigenvalue
problem. The matrix Ah has rank one, thus the product WEAh is at most rank one. This implies
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that one of two eigenvalues is zero. This eigenvalue corresponds to evanescent waves, which
are not of interest as they do not propagate in space. We focus on the non-zero eigenvalue of
the matrix WEAh. The non-zero eigenvalue corresponds to transient waves. Since one of the
eigenvalues of this matrix is zero, the symbol is given by the trace of the matrix as

Sh(k) = −c2
0Tr(WEAh)

= −4c2
0

h2
sin2 kxh

2

(
1 + (1− 4w3) sin2 kxh

2

)
− 32c2

0

γh2
w2 sin2 kxh

2
sin2 kyγh

2

− 4c2
0

γ2h2
sin2 kyγh

2

(
1 + (1− 4w1) sin2 kyγh

2

)
.

(3.26)

The difference between the continuous and the discrete symbols, in the case of exact time
integration, defines the order of numerical dispersion. Therefore, we are interested in making
this difference, S(k)−Sh(k), as small as possible. For a general member of the MFD family this
difference is second order in h. This can be seen by taking k = k(cos θ, sin θ)T and expanding
Sh(k) in a Taylor series in h as

Sh(k) = −(c0k)2
{

1 +
(

(3w3−1)
3

cos4 θ + 2γw2 cos2 θ sin2 θ+

+ γ2(3w1−1)
3

sin4 θ
)
k2h2 +O(h4)

}
.

(3.27)

We observe that we can eliminate the angular (θ) dependence of the h2 term in (3.27) through
the following choice of free parameters in the MFD scheme

γ2(3w1−1)
3

= γw2 = (3w3−1)
3

, e.g. by taking
{
w1 = 3w2γ−1 +1

3
,

w3 = 3w2γ+1
3

.
(3.28)

This yields the following discrete symbol

Sh(k) = −(c0k)2
{

1 + γw2k
2h2 +O(h4)

}
. (3.29)

Taking w2 = 0 we can eliminate the second order difference between the continuous and dis-
crete symbols, thus making the numerical dispersion fourth order accurate. Then by using a
fourth order discretization in time, we could arrive at a method with fourth order dispersion
error. This approach has its advantages especially at low spatial resolution. Unfortunately, the
storage necessary for these schemes may be prohibitive for large problems. We will instead
focus on choosing a second order time integrator so that w2 can eliminate all second order
dispersion errors.

4 Exponential Time Differencing

Exponential differencing is a time integration technique commonly used for lossy dielectrics.
The idea is as follows. Consider a time dependent ODE of the form

u̇ = cu+ F (u, t). (4.1)

To create the exact solution of (4.1) one exploits the fact that

d

dt

(
e−ctu

)
= e−ct (u̇− cu) . (4.2)
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Multiply (4.1) by e−ct, integrate from tn to tn+1 and divide by e−ctn+1

u(tn+1)− ec∆tu(tn) =

∫ tn+1

tn

F (u(s), s)ec(∆t−s) ds. (4.3)

Formula (4.3) is exact. Thus, in principle, higher order accuracy can be obtained by using higher
order discretization of the integral term, c.f. [2]. In practice, due to specifics of definitions of
F (u(s), s), it could be convenient to use the following approximation to the integral in (4.3)∫ tn+1

tn

F (u(s), s)ec(∆t−s) ds ≈ F n+1/2

∫ tn+1

tn

ec(∆t−s) ds = c−1(ec∆t − 1)F n+1/2, (4.4)

where F n+1/2 is an approximation of F (u(tn+1/2), tn+1/2). When F depends on u then this
approach may be implicit. However, in our case F depends only on t as we employ a staggering
technique so this quantity is computed explicitly. This approach can be generalized to vector
valued ODE in time

u̇ = Xu + F(u, t) (4.5)

to produce the following discretization when X is invertible

un+1 − eX∆tun = X−1(eX∆t − I)Fn+1/2. (4.6)

4.1 Continuous in Space Discrete in Time Formulation

Rewrite the first order PDEs (2.1-(2.2)) as{
u̇ = Xu + F,

Ḃ = −curlE,
(4.7)

where

u =

(
E
J

)
, X =

 0 − 1

ε0
ε0ω

2
P −ωi

 , F =

(
c2

0 curlB
0

)
. (4.8)

We will consider a time discretization En and Jn of E and J on integer time steps tn := n∆t
and Bn+1/2 of B on staggered half-integer time steps tn+1/2 := (n+ 1/2)∆t.

For the first equation in (4.8) we use the ETD scheme (4.6), where we define the matrix

Y := X−1(eX∆t − I). (4.9)

For the second equation we use the standard time-staggered leap-frog. Thus, the semi-discrete
scheme for (4.8) reads

(
En+1

Jn+1

)
= eX∆t

(
En

Jn

)
+ Y

(
c2

0 curl Bn+1/2

0

)
,

Bn+1/2 = Bn−1/2 −∆t curl En.
(4.10)

In order to obtain from (4.10) an appropriate second order formulation we proceed similarly
to how we obtained (2.4) from (2.1-(2.2)) by eliminating the magnetic induction B from the
evolution equation. We do this by applying a leap-frog step to both sides of the first equation in
(4.10). This yields a continuous in space discrete in time discretization(

En+1

Jn+1

)
= (I + eX∆t)

(
En

Jn

)
− eX∆t

(
En−1

Jn−1

)
− c2

0∆tY
(

curl curl En

0

)
. (4.11)
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4.2 Dispersion Analysis for Continuous in Space Discrete in Time Formulation

To obtain a discrete in time dispersion relation we divide both sides of (4.11) by the expo-
nential integrator Y to get

1

∆t
Y−1

[(
En+1

Jn+1

)
− (I + eX∆t)

(
En

Jn

)
+ eX∆t

(
En−1

Jn−1

)]
=

(
−c2

0 curl curl 0
0 0

)(
En

Jn

)
.

(4.12)
Assuming time-harmonic solutions in the above equation we produce the system

Y−1 e−iω∆tI− (I + eX∆t) + eiω∆teX∆t

∆t
=

(
−c2

0 curl curl 0
0 0

)
. (4.13)

Defining the discrete symbol in time to be

T∆t(ω) = Y−1 e−iω∆tI− (I + eX∆t) + eiω∆teX∆t

∆t
, (4.14)

and expanding T∆t in a Taylor Series in the variable ∆t we obtain

T∆t(ω) = (−ω2I + iωX) +
∆t2

12
(−ω2I + iωX)2 +O(∆t4). (4.15)

We will make use of this expansion in our method optimization proceedure.

5 Exponential Time Mimetic Finite Difference Method (ETMFD) for Cold Plasma

We now present the fully discrete Exponential Time Mimetic Finte Difference (ETMFD)
method for the Maxwell-CP model, based on MFD in space and ETD in time. Our fully discrete
problem is:
Given E`

h,J
`
h ∈ Eh for ` ∈ {0, 1}, find En

h,J
n
h ∈ Eh ∀n ≥ 0 such that(

En+1
h

Jn+1
h

)
= (I + eX∆t)

(
En
h

Jnh

)
− eX∆t

(
En−1
h

Jn−1
h

)
− c2

0∆tY
(
WE curlThAhE

n

0

)
. (5.1)

5.1 M-Adaptation of the ETMFD

To perform m-adaptation for the ETMFD we must first find its discrete dispersion relation.
Intuitively the dispersion relation for (5.1) would be determined by equality between the space
discrete symbol Sh and the time discrete symbol T∆t. However, the temporal symbol as defined
is matrix valued while the spatial symbol is scalar. Consider our space discretization of the first
row of (2.4) assumuing Eh and Jh are appropriate transient plane waves as discussed in (3.26)

∂2

∂t2
E(e1,e2) +

1

ε0

∂

∂t
J(e1,e2) = Sh(kh)E(e1,e2), (5.2)

This evolution equation implies that E(e1,e2) and J(e1,e2) must be colinear as Sh is scalar. We
therefore define the quantities

E0 = |E(e1,e2)|, J0 = |E(e1,e2)|. (5.3)

Thus, the spatial symbol of the ETMFD must be some 2x2 matrix multiplied by Sh(k) acting
on the vector (E0, J0)T . However as Sh(k) does not depend on J0 and has no influence on the
second row of the system (4.13) so this matrix must be

P1 =

(
1 0
0 0

)
. (5.4)
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Given that ShP1 is matrix valued we can now pose the discrete dispersion relation as a 2 × 2
eigenvalue problem on the initial orientations of the fields E0 and J0, which must be non-zero
eigenvectors of the matrix WE Ah. The discrete dispersion relation for (5.1) is then given by

T∆t(ω)

(
E0

J0

)
= Sh(k)P1

(
E0

J0

)
. (5.5)

To perform m-adaptation we begin by choosing w1, w3 as defined in (3.28) which eliminates
dependence on angle of propagation and leaves us with one free parameter w2, i.e.

w1 =
3w2γ

−1 + 1

3
, w3 =

3w2γ + 1

3
. (5.6)

In order to relate time and space discretization sizes we introduce the Courant number

ν =
c0∆t

h
. (5.7)

By moving both terms in (5.5) to the left side and expanding in a Taylor series in h we get

0 =
(
T∆t(ω)− Sh(k)P1

)(E0

J0

)
=

=

((
−ω2I + iωX + c2

0k
2P1

)
+

h2

12c2
0

(
ν2(−ω2I + iωX)2 + 12γw2c

4
0k

4P2
1

))(E0

J0

)
+

+O(h4)

(
E0

J0

)
.

(5.8)

As (ω,k) is a solution of the discrete dispersion relation we have

c2
0k

2P1

(
E0

J0

)
=
(
ω2I− iωX +O(h2)

)(E0

J0

)
. (5.9)

Substituting this into the order h2 term in (5.8) we have

h2

12c0

(
ν2 + 12γw2

)
c4

0k
4P2 +O(h4). (5.10)

We can eliminate order h2 term entirely by a proper choice of the parameter w2(
ν2 + 12γw2

)
= 0 ⇒ w2 = − ν2

12γ
. (5.11)

Under the choice (5.11) the dispersion error is(
T∆t(ω)− Sh(k)P1

)(E0

J0

)
=
(
−ω2I + iωX + c2

0k
2P1 +O(h4)

)(E0

J0

)
. (5.12)

For convenience we explicitly write out the the choice of the optimal matrix WE ,f

WE ,f =
1

12∆x∆y


7− ν2

y −νxνy ν2
y − 1 νxνy

−νxνy 7− ν2
x νxνy ν2

x − 1
ν2
y − 1 νxνy 7− ν2

y −νxνy
νxνy ν2

x − 1 −νxνy 7− ν2
x

 ,

νx =
c0∆t

∆x
,

νy =
c0∆t

∆y
.

(5.13)
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6 Numerical Simulations for Specific Media

For our experiments we introduce a change of variables for X which allows for an easier
formulation of the matrix exponential.

X =

(
0 −ε−1

0

ε0(α2 + β2) 2α

)
, α = −ωi

2
, β =

√
4ω2

P − ω2
i

2
. (6.1)

The ODE system governing the cold plasma model is a classical damped, driven oscillator. For
different values of the parameters the character of the system changes. We present results for
the case when the system is under damped (ω2

i < 4ω2
p). The matrix exponential for X∆t is

given by

eX∆t = eα∆t

cos(β∆t)− αsin(β∆t)

β
−sin(β∆t)

ε0β

ε0(α2 + β2)
sin(β∆t)

β
cos(β∆t) + α

sin(β∆t)

β

 :=

(
α1 α2

β2 β1

)
. (6.2)

The integral of this matrix is given by∫ ∆t

0

eXs ds =

(
α3 α4

β3 β4

)
, (6.3)

where the coefficients in the matrix above are defined as

α3 :=
1

β

(
eα∆t(2αβ cos(β∆t) + (β2 − α2) sin(β∆t))− 2αβ

α2 + β2

)
, (6.4)

α4 :=
1

β

(
−β − eα∆t(α sin(β∆t)− β cos(β∆t))

ε0(α2 + β2)

)
, (6.5)

β3 :=
1

β

(
ε0(β + eα∆t(α sin(β∆t)− β cos(β∆t)))

)
, (6.6)

β4 :=
1

β

(
eα∆t sin(β∆t)

)
. (6.7)

The second order formulation for the discrete electric field E and polarization current density
J, as introduced in Section 5.1, was a convenient formulation of the discrete ETMFD method
for the analysis of numerical dispersion. However, in our numerical experiments we have found
that L2 errors in the second order system for E and J are very sensitive to the choice of initial
conditions. Thus, for our numerical simulations we will use a different formulation of the dis-
crete ETMFD method, with an equivalent numerical dispersion relation, that retains the second
order discrete evolution equation for the electric field, but uses a first order discrete evolution
equation for the polarization current density J. Since the focus of this paper is on numerical
dispersion optimized methods, we do not investigate the appropriate initialization of the discrete
ETMFD scheme here. We defer this investigation to future work.

The hybrid second order evolution equation for the discrete electric field E and first order
evolution equation for the polarization density J is given as

En+1
h = (1 + α1)En

h + α2J
n
h − α1E

n−1
h − α2J

n−1
h − c2

0∆tα3WEAhE
n
h n ≥ 2, (6.8)

Jn+1
h = β1J

n
h + β2E

n
h +

β3

α3

(En+1
h − α1E

n
h − α2J

n
h) n ≥ 1. (6.9)
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This formulation is explicit when we compute En+1 before Jn+1. It requires three initial condi-
tions given by

E0
h = IEh(E(0)), E1

h = IEh(E(∆t)), J0
h = IEh(J(0)). (6.10)

In our numerical simulations we used a midpoint quadrature on every edge for Eh and computed
Jh exactly; i.e.,

Ej
h|e = τ e · E(xc, yc, j∆t), j = {0, 1}, J0

h|e =
1

|e|

∫
e

J(x, y, 0) · τ eds. (6.11)

Experiment 1. In our first experiment we investigate the numerical anisotropy of our method. If
(ωn,kn) are solutions of the numerical dispersion relation, then as eigenvalue pairs they satisfy
the relation

det (T∆t(ωn)− Sh(kn)P1) = 0. (6.12)

The continuous dispersion relation between ω and k can be written as

−iω3 + ωiω
2 − i(ω2

p + c2
0k

2)ω − ωic2
0k

2 = 0. (6.13)

Assume that k is fixed and real valued. Let (ω,k) be a solution to (6.13). We define the relative
dispersion error as

E(ω) =
1

|ω|
det (T∆t(ω)− Sh(k)P1) (6.14)

which is analogous to a local truncation error, i.e., we measure how close the true root ω of
the continuous dispersion relation (6.13) is to being a root of the numerical dispersion relation
(6.12). We parameterize the wave vector as k = 4(cos θ, sin θ). For this experiment we will also
choose ωi = 1 and ωp = 1. In Figure 3 we plot E(ω) as a polar function of θ on a log scale. A
perfect circe in this diagram indicates isotropic error, otherwise the error shows the directional
dependence of dispersion. For the purpose of comparison we also include the relative dispersion
error of ETD in time and Yee like staggering in space, which we refer to as the ET-Yee scheme.

Figure 3 illustrates that while the dispersion error of our method is anisotropic it is signif-
icantly reduced compared to that of the ET-Yee scheme. By varying the aspect ratio we find
that we can reduce dispersion error in the direction of increased refinement at the expense of
increased dispersion error in the less refined direction.

Experiment 2. In our second experiment we will investigate the accuracy of our ETMFD
method for discretizing problems with a known exact solution. For k = (kx, ky)

T with kx, ky ∈
πZ, let a + ib = ω be a (complex) root of the dispersion relation (6.13). We consider the exact
solution for the Maxwell-CP model given by

E(x, y, t) = eat cos(bt)

(
−ky cos(kxx) sin(kyy)
kx sin(kxx) cos(kyy)

)
, (6.15)

J(x, y, t) = ε0ω
2
pe
at (a+ ωi) cos(bt) + b sin(bt)

b2 + (a+ ωi)2

(
−ky cos(kxx) sin(kyy)
kx sin(kxx) cos(kyy)

)
. (6.16)

For our experiments we consider ωP = ωi = ε0 = c = 1 and kx = ky = π. For this we have
a ≈ 0.023 and b ≈ 4.55. We choose the final time to be T = 4. To calculate relative L2 errors
we use an appropriate inner product, based on our mimetic discretization, which is defined as

EhL2(Fn
h) :=

√
(Fn

h − IEh(F(n∆t))TME (Fn
h − IEh(F(n∆t))√

IEh(F(n∆t))TME IEh(F(n∆t))
, (6.17)

4697



Vrushali A. Bokil, Vitaliy Gyrya and Duncan A. McGregor

10−2.5

10−1.5

10−0.5

100.5

π/6

−5π/6

π/3

−2π/3

π/2

−π/2

2π/3

−π/3

5π/6

−π/6

π 0

ET-Yee ppw=12
ETMFD ppw=12
ET-Yee ppw=24
ETMFD ppw=24

10
−0.4

10
0.05

10
0.5

10
1.0

π/6

−5π/6

π/3

−2π/3

π/2

−π/2

2π/3

−π/3

5π/6

−π/6

π 0

ETMFD γ = 4

ETMFD γ = 1

ETMFD γ =
1

4

(a) (b)

Figure 3: We consider a cold isotropic plasma with ωP = 1 and ωi = 1. Figure (a) plots relative dispersion error
for a wave with k = 4 and resolved at 12 and 24 points per wavelength on a mesh with an aspect ratio γ = 1 for
both the ET-Yee and ETMFD schemes. We choose the Courant number to be ν = 1

2 . Figure (b) plots the relative
dispersion error for a cell with ∆x∆y = 12−2 for the aspect ratios γ = 4, 1, 14 . In this case we choose the Courant
number to be ν = 1

2 min{γ3, 1}.

Table 1: Relative L2 Errors for Experiment 2.

Electric Field, E Current Density, J
log2(h) ET-Yee rate ETMFD rate ET-Yee rate ETMFD rate

-4 1.1024e-02 4.8495e-05 3.0064e-02 1.3322e-04
-5 2.7237e-03 2.0170 3.0206e-06 4.0049 7.4940e-03 2.0042 8.3901e-06 3.9890
-6 6.7826e-04 2.0057 1.8844e-07 4.0026 1.8704e-03 2.0024 5.3485e-07 3.9715
-7 1.6931e-04 2.0021 1.1767e-08 4.0013 4.6717e-04 2.0013 3.4784e-08 3.9426
-8 4.2303e-05 2.0009 7.3501e-10 4.0008 1.1674e-04 2.0007 2.3361e-09 3.8963

where Fn
h = (En

h,J
n
h)T and the interpolation IEh operator is defined in (3.3).

To define the dispersion error we fit an appropriate temporal function, F (t : ωh), to tempo-
ral grid data {En

h,ei
}Nn=0 at some edge ei to find the best discrete frequency wh. To calculate

the relative dispersion errors, we perform the following procedure. If (ah, bh) is the result of
the non-linear least squares fitting of time tracking data {Fn

h|e}Nn=1 to the appropriate function

(exp(aht) cos(bht) for the electric field and ε0ω2
pe
aht (ah+ωi) cos(bht)+bh sin(bht)

b2h+(ah+ωi)2
for the current den-

sity) then we define the relative dispersion error by

Ehd (Fh) :=

√
(a− ah)2 + (b− bh)2

a2 + b2
, (6.18)

where a, b are the true data.For comparison, we have also performed our simulations with the corresponding ET-Yee
scheme (i.e., Yee spatial staggering with ETD), which is second order accurate in space and
time. In Table 1 we present relative L2 errors in the electric field and polarization density, while
in Table 2 we present relative dispersion errors for the electric field and polarization density,
respectively. Figures 4, and 5 plot the results of Tables 1-2. Our results indicate fourth order
dispersion and L2 error convergence for the ETMFD as compared to the corresponding (well
known) second order convergence for the ET-Yee scheme.
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Figure 4: Relative L2 errors for Experiment 2.
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Figure 5: Relative dispersion errors for Experiment 2.

Table 2: Relative Dispersion Errors for Experiment 2.

Electric Field, E Current Density, J
log2(h) ET-Yee rate ETMFD rate ET-Yee rate ETMFD rate

-4 7.7638e-04 3.4427e-06 8.7152e-04 3.4530e-06
-5 1.9280e-04 2.0129 2.1407e-07 4.0080 2.1720e-04 2.0045 2.1487e-07 4.0063
-6 4.8070e-05 2.0066 1.3345e-08 4.0042 5.4246e-05 2.0014 1.3399e-08 4.0032
-7 1.2002e-05 2.0033 8.3287e-10 4.0021 1.3557e-05 2.0005 8.3655e-10 4.0016
-8 2.9985e-06 2.0017 5.1994e-11 3.9892 3.3886e-06 2.0003 5.2097e-11 4.0052

7 Conclusions

We have constructed a new successful m-adaptation of Mimetic Finite Difference (MFD)
method for Maxwell’s equations in a cold plasma. We started from a second order edge based
family of MFD discretizations in space. We used a generalized form of mass lumping. This was
done, on one hand, to obtain a fully explicit scheme, thus avoiding linear solves at every time
step. As a result the new scheme is highly efficient. On the other hand, the generalized form
of mass lumping preserves free parameters in the MFD discretization. This allows for further
optimization within the family.

We demonstrated that using the standard leapfrog time stepping does not allow reduce the
numerical dispersion within the MFD family. Fortunately, using exponential time differencing
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allows for a successful m-adaptation of the MFD family. For the optimal choice of parameters
in the exponential time MFD (ETMFD) discretization the numerical dispersion errors were
shown to be fourth order as opposed to second order for a general member of the ETMFD
family. Numerical simulations independently verified our theoretical results showing fourth
order numerical dispersion and L2-errors for some special solutions.

One of the advantages of our m-adapted ETMFD method over other fourth order methods,
that have been constructed in the literature using the modified equation approach (see e.g. [9]),
is smaller stencil size as compared to those of other fourth order methods. This is due to the
low order base discredization. Higher order approximation is a result m-adaptation procedure,
which is possible due to mesh regularity and symmetry.

The use of ETD offers a number of advantages in complex dispersive media. First, it allows
for an explicit staggering of the electric field and current density from the magnetic field. This is
in contrast to time averaging schemes which are semi-implicit with spatial staggering. Though
ETD may require smaller time steps than a semi-implicit approach, linear dispersive media
such as a cold isotropic plasma are stiff media requiring very small time steps in numerical
discretizations in order to capture the fast decaying transients in the media. Thus a cheaper
explicit scheme is preferable to a more expensive implicit scheme when run with comparable
time steps.

Finally, our approach can be interpreted as a generalization (though non-trivial) of m-adaptation
in vacuum. It inherits a similar structure for its discrete symbol in time and allows for success-
ful optimization over numerical dispersion errors. As a consequence, the optimal choice of free
MFD parameters and the corresponding local mass matrices turn out to be the same in the case
of vacuum and Maxwell-CP model. In the future we will investigate the sensitivity of errors to
initial conditions and extend the ideas and techniques considered here to other types of linear
and nonlinear dispersive materials.

Maxwell’s equations include divergence constraints on the electric and magnetic flux den-
sities. It is well known that if solutions satisfy these divergence constraints initially then the
curl equations guarantee that these conditions are satisfied at later times. Thus, the divergence
constraints are redundant in the continuum equations as long as they are satisfied by initial
conditions. This property may or may not hold for solutions to discrete approximations of
Maxwell’s equations. We are currently working on understanding the divergence properties of
our ETMFD method along with a stability analysis of our schemes. These and related issues
will be part of a future paper that will address the construction of ETMFD schemes for a large
class of linear dispersive models.
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A M-Adaptation for leapfrog time stepping

We demonstrate the need for exponential time differencing in the spatially discretized cold
plasma model to produce a fully discrete method with high order numerical dispersion by first
considering the case of a simple conductive medium. A conductive medium is a special case
of CP where we take ωi → ∞ and assume the ratio εω2

P/ωi → σ as ωi → ∞. A conductive
medium is modeled by the second order PDE

∂2

∂t2
E +

σ

ε0

∂

∂t
E = −c2

0curl curlE, (A.1)

in which σ is the electrical conductivity. Let τ = ε0
σ

. The standard Leapfrog discretization in
time with semi-implicit time averaging of the low order term gives us the scheme

En+1 − 2En + En−1

∆t2
+

En+1 − En−1

2τ∆t
= −c2

0curl curlEn. (A.2)

The symbol of the time discretization and its expansion in ω is given by

−4 sin2 ω∆t
2

∆t2
− i

τ

sinω∆t

∆t
= −ω2 − i

τ
ω +

∆t2

12
ω2

(
ω2 +

2i

τ
ω

)
+O(∆t4). (A.3)

Defining the Courant number to be ν = c∆x
∆t

, and discretizing in space using the MFD for a
rectangular mesh gives us a discrete dispersion relation of the form

0 =
−4 sin2 ω∆t

2

∆t2
− i

τ

sinω∆t

∆t
− Sh(k) (A.4)

= −ω2 − i

τ
ω + c2

0k
2 +

h2

12c2
0

(
ν2ω2

(
ω2 +

2i

τ
ω

)
+ 12γw2c

4
0k

4

)
+O(h4). (A.5)
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As the whole series must be equal to zero, we have that

c2
0k

2 = ω2 +
i

τ
ω +O(h2). (A.6)

Substituting this into the ∆x2 term of the Taylor series we arrive at

0 =
h2

12c2
0

(
ν2ω2

(
ω2 +

2i

τ
ω

)
− 12γw2

(
ω2 +

i

τ
ω

)2
)

+O(h4). (A.7)

As

ω2

(
ω2 +

2i

τ
ω

)
6=
(
ω2 +

i

τ
ω

)2

,∀ω, (A.8)

we cannot choosew2 independent of ω to eliminate this term in the dispersion error. We consider
this a failure as we are interested in time domain schemes that have higher order numerical
dispersion error rather than schemes that reduce or eliminate numerical dispersion at a design
frequency (though such schemes are of interest in their own right).
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Abstract. A frequent configuration in computational fluid mechanics combines an explicit
time advancing scheme for accuracy purposes and a computational grid with a very small
portion of much smaller elements than in the remaining mesh. Examples of such situations are
the traveling of a discontinuity followed by a moving mesh, and the large eddy simulation of
high Reynolds number flows around bluff bodies where together very thin boundary layers and
vortices of much more important size need to be captured. For such configurations, explicit time
advancing schemes with global time stepping are very costly. In order to overcome this problem,
the multirate time stepping approach represents an interesting improvement. The objective of
such schemes, which allow to use different time steps in the computational domain, is to avoid
penalizing the computational cost of the time advancement of unsteady solutions which can
become large due to the use of small global time steps imposed by the smallest elements such as
those constituting the boundary layers. In the present work, a new multirate scheme based on
control volume agglomeration is proposed for the solution of the compressible Navier-Stokes
equations possibly equipped with turbulence models. The method relies on a prediction step
where large time steps are performed with an evaluation of the fluxes on macro-cells for the
smaller elements for stability purpose, and on a correction step in which small time steps are
employed only for the smaller elements. The efficiency of the proposed method is evaluated on
several benchmarks flows: the problem of a moving contact discontinuity (inviscid flow), the
computation with hybrid turbulence model of flows around bluff bodies like a tandem cylinders
at Reynolds number 1.66× 105 , a circular cylinder at Reynolds number 8.4× 106, and a flow
around a space probe model at Reynolds number 1× 106.
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1 INTRODUCTION

A frequent configuration in CFD calculations combines an explicit time advancing scheme
for accuracy purpose and a computational grid with a very small portion of much smaller el-
ements than in the remaining mesh. Examples of such situations are isolated traveling shock
and large eddy simulation of high Reynolds number flows around bluff bodies where very thin
boundary layers and vortices of much more important size need to be captured.

For such configurations, explicit time advancing schemes with global time stepping are very
costly. In order to overcome this problem, the multirate time stepping approach represents
an interesting alternative. By using several different timestep sizes on different subdomains,
multirate timestepping avoids to apply too small timesteps in regions where the mesh is rather
coarser. Then it avoids to use the small timesteps of boundary layer on the whole domain and
thus penalize the global computational cost of the advancement in time of unsteady solutions.
Many works have been published on multirate methods in the field of ODE, see for example
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], but only few works were conducted on multirate time
advancing schemes for the solution of PDE and hyperbolic conservation laws [13, 14, 15, 16,
18, 17], and rare applications were performed in Computational Fluid Dynamics (CFD), for
shock propagation in [17] and for shallow water computations in [18, 19]. Therefore, there
is still much work to do to provide a viable multirate method for CFD applications. In this
work, we propose a new multirate scheme based on control volume agglomeration which is
well suited to our numerical framework using a mixed finite volume/finite element formulation.
The method relies on a prediction step where large time steps are used with an evaluation of the
fluxes performed on the macro-cells for the smaller elements, and on a correction step in which
small time steps are employed only for the smaller elements. Target applications are three-
dimensional unsteady flows modeled by the compressible Navier-Stokes equations equipped
with turbulence models and discretized on unstructured possibly deformable meshes.

2 Multirate time advancing by volume agglomeration

In this section, we present a multirate time advancing scheme based on volume agglomera-
tion which is currently being developed for the solution of the three-dimensional compressible
Navier-Stokes equations. The finite-volume spatial discretization combined with an explicit
forward-Euler time-advancing is written:

voli w
n+1
i = voli w

n
i + Ψi, ∀ i = 1, ..., ncell,

where voli is the volume of celli, wni = (ρni , (ρu)ni , (ρv)ni , (ρw)ni , E
n
i , (ρk)ni , (ρε)

n
i ) are as usu-

ally the density, moments, total energy, turbulent energy and turbulent dissipation at celli and
time level tn, and ncell the total number of cells in the mesh.

We assume that we can define a maximal stable time step (local timestep) ∆ti, i = 1, ..., ncell
on each node. This can be based on a stability analysis which in practice takes into account ad-
vective terms (condition of Courant-Friedrichs-Lewy or CFL) and diffusive terms of the discrete
PDE under study, together with the type of explicit time advancing scheme. In short, using ∆ti
is advancing at CFL = 1. A consistent time advancing should use for stability a global time
step ∆t = min1,ncell ∆ti. The user is supposed to choose a (integer) timestep factor K > 1.

We first define the inner zone and the outer zone, the coarse grid, and the construction of the
fluxes on the coarse grid, ingredients on which our multirate time advancing scheme is based.
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• Definition of the Inner and Outer zones :

– We define the outer zone as the set of cells i for which the explicit scheme is stable
for a time step K∆t

∆ti ≥ K∆t,

– the inner zone is the set of cells for which

∆ti < K∆t.

• Definition of the coarse grid :

– Objective :

∗ Advancement in time is performed with time step K∆t

∗ Advancement in time preserves accuracy in the outer zone (space order of 3,
Runge-Kutta 4)
∗ Advancement in time is consistent in the inner zone

– A coarse grid is defined on the inner zone by applying cell agglomeration in such
a way that on each macro-cell, the maximal local time step is at least K∆t. Ag-
glomeration consists in considering each cell and aggregating to it neigboring cells
which are not yet aggregated to an other one (Figure 1). Agglomeration into macro
cell is re-iterated until macro-cells with maximal timestep smaller then K∆t have
disappeared.

– Time-advancing on the macro-cells :

∗ We advance in time the chosen explicit scheme (Runge-Kutta 4 in our exam-
ples) on the coarse grid with K∆t as time step
∗ A flux smoothing can be performed on the macro cells for stability purpose.

• Construction of the flux on the coarse grid

– The nodal fluxes Ψi are assembled on the fine cells (as usual)

– Fluxes are summed on the macro-cells I (inner zone) :

ΨI =
∑
k∈I

Ψk (1)

– Possibly smoothing of the coarse flux (inner zone) :

ΨI = (
∑

K∈V(I)
ΨKvolK)/(

∑
K∈V(I)

volK) (2)
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fine cells i macro cell I
Figure 1: Sketch (in 2D) of the agglomeration of 4 cells into a macro-cell. Cells are dual cells of triangles, bounded
by sections of triangle medians.

The multirate algorithm is then based on a prediction step and a correction step as defined
hereafter :

Step 1 (prediction step) :
The solution is advanced in time with time step K∆t, on the macro cells in the inner zone and

on the fine cells in the outer zone :

For α = 1, RKstep

outer zone : voliw
(α)
i = voliw

(0)
i + bαK∆t Ψ

(α−1)
i (3)

inner zone : volIwI,(α) = volIwI,(0) + bαK∆t ΨI,(α−1) (4)

w
(α)
i = wI,(α) for i ∈ I (5)

EndFor α.

Step 2 (correction step) :

• The unknowns are frozen in the outer zone at level tn +K∆t.

• The outer unknowns near the boundary of the outer zone which are necessary for advanc-
ing the inner zone are interpolated in time.

• In the inner zone, using these interpolated values, the solution is advanced in time with
the chosen explicit scheme and time step ∆t.

Remark: The complexity, proportional to the number of points in the inner zone, is therefore
mastered.
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3 Applications

The multirate algorithm introduced in the previous section was implemented in the parallel
CFD code AIRONUM shared by INRIA Sophia-Antipolis, LEMMA company and University
of Montpellier. The parallelism relies on mesh partitioning and MPI. A description of this tool,
which solves with a mixed element/volume method on unstructured meshes the compressible
Euler and Navier-Stokes equations possibly equipped with a turbulence model, can be found
in [20] and [21]. When computing hybrid RANS-LES flows, an important part of the mesh is
dedicated to the boundary layer and involved possibly very small cells. Another important part
of the mesh is dedicated to the capture of vortices with many cells of medium size (possibly
10-100 larger than smaller cells of the boundary layers). In introducing the multirate algorithm,
attention was paid to several issues related to parallelism, and in particular a macro-cell belongs
to only one subdomain of the partition, and we have optimized the evaluation of the fluxes
on the macro-cells located at the boundary between neighboring subdomains. However, in the
present phase of the study, no optimization of the MPI partitions for balancing the load in the
inner zone has been done.

3.1 Contact discontinuity

In this first example, we consider the case of a moving contact discontinuity. For this pur-
pose, the compressible Euler equations are solved in a rectangular parallelepiped as compu-
tational domain where the density is initially discontinuous at its middle (see Figure 2) while
moments and pressure are uniform.

Figure 2: ALE calculation of a traveling contact discontinuity. Instantaneous mesh with mesh concentration in the
middle of zoom and corresponding advected discontinuous fluid density.

The uniform velocity is a purely horizontal one. As can be seen in Figure 2, small cells
are present on either side of the disconstinuity. The mesh moves during the computation in
such a way that the nodes located at the discontinuity are still the same, and that the number of
small cells are equally balanced on either side of the discontinuity. An Arbitrary Lagrangian-
Eulerian formulation is then used to solve the Euler equations on the resulting deforming mesh.
Our long term objective is to combine the multirate time advancing with a mesh adaptation
algorithm in such a way that the small time steps imposed by the necessary good resolution of
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the discontinuity remain of weak impact on the global computational time.
The mesh used in this simulation contains 25000 nodes and 96000 tetrahedra. The compu-

tational domain is decomposed into 2 subdomains. When integer K, used for the definition of
the inner and outer zones, is set to 5, 10 and 15, the percentage of nodes located in the inner
zone is always 1.3%, which corresponds to the vertices of the small cells located on either side
of the discontinuity.

The multirate scheme with the aforementioned values of K, as well as a 4-stage Runge-
Kutta method, are used for the computation. Each simulation was run over an elapsed time of
10 minutes, and 2 cores were used on a Bullx B720 cluster. This elapsed time corresponds to
2390 time steps for the explicit scheme, and 268, 365 and 536 times steps for K equals 15, 10
and 5, respectively. An improvement in the efficiency of about 1.75, 1.58 and 1.15 is observed
when K is set to 15, 10 and 5, respectively.

3.2 Tandem cylinders

Our main study concerning the application of multirate is the calculation of a flow around
a tandem cylinders at Reynolds number 1.66 × 105. This was a test case of an AIAA work-
shop, see [22]. It is a challenging computation since several complex flow features need to be
captured around multiple bodies (stagnation zones, boundary layers, shear layers, separations,
laminar-turbulent transition, recirculations, vortex sheddings, wakes). Furthermore, small cells
are necessary for a proper prediction of the very thin boundary layers, which implies very small
global time steps so that classical explicit calculations become very costly. The application of
our multirate scheme to the tandem cylinders benchmark is also made more difficult by the
fact that we use a hybrid turbulence model based on RANS and VMS-LES approaches, so that
additional equations associated with turbulent variables need to be advanced in time.

In order to illustrate the quality of resolution, the Q-criterion isosurfaces are shown in Figure
3. It shows the complex flow features and the very small structures that need to be captured by
the numerical model and the turbulence model, which renders this simulation particularly chal-
lenging. Further information concerning the comparison between computation and experiments
are available in [21].

Two meshes were used for this study : a coarse mesh which contains 2.6 million nodes and
15 million tetrahedra, and a fine mesh with 16 million nodes and 96 million tetraedra. For both
the smallest cell thickness is 1.2.10−4.

• Coarse mesh
The computational domain is decomposed into 192 subdomains. When integer K, used
for the definition of the inner and outer zones, is set to 2, 5 and 10, the percentage of
nodes located in the inner zone is 4%, 16% and 25%, respectively.

The lift curve obtained by the multirate scheme withK = 10 and the explicit scheme cor-
responding to half of a period of vortex shedding for the first cylinder is given in Figure 4.
The underlying explicit scheme is the 4-stage Runge-Kutta method and the CFL number
was set to 1. Each simulation was left running over an elapsed time of 40 hours. A num-
ber of 192 cores on a Bullx B720 cluster was used to perform these computations. One
can check that the responses given by the two schemes are close to each other, except for
the oscillations at the top of the lift curve for the multirate method that are an unproperly
controlled restart in the simulation. The number of time steps is 15284 for the multirate
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Figure 3: Tandem cylinders at Reynolds number 1.66× 105: instantaneous Q-criterion isosurfaces (coloured with
velocity modulus).

scheme and 132531 for the classical explicit scheme. From Figure 4, an improvement in
the efficiency of about 1.14 is observed when the multirate scheme is used in our paral-
lel solver. This rather slight improvement in efficiency can be explained by the fact that
some of the subdomains almost contain only inner nodes so that workload is not equally
shared by each computer core when the proposed multirate approach is used. Indeed,
in our parallel strategy which is based on a decomposition of the computational domain
in subdomains, designed to minimize the inter-core communications, and on a message
passing parallel programming (MPI) model, each subdomain is assigned to a computer
core. It is clear that in order to further increase the efficiency of the multirate approach in
our parallel computing framework, the domain decomposition needs to be adapted.

Based on the fact that the cost per node in these explicit simulations is essentially due
to the computation of the convective and diffusive fluxes, we can deduce that, for the
multirate simulation that was performed and which involves K = 10 and 25% of the
nodes located in the inner zone, the benefit-cost ratio between the multirate scheme and
the classical 4-stage Runge-Kutta method would be 3 from a sequential computation.

In a second step, the multirate simulation is carried out with K = 5 for the same bench-
mark, which means that the RK4 scheme is now performed with time steps 5∆t and ∆t
for the nodes located in the outer zone and the nodes located in the inner zone, respec-
tively. The lift curve obtained by the multirate scheme with K = 5 and K = 10 for the
first cylinder is depicted in Figure 5. Both simulations were left running over an elapsed
time of 20 hours, which allows to simulate a quarter of a period of vortex shedding with
a CFL number set to 1. One can notice that the response is similar, as expected, for
both values of K, and that the efficiency is improved by a factor 1.09 when the multirate
scheme is used with K = 10 in our parallel solver. From a sequential point of view, we
can also deduce that the cost of the multirate scheme with K = 5 and K = 10 would be
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Figure 4: Coarse mesh - Tandem cylinders at Reynolds number 1.66×105 : lift curve for the first cylinder, multirate
scheme (K=10) and explicit RK4 scheme, corresponding to an elapsed time of 40 hours.

of the same order.
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Figure 5: Coarse mesh - Tandem cylinders at Reynolds number 1.66×105 : lift curve for the first cylinder, multirate
scheme with K=5 and K=10, corresponding to an elapsed time of 20 hours.

• Fine mesh:

The computational domain is decomposed into 768 subdomains. When integer K, used for the
definition of the inner and outer zones, is set to 5, 10 and 20, the percentage of nodes located in
the inner zone is 18%, 24% and 35%, respectively.

The lift curve obtained by the multirate scheme with K = 5, K = 10, and K = 20, and
by the explicit scheme, is shown in Figure 6. The underlying explicit scheme is the 4-stage
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Runge-Kutta method and the CFL number was set to 1. Each simulation was left running over
an elapsed time of 1 hour. A number of 768 cores on the Bullx cluster was used to perform
these computations.

Figure 6: Fine mesh - Tandem cylinders at Reynolds number 1.66× 105 : lift curve for the first cylinder, multirate
scheme (K = 5, K = 10, K = 20) and explicit RK4 scheme, corresponding to an elapsed time of 1 hour.

One can observe that the lift curves quickly become different between the various options
because of differences in the time step size and the rapidly fluctuating small scales that can
be captured by this fine mesh. These differences affect the instantaneous solution but do not
notably affect the flow statistics. From this Figure, an improvement in the efficiency of a factor
slightly greater than 2 is observed when the multirate option is used with K = 20 compared to
the classical 4-stage Runge-Kutta explicit scheme. For K = 5 and K = 10 this improvement
becomes 1.5 and 1.8, respectively (see Figure 7). The better efficiency observed with the fine
mesh compared to the coarse mesh is certainly due to a better distribution of the workload
among the cores when the multirate approach is used.

As for the coarse mesh, the benefit-cost ratio between the multirate scheme and the classical
4-stage Runge-Kutta method would be 3 from a sequential point of view.

3.3 Circular cylinder

The third application concerns the simulation of the flow around a circular cylinder at Reynolds
number 8.4× 106. As for the previous benchmark, the computational domain is made of small
cells around the body in order to allow a proper representation of the very thin boundary layer
that occurs at such a high Reynolds number. On the other hand, the same hybrid RANS/VMS-
LES model as that of the previous benchmark is used to compute this flow, which implies again
that both the fluid and turbulent variables need to be advanced by the time integration scheme,
and therefore also the multirate method.

Figure 8 depicts the Q-criterion isosurfaces and shows the very small and complex struc-
tures that need to be captured by the numerical and the turbulence models, which renders this
simulation very challenging.
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Figure 7: Fine mesh - Tandem cylinders at Reynolds number 1.66× 105 : speedup multirate/explicit (RK4).

The mesh used in this simulation contains 4.3 million nodes and 25 million tetrahedra. The
smallest cell thickness is 2.5.10−6. The computational domain is decomposed into 768 subdo-
mains. When integer K, used for the definition of the inner and outer zones, is set to 5, 10 and
20, the percentage of nodes located in the inner zone is 15%, 19% and 24%, respectively.

The lift curve corresponding to the explicit scheme and the multirate option with K = 20 is
shown in Figure 9. The explicit scheme is the 4-stage Runge-Kutta method. Each simulation
was left running over an elapsed time of 20 minutes, and 768 cores were used on a Bullx B720
cluster. The number of time steps is 175 for the multirate scheme and 2153 for the explicit
method. From Figure 9, we deduce an improvement in the efficiency of about 1.62 when the
multirate scheme is used with K = 20, as compared with 3 which would be, from a sequential
point of view, the ideal benefit-cost ratio between the multirate scheme, with K = 20 and 24%
of the nodes located in the inner zone, and the explicit scheme. This result in efficiency is pretty
good, considering the fact that the domain decomposition does not equally share the number of
inner nodes between the subdomains, as noticed in the previous section.

The multirate simulation was also carried out for K = 5 and K = 10, which means that
the time step ratio between the outer zone and the inner zone is 5 and 10, respectively. The
efficiency is then improved by a factor 1.25 (K = 5), 1.46 (K = 10) and 1.62 for K = 20.

3.4 Spatial probe

The last case is the supersonic flow around a probe model for Exomars (see for example
[23]). We choose a Reynolds number of 1 million. Delicate features in this simulation are a
separation arising on a highly curved wall and relatively large recirculation zone at afterbody.
Hybrid RANS-LES calculation brings more information than pure RANS does. The mesh
involves 4, 380000 cells and the smallest mesh thickness is 2.10−5. A sketch of this flow is
presented in Figure 10. The impact of multirate on accuracy is very low (Figure 11). The gain
in efficiency varies from 2.18 with K = 10 and 56 cells in the inner zone to a maximum of 2.89
with K = 40 and 151 cells in the inner zone. For K = 40, only 15 subdomains have inner cells
(mean number 15 inner cells).
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Figure 8: Circular cylinder at Reynolds number 8.4 × 106 : instantaneous Q-criterion isosurfaces (coloured with
velocity modulus).

Figure 9: Circular cylinder at Reynolds number 8.4× 106 : comparison of lift coefficient curves for explicit (bold
line) and multirate (dashes) .

4 Conclusion

A new multirate strategy is proposed in this work. The method is based on control volume
agglomeration, and relies on a prediction step where large time steps are used and where the
fluxes for the smaller elements are evaluated on macro cells for stability purpose. A correction
step follows in which only the smaller elements are advanced in time with a small time step.
Preliminary results are given. They show that the proposed multirate strategy can be applied in
complex CFD problems such as the prediction of three-dimensional flows around bluff bodies
with complex hybrid turbulence models. Nevertheless, there is still work to do to obtain an
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Figure 10: Flow around a probe model at Reynolds number 1 million. Q criterion.

Figure 11: Flow around a probe model at Reynolds number 1 million. Impact of multirate on instantaneous lift
accuracy.

efficient multirate method in a parallel numerical framework. Indeed, at the present time, the
domain decomposition into subdomains is designed to minimize the inter-core communications.
We need to adapt the domain decomposition in such a way that the workload becomes shared
equally for both Step1 and Step2 of the multirate.
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Abstract. We present in this work two implementation schemes of the finite volume method
for the numerical simulation of impacts on thermo-elastic-plastic solids within the small strain
framework for one dimension (bar) solid media, based on the Lax-Wendroff and high (second)
order TVD methods. A strong thermomechanical coupling and adiabatic conditions are as-
sumed. Comparison is performed with results obtained with the classical finite element method
and an analytical solution on a test case involving a discontinuous solution. The finite volume
methods (mainly the high order TVD one) improve both the track of the shock wave path, even
after many reflexions of waves, and the computation of plastic strains and temperature.
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1 INTRODUCTION

The modelling and numerical simulation of hyperbolic initial boundary value problems in-
cluding extreme loading conditions such as impacts require the ability to accurately capture and
track the wave front of shock waves induced in the medium. Indeed, this permits to both un-
derstand correctly the path of waves and assess accurately the field of plastic strains and hence
that of residual stresses within a structure. These problems require therefore numerical schemes
able to meet high orders of accuracy and a high resolution of discontinuity without any spurious
oscillations.

The numerical simulation of impacts on dissipative solids has been and is again mainly per-
formed with the classical finite element method implemented in many industrial codes. How-
ever, finite elements do not use any feature of the characteristic structure of the set of hyperbolic
equations, and the amount of artificial viscosity added to numerical time integrators is hard to
assess properly in order to remove the sole spurious oscillations. Hence, a poor resolution of
discontinuity and track of the wave path is generally achieved.

The finite volume method, initially developed for the simulation of gas dynamics [1], has
gained recently more and more interest for problems involving impacts on solid media. The
characteristic structure of the set of hyperbolic equations can be accounted for by the solution of
a Riemann problem at interfaces between cells, and the same order of convergence is achieved
for both the displacement and stress fields [2]. Several authors [3, 4, 5, 6, 7] have proposed
many ways to simulate impacts on dissipative solid media such that elastic-plastic solids.

In this work, we use the finite volume method for the numerical simulation of impacts on
thermo-elastic-plastic solids within the small strain framework in one dimension (actually bars
here), and compare it to results obtained with the classical finite element method. First, the
set of equations considered are presented in section 2. Since the material is deformed at high
strain rate, adiabatic conditions are assumed to compute the rise of temperature, and the thermal
softening is accounted for. Next, two implementations schemes of the finite volume method for
this kind of material are presented in section 3: the Lax-Wendroff method and a high-order TVD
method using the Superbee limiter. Then, the finite volumes numerical solutions are compared
to the results of the finite element method and to an analytical solution of a test case involving
a discontinuous solution in section 4.

2 INITIAL BOUNDARY VALUE PROBLEM FOR A THERMO-ELASTIC-PLASTIC
MATERIAL IN ONE DIMENSION

We consider in this work a unidimensional initial boundary value problem written for a
thermo-elastic-plastic material within the linearized small strain framework. The set of conser-
vation laws reads:

∂u

∂t
+
∂f(u)

∂x
= 0 ∀x ∈]0, L[ (1)

within a domain of length L, the unknown vector u and the flux f(u) are defined as

u =

[
σ
v

]
; f =

[
−Hv
−σ/ρ

]
(2)

where ρ is the mass density, and σ and v denote the axial stress and velocity components re-
spectively. The conservations laws (1) should be supplemented with appropriate boundary and
initial conditions. For a purely elastic material, the modulus H is equal to the Young’s modulus
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E. For an elastic-plastic material, the modulus H stands for the tangent modulus:

dσ

dε
=

EQ

E +Q
(3)

In this work, an elastic-plastic material with a linear isotropic material is considered. Moreover,
the influence of the thermal part on the mechanical part is accounted for through thermal soft-
ening via a linear decrease of the tensile yield stress with the temperature. The constitutive set
of equations are listed below:

ε̇ = ε̇e + ε̇p (4)
σ̇ = Eε̇e (5)
ε̇p = ṗ sign(σ) (6)

f = |σ| − (σ0 +Qp)

(
1− A(T − T0)

T0

)
≤ 0 (7)

ṗ ≥ 0; f ≤ 0; fṗ = 0 (8)

where the equations (4), (5), (6), (7) and (8) refer to the additive partition of the total strain
rate (ε̇) into elastic (ε̇e) and plastic (ε̇p) parts, the elastic law, the plastic flow rule, the criterion
and the Kuhn-Tucker complementary conditions. In (6), ṗ denotes the rate of cumulated plastic
strain. The tensile yield stress in (7) involve the initial tensile yield stress σ0, a strain hardening
modulus Q, a decrease coefficient A and the reference temperature T0. The temperature is
solution of the heat equation, assuming adiabatic conditions, written with the sole mechanical
dissipation on the right hand side:

ρCṪ = σε̇p −Qpṗ (9)

where C is the thermal heat capacity.

3 FINITE VOLUME METHODS

The finite volume methods are based on subdividing the spatial domain into grid cells [1] of
length ∆x, and defining the approximation Ui of u within the ith grid cell by integral averaging.
These are then updated using the conservation laws (2) written in integral form on one cell,
generally coupled with an explicit time integration scheme. We present here the application of
the Lax-Wendroff method and a high-order Total Variation Diminishing (TVD) method using
the Superbee limiter, to a thermo-elastic-plastic material.

3.1 LAX-WENDROFF

The Lax-Wendroff method is a second order accurate method, presented here in its Richt-
myer two-steps version. The first step amounts to approximate u at the midpoint in time
tn+1/2 = tn + ∆t/2 (n referring to the time step number) by:

U
n+ 1

2

i+ 1
2

=
Un
i + Un

i+1

2
+

∆t

2∆x
(Fn

i − Fn
i+1) (10)

The second step requires to evaluate the flux at this point

Fn
i+ 1

2
= f

(
U
n+ 1

2

i+ 1
2

)
(11)
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in order to update the unknowns at time tn+1 with the following conservative scheme:

Un+1
i = Un

i −
∆t

∆x

(
Fn
i+ 1

2
− Fn

i− 1
2

)
(12)

For implementing a thermo-elastic-plastic material, a dedicated Riemann solver should be con-
sidered. First, at each step of the Richtmyer algorithm, a prediction-correction scheme should
be set in order to handle the Kuhn-Tucker complementary conditions (8). An elastic constitutive
behaviour is first assumed, leading to an elastic trial solution. For the first Richtmyer step, it
comes: (

σ
n+ 1

2

i+ 1
2

)trial
=
σni + σni+1

2
+
c2e∆t

2∆x
(ρvni+1 − ρvni ) (13)

v
n+ 1

2

i+ 1
2

=
vni + vni+1

2
+

∆t

2∆x

(
σni+1 − σni

ρ

)
(14)

where ce stands for the elastic sound speed defined by ce =
√
E/ρ, generally set to ∆t/∆x if

the Courant number is set at one. Then, the criterion (7) is computed with that trial state within
the grid cells i and i + 1, provided their respective cumulated plastic strain values pni and pni+1

and temperature values T ni and T ni+1 at time tn. Two cases thus arise for each grid cell: either the

plastic criterion is satisfied, and hence the evolution is actually elastic σn+1/2
i+1/2 =

(
σ
n+1/2
i+1/2

)trial
,

or the plastic criterion is violated f
((

σ
n+1/2
i+1/2

)trial
)
> 0, and a plastic correction needs to be

carried out. In the latter case, the plastically admissible stress state should be computed by
matching the elastic-plastic Riemann invariants defined on the two integral curves passing by
the states of the grid cells i and i+ 1 at time tn:

v
n+ 1

2

i+ 1
2

= vni +
∆x

∆t

∫ σ∗
i

σn
i

dσ

ρc2
+

∫ σ
n+1

2

i+1
2

σ∗
i

dσ

ρc2

 (15)

v
n+ 1

2

i+ 1
2

= vni+1 −
∆x

∆t

∫ σ∗
i+1

σn
i+1

dσ

ρc2
+

∫ σ
n+1

2

i+1
2

σ∗
i+1

dσ

ρc2

 (16)

where σ∗
i and σ∗

i+1 stand for the tensile yield stress in each grid cell at time tn if the trial state
did not satisfy the plastic criterion, or are equal to σni (resp. σni+1) if the plastic criterion has
been satisfied. At one cell interface i + 1/2, the plasticity can develop from its left side, from
its right side, or from both. Hence the stress at this interface is updated based on the criterion
assessed at the two grid cells:

σ
n+ 1

2

i+ 1
2

=
1

1
ρc2i

+ 1
ρc2i+1

(
σ∗
i

ρc2i
+
σ∗
i+1

ρc2i+1

+
1

ρc2e
(σni + σni+1 − σ∗

i − σ∗
i+1) +

∆t

∆x
(vni+1 − vni )

)
(17)

where ci and ci+1 denote the sound speed at grid cell i and i + 1. These are equal to ce if the
evolution is elastic, or cp the plastic sound speed (=

√
(dσ/dε)/ρ) if the evolution is elastic-

plastic. The second step of the Richtmyer algorithm is also based on a prediction-correction
scheme; the trial state is obtained via the conservative formula (12). This trial state is also
tested with the plastic criterion within each grid cell provided its cumulated plastic strain value
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pni and temperature value T ni , and the same reasoning is applied. Once the stress have been
updated at time tn+1, the cumulated plastic strain are updated using the criterion (7), and hence
the plastic strains through the plastic flow rule (6). The temperature is updated at the end of the
time step through an implicit time discretization of (9):

T n+1
i = T ni +

1

ρC
(σn+1

i ∆εpi −Qpn+1
i ∆pi) (18)

3.2 HIGH-ORDER TVD METHODS

The high order Total Variation Diminishing methods enable to meet both high order of accu-
racy in smooth regions and a high resolution of discontinuity without any spurious oscillations
where shocks arise in the solution. Their strength relies on their ability to introduce a controlled
amount of numerical viscosity locally, so that to adapt to the local regularity of the solution.
Following [1] and [4], the conservative formula (12) can be rewritten in term of flux-difference
splitting, plus some additional flux to reach higher order of accuracy:

Un+1
i = Un

i −
∆t

∆x

(
A+Un

i− 1
2

+A−Un
i+ 1

2

)
− ∆t

∆x

(
F̃n
i+ 1

2
− F̃n

i− 1
2

)
(19)

where A+Un
i−1/2 =

∑m
p=1(λ

(p)
i−1/2)

+W(p)
i−1/2 and A−Un

i+1/2 =
∑m

p=1(λ
(p)
i+1/2)

−W(p)
i−1/2 are the

right-going and left-going fluctuations respectively, provided Un
i−1/2 = Un

i −Un
i−1,W(p)

i−1/2 =

α
(p)
i−1/2K

(p) are the waves formed of the wave strength coefficient α(p)
i−1/2 weighting the right

eigenvectors K(p) of the jacobian matrix A = ∂f/∂u, and (λ
(p)
i−1/2)

± are the characteristic
speeds (the eigenvalues of A) travelling rightward or leftward respectively. In addition, F̃n

i+1/2

and F̃n
i−1/2 stand for limited additional correction fluxes designed so that the method achieves

a high order of accuracy in smooth regions and a high resolution of discontinuity in rough
ones. These limited fluxes are expressed as a function of limited waves W̃(p)

i−1/2 = α̃
(p)
i−1/2K

(p),
1 ≤ p ≤ m:

F̃n
i− 1

2
=

1

2

m∑
p=1

|λp|
(

1− ∆t

∆x
|λp|
)
α̃
(p)
i−1/2K

(p) (20)

These waves are limited based on an upwind ratio θ(p)i−1/2 defined for the p−wave as:

θ
(p)
i−1/2 =

W(p)
I−1/2

W(p)
i−1/2

=
α
(p)
I−1/2

α
(p)
i−1/2

(21)

where the index I denotes the upwind interface of that located at xi−1/2, that is I equals i − 1

if λ(p)i−1/2 > 0, i + 1 if λ(p)i−1/2 < 0. This ratio may be understood as a certain measure of the
local regularity of the solution, the p−wave strength may thus be limited as a function of this
measure:

α̃
(p)
i−1/2 = φ(θ

(p)
i−1/2)α

(p)
i−1/2 (22)

where φ(θ
(p)
i−1/2) is a limiting function. Among many others, Lax-Wendroff is found for φ(θ) =

1, and for instance Superbee is obtained for φ(θ) = max(0,min(1, 2θ),min(2, θ)).
Implementing a thermo-elastic-plastic material also requires a special elastic-plastic Rie-

mann solver. This is also based on a prediction-correction scheme. First, an elastic trial solution
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(σi+1/2)
trial is computed at each interface, solution of an elastic Riemann problem consisting of

two elastic (discontinuous) waves travelling at speeds −ce and ce. Then, this trial stress state
is tested against the yield criterion in both grid cells i and i + 1, being given their respective
cumulated plastic strain values (pni , p

n
i+1) and temperature values (T ni , T

n
i+1). In each of these

grid cells, either the plastic yield criterion is satified, and then only one elastic wave occurs, or
the criterion is violated, and then a plastic wave travelling at speed ±cp should be added to the
elastic one. In all, the characteristic spectrum solution of the elastic-plastic Riemann problem
may consist of (i) two elastic waves if the trial stress state satisfies the yield criterion in both
adjacent grid cells, (ii) two elastic waves plus one left or right plastic (discontinuous) wave if
the trial stress state has violated the yield criterion in the sole left of right grid cell adjacent to
the interface, or (iii) two elastic waves plus two plastic waves if the trial stress state violates
the yield criterion in both grid cells i and i + 1, as shown in figure 1. Notice that the plastic

x

t

(1)

(1P) (2P)

(2)

Un
i+1

0

U∗

Un
i

U∗
i

U∗
i+1

Figure 1: Characteristic structure of the elastic-plastic Riemann problem.

waves here involved in the solution of the elastic-plastic Riemann problem are actually strong
discontinuous waves since a linear hardening is considered in this work. A nonlinear hardening
would yield weak discontinuous plastic centered rarefaction waves: this case will be treated in
a latter work.

It remains to compute the strength α
(p)
i+1/2 of each of these waves. This is based on the

decomposition of Ui+1/2 on the eigenbasis of the jacobian matrix A = ∂f/∂u:

Ui+ 1
2

= Un
i+1 −Un

i =
m∑
p=1

α
(p)
i+1/2K

(p) (23)

The strength of elastic waves are first computed since the stresses in areas U∗
i and U∗

i+1 are
known and equal to the respective tensile yield stresses. Then, the strengths of plastic waves
are computed by forming a system of equations with the two remaining waves. For example, if
plasticity occurs from both sides, the two plastic wave strength are computed by:

[
K(1P ) , K(2P )

] [α(1P )
i+1/2

α
(2P )
i+1/2

]
= Un

i+1 −Un
i − α

(1)
i+1/2K

(1) − α(2)
i+1/2K

(2) (24)

The fluctuations A+Un
i+1/2 and A−Un

i+1/2 are then computed, and the unknowns Un+1
i are

hence updated at time tn+1 through the formula (19). The thermomechanical coupling is treated
as discussed in section 3.1.
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4 SUDDEN UNLOADING OF STRONG-DISCONTINUOUS LOADING WAVE IN A
LINEAR HARDENING BAR

We consider a semi-infinite bar made of a linear hardening material, in an initial natural state,
suddenly loaded on its left side at time t = 0 with a constant tensile stress value σ∗ sufficiently
large to deform the bar plastically. After time tu, the applied load is suddenly released to zero.
The analytical solution of this problem can be found in [8], and is summarized in figure 2. A

x

t

0

12

3

5
4

6
7

tu
t1
t2
t3

t4

v

σ
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Figure 2: Analytical solution of a semi-infinite bar suddenly plastically loaded then unloaded on its end, plotted
with two strain strong-discontinuities here.

stationary strong-discontinuous strain interface is formed at each unloading cycle, the righward
plastic wave being weakened until it disappears. Introducing the parameter β defined by:

β =
ce + cp
ce − cp

> 1 (25)

the length of the (n+ 1)th stationary strain-discontinuous interfaces, ln+1, and its stress associ-
ated are given by:

ln+1 = βln

σ2(n+1) =
σ2n
β

(n = 1, 2, . . .) (26)

where ln the length of the nth stationary strain-discontinuous interfaces and σ2n the stress asso-
ciated.

4.1 COMPARISON WITH THE FINITE ELEMENT METHOD FOR AN ELASTIC-
PLASTIC MATERIAL

The numerical results obtained for a steel (see table 1 for numerical values of parameters)
with the Lax-Wendroff and the second-order TVD Superbee finite volume methods are com-
pared here to the analytical solution of this test case and to the results obtained with the finite
element method coupled with an explicit time integrator. The constitutive equations in the latter
solution is integrated with a radial return algorithm [9], and the solution is computed within a
larger domain than that shown in figures 3 to mimic a semi-infinite bar. For the finite volume
solutions, transmittive boundary conditions have been set on the right side of the bar.

Both the stress and plastic strain fields are compared at instants t1, t2, t3 and t4 (see figure
2), in figures 3. When the bar is loaded, an elastic precursor travels at the elastic sound speed
(see figure 3(a)), followed by a plastic wave. Since the Courant number has been set at one,
the three numerical methods fit perfectly the analytical solution. However, the plastic wave
travels slower, numerical oscillations appears for the Finite Element (the largest ones) and Lax-
Wendroff solutions. For the latter one, this is due to the fact that Lax-Wendroff is not a monotone
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E = 2 · 1011 Pa σ0 = 400 · 106 Pa L = 6 m
ρ = 7800 kg.m−3 A = 4 number of grid cells/elements = 100
C = 450 J.kg−1.K−1 T0 = 293 K tu = 1.2 · 10−3 s
Q = 10 · 109 Pa σ∗ = 900 · 106 Pa

Table 1: Numerical values of parameters

method nor a TVD one. Moreover, the Finite element solution overestimates the plastic strain
value closed to the boundary, though reduces to the right values when it departs. Superbee
achieves the best resolution of the plastic wave on five cells here.

Then, the prescribed load is released to zero, and an unloading wave pursues the forerunning
plastic loading disturbance (see figure 3(b)). Strong oscillations appears at integration points
within the unloaded area in the Finite Element solution. Many solutions can be used to reduce
these oscillations, among others (i) unload in two time steps rather than in one, (ii) reaverage
at integration points the stress moved at nodes using the finite element shape functions or (iii)
adding some additional numerical viscosity. Superbee achieves a proper elastic unload, super-
posed with the analytical solution, while Lax-Wendroff is not so bad.

When the unloading wave catches up with the plastic wave, a discontinuity of the (plastic)
strain appears at this point due to the strain history difference on both sides (see figure 3(c)).
Thus, a stationary discontinuous interface is generated, as well as internal reflective waves, so
that the plastic strain continues to propagate rightward, but with a smaller value. The resolution
of these two plastic strain fronts is quite close for these three numerical methods.

A second unload disturbance is required here to stop the progession of plastic strain (see
figure 3(d)). The stress front is poorly solved by the finite element method, Lax-Wendroff
has also difficulties with the left front. Only Superbee gives acceptable results after several
reflexions of plastic waves.

4.2 COMPARISON WITH THE FINITE ELEMENT METHOD FOR A THERMO-
ELASTIC-PLASTIC MATERIAL

The thermomechanical coupling is here added, with numerical parameters listed in table 1.
Since on the one hand a linear hardening is considered in this work, and the other hand the
thermal part influences the mechanical one through the sole yield stress, the plastic sound speed
is not affected by the temperature here, but the stress and the plastic strain actually depend on
the temperature. With the numerical values of parameters listed in table 1, the stress does not
change much with respect to figure 3 at the beginning, though more after many wave reflexions.
The change in plastic strain is much pronounced. The thermo-elastic-plastic (TEP) numerical
solutions are plotted in figure 4, and the plastic strains superposed with the (isothermal) elastic-
plastic (EP) analytical solution to observe the effect of the thermomechanical coupling. The
decrease of the tensile yield stress through thermal softening leads to an increase of the plastic
flow, and hence to an increase of temperature (figures 4(a) and 4(b)). Recall that adiabatic con-
ditions have been assumed so that no conduction effects are here accounted for. This explains
why the temperature and plastic strain profiles are similar.
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(c) Time t3 = 1.78 · 10−3 seconds.
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Figure 3: Comparison of the analytical, Finite Element (FEM), Lax-Wendroff (LW) and Superbee (SB) stress and
plastic strain fields at different times.
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Figure 4: Comparison of the analytical, Finite Element (FEM), Lax-Wendroff (LW) and Superbee (SB) plastic
strain and temperature fields at different times.

5 CONCLUSIONS

In this work, two schemes of the finite volume methods (namely the Lax-Wendroff and the
Superbee TVD limiter) have been implemented for the numerical simulation of impacts on
thermo-elastic-plastic bars. These methods were tested against an analytical solution and the
finite element method on a test case involving strong discontinuous waves. The Superbee TVD
limited solution has been shown to be the best in term of accuracy, so that it improves both
the track of the shock wave path, even after many reflexions of waves, and the computation of
plastic strains and temperature.
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Abstract. Wave propagation in mechanical structures can be controlled by a coupling to an
electrical network exhibiting a similar dispersion relation. The energy transfer between the two
media is maximized on a broad frequency range when choosing a network that is the electrical
analogue of the structure to control. In terms of structural vibration, this strategy is equivalent
to a multimodal tuned mass damping. Indeed, the control is implemented thanks to a multi-
modal electrical network, whose modes are close enough to those of the mechanical structure.
The electromechanical coupling can be achieved by using an array of piezoelectric patches,
which are small enough compared to the smallest wavelength to control. Then, when con-
sidering interconnected patches, wave propagation occurs simultaneously in the mechanical
and electrical media. Wave propagation in one-dimensional periodic structures can be ana-
lyzed with the transfer matrix method. In this paper, the definition of an electromechanical unit
cell gives a relation between state vectors involving both mechanical and electrical degrees of
freedom. As an extension of a previous work focusing on longitudinal propagation, four trans-
fer matrix models are defined in order to describe the piezoelectric coupling of a beam to its
discrete electrical analogue. Indeed, the beam can be approximated either by its discrete equiv-
alent, a fully homogenized model, a piecewise homogenized model or a finite element model.
Offering an increasing complexity, those formulations are compared in order to determine their
respective limits. Depending on the frequency range of interest, it then becomes possible to
choose a suitable model for the analysis of structures involving a piezoelectric coupling to their
electrical analogues.
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1 INTRODUCTION

Multimodal vibration control can be implemented by coupling a mechanical structure to its
electrical analogue. A practical solution is to cover the structure to control with an array of
piezoelectric patches that are interconnected with a suitable electrical network. From a finite
difference method applied to the continuous equations describing the mechanical medium, an
electromechnical analogy provides the suitable electrical topology [1, 2]. This method was
applied to the control of a beam and it led to a passive electrical network made of inductors
and transformers [3, 4]. A periodic layout of the electromechanical structure allows using the
transfer matrix method [5, 6]. This method has often been implemented in problems involv-
ing independent piezoelectric shunts [7, 8, 9] but rarely with an interconnection of successive
patches [10]. This last case requires the definition of state vectors that combine both mechanical
and electrical degrees of freedom, because a real electromechanical waveguide is considered.
The electrical part is described with the discrete equations governing the lumped electrical com-
ponents but the continuous mechanical medium can be approximated by various models.

The present contribution extends previous models and results that were initially dedicated
to the analysis of longitudinal wave propagation in coupled analogous waveguides [11]. When
considering transverse propagation, the transfer matrices are obviously different, but the meth-
ods remain the same. A first section presents the electromechanical unit cell including a beam
segment and a portion of the analogous electrical network, which was presented in [4]. Then, a
model describing a pair of piezoelectric patches subjected to bending motion is proposed. In a
second section, we recall the transfer matrices that were obtained in [4] when considering either
a discrete or a fully homogenized beam coupled to the discrete electrical analogue. Two new
models are added: a piecewise homogenized model and a finite element model, which both take
into account the mechanical discontinuity induced by the addition of piezoelectric patches. The
last section compares the propagation constants and the frequency response functions obtained
with the four transfer matrix models, which offer an increasing complexity. The main objective
is to define their respective limits and to select the most appropriate depending on the frequency
range of interest and the required accuracy.

2 ANALOGOUS PIEZOELECTRIC NETWORK ON BEAM

A beam is coupled to its analogous electrical network through a periodic array of piezoelec-
tric patches. A unit cell is defined by considering both mechanical and electrical propagation
media. Then, the linear piezoelectricity theory gives a model describing a pair of piezoelectric
patches subjected to bending motion.

2.1 Electromechanical unit cell

A periodic array of piezoelectric patches is distributed on an homogeneous beam. An elec-
trical network interconnects the patches, which creates an electrical waveguide. The chosen
network is the periodic electrical analogue of a beam [3, 4] because it was shown that this solu-
tion can lead to a broadband control of transverse waves. As seen in Fig. 1, an electromechanical
periodic structure is obtained, so that a unit cell of length a can be defined. The thickness of the
main structure is hs and its width is b. The piezoelectric patches have a thickness hp, a width
b and a length lp, with lp ≤ a. Then, q̇I is the current flowing from the network to the pair of
patches and VI is the voltage on the electrodes connected to the network. The two piezoelectric
patches need to be transversely polarized in identical directions in order to generate a non-zero
voltage when bending excitation occurs [12].
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Figure 1: Beam segment coupled to its analogous electrical network through a periodic array of
piezoelectric patches and corresponding electromechanical unit cell.

2.2 Bending model for a pair of thin piezoelectric patches

For a thin piezoelectric patch under plane-stress assumption and polarized in transverse di-
rection [13], the 3D linear piezoelectricity theory is simplified into the one-dimensional formu-
lation

σp = Y E
p εp − ē31Ep

Dp = ē31εp + ε̄ε33Ep
, where Y E

p =
1

sE11

, ē31 =
d31

sE11

, and ε̄ε33 = εσ33 −
d2

31

sE11

. (1)

εp and σp are respectively the strain and stress in the axial direction ’1’ of the piezoelectric
patch. Dp and Ep are the electric displacement and electric field in the transverse direction ’3’.
sE11 is the elastic compliance at constant electric field, d31 is the piezoelectric charge constant
and εσ33 is the permittivity at constant stress. If we consider that the stress is constant along the
thickness, the normal force Np is obtained by multiplying σp by the patch cross-section area
Sp = bhp. For a thin piezoelectric patch, the electric field Ep can be seen as constant along the
thickness [13], which means that Ep is equal to −Vp/hp, where Vp is the voltage between the
two electrodes. Finally, the electric charge qp comes from the integration of −Dp all over the
surface of the patch. It is thus found from Eq. (1) that

Np = Y E
p Spεp − epVp

qp = ep∆Up + Cε
pVp

, where ep = −bē31, Cε
p =

ε̄ε33Ap

hp
and Ap = blp. (2)

∆Up = UpR − UpL is the difference between the right and left end displacements of the patch
and Cε

p is the capacitance of the patch when no strain is allowed along the direction ’1’.
Regarding the bending of thin piezoelectric patches, we consider that the electrical variables

only depend on axial deformations [13]. Then, for two patches that offer a symmetrical posi-
tioning with respect to the neutral axis, their contribution to the bending moment, M2p, is equal
to the integration of the stress times the distance to the central axis z over the two cross-section
areas. Furthermore, it is seen from the parallel electrical connection in Fig. 1 that VI = Vp and
qI = 2qp. So, with εp = θ′pz, Eqs. (1) and (2) give

M2p = 2Y E
p Ipθ

′
p − ep(hs + hs)VI

qI = ep(hs + hs)∆θp + 2Cε
pVI

, where 2Ip =
b(hs + 2hp)

3

12
− bh3

s

12
, (3)

∆θp = θpR − θpL is the difference between the right and left rotations at the ends of the patches
and θ′p corresponds to their curvature.
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3 TRANSFER MATRIX MODELS FOR TRANSVERSE WAVE PROPAGATION

Four transfer matrix models are proposed to describe the considered electromechanical unit
cell. All of them take into account a discrete electrical network but they differ in the definition
of the mechanical medium. The first model consider a lumped beam, whereas the second is
fully homogenized. Then, the discontinuity induced by the piezoelectric patches is introduced
in a piecewise homogenized model. This third transfer matrix model is validated by the last
one, which is based on a finite element method.

3.1 Discrete model based on global properties

The mechanical part of the unit cell in Fig. 1(b) is an elastic beam segment symmetrically
covered with two piezoelectric patches. This structure can be firstly seen as an homogenized
medium governed by a global piezoelectric coupling similar to Eq. (3). Then, if the considered
wavelength is considerably longer than the length of the unit cell, the curvature can be approxi-
mated by θ′ ≈ ∆θ/a, where ∆θ = θR − θL is the difference between the right and left rotations
at the ends of the unit cell. Consequently, the bending moment M depends on a global bending
stiffness KE

θ , which gives the discrete model

M = KE
θ ∆θ − eθVI

qI = eθ∆θ + CεVI
, where

1

KE
θ

=
lp

YsIs + 2Y E
p Ip

+
a− lp
YsIs

and Is =
bh3

s

12
. (4)

KE
θ is obtained directly from the geometry and the material properties of the unit cell. However,

the coupling eθ and the blocked capacitance Cε depend on global 3D considerations. Cε is the
capacitance of the pair of piezoelectric patches when ∆θ = 0. This does not mean that the
patches are fixed because ∆θ is not equal to ∆θp when the patches do not cover the whole unit
cell (a 6= lp). Consequently, Cε is not equal to 2Cε

p as it depends on the ratio a/lp. On the
other hand, Cσ is the capacitance of the pair of patches when no bending moment is applied
at the ends of the unit cell (M = 0). This free capacitance is easier to handle because it is
directly related to the free capacitance of a single piezoelectric patch: Cσ = 2Cσ

p , which can be
measured or approximated from 3D calculations [12]. Another global constant that can be easily
obtained is KD

θ , the stiffness in open circuit (qI = 0). It is computed in the same way as KE
θ in

Eq. (4) with Y D
p instead of Y E

p . Y D
p is the Young modulus at constant electric displacement,

which is defined from Eq. (1) by Y D
p = Y E

p + ē2
31/ε̄

ε
33. Then, from the definition of Cσ and KD

θ ,
Eq. (4) gives Cσ = Cε + e2

θ/K
E
θ and KD

θ = KE
θ + e2

θ/C
ε. Those two equations are reorganized

to finally get the global constants appearing in Eq. (4):

eθ =

√
KE
θ

(
1− KE

θ

KD
θ

)
Cσ

Cε = CσK
E
θ

KD
θ

. (5)

The mechanical part of the discrete model is illustrated in Fig. 2(a), where the torsional spring
refers to the bending stiffness and the lumped mass m is the mass of the unit cell. If ρs is the
density of the beam and ρp is the density of the piezoelectric material,m = ρsSsa+2ρpSplp. The
shear force is not represented because it does not depend directly on the piezoelectric coupling,
contrary to the total bending moment, which is increased by eθVI according to Eq. (4). When
the discrete mechanical unit cell is coupled to its analogous electrical network, the resulting
electromechanical unit cell can be represented by the electric scheme in Fig. 3 [4]. The relation
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Figure 2: Three models for the mechanical part of the unit cell: (a) Discrete model. (b) Fully
homogenized model. (c) Piecewise homogenized model.
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Figure 3: Electrical model of the discrete electromechanical unit cell.

between the electromechanical state vectors at the right and left ends of the unit cell is thus
given by the following transfer matrix formulation [4]:

W ?
R

θ?R
qw

?
R

qθ
?
R

M?
R

Q?
R

Vθ
?
R

Vw
?
R


=



1 1 0 0 1
2
−1

4
Λ

2eθ
− Λ

4eθ

0 1 0 0 1 −1
2

Λ
eθ

− Λ
2eθ

0 0 1 1 − eθ
2

eθ
4

−1+Λ
2

1+Λ
4

0 0 0 1 −eθ eθ
2
−(1 + Λ) 1+Λ

2
f
2

f
4

0 0 1 −1 0 0

−f −f
2

0 0 0 1 0 0

0 0 − f̃
2
− f̃

4
0 0 1 −1

0 0 f̃ f̃
2

0 0 0 1





W ?
L

θ?L
qw

?
L

qθ
?
L

M?
L

Q?
L

Vθ
?
L

Vw
?
L


, (6)

where f = ω2ma2/KE
θ , f̃ = ω2LCεâ2 and Λ = e2

θ/(K
E
θ C

ε). The symbol ”?” denotes dimen-
sionless state variables, which are highlighted for the sake of conciseness of the transfer matrix:
W ? = W/a, θ? = θ, M? = M/KE

θ , Q? = aQ/KE
θ , q?w = qw/â, q?θ = qθ, V ?

θ = CεVθ and
V ?
w = âCεVw.

3.2 Fully homogenized model for the mechanical part

When considering wavelengths that are not considerably longer than the length of the unit
cell, the assumption θ′ ≈ ∆θ/a is no more valid and the mechanical model involving lumped
mass and stiffness needs to be improved. A first solution is to ensure the continuity of the
mechanical structure by considering an homogenized beam segment as the one represented in
Fig. 2(b). The electrical network is still discrete, which gives a semi-continuous model, where
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the definition of eθ and Cε remains the same as in the discrete model:

M = Y EIθ′ − eθVI

qI = eθ∆θ + CεVI
, where Y EI = KE

θ a. (7)

Figure 2(b) shows that a bending moment MR + eθVI is applied to the right side of the beam
segment and a bending moment −(ML + eθVI) is applied to its left side. After a modification
of the state vector, a purely mechanical transfer matrix Tm can thus be used to described the
relation between the dimensionless forces and displacements at both ends as

W ?
R

θ?R

M?
R +

Λ

eθ
V ?

I

Q?
R

 = Tm


W ?

L
θ?L

M?
L +

Λ

eθ
V ?

I

Q?
L

 , where V ?
I = CεVI. (8)

Here, we focus on an homogeneous Euler-Bernouilli beam segment [10, 4], which means that
the mechanical transfer matrix is

Tm =


c+ch

2
1
ka

s+sh
2

− 1
(ka)2

c−ch
2

1
(ka)3

s−sh
2

−ka s−sh
2

c+ch
2

1
ka

s+sh
2

1
(ka)2

c−ch
2

−(ka)2 c−ch
2

−ka s−sh
2

c+ch
2

− 1
ka

s+sh
2

−(ka)3 s+sh
2

(ka)2 c−ch
2

ka s−sh
2

c+ch
2

 , (9)

where c = cos(ka), ch = cosh(ka), s = sin(ka), sh = sinh(ka). The wave number k is
obtained from the beam dispersion relation k = ω 4

√
ρS/Y EI , where ρ = m/(aSs + 2lpSp) is

the homogenized density of the unit cell. Concerning the electrical part, note from Fig. 3 that

V ?
I =


0
0
1
−1

2


T 

qw
?
L

qθ
?
L

Vθ
?
L

Vw
?
L

 (10)

Furthermore, Fig. 3 shows that the electrical propagation results from the superposition of a
purely electrical contribution, involving a transfer matrix Te, and a second contribution due to
the coupling eθ:

qw
?
R

qθ
?
R

Vθ
?
R

Vw
?
R

 = Te


qw

?
L

qθ
?
L

Vθ
?
L

Vw
?
L

+ eθ(θ
?
L − θ?R)


1
2

1
0
0

 , where Te =


1 1 −1

2
1
4

0 1 −1 1
2

− f̃
2
− f̃

4
1 −1

f̃ f̃
2

0 1

 . (11)

Finally, Eqs. (8), (10) and (11) give a transfer matrix formulation between the left and right
electromechanical state vectors, which can be written as

W ?
R

θ?R
M?

R
Q?

R
qw

?
R

qθ
?
R

Vθ
?
R

Vw
?
R


=


I4 04

−eθ

[0 1
2

01

]
02

02 02

I4



Tm
Λ

eθ
(Tm − I4)

02 02

02

[
1−1

2

0 0

]
eθ

[01
2

01

]
02

02 02

 Te





W ?
L

θ?L
M?

L
Q?

L
qw

?
L

qθ
?
L

Vθ
?
L

Vw
?
L


. (12)
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3.3 Piecewise homogenized model for the mechanical part

The previous homogenized model does not take into account the mechanical discontinuity
induced by the addition of piezoelectric patches on the beam. This can be rectified by dis-
criminating the purely elastic segments ”s” from the segments ”sp” involving a piezoelectric
contribution. The piecewise homogenized model is thus made of three beam segments, as pre-
sented in Fig. 2(c). In the ”sp” segment covered by the pair of piezoelectric patches, the problem
can be expressed under the same form as in Eq. (7):

Msp = Y E
sp Ispθ

′
p − espVI

qI = esp∆θp + Cε
spVI

, where Y E
sp Isp = YsIs + 2Y E

p Ip. (13)

The ”sp” constants appearing in the previous system of equations are not equal to the ones in
Eq. (7) because they refer to the central segment of the unit cell, without considering the purely
elastic segments. Nevertheless, esp and Cε

sp can be computed with the same method as in Eq. (5)
by considering a global stiffness that refer to the sole ”sp” segment.

As the problem focusing on the ”sp” beam segment is equivalent to the one presented in
Sec. 3.2, a 8×8 transfer matrix Tsp is built on the same form as Eq. (12) but with homogenized
constants referring to the ”sp” segment. The two ”s” beam segments are purely elastic, so that
their 4×4 mechanical transfer matrices Ts are obtained as Tm but with the use of the constants
Ys, ρs, Ss and Is. At the end, the piecewise homogenized model of the electromechanical unit
cell is given by

W ?
R

θ?R
M?

R
Q?

R
qw

?
R

qθ
?
R

Vθ
?
R

Vw
?
R


=

[
Ts 0
0 I4

]
Tsp

[
Ts 0
0 I4

]


W ?
L

θ?L
M?

L
Q?

L
qw

?
L

qθ
?
L

Vθ
?
L

Vw
?
L


, where I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (14)

3.4 Finite element model

A convenient finite element model was proposed by Thomas et al. [13], who focused on
thin piezoelectric patches shunted with independent electrical circuits. The model is based on a
condensation of the electrical degrees of freedom in order to recast the system into a standard
elastic vibration problem. However, this method is not applicable when considering connections
of different patches with an electrical network. There are electrical nodes that interconnect
successive unit cells, which means that the corresponding electrical degrees of freedom cannot
be condensed. Before condensation, the finite element formulation is expressed as follows[

Mm 0
0 0

] [
q̈m

V̈I

]
+

[
Km Kc

−Kc
T Cε

sp

] [
qm

VI

]
=

[
Fm

qI

]
, (15)

where Mm, Km and Kc are respectively the mass, stiffness and coupling matrices that are de-
fined in [13]. The electric charge qI flowing toward the pair of piezoelectric patches is obtained
from the topology of the analogous network as

qI = Sqqe where Sq =
[

0 1 0 −1
]

and qe =
[
qwL qθL qwR qθR

]T (16)
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By analogy with the force vector Fm and the displacement vector qm, the voltage vector
Fe =

[
VwL VθL −VwR −VθR

]T is defined as the dual of the electric charge vector qe.
The principle of superposition allows considering that the voltage vector Fe is a sum of two
contributions. The first contribution is obtained when no mechanical displacement is allowed
(qm = 0) and the second contribution excludes external charge displacements (qe = 0): Fe =
F e

e + Fm
e . The purely electrical contribution F e

e only depends on the choice of the electrical
network. Similarly to established practices in mechanical problems, we define the electrical
matrices Ke and Me as equivalents of stiffness and mass matrices:

F e
e =

[
Ke − ω2Me

]
qe (17)

When considering the electrical analogue of a beam, Me can be found from the network in
Fig. 3 with eθ = 0 and Cε → ∞, i.e. VI = 0. However, the matrix Ke cannot be obtained
directly from Fig. 3 with eθ = 0 and L = 0. Actually, Ke is not defined, unless we introduce
additional degrees of freedom. This is performed by adding two virtual capacitors C0/2 in the
”θ” electrical line, on both sides of the unit cell. In the end, we get

Ke =
4

â2C0



1
â

2
−1

â

2
â

2

â2

4

Cε
sp + 2C0

Cε
sp + C0

− â
2

â2

4

Cε
sp

Cε
sp + C0

−1 − â
2

1 − â
2

â

2

â2

4

Cε
sp

Cε
sp + C0

− â
2

â2

4

Cε
sp + 2C0

Cε
sp + C0


and Me =

L

2



1
â

2
0 0

â

2

â2

4
0 0

0 0 1 − â
2

0 0 − â
2

â2

4


. (18)

Note that the capacitance C0 is a numerical parameter that has to be small compared to Cε
sp.

A good practice is to set C0 between Cε
sp × 10−3 and Cε

sp × 10−9 to conceal its influence on
electrical propagation and to avoid numerical issues.

The contribution Fm
e is equal to Fe when qe = 0. Fig. 3 shows that qe = 0 induces that

qI = 0. Then, qI = 0 induces that VwL = VwR = 0 and VθL = VθR = VI. Furthermore, Eq. (15)
gives VI = Kc

Tqm/C
ε
sp when qI = 0. As a consequence,

Fm
e =

1

Cε
sp
SV Kc

Tqm where SV =
[

0 1 0 −1
]T
. (19)

Finally, Eqs. (15), (16), (17), (18) and (19) lead to the following dynamic stiffness matrix
formulation involving a combination of mechanical and electrical degrees of freedom:

 Km +
1

Cε
sp
KcKc

T 1

Cε
sp
KcSq

1

Cε
sp
SV Kc

T Ke

− ω2

[
Mm 0
0 Me

][ qm

qe

]
=

[
Fm

Fe

]
, (20)

With a restriction to the transverse case, qm =
[
WL θL qI WR θR

]T and Fm =[
−QL −ML 0 QR MR

]T , where qI is the mechanical displacement vector of the internal
nodes of the unit cell [13]. So, the dynamic stiffness matrix in Eq. (20) can be reorganized in
order to distinguish the left, right and internal degrees of freedom: D̃LL D̃LI D̃LR

D̃IL D̃II D̃IR

D̃RL D̃RI D̃RR

qL

qI

qR

 =

FL

0
FR

 where FL =


−QL

−ML

VwL

VθL

 , FR =


QR

MR

−VwR

−VθR

 , (21)
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qL =
[
WL θL qwL qθL

]T and qR =
[
WR θR qwR qθR

]T . With this partitioning, the
waveguide finite element methods [6] can be applied. First, the internal degrees of freedoms are
eliminated through

[
DLL DLR

DRL DRR

] [
qL

qR

]
=

[
FL

FR

]
, where

DLL = D̃LL − D̃LID̃
−1
II D̃IL

DLR = D̃LR − D̃LID̃
−1
II D̃IR

DRL = D̃RL − D̃RID̃
−1
II D̃IL

DRR = D̃RR − D̃RID̃
−1
II D̃IR

. (22)

Then, the condensed dynamic stiffness matrix is transformed into a transfer matrix [6, 8]:

WR

θR

qwR
qθR
QR

MR

−VwR

−VθR


=

[
−D−1

LRDLL D−1
LR

−DRL + DRRD
−1
LRDLL −DRRD

−1
LR

]


WL

θL

qwL
qθL
QL

ML

−VwL

−VθL


. (23)

4 COMPARISON OF THE TRANSFER MATRIX MODELS

The propagation constants of the proposed transfer matrices are compared. Depending on
the frequency range of interest, we note differences between the models. Those differences
are confirmed by the observation of frequency response functions, which lead to guidelines
concerning the choice of a suitable model.

4.1 Propagation constants

The computation of the eigenvalues λ of a transfer matrix gives access to the propagation
constants µ = ln(λ) = δ + iη [5, 8]. The real part δ is the attenuation constant, which rep-
resents the exponential decay of the amplitude of a wave propagating along one unit cell. The
imaginary part η is the phase constant, i.e. the phase shift between the two ends of the unit cell.
Table 1 gives the geometry and the material properties of the considered unit cell. Concerning
the electrical network, the transformer ratio â is set arbitrarily to 1 and the inductance value
is tuned to L = a2m/(â2KE

θ C
ε) in order to satisfy the multimodal coupling condition defined

in [4]. This condition induces that the electrical network approximates the dispersion relation

Beam (Aluminum 2017) Patches (PZT)
Length (mm) a = 50 lp = 30
Width (mm) b = 20 b = 20

Thickness (mm) hs = 20 hp = 5
Density (kg/m3) ρs = 2780 ρp = 7800

Young modulus (GPa) Ys = 73.9 1/sE11 = 66.7
Charge constant (pC/N) - d31 = −210

Permittivity (nF/m) - εσ33 = 21.2

Table 1: Geometry and material properties of the beam and the piezoelectric patches.
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Figure 4: Phase constants - (· · · ) for the discrete model, (—) for the piecewise homogenized
model.
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Figure 5: Attenuation constants - (−−) for the fully homogenized model, (—) for the piecewise
homogenized model.

of the beam segment, which is required to implement the analogous coupling. Once the me-
chanical and electrical properties are defined, the propagation constants of the transfer matrices
in Eqs.(6), (12), (14) and (23) can be compared. For each model, the 8×8 transfer matrices
give eight propagation constants µ. Two opposite sets of four constants refer to propagation in
opposite directions of the electromechanical waveguide. So, only four propagations constants
need to be considered to analyze the phase or the attenuation.

First, the phase constants in Fig. 4 show that, below 9 kHz, the discrete model differs signif-
icantly from the other ones. Note that the finite element model tends to the piecewise homog-
enized model when increasing the number of elements. Furthermore, the results obtained with
the fully homogenized model are very close to those of the piecewise homogenized model over
the frequency range of interest. This is the reason why the fully homogenized and finite element
models are not represented in Fig. 4. For each of the other models, only two phase constants
are represented because the two other ones are equal to zero. For the piecewise homogenized
model, one phase constant approaches a classical beam dispersion relation while the other phase
constant reach a step when η = π. This last phase constant thus represents a propagation in a
discrete medium [14], which is actually the discrete electrical network. On the other hand, the
discrete model offers two phase constants related to discrete waveguides, i.e. with a step at
η = π. This is simply explained by the fact that, in the discrete model, the mechanical medium
is also represented by a lumped model. Around 7.5 kHz, η = π means that the wavelength is
equal to two unit cells and Fig. 4 shows large differences between the models. So, the discrete
model is no more valid when the considered wavelength approaches the length of the unit cell.

The difference between the piecewise homogenized model and the fully homogenized model
clearly appears when looking at the smallest attenuation constant for each model around 19 kHz,
as seen in Fig. 5. Over this frequency range, the discrete electrical network does not influence
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the results anymore because no ellectrical propagation occurs above 7.5 kHz, which was pre-
dicted from Fig. 4. However the effect of the mechanical discontinuity induced by the addition
of piezoelectric patches creates a stop band for transverse propagation in the beam. Note that
a stop band also appears with the fully homogenized model. This is explained by the fact that,
even without considering structural discontinuity, the patches induces additional moments on
both sides of the unit cell, as represented in Fig. 2(b). This generates a periodic discontinuity
that leads to a moderate stop band effect. This stop band is not negligible compared to the one
obtained with the piecewise homogenized model because the effect of the mechanical disconti-
nuity is actually quite small in the present example. With the same geometry, the stop band for
longitudinal waves was significant [11], but a similar effect for transverse wave would require
a considerably thicker discontinuity. In conclusion, strong structural modification would be
needed to benefit from structural stop bands in transverse propagation and, anyway, this effect
does not occur on the same frequency range as the proposed analogous control.

4.2 Frequency response functions

Frequency response functions (FRFs) are compared for a free-free beam, which is period-
ically covered with 20 pairs of piezoelectric patches. The two electrical lines of the network
needs to be short-circuited at both ends in order to satisfy analogous boundary conditions [4].
Then, the modal coupling condition tunes the electrical modes to the modes of the discrete me-
chanical model. A tuned mass control is then observed on several modes together and the vibra-
tion amplitude is reduced by introducing damping in the network. Here, a resistance Rs = 20 Ω
is added in series to the inductors by replacing L by L − jRs/ω, where j2 = −1. The finite
electromechanical structure consists of n = 20 identical unit cells. A solution to get the relation
between the state vectors at both ends of the beam is to raise the transfer matrix to the power
of n [4]. The only excitation is a transverse force at one end of the beam. All the other forces,
moments and voltages at the ends of the structure are equal to zero. This simplify the problem
and it becomes possible to get FRFs as the ratio of the velocity at one end over the excitation
force at the other end.

The models are first compared in a low-frequency range. The FRFs obtained with the discrete
and the piecewise homogenized model are represented in Fig 6 from 0 to 3.3 kHz. This fre-
quency range covers the first eight bending modes of the beam when no coupling occurs. Again,
the FRFs obtained with the homogenized and the finite element model are not represented be-
cause they cannot be distinguished from the piecewise homogenized model. As predicted by
Fig 4, it is observed that the discrete model is no more reliable when the wavelength approaches
the length of the unit cell. A limit of validity can be set to 1 kHz, which corresponds to about ten

0.5 1 1.5 2 2.5 3

−80

−60

−40

−20

0

Frequency (kHz)

V
el

oc
ity

 F
R

F
 (

dB
)

Figure 6: Frequency response functions at low frequencies - (· · · ) for the discrete model, (—)
for the piecewise homogenized model.

4738



B. Lossouarn, M. Aucejo, J.-F. Deü
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Figure 7: Frequency response functions at higher frequencies - (−−) for the fully homogenized
model, (—) for the piecewise homogenized model.

unit cells per wavelength according to Fig 4. With the discrete model, the position of the me-
chanical resonances are shifted because the mechanical medium is modeled by a lattice. Thus,
it does not take into account the increasing mistuning between the continuous and the discrete
media.

The second comparison is performed at higher frequencies. Actually, we want to observe the
FRFs when the wavelength in the beam is close to two times the length of a unit cell (η = π).
This condition occurs between 18 and 19 kHz and it comes with the stop band effect, which
was shown in the analysis of the attenuation constants in Fig 5. The finite element model
still tends to the piecewise homogenized model, but the homogenized model now presents a
slightly different response, as seen in Fig 7. Below 18 kHz, there is already a difference in
the positioning of the resonances, but it is even more pronounced after the stop band, which is
larger with the piecewise homogenized model. Nevertheless, the effect of the stop band is quite
negligible, especially when considering that the approximations of the Euler-Bernoulli model
are questionable at such high frequencies. It is also remarked that the considered frequency
range is clearly beyond the last electrical resonances. Here, the control strategy involving an
analogous discrete network has no effect and the FRFs are essentially due to propagation in the
mechanical waveguide.

5 CONCLUSIONS

• Four transfer matrix models are proposed and compared. They differ in the definition of
the mechanical medium which can be discrete, fully homogenized, piecewise homoge-
nized or based on a finite element model.

• The finite element model tends to the piecewise homogenized model which is the most
accurate because it takes into account the mechanical discontinuity induced by the piezo-
electric patches.

• For problems involving analogous control with a discrete electrical network, the fully
homogenized model is generally sufficient because the eventual stop band effects occur
at frequencies where the proposed control is no more efficient.

• The discrete model is convenient because of its easy implementation but it should be
limited to wavelength above ten times the length of the unit cell.

• A future work will consist in the extension of the proposed finite element model to the
case of a plate coupled to an analogous electrical network.
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Abstract. Buckling of an annular elastic thin plate joint with circular beam under the action of
radial stresses is studied. Such plate can be considered as a model of the supporting ring of a
cylindrical shell in the case when the ring has a T-shaped cross-section. First the initial stress-
resultants are found. Then assuming that the plate is narrow buckling equations and boundary
conditions are simplified by means of an asymptotic technique. The approximate eigenvalue
problem has analytical solutions for particular cases. In the general case, for its solution the
Rayleigh-Ritz method and the shooting procedure are used.
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1 INTRODUCTION

The external pressure acting on a circular cylindrical shell may cause buckling of the shell.
Reinforcing of the shell by rings leads to raising its critical pressure. If the width of the rings is
sufficiently small the buckling mode is similar to the buckling mode of the shell without rings,
and the shell surface is covered by a series of pits stretched along the generatrix of the cylinder.
In the case of this typical buckling the rings may be considered as circular beams. Almost in
all studies of ring-stiffened shells the beam model of the ring is used (see [1]-[3] and references
there).

If the width of a ring grows, the critical pressure increases until the typical buckling mode
will be replaced with the buckling mode consisting of small pits formed on the surface of the
ring while the cylindrical shell itself does not actually deform (see, [4]). The buckling of the
plate occurs under the action of radial stresses arising on the plate edge joined with the cylin-
drical shell. These stresses are caused by the pressure acting on a circular cylindrical shell.
The beam model can not be used for studying the buckling of the wide ring which should be
considered as an annular plate. Buckling of annular thin plates is well enough studied (see, for
example, [5]-[7]). The aim of this paper is the solution of the buckling problem for the annular
plate stiffened by a circular beam.

In [8] by means of an asymptotic analysis the approximate boundary conditions on the plate
edge joined with the cylindrical shell are obtained. If the plate is thin these conditions coincide
with the conditions on the clamped edge. In the paper [4] for the ring with the rectangular
cross-section on the other plate edge the free edge conditions were introduced. The approximate
values of the critical pressure found by the solution of the eigenvalue problem for the annular
plate are in good agreement with the numerical ones obtained by FEM for the ring-stiffened
shell.

In this paper we consider buckling under the action of radial stresses of the ring with the T-
shaped cross-section joined with the cylindrical shell and located outside the shell. As a model
of such a ring we use a circular plate. We assume that the edge joined with the shell is clamped
and the other plate edge is stiffened by the circular beam.

Two cases are analyzed. In the first case the shell is under the internal pressurep (see Figure
1a) and in the second case the pressure is external (see Figure 1b).

p

1

2

3

p

a
b

Figure1: Pressure acting on the shell; 1 — shell, 2 — plate, 3 — beam.

In the work [9] the buckling of a circular plate under the action of radial stresses on the inner
edge was considered. For the specific pre-buckling stresses the analytical solution was obtained.
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2 BASIC EQUATIONS

Let r be the radial coordinate on the middle surface of the plate andσ0 the radial stress at
the edger = r0 causing buckling, wherer0 is the radius of the shell. The compressive stresses
are regarded as positive. After separation of variables equations describing the buckling of the
annular plate can be written in the following form

Q′
1 +

1

r
Q1 +

m

r
Q2 = T1w

′′ + T2

(
w′

r
− m2

r2
w

)
,

Q1 = M ′
1 +

1

r
(M1 −M2) + 2

m

r
H, Q2 = −m

r
M2 +

2

r
H,

M1 = D(κ1 + νκ2), M2 = D(κ2 + νκ1), H = D(1− ν)κ12, D =
Eh3

12(1− ν2)
,

κ1 = −w′′, κ2 =
m2

r2
w − w′

r
, κ12 =

(m

r
w

)′
,

(1)

where(′) denotes the derivative with respect to the radial coordinater, m is the circumferential
wave number,w is the normal deflection,Q1, Q2 andM1, M2, H are the stress-resultants and
stress-couples,T1 andT2 are the pre-buckling stress-resultants,E is Young’s modulus,h is the
plate thickness,ν is Poisson’s ratio,κ1, κ2, κ12 are the changes of curvature.

We assume that the loaded edge of the plater = r0 is clamped:

w = w′ = 0, r = r0. (2)

At the other plate edger = r1 stiffened by the circular beam the boundary conditions have
the form

M1 =
EJr

r2
0

w′, Q1 = T1w
′, r = r1, (3)

whereJr is the moment of inertia of the beam cross-section. For the beam with rectangular
cross-sectionJr = a3b/12 (see Figure 2).

a

b

h
r
0

Figure2: The cross-section of the annular plate joint with the beam

System (1) can be reduced to the equation

d4w

ds4
+

2

s

d3w

ds3
− 2m2 + 1− βt1

s2

d2w

ds2
+

2m2 + 1 + βt2
s3

dw

ds
+

m2(m2 − 4− βt2)

s4
w = 0, (4)

where

β =
hσ0r

2
0

D

is the buckling stress parameter,

s =
r

r0

, tk =
r2Tk

hσ0r2
0

, k = 1, 2. (5)
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3 PRE-BUCKLING STRESS-RESULTANTS

To find the pre-buckling stress-resultantsT1 andT2 we use equations of axisymmetric tan-
gential deformation of the plate:

T ′
1 +

1

r
(T1 − T2) = 0, T1 = B

(
u′ + ν

u

r

)
, T2 = B

(u

r
+ νu′

)
, (6)

whereu is the radial displacement andB = Eh/(1 − ν2). The general solution of equations
(6) has the form

u = C1r +
C2

r
, T1,2 = B

(
γ0C1 ∓ δ0

C2

r2

)
, (7)

whereγ0 = 1 + ν, δ0 = 1− ν.
In the first case corresponding to the Figure 1a the boundary conditions for equations (6) are

T1(r0) = hσ0, T1(r1) = −ES

r2
1

u(r1), (8)

whereS is the area of the ring cross-section. Substituting solution (7) into boundary conditions
(8) we get

(γ0 + δ0S0)C1 − δ0(1− S0)

r2
1

C2 = 0, γ0C1 − δ0

r2
0

C2 =
(1− ν2)σ0

E
, (9)

whereS0 = (1 + ν)S/(hr1). The solution of equations (9) has the form

C1 =
(1− S0)(1− ν2)σ0

dr2
1E

, C2 =
(γ0 + δ0S0)(1− ν2)σ0

dδ0E
, d =

(1− S0)γ0

r2
1

− γ0 + δ0S0

r2
0

.

Taking into account formulas (7) we obtain

T1,2 =
hσ0r

2
0

r2

(
r2(1− S0)γ0 ∓ r2

1(γ0 + δ0S0)

r2
0(1− S0)γ0 − r2

1(γ0 + δ0S0)

)
. (10)

In the second case corresponding to the Figure 1b the stresses are tensile. We get the pre-
buckling stress-resultants for the second case substituting−σ0 insteadσ0 in formulas (10).

If S0 = 1 then

T1,2 = ±hσ0r
2
0

r2
. (11)

Theanalytical solution of equations (1) for the pre-buckling stress-resultants (11) was obtained
in [9], however the conditionS0 = 1 is unlikely in a real structure.

TakingS0 = 0 in formulas (10), we get the pre-buckling stress-resultants for the plate with-
out the beam which corresponds to a ring with the rectangular cross-section.

4 APPROXIMATE SOLUTION FOR THE FIRST CASE

Consider the buckling of the annular plate under the action of compressive radial stresses
applied to the inner clamped plate edge (see Figure 1a). The outer plate edge is joined with
circular beam.

Let us suppose that the plate is narrow, i.e. the non-dimensional width of the plate isε =
r1/r0 − 1 ¿ 1. Usually this condition holds for the rings supporting a shell.
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Assumethatm ∼ 1. Then after replacing the variable

s = 1 + εx (12)

in equations (4) and neglecting small terms we get the approximate equation

d4w

dx4
+ βε2t1

d2w

dx2
+ βε3t2

dw

dx
= 0. (13)

Replacing variable in relations (2) and (3) according to (12) we obtain the following approx-
imate boundary conditions

w = w′ = 0, x = 0,

w′′ + cw′ = 0, w′′′ + βε2t1w
′ = 0, x = 1,

(14)

where

c =
12ε(1− ν2)Jn

h3
n

, Jn =
Jr

r4
0

, hn =
h

r0

.

In the caseS0 = 1 it follows from (11) and (5) thatt1,2 = ±1. Hence in the first approxima-
tion equation (13) and boundary conditions (14) can be written as

d4w

dx4
+ β2

0

d2w

dx2
= 0, β2

0 = βε2 (15)

w = w′ = 0, x = 0,

w′′ + cw′ = 0, w′′′ + β2
0w

′ = 0, x = 1.
(16)

Substituting the general solution of equation (15)

w(x) = C1 sin β0x + C2 cos β0x + C3x + C4

into boundary conditions (16) we obtain that eigenvalue problem (15), (16) has a nontrivial
solution if

β0 cos β0 + c sin β0 = 0. (17)

The non-dimensional critical loadβc may be found by means of the formula

βc = β2
0/ε

2, (18)

whereβ0 is the minimal positive root of equation (17).
In the case of arbitraryS0 we get the following approximate expressions for the narrow plate

taking into account formulas (10), (5) and (12):

t1 = 1− εhnx

εhn + Sn

, t2 =
νSn − hn

εhn + Sn

, Sn =
S

r2
0

=
hnr1nS0

1 + ν
. (19)

Equation (13) and boundary conditions (14) take the form

d4w

dx4
+ β2

0t1(x)
d2w

dx2
+ εβ2

0t2
dw

dx
= 0. (20)
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w = w′ = 0, x = 0,

w′′ + cw′ = 0, w′′′ + β2
0t1(1)w′ = 0, x = 1.

(21)

Eigenvalue problem (20), (21) does not have an analytical solution. To find an approximate
value ofβ0 we use the Rayleigh-Ritz method. Multiplying equations (20) byw and integrating
by parts over the interval[0, 1] we obtain

[w′′′w − w′′w′]10 +

∫ 1

0

(w′′)2 dx + β2
0

∫ 1

0

t1w
′′w dx + εβ2

0t2

∫ 1

0

w′w dx = 0. (22)

Taking into account boundary conditions (21) from equation (22) we find

β2
0 =

G1 + I1

G2 + I2 + I3

, (23)

where

G1 = c[w′(1)]2, G2 = t1(1)w′(1)w(1), I1 =

∫ 1

0

(w′′)2 dx,

I2 = −εt2

∫ 1

0

w′w dx, I3 = −
∫ 1

0

t1w
′′w dx.

(24)

The substituting in formulas (23), (24) instead exact solutionw(x) an arbitrary function
W (x) satisfying boundary conditionsW (0) = W ′(0) = 0 get an approximate value ofβ0.
Accuracy of the approximation will be high if we take the functionW (x) close tow(x). To
choose the functionW (x) we consider solutions of eigenvalue problem (15), (16). Ifc = 0
then the minimal positive root of equation (17) isβ1 = π/2. Corresponding toβ1 = π/2
buckling mode has the formW1(x) = 1− cos(πx/2). In the casec = ∞ the buckling mode is
W2(x) = 1− cos(πx). Let for any dimensionless stiffnessc

W (x) = 1− cos kx, (25)

wherek(c) = π(c + 1)/(c + 2), k(0) = π/2, k(∞) = π.
Formula (23) for eigenvalue problem (15), (16) after sustituting function (25) in relation (24)

and neglecting small terms may be written in the form

β2
0 =

4ck sin k + k2(2k + sin 2k)

2k − sin 2k
. (26)

Comparison of the minimal positive roots of equation (17) and the approximate values ofβ0

obtained from formula (26) forc ∈ [0, 10] shows that the relative error of approximate results
is less than 0.1%.

We use function (25) also for the calculation eigenvalues of buckling problem (20), (21).
Substituting this function insteadw(x) in relations (24), we obtain

G1 = c(k sin k)2, G2 =
Snk sin k(1− cos k)

Sn + ε
,

I1 =
k3

4
(2k + sin 2k), I2 = ε

1− νSn

2(Sn + ε)
(1− cos k)2,

I3 =
2k2(2Sn + ε)− 2kSn(4 sin k − sin 2k)− ε(7− 8 cos k + cos 2k)

8(Sn + ε)
.

(27)
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Formulas (23) and (27) get an approximate minimal positive eigenvalueβ0 of problem (20),
(21). The non-dimensional critical loadβc may be found by means of relation (18).

Consider an annular plate with the parametersε = 0.1, ν = 0.3, hn = hp/r0 = 0.01, which
outer edge is stiffened by the circular beam of a rectangular cross-section. The width and height
of the beam cross-section area = anr0 andb = bnr0 correspondingly (see Figure 2). Then
Sn = anbn/hn, J = a3b/12. Values of the dimensionless stiffnessc and the non-dimensional
critical loadβc for different values ofan andbn are given in the Table 1. The last column of

Values ofβc

an bn c
Ritz method Shooting

0 0.0 0 830 784
0.01 0.01 0.001 685 663
0.04 0.01 0.058 520 515
0.05 0.02 0.227 448 447
0.06 0.03 0.590 469 468
0.07 0.04 1.248 542 541
0.08 0.05 2.330 640 639
0.10 0.07 6.370 816 816
0.12 0.09 14.15 915 915

Table 1: Results of calculation for various dimensions of beam cross-section.

the Table 1 contains valuesβc obtained by the numerical solution of eigenvalue problem (20),
(21). These results are found by means of the initial-value or shooting procedure represented
in [10]. The approximate results calculated from formula (23) are given in the penultimate
column. Comparison of the numerical and the approximate results shows that the relative error
of the approximate results is less than 6%.

In Fig. 3, for the plate stiffened by the beam of a square cross-section the parameterβ0 vs.
an = bn is plotted.

an

12

8

4

0

0.02 0.04 0.06 0.08 0.1

β
0

Figure3: Parameterβ0 vs. dimension of beam cross-sectionan.

At increase in the sizes of the beam cross-section section the parameter of the critical load
βc = β2

0/ε
2 decreases, and then increases. Decrease of the critical loadβc with growth of the

sizesan andbn is connected with increase in the pre-buckling stress-resultantst1 at the external
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edgeof the plate, and its increase is caused by increase in stiffness of a beamc. Hence, by the
local buckling under an internal pressure the ring with the rectangular cross-section for which
an = bn = 0 is more effective than the ring with the T-shaped cross-section.

5 APPROXIMATE SOLUTION FOR THE SECOND CASE

The second case differs from the first case only in that the radial stress at the edger = r0

is tensile i.e. its has opposite sign. Therefore to obtain in the second case an approximate
equation and boundary conditions for the narrow plate andm ∼ 1 we should changeβ to−β
in formulas (13) and (14). Then form ∼ 1 by means of relation (23) we obtain thatβ < 0, and
plate buckling does not occur.

Consider the case of the large circumferential wave number:m ∼ 1/ε. Then for a narrow
plate the approximate buckling equation and the boundary conditions are

d4w

dx4
− (2m2

0 + β0t1)
d2w

dx2
+ m2

0(m
2
0 + β0t2)w = 0, (28)

w = w′ = 0, x = 0,

w′′ + cw′ − νm2
0w = 0, w′′′ − [(2− ν)m2

0 + β0t1]w
′ = 0, x = 1.

(29)

where

m0 = εm, β0 = ε2β, t1 = 1− εhnx

εhn + Sn

, t2 =
νSn − hn

εhn + Sn

, Sn =
hnr1nS0

1 + ν
.

Equation (28) has analytical solutions only in the casesS0 = 0 andS0 = 1 (see [4] and [9]).
In the general case we search approximate value ofβ0 by means of the Rayleigh-Ritz method.
We multiply equations (28) byw, integrate by parts over the interval[0, 1] and obtain

[w′′′w − w′′w′]10 + I2 + 2m0(I1 − [w′w]10)− β0I3 + m2
0(m

2
0 + β0t2)I0 = 0. (30)

Here

I2 =

∫ 1

0

(w′′)2 dx, I1 =

∫ 1

0

(w′)2 dx, I0 =

∫ 1

0

w2 dx, I3 =

∫ 1

0

t1w
′′w dx.

Using boundary conditions (29) from equation (30) we find

β0 =
I2 + m2

0I1 + m4
0I0 − 2νm2

0w(1)w′(1) + c(w′(1))2

I3 − t2m2
0I0 − t1(1)w(1)w′(1)

. (31)

As a Ritz functionW (x) we use the solution of following eigenvalue problem

d4w

dx4
− (2m2

0 + β0)
d2w

dx2
+ m2

0(m
2
0 + β0t2)w = 0, (32)

w = w′ = 0, x = 0,

w′′ + cw′ − νm2
0w = 0, w′′′ − [(2− ν)m2

0 + β0t1]w
′ = 0, x = 1.

(33)

Substitutingw = eλx into equation (32) we obtain the biquadratic equation

λ4 − (2m2
0 + β0)λ

2 + m2
0(m

2
0 + β0t2) = 0
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whichhas the following roots:

λ1,2 = ±
√

b0 − a0, λ3,4 = ±
√

b0 + a0,

where
a0 =

√
(1− t2)m2

0β0 + β2
0/4, b0 = m2

0 + β0/2.

In the caseβ0 ≤ m2
0/t2 all roots are real and eigenvalue problem (32), (33) does not have a

nontrivial solution. Let us searchβ0 > m2
0/t2. Then equation (32) has the general solution

w = C1 sin αx + C2 cos αx + C3 sinh γx + C4 cosh γx,

whereCk, k = 1, 2, 3, 4 are arbitrary constants,

α =
√

a0 − b0, γ =
√

a0 + b0.

To obtain the constantsCk we substitute the general solution into boundary conditions (33)
and get a system of linear homogeneous algebraic equations. The determinant of this system
may be written as

D(β0) =

∣∣∣∣∣∣∣∣

0 1 0 1
α 0 γ 0

(A− α2)s1 + cαc1 (A− α2)c1 − cαs1 (A + γ2)s2 + cγc2 (A + γ2)c2 + cγs2

α(B − α2)c1 −α(B − α2)s1 γ(B + γ2)c2 γ(B + γ2)s2

∣∣∣∣∣∣∣∣

where
A = −ν2

0, B = m2
0(ν − 2)− β0t1(1),

s1 = sin α, s2 = sinh γ, c1 = cos α, c2 = cosh γ.

After transformations, we get

D(β0) = Fs1s2 + Gc1c2 + H + cαγ(α2 + γ2)(αs1c2 + γc1s2).

Here
F = γ2(A− α2)(B + γ2)− α2(A + γ2)(B − α2),
G = −αγ[(A− α2)(B + γ2) + (A + γ2)(B − α2)],
H = αγ[(A + γ2)(B + γ2) + (A− α2)(B − α2).

If β0(m0) is the minimal positive root of equationD(β0) = 0 then we can find the parameter
of the critical loadβc from the following formulas

βc = βm/ε2, βm = min
m0

b0(m0). (34)

SinceD(βm) = 0, the system of linear homogeneous algebraic equations with the unknowns
Ck has nontrivial solution forβ0 = βm . As such solution we take the minors of elements of the
third row of a determinantD(βm):

C∗
1 = αγ(B − α2)s1 + γ2(B + γ2)s2, C∗

2 = αγ(B − α2)c1 − αγ(B + γ2)c2,
C∗

3 = −α2(B − α2)s1 − αγ(B + γ2)s2, C∗
4 = −αγ(B − α2)c1 + αγ(B + γ2)c2,

Hence, the buckling mode of the problem (32), (33) is

W = C∗
1 sin αx + C∗

2 cos αx + C∗
3 sinh γx + C∗

4 cosh γx.
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Substitutingin formula (30) instead the exact solutionw(x) the functionW (x) we obtain the
approximate value of the non-dimesion critical load of problem (28), (29):

β0 =
I2 + m2

0I1 + m4
0I0 − 2νm2

0W (1)W ′(1) + c(W ′(1))2

I3 − t2m2
0I0 − t1(1)W (1)W ′(1)

, (35)

where

I2 =

∫ 1

0

(W ′′)2 dx, I1 =

∫ 1

0

(W ′)2 dx, I0 =

∫ 1

0

W 2 dx, I3 =

∫ 1

0

t1W
′′W dx.

The relative error of approximate results, obtain from formula (28), in comparison with
numerical results, found by means of the shooting procedure, is less than 0.1%.

In Fig. 4, for the plate with the parametersε = 0.1, ν = 0.3, hn = 0.01 stiffened by the
beam of a square cross-section the critical loadβ0 vs. the dimensionless sizes of the beam
cross-sectionan is plotted.

0

2

6

10

14

0.01 0.02 0.03 0.04 0.05 0.06 0.07

β0

an

Figure4: Parameterβ0 vs. sizes of beaman.

At increase in the sizes of the beam cross-section the parameter of critical loadβc = β2
0/ε

2

increases. Therefore, by the local buckling under an external pressure the ring with the T-shaped
cross-section is more effective than the ring with rectangular cross-section.

6 CONCLUSIONS

We discussed buckling of rings with the T-shaped cross-section supporting a circular cylin-
drical shell. The cases of internal and external uniform pressures acting on the shell are ana-
lyzed. As a model of the ring the annular thin narrow plate joint with a circular beam is used.
Buckling equations and boundary conditions are simplified by means of an asymptotic tech-
nique. To find the approximate critical load the Rayleigh-Ritz method is used. The solutions of
the approximate eigenvalue problems are obtained in closed form. Comparison of the numerical
results found by means of the shooting procedure and the approximate results shows that the
relative error of the approximate results is small.

The dependence of the critical load on the dimensions of the beam cross-section is studied.
In case of the internal pressure with the increase in these dimensions the critical load decreases,
and then increases. Therefore, by the local buckling under an internal pressure the ring with
the rectangular cross-section is more effective than the ring with the T-shaped cross-section. If
the pressure is external then the increase in the dimensions of beam cross-section caused the
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increaseof critical load, and the ring with the T-shaped cross-section is more effective than the
ring with rectangular cross-section.

The results obtained in the current paper may be used for optimal design of the cylindrical
shell stiffened by rings.
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Abstract. An in-plane elasto-plastic material model and a hygroexpansivity model were ap-
plied for paper. The input parameters for both models are fiber orientation and dry solids
content. A finite element model was constructed offering possibilities for studying different
structural variations of an orthotropic sheet as well as buckling behavior and internal stress
situations under through-thickness strain differences. Examples related to the curl and web-
fluting phenomena of paper are presented. Both studied cases presented in this paper indicates
the usefulness of the hygro-elasto-plastic model in predicting the challenging deformation phe-
nomena of orthotropic paper sheets. The application possibilities of the hygro-elasto-plastic
model are diverse, including the investigation into several phenomena and defects appearing in
drying, converting and printing process conditions.
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1 INTRODUCTION

There are several undesired phenomena that can be considered to be connected to hygro-
scopic and stress-strain behavior of the paper web or sheet during production processes and in
end-use. Examples of such phenomena are the development of shrinkage profiles, loose edges
of web, baggy paper web causing possible wrinkling and misregistration in printing, out-of-
plane deformations such as cockling, curl and fluting in heatset-web-offset (HSWO) printing
process or distortion of shape of product such as sheet or box (see Fig. 1). Natural fibers and
their treatments, bonds between fibers and their orientation in the fiber network, additives and
manufacturing conditions all affect the sorption based dimensional instability and the mechani-
cal properties of paper or board [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Several models to predict in-plane mechanical and rheological properties, shrinkage and hy-
groexpansivity of paper and board have been introduced. Nonlinear elastic models, orthotropic
elasto-plastic approaches and viscoelastic models have been used for studying bending, buck-
ling, failure, tensile response, and creep and relaxation behavior of paper sheet, see, for example
[11, 12, 13, 14, 15, 16] and [17, 18, 19, 20, 21, 22, 23, 24]. The formula for the hygroexpansion
of paper has been derived from the hygroexpansion of a single fiber and the efficiency of the
stress transfer between fibers in [25]. In the reference [26], the traditional theory for linear ther-
moelasticity was applied to estimate hygroexpansion strains. An orthotropic hypoelastic consti-
tutive model has been proposed for studies of phenomena behind the shrinkage profile [27]. In
that model, the total strain including the hygroscopic strain component and the elastic modulus
dependent on the moisture ratio are described by an exponential relation. The relation between
strain history and tensile stiffness was assumed to be linear, and the model and isotropic inputs
were calibrated by laboratory scale experiments. In the reference [28], the measured moisture
dependency of material constants was utilized in the nonlinear elastic model to investigate the
effect of moisture on mechanical behavior. Some studies on the buckling of paper have been
introduced in [12, 29, 30]. Low tension streaks, having longer dimension, appear as buckling
to baggy embodiment and may cause runnability problems [31, 32]. Plastic strains caused by
moisture streaks or some mechanical unevenness result in uneven tension profiles of the web.
Buckling streakiness i.e. bagginess of paper web has been simulated using hygro-elasto-plastic
model (LE-model) introduced in [33]. In the LE-model, the in-plane elasto-plastic constitutive
material model and hygroexpansivity model as a function of dry solids content (DSC) and the
anisotropy index of fiber orientation are applied for numerical solutions of the finite element
method. The use of the anisotropy index parameter instead of the traditional fiber orientation
anisotropy simplifies the handling of different directions in the case of anisotropic sheet and,
for example, the determination of Hill’s yield surface for the finite element approach is straight-
forward.

In this study, the LE-model is utilized to simulate results connected to two out-of-plane
deformations: curl and fluting. Paper or board curl is the tendency of a flat paper or board
sheet to distort and form curved surfaces of cylindrical shape (see Fig. 1). Although the basic
cause of curl is simply a deformation variation of paper in its thickness direction, the processes
causing the different deformations in different layers are complex and variable [34]. In the
references [35] and [34], an analytical equation for sheet curl resulting from the hygroexpansion
coefficients and elastic properties of the layers using elastic lamination theory has been derived.
In the studies [36], [37] and [38], the hygroscopic out-of-plane deformations using the elastic
constitutive model have been presented, while the elasto-plastic model has been applied in [39].
Twisted or diagonal curl modes are usually considered very harmful; an analytical equation is
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Figure 1: Examples of out-of-plane deformations of paper: picture of fine paper curl (left) and fluting in a printed
area of a HSWO printed product (right).

given by Uesaka, see, for example [40]. In this paper, the LE-model is utilized to study the effect
of through-thickness variation of fiber orientation and dry solids content on curl amplitude and
mode.

Fluting appears as permanent, regularly spaced waves arising during heatset-web-offset print-
ing process in the running direction of the printing machine and the machine direction (MD) of
paper, see Fig. 1. Generally, two stages can be distinguished in the fluting phenomenon: flut-
ing formation and fluting retention. There is, however, no final conclusion of the mechanisms
of these two stages. For fluting formation, at least three more or less different explanations
have been offered. A phenomenon related to tension wrinkles [41, 42] and differential shrink-
age of inked and non-inked areas due the moisture difference [43, 44] are two of the proposed
reasons. The occurrence of moisture difference is also confirmed by measurements [45, 46].
Thirdly, small local in-plane moisture content variations have been linked to the formation of
fluting [47]. It has been suggested that the ink layer has an effect on the permanency of fluting
[41, 43]. However, in [47] it has been estimated that ink stiffening alone cannot explain the
amplitudes observed in practice. Based on simulations and experimental study, he suggests that
irreversible shrinkage and thermal plastic deformations of paper may be additional mechanisms
for fluting to achieve a required retention. Earlier simulation studies concerning the fluting phe-
nomenon are based on elastic material models, see for example [44, 38, 47]. However, when
fluting retention and trough-thickness moisture gradients are concerned, an elasto-plastic mod-
eling approach could be very convenient, as simulation results of the LE-model presented in
this paper indicates.

2 MEASUREMENTS

2.1 Fiber orientation anisotropy

The fiber orientation parameters are measured using the layered fiber orientation method
developed by Erkkilä [48, 49, 50]. Adhesive or lamination tape splitting was applied to paper
sheet to separate approximately 10 individual layers from a paper sheet. Then the sample layers
were placed against a black background, and an image of a suitable area was captured by scan-
ner using reflective illumination. In analyzing the layer images, the aim is to detect the edges
of fibers or fiber bundles and to determine their orientations. The detection of edges is based
on the computation of image gradients in every image element. For a discrete digital image,
the derivatives∂f

∂x
and ∂f

∂y
can be approximated through a discrete differentiation operator. The

operator uses two kernelskx(i, j) andky(i, j) that are convolved with the original imagef(x, y)
to calculate approximations of the horizontal and vertical derivatives by

4754
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∂f(x, y)

∂x
≈ Dx(x, y) = (f ∗ kx)(x, y), (1)

∂f(x, y)

∂y
≈ Dy(x, y) = (f ∗ ky)(x, y), (2)

where∗ denotes the 2-dimensional convolution operation. The coefficients of the kernels used
are based on the principle of binomial filter design [50]. The magnitude (length)|∇f(x, y)| and
directionθf (x, y) of gradient vectors at each local image point are calculated by applying Eqs.
(3) and (4)

|∇f(x, y)| =
√

D2
x +D2

y, (3)

θf (x, y) = tan−1
Dy

Dx
. (4)

The magnitude of gradient vector is directly related to the probability that the part of the im-
age examined represents the edge of the fiber. At the fiber edge, the direction of the gradient
corresponds to the direction normal to that segment of fiber edge. The discrete orientation distri-
bution is then formed as a weighted probability density function of the local orientationsP (θP ),
where the weighting factor is the gradient magnitude|∇f(x, y)|. The direction histogram is

P (θP ) =
Σx,y

(

|∇f(x, y)| δθf(x,y),θP
)

Σx,y |∇f(x, y)|
(5)

whereδθf(x,y),θP is Kronecker’s delta function and{θP , θf ∈ Z : 0 ≤ θP , θf < 360}. The main
direction of the orientation (orientation angle)θ is defined as the deviation of the longer sym-
metry axis from the machine direction. The anisotropy of the fiber orientation distributionξ is
defined as a ratio of the maximum distribution valueP (θ) and the value in the perpendicular di-
rection to the maximum valueP (θ+90). Examples of the layer image, the gradient magnitude,
and the direction histogram are presented in Fig. 2.

2.2 Hygroexpansion coefficient measurements

A mixture of two pulps containing 71% thermomechanical pulp and 29% bleached softwood
draft pulp was used in this study. The oriented laboratory sheets were formed using a dynamic
sheet former with the target basis weight 65 g/m2. The sheets were wet-pressed according to
ISO5269-1:2005, and then were either air-dried freely or under restraint in standard atmosphere
conditions (23 Celsius, 50% RH). The procedure for the hygroexpansivity measurements fol-
lowed the general guidelines stated in ISO 8226-1:1994 for maximum relative humidity up to
68%. According to ISO 8226-1:1994, the hygroexpansive strainX is

X =
l66 − l33

l50
100% (6)

wherel is the length in the specific RH% indicated by the subscript. However, the hygroexpan-
sion coefficientβ (%/%), defined as

β =
X

∆M
(7)

where∆M (%) is the moisture content change, was used in this study. At least seven paral-
lel samples were measured in each anisotropy level. The same image analysis based method
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Figure 2: A 2.1 mm× 2.1 mm region of newsprint layer image (top left), corresponding magnitude of gradient
(top middle) and orientation distribution i.e. direction histogram (top right). A 20 mm× 20 mm region of layer
image (bottom left) and corresponding direction histogram, direction 1 (P(θ)), direction 2 (P(θ + 90)), orientation
angleθ and anisotropyξ (bottom right).

was also applied to determine the drying shrinkage of freely dried samples as a percent relative
in-plane dimensional change (%) during drying. Sheet forming and measurements of hygroex-
pansivity as well as drying shrinkage are described in detail in [51].

2.3 Stress-strain tests

The fine paper samples with three different fiber orientation anisotropy levels were produced
by pilot machine. The measured averaged anisotropy values of the studied samples was 1.20,
1.51 and 2.02. The dry solids contents varied from 53% to 56% at the initial stage. The basis
weight of samples was from 77 g/m2 to 80 g/m2. The stress-strain curves were measured from
paper strips (width 20 mm) with a span length of 180 mm. Strips were cut from the long side
along four different in-plane directionsγ: 0, 45, 70 and 90 degrees in relation to cross direction
(CD) perpendicular to MD. The samples were dried in a tensile test machine to five target DSC
levels: 55%, 65%, 75%, 85% and 95%. However, the measured DSC values during each mea-
surement were read and used in studies instead of the target DSC values. Drying shrinkage was
prevented in the loading direction. The tensile stress caused by restrained shrinkage was, how-
ever, released by unloading a tensile test specimen before the load-elongation measurement was
started. Three repetitions of measurements on each anisotropy, cutting direction and dry solids
content combinations were performed. A description of the measuring method is presented in
reference [39]. In this study, the parallel results were used as individual test points so that the
total amount of data in the fitting procedure was 180 individual stress-strain curves.
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Table 1: The fitting parameters of Eq. (10) for the yield stressσy , the yield strainεy and the hardening constantH

[33].

A1 A2 A3 n
σy -5.9030 (Pan) 3.1959 (Pan) 18.3077 (Pan) 0.1760 (-)
εy 380.4181 (-) 14.3408 (-) -269.8327 (-) -0.7720 (-)
H -0.6021 (Pa2n) 4.0423 (Pa2n) 11.3795 (Pa2n) 0.0715 (-)

3 MODELS FOR MATERIAL BEHAVIOR

Material behavior under external and internal tensions and dry solids content changes are
described by elasto-plastic material model and the hygroexpansivity model. Elasto-plastic ma-
terial model is based on the curve fittings presented in [52] where equation

σ =







Eε if ε ≤ εy

Eεy −
H
2E

+

√

H
(

H
4E2 + ε− εy

)

if ε > εy
(8)

was found suitable for describing all the uniaxial stress-strain relationships considered. In Eq.
(8), σ andε are the stress and strain, respectively; the dry solids contentRsc = [0, 1] and the
anisotropy indexφ dependent fitting parameters are the elastic modulusE, the yield strainεy
and the hardening constantH. The anisotropy indexφ is defined as [52]

φ =

√

√

√

√

1− ξ2

ξ + tan2 γ/ξ
+ ξ (9)

whereξ is the fiber orientation anisotropy andγ is the angle from the minor axis of the fiber
orientation distribution [52]. The material model was constructed by fitting the equation [33]

P = (A1 + A2φ+ A3Rsc)
1/n P = {σy, εy, H} (10)

for the dry solids content and the anisotropy index dependence. In Eq. (10), the parametersA1,
A2, A3 andn are the fitting constants, see Table 1.

The hygroexpansivity model is based on the measurements and fitting procedures presented
in [53] and [33]. The hygroexpansion coefficientsβ for every in-plane direction are defined by
the equation

β =
kφv

R2
sc

exp





kφv

− 1

a
kφv + b

a

(

1− exp
(

−100kφv

a

))

(

1

Rsc
− 1

)



 (11)

where the fitting parameters have valuesk = 0.0439, v = −0.9015, a = 2.5054 andb = 0.0250
[33].

In the continuum mechanical model, plane stress is assumed and the yield surface is de-
scribed by the Hill’s yield function [54]. When the Hoffman’s approximation is used as in [39]
the yield surface has the form

f(σ) =

√

√

√

√σ2
1 − σ1σ2 +

(

σy,1

σy,2

)2

(σ2
2 − σ2

12) +

(

2σy,1

σy,45◦

)2

σ2
12 (12)
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Figure 3: Elements used for the fluting (left) and the curl (right) simulations. Thickness directional DSC profile is
defined by the locations shown.

whereσ1, σ2 andσ12 are the stress tensor components andσy,1, σy,2 andσy,45◦ are the yield
stresses in the main direction, cross direction and the direction deviating 45 degrees from the
main direction, respectively. The elastic modulus is defined for directions 1, 2 and 45◦ by the
yield stressesσy,i and the yield strainsεy,i as

Ei =
σy,i

εy,i
. (13)

The direction is specified by the subscripti. The in-plane yield stress and yield strain parameters
are defined by Eq. (10) and the shear modulus is approximated by the equation [55]

G12 =
1

(

4

E45◦
− 1

E1
− 1

E2
− 2ν12

E1

) (14)

whereν12 is the Poisson ratio defined as

ν12 = (0.015 (1−Rsc) + 0.15)φ1. (15)

In Eq. (15),φ1 is the anisotropy index of the main direction. The dependence ofν12 on the
anisotropy index and dry solids content is roughly based on the results presented in [28] and by
Maxwell relation the Poisson ratioν21 is defined asν21 = ν12E2/E1.

4 NUMERICAL SOLUTION AND SAMPLE SETUP

Finite element method (FEM) was used to obtain the numerical solutions. Simulations were
performed by the commercial software ABAQUS/Standard using shell element S4R with com-
posite structure, see [56]. Two different phenomena were considered: fluting and curl of paper.
The element size and thickness of the simulated sample are given in Fig. 3. In both cases, one
element is used in the thickness direction of the sample. In the fluting simulations, the element
was divided in the thickness direction into 7 layers with equal thicknesses, whereas in the curl
simulations, the element was divided into 10 layers. The in-plane layouts used in the simula-
tions are shown in Fig. 4. Automatic incrementation control and volume-proportional damping
were utilized to obtain the numerical solutions [56]. For the fluting and curl simulations the
damping factors 10−8 and 10−12 were used, respectively.
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Figure 4: Layouts for fluting (left) and curl (right) simulations.

4.1 Curl simulations

The through-thickness variation of the fiber orientation of the samples is presented in Fig. 5.
The initial DSC was 85% throughout the sample. In step 1, MD tension 200 N/m was applied
via borders 1 and 3 and the following boundary conditions were applied:

• Boundary condition 1: Out-of-plane displacement (u3) was restrained in all nodes.

• Boundary condition 2: In the middle node (not located into geometrical middle point, see
Fig. 4) all displacements and rotations were restrained.

In step 2, the DSC profile were applied to the sample. Different DSC profiles used in step 2 are
presented in Fig. 6. In step 3, the whole sample was dried into DSC 95%. In step 4, the external
tension was removed and in step 5, the boundary condition 1 was removed.

4.2 Fluting simulations

In the fluting simulations, a homogeneous strongly MD-orientated sample (θ = 0, ξ = 4)
was used. The initial DSC was 96% throughout the sample. In the following, the displacements
and the rotations are marked asu1 (coincides with the MD whenθ = 0), u2 (coincides with the
CD whenθ = 0), u3 andur1, ur2, ur3, respectively, see [56]. The boundary conditions were
defined as (see Fig. 4):

• Out-of-plane displacement (u3) was restrained in the borders 1, 2, 3 and 4.

• The rotationur1 was restrained in the borders 2 and 4.

• The rotationur2 was restrained in the borders 1 and 3.

• In the middle node the displacementsu1 andu2 and rotationur3 were restrained.
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Figure 5: Through-thickness (z) variation of the orientation angleθ (top) and the anisotropyξ (bottom) of the
samples used in the curl simulations.

In step 1, the DSC profile (see Fig. 7) was applied to the printed area and the through-thickness
symmetry was nullified by setting the out-of-plane directional force with value 10−3 N to the
node located at position MD = 190.5 mm, CD = 42 mm. In step 2, this force was removed. In
step 3, MD tension 400 N/m was applied via borders 1 and 3 and in step 4, the DSC profile
applied to the printed area in step 1 was replaced by the initial dry solids content 96 %. The
simulations were ended by step 5 where the external tension was removed from borders 1 and
3.

5 RESULTS AND DISCUSSION

Curl may have different modes: curl toward surface 1 or surface 2 and cylindrical shape
main axis along MD (MD curl), along CD (CD curl) or to some other angle (diagonal curl).
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Figure 6: Curl simulations: DSC profiles.
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Figure 7: Fluting simulations: DSC profiles.

The simulated curl of samples 1 and 2 with all DSC profiles A-I is presented in Figs. 8 and
9. With flat drying profile E, the curl amplitude of both samples is minor, because of fairy
symmetrical anisotropy profile between sides of the samples. When drying includes profiles D
or F no significant change in curl can be detected. This indicates that no plastic strains either
at surface 1 or 2 have been induced. However, higher gradient in DSC profiles (A-C and G-I)
generates plastic strains that change the curl. Generally, paper curls toward the surface dried last
[9], i.e. dryings using DSC profiles A, B and C turn curl more toward surface 1 and DSC profiles
G, H, I toward surface 2. The equivalency of strain at both sides of samples can be adjusted
by drying two-sidedness. However, near the equivalent strain condition, the sample is at risk
to manifest diagonal or CD mode of curl. Diagonal and CD curl are harmful modes of curl in
many applications and there have been attempts to control this by adjusting the two-sidedness of
orientation angle. Obviously, zero orientation angles at both sides of samples would provide the
best results, but even when there is only minor orientation angle two-sidedness, as in sample
2, there is no guarantee of maintaining MD curl mode at every drying profile. The clearest
example of this phenomenon can be observed in tests carried out in single-sided and double-
sided printing by either side toward heated roller of the copier or printer, see, for example [57].

Out-of-plane deformations of steps 3, 4 and 5 of fluting simulation with DSC profile L are
presented in Fig. 10. Corresponding plastic deformations in MD and CD at step 5 are presented
in Fig. 11. Due to the higher moisture content the printed area expands according to the hy-
groexpansion tendency. The tension and dryer unprinted areas constrain the printed area in CD
and force it to buckle to a wavy form. The strong waviness at the printed area in step 3 can
generate plastic strain especially to concave positions of waves. The leveling of the moisture
difference in step 4 does not remove the plastic deformations formed already and permanent
wavy deformations are produced to the sample. A higher moisture difference between printed
and unprinted areas and unevenness of the moisture content profile increase severity of fluting
waviness, see Fig. 12. The wavelength of simulated fluting is around 20 mm (see Fig. 12),
which fit into the range of typically observed fluting wavelength approximately between 5 and
30 mm, see, for example [58]. However, the wavelength is dependent on boundary conditions,
sample and element size, disturbances, etc.
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Figure 8: Simulated curl of sample 1.
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Figure 9: Simulated curl of sample 2.
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6 CONCLUSIONS

There are several undesired phenomena that can be considered to be connected to hygro-
scopic and stress-strain behavior of paper web or sheet during production processes and in
end-use. Out-of-plane deformation defects such as curl and fluting in heatset-web-offset print-
ing have been studied widely by different experimental and modeling approaches, but there are
still features left unknown.

The objective of this work was to apply a hygro-elasto-plastic model to the out-of-plane de-
formation phenomenon corresponding to copy curl and HSWO fluting conditions. In both cases,
the simulations predict the behavior of hygroscopic orthotropic sheet under moisture change
during different external in-plane stretch or stress conditions. The model includes two experi-
mental models: elasto-plastic material model and hygroexpansivity model. In both models, the
structural properties of the sheet are described by fiber orientation probability distribution, and
both models are functions of the dry solids content and fiber orientation anisotropy index. The
anisotropy index simplifies the procedure of determining the constitutive parameters of the ma-
terial model and hygroexpansion coefficients in different directions of an anisotropic sheet. For
studies of the combined and more complicated effects of hygro-elasto-plastic behavior, these
two models were implemented in a finite element program for numerical solution.

The behavior of two orientated structures was simulated using different z-directional DSC
profiles. The plastic strains were generated at least 8% and higher differences between surfaces
in DSC profiles. It has been noticed that DSC differences between surfaces of paper can reach
over 10% in a paper machine drying [59, 60]. The equivalency of strain at both sides of samples
can be adjusted by drying two-sidedness. This is a practically utilized method to control curl
amplitude, but has not been predicted by simulation before. Near the equivalent strain condition,
however, the sample is at risk to manifest diagonal or CD mode of curl. Results also predict
phenomena that are commonly observed in copier printing tests.

Although the generation of HSWO fluting have been successfully predicted by modeling,
the mechanisms behind permanency of HSWO fluting has been a demanding task to solve. The
presented elasto-plastic model indicated that permanent waviness/fluting can be generated with
elasto-plastic model simulations. Both studied cases presented in this paper, together with ear-
lier studies at [33], proved the usefulness of the model in predicting the challenging deformation
phenomena of orthotropic paper sheets.
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Abstract. This paper deals with statics and stability problems of steel structures with the em-

phasis on their sensitivity to initial imperfections and clearances. The main aim is to per-

formed an indication as the state of stress, displacement and the critical load. The paper 

presents theoretical studies involving linear and nonlinear behavior of thin-walled steel struc-

tures with a special reference to the interactive buckling, initial geometric imperfections and 

clearances which is in the scope of the modern approach to design. For this purpose authors 

proposed model structures composed of rigid bars where strains are concentrated in connect-

ing elastic joints These model structures enable to derive nonlinear algebraic equilibrium 

equations which strictly describe pre- and post-buckling behavior of structures with various 

combinations of imperfections and clearances. Numerous examples demonstrate variable 

types of structural response depending on the modes and amplitudes of imperfections in rela-

tion with clearances. In the case of large clearances the model structure behaves like a typi-

cal Euler column characterized by a stable and symmetric bifurcation point. However, 

clearances combined with certain patterns of imperfections can result in unstable post buck-

ling behavior and also in snap through phenomena. The developed model structures, which 

illustrate complex structural stability response accounting for initial geometric imperfections 

and clearances, due to its simplicity makes possibility to describe the exact close form solu-

tions for both linear and nonlinear stability analysis. Based on the proposed model structure 

it is shown, that interaction between initial clearances and initial geometric imperfections can 

strongly affect the structural stability response. 
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1 INTRODUCTION 

In the last decades permanent development of light-weight structures is observed. They are 

esthetic and economic. Important is also that small weight of structural materials well matches 

the requirements of sustainable development. From among structural materials steel is par-

ticularly attractive in application to light weight-structures. A great variety of hot- and cold-

formed steel sections is at designers’ disposal. Modern highly automated cutting, drilling 

welding and corrosion protection make possible to design and prefabricate optimal structural 

elements, which can be easily assembled using pre-stressed bolts. It must be underlined here 

that two special aspects in design of light-weight steel structures must be seriously taken into 

account, namely fire protection and protection against local and global instability. 

 The fact that steel structures are apt to fail by loss of stability belongs to the textbook’s 

knowledge for decades. This tendency towards instability is a direct consequence of high 

slenderness of steel structural elements. Designers can find practical recommendations in de-

sign codes [3, 4, 5] with theoretical and experimental background in the literature [6, 12] how 

to overcome the problems of instability. Professional computer programs supporting design of 

steel structures implement many of these recommendations. However, modern light-weight 

steel structures gave rise to new stability problems. Application of thin-walled cold formed 

sections and welded I sections with slender webs increased the importance of local instability 

phenomena which often appeared at a similar load level as global instability. The case when 

two or more different modes in stability and dynamic analyses are associated with the same or 

similar eigenvalues is termed a bimodal or multimodal solution. Designers’ concern is that 

these solutions are very sensitive to imperfections. Design codes and scientific papers [1, 2, 

7,13] contain recommendations with respect to forms and magnitude of global geometric im-

perfections which can be taken into account. There is definitely not so much information and 

recommendations with respect to local imperfections . 

New stability problems were also originated when roof cladding elements were assumed to 

provide support for compressed top flanges of purlins or beams of frames [8, 9, 10, 11]. Roof 

cladding are often made of profiled steel plates. They are point-wise connected to the beams 

by self-tapping screws or by rivets. Thickness of steel plates is small, therefore variable loads 

and hence variable interaction forces often result in increasing diameter of the holes in thin 

walls of the plate. In this case we have slotted connections with unilateral constraints. Similar 

type of unilateral constraints can also appear in a bolted connection with a clearance between 

structural elements. These imperfect connections can strongly influence the structural re-

sponse. Moreover, there can be unfavorable combinations of clearances and initial geometric 

imperfections. 

Economic and safe design must be based on a reliable structural analysis where all essen-

tial imperfections are taken into consideration. On the other hand a numerical model of the 

actual structure cannot be too complicated. Otherwise computer time would be too great. 

Keeping this in mind, the author presents in this book stability behavior of structures with var-

ious combinations of global and local initial geometric imperfections, combinations of clear-

ances and simultaneous appearance of geometric imperfections and clearances. Of course, in 

order to demonstrate these phenomena nonlinear stability problems must be formulated and 

solved. The author proposed model structures composed of rigid bars where strains are con-

centrated in connecting elastic joints. These model structures make possible to derive nonline-

ar algebraic equations which strictly describe pre- and post-buckling behavior of structures 

with various combinations of imperfections and clearances. By the way of numerous exam-

ples influence of imperfections and clearances on the structural behavior is discussed.  

4771



K. Rzeszut, A. Garstecki 

2 THEORETICAL BACKGROUND 

In order to illustrate the phenomenon of the interaction of initial geometric imperfections 

and clearances a model structure is developed. It consists of n incompressible rods connected 

by elastic hinges with the rotational stiffness kn [N m/rad]. At the position of internal hinges 

the elastic intermediate supports with the stiffness nk   [N/m] and clearances 0  are imposed. 

Now 0       i   denote, respectively, the clearance and the total transverse displacement of the 

structures at the position of internal hinges. This model enables the derivation of the exact 

nonlinear equilibrium equations, taking into account large displacements. At the same time, 

this simple model well illustrates the real structural response in terms of its stability problems. 

The geometry of the proposed model structure shows Figure 1. 

 

Figure 1: Geometry of the proposed model structure 

2.1 Eigenvalue problem 

At the first stage, the initial clearance is very large and the gap remains open: 0nu   . 

Then the supports positioned at the elastic hinges do not switch on to cooperate with the bar, 

which is supported only at its ends. At this stage, the equation describing displacement   nu  and 

rotation angles of nodes   n  may be derived from geometries that are illustrated graphically in 

Figure 2. 

 

Figure 2: Geometric relation of the model structure 

Hence we obtain the following geometrical relationships: 

 1 1 1

1

arcsin arcsin arcsinn n n n n n
n n

n n n

u u u u u u
and

L L L
   



  
   , (1) 
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where: n  – rotation of angle n-th bar. The set of equilibrium equations takes the form: 

 e

n n nk P u   . (2) 

Equation (2) can be written in matrix form: 

   0PL u K I , (3) 

where I is a unit matrix. The solution of (3) are the eigenvalues cr

n  and associated with it the 

normalized eigenvectors
cr  nu . 

2.2 Initial imperfections  

The initial geometric imperfections   i

nu  are introduced in to the model as a linear combina-

tion of eigenvectors 
cr  nu  

derived from the solution of the linear eigenvalue problem: 

 cri

n m mu u  . (4) 

By changing the value of the proportionality factor m , associated with various forms of 

buckling modes, enables to obtain all possible combinations of imperfection. It is worth to 

note that imperfections developed as the linear combinations of the eigenvectors are consid-

ered as the most dangerous. 

The displacement caused by geometrical imperfections i

nu  induce initial rotations of the 

bars i

n  and rotations of the hinges i

n . These deformations are kinematically admissible and 

does not induce any stress.  

As a result of the action of the external load elastic part of displacements and rotations, 

represent by the superscript e, appeared. They are inducing elastic internal moments at the 

elastic hinges   e

n n nM k  . In the initial phase, when the external load   0,P=  the geometric re-

lationships shown in Figure 3 take the form: 

1 1 1

1

arcsin arcsin arcsin
i i i i i i

i in n n n n n
n n

n n n

u u u u u u
and

L L L
   



  
   . (5) 

 

Figure 3: Geometric imperfections in model structure 

 P  

   andi e e i e

n n n n n n n nu u u M k P u u        (6) 

 andi e i e

n n n n n n         . (7) 
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Now the set of nonlinear equilibrium equations takes the form: 

  e i e

n n n nk P u u     (8) 

of unknowns elastic part of displacements e

nu . Elastic part of hinge rotation e

n  is determine 

using the following relationship: 

 e i

n n n    . (9) 

2.3 Nonlinear equilibrium equations  

In the second stage, depending on the value of the initial clearance 0  and total lateral dis-

placement of structures   nu , at the points of elastic hinges presence the cooperation with the 

intermediate supports is observed. When the gap is closing 0 ( )nu   , then the appropriate 

intermediate support with the stiffness nk   is switched on to the cooperation. Hence, the equi-

librium equation should be written in the general form. Until now, the bending moment in the 

elastic joint has been described as e

n n nM k P u    . Now, in equilibrium equations must be 

taken into account the reactions of intermediate supports  0  Δn n nR k u  . Equilibrium 

equations will be written in the form of an equation of virtual work. For this purpose, the vir-

tual displacement nu  is introduced to the model, so that the hinge No. n moves vertically and 

horizontally, while the hinge No. n+2 moves only in the horizontal direction (Fig. 4).  

 

Figure 4: Geometric relation of the model structure - virtual displacement   nu  

Thus, the virtual displacement of the hinge No. n+1 in the vertical direction 1 0y

nu   . The 

vertical y

nu  and horizontal x

nu  components of virtual displacement of the hinge No. n can 

be determined using the following relationship: 

 cosy

n n n nLu   , (10) 

 sinx

n n n n n nLu u     . (11) 

The horizontal component of virtual displacement 1

x

nu   of hinge No. n+1 is calculated from 

the kinematic chain relation in the following form: 

 1 1 1 1sinx x

n n n n nu Lu        . (12) 
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The unknown value of the virtual rotation 1  n   can be determined from the kinematic chain 

of vertical displacement: 

 1 1 1 1cos cosy

n n n n n n nLu L         . (13) 

Hence: 

 
1

1 1

cos

cos

n n
n n

n n

L

L


 




 

  . (14) 

For 1n nL L   equation (14) takes the form: 

 
1

1

cos

cos

n
n n

n


 






  . (15) 

Thus, the horizontal displacement hinge No. n+1 can be written as: 

  1 1

1

cos
 

cos

x n
n n n n n n

n

u u u u


  


 



 
    

 
. (16) 

The equilibrium equations are derived in a week form and take into consideration the moments 

in hinges, reactions Rn and compressive force P: 

 1 1 1  x y

n n n n n n nM M P u R u        , (17) 

where: 
e

n n nM k   i 1 1 1

e

n n nM k     and 
y

nu  is vertical displacement of hinge No. n which 

amplitude exceeds the respective value of the clearance 0 . 

Total rotation of the hinge can be expressed as 1n n n     , thus similarly total virtual ro-

tation of the hinge can be obtained as: 

 1

1

cos
1

cos

n
n n n n

n


   






 
    

 
 (18) 

and 

 
1 1

1

cos

cos

n
n n n

n


  


 



   . (19) 

Thus, the equation of virtual work takes the form: 

 

1 1

1 1

1

1 1

cos cos
1

cos cos

cos cos
1 cos  .

cos cos

e en n
n n n n n n

n n

n n
n n n n n n n n

n n

k k

P u Lu R

 
   

 

 
   

 

 

 



 

   
     

   

  
     

 



 

 (20) 

It is worth to note that equation (20) is a set of n equilibrium equations. The type of equi-

librium path can be evaluated using the energy approach involving the analysis of the varia-

tion of potential energy: 
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0 oraz

 0 stan stateczny

0 stan krytyczny

      0 stan niestateczny. 

δ

δ











 

 (21) 

3 NUMERICAL EXAMPLES 

Numerical examples are solved for various amplitudes of initial imperfections   m , normal-

ized amplitudes of clearances 0 0    /L    and elastic supports stiffness k , where L is taken as 

the unit value. 

The first example refers to a structure with initial imperfection pattern developed according 

to first buckling mode with small amplitude 1  = 0,001 (Fig. 5). At nodes 1, 2 and 3  with the 

initial intermediate support clearances of two different amplitudes 
1

0 2  0,13u   and 

2

0 2  0,5u  were introduced. The curve m1 shows the equilibrium path obtained for the struc-

ture without intermediate supports (solid line – stable; dashed line - unstable equilibrium 

path). On the other hand, curves 1a, b, c and 2a, b, c represent behavior of structures with in-

termediate supports in distances of a clearance 
1

0   and 
2

0  . Symbols a, b and c refer to in-

creasing value of intermediate support stiffness, expressed as a relation 1 /k k  , where 1  k  

is elastic rotational hinge stiffness and k  is elastic intermediate supports stiffness 

(a  1 0,4  , b – 2 0,5  , c – 3 1  ). In the first case the clearance 1

0   is so small that the in-

termediate supports switch on before the bifurcation point, so all equilibrium paths are stable. 

In the second case the clearance 
2

0   is large, so there is possible stable and unstable post-

buckling behavior as well. It is worth to note that for both small and large clearance the coop-

eration with intermediate supports resulting in increased stiffness of whole structure in pro-

portion to the supports stiffness. 

  
a) 

 

b) 

 

c) 

 

Figure 5: Equilibrium path for the initial geometric imperfections 1   = 0,001 and clearances 
1

0 2    0,13u  , 
2

0 2    0,5u  ; displacement of the hinge: a) No. 1, b) No. 2, c) No. 3 
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Figure 6 shows the displacement obtained for the model structure with geometric imperfec-

tions pattern developed according to second buckling mode with small amplitude 2 = 0,001. 

Since the displacement of the bar is asymmetrical due to the asymmetric shape of imperfec-

tions, positive and negative value of the clearances have to be taken into consideration. One 

can notice that in this case both stable and unstable equilibrium path may occur. The last ex-

ample refers to the initial geometric imperfections developed according to three different 

buckling modes with amplitudes 1 = 0,001, 2 = 0,1 i 3 =0,045. The curve (m1d2s3) shows 

the equilibrium path obtained for the structure without intermediate supports. In this case sev-

eral bifurcation points associated with the three buckling modes and stable and unstable post-

buckling behavior is observed. Small amplitude of clearance ( 0  ) result in switching on the 

intermediate supports into cooperation before the bifurcation point, then all equilibrium paths 

are stable paths and increase of whole structure stiffness occurs (Fig. 7). 

 
a) 

 

b) 

 

c) 

 

Figure 6: Equilibrium path for the initial geometric imperfections 2   = 0,001 and clearance 0 1    0,18u   ;  

displacement of the hinge: a) No. 1, b) No. 2, c) No. 3 

a) 

 

b) 

 

c) 

 

Figure 7: Equilibrium path for the initial geometric imperfections 2  = 0,001, 2  == 0,1, 2   = 0,45 and clearance 

0 2    0,5u  ; displacement of the hinge: a) No. 1, b) No. 2, c) No. 3 
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4 CONCLUSIONS  

In the paper interaction of initial geometric imperfections and clearances for the structural 

model consisting of n-compressible bars connected by means of elastic hinges is discussed. 

The proposed model illustrates the behavior of real structures in terms of stability and enables 

the derivation of exact nonlinear equilibrium equations taking into account large displace-

ments. 

In summary the following conclusions can be drawn: 

 In the first stage, when the initial clearance is very large, intermediate supports do not 

switch on to cooperate and the stable equilibrium path is observed.  

 For the very small amplitudes of geometric imperfections, developed according first, 

second or third buckling mode, single points of bifurcation accompanied by the unstable 

equilibrium path appeared. 

 The increase in the amplitude of the initial geometric imperfection results in an increase 

in the value of the critical load defining the bifurcation point, where it is possible the 

snap through to the configuration described by unstable equilibrium path. 

 The observed snap through is caused by transition of the structure from a high to a low 

level of potential energy. In this case, the initial geometric imperfections play a positive 

role resulting in a stable post-buckling behavior. 

 In the case of small clearance, depending on the shape of initial geometric imperfections 

and intermediate supports stiffness, different equilibrium paths are possible. If clearance 

is very small and intermediate supports switch on before the bifurcation point, all equilib-

rium path are stable. When the intermediate supports switch on after bifurcation point 

both stable and unstable post-buckling behavior of the structure is observed. 

 It is shown, that interaction between initial clearances and initial geometric imperfections 

can strongly affect the structural stability response. Therefore, the proper design of clear-

ance, taking into account the initial geometric imperfection, is extremely important in or-

der to obtain a safe the structure characterized by stable equilibrium paths. 
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Abstract. The Prestressed concrete sleeper (PC sleeper) has many advantages over the 
wooden sleeper in terms of maintenance, load bending capacity, weight and lateral ballast 
resistance force. In Japan, the PC sleeper has been widely used since 1951. The PC sleeper is 
designed in consideration of the impact wheel load which is mainly caused by a rail joint or 
wheel flat. This research focused on the impact wheel load at rail joints. By field measure-
ments in an operating line and numerical analyses, the dynamic response characteristic of the 
PC sleeper was clarified. The field measurement of PC sleeper behavior shows that the max-
imum bending moment of a PC sleeper with a rail joint during train running is almost 4 times 
larger than that in plain sections, and the maximum bending moment of the PC sleeper adja-
cent to the rail joint is almost 2.7 times larger than that in plain sections. The numerical 
analysis shows that support condition has the greatest influence on the bending moment of the 
PC sleeper among various parameters. Furthermore, the impact wheel load caused by a rail 
joint affects dynamic behavior of PC sleepers within 4m from the rail joint. 
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1 INTRODUCTION 

A prestressed concrete sleeper (PC sleeper) is designed mainly in consideration of an im-
pact wheel load during the train running. The impact load is generally caused by the wheel 
flat, the rail joint, the welded joint irregularity of the rail and the railhead corrugation. Among 
those defects, the wheel flat and the rail joint have the greatest the influence on the dynamic 
response of the PC sleeper. At the beginning of the development of the PC sleeper, it had 
been thought that the enormous impact wheel load was mainly induced by the wheel flat [1, 2]. 
For this reason, a large number of researches into the wheel flat have been conducted [3, 4]. 
Through the running test and the impact load examination of the PC sleepers, these researches 
made clear that the design load of the PC sleeper shall be the 4 times larger than the static 
load in order to allow no tensile stress (full prestressing) under the assumed maximum impact 
load by wheel flat. Such knowledge and information have been used for the design of PC 
sleepers in Japan [1]. Recently, various kings of research and development have been promot-
ed from the viewpoint of the optimization of the sleeper [5-10]. 

On the other hand, particularly in Japan, though the rail joint has been recognized as an-
other serious source of the impact wheel load, the research into the effect of the impact wheel 
load generated by the rail joint has been insufficient. This is due to the fact that the suspended 
rail joint, that is, the rail joint installed between adjacent two sleepers has been widely intro-
duced in an attempt to prevent the impact wheel load as a standard installation method of the 
rail with wooden or PC sleepers. For example, though the PC sleepers that are adjacent to the 
rail joint are affected by the impact wheel load caused by the rail joint, the longitudinal span 
of the influence of the impact wheel load and the effect of the rail joint irregularity have not 
been sufficiently investigated. Recently, in Japan, a specified type of PC sleeper which is in-
stalled directly under the rail joint has been increasingly used. Thus, the phenomenon elucida-
tion of the dynamic response of the PC sleepers at or adjacent to the rail joint is required. 
Furthermore, the most suitable design of the PC sleeper according to the track condition is 
also being required [11]. 

The dynamic response of the PC sleeper at rail joints includes a high frequency phenome-
non within 1/1000 seconds. Recently, tools for the phenomenon elucidation of the dynamic 
response of the PC sleeper at rail joints are gradually being provided such as high quality 
measurement systems (high frequency and multi-channel synchronized measurement) of the 
spread of high spec. supercomputers. 

Against these backgrounds, this research focused on the impact wheel load at rail joints 
paying attention to the following points. 
(1) Conduct the field measurement in an operating line in order to elucidate the bending mo-

ment of the PC sleeper during the train running at rail joints and in plain track sections. 
(2) Develop three dimensional numerical analysis models by a finite element method. 
(3) Evaluate the effect of the various parameters of the vehicle or track on the bending mo-

ment of the PC sleeper quantitatively. 
(4) Evaluate the longitudinal span of the influence of the impact wheel load at rail joints. 

2 INVESTIGATION METHOD 

2.1 Field measurement method 

Figure 1 shows the outline of the track. In this section, standard rails of 25m in length and 
60kg/m in weight are used and there are rail joints at an interval of 25m. PC sleepers are type-
6 PC sleepers in the plain section and PC sleepers at the rail joints are those standardized in 
Japanese Industrial Standard (JIS). The numbers of PC sleepers per rail (25m in length) is 41. 
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The field measurement of the bending moment of PC sleepers during the train passing was 
conducted on two rail joint PC sleepers (Joint 1, Joint 2), two type-6 PC sleepers adjacent to 
the rail joint (A and B) and two type-6 PC sleepers (C and D). The type-6 PC sleepers C and 
D are in the plain section. Trains running in this section are Japanese standard commuter 
trains with the static nominal wheel load of almost 50kN.  

Figure 2 shows the positions of strain gauge on the PC sleeper. In total, four strain gauges 
per sleeper were used, two of which were attached on the side of the PC sleeper (one at an 
upper position and the other at a lower position) at its longitudinal center and the other two 
strain gauges were attached in the same manner at its rail seat position. Strain gauges made in 
KYOWA ELECTRONIC INSTRUMENTS CO. were used for the field measurement, and a 
built-in chassis made in NATIONAL INSTRUMENTS CO. were used to acquire the experi-
mental signals from 32-channel strain gauge units. The sampling rate is 5000Hz. 

Figure 3 shows the measurement method of the vibration mode of the PC sleeper. Seven 
piezoelectric accelerometers were installed on the top of the PC sleeper. The piezoelectric ac-
celerometers were made in RION CO. (PV-85). Measured response of the accelerometer was 
recorded in a laptop PC with 5000Hz sampling via preamplifier and A/D converter. Vibration 
characteristics were identified by the ERA (Eigensystem Realization Algorithm) method [12, 
13], which can identify the character matrix of linear time-invariant systems with the princi-
ples of minimal realization. The MAC (Modal Amplitude Coherence) value on the controlla-
bility was applied to the accuracy evaluation of the vibration characteristics. 40 degrees of 
freedom were set in order to identify the major modes of the PC sleeper. When the MAC val-
ue is 0.99 or more, it is judged to be the vibration mode characteristic of the PC sleeper. 

 

 
Figure 1: Outline of the track. 

 
Figure 2: Positions at which to attach the strain gauges to the PC sleeper. 

 
Figure 3: Measurement method of the vibration mode of the PC sleeper on the impulse hammer test. 
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2.2 Numerical analysis method 

(1) Dynamic model of the track 
Figure 4 shows the outline of the three dimensional numerical analysis model of the target 

track. The DIASTARSIII program developed by the Railway Technical Research Institute 
was used for numerical analysis [14, 15]. 

The track was modeled using the finite element method. Assembling all elements in the to-
tal model, the equation of motion of the track is obtained in a standard matrix form as 

, 		   (1) 

where XB is the displacement vector of the track, and MB, CB and KB are the mass, damping 
and stiffness matrices, respectively;  is load vectors; ,  is the interaction force be-
tween the rail and the car,  is the load vectors of non-linear spring force in the track. 

As shown in Figure 4, the rail and sleepers were modeled using beam elements, and the rail 
pads, the ballast and the roadbed were modeled using spring elements. The basic rail mesh 
size was set at 35mm and the PC sleeper mesh size was set at 55mm. The total number of 
nodal points is 8338 and the total numbers of elements is 13012. 
 

 
Figure 4: Outline of the three dimensional numerical analysis model of the target track. 

(2) Dynamic model of the vehicle 
Figure 5 shows the dynamic model of the vehicle assuming that a body, bogies and 

wheelsets are rigid. These three-dimensional rigid elements are linked by springs KN and 
dampers CN (N is a suffix in Figure 5) according to their respective characteristics. The train 
has 31 degrees of freedom (5 degrees of freedom for the body, 5 degrees of freedom for the 
bogies, and 4 degrees of freedom for the wheelset) per one car. The train consists of multiple 
vehicle models linked together by springs KC and dampers CC attached to the ends of the ve-
hicle models. Assuming that the train runs at a constant speed, the equation of three dimen-
sional motion of the train with N vehicles is written in a matrix form as shown in reference 
[16]. 

, 		   (2) 

where, superscript V and B are the vehicle and the track, respectively; XV is the displacement 
vector of the vehicle; MV, CV and KV are the mass, damping and stiffness matrices of the vehi-
cle, respectively;  is load vectors; ,  is the interaction force between the rail and 
the vehicle,  is the load vectors of non-linear spring force in the car. In this research, 
the train consists of six Japanese standard commuter vehicles with a length of 20 m and an 
axle load of almost 50 kN. 
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Figure 5: Dynamic model of vehicle. 

(3) Dynamic model of the interaction force between the wheel and the rail 
Figure 6 shows the wheel/rail model. We focused on relative displacement between the 

wheel and the rail. The vertical interaction force between these components was modeled by 
Hertzian contact springs so that it is possible to judge the contact condition between the wheel 
and rail. The vertical relative displacement between the rail and the wheel 	is expressed by 
equation (3). 

    (3) 

where zR is the rail vertical displacement, zW is the wheel vertical displacement, eZ is the verti-
cal track irregularity. ez0(y) is the wheel radius variation in the current wheel contact point. 
When 0, the wheel is in contact with the rail, and 0, the wheel is loss of contact 
with the rail. The z-direction interaction force H produced due to the contact of the wheel and 
the rail is expressed by equation (4). 

                 (4) 

The interaction force in the horizontal direction is expressed as creep force in the case that 
the wheel flange has no contact with the rail. In contract, if the wheel flange is in contact with 
the rail, the wheel load and horizontal pressure act on the rail, causing the rail crown to move 
in the horizontal direction. In this case, torsion of the rail occurs. The torsion resistance gen-
erated by the rail and the rail fastener is expressed by a spring element. 

 

 
Figure 6: Wheel/ rail model. 
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Figure 7 shows the irregularities used for the numerical analysis. These irregularities con-
sist of the combination of the rail irregularity and the wheel irregularity. The rail irregularity 
was measured on the track by a measuring device of 1m-chord versine and as for the wheel 
we referred to a previous research [17]. 

  
(a) Plain section                                                               (b) Rail joint section 

Figure 7: Irregularities used for numerical analysis. 

(4) Solution method 
In the previous paragraph, the equation of motion of the vehicle and that of the track are 

derived in the vehicle’s coordinate system and the global coordinate system respectively. 
Coupling of these equations is conducted by applying the compatibility and equilibrium con-
ditions to the sub region where both systems are connected with each other. At every moment 
during the train moving, the compatibility condition is evaluated using a fictitious nodal point 
at the center of the left and right rails where the wheelset exists.  

In order to carry out efficient numerical analysis, the equations of motion concerning the 
vehicle and track described as equation (1) and equation (2) are transformed to modal coordi-
nate system. The resultant equations are progressively solved in time increment Δt by using 
the Newmark method. However, because the equation of motion is non-linear, iterative calcu-
lation has to be carried out within Δt until the unbalanced force becomes sufficiently small. 
The mode order in the analysis is set at a value that enabled vibration up to about 2000Hz to 
be reproduced, and the analysis time step is set at 0.0001 sec. 
 
(5) Numerical analysis condition 

Table 1 shows the material dimensions and properties. Though basically the values used in 
the numerical analysis were derived from the Japanese design standards and the nominal val-
ues [18, 19], the spring constant of the rail pad was set at two times larger than the nominal 
value because of the degree of the agreement between the numerical analysis result and the 
measurement result of bending moment of the PC sleeper. The PC sleeper support condition 
was not assumed to be uniform over the whole length of the sleeper but to be nonuniform as 
shown in Figure 8. 

Table 2 shows the numerical analysis cases. The numerical analyses were conducted with a 
focus on the effect of the various parameters. Basic case is underlined. The sleeper support 
conditions 2 and 4 were considered to be roughly corresponding to that immediate after the 
track maintenance. On the other hand, the sleeper support conditions 1 and 3 were considered 
to be corresponding to that a few days after the track maintenance. 
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Rail 
60kg rail 
Young modulus ES = 200MPa 

Rail Pad 
Spring constant DP = 220MN/m 
(Nominal value = 110MN/m) 

PC sleeper 

Type-6 PC sleeper 
PC wire = φ2.9mm 3-strand cable 12-wires 
Length LP = 2000mm, Width BP = 240mm 
Height HP = 170mm(Rail seat), 150mm(Center) 
Concrete Young modulus EC = 33MPa 
Rail joint PC sleeper 
PC wire = φ2.9mm 3-strand cable 16-wires 
Length LP = 2000mm, Width BP = 300mm 
Height HP = 170mm(Rail seat), 145mm(Center) 
Concrete Young modulus EC = 33MPa 

Ballast 
Thickness h = 250mm 
Support spring constant DB = 180MN/m(1 rail) 

Roadbed 
Coefficient of subgrade reaction K30 = 110MN/m3 

Support spring constant DS = 111MN/m(1 rail) 
DT = 1/((1/DB)+(1/DS)) 

Table 1: Material properties. 

     
(a) Support 1 (Basic case)                        (b) Support 2 (uniformed) 

     
(c) Support 3                                                   (b) Support 4 

Figure 8: PC sleeper support condition. 

PC sleeper  Type-6 PC sleeper, Rail joint PC sleeper 
Train speed V 40~130km/h per 10 km/h (Basic case is 80km/h.) 

Vehicle mass MV 
(Passenger occupancy) 

0% occupancy ( = Empty) 
50% occupancy 
100% occupancy  

Wheelset mass MW MW, 1.5MW, 2.0MW 

Irregularity 
Plain section, Joint 1 (see figure 7) 
Joint2, No-joint 

Spring constant of rail 
pad (MN/m) 

110, 220 

PC sleeper support con-
dition 

Support 1, 2, 3, 4 (see figure 8) 

Table 2: Numerical analysis cases. 
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3 INVESTIGATION RESULT 

3.1 Vibration mode of PC sleeper 

Table 3 shows the comparison of natural frequencies of the PC sleeper vibration modes. 
The natural frequencies given by the numerical analyses are coincident with the measurement 
results excluding the rotation mode. In order to decrease this discrepancy, the accurate evalua-
tion of the PC sleeper support condition is in need. As might be expected, the natural frequen-
cy of the rail joint PC sleeper is higher than that of the type-6 PC sleeper because the cross 
section and the PC wire volume of the rail joint PC sleeper are larger than that of the type-6 
PC sleeper.  
 

Mode 

Type-6 PC sleeper Rail joint PC sleeper 

Measurement
(Hz) 

Numerical 
analysis 

(Hz) 

Measurement 
(Hz) 

Numerical 
analysis 

(Hz) 
Vertical rigid mode 92 86 101 105 

Rotation mode 102 86 74 95 
1st bending mode 173 174 202 203 
2nd bending mode 497 478 534 520 
3rd bending mode 813 817 907 939 

Table 3: Comparison of the natural frequencies of the PC sleeper vibration modes. 

3.2 Bending moment of the PC sleeper  

Figures 9 and 10 show the comparison of the bending moments of the PC sleeper during 
the train running. Numerical analyses were conducted under the condition that the train speed 
is 80km/h and the passenger occupancy is 50%. From these figures, it can be seen that the ab-
solute value of negative bending moments of the center of the PC sleeper are larger than that 
of positive bending moments of the rail seat of the PC sleeper.  

Regarding the positive bending moment, the differences between “Support 1” and “Sup-
port 2” is not clear. On the other hand, regarding the negative bending moment, the bending 
moment of “Support 1” is almost two times larger than that of “Support 2”. In addition, the 
negative bending moment of “Support 1” is also coincident with the measurement result. One 
possible reason may be that more than one year has passed since the track maintenance, and 
therefore, the PC sleeper support condition has been gradually transferring from “Support 1” 
to “Support 2” due to the dynamic interaction between the PC sleeper and the ballast.  

Figure 11 shows the relation between the train speed and the maximum bending moment of 
the PC sleeper during the train running. From the field measurement results, the maximum 
bending moment of the PC sleeper at the rail joint generated during the train running is almost 
4 times larger than that in the plain section, and the maximum bending moment of the PC 
sleeper adjacent to the rail joint is also almost 2.7 times larger than that in the plain section. 
Furthermore, the bending moments of the type-6 PC sleeper are different depending on its in-
stallation section. 

Regarding the comparison of the negative bending moments between “Joint 1” and “Joint 
2” obtained by the numerical analyses, it can be seen that “Joint 2” is 1.5 times larger than 
“Joint 1”. This is due to the difference of the support condition between “Joint 1” and “Joint 
2”. From the numerical analyses, it can be seen that regarding the dynamic response amplifi-
cation ratio from 40km/h to 130km/h of the train speed, the rail joint PC sleeper is larger than 
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type-6 PC sleeper. Concretely, the ratio of the rail joint PC sleeper is 1.4 and that of the type-
6 PC sleeper is 1.2. 

In figure 11, the design limit values under the allowable stress design method in cases 
where the design wheel load is 80kN, the impact factor is 2.0, the load dispersion coefficient 
is 0.5, and the allowable tensile stress is 2.0N/mm2 are indicated. The actual generated bend-
ing moments are under the design value.  
 

 
 

(a) Positive bending moment 

 
(b) Negative bending moment 

Figure 9: Comparison of the bending moment of the type-6 PC sleeper during the train running. 

 
(a) Positive bending moment 

 
(b) Negative bending moment 

Figure 10: Comparison of the bending moment of the rail joint PC sleeper during the train running. 
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(a) Positive bending moment 

 
(b) Negative bending moment 

Figure 11: Relation between the train speed and the maximum bending moment of the PC sleeper during the 
train running. 
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3.3 Influence of various parameters 

Figure 12 shows the effect of the various parameters on the bending moment of the PC 
sleeper during the train running. The knowledge and findings obtained by the numerical anal-
yses in this research are shown below.  

As for the passenger occupation variation, when the passenger occupation ratio increases 
from 50% to 100%, the bending moment increases by up to 1.2 times. 

As for the wheelset mass variation, when the wheelset mass increases by 2 times, the bend-
ing moment increases by up to 1.5 times. It can be seen that negative bending moment espe-
cially is largely affected. 

As for the irregularity variation, the bending moment of the PC sleeper at “Joint 1” or 
“Joint 2” is up to 3.4 times larger than that at “No-joint”.  

Concerning the rail pad stiffness, when the spring constant of the rail pad decreases by half, 
the bending moment decreases by up to 20%. Furthermore, it can be seen that the bending 
moment in the case of “Support 3” is up to 4 times larger than that in the case of “Support 4”. 

 

 
(a) Passenger occupancy (Vehicle mass MV)                                        (b) Wheelset mass MW 

 
(c) Irregularity                                                                      (d) Rail pad 

 
(e) PC sleeper support condition 

Figure 12: Effect of the various parameters on the bending moment of the PC sleeper during the train running. 
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3.4 Influence of the rail joint 

Figure 13 shows the longitudinal span of the influence due to the impact wheel load at the 
rail joint. It can be seen that the longitudinal span of the influence is almost 4m, and there are 
not much difference between each case. Based on these results, the plain section, i.e. the sec-
tion which is not affected by the rail joint, can be defined as a section more than a span of 4m 
away from the rail joint. Though length of this span absolutely depends on the given condition, 
this span is one of the reference values about the rail joint section. In the future, we must clar-
ify the generality of the longitudinal span of the influence of the impact wheel load at the rail 
joint by increasing the sample of the irregularity and the analysis parameters. 

 
(a) Basic case (80,110,130km/h) 

 
(b) Effect of wheelset mass and PC sleeper support condition (130km/h) 

Figure 13: Longitudinal span of the influence of the impact wheel load at rail joint. 

4 CONCRUSIONS 

This research focused on the impact wheel load at the rail joints. We carried out field 
measurement in an operating line and numerical analyses, in order to reveal the dynamic re-
sponse characteristics of the PC sleeper. The knowledge and findings obtained in this research 
are summarized as below.  

 
 The field measurement results shows that the maximum bending moment of the PC 

sleeper at the rail joint during the train passing is almost four times larger than that in the 
plain section, and the maximum bending moment of the PC sleeper adjacent to the rail 
joint is almost 2.7 times larger than that in the plain section. Furthermore, the bending 
moment of type-6 PC sleeper varies depending on the measurement section. 

 The absolute value of negative bending moment at the center of the PC sleeper was larger 
than that of the positive bending moment at the rail seat of the PC sleeper. 
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 Results of the numerical analyses indicate that the dynamic amplification ratio of the rail 
joint PC sleeper at from 40km/h to 130km/h is larger than type-6 PC sleeper. Concretely, 
the rail joint PC sleeper was 1.4 times, type-6 PC sleeper was 1.2 times. 

 The longitudinal span of the influence of the impact wheel load at the rail joint is almost 
4m. 

In the future, we will reflect the concept of these knowledge and findings in the design of 
the PC sleeper. 
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Abstract. As a main background practical context of the present numerical investigation, the
appropriate description of track vibrations induced by high-speed trains looks crucial in con-
temporary railway engineering. The present paper is concerned with the modelization of the
transient dynamic response of a simply-supported Euler-Bernoulli beam resting on a homoge-
neous in space Winkler elastic foundation, under the action of a transverse concentrated load
with harmonic-varying magnitude, moving at constant velocity along the beam. Two types of
constitutive laws are considered for the foundation subgrade reaction: (a) a linear law and (b)
a nonlinear, cubic law. The governing linear/non-linear partial differential equation of motion
is first semi-discretized in space with a Finite Element Method approach, by using cubic Her-
mitian polynomials as interpolation functions for the unknown deflection. Then, the dynamic
solution is obtained numerically by a direct integration method, with focus on determining sev-
eral characteristic response features, such as the critical velocities of the moving load, leading
to high transverse deflections. Extensive numerical analyses are finally performed, with the
following two main goals: (1) to demonstrate the reliability, consistency and accuracy of the
present implementation, specifically by the comparison of the obtained numerical critical ve-
locities with previously-published analytical and numerical results; (2) to investigate how the
frequency of the harmonic moving load as well as its velocity do influence the response of the
whole beam-foundation system, with or without taking viscous damping into account. Results
show that such goals have been consistently achieved and outline new interesting trends, like
the appearance of two critical velocities also for the nonlinear foundation, the first of which gets
close to zero as the frequency of the load approaches the first natural frequency of the beam.
The present outcomes reveal potential implications in practical terms, especially in lowering
the ranges of admissible train speeds, as for structural requirement or for preventing passenger
discomfort.
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1 INTRODUCTION

The observed ground, beam and track vibrations, induced by rapidly-growing high-speed
railway networks and the considerable evolution of train vehicles capable to travel at more
than500 km/h may degrade rolling equipment and track and raise questions about vehicle sta-
bility, maintenance costs and possible passenger discomfort. For these reasons many studies
have been carried out in the last few decades towards the prediction of the dynamic behavior
of railway beams and tracks. Amongst the prevailing models, the most diffused one considers
the train vehicle as a single load traveling at constant velocity on a beam supported by an elas-
tic foundation (see Kerr [13]). Comprehensive literature reviews about the problem of moving
loads acting on beams may be found in Beskou and Theodorakopoulos [2], Frýba [11], Kerr [13]
and Wang et al. [20].

The main scope of the elastic foundation model is that of providing a simplified description of
the contact between the rail and the sleepers-ballast-ground system. Based on the well-known
Winkler model, the foundation is represented as a uniform layer of infinitely closely-spaced
springs, which, according to its original formulation, push up/pull down the beam with a force
linearly-proportional to the beam deflection (see e.g. Froio and Rizzi [9] and wide state of the
art review, with historical perspective, presented therein).

Concerning the analysis of beams lying on a damped or undamped Winkler elastic founda-
tion, excited by a moving load, different approaches have been adopted so far. One of the most
common modelizations is to consider the steady-state response of infinite beams subjected to
a constant magnitude moving load (see e.g. Frýba [11]), as well as to a moving load with
harmonically-varying amplitude, as reported by Bogacz et al. [3]. Similar results were also ob-
tained by Chen et al. [6], by using the dynamic stiffness matrix method in the description of the
influence of the structural parameters and of the load frequency on the critical velocities of the
beam. A further extension of this work was then reported by Chen and Huang [7], for the case
of a beam of finite length.

Besides analytical solutions and other numerical methods, in the past two decades the Finite
Element Method (FEM) has been widely used for solving structural dynamic problems involv-
ing moving loads. Combined with the Finite Element Method, the numerical direct integration
in time appears one of the most common approaches for the solution of the equations of motion
in the time domain. For instance, FEM and Newmark method were applied successfully by
Thambiratnam and Zhuge [19] for a constant amplitude moving load and by Kien and Hai [14]
for a harmonic moving load. Following a FEM approach, Andersen et al. [1] treated the steady-
state response of an infinite Euler-Bernoulli beam lying on a viscoelastic foundation, subjected
to a harmonic point load moving with uniform velocity.

Regarding beams of finite length, simply-supported beams on nonlinear viscoelastic founda-
tions were tackled by Castro et al. [4, 5]. Critical velocities were determined and the effects of
load intensity and foundation stiffness on both beam displacements and critical velocity were
investigated. The results they presented were in agreement to those shown earlier by Dimitro-
vová and Rodrigues [8] for a linear elastic foundation.

The present paper is concerned with the transient dynamic response of a simply-supported
Euler-Bernoulli beam resting on a homogeneous in space Winkler elastic foundation under the
action of a transverse concentrated load with harmonic-varying magnitude, moving at constant
velocity along the beam. Two types of constitutive laws are considered for the foundation
subgrade reaction: (a) a linear law and (b) a nonlinear, cubic law. The dynamic response is
obtained numerically by using a FEM implementation and a HHT-αalgorithm for the time
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integration. Then, critical velocities are determined for bothtypes of foundation, by considering
different values of the frequency of the moving load.

The purpose of the present paper is two-fold. Firstly, this work aims at demonstrating the
reliability, consistency and accuracy of the present implementation, by the comparison of the
obtained numerical critical velocities to results reported by earlier Castro et al. [4] and by Chen
et al. [6]. Secondly, extensive numerical analyses are performed to study the effects of the
frequency of the moving load, of its velocity and of the foundation behavior, on the response
of the whole beam-foundation system, with or without viscous damping, outlining here new
results for the nonlinear foundation case.

The paper is organized as follows. Section 2 presents the governing boundary value problem
for the linear/nonlinear partial differential equation of motion of a simply-supported beam on
elastic foundation and its semi-discretization in space through a FEM formulation and imple-
mentation. In Section 3 the outcomes of a series of independent numerical analyses relative
to the case of a constant amplitude moving load are presented and consistently compared to
results reported in the literature. Section 4 provides the outcomes of a vast numerical investiga-
tion on the dynamic response of beams lying on visco-elastic foundations, subjected to a force
which moves along the beam axis at constant velocity and simultaneously varies its amplitude
in time on the basis of a harmonic law. In particular, the relationship between the amplitude
frequency of the moving load and the critical velocity of the beam-foundation system is explic-
itly depicted in appropriate bifurcation curves, for both linear and nonlinear elastic foundations.
Finally, main conclusions are outlined in closing Section 5.

2 MODEL EQUATION AND FINITE ELEMENT FORMULATION

Consider the idealized system shown in Fig. 1, consisting of a simply-supported finite beam
lying on a Winkler elastic foundation under the action of a concentrated force of magnitudeF
(either constant or variable in time), moving with constant velocityv. The force is assumed
positive if directed upward. The following assumptions are adopted throughout the formulation:

1. Euler-Bernoulli beam model with Young’s modulus (E), cross section area (A), moment
of inertia (I) and mass density (ρ), assumed constant along the beam axis;

2. Viscous damping smeared onto both the beam and the foundation, with constant damping
coefficient (c);

3. Beam at rest with zero initial deflection and velocity at the instant when the force leaves
from the left support of the beam.

From these assumptions, the equation of motion describing the transverse deflection of the
beam is (see Frýba [11]):

EI
∂4w(x, t)

∂x4
+ρA

∂2w(x, t)

∂t2
+c

∂w(x, t)

∂t
+r

(

w(x, t)
)

=F (t)δ(x−vt); 0 < x < l, t > 0; (1)

wherex is the axial coordinate, with the origin fixed on the left end of the beam,t is the
time coordinate, with the origin at the instant on which the force starts its motion from the left
extreme of the beam (x= 0), w(x, t) is the vertical deflection of the beam (positive if upward),
measured from the static equilibrium position of the beam subjected to its self-weight only,
acting downward, andr(w) is the reaction force per unit length supplied by the foundation.
The right hand side of Eq. (1) represents, by means of the Dirac delta functionδ, the unit
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Figure 1: Simply-supported finite beam lying on an elastic foundation subjected to a moving
force.

concentrated moving load acting at timet at relative positionvt, with either constantF (t) = F
or variable amplitudeF (t) = F cos(Ωt), whereF is its reference amplitude andΩ is the angular
frequency of the harmonic amplitude variation in time.

According to Castro et al. [4] and many other authors the adopted force-displacement relation
for the foundation may be described by the following polynomial cubic law:

r
(

w(x, t)
)

= kl w(x) + knl w(x)
3; (2)

wherekl is a classical linear Winkler coefficient andknl describes an additional nonlinear stiff-
ness coefficient attached to the cubic term.

By means of cubic Hermitian polynomials as interpolation functions and by the application
of Galerkin Finite Element Method, equation of motion (1) may be rewritten for an arbitrary
finite element in semi-discretized form. Then, by assembling the contributions from all of the
finite elements and imposing the boundary conditions of zero transverse displacements at the
two extreme nodes of the beam, the global equations of motion are obtained as:

Mq̈+Cq̇+Kq+Qnl(q) = FΨ(xc); (3)

whereM andK are the global structural mass and stiffness matrices,Qnl is the global vector of
the nonlinear forces,Ψ(xc) is the vector deriving from the assembly of the element-wise vectors
of equivalent external forces produced by the Dirac delta function,q, q̇ and q̈ are the global
vectors of the generalized displacements, velocities and accelerations, respectively. Both mass
and stiffness matrices are symmetric and positive definite. The previously-defined matrices and
vectors have been obtained according to the work of Castro et al. [4, 5].

The viscous damping termCq̇ has been added to Eq. (3) to account for smeared damping.
Rayleigh-type damping is assumed, e.g. the damping matrixC is defined as a linear combina-
tion of the mass and stiffness matrices:

C = a0M+ a1K. (4)

The values of the coefficientsa0 anda1 have been chosen accordingly to Dimitrovová and Ro-
drigues [8] as follows:

a0 = 2ξ

√

2kl
ρA

; a1 = 0;

whereξ is the damping factor. Coefficienta1 is taken null, meaning that a mass-proportional
viscous damping is considered.
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Hence, the semi-discrete equations of motion (3) represent a coupledsystem of linear second-
order differential equations with constant coefficients, whose solution, given the initial condi-
tions, represents the transient response of the beam. In this work, the following homogeneous
initial conditions are assumed:

q(0) = 0; q̇(0) = 0. (5)

The numerical solution of the initial-value problem satisfying Eqs. (3), (5) has been achieved
through a HHT-αimplementation (see Hilber et al. [12]). The main methodologies and compu-
tational details about the implementation will be reported elsewhere (Froio et al. [10]).

3 CONSTANT AMPLITUDE MOVING LOAD: VALIDATION OF THE FEM FOR-
MULATION

In this section, a concentrated load of constant magnitudeF (t) = F , namelyΩ = 0, moving
along the beam axis with constant velocityv, is considered. A consistent validation comparison
between the present numerical analyses, in terms of maximum upward and downward beam dis-
placements versus load velocity, and analogous studies proposed in the literature is performed.
In particular, results obtained by Castro et al. [4] for both linear and nonlinear foundation be-
haviors have been taken as reference outcomes, since their work has been lying at the basis of
the present investigation.

The type of analyzed beam is a UIC60 rail (see Fig. 2a), one of the most diffused steel
profiles in railway tracks. Its mechanical properties are reported in Fig. 2b. A beam length (L)
of 200 m has been selected in order to reasonably represent the limit case of a beam of an infinite
length. The assumed load magnitude is 83.4 kN, corresponding to a locomotive of the Thalys
high-speed train (EU), which has a total axle mass of about 17000 kg (see Castro et al. [4]). The
number of adopted finite elements is 200, i.e the spatial discretization consists of finite elements
with a length of 1 m.

Computations are performed for velocities of the moving load varying between 50 m/s and
300 m/s with a step variation of 1 m/s. For each simulation performed at a certain value of
the moving load velocity, the maximum upward (positive) and downward (negative) displace-

(a) (b)

Mechanical properties:
Young’s modulus E 210 GPa
Cross-sectional area A 7684× 10−6 m2

Area moment of inertia I 3055× 10−8 m4

Mass per unit length µ 60 kg/m

Figure 2:UIC60 rail profile (taken from the internet), quotes in millimeters (a) and mechanical
properties of UIC60 rail (b).
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ments of the beam have been recorded. Then, these values have beenplotted as a function of
the moving load velocity. From such curves the critical velocity for a finite beam may be de-
tected as the velocity of the moving load at which maximum displacements are attained (see
Dimitrovová and Rodrigues [8]).

Regarding aspects of numerical integration, the time span taken throughout the integration
process corresponds to the amount of time along which the moving load is really acting along
the beam, that isτ = L/v. The adopted time step corresponds to the time taken by the load to
travel a distance of 0.2 m, namely a fifth of the finite element length. The HHT-αparameter
expressing the numerical dissipation rate is chosen equal to−0.1. The finite element program
has been implemented within a MatLab environment [16].

3.1 Beams lying on a linear elastic foundation

A uniform linear elastic foundation is considered, with two different values of Winkler’s
elastic coefficient equal tokl = 250 kN/m2 andkl = 500 kN/m2, respectively. Both undamped
and damped behaviors are taken into account, assuming the damping factorζ in the amount
of 2%. As already noticed by Dimitrovová and Rodrigues [8], both foundation stiffness values
are actually not that realistic, but they may be adopted in order to achieve a more direct inspec-
tion of the critical behavior of the system. The results obtained for the case of a beam on an
undamped foundation with the two linear Winkler stiffness coefficients are shown in Fig. 3a.
The same results for the damped case are reported in Fig. 3b.

From the observation of these plots, the critical velocity may be clearly detected and the cor-
responding maximum and minimum displacements are indicated in Tables 1 and 2. It appears
that the value of the critical velocity is weakly sensitive to the damping factor, while it affects
more the magnitude of the maximum and minimum displacements. From Figs. 3a and 3b, it
appears clear that increasing the stiffness of the foundation causes a shift in the position of the
critical velocities towards higher values, in addition to the expected effect of decreasing the
deflection amplitudes.
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Figure 3: Representation of beam maximum displacements as a function of load velocity for
linear elastic foundations with stiffnesses ofkl = 250 kN/m2 ( upward and downward
displacements)andkl = 500 kN/m2 ( upward and downward displacements), undamped
caseζ = 0% (a) and damped caseζ = 2% (b).
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vcr (m/s) wmax (m)
ζ Present work Ref. [4] Error Present work Ref. [4] Error

0%
206 206 0.00% −0.6999 −0.700 −0.01%

208 208 0.00% 0.5873 0.587 0.05%

2%
206 206 0.00% −0.4189 −0.419 −0.02%

208 208 0.00% 0.3117 0.312 −0.01%

Table 1: Maximum displacements and critical velocities for a linear foundation with stiffness
kl = 250 kN/m2. Percentage relative error with respect to Castro et al. [4].

vcr (m/s) wmax (m)
ζ Present work Ref. [4] Error Present work Ref. [4] Error

0%
245 245 0.00% −0.4649 −0.465 −0.02%

246 246 0.00% 0.3950 0.395 0.00%

2%
245 245 0.00% −0.2582 −0.258 0.08%

246 246 0.00% 0.1922 0.192 0.10%

Table 2: Maximum displacements and critical velocities for a linear foundation with stiffness
kl = 500 kN/m2. Percentage relative error with respect to Castro et al. [4].

The comparisons between the outcomes depicted in Figs. 3a and 3b and gathered in Ta-
bles 1 and 2, if compared to those reported in Castro et al. [4], reveal a very good agreement,
for both damped and undamped cases. Furthermore, in view of the results above, it may be
noticed that a good degree of consistency has been also achieved with respect to the analytical
solution proposed by Dimitrovová and Rodrigues [8].

3.2 Beams lying on a nonlinear elastic foundation

Two examples of nonlinear foundations are examined in this section: one with a nonlinear
component of foundation stiffnessknl = 2500 kN/m4 and another withknl = 25000 kN/m4.
The assumed linear component of foundation stiffness iskl = 250 kN/m2 for both examples.
The computed results are shown in Fig. 4a and 4b for both undamped and damped (ζ= 2%)
cases.

Comparing these plots to those depicted for a linear foundation, it can be seen that the ad-
dition of the nonlinear contribution to the foundation stiffness results in an increment of the
critical velocities. Moreover, a decrease of the maximum upward and downward displacements
is detected. The inclusion of damping brings a further decrease of the maximum displacements
entity, together with a small decrease of the critical velocities.

For the nonlinear type of foundation the values of the critical velocities are not explicitly in-
dicated by Castro et al. [4]. Nonetheless, the results obtained with the implemented method are
matching the deflection curves and the maximum values of displacements reported in that work.
The values of critical velocities, maximum displacements and percentage relative errors upon
the latter are reported in Table 3, for a foundation with nonlinear stiffnessknl = 2500 kN/m4,
and in Table 4, for a foundation with nonlinear stiffnessknl = 25000 kN/m4.

The results reported in this section are preliminary to the analysis with a harmonic moving
load, which represents the core of this work and will be presented in Section 4. In fact, first the
concept of critical velocity of a constant amplitude moving load for a finite simply-supported
beam has been again outlined and its dependence on the mechanical parameters of the systems,
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already reported in the literature, has been confirmed. Second,thanks to the previously-reported
results, the present finite element implementation reveals to be fully reliable with respect to the
outcomes presented by Castro et al. [4] and by Dimitrovová and Rodrigues [8], proving its
correctness.

(a)

v(m/s)
50 100 150 200 250 300

w
m
a
x
(
m
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b)

v(m/s)
50 100 150 200 250 300

w
m
a
x
(
m
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 4: Representation of beam maximum displacements as a function of load velocity for
nonlinearelastic foundations with linear stiffness coefficientkl = 250 kN/m2 and nonlinear
stiffness coefficientsknl = 2500 kN/m4 ( upward and downward displacements) and
knl = 25000 kN/m4 ( upward and downward displacements), undamped caseζ = 0% (a)
anddamped caseζ = 2% (b).

vcr (m/s) wmax (m)
ζ Present work Ref. [4] Error

0%
220 −0.3999 −0.400 −0.02%

220 0.3497 0.349 0.20%

2%
215 −0.3064 −0.306 0.10%

217 0.2421 0.242 0.04%

Table 3: Maximum displacements and critical velocities for a nonlinear elastic foundation
with kl = 250 kN/m2 and knl = 2500 kN/m4. Percentage relative error with respect to Cas-
tro et al. [4].

vcr (m/s) wmax (m)
ζ Present work Ref. [4] Error

0%
245 −0.2042 −0.204 0.10%

246 0.1861 0.186 0.05%

2%
241 −0.1832 −0.183 0.10%

242 0.1497 0.150 −0.20%

Table 4: Maximum displacements and critical velocities for a nonlinear elastic foundation
with kl = 250 kN/m2 andknl = 25000 kN/m4. Percentage relative error with respect to Cas-
tro et al. [4].
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4 HARMONIC MOVING LOAD

In the present section the main effects of the load frequency of the harmonic-varying mag-
nitude of the moving load on the displacements of the beam and on the critical velocities are
outlined. In order to obtain values of beam displacements and critical velocities representative
of real railway supports, more realistic values of foundation stiffness have been adopted for the
numerical simulations presented herein, with respect to those reported in Section 3.

Regarding the load frequency range, according to Chen et al. [6] the frequency (Ω) shall be
always lower than 420 rad/s in nowadays engineering problems. Consequently, the computa-
tions have been performed in the range from 0 rad/s to 440 rad/s, with intervals of 40 rad/s.
For each of these frequencies, the maximum upward and downward beam displacements have
been computed, for velocities of the moving load starting from 10 m/s to 600 m/s, at speed
intervals of 10 m/s. Then, when the neighborhood of the position of the critical velocity has
been approximately recognized, the velocity step is further refined to 1 m/s, for reaching locally
a better accuracy. Although the upper bound of the selected range of moving load velocity is
clearly unattainable by today railway transports, its adoption looks necessary in order to prop-
erly capture more than one critical velocity.

The number of adopted finite elements is 400 (twice as in the previous analyses), each one
with a length of 0.5 m. It is worth to point out that for some of the simulations presented in
this section, the results retrieved with a time step chosen accordingly to the criterion given by
Castro et al. [4], namely choosing the time step as the time taken by the load to travel a fifth of
a finite element length, are actually characterized by a low accuracy. Therefore, a lower time
step, equal to10−4 s, has been adopted for all the numerical analyses presented in this section.
Further information and data are extensively reported in Moioli [17].

4.1 Beams lying on a linear elastic foundation

First, a uniform linear elastic foundation is considered, with a value of Winkler linear elas-
tic coefficient (kl) equal to104 kN/m2. The relationship between beam maximum upward and
downward displacements and load velocities, retrieved for an undamped and a damped founda-
tion, is shown in Fig. 5.

It is noticeable that, as the amplitude of the moving load starts oscillating with frequencyΩ,
the critical velocities might be either one or two within the displayed range of velocities. In
particular, the higher critical velocity (vcr2) increases and quickly moves towards the upper
limit of the plot as the load frequency increases. Conversely, the lower critical velocity (vcr1)
decreases until reaching zero at a very high load frequency. Such value corresponds to the
lowest natural frequency of a simply-supported beam lying on a linear elastic foundation, which
is defined as (see Frýba [11]):

ω1 =

√

π4

L4

EI

m
+

kl
m

= 408.5m/s.

The interpretation of this result is straightforward: in fact, it is well known that a fixed load
oscillating at the same natural frequency of the beam causes the resonance of the system.

A comparison between the results for the undamped foundation and those for the damped
foundation reveals that, as for the case of a moving load with constant magnitude, the maximum
beam displacements of the damped foundation are much smaller and much more difficult to be
defined, with respect to those computed for the undamped foundation. The latter observation
may be clearly visualized in Fig. 5, where multiple little peaks appear in the neighborhood of
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(c) Ω = 80 rad/s
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(h) Ω = 280 rad/s
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(i) Ω = 320 rad/s
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(j) Ω = 360 rad/s
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Figure 5: Representation of beam maximum displacements as a function of load velocity and
frequency for undamped ( ) and damped ( ) linear elastic foundations with stiffness of
kl = 104 kN/m2.

thecritical velocity. These oscillations point out that an even more refined time step is needed
for obtaining a better accuracy in the local definition of the peaks. Critical velocities are instead
much less affected by damping.

The relationship between the frequency of oscillation of the moving load and the critical
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velocity is explicitly depicted in Figs. 6a and 6b. These bifurcationcurves have been established
by fitting the values of the critical velocity computed at the different frequencies of the load.
The fitting is performed by adopting the following proposed models for the lower and higher
critical velocities, respectively:

vcr1 = a1 + a2 Ω + a3 e
a4Ω; (6)

vcr2 = b1 + b2 Ω + b3 Ω
2. (7)

The four coefficients of the first expression are retrieved with a nonlinear least squares regres-
sion method, while the three of the second expression are achieved with a linear least squares
regression method, performed by using the curve fitting built-in function in MatLab. The com-
puted values of the coefficients in Eq. (6) and Eq. (7) for the undamped system are:

a1 = 521.8 m/s, a2 = −0.9206 m/rad, a3 = −2.694 m/s, a4 = 9.559× 10−3 s/rad;

b1 = 516.9 m/s, b2 = 0.9750 m/rad, b3 = −1.250× 10−3 ms/rad2.

The fitted curves for the undamped linear elastic foundation are plotted in Fig. 6a. This figure
shows also bifurcation curves computed in accordance with the analytical solution developed
by Chen et al. [6]. The comparison between the fitted curves and the analytical result reveals
a very good agreement, providing a further verification of the reliability of the present finite
element implementation, even for the case of a variable load.

Even though the determination of the coefficients in Eqs. (6), (7) require a significant amount
of computational time, they show explicitly the critical velocities as a function of the load fre-
quency, differently from the implicit formulation developed by Chen et al. [6]. Furthermore, the
obtained models for the critical velocity/load frequency pairs are much simpler than their ana-
lytical counterparts proposed by Chen et al. [6], which involve cumbersome complex irrational
fractions of polynomials containing the mechanical parameters of the system.

It is important to notice that the solution by Chen et al. [6] presents a third branch, on the
right of the first natural frequency of the beam (408 rad/s). Nevertheless, as already proven by
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Figure 6: Critical velocity and load frequency pairs for undamped and damped linear elastic
foundations with stiffness ofkl = 10000 kN/m2. Results computed with: (×) finite element
implementation;( ) fitted curves; ( ) analytical solution by Chen et al. [6].
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Kim [15], the critical velocities represented by such a branchcannot be detected from the plots
of the maximum displacements versus load velocity, because no peak of displacement corre-
sponds to these velocities in a finite beam. Therefore, it is not necessary to perform numerical
simulations for load frequencies higher than the first natural frequency of the beam.

Bifurcation curves for critical velocity and frequency pairs have also been obtained for the
case of a damped (ζ= 2%) linear elastic foundation. The adopted fitting models have been the
same as those employed for the undamped foundation, i.e. those defined by Eq. (6) and Eq. (7).
The coefficients computed for the damped foundation are:

a1 = 522.6 m/s, a2 = −0.9698 m/rad, a3 = −0.9883 m/s, a4 = 1.116× 10−2 s/rad;

b1 = 517.9 m/s, b2 = 0.8875 m/rad, b3 = −3.125× 10−3 ms/rad2.

The corresponding curves are plotted in Fig. 6b. In this case the critical velocity has not
been reported by Chen et al. [6]. Nonetheless, comparing the curves obtained in accordance
to Chen et al. [6] for the undamped case to those fitted from the numerical results, it can be seen
that the level of damping is almost ineffective on the value of the critical velocity.

4.2 Beams lying on a nonlinear elastic foundation

For the nonlinear foundation model the assumed linear and nonlinear parameters defining the
foundation stiffness arekl = 5×103 kN/m2 andknl = 2×106 kN/m4, respectively. These values
are selected in such a way that to provide a foundation model that is more compliant with respect
to that of the linear elastic foundation for small beam displacements and, at the same time, stiffer
for large displacements, as proposed by many authors (see e.g. Nguyen and Duhamel [18]).

Fig. 7 shows the retrieved results for damped and undamped nonlinear elastic foundations.
It can be seen that, as in the case of a linear foundation, a second critical velocity appears for a
harmonic variation of the moving load amplitude. A comparison between the graphs in Fig. 7
and their counterparts in Fig. 5 for the linear foundation, reveals that lower critical velocities
and associated smaller maximum deflections are retrieved for the case of a nonlinear elastic
foundation. For a foundation with viscous damping, a decrease of the maximum displacements
can be observed, together with a small decrease of the critical velocities.

Bifurcation curves describing the relationship between critical velocities and load frequency
are established in an analogous way as for the case of a linear elastic foundation. The adopted
models for the higher and the lower critical velocity curves are the same as those employed for
the linear foundation, in Eqs. (6)-(7). The coefficients computed for the undamped nonlinear
elastic foundation are:

a1 = 459.6 m/s, a2 = −1.139 m/rad, a3 = −4.5089 m/s, a4 = 8.007×−3 s/rad;

b1 = 456.9 m/s, b2 = 0.8082 m/rad, b3 = 4.018× 10−4 ms/rad2;

and, for the damped (ζ= 2%) nonlinear elastic foundation are:

a1 = 452.1 m/s, a2 = −1.084 m/rad, a3 = −4.991 m/s, a4 = 0.089 s/rad;

b1 = 443.9 m/s, b2 = 1.078 m/rad, b3 = −8.929× 10−4 ms/rad2.

Fig. 8 shows the curves retrieved for the undamped and the damped nonlinear foundation.
Comparing these plots to those reported previously in Fig. 6, it is clear that the relationship
between the critical velocities and the load frequency for linear and nonlinear elastic foundations
displays similar features. Nonetheless, in contrast with the case of a linear foundation, the
curves for the damped nonlinear foundation are slightly shifted downward, with respect to the
undamped ones.
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Figure 7: Representation of beam maximum displacements as a function of load velocity and
frequency for undamped ( ) and damped ( ) nonlinear elastic foundations with stiffnesses
of kl = 5× 103 kN/m2 andknl = 2× 106 kN/m4.
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Figure 8:Critical velocity and load frequency pairs for undamped and damped nonlinear elastic
foundationswith stiffnesses ofkl = 5× 103 kN/m2 andknl = 2× 106 kN/m4. Results computed
with: (×) finite element implementation; ( ) fitted curves.

5 CONCLUSIONS

In this work a finite element approach has been developed within a MatLab environment to
analyze the dynamic transient response of a simply-supported beam lying on linear or nonlinear
Winkler elastic foundation, subjected to a concentrated load moving at constant velocity with
either constant or harmonically-varying amplitude.

The extensive performed campaign of numerical simulations provided several interesting
findings and new outcomes about the behavior of high-speed rail tracks. The most significant
results may be summarized in the following itemized list:

• When the amplitude of the moving load is constant, the present finite element implemen-
tation has been proven to provide results that appear fully consistent to those reported by
Castro et al. [4].

• For all types of foundation, the beam maximum displacements at the critical velocities
initially decrease with the load amplitude frequency, before increasing sharply near the
natural frequency of the beam. Furthermore, when damping is included in the analy-
sis, no significant effects on the critical velocities are detected, while the amplitude of
displacements is lowered.

• When the beam is subjected to a moving harmonic load, two critical velocities are de-
tected, independently from the considered type of foundation behavior, either linear or
nonlinear. The two critical velocities tend to separate as the loading frequency increases.
The higher critical velocityvcr2 increases, starting from the value of the critical velocity
obtained for a constant magnitude load. On the contrary, the lower critical velocityvcr1
decreases, until it reaches zero for a frequency of the load equal to the first natural fre-
quency of the beam. This behavior may reveal potential implications in practical terms,
especially in lowering down the ranges of admissible train speeds, when the frequency of
oscillation of the moving load amplitude becomes high.

• The relationship between the moving load amplitude frequency and the critical velocity of
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the beam is portrayed in appropriate analytical bifurcation curves. These curves have been
achieved by fitting the values of the critical velocity computed at different frequencies of
the load variation, according to proposed variations with the amplitude frequency, with
calibrated best-fitted coefficients.

• For the case of a linear foundation, the obtained bifurcation curves show a very good
agreement to those available from the analytical approaches by Chen et al. [6]. In ad-
dition, the employed models for the description of the analytical bifurcation curves are
explicit and much simpler than those exact proposed by Chen et al. [6].

• The employed models for the description of the bifurcation curves are also appropriate
for the nonlinear case, with or without damping. The derived formulas are simple and
possibly workable in practice; they may supply a guideline for the design of railway
tracks when the magnitude of the moving load is oscillating in time.

It must be recognized that, in order to obtain a more realistic dynamic response of the system,
some further improvements of the modelization could be made. Real applications usually re-
quire extensions to infinite beams; it is then necessary to eliminate the effect of the supports, to
mitigate the perturbation induced by the boundary conditions and to prevent the reflection of the
traveling waves. This could be achieved by using appropriate absorbing boundaries. Further-
more, a real vehicle spring-mass-damper system interacting with the rail should be considered,
instead of a simple moving force. Finally, the assumption of symmetric behavior in tension
and compression for the foundation stiffness should also be relaxed, leading to the analysis of
a bilinear foundation. These issues will be the subject of on-going (Froio et al. [10]) and future
investigations.
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Abstract. In this contribution, a homogenized beam finite element of double symmetric cross-
section made of a Functionally Graded Material (FGM) is presented, which can be used for 
static, modal and buckling analysis of single beams and beam structures with three 
directional variation of material properties. The material properties in a real beam can vary 
continuously in longitudinal direction while the variation with respect the transversal and 
lateral directions is assumed to be symmetric in a continuous or discontinuous manner. The 
shear force deformation effect and the effect of inertia and rotary inertia are taken into 
account. Additionally, the longitudinally varying Winkler elastic foundation and the effect of 
axial force are included by the finite element equations as well. Homogenization of spatially 
varying material properties to effective quantities with a longitudinal variation is done by the 
extended mixture rules and multilayer method (MLM). For the homogenized beam the 1212 
finite element effective matrix, consisting of the linearized stiffness and consistent mass 
inertia terms, is established. Numerical experiments are made concerning static, modal and 
buckling analyses of single FGM beam and beam structures to show the accuracy and 
effectiveness of the proposed FGM beam finite element. 
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1 INTRODUCTION 

Important classes of structural components, where FGM is used, are beams and beam 
structures. FGM beams play an important role not only in classical structural applications, but 
we can find many applications in thermal, electric-thermal or electric-thermal-structural 
systems (e.g. micro-electro-mechanical systems (MEMS) as sensors and actuators and other 
mechatronic devices). In all these applications, using new materials like FGM can greatly 
improve the efficiency of the systems. FGM is built as a mixture of two or more constituents 
whose particles have almost the similar form and dimensions (powder, plasma particles, etc.). 
The continuous or multilayered variation of macroscopic material properties can be caused by 
varying the volume fraction of the constituents or by varying the constituent's material 
properties (e.g. by a non-homogeneous temperature field). In the literature a huge amount of 
papers can be found which deal with modeling and simulation of static and dynamic problems 
of FGM beams. 

The latest results of theoretical research on statics and vibration and loss of stability of 
FGM and composite beams are presented for example in the articles [1-13].The first 
significant feature of the references [1-8] (and also of those published in the previous period) 
is that variation of material properties is considered only in one direction, usually along the 
beam thickness, and exceptionally in the longitudinal direction of the beam. The second 
feature of these works is that they are analyzed only a simple planar beams with rectangular 
cross-section. The third feature of most of these works is that their fundamental equations are 
based on the equations of plane stress state in a continuum with varying material properties 
which are simplified for the solution of the beams. In [9-12], general formulations for non-
uniform shear warping are presented and an advanced 2020 stiffness matrix and the 
corresponding nodal load vector of a member of arbitrary composite cross section is 
developed, taking shear lag effects into account due to both flexure and torsion. In [13], a 
static analysis of three-dimensional FGM beams by hierarchical modeling and a collocation 
meshless solution method is presented. 

With regard to our work in the past period in the field, we presented in [14-16] a solution 
of free vibration of a single 2D FGM beam with continuous planar polynomial variation of 
material properties (in axial and transversal direction) by a fourth-order differential equation 
of second order beam theory. The focus of these publications is laid on a new concept for 
expanding the second order bending beam theory considering the shear deformation according 
to Timoshenko beam theory. There, the shear deformation effect in FGM beams with planar 
continuous variations of material properties is originally included by means of the average 
shear correction factor that has been obtained by an integration of the shear correction 
function [17]. A continuous polynomial variation of the effective elastic modulus and the 
mass density is considered by continuous polynomial planar variation of both the volume 
fraction and material properties of the FGM constituents. The choice of a polynomial 
gradation of material properties enables an easier integration of the derived differential 
equation and allows to model practically realizable variations of material properties. The 
effect of consistent inertia and rotary inertia, and the effect of axial forces are taken into 
account as well. 

As mentioned above, many time published papers registered e.g. in the Web of Science 
database, deal with static and dynamic and buckling analysis of the FGM single planar beam 
with transverse variation of material properties only. Less attention is paid on both the 
longitudinal and lateral variations of material properties. The authors failed in finding more 
papers which deal with analysis of single beams or spatial beam structures made of FGM with 
spatial variation of material properties (in three directions). 
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The proposed contribution is a continuation of our previous papers [14-18].  The derivation 
of the FGM beam finite element equations suitable for static, modal and buckling  analyses of 
single beams or spatial beam structures made of spatially varying FGM (in longitudinal and 
transversal and lateral direction) is presented. From the differential equations of axial, flexural 
and torsional deformation of the FGM beam with longitudinally varying material properties 
the transfer relations and following the local and global finite beam element matrices are 
established. Effects of axial and shear forces are included as well as the longitudinally varying 
Winkler elastic foundation and inertia loads. Homogenization of the spatially varying material 
properties in the real FGM beam and calculation of their effective values are done by 
extended mixture rules and by the multilayer method (MLM) [18,25]. This method can also 
be used in the homogenization of multilayer beams with symmetrically discontinuous 
(multilayered) variation of material properties in transversal and lateral direction. In the modal 
and buckling analysis an eigenvalue problem is solved. Numerical experiments are performed 
to calculate the elastostatic and modal response and the critical buckling force of chosen FGM 
beams and beam structures with rectangular and hollow cross-sections with spatial variations 
of material properties. The solution results are discussed and compared to those obtained by 
means of very fine 3D – solid and beam finite element meshes of the software ANSYS 
Workbench [34].  
The novel aspects of the current paper are: 

 extension of the MLM to homogenization of the spatially (polynomial) varying 
material properties (continuously in longitudinal and symmetrically in transversal 
and lateral direction (continuously or multilayered)) for calculation of the effective 
longitudinally varying elasticity modules for axial and flexural and torsional 
loading, and the competent effective mass-densities; 

 extension of the second order beam theory and the uniform torsion theory on static, 
modal and buckling analysis of FGM beams with spatial variation of material 
properties (in three directions); 

 including the effects of the shear and axial forces, as well as the longitudinally 
varying Winkler elastic foundations; 

 derivation of the transfer relations for the 3D straight FGM beam (with 
homogenized longitudinal variation of the effective material properties) of doubly 
symmetric cross-section; 

 establishing of the 1212 effective finite element matrix of the 3D FGM beam 
(with homogenized longitudinal variation of the effective material properties) 
consisting of the linear and linearized geometric stiffness and consistent mass 
inertia terms; 

 performing of the numerical experiments concerning the static and modal and 
buckling analysis of the FGM beams and beam structures with spatially varying 
material properties. 

2 FINITE ELEMENT EQUATIONS OF THE 3D FGM BEAM 

Let us consider a straight beam element of doubly symmetric cross-section – Figure 1. The 
degrees of freedom at node i are: the displacements ui, vi, wi in the local directions x, y, z, and 
the cross-sectional area rotations about the x, y, z directions - iziyix ,,, ,,  . The degrees of 

freedom at the node j are denoted in a similar manner. The internal forces at node i are: the 
axial force Ni, the transversal forces iyR ,  and izR , , the bending moments iyM ,  and, the torsion 

moment ixM , .  
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Figure 1: The local internal variables, static and inertia and loads for transfer matrix and finite element methods. 

Furthermore,  xnn xx  denotes the axial force distribution,  xqq zz   and  xqq yy   are 

the transversal and lateral force distributions,    xmmxmm yyxx  ,  and  xmm zz   are the 

distributed moments,   zyx A denote the mass distribution, yy I  , zz I   

and pxT I   refer to the distributions of mass moments of inertia,   H

L

H

L x    is the 

homogenized effective mass density distribution, A is the cross-sectional area, yI and zI  are 

the second moments of area, zyp III  denotes the polar moment of area, 

         xkkxkkxkkxkkxkk zzyyzzyyxx  ,,,,  are the elastic foundation modules 
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(the torsional elastic foundation is not considered), and   is the circular frequency. The 

effective homogenized and longitudinally varying stiffness reads as follows:  AxEEA NH
L  is 

the axial stiffness (   NH

L

NH

L ExE  is the effective elastic modulus for axial loading), 

  y
HM

Ly IxEEI y  is the flexural stiffness about the y-axis (   HM

L

HM

L
yy ExE  is the effective 

elastic modulus for bending about axis y),   z
HM

Lz IxEEI z  is the flexural stiffness in axis z,   

(   HM

L

HM

L
zz ExE  is the effective elastic modulus for bending about axis z),   AkxGAG sm

y
H
Lyy   

is the reduced shear stiffness in y-direction (   H

Ly

H

Ly GxG   is the effective shear modulus and 
sm
yk is the average shear correction factor in y-direction),   AkxGAG sm

z
H
Lzz   is the reduced 

shear stiffness in z – direction (   H

Lz

H

Lz GxG   is the effective shear modulus and sm
zk is the 

average shear correction factor in z - direction),   T
HM

L IxG x  is the effective torsional stiffness,

  HM
L

HM
L

xx GxG   is the torsional elastic modulus and TI  is the torsion constant – Ip = IT for 
the circular and ring cross-section). The derivatives with respect to x of the relevant variable 
is denoted with an apostrophe “  ”  throughout the article. 

The differential equations for axial, transversal, lateral and torsional deformation and their 
solution are established according the Figure 1: Definition according the Transfer Matrix 
Method. The finite element equations of the 3D FGM beam are established from the transfer 
matrix relations according Figure 1: Definition according the Finite Element Method. 
 
2.1 Axial deformation 
 
Equation (1) results from the axial deformation problem of the FGM beam, including the 
specific case of harmonic oscillations (  xuu  is the axial displacement distribution,  xuu   

is its first derivative and  xuu   is its second derivative): 

  uknN xxx
2 , (1) 

 
EA

N
u  , (2) 

By combination of (1) and (2) we get the differential equation with non-constant polynomial 
coefficients 

 u u u xu u u n     2 1 0 , (3) 

with xuuu kAEEA  2
012 ,,  , and  xEE NH

L . The polynomial distributed axial 

force is: 
n

n

n

p
pk

x x ,k x , x , x , x ,p
k

n n x n x n x n x ... n x


      0 1 2
0 1 2

0

, where x,kn  are the values of the 

k-th derivative of the axial force xn at the beam node i. For the modal analysis of axial 

vibration the right hand side of (3) vanishes.  
The solution of (3) can be expressed by the polynomial transfer functions

 kN kNb b x , ( nk , p 0 2 ) for axial loading [19, 20]: 
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Here, iu is the axial displacement and iu is the value of first derivative of  u x  at node i. 

If the  xu  and iu  are replaced with the constitutive equation of the FGM beam (2), we get 
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1
1 1 0 1 2 1 3 2

0

2 1 0 2 2 1 2 3 2
0

, (5) 

where iE  is the initial value of the homogenized elastic modulus  xE NH

L  at node i.  

By setting Lx   in (5), the dependence of the nodal variables at node j on the nodal variables 
at node i are obtained. By appropriated mathematical operations and by considering the 
altered orientation of the local internal variables in FEM formulation (see Fig. 1), the local 
finite element equation for the axial loading (including the particular case of axial harmonic 
vibrations) are obtained (with i iN N  ): 

, ,
, ,

, , ,ii

jj , , , , ,
, , , ,

, ,

A A
B B F

A A AuN

uN A A A A A
B A B F A

A A A

   
                              

      

1 1 1 3
1 1 1 7 1

1 2 1 2 1 2

1 1 2 2 2 2 1 3 2 2
7 1 2 1 7 7 7 2 3

12 1 2 1 2

1

.  (6) 

 
It can be easy shown that the matrix B is symmetric. The terms of the matrix Band the loads 
vector F are calculated numerically using MATHEMATICA [21]. Their indices are 
deliberately numbered in order to indicate the position of the components in the local matrix 
and loads vector of the 3D beam finite element, which is established later. 
 
2.2 Flexural deformation about the y and z axis 

 
The differential equation of 4th order with non-constant coefficients of the homogenized FGM 
beam flexural transversal deformation (including the particular case of flexural harmonic 
vibrations) in the x-z plane (Figure 1) has the form [15]: 

  w w w w w Lxzw w w w w x            4 3 2 1 0  (7) 

with polynomial loads acting in the x-z plane 

max

, , , , , ,( ) ( )
myqz qz qz mypp p p ps

s k k k k k
Lxz Lxz s z k z k z k y k y k

s k k k k k

x x q x kq x k k q x m x km x    

     

           1 2 1

0 0 1 2 0 1

1 ,  

(8) 

where: ,Lxz s  are the  values of the k-th derivative of load polynomial (8) at the beam node i    

(s is the maximum degree of the polynomial); z,kq  are the  values of the k-th derivative of the 
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polynomial transversal force  xqq zz  , and y ,km are the  values of the k-th derivative of the 

polynomial moment  y ym m x at the beam node i ( qzp and myp  is the  maximum degree of 

the polynomials).For the modal analysis of flexural vibration the right hand side of (7) 
vanishes. Again,  xww   refers to the deflection curve in the zx plane. The derivation of 

the non-constant coefficients w0  to w4  and appropriated parameters of the differential 

equation (7) from the main coupled equations (9) and (10) of the 2nd order beam theory 
(including the inertia forces, shear and axial force) using the relation between the transversal 
and shear force (11) is described in [15, 17]. 

wwkqR zzz
2  yyyzy mQM  2   (9) 

e
yyy

y

y
y EIM

EI

M
   yzzz

z

z
y AGwAGQ

AG

Q
w      (10) 

   z
II

zz RwNkQ   (11) 

Here, zQ  is the shear force and NN II  is the resultant axial force of the 2nd order beam 

theory (it has a system character and has to be known). In our case, 
HM

L
yEE   is the 

homogenized elastic modulus for bending about y and H
LzGG   is the shear modulus in z-

direction. Further,  xyy   denotes the angle of cross-section rotation about they-axis. 

If the variation of the beam parameters is polynomial, the solution of the differential 
equation (7) based on the transfer functions [20] can be written as, 
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 4
0

. (12) 

There, jwb , jwb , jwb   and jwb  with ( 3,0j ),and s wb 4 , s wb  4 , s wb  4  and s wb 4 are the solution 

functions (so called the transfer functions for bending) of the differential equation (7). The 
dependence of the  xww  ,  xww   and  xww   on the    xMMx yyyy  ,  and 

 xRR zz   is described in [648], from which the transfer matrix expression is obtained 

 

, , , , i ,

, , , , y ,i ,y

, , , , y ,i ,y

, , , , z ,i ,z

A A A A w Aw( x )

A A A A A( x )

A A A A M AM ( x )

A A A A R AR ( x )


      
      
         
      
      

       

1 1 1 2 1 3 1 4 1 5

2 1 2 2 2 3 2 4 2 5

3 1 3 2 3 3 3 4 3 5

4 1 4 2 4 3 4 4 4 5

. (13) 

The kinematical and kinetic variables at node I are denoted by index i in (12). The terms A in 
(12) are established semi analytically using MATHEMATICA [21].  
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 By setting Lx   in (13) the dependence of the nodal variables at node j on the nodal 
variables at node i are obtained. Then, using appropriate mathematical operations and by 
considering the altered orientation of the local internal variables in FEM formulation (see Fig. 
1), the local finite element equations for the deflection (in particular case for the flexural free 
vibration) about the y-axis read (with z ,i z ,iR R  , y ,i y ,iM M  , y ,i y ,i    and y , j y , j    ), 

 

i, , , ,z ,i

y ,i, , , ,y ,i

j, , , ,z , j

y , j, , , ,y , j

wB B B BR F

B B B BM F

wB B B BR F

B B B BM F





      
      
              
      

        

3 3 3 6 3 9 3 12 3

5 2 5 5 5 8 5 11 5

9 3 9 6 9 9 9 12 9

11 2 11 5 11 8 11 11 11

. (14) 

Indices in matrix B and Fare deliberately numbered to indicate the position of members of the 
components in the local matrix of 3D beam finite element, which is shown later. The terms of 
matrix B and F have to be evaluated numerically. It can be easy shown that the matrix B is 
symmetric. 

The differential equation of 4th order with non-constant coefficients for the homogenized 
FGM beam flexural deformation (including the particular case of lateral flexural harmonic 
vibrations) in the x-y plane (Figure 1), can be derived similarly to the previous case: 

  v v v v v Lxyv v v v v x            4 3 2 1 0 , (15) 

with polynomial loads acting in the x-y plane 

max

, , , , , ,( ) ( )
m mqz qz qz p pp p ps

s k k k k k
Lxy Lxy s y k y k y k z k z k

s k k k k k

x x q x kq x k k q x m x km x    

     

           1 2 1

0 0 1 2 0 1

1 , 

(16) 

where: ,Lxy s  are the  values of the k-th derivative of load polynomial (16) at the beam node i 

(s is the maximum degree of the polynomial); y,kq  are the  values of the k-th derivative of the 

polynomial transversal force  y yq q x  and z,km  are the  values of the k-th derivative of the 

polynomial moment  z zm m x  at the beam node i ( qyp and mzp  is the  maximum degree of 

the polynomials). ). For the modal analysis of flexural vibration the right hand side of (15) 
vanishes.  
Again,  xvv   is the deflection curve in yx  plane. Its derivatives with respect to x are 
denoted by an apostrophe. 
By appropriated mathematical operations (similarly to the previous case) the local finite 
element equations for the flexural lateral deflection (in x-y plane) are obtained, 

 

i, , , ,y ,i

z ,i, , , ,z ,i

j, , , ,y , j

z , j, , , ,z , j

vB B B BR F

B B B BM F

vB B B BR F

B B B BM F





      
      
              
      

        

2 2 2 6 2 8 2 12 2

6 2 6 6 6 8 6 12 6

8 2 8 6 8 8 8 12 8

12 2 12 6 12 8 12 12 12

. (17) 

It can be easy shown that the matrix B is symmetric. 
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2.3  Uniform torsional deformation  

The differential equations of uniform torsion of a beam are formulated according the Figure 1 
and have a form, 

 xp
H
Lxx ImM  2 , (18) 

 
T

x
x GI

M
 . (19) 

Here,  xxx   is the angle of twist about x - axis and  xxx   is its first derivative. 

By a combination of equations (18) and (19) and after some mathematical manipulations 
the differential equation for uniform torsion (including the particular case of torsional 
harmonic vibrations) has been obtained 

 xxTxTxT m  012 , (20) 

with non-constant parameters TT GI1 , TT IG2 ,
2

0  p
H
LT I and HM

L
xGG  . Further, 

 xxx    is the second derivative of the angle of twist. The polynomial distributed axial 

force is: 
n

mx

n

p
pk

x x ,k x , x , x , x ,p
k

m m x m x m x m x ... m x


      0 1 2
0 1 2

0

, where x ,km  are the  values of 

the k-th derivative of the distributed torsional moment xm at the beam node i. For the modal 

analysis of axial vibration the right hand side of (3) vanishes.  According to [19], the solution 
of the differential equation (20) reads: 

 
 
 

mx

mx

p

x ,k k T
x ,i kx T T

p
x ,ix T T

x ,k k T
k

m b
x b b

x b b
m b










 
                        
 





2
00 1

0 1
2

0

. (21) 

In equation (21), the kTb  and kTb ,  mxk , p  0 2 , are the transfer functions for torsion and 

their first derivatives, respectively and represent the solution functions of the differential 
equation (20). The transfer functions depend on the longitudinal variation of the torsional 
shear modulus, the natural frequency, the polar moment of inertia, the torsion constant and the 
consistent mass density. They are calculated in a similar way as is shown in the previous 
loading cases. By inserting (18) and (19) into (21) and after some mathematical manipulations 
the transfer matrix relations (22) for the particular case of uniform torsion harmonic free 
vibration are obtained, 

 
 
 

mx

mx

p
T

T , x,k k T
x,i kx i T

p
x,ix T

T T T , x,k k T
ki T

b
b A m b

x G I

MM x GI
GI b b A GI m b

G I

 





   
                         

  





1
0 1 3 2

0

0 1 2 3 2
0

. (22) 

By setting x = L in (22) a dependence of the state variables at point j on the state variables at 
initial point i for modal analysis reads 
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By simple mathematical manipulations we get the local finite element equation for uniform 
torsion (with x,i x,iM M  ): 

 

,

,x ,i, ,x ,i

x , j, ,x , j , ,
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,
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AB BM
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F A
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1 3
4

1 24 4 4 10
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1 2

.  (24) 

The transfer constants kT x L
b


    and kT x L

b


   ,  mxk , p  0 2 , can be calculated with a 

simple numerical algorithm [20] which we programmed using software[21]. The variables iG  

and jG  correspond to the values of the homogenized torsional shear modulus at point iandj. It 

can be easy shown that the matrix B is symmetric. The case of non-uniform torsion will be 
considered in our future work. 

2.4  Local FGM beam finite element equation 

The local equation of the FGM finite beam element is obtained by superposition of the 
equations for axial, flexural, lateral and torsional deformation, and it reads, 
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. (25) 

The local finite element matrix B in (25) consists formally of the linear stiffness matrix KL and 
the linearized geometric stiffness matrix KN (containing the terms with second order axial 
force NII that has to be known or has to be evaluated by a linear elastic-static calculation) and 
the consistent mass matrix M: 
    MKKB NL

2 .     (26) 
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The terms B and F correspond to the previously derived terms of the local beam element 
matrices and load vectors in (6), (14), (17) and (24). In the modal analysis of a single straight 
beam the global finite element matrix coincides with the local matrix. For a general case, the 
global matrix of the beam and the beam structure are established in the usual finite element 
method way. In the modal and buckling analysis the eigenvalue problem is solved. In modal 
analysis, for given or calculated axial forces NII and defined geometrical parameters and 
homogenized material properties and the global boundary conditions, the circular frequency 
  is increased until the determinant of the global beam structure matrix tends to zero. This 
circular frequency is the natural circular frequency from which the natural frequency 
(eigenfrequency) can be calculated. In buckling analysis, the circular frequency   is set to 

zero, and the second order beam theory axial force IIN  is increased until the determinant of 
the global beam structure matrix tends to zero. Then, the axial force represents the buckling 
force II

KiN .Further, the mode or buckling shapes can be calculated by the transfer relations (5), 

(13), and (22). In static analysis, the circular frequency   is set to zero and the load vector 
hast be established. The global and local displacements and rotations at the nodes are 
calculated from those the local internal forces and moments in the homogenized beam 
elements cross-sections are evaluated. After that the normal and shear stress is calculated in 
the beam cross sections with real distribution of material properties. The solution approach we 
have implemented into the software MATHEMATICA [21] by which the numerical 
calculations presented in the chapter 4 were done. 

3 HOMOGENIZATION OF IN THREE DIRECTIONS VARYING MATERIAL 
PROPERTIES  

One important goal of mechanics of heterogeneous materials is to derive their effective 
properties from the knowledge of the constitutive laws and complex micro-structural behavior 
of their components. Microscopic modeling expresses the relation between the characteristics 
of the components and the average (effective) properties of composites. In the case of FGM it 
is the relation between the characteristics of the components and the effective properties of 
FGM. 
The methods based on homogenization theories (e.g. the mixture rules [22,23]; self-consistent 
methods [24]) have been designed and successfully applied to determine the effective material 
properties of heterogeneous materials from the corresponding material behavior of the 
constituents (and of the interfaces between them) and from the geometrical arrangement of the 
phases. In this context, the microstructure of the material under consideration is basically 
taken into account by a representative volume element (RVE). 

Mixture rules are one of the methods for micromechanical modeling of heterogeneous 
materials. Extended mixture rules [25] are based on the assumption that the constituents 
volume fractions, formally denoted as fibers – f and matrix – m (the notation is very often 
used in the literature also for the FGM constituents, although this material is point wise 
isotropic and the reinforcing constituents are not of several forms and dimensions) vary 
continuously as polynomial functions,  zyxv f ,,  and  zyxvm ,, . The condition 

    1,,,,  zyxvzyxv mf  has to be fulfilled. The appropriated material property distribution 

in the real FGM beam (Figure 2a) then reads 

          , , , , , , , , , , .f f m mp x y z v x y z p x y z v x y z p x y z   (27) 
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Here,  zyxpf ,, and  zyxpm ,,  are the spatial distribution of material properties of the FGM 

constituents. The extended mixture rule (27) can be analogically used for FGM made of more 
than two constituents. The assumption of a polynomial variation of the constituent’s volume 
fractions and material properties enables an easier establishing of the main field equations and 
allows the modeling of many common realizable variations.  
In the research studies and in practical applications, the one directional variation of the FGM 
properties is mostly considered. For the FGM beams and shells the transversal variation 
(continuously or discontinuously, symmetrically or asymmetrically) has been mainly 
considered. There, an exponential law for variation of the constituents volume fractions 
through the beam's height is often presented, e.g. in [26-28] and in references therein. The 
homogenization of such variations is relatively simple. If the material properties vary only 
with respect to the longitudinal direction, the homogenization is frequently not needed since 
there are the FGM beam and link finite elements established that consider such variations in a 
very accurate and effective way [29-31]. The more complicated case is, when the material 
properties vary in three directions - namely in transversal, lateral and longitudinal directions 
of the FGM beam. 

In this contribution, the homogenization techniques of spatially varying (continuously or 
discontinuously and symmetrically in transversal and lateral direction, and continuously in 
longitudinal direction) material properties of FGM beams of selected doubly-symmetric 
cross-sections are presented. The expressions are proposed for the evaluation of effective 
elastic modules for axial loading and for transversal and lateral bending complemented with 
the shear modules for transversal and lateral shear and uniform torsion and for themass 
density by the extended mixture rules (EMR) and the multilayer method (MLM).  

Let us consider a two node straight beam element with predominantly rectangular cross-
sectional area A (Figure 2). The composite material of this beam arises from mixing two 
constituents. The continuous polynomial spatial variation of the elastic modules and mass 
density can be caused by continuous polynomial spatial variation of both the volume fractions 
(  zyxv f ,,  and  zyxvm ,, ) and the material properties (  zyxp f ,,  and  zyxpm ,, ) of the 

FGM constituents. 
In our case the elastic modulus  zyxE ,, , the Poisson ratio  zyx ,, , and mass density 

 zyx ,,  are calculated by expression (27). The FGM shear modulus is calculated by 
expression: 

    
  zyx

zyxE
zyxG

,,12

,,
,,


  (28) 

If the Poisson’s ratio of the constituents is approximately of the same value and the 
constituents volume fraction variation is not strong, then the FGM shear modulus can by 
calculated using a simplification  

    


zyxE
zyxG

,,
,,  , (29)  

where  is an average value of the function     zyxzyx ,,12,,    

  
 

dxdAzyx
AL

L

A
  












0
,,

11  . (30) 
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Figure 2: FGM beam with rectangular cross-section. 

 
Homogenization of the spatially varying material properties (the reference volume is the 

volume of the whole beam) is done in two steps. In the first step, the real beam (Figure 2a) is 
transformed into a multilayer beam (Figure 2b). Homogenized material properties of the 
layers are calculated with the EMR [30]. Competent homogenized layer k at position x has a 
constant volume fractions and the material properties of the constituents in the y and z 
direction. They are calculated as an average value from their values at the boundaries of the 
respective layer. Polynomial variation of these parameters appears with respect to the 
longitudinal direction of the layer. Sufficient accuracy of the proposed substitution of the 
continuous transversal and lateral variation of material properties by the layer-wise constant 
distribution of material properties is reached if the division to layers is fine enough. In the 
second step, the effective longitudinal material properties of the homogenized beam are 
derived using the MLM. These homogenized material properties are constant through the 
beam’s height and depth but they vary continuously along the longitudinal beam axis. 
Accordingly, the beam finite element equations are established for the homogenized beam 
(Figure 2c) in order to calculate the primary effective beam unknowns (the displacements, 
temperatures, electric potential, eigenfrequency, buckling force, etc…). The secondary 
variables, for example the mechanical stress, have to be calculated from the internal local 
forces and moments on the real beam [29].  

The homogenized elastic modules for tension-compression -  xE NH
L , bending about axis y -

 xE HM
L

y , bending about axis z -  xE HM
L

z , shear in y direction -  xGH
Ly , shear in z direction -

 xGH
Lz , torsion  xG HM

L
x , and the homogenized mass density for axial loading  xNH

L  and 

torsion  xHM
L

x   can be calculated using the following expressions: 

t

s
( 1)

(s 1)

t
k=1

k=n

k

k

kk

k

=

( )

k

(=k

( ) )
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Here, Ak denotes the cross-sections area, Ek(x)is the elastic modulus, Iy,k and Iz,k are the second 
moments of area, Gk(x) is the shear modulus, IT,k is the torsion constant and  xk  is the mass 

density, Ip,k is the polar moment of area of the kth layer. The exact expressions for 
homogenization of spatial varying (continuously or discontinuously and symmetrically in 
transversal and lateral direction, and continuously in longitudinal direction) material 
properties for the FGM beams depend on the form of the cross-section. For rectangular 
hollow cross-sections we present the corresponding expressions in the following chapters. 

3.1 Hollow cross-section 

A straight beam of hollow cross-sectional area nnhbhbA  11 (Figure 3) is made of a FGM 

whose properties vary in the y and z direction continuously and symmetrically according the 
main inertial planes, yx   and zx  , and continuously in longitudinal beam direction x . 

Further, 
1212

33
11 nn

y

hbhb
I   and 

1212

33
11 nn

z

bhbh
I  are the second moments of area, zyp III   

is the polar moment of area, AkA sm
yy   and AkA sm

zz   refer to the reduced cross-sectional 

areas – by the average shear correction factors 
sm
yk and sm

zk [17,32,75], and 

   

t
sb

s
th

sbth
IT 







11

2
1

2
12

 is the torsion constant. Here, s and t refer to the thicknesses of the 

cross-section walls.  
For the homogenization of spatially varying material properties the hollow cross-sectional 
area is divided into n hollow parts, where   nhht nk 2/1   is the flange thickness and 

  nbbs nk 2/1   is the web thickness (Figure 3), respectively. The hollow area of the kth part 

  nk ,1  is:      122122 11  kthsksbtA kkkkk . The second moments of area of 

the kth part are:          12/2212/2222 3
1

3
11, kkkkky kthksbkthksbI  , 

          12/2212/2222 1
3

11
3

1, kkkkkz kthksbkthksbI  .The polar moment of 

area of kth part is kzkykp III ,,,  . 
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Figure 3: A straight FGM beam of hollow cross-section. 
 
According to (27) and (28) the real material properties are:  zyxE ,,  is the elastic modulus, 

 zyx ,,  is the Poisson’s ratio,        zyxvzyxEzyxG ,,12/,,,,   is the shear modulus 

and  zyx ,,  is the mass density:   2/,2/,2/,2/,,0 11 bbzhhyLx nn . 

The effective homogenized material properties, like the elastic modules, are calculated under 
assumption, that the relevant stiffness of the homogenized beam is equal to the stiffness of the 
real beam virtually divided on the hollow parts. Thus, we get the effective elastic modulus for 
axial loading 
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1 ,     (34) 

with     
k
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yy

k zyxExE

 ,,  and the effective elastic modules for bending about the y and z 

axis, 
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The effective elastic modulus for uniform torsion reads, 
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with     
k

k
zz
yy

k zyxGxG

 ,, . The torsion constant of the kth hollow part   nk ,1  can be 

evaluated as 
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 . (37) 

The effective shear modulus in y direction is given by, 
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with the average shear correction factors: 
sm
yk for whole rectangular cross-section and 

sm
kyk , for 

kth part. 
The shear modulus in z direction then reads, 
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with the average shear correction factors: sm
zk for whole rectangular cross-section and 

sm
kzk ,  for 

kth part. 

The effective mass density for tension -  xNH
L   and torsion  xHM

L
x   is 

  
 

A

Ax
x

n

k
kk

H
L


 1


 ,         

 

p

n

k
kpk

HM
L I

Ix
xx


 1

,
 , (40) 

with     
k
k

zz
yy

k zyxx

 ,, .It should be noted, that the effective mass density for tension has 

been taken also for the lateral and transversal bending. 

4 NUMERICAL INVESTIGATIONS 

4.1 Example 1: FGM beam structure - hollow cross-section 

The FGM beam structure with a constant rectangular hollow cross-section is considered 
(Figure 4), which consists of two parts – Beam1 and Beam2. Its geometry is given 
byh1 = 0.005 m, hn = 0.00375 m, b1 = 0.01 m, bn = 0.0075 m and L = 0.1 m. The angle 

between the beams is 150 . The cross-sectional area is 5101875.2 A m2, the second 

moments of area are 111012077.7,


y
I m4 and 

101084831.2,


z
I  m4, the polar moment of 

area is 101056038.3,,


zyp III m4 and the torsion constant is 10106748.1 TI m4. 
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Figure 4: FGM beam structure in global (x, y, z) coordinate system. 

 
The material of the beam consists of two components: Aluminum Al6061-TO – denoted 

with index m and Titanium carbide TiC – denoted with index f. The material properties of the 
components are assumed to be constant and their values are: Aluminum Al6061-TO – the 
elasticity modulus 0.69mE GPa, the mass density 2700m  kgm-3, the Poisson’s ratio 

33.0m ; Titanium carbide TiC – the elasticity modulus 0.480fE GPa, the mass density 

4920f  kgm-3, the Poisson’s ratio 20.0f .  

The TiC volume fraction varies in the local ,y  and ,z  direction linearly and symmetrically 

according to the ,, yx   and ,, zx   planes:       1,,0,
2/
2/

,,

2/
2/

,,

1
,

1
,

,

, 






bz
hyf

bz
hyf zyvzyv

n

n  - the 

inner edges of the cross-sectional area are made of pure Al6061-TO –and the outer cross-
section edges are made of pure TiC. Constant effective material properties are considered in 
the local ,x  – direction of both beams. Using EMR and MLM the effective elastic modulus 

(in [GPa]) for axial loading NH
LE , for bending about axis ,y  -

HM
L

yE and about axis ,z  - HM
L

zE  

the shear moduli 
H
LyG  and H

LzG , the torsional shear modulus HM
L

xG , and the mass density 
NH
L [kgm-3] for tension and HM

L
x [kgm-3] for torsion have been calculated by equations (34 - 

40). The influence of the number of divisions n to the layers on the homogenized material 

properties [32, 33] is shown in Table 1. The average shear correction factors sm
yk  and sm

zk  for 

20n  layers are 4712.0sm
yk  and 2910.0sm

zk   [32, 33].  For homogeneous hollow cross-

section, following shear correction factors are obtained:  5081.0yk   and 3291.0zk   

(calculated e.g. with ANSYS [34], for rectangular hollow beam-section).              
 

layers 
n 

NH
LE  

HM
L

yE = HM
L

zE H
LyG = H

LzG HM

L
xG  NH

L  HM
L

x  

2 281.839 296.151 112.716 120.614 3849.643 3926.946 
5 283.894 302.229 113.901 124.066 3860.743 3959.777 

10 284.188 303.098 114.071 124.561 3862.328 3964.469 
15 284.242 303.259 114.102 124.653 3862.222 3965.339 
20 284.261 303.315 114.113 124.685 3862.725 3965.643 

Table 1: Influence of the number of division n to the layers on the homogenized material properties. 
 

1 2�
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k
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z
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Modal analysis 
 
The FGM beam structure, clamped at the node i and j, is studied by modal analysis. The effect 
of axial force is not considered by this example. The first six eigenfrequencies f [Hz] are given 
in Table 2 using the new FGM beam finite element (NFE) and homogenized material 
properties for n = 20. Only two of our proposed FGM finite element are used – one for each 
part. For comparison purposes, the same problem is solved using a very fine mesh – 21600 of 
SOLID186 elements of the FEM program ANSYS [34]. The average relative difference  [%] 
between eigenfrequencies calculated by our method (NFE) and the ANSYS solution is 
evaluated. 
 

eigenfrequencies f [Hz] 
NFE 

without  
shear 

NFE 
with  
shear 

ANSYS 
 [%] 

without  
shear 

 [%] 
with  
shear 

1st flexural – xz plane 2392.0 2361.1 2343.6 2.07 0.75 
2nd flexural – xy plane 3859.1 3765.4 3798.8 1.65 0.82 
3rd flexural – xy plane 4444.0 4384.0 4341.1 2.37 0.99 
4th flexural – xz plane 7391.0 7123.3 7182.5 2.96 0.77 
5th flexural – xy plane 9147.1 9027.1 8928.4 2.57 1.23 
6th torsional 10051.1 10013.4 9896.8 1.56 1.18 

Table 2: Eigenfrequencies of the FGM beam structure. 
 
A comparison of 1st,2nd and 3rd eigenforms of the FGM beam structure evaluated by the new 
FGM beam finite element and FEM program ANSYS is shown in Figures 5 - 7. 
 

 
Figure 5: The 1steigenform of the FGM beam structure displayed by the ANSYS postprocessor and comparison 

of NFE and ANSYS.  
 

 
Figure 6: The 2ndeigenform of the FGM beam structure displayed by the ANSYS postprocessor and comparison 

of NFE and ANSYS.  
 
 

undeformed model
NFE
ANSYS

undeformed model
NFE
ANSYS
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Figure 7: The 3rd eigenforms of the FGM beam structure displayed by the ANSYS postprocessor and comparison 

of NFE and ANSYS.  
 
Elasto-static analysis 
 
The FGM beam structure, clamped at the node i and j, loaded by the vertical 
force  100kyF  N in the global negative y direction and the torsion moment 100kxM  Nm 

about global x-axis at point k, is studied by elasto-static analysis. The effects of axial forces is 
not considered by this example. The displacements according the global coordinate system at 
the point k are given in Table 3 using the new FGM beam finite element (NFE) and 
homogenized material properties for n = 20. Only two of the herein proposed new FGM finite 
elements were used – one for each part. For comparison purposes, the same problem is solved 
using a very fine mesh – 21600 of SOLID186 elements of the FEM program ANSYS [34]. 
The average relative difference  [%] between displacements calculated by our method and 
the ANSYS solution is evaluated. 
 

Displacements
[mm], [rad] 

NFE 
without 
shear 

correction 

NFE 
with shear 
correction 

ANSYS 

 [%] 
without 
shear  

correction 

 [%] 
with 

 shear 
correction 

kv  -0.01135 -0.01137 -0.01140 0.39 0.27 

kw  -2.56285 -2.56285 -2.58651 0.91 0.91 

xk  0.19804 0.19804 0.20030 1.13 1.13 

Table 3: Global displacements at point k. 
 
The total deformation of the FGM beam structure is shown in Figure 8.  

 
Figure 8: Total deformation of the FGM beam structure. 

 
As can be seen in Table 4, a very good agreement of our results is obtained. 

undeformed model
NFE
ANSYS
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4.2 Example 2: FGM beam – spatial variation of material properties 

The cantilever FGM beam on varying horizontal and vertical Winkler foundation is 
considered (as shown in Figure 9). Its rectangular cross-section is constant with height 
h = 0.005 m and width b = 0.01 m. The length of the beam is L = 0.1 m.  
 

 
Figure 9: Clamped beam on elastic foundation with spatially varying material properties. 

 
The beam is made of a mixture of two components: Aluminum Al6061-TO and Titanium 

Carbide TiC, their constant constituent’s material properties are given in Case I. The 
Aluminum volume fraction, in this case, varies linearly and symmetrically according to the 

yx and zx   planes: At node i is       0,,1,
2/
2/

0
0 







bz
hyfi

z
yfi zyvzyv  and then vary 

continuous linearly in the longitudinal direction to the constant value at node j ( 1fjv ). 

Using EMR and MLM with n = 20 layers the effective elastic modulus for axial loading 
NH
LE , for bending about axis y -

HM
L

yE and about axis z - HM
L

zE , shear modules
H
LyG and H

LzG , 

torsional shear modulus HM
L

xG , and mass density NH
L for tension and  HM

L
x  for torsion are 

evaluated as: 

 xENH

L 095.2731109.342  GPa;  

 xEE HM

L

HM

L
zy 293.3274429.396  GPa;  

 xGG H
Lz

H
Ly 418.1129581.138  GPa;   

 xG HM
L

x 936.1362233.162  GPa; 

 xNH
L 9.1475119.4175  kgm-3;   

 xHM
L

x 43.1768334.4468  kgm-3. 

 
Modal analysis 

 
The FGM cantilever beam, clamped at the node i, and resting on varying Winkler elastic 

foundation ky(x)=5000-30000x+60000x2 kN/m2 and kz(x)=5000-1000x+6000x2 kN/m2 is 

studied by modal analysis. The average shear correction factors in ,y – direction 6/5sm
yk  and 

in ,z  – direction 6/5sm
zk are used [35]. The first nine eigenfrequencies f [Hz] are evaluated as 

shown in Table 4. It is use only one of our proposed finite element. The effect of axial force 
was not considered in this example. The same problem is solved using a very fine mesh – 
32000 of SOLID186 elements of the FEM program ANSYS [34]. The results of ANSYS as 

k (x)z k (x)z

k (x)y k (x)y
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well as the results of the NFE are presented in Table 4. The average relative difference  [%] 
between eigenfrequencies calculated by our method and the ANSYS solution is evaluated. 

 

eigenfrequencies f [Hz] 
NFE 

without 
foundation 

ANSYS 
without 

foundation 
 [%]

NFE 
with 

foundation 

ANSYS 
with 

foundation 
 [%]

1st flexural - axis y 838.9 844.9 0.71 1356.1 1365.3 0.67 
2nd flexural - axis z 1660.0 1674.4 0.86 1896.3 1911.3 0.78 
3rd flexural - axis y 4329.5 4301.7 0.65 4433.4 4413.5 0.45 
4th flexural - axis z 8288.5 8228.8 0.73 8332.2 8275.1 0.69 
5th flexural - axis y 11046.0 10920.0 1.15 11125.8 10961.0 1.50 
6th torsional 11182.0 10926.0 2.34 11048.0 10969.0 0.72 

7th flexural - axis z 20023.0 19907.0 0.58 20051.0 19925.0 0.63 

8th flexural - axis y 20379.0 20312.0 0.33 20397.1 20333.0 0.32 

9th axial 22212.6 22213.0 0.01 22212.7 22213.0 0.01 

Table 4: Eigenfrequencies of the FGM beam with and without elastic foundation. 
 
Again, a very good agreement of our results compared to ANSYS is indicated in Table 4. For 
instance, the 1st, 6th and 9th mode of the FGM beam structure displayed by ANSYS is shown 
in Figure 10. 
 

 

Figure 10: The 1th and 6th and 9th eigenforms of the beam  
(with Winkler elastic foundations). 

 
 
Buckling and elastic-static analysis 
 
The FGM cantilever beam, clamped at the node i, has been studied by buckling and elastic-
static analysis. All the calculations were done with our 3D FGM beam finite element (NFE) 
which we have implemented into the code MATHEMATICA [21]. Additionally, the effect of 
axial force was considered. It has to be pointed out that the entire structure is discretized using 
only one herein proposed finite element.  

The critical buckling force calculated by our 3D FGM beam finite element is             
171.7II

KiN kN and calculated by ANSYS (with 50 of BEAM188 elements) is          

081.7II
KiN kN. The first buckling form is shown in Figure 11. In the elasto-static analysis 

the axial force NN II  have been chosen as a part of the critical buckling force II

KiN . 
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Figure 11: The first buckling form. 

 
In the elastic-static analysis, the cantilever FGM beam resting on varying vertical Winkler 

elastic foundation 2600000300005000 xxky  kN/m2 is loaded by forces 50 zy FF N 

and 2xF kN at node j (Figure 12). The average shear correction factors in ,y – direction 

6/5sm
yk  and in ,z  – direction 6/5sm

zk are used [35]. The displacements at node j are 

evaluated using the only one new FGM beam finite element (NFE). The same problem is 
solved using a very fine mesh – 23015 of SOLID186 elements of the FEM program ANSYS 
[34]. The results of ANSYS as well as the results of the NFE are presented in Table 5. The 
average relative difference  [%] between displacements calculated by our method and the 
ANSYS solution is evaluated. 

 
Figure 12: Loaded FGM beam. 

 

Displacements at node j 
[mm], [rad] 

NFE 
with  

foundation

ANSYS 
with  

foundation

NFE 
without 

foundation

ANSYS 
without 

foundation 

ju  -0.02445 -0.02507 -0.02445 0.02507 

jv  0.24641 0.24933 0.74414 0.75348 

jw  0.14452 0.14791 0.14452 0.14791 

yj  -0.00247 -0.00256 -0.00247 -0.00256 

zj  0.00503 0.00527 0.1304 0.01321 

Table 5: Displacements at node j with and without elastic foundation. 
 
The comparison of the vertical beam deflection curve with and without elastic foundation is 
shown in Figure 13. 
 

x

y

z

Fy

y,v

x,u

i

j

z,w

Fz

ky(x)

Fx
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Figure 13: Vertical beam deflection curve with and without elastic foundation. 

 
The bending moments about the y and z – axis for case without elastic foundation are shown 
in Figures 14 and 15, respectively. The Figures 16 and 17 show the transversal force in y and 
z – axis. The comparison of the bending moments  0xM y ,  0xMz  and transversal 

forces  LxRy  ,  LxRyz   for the case Fx = -2 kN calculated by our approach and by 

ANSYS are compared in Table 6. 
 

 
Figure 14: Bending moment about the y – axis (without elastic foundation). 

 

 
Figure 15: Bending moment about the z – axis (without elastic foundation). 

 

NFE - with foundation
NFE - without foundation
ANSYS

x [ ]m

v [ ]mm

� � � �
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � �
�

�
�

�
�

�
�

�
�

�
�

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x [m]

My [Nm]

NFE
ANSYS

0.00 0.02 0.04 0.06 0.08 0.10

-5

-4

-3

-2

-1

0

x [m]

Mz [Nm]

0.00 0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

5

6

NFE
ANSYS

4832



Justín Murín, Mehdi Aminbaghai, Juraj Hrabovský, Vladimír Kutiš, Juraj Paulech, Stephan Kugler 

 
Figure 16: Transversal force in y – axis (without elastic foundation). 

 
Figure 17: Transversal force in z – axis (without elastic foundation). 

 

 
NFE 

Fx = -2 kN
ANSYS 

Fx = -2 kN
 [%] 

 0xM y  [Nm] -5.2182 -5.2416 0.45 

 0xMz  [Nm] 6.4691 6.4404 0.45 

 LxRy   [N] 54.9472 55.0873 0.25 

 LxRz   [N] 76.2088 76.2251 0.02 

Table 6: Bending moments and transversal forces. 

In Figure 18, the resultant normal stress, caused by axial, transversal and lateral forces, in the 
clamped cross-section is shown that was calculated by our approach [18] extended here for 
variation of material properties in three directions. 
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Figure 18: Resultant normal stress ),,( zyx [MPa] at position x = 0 calculated by our approach [18]. 

In Figure 19, the resultant normal stress, caused by axial, transversal and lateral forces, in the 
clamped cross-section is shown that was calculated by ANSYS (using a very fine mesh – 
23015 of SOLID186). As can be seen, a very good agreement of both solution method has 
been obtained at all marked points excluding the corners. As is well known, the solutions with 
3D solid finite elements produce in the sharp corners incorrect stress first of all by the very 
fine meshes. In the nearby points of the sharp corners is the match of the results very good 
(see the details in Figure 19). More detailed description of the stress calculation for the FGM 
beam with spatial variation of material properties will be given in our newly prepared paper. 

 
Figure 19: Normal stress ),,( zyx [MPa] at position x = 0 calculated by ANSYS (SOLID186) 

 

5 CONCLUSION 

On base of the transfer relations for the 3D straight FGM beam of doubly symmetric cross-
section with longitudinal polynomial variation of the effective material properties, the 
effective matrix of the 3D beam finite element for static, modal and buckling analysis of the 
FGM single beams and beam structures is established in this contribution. Symmetrically 
transversal and lateral, and continuously longitudinal variation of material properties is 
considered in the real beam. Homogenization of the spatially varying material properties in 
the real FGM beam and the calculation of effective parameters of the homogenized beam are 
done by the extended mixture rules and the multilayer method (MLM). Effects of the varying 
planar Winkler elastic foundations and the shear force deformation (by means of the average 
shear correction factors) and the consistent mass and mass moment of inertia distribution are 
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taken into account. The effect of axial force is included for the flexural deformations as well 
that allows performing of analysis within the 2nd order beam theory. All the derived 
equations were programmed through the software MATHEMATICA [21] and the numerical 
calculations were carried out. In modal and buckling analysis, the eigenvalue problem is 
solved. In buckling analysis, the circular frequency   is set to zero and axial force N is 
increased the determinant of the global matrix of the beam structure tends to zero. This axial 
force corresponds to the critical buckling force.  In modal analysis, for given internal axial 
forces N in the competent beams and geometrical parameters and material and boundary 
conditions, the circular frequency   is increased until the determinant of the global matrix of 
the beam structure tends to zero. This circular frequency corresponds to the natural circular 
frequency from which the natural frequency (eigenfrequency) is calculated. In linearized 
elastostatic analysis (according the second order beam theory), the internal axial forces have 
to be evaluated that input in the linearized geometric stiffness matrix. By the linear beam 
theory only linear stiffness matrix is established. The load vector is established and the local 
and global displacements and internal forces are calculated. After that, as usually, the 
secondary variables like eigen- and buckling- forms, and the stress are calculated. The main 
issue of numerical investigations is the modal, buckling and elastostatic analysis of FGM 
beam structures (single beams and spatial beam structures) with spatial variation of material 
properties. By selected numerical examples the effect of axial and shear forces is evaluated. 
The results carried out by our approach are compared with results obtained using very fine 
beam and continuum meshes in the FEM program ANSYS [34]. An excellent agreement of 
our solution results is obtained, which confirms respectable accuracy and effectiveness of our 
approach.  
The main advantage of the new beam finite element is that the individual beams of the beam 
structure with spatial variation of material properties (continuous or layered but symmetrically 
in transversal and lateral direction, and continuous polynomial in longitudinal direction) can 
be modeled with only one beam finite element, because the variation of the material 
properties is relatively accurately included into the finite element matrix.  Another advantage 
is that the beam finite element can be very effectively used also for the modeling of spatial 
beam structures. 
Disadvantage of this approach is that by more complicated variation of material properties 
some problems arise by the transfer constants calculation. This problem can be solved by the 
dividing of the definition domain of the transfer functions [20]. Another problems comparing 
to continuum approach can arise by the beams with complex cross-sectional area.  
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Abstract. An efficient low order finite shell element is derived for the thermo-elastic analysis of
shell structures made of functionally graded materials or multilayer composites. It is based on
a one-way coupling between the thermal and the mechanical analysis. The thermal quantities
are evaluated using a new iterative scheme that properly accounts for convection boundary con-
ditions and large gradients of the thermal conductivity. The resulting non-constant temperature
field with respect to the thickness direction gives nodal forces and couples, which are applied on
a shear weak six parameter shell formulation. Here, drill rotations are included, supplemented
with a proper method for calculating effective elastic properties. Numerical results indicate
efficiency and accuracy of the proposed approach.
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1 Introduction

This paper focuses on the analysis of thermo-elastic effects in shell structures of functionally
graded materials (FGM) or multilayer composites (MLC). The constitutive model is character-
ized by a variation of material properties, which is continuous in FGMs and discontinuous in
MLCs. We focus only on arbitrary variations in transverse direction. Variations with respect
to the membrane directions can be modeled easily using a discretization scheme with elements
each showing constant transverse variations. FGM and MLC structures play an important role
in the development of sensors and actuators (see [1] and references therein) and accurate virtual
analysis procedures are required.

Many papers deal with the static and dynamic analysis of FGM beams with transverse vari-
ations of material properties. In [2] elasticity solutions for simply supported FGM beams are
given using the Euler-Bernoulli beam theory. Chakraborty et al. [3] discuss thermo-elastic
beam problems based on the first order shear theory. Mahi et al. [4] consider free vibrations
of symmetric FGM beams subjected to an initial thermal stress. In case of combined variations
of material properties in transverse and longitudinal directions, many achievements are due to
Murin et al. [5, 6, 7]. The amount of literature dealing with FGM shells is also overwhelm-
ing. In Shen [8] special attention is put onto the nonlinear response of FGM plates. In [9, 10]
electro-mechanical analyses of FGM shells with piezo-electric layers are proposed. Thermo-
elastic analysis procedures of FGM plate and shell structures are discussed in [11]. There, a
higher order shell formulation is used. However, only little literature is found if drill rotations
(i.e. the rotation about the shell’s normal) are to be included. This frequently missing sixth
nodal degree of freedom gets important if shell structures are combined with beam structures.
There, any torsional moment within the beam directly activates drill rotations if the beam axis
is perpendicular to the shell’s membrane. In that field many achievements are due to Kugler
et al. [12, 13], where references to earlier procedures [14] can be found. A generalization of
those procedures to FGMs and MLCs are given in [15, 16] where elasticity is described using
effective elastic properties derived in [15].

In this paper we discuss a numerical framework to analyze thermo-elastic effects in FGM
and MLC shells. Frequently, the variation of Poisson’s ratio in FGMs and MLCs does not show
large gradients - therefore, we assume Poisson’s ratio to be constant. As boundary conditions
we consider the following cases:

• Nodal temperatures (Dirichlet-type): The mean temperature at any node is prescribed.

• Convection on top- and bottom-surface (von Neumann-type): Convection is applied inde-
pendently onto the top- and bottom-surface prescribing the gradient of the non-constant
transverse temperature distribution.

• Nodal displacements and rotations (Dirichlet-type): Displacements and rotations are pre-
scribed.

• Mechanical loads (von Neumann-type): Any transverse and in-plane mechanical loads
can be applied onto the finite element model.

The present paper is organized as follows: In Sect. 2 the details of the proposed numerical
framework is discussed. We start with describing the thermal analyses in Sect. 2.1. The tem-
perature field in FGM and MLC shells is found for an arbitrary variation of thermal conductivity
and convection conditions. Non-constant temperature distributions with respect to the thickness
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Figure 1: Plane quadrilateral with skew angled element coordinates ξ and η

direction require an iterative solution scheme. The mechanical analysis is discussed in Sect. 2.2.
There, a quadrilateral six parameter shell element is described, where drilling rotations are in-
cluded within the membrane part of the stiffness matrix. The bending part of the stiffness matrix
incorporates a shear elastic behavior with an exact thin plate limit. A projection procedure for
arbitrarily warped element geometries is included. Arbitrary variations of the Young’s modulus
require four effective elastic properties, i.e. the offset of a mechanical neutral surface from the
discretized mid-surface, effective moduli for membrane and bending properties and a shear cor-
rection factor. In Sect. 2.3 an efficient one-way coupling scheme between the thermal and the
mechanical field is proposed. Based on the evaluated temperature distributions internal nodal
forces and couples are calculated, which are applied onto the mechanical model. The numeri-
cal accuracy and the effectiveness of the proposed formulation is discussed in Sect. 3. There,
solutions based on the proposed framework are compared to continuum solutions found with
ANSYS an to reference solutions found in literature. Finally, in Sect. 4 conclusions are drawn.

2 Numerical procedure

Consider a curved FGM or MLC shell geometry of thickness h, where the geometrical mid-
surface is discretized by four noded shell elements. Thus, the element configuration could
possibly be warped. Any warped surface geometries do not pose a problem if scalar fields
like temperature distributions are analyzed (see Sect. 2.1). However, in mechanical analyses
warped shell elements lead to a coupling between membrane and bending properties, which
can be circumvented by special projection schemes (see Sect. 2.2). Within each element we
assume material properties to be constant in membrane directions x̂ - ŷ and variable in transverse
direction ẑ.

Since both the thermal analysis and the mechanical analysis is based on a four noded finite
element, we introduce a two dimensional element kinematics. The nodal coordinates of the i-th
node (i = 1, 2, 3, 4) read r̂i = X̂iêx + Ŷiêy and the mapping (Fig. 1) between the Cartesian and
the parameter coordinates is carried out using the classical bilinear shape functions [17],[

x̂
ŷ

]
=

[
N 0
0 N

] [
X̂

Ŷ

]
(1)

with
N =

[
N1 N2 N3 N4

]
N1 =

1

4
(1− ξ)(1− η) , N2 =

1

4
(1 + ξ)(1− η) ,

N3 =
1

4
(1 + ξ)(1 + η) , N4 =

1

4
(1− ξ)(1 + η) . (2)
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Figure 2: Description of the thermal field problem

In (1) the nodal coordinates are arranged as X̂ =
[
X̂1 X̂2 X̂3 X̂4

]T
and Ŷ =

[
Ŷ1 Ŷ2 Ŷ3 Ŷ4

]T
.

An alternative formulation [18] of the shape functions (2) is

N = ∆ + bxx̂+ byŷ + γξη, (3)

with
bx =

1

2Ae

[
ŷ24 ŷ31 ŷ42 ŷ13

]
, by =

1

2Ae

[
x̂42 x̂13 x̂24 x̂31

]
, (4)

γ =
1

4Ae


X̂2ŷ34 + X̂3ŷ42 + X̂4ŷ23

X̂1ŷ43 + X̂3ŷ14 + X̂4ŷ31

X̂1ŷ24 + X̂2ŷ41 + X̂4ŷ12

X̂1ŷ32 + X̂2ŷ13 + X̂3ŷ21


T

, (5)

∆ =
1

4

[
t−

(
4∑
i=1

X̂i

)
bx −

(
4∑
i=1

Ŷi

)
by

]
, (6)

t =
[

1 1 1 1
]
, (7)

x̂IJ = X̂I − X̂J , ŷIJ = ŶI − ŶJ , Ae =
1

2
(x̂24ŷ31 + x̂31ŷ42) . (8)

2.1 Thermal analysis

In this section we evaluate the temperature field T (x̂, ŷ, ẑ) within the shell’s volume. Con-
sider a FGM or MLC shell structure of thickness h with a transversely varying thermal conduc-
tivity k, where convection is applied onto the outer surfaces. Figure 2 shows a cut through the
shell structure, where convection is applied independently onto the top- and bottom-surface, i.e.

ẑ = −h/2 : qbn = hcb(T (ẑ = −h/2)− TBb), (9)

ẑ = h/2 : qtn = hct(T (ẑ = h/2)− TBt). (10)

In (9) and (10) hct and hcb denote the convection coefficient on the top and bottom surface, while
TBt and TBb are the temperatures of the adjacent fluid. We decompose T (x̂, ŷ, ẑ) according to

T (x̂, ŷ, ẑ) = T̄ (x̂, ŷ) + T̃ (ẑ), (11)

where
T̄ (x̂, ŷ) = 1/h

∫
h

T (x̂, ŷ, ẑ) dẑ, (12)
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is the mean temperature, while T̃ (ẑ) describes the unknown temperature distribution in trans-
verse direction. The iterative solution strategy consists of two steps:

1. Evaluation of the mean temperature T̄ (x̂, ŷ) = 1/h
∫
h
T (x̂, ŷ, ẑ) dẑ in membrane direction.

2. Estimate T̃ (ẑ) based on a mean temperature T̄ .

An iterative procedure with iteration number I is required since the shell’s surface temperatures
are initially unknown. Hence, (9) and (10) cannot be satisfied exactly, and we rewrite (9) and
(10) according to

ẑ = −h/2 : qb I+1
n = hcb(T̄

I+1 − T ∗IBb),

ẑ = h/2 : qt I+1
n = hct(T̄

I+1 − T ∗IBt), (13)

with
T ∗IBb = TBb − T̃ I(ẑ = −h/2),

T ∗IBt = TBt − T̃ I(ẑ = h/2). (14)

The global iterative algorithm can be summarized as follows:

1. I = 0

2. T̃ I=0(ẑ = ±h/2) = 0

3. WHILE T̄ I+1−T̄ I

T̄ I+1 < tol (tol = tolerance limit)

(a) T ∗IBb = TBb − T̃ I(ẑ = −h/2) and T ∗IBt = TBt − T̃ I(ẑ = h/2)

(b) FIND T̄ I+1 according to Sect. 2.1.1 using convection boundary condition (13) and
(14).

(c) FIND T̃ I+1 according to Sect. 2.1.2

(d) I = I + 1

2.1.1 Evaluation of mean temperature

In this section we discuss a suitable procedure to evaluate the mean temperature T̄ . The
strong form of the corresponding boundary value problem [19] reads

k̄T̄,ii = 0, (15)

T̄ = T0 at ΓT , (16)

q0 = qn = −k̄T̄,ini at Γq. (17)

where a comma within an index denotes a partial derivative and Einstein’s summation conven-
tion is understood (i = x̂, ŷ). The Dirichlet boundary condition (16) prescribes a given value T0

at the boundary ΓT , while the von Neumann boundary condition prescribes the heat flux qini
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along Γq. In (17) −k̄T̄,i = q̄i is the mean heat flux, while k̄ denotes the mean value of thermal
conductivity,

k̄ =
1

h

∫
h

k(ẑ)dẑ. (18)

The weak form of (15)-(17) is given by,∫
V

k̄T̄,iiδT̄ dV −
∫
Γq

(q0 − qn)δT̄ dΓ = 0, (19)

where the weighting function δT̄ is a virtual temperature distribution that has to satisfy the
Dirichlet boundary condition δT̄ = 0 at ΓT . Applying the Gaussian theorem to the first integral
leads to ∫

V

k̄T̄,iδT̄,idV +

∫
Γq

q0δT̄ dΓ = 0. (20)

We use bilinear interpolations (2) for the mean temperature fields

T̄ = NT̄e and δT̄ = NδT̄e , (21)

where T̄e and δT̄e denote the corresponding nodal values. Introducing this into (20) yields

(
δT̄e

)T
k̄h

1∫
−1

1∫
−1

BTB det J dξdη

︸ ︷︷ ︸
Ke

T

T̄e +

+

1∫
−1

1∫
−1

(hct + hcb) NTN det J dξdη

︸ ︷︷ ︸
Ke

Tc

T̄e−

−
1∫

−1

1∫
−1

(hctT
∗
Bt + hcbT

∗
Bb) NT det J dξdη

︸ ︷︷ ︸
Fe

Tc

 = 0, (22)

with B referring to the gradient of the shape functions,

B =

[
Bx̂

Bŷ

]
=

[
N1,x̂ N2,x̂ N3,x̂ N4,x̂

N1,ŷ N2,ŷ N3,ŷ N4,ŷ

]
. (23)

We assume that T̃ (ẑ) is constant within one element, thus, T ∗Bt and T ∗Bb from (14) is also ele-
mentwise constant and is evaluated at each element’s center. The differential volume of a shell
structure is given by dV = hdA = h det J dξdη, where det J denotes the determinant of the
element Jacobian. With (22) we finally obtain

(Ke
T + Ke

Tc) T̄e = Fe
Tc, (24)

Equations (24) have to be assembled to a global system in a standard manner [20]. All integra-
tions over the element domain are carried out numerically by a 2× 2 Gauss integration.
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ẑ ( )2ˆ ˆ ˆ( , , )h
ct Bth T x y z T= −

( )2ˆ ˆ ˆ( , , )h
cb Bbh T x y z T= − −

dA

(a) Problem of transverse temperature dis-
tribution

ẑ
( )2ˆ ˆ ˆ( , , )h

ct Bth T x y z T= −

( )2ˆ ˆ ˆ( , , )h
cb Bbh T x y z T= − −

I

II

III

IV

1

2

3

4

5

(b) Discretized problem of
transverse temperature distri-
bution (n = 4)

Figure 3: Transverse temperature distribution

2.1.2 Evaluation of transverse temperature distribution

Once the mean temperature T̄ (x̂, ŷ) is evaluated at every point of the shell’s structure, the
temperature distribution with respect to the thickness direction is calculated. Thereby, we ana-
lyze the problem depicted in Fig. 3(a) showing an infinitesimal volume portion of cross section
dA and a height of h where a convection boundary condition on the top and bottom surface is
applied. In what follows we discuss a procedure where the temperature distribution with re-
spect to the thickness direction is found from a thermal conduction problem with two Neumann
conditions. At every location x̂ and ŷ the following system of equations holds1

d

dẑ

(
k(x̂, ŷ, ẑ)

d

dẑ
T (x̂, ŷ, ẑ)

)
+K∗ = 0 , (25)

ẑ = h/2 : −k(x̂, ŷ, ẑ = h/2)
dT (x̂, ŷ, ẑ)

dẑ

∣∣∣∣
ẑ=h/2

− hct (T (x̂, ŷ, ẑ = h/2)− TBt) = 0 , (26)

ẑ = −h/2 : −k(x̂, ŷ, ẑ = −h/2)
dT (x̂, ŷ, ẑ)

dẑ

∣∣∣∣
ẑ=−h/2

− hct (T (x̂, ŷ, ẑ = −h/2)− TBb) = 0 .

(27)
In (25) K∗ is given by

K∗ = Kk(ẑ), (28)

where K represents an unknown constant. The inclusion of (28) in (25) is mandatory for ac-
curate results and is in contrast to [11] where a similar strong form is used without K∗. The
inclusion of K∗ can be motivated by the following thought experiment: Within a shell’s section
of constant conductivity the transverse temperature distribution is expected to be parabolic with
prescribed gradients at the top and bottom surface. In absence of K∗ the solution of (25) leads
to a linear distribution and (26) and (27) cannot be satisfied exactly. The introduction of a non-
vanishing constant K∗ avoids such a deficiency. The unknown constant K is found from the

1Within one element the thermal conduction coefficient k is assumed to be constant, however, k can be discon-
tinuous from element to element.
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constraint that the mean value of T (x̂, ŷ, ẑ) must equal T̄ (x̂, ŷ) from (12). Rewriting (25)-(27)
with T (x̂, ŷ, ẑ) = T̄ (x̂, ŷ) + T̃ (ẑ) leads to

d

dẑ

(
k(x̂, ŷ, ẑ)

d

dẑ
T̃ (ẑ)

)
+Kk(ẑ) = 0 , (29)

ẑ = h/2 : −k(x̂, ŷ, ẑ = h/2)
dT̃ (ẑ)

dẑ

∣∣∣∣∣
ẑ=h/2

− hct
(
T̄ (x̂, ŷ) + T̃ (ẑ = −h/2)− TBt

)
= 0 , (30)

ẑ = −h/2 : −k(x̂, ŷ, ẑ) = −h/2)
dT̃ (ẑ)

dẑ

∣∣∣∣∣
ẑ=−h/2

− hct
(
T̄ (x̂, ŷ) + T̃ (ẑ = −h/2)− TBb

)
= 0 ,

(31)∫
h

T̃ (ẑ) dẑ = 0 . (32)

An analytical solution of (29)-(32) can be given in case of a constant conductivity, i.e. k(ẑ) = k,
however, for arbitrary variations of k(ẑ) we propose a FEM like solution procedure using a
discretization with n linear elements of length le = h/n, see Fig. 3(b). Hence, we find for
interior elements

dA

∫
le

k(ẑ)T̃,ẑδT̃,ẑ dẑ = dAK

∫
le

k(ẑ)δT̃ dẑ, (33)

and for the top and bottom elements

bottom (ẑ = −h/2) : dA

∫
le

k(ẑ)T̃,ẑδT̃,ẑ dẑ = dA

∫
le

K∗δT̃ dẑ−
(
hcbdA

(
T̄ + T̃ − TBb

)
δT̃
)∣∣∣

ẑ=−h/2
,

(34)

top (ẑ = h/2) : dA

∫
le

k(ẑ)T̃,ẑδT̃,ẑ dẑ = dA

∫
le

K∗δT̃ dẑ −
(
hctdA

(
T̄ + T̃ − TBt

)
δT̃
)∣∣∣

ẑ=h/2
,

(35)
where k(ẑ) is assumed to the be the value of thermal conductivity at each element’s center,
being constant throughout each element. This finally leads to the following system of equations

n

h


k1 · · · 0 0
... . . . ...

...
0 · · · kn−1 −kn
0 · · · −kn kn

+


hcb · · · 0 0
... . . . ...

...
0 · · · 0 0
0 · · · 0 hct





ϑ1
...
ϑn
ϑn+1

 =

=
K h

2n


k1
...

kn−1

kn

+


hcb
(
TBb − T̄

)
...
0

hct
(
TBt − T̄

)
 , (36)
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where ϑi for i = 1...n+ 1 denotes the nodal value of T̃ and ki for i = 1...n refers to the thermal
conductivity at the i-th element’s center. Equation (36) can be rewritten according to

Kϑ = KF + Fc, (37)

and represents a linear algebraic system of equations approximating (29)-(31). Equation (32) is
modeled as

1

2
(ϑ1 + ϑn+1) +

n∑
i=2

ϑi =
[

1/2 · · · 1 1/2
]


ϑ1
...
ϑn
ϑn+1

 = Lϑ = 0, (38)

and can be used to evaluate the unknown constant K,

K = −LK−1Fc

LK−1F
, (39)

consequently, the nodal values ϑ read

ϑ = −LK−1Fc

LK−1F
K−1F + K−1Fc. (40)

2.2 Mechanical analysis

The derivation of a six parameter shell element is based on four steps. In Sect. 2.2.1 we
present useful equations for evaluating effective elastic quantities. Arbitrary warped element
geometries show a computationally expensive coupling between membrane and bending prop-
erties. In order to avoid the derivation of those coupling matrices, we describe in Sect. 2.2.2
a projection scheme, which extracts a plane element configuration. Using that projection the
derivation of the stiffness matrix can be separated into a membrane (Sect. 2.2.3) and a bending
part (Sect. 2.2.4).

2.2.1 Effective elastic quantities

The element formulation requires four effective quantities that are directly related to the
distribution of Young’s modulus E(ẑ). We present here only the main results and refer to [15]
for details. In case of unsymmetrical variations of E the offset z of a neutral surface from the
discretized mid-plane is evaluated as

z =

∫ h/2
−h/2

E(ẑ)ẑdẑ∫ h/2
−h/2

E(ẑ)dẑ
. (41)

With respect to this plane, membrane and bending deformations are decoupled and an arbitrary
normal strain reads

εij(ẑ
′) = κij ẑ′ + ε

(0)
ij , (42)

with ẑ′ = ẑ−z. In (42) ε(0)
ij denotes the strain in the neutral surface and κij refers to a curvature.

The effective moduli for membrane (Em) and bending (Eb) read

Em =
1

h

h/2−z∫
−h/2−z

E(ẑ′)dẑ′, (43)
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Figure 4: Discretized mid-surface, warped neutral surface, projected plane neutral surface

Eb =
12

h3

h/2−z∫
−h/2−z

E(ẑ′)ẑ′2dẑ′. (44)

Since shear deformations are accounted for, a shear correction factor αs is to be introduced. For
homogenous shells αs = 5/6, while in case of varying E(ẑ) one finds [15]

1

αs
=

144

Ebh5

h/2−z∫
−h/2−z

1

E(ẑ′)

 h/2−z∫
ẑ′

E(ζ)ζdζ

2

dẑ′. (45)

2.2.2 A projection scheme

We decouple the membrane and bending properties in two steps. Firstly, we shift the element
configuration, which is discretizing the geometrical mid-plane to the mechanical neutral surface
(41). According to Fig. 4 this is done via

rni = rdi + zini no sum on i, (46)

where rdi and rni denote the coordinates of the i-th node (i = 1, 2, 3, 4) of the discretized and
the neutral surface. The projection is carried out along a nodal fiber direction ni, which can
be extracted from the preprocessor or can be found with the aid of an algorithm discussed
in [15]. Since the element configuration discretizing the neutral surface may be warped, we
extract a plane element configuration as shown in Fig. 4. A local Cartesian coordinate system
x̂ − ŷ − ẑ is placed at the element’s center point with rnm = 1

4

∑4
i=1 rni . The base vectors ex̂

and eŷ share an equal angle δ to g1 and g2, which join the center and the mid-side points (Fig.
4). Finally, the nodes are projected onto the êx − êy plane giving a plane element with local
nodal vectors r̂i =

[
X̂i Ŷi 0

]T
as depicted in Fig. 1. The proposed projection scheme may

introduce some rigid body error. This problem is indicated by many authors, e.g. [21, 22] and
can easily be corrected by a method proposed by Rankin and Nour-Omid [23]. The details of
this procedure are discussed in [12, 24], we only give the final result

K̂proj = P̂T
RK̂P̂R, (47)
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with P̂R =

[
I(24×24) − R̂

(
R̂

T
R̂
)−1

R̂
T
]

denoting the projection with

R̂ =


R̂1

R̂2

R̂3

R̂4

 with R̂i =



1 0 0 0 Ẑi −Ŷi
0 1 0 −Ẑi 0 X̄i

0 0 1 Ŷi −X̄i 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (48)

The parts of the element stiffness matrix

K̂ =

[
K̂membrane 0

0 K̂plate

]
(49)

are derived in Sect. 2.2.3 and Sect. 2.2.4, while the global stiffness matrix K̃ is assembled after
a transformation of K̂proj to the global Cartesian coordinate system. Note that K̃ refers to the
mechanical neutral surface (41), while the load vector is usually applied onto the discretized
mid-plane. Therefore, an element load vector applied onto the mid-surface

[
Fd Md

]T has
to be reduced to a force vector, which refers the neutral surface

[
Fn Mn

]T via

Fn = Fd and Mn = Md − zini × Fd. (50)

After solving the global system of equations the resulting displacements Un and rotations φn

also refer to the neutral surface. During post-processing at the discretized configuration, a
transformation according to

Ud = Un + zini × φn and φd = φn (51)

has to be carried out [15].

2.2.3 The membrane part

The inclusion of drill rotations, i.e. the rotation about the shell’s normal, is a main issue
of this paper. These in-plane rotational degrees of freedom are introduced using a recently
proposed Cosserat-type functional [13, 12],

δΠmembrane = h

∫
Ω

δε̂
T

s Ĉmε̂sdAe + 2αh

∫
Ω

δε̂aε̂adAe. (52)

In (52), ε̂s and ε̂a denote the symmetric and the antimetric part of the membrane strain tensor,
respectively. The overbar indicates assumed strains, which can be assumed independently and
are not directly related to prescribed deformations and rotations,

ε̂s =
[
ux̂,x̂ uŷ,ŷ ux̂,ŷ + uŷ,x̂

]T and ε̂a = 1/2 (ux̂,ŷ − uŷ,x̂) + ϕẑ. (53)

For sake of convenience the direct strain-displacement-relation is given in (53), where ui for
i = x̂, ŷ and ϕẑ refer to membrane displacements and drill rotations, respectively. In (52) Ae
denotes the area of the element (8) and Ĉm refers to the plane stress elasticity matrix (43)

Ĉm =
Em

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 . (54)
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The variable α represents an additional material constant relating the skew symmetric parts of
stresses and strains. As frequently recommended (e.g. [14]), this constitutive parameter can be
related to the shear modulus of the corresponding material,

α = α
Em

2 (1 + ν)
, (55)

where α denotes an additional scaling factor. The present formulation can be optimized accord-
ing to accuracy and efficiency, while avoiding any internal (incompatible) degrees of freedom
to circumvent membrane shear locking in low order elements [18]. The predictive quality is
nearly independent of α and suitable scaling factors are discussed in [12]. The assumed strain
fields are related to nodal displacements and rotations, i.e.

ε̂s = B̂su0

[
Ux̂

Uŷ

]
+ B̂suH

[
γ 0
0 γ

] [
Ux̂

Uŷ

]
, (56)

ε̂a =
1

2

(
B̂au0

[
Ux̂

Uŷ

]
+ B̂auH

[
γ 0
0 γ

] [
Ux̂

Uŷ

])
+ NϕΦ̂, (57)

where Ux̂ =
[

Ux̂1 · · · Ux̂4

]T and Uŷ =
[

Uŷ1 · · · Uŷ4

]T are the inplane nodal dis-
placements while Φ̂ =

[
φẑ1 · · · φẑ4

]
contains the drill rotation angles. The corresponding

B̂-matrices and the shape functions Nϕ read

B̂su0 =

√
j0

j

 bx 0
0 by
by bx

 , B̂suH =

√
j

j0

 (ξη),x̂ −ν (ξη),ŷ
−ν (ξη),x̂ (ξη),ŷ

0 0

 , (58)

B̂au0 =

√
j0

j

[
by −bx

]
, B̂auH = 2

√
j

j0

[
(ξη),ŷ − (ξη),x̂

]
, (59)

Nϕ =

√
j0

j

[
N1 N2 N3 N4

]
, (60)

where j = det J and j0 = det J0 = det J(ξ = η = 0) (see (2) - (8)). The prefactors
√

j/j0 and√
j0/j enable an analytical integration of all parts of the membrane stiffness matrix avoiding a

four point Gaussian quadrature. The resulting membrane part of the stiffness matrix may be
found in [25].

2.2.4 The bending part

The bending part of the stiffness matrix is based on the Mindlin-Reissner hypothesis and is
valid for thin to moderately thick shell structures [17, 24, 12]. Equilibrium requires the potential
Πplate to be a minimum, i.e.

Πplate = Πb + Πs − Πext → min, (61)

with
Πb =

1

2

∫
Ω

ε̂
T

b Ĉbε̂bdΩ,
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Πs =
1

2
αsh

Eb
2(1 + ν)

∫
Ae

γ̂
T

s γ̂sdA,

Πext =

∫
Ae

puẑdA. (62)

An overbar again indicates that the corresponding field can be interpolated independently, i.e.
without any relation to strain displacement equations. The subscripts b and s indicate that
the corresponding quantity refers to bending and shear, respectively, and Πext is due to the
externally applied pressures p. The variables ε̂b and γ̂s denote bending and transverse shear
strains. In (62) Ĉb refers to the bilinear plane stress elasticity matrix (44)

Ĉb =
Eb

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 , (63)

while αs denotes the shear correction factor (45). Following the procedure in [12, 24], the
corresponding interpolations read

ε̂b = B̂b0

[
Φx̂

Φŷ

]
+ B̂bH

[
γ 0
0 γ

] [
Φx̂

Φŷ

]
, (64)

with

B̂b0 = ẑ

√
j0

j

 0 bTx
−bTy 0
−bTx bTy

 , B̂bH = ẑ

√
j

j0

 ν (ξη),ŷ (ξη),x̂
− (ξη),ŷ −ν (ξη),x̂

0 0

 , (65)

and
γ̂s = J−1

0 NsΓ (66)

with

Ns =

√
j0

j

[
1
2
(1− η) 0 1

2
(1 + η) 0

0 1
2
(1 + ξ) 0 1

2
(1− ξ)

]
and Γ = AuzUẑ + AϕxΦx̂ + AϕyΦŷ. The coefficients Auz, Aϕx and Aϕy only depend on the
element’s geometry and read

Auz =
1

2


−1 1 0 0
−1 0 0 1
0 0 1 −1
0 −1 1 0

 ,

Aϕx =
1

4


ŷ12 ŷ12 0 0
ŷ14 0 0 ŷ14

0 0 ŷ43 ŷ43

0 ŷ23 ŷ23 0

 , Aϕy =
1

4


x̂21 x̂21 0 0
x̂41 0 0 x̂41

0 0 x̂34 x̂34

0 x̂32 x̂32 0

 , (67)

leading to a formulation, which ensures the satisfaction of the Kirchhoff patch test [26, 27].
Again, the prefactors

√
j/j0 and

√
j0/j enable an analytical integration of all parts of the plate

bending stiffness matrix, see e.g. [25].
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2.3 Weak one-way coupling

The finite element formulation discussed in Sect. 2.2 is based on a weak form of the equilib-
rium conditions,

δΠ =

∫
(δε)T σdV − δΠext = 0, (68)

where any external loads are neglected in this paper2. The strain field in membrane directions
reads

εx̂x̂ =
1

E(ẑ)
(σx̂x̂ − νσŷŷ) + α(ẑ)∆T (ẑ),

εŷŷ =
1

E(ẑ)
(σŷŷ − νσx̂x̂) + α(ẑ)∆T (ẑ),

εẑẑ =
−ν
E(ẑ)

(σx̂x̂ + σŷŷ) + α(ẑ)∆T (ẑ),

γx̂ŷ =
2(1 + ν)

E(ẑ)
σx̂ŷ, (69)

where we adopted a plane stress constraint, i.e. σẑẑ = 0. The thermal expansion coefficient
shows an arbitrary variation with respect to the thickness direction and is denoted by α(ẑ).
Solving (69) for the stresses yields

σx̂x̂ =
E(ẑ)

1− ν2
(εx̂x̂ + νεŷŷ)−

E(ẑ)α(ẑ)∆T (ẑ)

1− ν
,

σŷŷ =
E(ẑ)

1− ν2
(εŷŷ + νεx̂x̂)−

E(ẑ)α(ẑ)∆T (ẑ)

1− ν
,

σx̂ŷ =
E(ẑ)

2(1 + ν)
γx̂ŷ, (70)

or in matrix notation σx̂x̂
σŷŷ
σx̂ŷ

 =
E(ẑ)

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εx̂x̂
εŷŷ
εx̂ŷ

− E(ẑ)α(ẑ)∆T (ẑ)

1− ν

 1
1
0

 ,

σ = Cε− E(ẑ)α(ẑ)∆T (ẑ)

1− ν

 1
1
0

 . (71)

Within the proposed weak one way coupling procedure we introduce (71) into (68) obtaining

δΠ = δΠm − δΠt =

∫
Ve

(δε)T CεdV −
∫
Ve

(δε)T
E(ẑ)α(ẑ)∆T (ẑ)

1− ν

 1
1
0

 dV = 0. (72)

2The inclusion of external loads can be done in a standard manner [18] and does not introduce any complica-
tions.
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The first term on the RHS is devoted to the element stiffness matrix (Sect. 2.2.3 and Sect. 2.2.4),
while the second part refers to internal forces and couples caused by thermal loading, which can
be simplified according to

δΠt =

∫
Ve

[
δεx̂x̂ δεŷŷ

] E(ẑ)α(ẑ)∆T (ẑ)

1− ν

[
1
1

]
dV. (73)

The virtual normal-strain field is related to virtual displacements and rotations according to[
δεx̂x̂ δεŷŷ

]
=
[
δux̂,x̂ + ẑϕŷ,x̂ δuŷ,ŷ − ẑϕx̂,ŷ

]
. Interpolating the displacement and rota-

tion field with classical bilinear shape-function (2),[
ux̂
uŷ

]
=

[
N 0
0 N

] [
Ux̂

Uŷ

]
and

[
ϕx̂
ϕŷ

]
=

[
N 0
0 N

] [
Φx̂

Φŷ

]
, (74)

leads to

δΠt =
[
δUT

x̂ δUT
ŷ

] [ Fx̂

Fŷ

]
+
[
δΦT

x̂ δΦT
ŷ

] [ Mx̂

Mŷ

]
, (75)

with

Fx̂ =

∫
Ve

N,x̂
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dV , Fŷ =

∫
Ve

N,ŷ
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dV,

Mx̂ = −
∫
Ve

N,ŷẑ
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dV , Mŷ =

∫
Ve

N,x̂ẑ
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dV. (76)

Differentiating the shape functions indicates that the integral over the element area can be car-
ried out analytically, if the distributions of Young’s modulus E, thermal expansion α and tem-
perature ∆T are assumed to be constant. Thus, we get

Fx̂ =
1

2


ŷ24

ŷ31

ŷ42

ŷ13


h/2∫

−h/2

E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dẑ , Fŷ =

1

2


x̂42

x̂13

x̂24

x̂31


h/2∫

−h/2

E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dẑ,

Mx̂ =
1

2


x̂24

x̂31

x̂42

x̂13


h/2∫

−h/2

ẑ
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dẑ , Mŷ =

1

2


ŷ24

ŷ31

ŷ42

ŷ13


h/2∫

−h/2

ẑ
E(ẑ)α(ẑ)∆T (ẑ)

1− ν
dẑ.

(77)
These element forces and couples refer to the discretized mid-surface and have to be trans-
formed to the neutral surface by (50).

2.4 Stress evaluation

The stress components are evalutated element-wise at ξ = η = 0 based on an a posteriori
procedure, requiring the nodal displacement and rotation vector in the elemental Cartesian base.
The membrane strains at the elements center are evaluated with respect to the nodal degrees of
freedom by  εx̂x̂

εŷŷ
γx̂ŷ

 =

 bx 0
0 by
by bx

[ Ux̂

Uŷ

]
+ ẑ′

 0 bTx
−bTy 0
−bTx bTy

[ Φx̂

Φŷ

]
. (78)

4852



Stephan Kugler, Peter A. Fotiu and Justin Murin

x

x

y

y

z

z

z

L

L

w

h

w

1 , 0ct Bth T= =

1 , 30cb Bbh T= =

0( 0, ) 100T x z T= = =

Figure 5: FGM fin with a discretization of N = 6

Consequently, the membrane stresses are found by applying the constitutive relation (71), σx̂x̂
σŷŷ
σx̂ŷ

 =
E(ẑ′)

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εx̂x̂
εŷŷ
εx̂ŷ

− E(ẑ′)α(ẑ′)∆T (ẑ′)

1− ν

 1
1
0

 .
The definition of transverse shear strains read γx̂ẑ = uẑ,x̂ + ϕŷ and γŷẑ = uẑ,ŷ − ϕx̂. The trans-
verse displacement and the two bending angles are interpolated with classical bilinear shape
functions yielding to the following estimates of the averaged shear strains[

γx̂ẑ
γ ŷẑ

]
=

[
bx
by

]
Uẑ +

[
1/4
∑4

i=1 φŷi
−1/4

∑4
i=1 φx̂i

]
. (79)

Accordingly, the averaged shear stresses read τ iẑ = Eb(ξ=η=0)
2(1+ν)

γiẑ for i = x̂, ŷ, and the integrated
shear force is given by si = αshτ iẑ. Finally, we evaluate the shear stress distribution from

τiẑ(ẑ
′) =

12si
Ebh3

h/2−z∫
ẑ′

E(ζ)ζdζ , γiẑ(ẑ
′) =

2(1 + ν)τiẑ(ẑ
′)

E(z′)
, (80)

see [15]

3 Benchmark examples

In this Section we compare the proposed formulation to continuum solutions evaluated by
ANSYS. A main issue of this paper is the correct estimation of temperature distributions based
on the procedures discussed in Sect. 2.1. Consequently, a pure thermal problem is discussed in
Sect. 3.1, which shows interesting results for two MLC structures with the same mean value of
thermal conductivity. More examples can be found in [25].

3.1 Temperature distributions in a MLC fin

Consider a rectangular MLC structure of length L = 10, width w = 1 and height h = 1
shown in Fig. 5, which is discretized with N elements. On the top and bottom surface
(z = ±h/2) there is convection with hct = hcb = 1 and a fluid temperature TBt = 0 and
TBb = 30, while at the left end x = 0 the temperature is set to T̄ (x = 0, z) = T0 = 100.

4853



Stephan Kugler, Peter A. Fotiu and Justin Murin

0 20 40 60 80 100
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

k(z)

z

(a) Configuration 1

0 20 40 60 80 100
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

k(z)

z

(b) Configuration 2

Figure 6: Distribution of thermal conductivity of layered fin

Interval in transverse direction Configuration 1 Configuration 2
−0.5 ≤ z ≤ −0.25 k = 100 k = 0.1
−0.25 ≤ z ≤ 0 k = 0.1 k = 100
0 ≤ z ≤ 0.25 k = 0.1 k = 100

0.25 ≤ z ≤ 0.5 k = 100 k = 0.1

Table 1: Conductivity distribution

The fin is composed of four equidistant layers of height hL = h/4, with two different thermal
conductivities. We compare two symmetric configurations (i.e. Configuration 1 and Configu-
ration 2) according to Tab. 1 (see Fig. 6). Configuration 1 is characterized by a high thermal
conductivity on the top and bottom layer, while Configuration 2 has nearly isolating outside
layers. The mean value k of thermal conductivity is equal for both configurations and classical
approaches from literature assuming a constant temperature in thickness direction lead to equal
temperature distributions in membrane direction for both configurations. The reference results
are evaluated using ANSYS by discretizing the x− z plane with 500×100 PLANE55 elements
[28]. The application of the Dirichlet boundary condition, i.e. T (x = 0, z) = T0, is in contrast
to the applied convection boundary conditions at x = 0, z = ±h/2, since the thermal gradient
with respect to the thickness direction is not vanishing on the top and bottom side. Therefore,
we apply a von Neumann boundary condition onto the ANSYS model based on Fourier’s law,
i.e.

qn(x = 0, z) = −k(z)T̄,x = Ck(z), (81)

where the constant C is found iteratively so that the evaluated mean value of the temperature
distribution at x = 0 equals T0. By this we obtain

Config. 1: q(1)
n (x = 0, z) = −16.3613k(z), (82)

Config. 2: q(2)
n (x = 0, z) = −8.7069k(z). (83)

The distribution of the mean value of temperature is depicted in Fig. 7, where we used N = 20
shell elements in membrane direction and ten elements through each layer in transverse direc-
tion (n = 40). The solid line corresponds to the present approach, while the dots refer to the
ANSYS solution. Figure 7 indicates excellent accuracy of the proposed solution algorithm for
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Figure 7: Mean temperature distribution of both configurations N = 20, n = 40
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Figure 8: Temperature distribution in transverse direction at x = L, (N = 20, n = 40)

both configurations, and we observe large differences between the two configurations, even if
the average value of the thermal conductivity is identical. The temperature distribution in trans-
verse direction is shown in Fig. 8, and, again, indicates a good predictive quality of the proposed
approach. The crucial step in our derivation is the iterative solution procedure discussed on page
5. The convergence rate is depicted in Fig. 9 for both configurations. We observe that in case of
Configuration 2 (low conductivity on the top and bottom layer) about ten iterations are required
to get accurate results, while Configuration 1 requires only two iterations.

3.2 Thermo-elastic analysis of a bi-quadratic FGM beam

In this example, originated by Lü et al. [29], a bi-directional FGM beam (L = 0.1, h = w =
0.01) depicted in Fig. 10 is analyzed. The state equations vary exponentially along the axial
and transverse direction,

E(x, z) = E0e
α1x+α3(z+h/2), (84)

β(x, z) = β0e
ax+b(z+h/2), (85)

where β denotes the thermal stress constant,

β(x, z) =
E(x, z)α(x, z)

1− ν
. (86)
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Figure 9: Convergence with respect to the number of iterations at x = L, (N = 20, n = 40)
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Figure 10: The schematic representation of a bi-quardratic FGM beam

Poisson’s ratio is assumed to be constant ν = 0.25 and the temperature field is prescribed by

T (x, z) = T0e
λ1x+λ3(z+h/2). (87)

We choose E0 = 1, while β0 is defined by β0T0 = 10−4E0

1−ν . A clamped-clamped situation is
analyzed. This example is solved analytically by Lü et al. [29] based on a two-dimensional
thermo-elastic model. Lezgy-Nazargah [30] analyzed the same problem using a fully coupled
isogeometric two-dimensional finite element approach. For sake of comparison we consider an
ANSYS solution with a very fine mesh (1000x100) of fully integrated quadrilateral plane stress
elements. A study of the transverse displacements is depicted in Fig. 11. We observe a close
agreement of the evaluated bending line compared to ANSYS (Fig. 11(a)). A convergence
study with respect to the number of elements over the length N and thickness n is given in Fig.
11(b), indicating a fast rate of convergence. For N = n ≥ 6 a relative error of less than ±3% is
provided, while the present approach converges to a 3% stiffer solution compared to ANSYS.
In Fig. 12 the stress distributions at x = L/2 are compared to ANSYS and to the solutions
published in [29, 30]. The axial thermal stress distribution σxx is in good agreement compared
to the reference solutions (see Fig. 12(a)). The transverse shear stress distributions τxz are less
accurate (see Fig. 12(b)). Considering the maximum shear the analytical solutions of Lü et al.
are in good agreement to ANSYS, Lezgy-Nazargah’s results show a relative error of 13%, while
our proposed algorithm delivers a relative error of 10%. A qualitative comparison indicates that
our peak stress is located at z = 0.0018 (neutral plane) while the continuum solutions show a
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Figure 11: Transverse displacement of bi-directional thermo-elastic beam
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Figure 12: Stress analysis of bi-directional thermo-elastic beam at x = L/2 with N = n = 100
subjected to a non-uniform temperature field

peak-location of z = 0.0023. This may stem from stress rearrangements in the two-dimensional
regime which are not covered in our proposed approach.

3.3 FGM shell structure

Consider a hemisphere with a radius R = 10 and a thickness of h = 0.5 (Fig. 13(a)). Due
to symmetry only one quarter of the structure is discretized by a mesh according to Fig. 13(b).
The material properties and boundary conditions depend only on the radial coordinate r, thus,
only one quarter of the structure needs to be analyzed3. The model is loaded at the inner and
outer surface with a convection boundary condition,

hct = hcb = 10 , TBt = 0 , TBb = 300. (88)

At the equator the mean temperature is kept at T = 500. Due to these thermal boundary
conditions we expect strong variations of temperature in thickness direction ẑ and in membrane

3This axisymmetric problem could be analyzed with less than a quarter, however, in order to check the perfor-
mance of the proposed formulation regarding warped element configurations, we use on quarter of the structure.
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Figure 13: Problem description - FGM shell structure

ur uz Error in ur Error in uz
ANSYS 0.2104 -0.1256 - -

Present N = 48 elements 0.2646 -0.1216 25.7% 3.2%
Present N = 192 elements 0.2261 -0.1211 7.5% 3.6%
Present N = 768 elements 0.2100 -0.1210 0.2% 3.7%

Table 2: Displacements of FGM shell structure

direction φ. The material parameters show only spatial variations of the thermal conductivity,

k(ẑ) = 3.5 + 20ẑ + 40ẑ2, (89)

representing a parabolic distribution with low conductivity at the outside, k(ẑ = −h/2) = 1, and
high conductivity at the inner surface, k(ẑ = h/2) = 11. Since we focus mainly on temperature
effects Young’s modulus E, Poisson’s ratio ν and thermal expansion α are assumed constant
with respect to the thickness direction, i.e.

E = 10 , ν = 0.3 , α = 1 · 10−4. (90)

Elastic solutions of an FGM hemisphere with a varying Young’s modulus can be found in [16].
The reference results are evaluated using an axisymmetric model in ANSYS with the fully
coupled PLANE 13 element and a very fine discretization of 100×500. For sake of convenience
we apply a thermal Dirichlet boundary condition of T (R− h/2 ≤ x ≤ R+ h/2) = 500 accepting
some error discussed in Sect. 3.1. The temperature distributions with respect to the meridian
0 ≤ φ ≤ 90 are shown in Fig. 14(a). Due to high4 convection coefficients hcb = hct =
10 the results do not show any variations for φ > 20. The temperature field with respect to
the thickness direction is depicted in Fig. 14(b). The distributions evaluated with the present
formulation (solid lines) are compared to the ANSYS solutions, indicting a good accuracy. The
displacements in radial direction ur and in height direction uz are listed in Tab. 2 for different
numbers of shell elements. We observe a clear convergence with respect toN for displacements

4The term “high” can not be seen absolutely, however, it causes large thermal gradients with respect to the
meridian direction φ.
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in radial direction leading to very accurate results for N = 768. In terms of displacements in
height direction some error of < 4% has to be accepted. Since a main issue of the proposed
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Figure 15: Convergence issues in FGM shell structure

procedure is the iterative strategy discussed on page 5, the convergence of mean temperature T
(normalized to the ANSYS result) at φ = 90 with respect to the number of iterations I is studied
in Fig. 15(a). There, a stable value is reached after six iterations. A final error of less than four
percent is also indicated in Fig. 14 and stems from the large temperature gradient in meridian
direction at the equator, which may not be resolved properly with low numbers of N . Figure
15(b) indicates convergence with respect to the number of elements discretizing the transverse
direction. Obviously, using fifty elements in transverse direction leads to accurate solutions.

4 Conclusion

In this paper a novel approach to the evaluation of thermo-elastic effects in FGM or multi-
layer shell structures is proposed. The temperature field is evaluated by an iterative procedure
assuming non-constant temperature variations with respect to the thickness direction. A key
issue is the decomposition of T (x̂, ŷ, ẑ) according to (11). The resulting displacement fields
are evaluated with the aid of a quadrilateral shell element based on effective elastic quantities.
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Suitable projection schemes enable an independent derivation of the membrane and the plate
bending part. Drilling rotations are included based on an enlarged functional, where the sym-
metry of stress and strain is enforced only in a weak sense. Special strain field interpolations
ensure that all parts of the stiffness matrix can be given analytically even for arbitrarily shaped
element configurations, thus, any Gaussian quadrature is avoided. It is shown that thermal ex-
pansion causes internal forces and couples, which are applied onto the proposed shell element.
The resulting analysis procedure can be termed efficient and leads to accurate results compared
to ANSYS solutions where continuum formulations are used.
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Abstract. New smart materials have been developed in material science, that are suitable for
mechatronic applications. Modern mechatronic systems are focusing on minimizing size, active
control and low energy consumption. All this attributes can be incorporated into term Micro
Electro Mechanical Systems (MEMS). To improve performance of MEMS system, new materials
and technologies are developed - one of them, which found broad application usage is Func-
tionally graded material (FGM). MEMS application usually contains multilayer structure and
in some application class MEMS systems contain piezoelectric layers. Piezoelectric structures
offer facilities to make motions. Piezoelectric layers can be also used to damp vibrations as an
active damping or as an active sensor. For better understanding these multiphysical problems
new mathematical models are developed.
The paper deals with finite beam element with piezoelectric layers and functionally graded ma-
terial of core. In the paper homogenization of FGM material properties and homogenization
of core and piezoelectric layers is presented. In the process of homogenization direct integra-
tion method and multilayer method is used. There is also presented the derivation of individual
submatrices of local stiffness and mass matrix, where concept of transfer constants is used.
Functionality of new FGM finite beam with piezoelectric layers is presented by numerical ex-
periments.
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1 INTRODUCTION

New materials have been introduced in the area of mechanisms and mechatronic applica-
tions. Contemporary mechanical systems are focusing on minimizing size, active control and
low energy consumption. All these attributes can be incorporated into term Micro Electro Me-
chanical System (MEMS). MEMS applications usually contain multilayer structure and some
of these layers can have piezoelectric properties. Piezoelectric structures offer facilities to make
motions or they can be used to damp vibrations as an active damper or as an active sensor.

2 PIEZOELECTRIC CONSTITUTIVE EQUATIONS

Piezoelectric constitutive equations describe the relationship between mechanical and elec-
trical quantities [1]. This relationship is derived in tensor notation, but for practical usage it can
be rewritten into matrices notation.

2.1 Tensor notation of piezoelectric constitutive equations

The form of the constitutive equations depends on chosen mechanical and electrical quanti-
ties and can be expressed in two basic configurations [2]. The first configuration is expressed
by mechanical stress tensor components σkl and vector components of electric intensity Ek and
has a form

Di = εσikEk + diklσkl (1)

εij = dijkEk + sEijklσkl (2)

where εij are strain tensor components, Di are components of electric displacement vector,
dikl are tensor components of piezoelectric constants, εσik are components of permittivity tensor
under constant mechanical stress and sEijkl are components of compliance tensor under constant
electric intensity.
The constitutive equations can be also expressed by strain tensor components εkl and vector
components of electric intensity Ek and has a form

σij = cEijklεkl − eijkEk (3)

Di = eiklεkl + εεikEk (4)

where new quantities are components of stiffness tensor under constant electric intensity cEijkl
and components of piezoelectric modulus tensor eijk.

2.2 Matrix notation of piezoelectric constitutive equations

If we use symmetric properties of individual tensor in constitutive tensor equations, we can
rewrite constitutive equations into matrix notation [3]. Then equations (1) and (2) have a form

Di = εσikEk + diqσq (5)

εp = dpkEk + sEpqσq (6)

and equations (3) and (4) can be rewritten in the form

σp = cEpqεq − epkEk (7)

Di = eiqεq + εεikEk (8)
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Di and Ek are vectors with three components, σq and εq are vectors with six components,
matrices sEpq and cEpq have dimension 6 × 6, matrices diq and epk have dimension 3 × 6 and
matrix εεik has dimension 3× 3. Constitutive equations (5) and (6) written in a component form
can be rewritten as

ε = sEσ + dTE (9)
D = dσ + εσE (10)

and equations (7) and (8) can be rewritten as

σ = cEε− eTE (11)
D = eε+ εεE (12)

3 BASIC FEM EQUATIONS FOR PIEZOELECTRIC STRUCTURE

To obtain basic FEM equations for piezoelectric structure, the Hamilton’s principle is used
and can be expressed in the form ∫ t2

t1

(δL+ δW ) dt = 0 (13)

where L is Lagrangian, W is work of external mechanical and electrical forces and t1 and t2
defined considered time interval.
Lagrangian of piezoelectric structure is given by

L =T − U +We =

=

∫
V

1

2
ρu̇T u̇dV −

∫
V

1

2
εTσdV +

∫
V

1

2
ETDdV

(14)

where T is kinetic energy of structure, U is potential energy of structure and We is electric
energy stored in piezoelectric material. In kinetic energy term u̇ represents velocity vector.
Virtual work of external mechanical and electrical forces can be expressed as

δW =
∑(

δuTF
)
−
∑(

δφTQ
)

(15)

where F and Q represents discrete forces and electric charges, respectively and u and φ are
displacement vector and scalar electric potential, respectively.
Equation (13) can be rewritten using (14) and (15)∫ t2

t1

[
δ

∫
V

1

2
ρu̇T u̇dV − δ

∫
V

1

2
εTσdV + δ

∫
V

1

2
ETDdV+

+
∑(

δuTF
)
−
∑(

δφTQ
)]
dt = 0

(16)

After some manipulation and using constitutive equations (11) and (12) Hamilton’s principle
for piezoelectric system can be expressed in form∫ t2

t1

[
−
∫
V

ρδuT üdV −
∫
V

δεTcEεdV +

∫
V

δεTeTEdV +

∫
V

δETeεdV+

+

∫
V

δETεεEdV +
∑(

δuTF
)
−
∑(

δφTQ
)]
dt = 0

(17)
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Using shape functions (Nu, Nφ), we can write relationship between displacement of point and
nodal displacement of finite element and between scalar electric potential of point and nodal
scalar electric potential of finite element

u = Nuu
e (18)

φ = Nφφ
e (19)

Relationship between components of strain and components of nodal displacements has form

ε = Buu
e (20)

Similarly relationship between components of electric field intensity and components of nodal
potential can be written as

E = −Bφφ
e (21)

Virtual strain and virtual electric field intensity can be expressed as

δε = Buδu
e (22)

δE = −Bφδφ
e (23)

Equation (17) can be modified using equations (18)-(23)∫ t2

t1

δ(ue)T
[
−
(∫

V e

NT
uρNudV

)
üe −

(∫
V e

BT
uc

EBudV

)
ue−

−
(∫

V e

BT
ue

TBφdV

)
φe +NT

uF

]
dt+

+

∫ t2

t1

δ(φe)T
[(

−
∫
V e

BT
φeBudV

)
ue +

(∫
V e

BT
φε

εBφdV

)
φe −NT

φQ

]
dt = 0

(24)

From equations (24) we obtain finite element equations for piezoelectric analysis[
Me

uu 0
0 0

] [
üe

φ̈
e

]
+

[
Ce
uu 0
0 0

] [
u̇e

φ̇
e

]
+

[
Ke
uu Ke

uφ

Ke
φu Ke

φφ

] [
ue

φe

]
=

[
Fe

Qe

]
(25)

where

Me
uu =

∫
V

NT
uρNudV (26)

Ke
uu =

∫
V

BT
uc

EBudV (27)

Ke
uφ =

∫
V

BT
ue

TBφdV (28)

Ke
φu =

∫
V

BT
φeBudV (29)

Ke
φφ = −

∫
V

BT
φε

εBφdV (30)

Fe = NT
uF (31)

Qe = −NT
φQ (32)
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4 FEM EQUATIONS OF FGM BEAM WITH PIEZOELECTRIC LAYERS

2D beam element with piezoelectric layers, where beam core is made from functionally
graded material is shown in Figure 1, where all degrees of freedom are depicted. Mechanical
degrees of freedom in each node are two displacements (in direction x a y) and rotation (in
plane x − y) [6]. Electric degrees of freedom are electric potentials φi on 4 electrodes. The
height of beam core made from FGM is h, the height of piezoelectric layer is hp, the depth and
the length of the beam element are b and L, respectively.
Material properties of FGM core are function of longitudinal and transversal coordinate x and
y, material properties of piezoelectric layers are constants.

Figure 1: Electric DOF in 2D beam element

In order to derive individual submatrices of the beam element with piezoelectric layers and
FGM core, two steps in homogenization process have to be performed. At first, homogenization
of material properties of FGM core have to be performed, where direct integration method is
used [6]. In the next step, homogenization of piezoelectric layers and homogenized FGM core
(from step one) is performed. After these two operations, homogenized material properties of
the beam vary through the length of the beam as a function of longitudinal coordinate x and are
constant in transversal direction.

4.1 Equations for structural analysis

The structural submatrix Ke
uu for the beam element with piezoelectric layers can be ex-

pressed in a form

Ke
uu =


k

′
u 0 0 −k′

u 0 0
k

′
v2 k

′
v3 0 −k′

v2 kv2
S k

′
v33 0 −k′

v3 kv3
Y k

′
u 0 0

M k
′
v2 −kv2

kv23

 (33)

where individual components contain the influence of FGM core stiffness and also the influence
of piezoelectric layers stiffness. The calculation of components is identical for classical multi-
layer or FGM beam without piezoelectric layer and is described in [6]. Mass matrix Me

uu can be
calculated numerically using classical shape functions and homogenized density of FGM beam
with piezoelectric layers according equation (26).
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4.2 Equations for electric analysis

Electric field intensity in piezoelectric layer is constant and for top layer can by expressed as
[4, 5]

E1 = −∂φ
∂y

=
φ2 − φ1

hp
(34)

and for bottom layer as

E2 = −∂φ
∂y

=
φ4 − φ3

hp
(35)

Both components of electric field intensity can be written in a form

E =

[
E1

E2

]
= −

[
1/hp −1/hp 0 0
0 0 1/hp −1/hp

]
φ1

φ2

φ3

φ4

 = −Bφφ
e (36)

For 1D problems the matrix of material properties for electric field – permittivity is reduced to
only one material property εε, but because the beam element contains two identical layers, we
can write

εε =

[
εε 0
0 εε

]
(37)

Then the equation (30) has a form

Ke
φφ = −

∫
V

BT
φε

εBφdV = −
∫
L

BT
φε

εBφApdx (38)

where Ap is cross-section of one piezoelectric layer, i.e. Ap = bhp.
After some mathematical manipulations the equation (38) can be expressed as

Ke
φφ =



−ApLε
ε

h2p

ApLε
ε

h2p
0 0

ApLε
ε

h2p
−ApLε

ε

h2p
0 0

0 0 −ApLε
ε

h2p

ApLε
ε

h2p

0 0
ApLε

ε

h2p
−ApLε

ε

h2p


(39)

4.3 Coupling of structural and electrical analysis

Piezoelectric material properties express coupling between mechanical and electrical field -
matrices e or d. The relationship between these two matrices can be expressed by elasticity
matrix. In 1D problem in x − y plane (in index notation x1 − x2) we have only one material
property – e21 or d21, where index 2 represents direction of piezoelectric layer polarization and
also the direction of electric field intensity vector and index 1 defines direction of mechanical
deformation. The relationship between these two quantities is reduced to expression e21 =
d21Ep [7, 8], where Ep is Young modulus of elasticity of piezoelectric material. In reality,
relationship between matrices e and d is more complicated and the quantity e21 computed from
matrix d and elastic matrix for 3D system and the quantity e21 computed from d21 and Ep have
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different values. Therefore if we have quantities e21 and d21 computed from matrix relationship,
it is better to used them then simplified relationship.
Piezoelectric material properties of both piezoelectric layers are defined as

e =

[
e21 0 −ye21
e21 0 −ye21

]
(40)

The expression eTE defines mechanical stress caused by piezoelectric effect. In the beam
elements, internal quantities are not mechanical stress but internal forces and moments, then
the first and the third column of matrix (40) multiplied by corresponding components of Bu and
Bφ as well as corresponding components of displacement u and potential φ represents axial
forces and bending moments, respectively.
Description of piezoelectric behaviour by e21 is more suitable for sensor equation – matrix Ke

φu,
description by d21 is more suitable for actuator equation – matrix Ke

uφ, i.e.

e =

[
d21Ep 0 −yd21Ep
d21Ep 0 −yd21Ep

]
(41)

Using equations (40) and (41) we can write (28) and (29) in form

Ke
uφ =



−Apd21Ep
hp

Apd21Ep
hp

−Apd21Ep
hp

Apd21Ep
hp

0 0 0 0
Ayd21Ep

hp
−Ayd21Ep

hp

Ayd21Ep
hp

−Ayd21Ep
hp

Apd21Ep
hp

−Apd21Ep
hp

Apd21Ep
hp

−Apd21Ep
hp

0 0 0 0

−Ayd21Ep
hp

Ayd21Ep
hp

−Ayd21Ep
hp

Ayd21Ep
hp


(42)

and

Ke
φu =



−Ape21
hp

0
Aye21
hp

Ape21
hp

0 −Aye21
hp

Ape21
hp

0 −Aye21
hp

−Ape21
hp

0
Aye21
hp

−Ape21
hp

0
Aye21
hp

Ape21
hp

0 −Aye21
hp

Ape21
hp

0 −Aye21
hp

−Ape21
hp

0
Aye21
hp


(43)

where parameter Ay represents first moment of cross-section of piezoelectric layer

Ay =
1

2
Ap(h+ hp) (44)

4.4 FEM equations for the beam element with piezoelectric layers

FEM equations for beam element with piezoelectric layers and FGM core for transient anal-
ysis have classical form[

Me
uu 0
0 0

] [
üe

φ̈
e

]
+

[
Ce
uu 0
0 0

] [
u̇e

φ̇
e

]
+

[
Ke
uu Ke

uφ

Ke
φu Ke

φφ

] [
ue

φe

]
=

[
Fe

Qe

]
(45)
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where individual submatrices are defined by (33), (39), (42) and (43), vector of nodal unknowns
is defined as [

ue

φe

]
=
[
ui vi ϕi uj vj ϕj φ1 φ2 φ3 φ4

]T (46)

and vector of nodal loads is defined as[
Fe

Qe

]
=
[
Fxi Fyi Mi Fxj Fyj Mj Q1 Q2 Q3 Q4

]T (47)

where Q1, Q2, Q3 and Q4 are electric charge on electrodes 1, 2, 3 and 4, respectively.

5 NUMERICAL EXAMPLES

All derived equations for FGM beam with piezoelectric layers were implemented in our FEM
code MultiFEM.
In this section three numerical examples are presented:

• Example 1 – considered simple beam is made from FGM with attached piezoelectric
layers, only static analysis is considered

• Example 2 – the same simple beam as in Example 1 is considered, but analysis is transient

• Example 3 – considered structure contains three beam parts with partially attached piezo-
electric layers, two beam parts are made from FGM and one beam part has constant
material properties

5.1 Material properties of FGM structure and piezoelectric layers

In all three examples, the same functionally graded material is considered. Material of matrix
(indexm) is NiFe with constant density and Young’s modulus and material of fibre (fibre – index
f ) is tungsten with constant density and Young’s modulus:

• Young’s modulus: Em = 255 GPa, Ef = 400 GPa

• density: ρm = 9200 kg/m3, ρf = 19300 kg/m3

Volume fractions of both constituents vm(x, y) and vf (x, y) vary along the length (axis x) and
height (axis y) of beams according equations:

vm(x, y) = −1.3× 108x3y2 + 1333.3x3 + 2.× 107x2y2 − 200.x2 − 40000.y2 + 1. [-] (48)
vf (x, y) = 1.3× 108x3y2 − 1333.3x3 − 2.× 107x2y2 + 200.x2 + 40000.y2 [-] (49)

Both functions of volume fractions for beam with length 0.1 m and height 0.01 m are shown in
Figure 2.

Effective material properties of FGM are defined by material properties of constituents and
their variations and Young’s modulus and density of considered FGM have form

EFGM(x, y) =1.93× 1019x3y2 − 1.93× 1014x3 − 2.9× 1018x2y2+

+ 2.9× 1013x2 + 5.8× 1015y2 + 2.55× 1011 [Pa]
(50)

ρFGM(x, y) =1.34667× 1012x3y2 − 1.34667× 107x3 − 2.02× 1011x2y2+

+ 2.02× 106x2 + 4.04× 108y2 + 9200. [kg/m3]
(51)
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Figure 2: Left – volume fraction of matrix, right – volume fraction of fibre

In all three examples, height and depth of beam cross-section is 0.01m. Homogenized material
properties of investigated FGM beams can be calculated by defined cross-section parameters of
beams and by effective material properties and have following forms:

EN
FGM(x) =− 3.2× 1013x3 + 4.83× 1012x2 + 3.03× 1011 [Pa] (52)

EM
FGM(x) =9.6× 1013x3 − 1.45× 1013x2 + 3.42× 1011 [Pa] (53)

ρFGM(x) =− 2.24× 106x3 + 33666.6x2 + 12566.6 [kg/m3] (54)

EN
FGM(x) and EM

FGM(x) represent homogenized Young’s modulus for axial loading and for bend-
ing, respectively.

Piezoelectric layers in investigated beams are made from PZT5A piezoelectric material.
PZT5A is orthotropic material and has following material properties (direction of poling has
index 3):

• mechanical properties:

– Young’s moduli: E1 = 61 GPa, E2 = 61 GPa, E3 = 53, 2 GPa

– Poisson numbers: µ12 = 0.35, µ13 = 0.38, µ23 = 0.38

– shear moduli: G12 = 22.6 GPa, G13 = 21.1 GPa, G23 = 21.1 GPa

– density: 7750 kg/m3

• piezoelectric properties: d31 = −171 × 10−12 C/N, d33 = 374 × 10−12 C/N, d15 =
584× 10−12 C/N, d24 = 584× 10−12 C/N

• relative permittivity: εσ11 = 1728.8, εσ22 = 1728.8, εσ33 = 1694.9

5.2 Example 1 – static analysis of piezoelectric beam

Figure 3 shows simple cantilever made of FGM with piezoelectric layers, which is loaded
by transversal force F at free end. Electrodes on top and bottom piezoelectric layers are short
circuited. The goal of analysis is to investigate static responds of structure on prescribed loading
and compare results of 1D model with results of 2D model.

Geometry parameters of beam are:
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Figure 3: Example 1: static analysis of FGM beam with piezoelectric layers

• length 0.1 m

• height of FGM core 0.01 m, height of piezoelectric layer 0.001 m

• depth of beam 0.01 m

Material of beam:

• core of beam is made from FGM (NiFe-tungsten) and its effective and homogenized
material properties are described by equations (50)-(54)

• piezoelectric layers are made from PZT5A – reduced properties e31 =
d31
sE11

= −10.43

C/m2

Using multilayered method homogenized Young’s modulus for axial loading and for bending
and homogenized density of whole beam can be calculated using homogenized material prop-
erties of FGM core and constant material properties of piezoelectric layers and they have form

EN(x) =− 2.68519× 1013x3 + 4.02778× 1012x2 + 2.62944× 1011 [Pa] (55)

EM(x) =5.59414× 1013x3 − 8.3912× 1012x2 + 2.23616× 1011 [Pa] (56)

ρ(x) =− 1.87037× 106x3 + 280556.x2 + 11763.9 [kg/m3] (57)

Boundary conditions:

• left end – fixed

• right end – transversal force F = 10 N

The static analysis of system was performed by new FGM beam element with piezoelectric
layers. The analysis was performed by 1, 2, 4 and 10 elements – see Figure 4 left.

Deformed shape of beam is shown in Figure 4 right. Displacement in y direction of free end
is −10.63 × 10−6 m. Electric charge on top electrodes for FEM models with different number
of elements are summarized in Table 1.

The same problem was analyzed by FEM code ANSYS, where two types of plane elements
were used – PLANE223 with piezoelectric capabilities and PLANE183. Because material prop-
erties of FGM core vary along the length and height of beam, discretized 2D model contains
6400 elements. Displacement in y direction of free end was −10.70× 10−6 m and total electric
charge on top electrode was 9.2715× 10-8 C.
As we can see from obtained results, new FGM beam element with piezoelectric layers is very
accurate and effective in static analysis, because variation of material properties of FGM core
of beam is directly incorporated into stiffness matrix.
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1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10

Vykreslenie prvkov

Zobrazena vlastnost:

material

Figure 4: Example 1: left – discretized beam with node and element numbers, right – deformation of beam

Number of elements 1 2 4 10
Qelem 1 [C] 9.2650× 10-8 6.8159× 10-8 3.9209× 10-8 1.6939× 10-8

Qelem 2 [C] 2.4491× 10-8 2.8950× 10-8 1.5256× 10-8

Qelem 3 [C] 1.8203× 10-8 1.3624× 10-8

Qelem 4 [C] 6.2883× 10-9 1.1998× 10-8

Qelem 5 [C] 1.0343× 10-8

Qelem 6 [C] 8.6318× 10-9

Qelem 7 [C] 6.8450× 10-9

Qelem 8 [C] 4.9743× 10-9

Qelem 9 [C] 3.0245× 10-9

Qelem 10 [C] 1.0157× 10-9

QSUM [C] 9.2650× 10-8 9.2650× 10-8 9.2650× 10-8 9.2650× 10-8

Table 1: Example 1: Electric charge on individual electrodes

5.3 Example 2 – transient analysis of piezoelectric beam

In Example 2 transient analysis of FGM beam with piezoelectric layers with the same ge-
ometry and material parameters as in Example 1 was performed. Electrodes on top and bottom
piezoelectric layers are short circuited. The goal of analysis is to investigate free vibration of
structure without considering damping.
Boundary conditions:

• left end – fixed

• right end – free

Initial conditions:

• initial displacement of nodes – initial deformation of system is defined by prescribed
displacement of free end in vertical direction +0.01m

• initial velocity of nodes – all nodes have zero initial velocities

The transient analysis of system was performed by new FGM beam element with piezoelectric
layers. In the analysis Newmark integration scheme was used. Total simulation time was 5 ms

4873
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and number of equidistant substeps was 80. 1D model of system was discretized by 10 elements
– see Figure. 4 left.
Displacement of nodes 4, 8 and 11 in direction y as function of time are shown in Figure 5 left.
Time variations of electric charge in top electrode on elements 2 and 4 are shown in Figure 5
right.
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Figure 5: Example 2: left – Y displacement time variation of nodes (4, 8, 11), right – charge time variation of top
electrodes on elements (2, 4)

5.4 Example 3 – transient analysis of simple structure

Figure 6 shows simple structure, which contains three beams. Piezoelectric layers are par-
tially attached to the beam 1 and 2. Electrodes on top and bottom piezoelectric layers are short
circuited. The goal of analysis is to investigate free vibration of structure with considering
damping.

Figure 6: Example 3: free vibration of structure with piezoelectric elements

Geometry parameters of beams are:
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• cross-section – all beams have height and depth of cross-section 0.01 m, height of piezo-
electric layers is 0.001 m and its depth is 0.01 m

• length – beam 1 and 2 have length 0.05 m and beam 3 has length 0.1 m, length of piezo-
electric layers is 0.01 m

Material parameters of beam are:

• core of beam – beam 1 and 2 are made from FGM, homogenized material properties are
defined by equations (52)-(54), beam 3 has constant material properties: E = 319.4 GPa,
ρ = 13989.6 kg/m3

• piezoelectric layer – PZT5A

Three different types of beam finite elements were used in transient analysis of system: FGM
beam element, FGM beam element with piezoelectric layers and beam element with Hermite
shape functions. Discretized 1D model of system is shown in Figure 7, where nodes and element
types are depicted.
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5
4 5 5 5 5
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6

6

6

6

6

6

6

6

6

Vykreslenie prvkov

Zobrazena vlastnost:

typ

Figure 7: Example 3: left – nodes, right – elements with element types numbering

Boundary conditions:

• left end – fixed

• right end – free

Initial conditions:

• initial displacement of nodes – initial deformation of system is defined by prescribed
displacement of free end in horizontal direction +0.01m

• initial velocity of nodes – all nodes have zero initial velocities

In the analysis Newmark integration scheme was used. Total simulation time was 7.5 ms and
number of equidistant substeps was 400. In the analysis Rayleigh damping was used. Mass-
proportional damping coefficient and stiffness-proportional damping coefficient had the same
value 1× 10−5.
Deformed shape of system at the end of simulation time (7.5 ms) is shown in Figure 8 left.
Figure 8 right shows time variation of electric charge in top electrode on elements 1 and 6.
Displacements of nodes 8 and 21 as function of time in direction x and y are shown in Figure 9
left and right, respectively.
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Figure 8: Example 3: left – X displacement of structure at time 7.5ms, right – charge time variation of top electrode
on element 1 and 6

Figure 9: Example 3: left – X displacement time variation of nodes (8, 21), right – Y displacement time variation
of nodes (8, 21)

6 CONCLUSIONS

The paper presents new beam finite element with piezoelectric layers, where core of the beam
can be made of FGM materials. Such combination of materials is very attractive for mechatronic
applications, because material composition of FGM core can be optimized for design stress state
and deformation can be controlled by voltages on electrodes. The beam finite element can be
used for analysis of such systems very effectively and accurately.
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Abstract. Nowadays, new materials like Functionally Graded Material (FGM) are necessary
for sophisticated structures like MEMS systems, advanced electronic devices, etc. Computer
modelling of such complex systems, like structures with spatial variation of material properties
(e.g. FGM) are, using commercial FEM code with classic elements, needs remarkable effort
during preparation phase and sufficient computer equipment for solution phase because of ne-
cessity the numbers of elements and material models. Therefore new methods for modeling and
simulation of FGM beams with spatial variation of material properties are developed.

In the proposed contribution, semi-analytical method (based on calculation of transfer func-
tions and transfer constants) for solution of differential equation with non-constant polynomial
coefficients, is presented. This method is used in derivation process (for setting up the transfer
matrix) of our new beam finite elements for modeling and simulation of Functionally Graded
Material (FGM) beam structures (e.g. new 3D FGM beam finite element for modal and struc-
tural analysis, new FGM beam finite elements for coupled electro-thermo-mechanical analysis).
Numerical experiments are made to show the accuracy and effectiveness of this method.
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1 INTRODUCTION

Physical processes in materials, such as heat transfer, conduction of electric current, me-
chanical stress, etc., are often described by partial differential equations or by system of partial
differential equations. An exact analytical solution is usually possible only for simplified inves-
tigated domains (e.g. one dimensional link parts - bars) and simple boundary conditions of the
investigated system, where the geometry allows to reduce the partial differential equations into
ordinary differential equations. The geometry of the bar, as well as the boundary conditions
fulfil the requirements that are needed to apply analytical methods for solving the differential
equations.

One example, let us write general partial differential equation for heat transfer in considered
domain:

∂T (x, y, z, τ)

∂τ
=

λ

cρ
52 T (x, y, z, τ) +

Q

cρ
(1)

Quantity T (x, y, z, τ) [K] is the unknown temperature of the system, τ [s] is the time, λ
[Wm−1K−1] is the thermal conductivity of considered material, c [Jkg−1K−1] is its specific
heat, ρ [kgm−3] is the density of the material and Q [Wm−3] is the volume heat sources in the
system. For steady state and for 1D geometry (bar construction) we can simplify this partial
differential equation into the form of ordinary differential equation:

d2T (x)

dx2
= −Q

cλ
(2)

with two boundary conditions, e.g.:

T (0) = T0

T (L) = TL
(3)

It is possible to write similar ordinary differential equations also for other physical fields (e.g.
electric field, structural analysis, etc.). When we consider variable material properties of the bar
(e.g. Functionally Graded Material - FGM) the ordinary differential equations contain variable
(nonconstant) coefficients.

In this contribution, semi-analytical method based on calculation of transfer functions (trans-
fer constants), for solution of differential equation with polynomial coefficients [1] is presented.
This method is used in derivation process (for setting up the transfer matrix) of our new beam
finite elements for modeling and simulation of FGM beam structures with 3D spatial variation
of material properties (e.g. new 3D FGM beam finite element for modal, structural and buck-
ling analysis [2][3], new FGM beam finite elements for coupled electro-thermo-mechanical
analysis[4]).

2 SEMI-ANALYTICAL METHOD FOR SOLUTION OF LINEAR DIFFERENTIAL
EQUATION WITH NON-CONSTANT COEFFICIENTS

There will be set out a procedure for solving differential equations with variable coefficients
and right-hand side, which is taken from Rubins article [1]. These differential equations must
fulfil the following requirements:

• differential equation of one independent variable

• polynomial character of variable coefficients and right side of the differential equation
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• known interval of the independent variable, where the solution of the differential equation
needs to be determined (x ∈ 〈0, L〉)

The order of differential equation and also the order of its right side are arbitrary.

2.1 Solving of the differential equation with non-constant coefficients

Let us consider 1D differential equation with non-constant coefficients and the right side in
the form:

m∑
u=0

ηu(x) y
(u)(x) =

g∑
j=0

qj aj(x) (4)

where m is a order of the differential equation, y(x) is an unknown function of independent
variable x, y(u)(x) is uth derivative of the unknown function y(x)

(
y(u)(x) = duy(x)/dxu

)
,

ηu(x) is a polynomial variable coefficient for uth derivation of the differential equation, g is the
order of a polynomial on the right side of the differential equation, qj is a constant coefficient for
jth power of the right side polynomial. Function aj(x) is an auxiliary function for polynomial
formulation

aj(x) =
xj

j!
j > 0

aj(x) = 1 j = 0

aj(x) = 0 j < 0

(5)

Polynomial coefficients ηu(x) of the differential equation (4) for u = {0;m} can be written as:

ηu(x) =

pu∑
r=0

ρur(x)

ρur(x) = ηur ar(x)

(6)

where ηur is a constant coefficient for rth power of polynomial for uth derivation, pu is an
order of polynomial for uth derivation and ar(x) is an auxiliary function according to (5) for
polynomial formulation.
According to this notation, derivation and integration of polynomial can be written in general
form:

a
′

j(x) = aj−1(x)
x∫

0

aj(x) = aj+1(x)
(7)

Then the solution of the differential equation (4) has according to [1] the form:

y(x) =
m−1∑
j=0

y
(j)
0 cj(x) +

g∑
j=0

qj bj+m(x) (8)

where y(j)0 is jth derivative of the function y(x) at the position x = 0
(
y
(j)
0 = y(j)(x)|x=0

)
,

cj(x) is a transfer function for uniform solution of the differential equation and bj+m(x) is a
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transfer function for particular solution of the differential equation (4).
Then the derivative of the solution (8) has a form:

y(u)(x) =
m−1∑
j=0

y
(j)
0 c

(u)
j (x) +

g∑
j=0

qj b
(u)
j+m(x) (9)

For u = 0 is Eq. (9) equal to Eq. (8). The solution (8) of the differential equation (4) and its
derivatives (9) can be written in the matrix form:

y(x)
y′(x)
y′′(x)

...
ym(x)

 =


c0 c1 c2 . . . cm−1
c′0 c′1 c′2 . . . c′m−1
c′′0 c′′1 c′′2 . . . c′′m−1
...

...
... . . .

cm0 cm1 cm2 . . . cmm−1

 ·

y0
y′0
y′′0
...
ym0



+


bm bm+1 bm+2 . . . bj+m

b′m b′m+1 b′m+2 . . . b′j+m

b′′m b′′m+1 b′′m+2 . . . b′′j+m
...

...
... . . .

bmm bmm+1 bmm+2 . . . bmj+m

 ·

q0
q1
q2
...
qg



(10)

The solution (8) and its derivatives (9) of the differential equation (4) are based on determi-
nation of the transfer functions generally labelled c(x) and b(x). The calculation of functions
b
(u)
j+m(x) is based on the use of power series and recursive process, considering u = {0;m}

and j = {0; g}. It is necessary to guarantee the convergence of the series for a given inter-
val x ∈ 〈0;L〉 for successful calculation of these functions. It is always fulfil for differential
equation with constant coefficients ηu but for differential equation with variable (polynomial)
coefficients ηu(x) it is often necessary to divide the interval of x into the shorter sections (in
our case the independent variable is geometric variable, for example x = L is the length of the
bar), and thus determine the solution also for inner region of the bar (where x ∈ (0;L)). This
division of the interval is implemented in an algorithm. Calculated functions b(u)j+m(x) are used
for next calculation of the functions c(u)j (x), where u = {0;m} and j = {0;m− 1}.

2.2 Recursive calculation of the transfer functions using the power series

We can write (6) again:
ρur(x) = ηur ar(x) (11)

with assumption for u = {0;m} and r = {0; pu}.
Let us introduce the following equation:

ρ̃ur(x) = ρm−u,r(x)
xu

ηm0

(12)

where u = {0;m} and r = {0; pm−u}.
The calculation itself is based on determining of the power series members e(u)s :

b
(u)
j =

∞∑
s=0

e(u)s (x) (13)
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where j = {m; maxj} and u = {0;m}. The value maxj = max(je, jg) where je = m+g ensures
correct calculation for the high order of the polynomial on the right-hand side of the differential
equation (order of the right-hand side polynomial is higher than order of any polynomial on the
left-hand side of the differential equation) and the value jg = max(pt − t + 2m − 1) where
t = {0;m− 1} ensures correct calculation for the high order of the polynomials for derivatives
on the left-hand side of the differential equation.
First members of the series (s = 0) are:

e
(u)
0 (x) =

aj−u(x)

ηm0

(14)

Next members for s = 0 are calculated using matrix εs,ur(x) where u = {0;m} and r =
{0; pm−u}. For the members of matrix ε0,ur(x) it holds:

ε0,00(x) = e
(m)
0 (x)

ε0,ur(x) = 0
(15)

For the rest of series members where s > 0 we can write a recursive rule:

εs,ur(x) = εs−1,u,r−1(x); u = {0;m}, r = {1; pm−u}

εs,u0(x) =
εs−1,u−1,0(x)

j −m+ s
; u = {1;m}

εs,00(x) = −
( m∑

u=1

εs,u0(x)ρ̃u0(x) +
m∑

u=0

pm−u∑
r=1

εs,ur(x)ρ̃ur(x)
) (16)

Backward recursion has then a form:

e(m)
s (x) = εs,00(x)

e(m)
s (x) =

x

j + s− u
e(u+1)
s (x)

(17)

where u = {m− 1; 0}.
Equation (13) then can be used for calculation the functions b(u)j (x). But we can see that

s ∈ 〈0;∞〉 so it is necessary to choose maximum permissible limit for s. The fact of lack
of convergence or divergence of the series is accepted when this limit is reached. In that case
it is necessary to determine the functions b(u)j (x) using shorter interval, so primary interval
x ∈ 〈0;L〉 needs to be divided.

The functions of uniform solution of the differential equation are calculated as follows:

c
(u)
j (x) = aj−u(x)−

j∑
t=0

pt∑
r=0

(
j − t+ r

r

)
ηtrb

(u)
j−t+r+m(x) (18)

where u = {0;m− 1} and j = {0;m− 1}.

2.3 Characteristics of the algorithm for solving of the differential equations

The result of the calculation of the differential equation with variable coefficients and the
right-hand side is the solution according to the equation (8). It should be noted that this is
a solution for selected point x of the considered interval of the independent variable, so the
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program is designed for calculation of values cj(x) in given point x for j = {0;m − 1} where
m is the order of the differential equation. The values bj+m(x) for selected point x are also
calculated for j = {0; g} where g is order of the right-hand side polynomial of the differential
equation. It means that functions c(x) and b(x) cannot be calculated analytically but only at
discrete points x, where x is from interval 〈0;L〉.

The algorithm calculates matrices of discrete values c(u)j (x) and b(u)j+m(x) in defined point x
where u = {0;m− 1} represents derivative for calculations according to (9). It always holds:

c
(u)
j (x)|x=0 = 1; if i = u

c
(u)
j (x)|x=0 = 0; if i 6= u

c
(u)
j+m(x)|x=0 = 0; forall j = {0; g}

(19)

For the calculation of c(u)j (x) and b(u)j+m(x) we do not need to know the the polynomial functions
of the right side (does not enter into calculation) of the differential equation but only the degree
of the right side polynomial. Its coefficients qj are used only in the solution (8) and its deriva-
tives (9). So we can use calcualted c(u)j (x) and b(u)j+m(x) for different coefficients qj of the right
side polynomial if its degree does not change.

Using power series gives us exact solution and because advanced numerical operations as
numerical integration are not required in the calculation of the transfer functions c(u)j (x) and
b
(u)
j+m(x) this procedure is fast and can be easy implemented into the FEM code. Only the

differential equations with one independent variable can be solved and the variable coefficients
and the term on the right side of the differential equation has to be polynomial.

The whole procedure of calculation transfer functions c(u)j (x) and b(u)j+m(x) is described in
[1] in detail - the block diagram of this procedure is shown in Figure 1. This approach for cal-
culation differential equation with non-constant parameters was implemented into the software
Mathematica [5].

3 NUMERICAL EXAMPLE

Let us consider differential equation of 2nd order on the interval y ∈ 〈0, L〉, L = 0.1 with
non-constant polynomial coefficients:

η2(x)y
′′(x) + η1(x)y

′(x) + η0(x)y(x) = q (20)

where

η0 =− 637 500 000 000x4 + 146 625 000 000x3 − 10 965 000 000x2

+ 267 750 000x+ 60 000

η1 =
129 417 900

121
x2 − 12 941 790

121
x

η2 =
43 139 300

121
x3 − 6 470 895

121
x2 +

2217 793

7 260
q =− 6 375 000 000 000x4 + 1459 950 000 000x3 − 109 650 000 000x2+

+ 2742 500 000x+ 610 000

(21)

with boundary conditions:

y[0] = y0 = 10 y′[L] = yL = −122.623 (22)
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e u e u s f f e u u[ ,0] := [ -1,0]/ ; := - [ ,0] ,0×r[ ]

input

for := 0 tou m1 repeat

for = 0 to :u m p u[ ]
for = 0 tou m pr uand = 0 to [ ]: u,rh[ ]

m m1:= -1, m m + m  a2 := , [0] := 1

p u[ ]    -1¹

yes no

p u[ ] := 0

a -u-[ 1] := 0

p u p u u[ ] := [ ] -˜

j p p p m j j mg g g:= max( [0], [1], ... [ ]); := + 2 - 11

a u u x u[ ]:=a[ -1] /×

f := 1/h[ ]m,0

f f  x:= ×

s m u:= - , hg[s] := 0

for :=0 tou m repeat

for := 0 to [ ]r p s repeat

r[ ] :=s  r, h[ ]× h h r[ ]s  r a r s s s  r, [ ]; [ ] := [ ]+ ,g g

r[ ] := r[ ] ×u  r s  r f, ,˜

for := max to , step -1,j j m repeat

s j e b j  m k d j:= -m; [0,0]:= [ , ]; :=0; [ ]:=0; kon=true

b , [ - ]/ [ , 0][ ] := hj  u a j u m

k := k + 1

e u  r[ , ] := 0

for u := 0 to m1 repeat

yes no

s s< max

for to repeatu m:= 0

for to [ - ] repeatr p m u:= 0

for [ - ] to step repeatr p m u:= 1, -1,

e u r e u r f f e u r u r[ , ]:= [ , -1]; := - [ , ] ,r[ ]×

˜

˜

f := h × [ ]+

( )×

[ , ] + + ,

/( +1)+1

t r b m k r  u

k r f

˜

yes no

e f b j m b j m f t s m[0,0] := ; [ , ] := [ , ]+ ; := +

c j u[ , ] := a j-u[ ]

for := 0 toj repeatm1

max := ( ); max := max ( [0], [1], .. [ ])j j , j p p p p me g

t p jg := max(max , max )

|f| > | |×10b j m[ , ] -9

k := 0

for to step -1, repeatu m:= 1,

for := 0 tou m repeat

repeat while =k m2

for to step -1, repeatu m:= 0,1

for := 1 tou tg repeat

for u := 0 to repeatm

d j d j u b j  u[ ] [ ]+ [ ] ,:= h × [ ]g

for to and = 0 : [ , ]j m j u b j u= e to m1

f f   x t u b j u b j u f:= /( - ); [ , ] := [ , ] +×

k j - t f:= ; := 0

c j,u f[ ] := -c j,u[ ]

for := [ ] to 0, step -1, repeatr p t

kon

kon
:=
false

output

for to repeatt j:= 0

for to and = 0 to : [ , ]j m u m c j u= 0 1 1

for to : [j], [ - ]j m j d a j m= e

m, , , maxj x se

input

m1 := m - 1; [0] := 1, := 0a x

for = 0 to :u m p u[ ]

for = tot n x t1 : [ ]t

g j m:= - ,e max := max ( [0], [1], .. [ ])p p p p m

c u ut[0, , ] := 1

t t1 := - 1

for := 1 tot n repeat

for := 0 tou m repeat

h h ][ , ] := [ ,u r u  r0

for := 0 tou m1 repeat

x x t x:= [ ] -t

_

x := x / 2

x x x t t:= + ; :=1

for := toj m je repeat

for repeatu m:= 0 to 1

for := 0 tou m1 repeat

for 0 to and = 0 to : [ , ]j m u m c t, j  u= 1 1 toutput

repeat while [ ] =x t xt

for to andt n= 0

m, ,j ne

for = 0 tou m pr uand = 0 to [ ]: u,rh [ ]0

j p  gm := max(max , )

_

for := m toj je repeat

c j ut[0, , ] := 0

for := 0 toj m1 repeat

a j a[ ] := [j-1] × /x j

for := 1 toj jm repeat

b j ut[0, , ] := 0

_

_ _

for := +1 to [ ]s r p u repeat

for := 0 to [ ]r p u repeat

h h ][ , ] := [ ,u r u  s0h × [ ][ , ] + -u r a s r
_

c j u c t j  u[ , ] := [ , ,t 1 ]
__

for := 0 toj m1 repeat

b j u b t j  u[ , ] := [ , ,t 1 ]
__

___

subrutine

DGL (m, je,x,p[..], c[.,.], b[.,.], kon)®h[.,.]
__ __ __

no yes
kon = true

__ __

repeat while kon = true

for to repeatj m:= 0 1

c t  j  ut[ , , ] := 0

for to repeats m:= 0 1

c t  j  ut[ , , ] := c t  j  u c j s c s rt[ , , [ , ] ,] + × [ ]

for m to repeatj j:= e

b t  j  ut[ , , ] := 0

for to repeats m:= 0 1

b t  j  u b t  j  u b j s c s rt t[ , , [ , , [ , ] ,] := ] + × [ ]
___ _

____

for to repeats m j:=

bt t  j  u bt t  j  u a j-s b s u[ , , [ , , [ ] ,] := ] + × [ ]
_ __

_ _ __

_

for m to and = 0 to : [ , ]j j u m b t, j  u= e t1

˜˜ ˜

s s f:= + 1; := 0

Program “DGL” - transfer function calculation transfer function calculation - interval division

Figure 1: Block diagram of calculation transfer functions [1]
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This differential equation can represent differential equation for heat transfer (consideration of
the convective effect and internal heat generation) in the form:

−λ(x)d
2T (x)

dx2
− dλ

dx

xT (x)

dx
+ α(x)T (x)

o

A
= Q(x) + α(x)Tamb

o

A
(23)

where we consider that thermal conductivity λ(x) [Wm−1K−1], coefficient of convective heat
transfer α(x) [Wm−2K−1] and volume heat Q(x) [Wm−3] are polynomial functions. A is a
cross-section of the bar, o is a perimeter ot the bar ant Tamb is a constant ambient temperature.

The solution of differential equation (20) according to (8) is:

y(x) =
m−1=1∑
j=0

y
(j)
0 cj(x) +

g=4∑
j=0

εjbj+2(x) = c0(x)y0 + c1(x)y
′
0 +

g=4∑
j=0

εjbj+2(x) (24)

where m = 2 and g = 4. The transfer functions c(u)j (x = L) and b(u)j+m(x = L) for differential
equation (20) with non-constant coefficient (21) according the proposed method have a form:

c
(u)
j (x = L) =

[
c0 c1
c′0 c′1

]
=

[
202.258 3.33436
9722.66 160.297

]
(25)

b
(u)
j+m(x = L) =

[
b2 b3 b4 b5 b6
b′2 b′3 b′4 b′5 b′6

]
= (26)

=

[
−0.000159832−2.67325× 10−6−4.87898× 10−8−8.52047× 10−10−1.33152× 10−11

−0.007846 −0.000141612 −2.89679× 10−6 −5.68637× 10−8 −9.91117× 10−10

]
The solution of differential equation (20) according the proposed method for n = 50 inter-
nal points compared with solution obtained by numerical solution in software Mathematica
[5](explicit RungeKutta method) is shown in Figure 2 and its first derivative is shown in Figure
3.

0.00 0.02 0.04 0.06 0.08 0.10

10

11

12

13

14

15

16

x

y(x)

proposed method
Mathematica

Figure 2: The solution of differential equation

As it can be seen in Figures 2 and 2, a very good agreement of both solution results has been
obtained.
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y (x)’

0.00 0.02 0.04 0.06 0.08 0.10

-100

-50

0

50

100

150

proposed method
Mathematica

x

Figure 3: The 1st derivation of the solution of differential equation

4 CONCLUSIONS

In this contribution the approach for solving differential equation with non-constant (poly-
nomial) coefficient has been presented. The general solution of the homogeneous differen-
tial equation is formulated with the transfer functions c(u)j (x) and the particular solution with
b
(u)
j+m(x). The transfer functions b(u)j+m(x) are calculated with the help of series formulas and

then the functions c(u)j (x) may be determined with these b(u)j+m(x).
The numerical example solution of differential equation of 2nd order with non-constant

polynomial coefficients using proposed approach and comparison with results obtained in soft-
ware Mathematica have been . On base of the transfer relations the effective matrix of the
3D beam finite elements for modal, structural and buckling analysis [2][3] or coupled electro-
thermo-mechanical analysis [4] of the FGM single beams and beam structures can be estab-
lished. Material properties of the FGM can vary in all three direction x, y, z. Homogenization
of the spatially varying material properties in the real FGM beam (material properties vary in all
three direction) and the calculation of effective parameters of the homogenized beam (material
properties vary only in longitudinal direction) are done by the extended mixture rules and the
multilayer method.

Acknowledgement: This work was supported by the Slovak Research and Development Agency
under the contract No. APVV-0246-12 and APVV-14-0613, by Grant Agency VEGA, grant No.
1/0228/14 and 1/0453/15.
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Abstract. The paper deals with derivation process of new FEM equations for steady thermoe-
lectric two-way coupled analysis of link conductor made of Functionally Graded Material 
(FGM). One example of coupled analysis will be introduced to demonstrate accuracy and ef-
fectiveness of our new approach in computer modelling of such systems. 
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INTRODUCTION 
Nowadays, new materials are necessary for sophisticated structures like MEMS systems,

advanced electronic devices, etc. Computer modelling of such complex systems, like st
tures with spatial variation of material properties (e.g. FGM) are, using commercial FEM
code with classic elements, needs remarkable effort during preparation phase and sufficient
computer equipment for solution phase because of necessity the numbers o
terial models. 

Finite elements for electric-
been developed in [1]. This paper deals with derivation of new link finite element for two
way coupled static thermoelectric analyses
fects like Seebeck and Peltier effects. These effects describe direct conversion of thermal e
ergy into electric energy (Seebeck effect) and conversion of electric energy into the
temperature difference within the system (Peltier effect).

Let us consider straight link conductor, the conductor is a slender construction. Let the
conductor is made of a mixture of two or more materials so its thermal, electric and thermo
lectric material properties change accord
can consider one-dimensional system of differential equations and original method further
explained in [2] for solving the differential equations for thermoelectric coupled analysis.

HOMOGENIZATION OF MA

Let us consider FGM conductor with length 
area 퐴 [m2] (height h [m] and width 
Figure 1. 

Let the conductor is made 
fibre (index f). Let the change of material properties is 
direction (2D change). Let the thermal conductivities 
휎  and 휎  are known values for matrix and fibre, respectively. Then, according to the homo
enization process described in [1] we can calculate homogenized thermal and electric condu
tivities for whole conductor. These homogenized material properties 

Figure 1: FGM conductor (left) and

nal Mechanics (WCCM XI)
ional Mechanics (ECCM V)
Fluid Dynamics (ECFD VI)
. Oliver and A. Huerta

Nowadays, new materials are necessary for sophisticated structures like MEMS systems,
advanced electronic devices, etc. Computer modelling of such complex systems, like st
tures with spatial variation of material properties (e.g. FGM) are, using commercial FEM
code with classic elements, needs remarkable effort during preparation phase and sufficient
computer equipment for solution phase because of necessity the numbers o

-thermal analyses of FGM materials considering Joule heat have
been developed in [1]. This paper deals with derivation of new link finite element for two
way coupled static thermoelectric analyses considering Joule heat and also thermoelectric e
fects like Seebeck and Peltier effects. These effects describe direct conversion of thermal e
ergy into electric energy (Seebeck effect) and conversion of electric energy into the

hin the system (Peltier effect). 
Let us consider straight link conductor, the conductor is a slender construction. Let the

conductor is made of a mixture of two or more materials so its thermal, electric and thermo
lectric material properties change according to chosen function. Under these conditions, we

dimensional system of differential equations and original method further
explained in [2] for solving the differential equations for thermoelectric coupled analysis.

HOMOGENIZATION OF MATERIAL PROPERTIES 

Let us consider FGM conductor with length 퐿  [m], and rectangular
[m] and width b [m]) with nodes symbolically denoted

 of mixture of two component materials – matrix (index
). Let the change of material properties is only in longitudinal and transversal

). Let the thermal conductivities 휆  and 휆 , and electric conductivities
known values for matrix and fibre, respectively. Then, according to the homo

enization process described in [1] we can calculate homogenized thermal and electric condu
These homogenized material properties need to be

FGM conductor (left) and fibre volume fraction in the conductor – division into layers (right)
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Nowadays, new materials are necessary for sophisticated structures like MEMS systems, 
advanced electronic devices, etc. Computer modelling of such complex systems, like struc-
tures with spatial variation of material properties (e.g. FGM) are, using commercial FEM 
code with classic elements, needs remarkable effort during preparation phase and sufficient 
computer equipment for solution phase because of necessity the numbers of elements and ma-

thermal analyses of FGM materials considering Joule heat have 
been developed in [1]. This paper deals with derivation of new link finite element for two-

considering Joule heat and also thermoelectric ef-
fects like Seebeck and Peltier effects. These effects describe direct conversion of thermal en-
ergy into electric energy (Seebeck effect) and conversion of electric energy into the 

Let us consider straight link conductor, the conductor is a slender construction. Let the 
conductor is made of a mixture of two or more materials so its thermal, electric and thermoe-

ing to chosen function. Under these conditions, we 
dimensional system of differential equations and original method further 

explained in [2] for solving the differential equations for thermoelectric coupled analysis. 

rectangular cross-section 
with nodes symbolically denoted “0” and “L”, see 

matrix (index 푚) and 
only in longitudinal and transversal 

, and electric conductivities 
known values for matrix and fibre, respectively. Then, according to the homog-

enization process described in [1] we can calculate homogenized thermal and electric conduc-
d to be polynomials. 

division into layers (right) 
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Homogenization process supposes that volume fractions of matrix and fibre are known and
have also polynomial form, see
 In the first step the real link is transformed to a multilayered link, real link is divided into 

chosen number of layers in 
The extended mixture rule [3]
Then, each layer will have constant volume fraction and material properties of the co
stituents through its height, see
appear only in the longitudinal direction of the layers.

 In the next step, these layers will be used for calculation of homogenized material prope
ties for whole link (see Figure 2
mogenized material properties will interpret material changes in the whole FGM
they will have polynomial form with just one independent variable (

Figure 

For thermoelectric coupling that results in Seebeck and Peltier effects, Seebeck coefficient
훼(푥, 푦) of the whole conductor needs to be known. This material property cannot be calc
lated according to the homogenization process based on extended mixture rule and laminate
theory, because this material property is not given according to volume fractions of individual
material components (expect the Joule heat, thermoelectric effects are significant especially
for semiconductor materials and the behaviour of the semiconductors is given according to
atomic structure, not according to volume fraction of individual admixtures
value of Seebeck coefficient can also be negative number. The determination of final Seebeck
coefficient according to material properties of individual components is beyond the scope of
this article. For our model case the final Seebeck co
function 훼(푥) for longitudinal direction of the homogenized conductor.

MATHEMATICAL BACKGRO
THERMOELECTRIC ANALY

Thermoelectric and electric
effects are described by set of two thermoelectric constitutive equations (static analysis) [5]:

where 퐪 [Wm-2] is heat flux vector, 
Peltier coefficient matrix, ⟦휆⟧

imír Kutiš, Juraj Hrabovský, Justín Murín, Roman Gogola, Tibor Sedlár

Homogenization process supposes that volume fractions of matrix and fibre are known and
polynomial form, see Figure 1.  Then, homogenization includes two steps:

In the first step the real link is transformed to a multilayered link, real link is divided into 
chosen number of layers in transversal direction (푁 = 11 for the case shown in 

mixture rule [3] is used for calculation of material prop
Then, each layer will have constant volume fraction and material properties of the co
stituents through its height, see Figure 2. Polynomial variation of these parameters will

in the longitudinal direction of the layers. 
n the next step, these layers will be used for calculation of homogenized material prope

Figure 2) according to laminate theory described in [4]. This h
mogenized material properties will interpret material changes in the whole FGM
they will have polynomial form with just one independent variable (x).

Figure 2: Graphic form of the homogenization process 

For thermoelectric coupling that results in Seebeck and Peltier effects, Seebeck coefficient
conductor needs to be known. This material property cannot be calc

lated according to the homogenization process based on extended mixture rule and laminate
theory, because this material property is not given according to volume fractions of individual

erial components (expect the Joule heat, thermoelectric effects are significant especially
for semiconductor materials and the behaviour of the semiconductors is given according to
atomic structure, not according to volume fraction of individual admixtures
value of Seebeck coefficient can also be negative number. The determination of final Seebeck
coefficient according to material properties of individual components is beyond the scope of
this article. For our model case the final Seebeck coefficient will be chosen as a polynomial

for longitudinal direction of the homogenized conductor.

MATHEMATICAL BACKGROUND FOR TWO-WAY COUPLED 
THERMOELECTRIC ANALYSIS 

Thermoelectric and electric-thermal effects like Joule heat, Seebeck, Peltie
effects are described by set of two thermoelectric constitutive equations (static analysis) [5]:

퐪 = ⟦Π⟧ ∙ 퐉 − ⟦휆⟧ ∙ ∇푇 
퐉 = ⟦σ⟧ ∙ (퐄 − ⟦훼⟧ ∙ ∇푇) 

] is heat flux vector, 퐉 [Am-2] is electric current density vector, 
⟦ ⟧ [Wm-1K-1] is thermal conductivity matrix, 

ibor Sedlár, Gabriel Gálik 

Homogenization process supposes that volume fractions of matrix and fibre are known and 
includes two steps: 

In the first step the real link is transformed to a multilayered link, real link is divided into
for the case shown in Figure 1). 

used for calculation of material properties of the layers. 
Then, each layer will have constant volume fraction and material properties of the con-

. Polynomial variation of these parameters will 

n the next step, these layers will be used for calculation of homogenized material proper-
) according to laminate theory described in [4]. This ho-

mogenized material properties will interpret material changes in the whole FGM link and 
). 

For thermoelectric coupling that results in Seebeck and Peltier effects, Seebeck coefficient 
conductor needs to be known. This material property cannot be calcu-

lated according to the homogenization process based on extended mixture rule and laminate 
theory, because this material property is not given according to volume fractions of individual 

erial components (expect the Joule heat, thermoelectric effects are significant especially 
for semiconductor materials and the behaviour of the semiconductors is given according to 
atomic structure, not according to volume fraction of individual admixtures). Moreover, the 
value of Seebeck coefficient can also be negative number. The determination of final Seebeck 
coefficient according to material properties of individual components is beyond the scope of 

efficient will be chosen as a polynomial 

thermal effects like Joule heat, Seebeck, Peltier and Thomson 
effects are described by set of two thermoelectric constitutive equations (static analysis) [5]: 

(1) 

] is electric current density vector, ⟦Π⟧ [V] is 
] is thermal conductivity matrix, 푇 [K] is absolute 
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temperature, 퐄 [Vm-1] is electric field intensity vector, ⟦휎⟧ [Sm-1] is electric conductivity ma-
trix and ⟦훼⟧ [VK-1] is Seebeck coefficient matrix. 

These constitutive equations are coupled by set of governing equations for static thermal 
and electric fields: 

∇ ∙ 퐪 = 푃 
∇ ∙ 퐉 = 0 

(2) 

where 푃 [Wm-3] is heat generation per volume unit. 
In general, we can write for electric field intensity, Peltier coefficient and heat generation: 

퐄 = −∇휑 
⟦Π⟧ = 푇⟦훼⟧ 

푃 = 푃 +푃  
푃 = ⟦휎⟧−1퐉  

(3) 

where 휑 [V] is electric potential, 푃  [Wm-3] is Joule heat per volume unit and 푃  [Wm-3] is 
auxiliary heat generation per volume unit. 

Applying (1) and (3) into (2) we can write for 1D system (longitudinal direction 푥): 
푑
푑푥

[푇(푥)훼(푥)퐽(푥)] −
푑
푑푥

휆(푥)
푑푇(푥)
푑푥

=
퐽 (푥)
휎(푥)

+푃 (푥) 

푑
푑푥

휎(푥)
푑휑(푥)
푑푥

+
푑
푑푥

휎(푥)훼(푥)
푑푇(푥)
푑푥

= 0 
(4) 

DERIVATION OF NEW FGM EQUATIONS FOR FGM LINK CONDUCTOR 
We can use the method for solving 1D differential equation with non-constant coefficients 

and with right-hand side described in [2] for our system of equations (4). But all non-constant 
coefficients on the left-hand side and right-hand side itself have to be in polynomial form (it is 
the condition of used approach). So general formulation of one-dimensional differential equa-
tion suitable for the method has the form: 

휂 (푥)푦( )(푥) = 휀 푎 (푥) (5) 

where: 
푚 – degree of the differential equation
푦(푥) – unknown function of independent variable 푥
푦( )(푥) – uth derivation of the unknown function
휂 (푥) – polynomial variable coefficient for uth derivation on the left-hand side of the dif-

ferential equation 
푔 – degree of a polynomial on the right-hand side of the differential equation
휀  – constant coefficient for jth power of the right-hand side polynomial

푎 (푥) =
!

– auxiliary function for the right-hand side polynomial formulation

at which	푥 ∈ 〈0; 퐿〉, where 퐿 is the length of considered interval of unknown solution. 
Considering function 푎 (푥) for formulation the polynomials, we can write general rules for 

derivation and integration of such function: 

푎ʹ (푥) = 푎 (푥) 

푎 (푥) 푑푥 = 푎 (푥) 
(6) 
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According to [2] the solution of the differential equation (5) has the form: 

푦(푥) = 푦( )푐 (푥) + 휀 푏 (푥) (7) 

where: 
푦( ) ith derivation of the function 푦 in 푥 = 0, thus 푦( ) = �푦( )(푥)
푐 (푥) function for uniform solution of the differential equation 
푏 (푥) function for particular solution of the differential equation 
And derivation of the solution (7) is in the form: 

푦( )(푥) = 푦( )푐 ( )(푥) + 휀 푏( ) (푥) 	 	푢 = {0,푚 − 1} (8) 

The solution of differential equation (7) lies in determining the functions generally labelled 
푐(푥)1 and 푏(푥) that appear in the solution.  

The result of calculation of the differential equation with variable coefficients and the 
right-hand side is the solution according to equation (7). It should be noted that this is a solu-
tion for selected point 푥 of the considered interval of independent variable, so the program is 
designed for calculation of values 푐 (푥) in given point 푥 for 푖 = {0,푚 − 1} where 푚 is the 
degree of the differential equation. Then the values 푏 (푥) for selected point 푥 are also cal-
culated for 푗 = {0, 푔} where 푔 is degree of the right-hand side polynomial of the differential 
equation. It means that functions 푐(푥) and 푏(푥) cannot be calculated analytically but only at 
discrete points 푥, where 푥 is from interval 〈0; 퐿〉.  

The program algorithm, also described in [2], efficiently calculates matrixes of discrete 
values 푐( )(푥) and 푏( ) (푥) for user defined point 푥 where 푢 = {0,푚 − 1} represents deriva-
tion for calculations according to (8).  

It should be noted that the polynomial function of the right-hand side of the differential 
equation itself does not enter into the calculation. For the calculation of 푐(푥) and 푏(푥) it is 
only necessary to know the degree of the right-hand side polynomial. The values of the coef-
ficients 휀  of the right-hand side only enter into the final equation – solution (7) or derivation 
(8), respectively.  

Programming code offers the possibility of automatic uniform interval division calculation, 
and the values of 푐(푥) and 푏(푥) for interval dividing points are included in the output. So dur-
ing single run of the program we can get all the necessary values to solve the differential 
equation also for selected internal points in the interval 푥 ∈ (0; 퐿), in our case for conductor 
inner region. 

This program for solving differential equations is used in process of deriving new FEM 
equations for two-way coupled thermoelectric analysis in FGM link conductor mentioned 
above. Figure 3 shows geometry and physical quantities used during the derivation process. 

1 denoting is symbolical – general; correctly it should be mentioned that it is a set of values 푐 (푥) within the 
range 푖 = {0,푚 − 1}; it is also similar for 푏 (푥) with the range 푗 = {0,푚 − 1} 
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Figure 3: Two

Let us write the governing function 
cording [2]. Comparing the general form of the differential equation 
tion (4) in expanded form: 

−휆(푥)푇 ʹʹ(푥) + [훼(푥)퐽(푥) − 휆 (

we get: 
푚 = 2 
푦(푥) ≡ 푇(푥) 

푦( )(푥) ≡ 푇( )(푥) 
휂 (푥) = 훼 (푥)퐽(푥) + 훼(푥)퐽′(푥) 

휂 (푥) = 훼(푥)퐽(푥) − 휆 (푥) 
휂 (푥) = −휆(푥) 
푔 > 0 
휀  

푎 (푥) =
!

Now, we can rewrite the solution of the differential equation for our case and its derivation:

푇(푥) = 푇( )푐 (푥) +

푇 ʹ(푥) =

Let us write again the constitutive equation 
푞(푥

Let the boundary conditions for

Juraj Paulech, Vladimír Kutiš, Juraj Hrabovský, Justín Murín, Roman Gogola, 

: Two-nodal conductor for thermoelectric analysis 

us write the governing function (4) for heat flux in the form suitable for calculation a
the general form of the differential equation (5) with governing fun

휂 (푥)푦( )(푥) = 휀 푎 (푥) 

(푥)]푇 (푥) + 훼 (푥)퐽(푥) + 훼(푥)퐽ʹ(푥) 푇(푥) =
퐽 (
휎(푥

– degree of the differential equation
– unknown function of independent variable 푥
perature 
– uth derivation of unknown temperature

( ) – 0th derivation of the temperature on the left-
ferential equation 
– non-constant coefficient of the 1st derivation of the temperature
– non-constant coefficient of the 2nd derivation 
– degree of the polynomial on the right-hand side
– constant coefficient of the jth power of the right
nomial 
– auxiliary function for formulation of polynomial

solution of the differential equation for our case and its derivation:

( ) + 휀 푏 (푥) =푐 (푥)푇 + 푐 (푥)푇 ʹ + 휀 푏

( ) = 푐 ʹ (푥)푇 + 푐 ʹ (푥)푇 ʹ + 휀 푏ʹ (푥) 

Let us write again the constitutive equation (1) for 1D heat flux: 
(푥) = 푇(푥)훼(푥)퐽(푥) − 휆(푥)푇 (푥) 

Let the boundary conditions for thermal field are: 

 Tibor Sedlár 

for heat flux in the form suitable for calculation ac-
with governing func-

(푥)
(푥)

+푃 (푥) 

(9) 

푥 is function of tem-

-hand side of the dif-

derivation of the temperature
derivation

hand side
power of the right-hand side poly-

auxiliary function for formulation of polynomial

solution of the differential equation for our case and its derivation: 

(푥) (10) 

(11) 

(12) 
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푇(퐿) = 푇  푞(0) = 푞  (13) 
Then we can put together equation (12) expressed for position 푥 = 0 (position at node 0) and 
equation (10) expressed for 푥 = 퐿 (node L), and using boundary conditions (13) after some 
mathematical operations we can write in matrix form (lower index “0” and “L” for used 
physical quantities means that concerned quantity is evaluated for position 푥 = 0 or 푥 = 퐿, 
respectively): 

푐 (퐿) +
훼 퐽
휆

푐 (퐿) −1 푇
푇 =

푐 (퐿)
휆

푞 − 휀 푏 (퐿)  (14) 

Now, let the boundary conditions are changed: 
푇(0) = 푇  푞(퐿) = 푞  (15) 

Then we can put together equation (12) expressed for position 푥 = 퐿, equation (11) expressed 
for node L and equation (10) expressed for node L, and using boundary conditions (15) after 
some mathematical operations we can write in matrix form: 

푐 (퐿) −
푐 (퐿)푐 ʹ (퐿)
푐 ʹ (퐿)

푐 (퐿)훼 퐽
푐 ʹ (퐿)휆

− 1
푇
푇 =

푐 (퐿)
푐 ʹ (퐿)

푞
휆
+ 휀 푏 (퐿) − 휀 푏 (퐿)  (16) 

The matrixes (14) and (16) can be put together. Comparing mathematical formulation and 
FEM formulation of our task we can find out, that there is sign difference in heat flux at node 
L (heat flux at node L for FEM formulation has opposite direction than it is in mathematical 
formulation). Considering these facts we get the system of FEM equations for thermal field in 
the conductor: 

⎣
⎢
⎢
⎢
⎡ 푐 (퐿) +

훼 퐽
휆

푐 (퐿) −1

푐 (퐿) −
푐 (퐿)푐 ʹ (퐿)
푐 ʹ (퐿)

푐 (퐿)훼 퐽
푐 ʹ (퐿)휆

− 1
⎦
⎥
⎥
⎥
⎤
푇
푇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 푐 (퐿)

휆
푞 − 휀 푏 (퐿)

푐 (퐿)
푐 ʹ (퐿)

−푞
휆

+ 휀 푏 (퐿) − 휀 푏 (퐿)
⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (17) 

We can also evaluate the temperature within the range of the conductor. Using equation 
(12) expressed for node 0 and substituting it into equation (10) then we can write: 

푇(푥) = 푐 (푥)푇 + 푐 (푥)
푇 훼 퐽 − 푞

휆
+ 휀 푏 (푥) (18) 

Now, comparing the general form of the differential equation (5) with governing function 
(4) for electric current density in expanded form: 

휂 (푥)푦( )(푥) = 휀 푎 (푥) 

휎(푥)휑ʹʹ(푥) + 휎 (푥)휑 (푥) = −훼 (푥)휎(푥)푇 (푥) − 훼(푥)휎 (푥)푇 (푥) − 훼(푥)휎(푥)푇 ʹʹ(푥) 

(19) 

we get: 
푚 = 2 – degree of the differential equation
푦(푥) ≡ 휑(푥) – unknown function of independent variable 푥 is function of el. potential
푦( )(푥) ≡ 휑( )(푥) – uth derivation of unknown electric potential 
휂 (푥) = 0 – 0th derivation of the potential is not present on the left-hand side
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휂 (푥) = 휎 (푥) – non-constant coefficient of the 1st derivation of the potential
휂 (푥) = 휎(푥) – non-constant coefficient of the 2nd derivation of the potential
푔 > 0 – degree of the polynomial on the right-hand side
휀  – constant coefficient of the jth power of the right-hand side polynomial

푎 (푥) =
!

– auxiliary function for formulation of polynomial of the right side

Similar to the derivation process for thermal field we can derive also FEM equations for 
electric field: 

−푐 (퐿) 1

−푐0(퐿)+
푐1(퐿)푐0ʹ (퐿)
푐1ʹ (퐿)

1
휑0
휑퐿

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

푐1(퐿)
휎0

퐽0 − 푐1(퐿)훼0푇0′ + 휀푗푏푗+2(퐿)
푔

푗=0

−
푐1(퐿)
푐1ʹ (퐿)

−퐽퐿
휎퐿

+ 훼퐿푇퐿′ + 휀푗푏푗+2
′ (퐿)

푔

푗=0

+ 휀푗푏푗+2(퐿)
푔

푗=0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (20) 

And similar to the equation (18) for thermal field we can also evaluate the electric potential 
within the range of the conductor: 

휑(푥) = 푐 (푥)휑 − 푐 (푥)
퐽
휎
+ 훼 푇 + 휀 푏 (푥) (21) 

The temperature and electric potential are primary variables for thermal and electric field 
analyses, respectively. Calculating the secondary variables, like heat flux and electric current 
density, is possible using equation (1) expressed for one-dimensional task. But this is suitable 
only for 1D model where we calculate one longitudinal distribution of the heat flux or electric 
current density for homogenized model, respectively. However, our 1D model results from 
real 3D FGM conductor, so it is more realistic to calculate the secondary variables in layers 
that were considered during homogenization process (see [1] for details). 

FEM equations for two-way coupled thermoelectric analysis are equations (17) and (20). 
They are solved using iterative algorithm. During iteration process it is necessary to find sub-
stitutional functions for results obtained from FEM equations (results of these FEM equations 
are not continuous functions but only sets of discrete values) and also it is necessary to con-
vert non-polynomials into polynomials (e.g. see 푃  in equation (3)). Iteration process can be 
set ahead by evaluating equations (1) expressed for one-dimensional task also within individ-
ual iterative steps. 

THERMOELECTRIC ANALYSIS OF FGM LINK CONDUCTOR - NUMERICAL 
EXPERIMENT 

In this chapter there will be one academic example of thermoelectric analysis of given 
FGM link conductor presented. The task will be solved using our new approach, by commer-
cial FEM code ANSYS and also by numerical solution of differential equations in software 
Mathematica due to comparison reasons. 
Let us consider electric conductor with rectangular cross-section according to Figure 1. Its 
length is 퐿 = 500	[mm], height ℎ = 10	[mm] and width 푏 = 20	[mm]. Let the conductor 
consists of mixture of two component materials – matrix (index 푚) with constant electric 
conductivity 휎 (푥, 푦) = 1.429 × 10 	[Sm ]  and thermal conductivity 휆 (푥, 푦) =
2	[Wm K ], and fibre (index 푓) with electric conductivity 휎 (푥, 푦) = 1.111 × 10 	[Sm ] 
and thermal conductivity 휆 (푥, 푦) = 400	[Wm K ]. Volume fraction of individual com-
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ponents is functionally changed according to chosen polynomial, graphically shown in 
1: 
	푣 (푥, 푦) = 0.7125 − 7.2214푥
2500푦 + 1.5514 × 10 푥 푦 −
1.44 × 10 푥 푦   [-] 
	푣 (푥, 푦) = 1 − 푣 (푥, 푦)  [-] 

Using extended mixture rule for
variation of effective electric and thermal conductivities for individual layers and using lam
nate theory we can calculate also 
conductor, see Figure 4. 

The equations of homogenized electric and thermal conductivities are:
	휎 (푥) = 8.1273 × 10 − 5.7507
	휆 (푥) = 277.352 − 2363.82푥

Figure 4: Longitudinal distribution of the homogenized electric and thermal conductivity (red) and the effe
tive electric and thermal conductivities in respective layers for

Let us consider final Seebeck coefficient for whole conductor
nomial function (academic example, 
mixture of the components): 
	훼(푥) = −4 × 10 + 28 × 10

We assume static state for thermoelectric analysis. In nodes 0 and L there are
tentials and temperatures specified
ductor, so boundary conditions (see
	휑(0) = 0.11	[V];   푇(0) = 273
	휑(퐿) = 0	[V];   푇(퐿) = 283	[K]
	푃 (푥) = 2 × 10 − 6.4 × 10

Figure

imír Kutiš, Juraj Hrabovský, Justín Murín, Roman Gogola, Tibor Sedlár

ponents is functionally changed according to chosen polynomial, graphically shown in 

+ 9.6286푥 + 92.500푦 − 1658.57푥 푦 + 2211
− 2.0686 × 10 푥 푦 − 9 × 10 푦 + 1.08 × 10 푥

Using extended mixture rule for chosen number of layers (푁 = 11) we get longitudinal
variation of effective electric and thermal conductivities for individual layers and using lam
nate theory we can calculate also homogenized electric and thermal conductivity of FGM

The equations of homogenized electric and thermal conductivities are: 
7507 × 10 푥 + 7.6676 × 10 푥 	[Sm ] 

+ 3151.77푥 	[Wm K ] 

: Longitudinal distribution of the homogenized electric and thermal conductivity (red) and the effe
tive electric and thermal conductivities in respective layers for 푁 = 11 (blue)

Let us consider final Seebeck coefficient for whole conductor according to chosen pol
academic example, without considering homogenization process based on

푥 	[VK ] 

We assume static state for thermoelectric analysis. In nodes 0 and L there are
tentials and temperatures specified and there is variable auxiliary heat generation in the co

so boundary conditions (see Figure 5) are: 
273	[K] 

] 
푥 	[Wm ] 

Figure 5: Boundary conditions of the model 

ibor Sedlár, Gabriel Gálik 

ponents is functionally changed according to chosen polynomial, graphically shown in Figure 

2211.43푥 푦 −
푥 푦 −

we get longitudinal 
variation of effective electric and thermal conductivities for individual layers and using lami-

homogenized electric and thermal conductivity of FGM 

: Longitudinal distribution of the homogenized electric and thermal conductivity (red) and the effec-
(blue) 

according to chosen poly-
without considering homogenization process based on 

We assume static state for thermoelectric analysis. In nodes 0 and L there are electric po-
and there is variable auxiliary heat generation in the con-
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We also created 2D model in code ANSYS [6], we used 55 000 PLANE223 elements (8 
node quad-elements). The task was also solved in software Mathematica [7], where the differ-
ential equations (4) with specified boundary conditions and homogenized material properties 
were numerically solved using iterative algorithm. Finally, the task was also solved by only 
one our new developed two-nodal link element using FEM equations (17) and (20) for nodal 
points of the link and with equations (18) and (21) for chosen points within the link. In Figure 
6 and Figure 8 we can see calculated longitudinal distribution of the electric potential and 
temperature in the conductor, respectively. In Figure 7 and Figure 9 there are shown distribu-
tions of the electric current densities and heat fluxes for chosen layers (1st, 6th and 11th layer), 
respectively. Summary of calculated results is in Table 1. 

Figure 6: Distribution of the electric potential through the length of conductor 

Figure 7: Longitudinal distribution of the current densities in the chosen layers of conductor 
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Figure 8:  Distribution of the temperature through the length of conductor 

Figure 9: Longitudinal distribution of the heat fluxes in the chosen layers of conductor 

퐽 , 	
× 10 	[Am ] 

퐽 ,  퐽 ,  퐽 ,  퐽 ,  퐽 ,  퐽 ,  퐽  퐽  

new element 6.0532 21.3455 11.0189 8.0888 14.6612 8.3291 10.8288 10.8288 

ANSYS 6.1584 21.5903 11.2089 8.1852 14.9130 8.4328 - - 

Mathematica - - - - - - 10.8274 10.8274 

푞 , 	
× 10 	[Wm ] 

푞 ,  푞 ,  푞 ,  푞 ,  푞 ,  푞 ,  푞  푞  

new element -7.7619 7.9057 -14.5377 4.6420 -19.5074 4.7011 -14.2730 5.2933 

ANSYS -7.9756 9.2951 -14.9012 4.9339 -19.9653 4.9732 - - 

Mathematica - - - - - - -14.1887 5.2594 

Table 1: Comparison of calculated electric and thermal quantities for chosen layers 
and homogenized values in nodal points of the conductor 

There is small difference in the results (secondary variables) between ANSYS solution and 
calculation using the new approach in nodal points because of substitutional functions used 
for conversion non-polynomials into polynomials during iterative process. But we can see 
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from Figure 6 – Figure 9 that obtained results correspond to ANSYS 2D simulation very well. 
Differences in the results for primary variables in the conductor inner region are due to fact 
that our approach is based on reduction of the real 3D system into 1D problem. 

CONCLUSIONS 
New finite link element for two-way coupled static thermoelectric analyses has been de-

veloped in this contribution. New FEM equations with consideration Joule heat, auxiliary heat, 
and thermoelectric effects, like Seebeck and Peltier effects, were derived. Numerical example 
with good agreement between calculations with just only one new link element and commer-
cial FEM code that uses numbers of classic elements have been presented. The new approach 
fully agrees with numerical solution for 1D differential equation of thermal and electric fields 
calculated using iterative algorithm. So, effectiveness and accuracy of the new developed link 
element for these analyses are excellent. 
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Abstract. Partial or total progressive collapse under abnormal loading conditions (e.g. deli-
berate terrorist attacks, uncontrolled gas releases, and vehicle or aircraft impacts) is one of 
the most vivid examples of low probability-high consequence (LPHC) event that may occur in 
the lifetime of a structure. Despite this, structural safety for extreme loads that may lead to 
disproportionate (or progressive) collapse has been probabilistically assessed and controlled 
in a few cases, thus neglecting uncertainties in loads and system capacity. As such, this paper 
moves from a deterministic to a probabilistic framework, proposing fragility models at mul-
tiple damage states for low-rise reinforced concrete (RC) framed bare structures which may 
be applied for progressive collapse risk assessment and management. Two building classes 
representative of structures designed for either gravity loads or earthquake resistance in ac-
cordance with current European rules were investigated. Monte Carlo (MC) simulation was 
used to generate random realizations of two-dimensional (2D) and three-dimensional (3D) 
structural models. Their fiber-based finite element (FE) representations were developed with-
in an open source platform for nonlinear static pushdown analysis. The output consisted of 
fragility functions for each damage state of interest. Such fragility models were then com-
pared to those derived through incremental dynamic analysis (IDA) in a previous study. IDA-
based and pushdown-based capacities were additionally used to propose regression models 
for quick estimation of dynamic amplification factor (DAF) at a given displacement/drift tar-
get. The analysis results show a significant influence of both seismic design/detailing and 
secondary beams on robustness of the case-study building classes. 
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1 INTRODUCTION 

Accidental and man-made extreme events such as impacts, fires or explosions can induce 
abnormal loads on building structures, which in turn may suffer heavy damage and finally ex-
perience a partial or total building collapse. This depends on the fact that structural systems 
designed according to conventional approaches are not necessarily able to withstand extreme 
loads. To confirm this scenario, several residential, iconic and public buildings resulted in 
significant casualties and property loss as a consequence of a disproportionately high propa-
gation of direct damage to their key components [1-5]. 

Following the early interest in blast- and progressive collapse-resistant building analysis 
and design, which was triggered by the 1968 partial collapse of Ronan Point tower in UK, the 
occurrence of further dramatic accidents and deliberate attacks either in urban or industrial 
environments has led homeland security to become a primary concern for public authorities 
and stakeholders, causing the protection of structures against extreme loads to have a larger 
and larger impact on economy and society. Several definitions of progressive collapse, the 
most known of which is based on the significant disproportion in size between the initial and 
final damage configurations, have appeared in the literature [6-12]. Acting on building expo-
sure, the contribution of nonstructural protective measures such as barriers, sacrificial ele-
ments and limitation or control of public access have been reaffirmed to be crucial in order to 
increase structural safety and to mitigate progressive collapse-related risk in a cost-effective 
manner. Moving from passive to active strengthening strategies, extensive efforts have been 
more recently made in design and simulation [13-35] to propose approaches and rules for 
structural integrity and robustness against abnormal loads. Codified methodologies [13-16] 
have emerged in the last two decades providing design guidelines to inhibit cascade or domi-
no effects as a result of a local failure, which progresses in time to a collapse encompassing 
the entire structure or essential parts of it. Focusing on performance of structures and structur-
al components, the key role played by requirements such as robustness, integrity, continuity, 
redundancy and ductility has been recognized [17-19]. Besides direct and indirect design pro-
visions prescribed in codes and standards [13-16], a huge amount of analytical studies on 
blast and progressive collapse phenomena have been done [11, 12, 17-35], thus quantifying 
the influence of modeling assumptions and analysis techniques. Solid or shell FE [25, 28, 33, 
34], lumped-plasticity [18, 22-24, 26, 27] and spread-plasticity [11, 12, 17, 19, 25, 29-32, 35] 
approaches have been examined for progressive collapse analysis of different building typol-
ogies ranging from civilian to strategic and military facilities. In this respect, conventional or 
alternative pushdown procedures and implicit or explicit nonlinear dynamic analyses have 
been explored using general purpose codes or open platforms. 

Despite the large number of deterministic investigations, probabilistic approaches have 
been applied to a lesser extent in this field and a few research works have appeared in the lite-
rature so far (see e.g. [1, 6, 36-41]), emphasizing the need for probabilistic risk assessment 
and management of disproportionate collapse under blast loads and/or sudden column loss 
scenarios. In light of this, a framework for fragility analysis of European RC framed buildings 
was implemented, integrating fiber-based FE modeling with Monte Carlo simulation for ran-
dom realizations of structural prototypes and pushdown analysis techniques for progressive 
collapse assessment. Two 4-story building populations, each of which analyzed using two 
types of numerical representation (i.e. 2D models and 3D models), were studied in a probabil-
istic fashion in order to propose fragility models at multiple damage states. The former class 
was designed only for gravity loads according to Eurocode 2 (EC2) [42], and the latter was 
designed for earthquake resistance in compliance with Eurocode 8 (EC8) [43]. For each build-
ing class under consideration (i.e. EC2-compliant structures and EC8-compliant structures), 
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fragility analysis was based on (i) the random generation of 2D and 3D fiber-based models 
through MC simulation, (ii) pushdown analysis of each structural model including dynamic 
effects in a simplified manner [15], and (iii) derivation of fragility functions for each structur-
al model and damage state of interest. Considering design criteria and structural idealizations, 
four groups of fragility models were presented, thus quantifying the sensitivity of progressive 
collapse to design rules (i.e. seismic or non-seismic) and redistribution capacity of secondary 
beam systems. A comparison was then provided between such pushdown-based fragility 
models and those obtained by Brunesi et al. [40] using incremental-mass nonlinear dynamic 
analysis. Finally, the influence of dynamic effects on progressive collapse potential was esti-
mated by taking advantage of IDA-based predictions [40] and pushdown capacity curves, 
which were determined without introducing any aprioristic amplification factor for specific 
structural portions. Pushdown and IDA estimates resulting from the application of the same 
uniform mass/load distribution over the entire structure were normalized in order to construct 
a set of DAF-vertical displacement/drift curves and to fit a corresponding regression model 
for each building class and structural representation under study, thus permitting a quick ana-
lytical assessment of DAF at a given displacement/drift design target. 

2 FRAGILITY ANALYSIS: METHODOLOGY AND PROCEDURES 

In a general framework for probabilistic risk analysis (PRA) using either hazard- or scena-
rio-based approaches, the annual probability of disproportionate collapse can obtained 
through the conditional probabilities of two limit states: (1) local damage given an extreme 
event, and (2) global (structural) collapse given a local damage [6]. These two conditional 
probabilities can be in turn quantified using a multilevel analysis where uncertainties related 
to abnormal loading and structural system are modeled and propagated. The probability of 
damage to structural components and systems can be then obtained by means of reliability 
computations in which demand is convolved with capacity [44]. As such, PRA is a quantita-
tive and rational tool for an effective risk-informed decision making process in case of LPHC 
events and fragility analysis can be considered as one of its fundamental components, which 
is indeed used in conventional risk management techniques to investigate and describe the 
physical vulnerability of a population of buildings or structural assemblies to specific damage 
scenarios. Although such concepts currently pertain to a well-established approach for disas-
ter mitigation in earthquake engineering (see e.g. [45-50]), only a few applications have been 
recently presented for disproportionate collapse under blast loads and/or sudden column loss 
scenarios [36-41]. 

Several methodologies may be proposed to provide a mathematical formulation to vulne-
rability, either in terms of damage probability matrices or vulnerability curves, and there can-
not be a unanimous consensus on a unique approach for derivation of vulnerability models to 
be implemented in PRA, due to a variety of structural modeling options, analysis techniques, 
and damage criteria. Even though any model with its level of sophistication presents peculiar 
advantages and drawbacks, the development of fragility models is recognized to be a key as-
pect for disaster mitigation actions, as those functions characterize the conditional probability 
of exceeding a certain damage level for a prescribed load intensity. The conditional probabili-
ty may be defined as follows: 

 [ ]kiik sSdDPP =≥=  (1) 

where D is the damage measure (DM) used to describe structural or nonstructural damage, 
S is the scalar or vector-valued intensity measure (IM) used to describe the load intensity, and 
Pik is the probability that the damage level di is reached or exceeded for a given IM level sk. 
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Therefore, vulnerability to progressive collapse may be regarded as a measure of how prone a 
building is to damage for a given severity of the selected column removal scenario and the 
corresponding fragility models at multiple damage states may be regarded as a graphical re-
presentation of vulnerability to this type of mechanism, providing estimates of the proportion 
of a building class falling within discrete damage bands from a specified IM. 

In light of the aforementioned considerations, this study presents a probabilistic mechan-
ics-based assessment procedure for fragility analysis of structures subjected to disproportio-
nate collapse. Analytical fragility curves were derived in case of gravity-load designed [42] 
and earthquake resistant [43] RC framed buildings. As discussed in the following, concepts of 
methodologies developed for earthquake engineering applications [45-50] and recently ap-
plied in this field [39, 40] were integrated with specific analysis techniques for progressive 
collapse simulation. A flowchart presenting the proposed routine and their prevailing compo-
nents is shown in Fig. 1, while the rationale behind this framework is summarized hereafter. 
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Figure 1: Flowchart for derivation of progressive collapse fragility models. 
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According to Brunesi et al. [40], fragility was estimated by means of a MC simulation con-
sisting of the following three steps: 

1) Generation of the building population which implied modeling of random variables (RVs) 
in compliance with statistics and probability distribution functions for material properties, 
geometrical parameters and design loads. 

2) Damage analysis of each random realization which implied identifying simulated design 
criteria and numerical modeling strategies to predict progressive collapse potential and 
assess whether a prescribed amount of damage at a given IM level is reached or not. 

3) Analytical derivation of progressive collapse fragility which implied adopting procedures 
for nonlinear regression analysis in order to fit cumulative fragility points, after that ca-
pacity and demand were convolved. 

In this latter step, the distribution of buildings in each damage state of interest was used to 
derive the statistical parameters – i.e. mean (µ), standard deviation (σ) and coefficient of de-
termination (R2) – of each lognormal fragility function, fitting discrete points from damage 
probability matrices through the least squares technique. To evaluate progressive collapse fra-
gility, several thousands of structural prototypes for each building class were randomly gener-
ated on the basis of statistics and probability distributions for each RV, as specified in Section 
3, and their capacity was estimated by means of classical fiber force-based [51] FE approach-
es commonly adopted in earthquake [46, 48, 50, 52] and progressive collapse analysis [11, 12, 
17, 19, 25, 29-32, 35, 40]. To this aim, pushdown simulation techniques [11, 17, 18, 23, 24, 
31] rather than IDA procedures [19, 26, 40] were implemented and the downward load on 
beams (Qb) was assumed as reference IM. Three criteria, either at local/sectional or glob-
al/structural levels, were selected for the identification of limit states corresponding to slight 
damage (LS1), significant damage (LS2) and complete damage (LS3), thus allowing the eval-
uation of structural performance. Based on capacity/demand convolution, fragility models for 
EC2-compliant [42] and EC8-compliant [43] buildings analyzed using either 2D or 3D proto-
types were finally computed, allowing a two-way comparison between functions obtained (i) 
by different design solutions for the same type of structural representation (i.e. EC2-
conforming versus EC8-conforming), and (ii) by different modeling types for the same design 
rules (i.e. 2D versus 3D). 

3 UNCERTAINTY MODELING AND COMPUTATIONAL STRATEGY 

Pushdown analysis was implemented in a fragility analysis framework to provide the prob-
ability of exceedance of different damage states induced by column loss events. In this study, 
two design rules (i.e. according to EC2 [42] and EC8 [43]) and two structural idealizations 
(i.e. 2D and 3D models) were considered, resulting in four types of structural models each of 
them characterized by different kinds of uncertainty. Thousands of samples of RC framed 
structures were randomly generated for each of the two building populations (i.e. gravity-load 
and earthquake resistant prototypes). Uncertainties in geometry, material properties and loads 
were modeled according to Brunesi et al. [40], as a further aim of this paper is to compare 
IDA-based and pushdown-based fragility models, thus quantifying the mismatch between the 
two analysis methods. As discussed in Section 6, corrective coefficients were proposed for the 
statistical parameters (i.e. µ and σ) of each lognormal fragility function derived from the latter 
approach in direct relation to those computed through nonlinear dynamic simulations. As such, 
every simulation realization analyzed herein was assumed to be equal to the corresponding 
random idealization studied in the comparative research [40]. A summary of selected RVs 
with their peculiar probabilistic features was provided in the following, while more compre-
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hensive details regarding the statistical background of MC sampling can be found in [40]. A 
similar consideration can be drawn in terms of FE idealization of each case-study of the two 
building classes, as specified in the upcoming discussion. 

As shown in Fig. 2, the structures under study were 4-story, 4×4-bay RC framed buildings, 
which had a lateral force-resisting system (LFRS) composed of five primary frames con-
nected each other by one-way RC joist slabs and continuous cast-in-situ secondary beams. 
Following typical layouts and building practice, the span lengths in both longitudinal and 
transverse directions, namely Lx and Ly, were assumed as RVs with uniform distribution in the 
range [4.0 m, 6.0 m]. A similar criterion was applied in past studies for random sampling as-
sociated with seismic vulnerability analysis of RC structures (see e.g. [45, 46, 48, 50]). The 
center-to-center plan dimensions were equal at any floor, but varied in length (x-direction) 
and width (y-direction) according to different random combinations of column spacing in the 
two directions. As progressive collapse resistance was found to be almost insensitive to 
changes in the interstory height [19], the latter was considered as a deterministic parameter 
equal to 3.0 m. Material uncertainties were taken into account by randomly selecting steel 
yielding strengths of 380 MPa and 450 MPa and cubic concrete strengths of 25 MPa, 30 MPa 
and 35 MPa, each of them assumed to have the same probability of occurrence [48]. Those 
values were considered as nominal strengths which were then multiplied by a normally distri-
buted (dimensionless) RV with mean equal to 1.1 in case of reinforcing steel and 1.5 in case 
of concrete, and with coefficient of variation (CoV) equal to 10%. Finally, a normal distribu-
tion was assigned to dead load (DL) with mean of 3.0 kN/m2 and CoV = 17%, whereas live 
load (LL) was considered as a deterministic parameter equal to 2.0 kN/m2 because the case-
study buildings were assumed to be employed for housing. In order to permit a representation 
of the sample in the low probability region of the distribution, the Latin Hypercube algorithm 
was adopted for MC sampling of RVs with normal distribution [40, 48]. 
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Figure 2: Example of a representative structural prototype. 
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Fig. 2 shows isometric and plan views of a representative building model used for damage 
analysis through distributed-plasticity approach and pushdown simulation techniques. While 
high-definition solid FE models based on classical principles of nonlinear fracture mechanics 
[53-55] represent an attractive solution for interpreting the evolution of crack patterns and 
damage mechanisms of RC structures at a local level [25, 33, 34], fiber-based idealizations 
were shown to be a transparent and viable approach to accurately characterize the inelastic 
response of such building typology in a computationally efficient manner [32]. To this aim, 
the open FE platform SeismoStruct [56] was adopted to prepare 2D and 3D models of EC2-
compliant and EC8-compliant structures and to play out the series of pushdown analyses ex-
plicitly including material and geometric nonlinearities. Potential large displace-
ments/rotations and P-Delta effects were taken into account using a total corotational 
transformation [52] and the spreading of inelasticity over the member length and cross section 
was reproduced through a direct integration of the uniaxial material response of individual 
fibers. Each inelastic beam-column element had 5 integration points and each cross section 
was discretized in 400 fibers to accurately represent its stress/strain state during incremental 
monotonic loading. A one-to-six correspondence between structural members and model ele-
ments was assumed to reduce numerical instability and accommodate the deformed shape 
during progressive collapse analysis (Fig. 3). A simple bilinear constitutive rule with isotropic 
strain hardening was assigned to reinforcing steel, whereas the uniaxial uniform confinement 
model proposed by Mander et al. [57] was assumed to simulate the inelastic behavior of con-
crete, explicitly accounting for tension softening [40]. 

 
Figure 3: Deformed shapes at ultimate conditions of EC2-compliant and EC8-compliant buildings. 

In order to characterize the nonlinear response of random populations of case-study build-
ings, two analysis types can be used in both direct and indirect progressive collapse-resistant 
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assessment procedures: nonlinear static (or pushdown) analysis, and nonlinear dynamic analy-
sis. The former is a relatively simple approach and provides a load-displacement capacity 
curve that, similarly to seismic analysis, permits one identifying whether a structure has ade-
quate capacity to withstand extreme loads or not, in a static fashion. Material and geometric 
nonlinearities such as large displacements/rotations (i.e. beam-catenary action), second order 
effects, coupled axial-flexural inelastic behavior and plastic hinge formation (i.e. stiff-
ness/strength degradation and ductility exploitation) can be included in the analysis using a 
nonlinear static method. Nonetheless, the main disadvantage of a static simulation is the ina-
bility to take into account the dynamic behavior of a structure in case that one or more bearing 
elements are instantaneously removed from the frame. This loading condition may cause 
highly dynamic effects which in turn may lead a statically safe structure to become dynami-
cally unsafe due to the fact that time-dependent overloads produced by column loss may in-
duce a progressive fracture of other members before a new equilibrium state is achieved [19, 
22, 29, 34, 40]. As a result of this cascade effect, a different dissipative mechanism and re-
lated propagation of damage through the cross section depth may be predicted to occur by dif-
ferent analysis methods. If pushdown analysis is based on the application of a monotonically 
increased downward load or load distribution, during dynamic analysis the structure is dam-
aged under cyclic reversals, as it oscillates upward and downward in such a way that more 
closely reflects the physical nature of progressive collapse. 

In light of those considerations, procedures were proposed to equivalently include dynamic 
effects in a static fashion whether pushdown techniques are adopted for progressive collapse 
assessment [14, 15, 26]. In particular, the new Unified Facility Criteria (UFC) released in 
2009 [15] prescribed the application of a non-uniform downward load distribution to the 
structure, explicitly identifying structural portions characterized by different levels of dynam-
ic amplification (i.e. adjacent spans and areas away from the removed column). As such, this 
code-compliant approach was integrated within the probabilistic simulations performed to 
carry out fragility analysis, thus accounting for the dynamic nature of progressive collapse 
phenomena in a simplified and computationally efficient manner. As discussed in [40], fra-
gility analysis needs an iterative procedure in case of dynamic analysis because a step func-
tion with monotonically increasing magnitude is required for an aprioristic factorization of Qb 
that is able to simulate the different dynamic loading conditions corresponding to attainment 
of each limit state for each structure realization (Fig. 1). On the other hand, a single incremen-
tal analysis can be more rapidly performed in a static fashion and directly provides a set of 
displacement-controlled Qb values for each building prototype which allows one evaluating 
multiple damage states at once. 

The effectiveness of this equivalent nonlinear static procedure [15] was evaluated in com-
parison with IDA estimates [40] and a further set of standard pushdown analyses [14] was 
carried out assuming a uniform downward load distribution consistent with that selected for 
vertical mass when performing dynamic simulations. Therefore, pushdown capacity curves 
obtained by this latter approach were normalized with respect to IDA envelopes in order to 
compute a series of specific force-based DAFs for the two populations of EC2-conforming 
and EC8-conforming case-study buildings. Regression analyses were then performed using 
predictions for both 2D and 3D structural models and simplified equations were proposed to 
allow DAF to be estimated as a function of vertical displacement/beam drift. Furthermore, 
sensitivity of progressive collapse potential to simulation techniques with different levels of 
sophistication (i.e. IDA [40] versus pushdown [15]) was probabilistically assessed in terms of 
fragility functions. 

The prevailing trends emerged from pushdown analysis with and without consideration of 
equivalent dynamic effects [15], namely P1 and P2, are discussed in the following. 
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4 PUSHDOWN ANALYSIS OF EC2-CONFORMING STRUCTURES 

In the first stage of this research, progressive collapse capacity of EC2-compliant buildings 
was predicted by means of 2D and 3D structural models in combination with pushdown anal-
ysis techniques including or not dynamic effects in a static fashion (i.e. P1 and P2). This al-
lowed the authors to carry out a two-way comparison between response predictions obtained 
(i) by different types of structural idealization for the same type of analysis (i.e. 2D versus 3D 
models), and (ii) by different analysis types for the same structural representation (i.e. P1 ver-
sus P2). Thus, the influence of dynamic effects and secondary beam systems on robustness of 
EC2-conforming case-study prototypes was quantified. The conclusions drawn from capacity 
curves presented in this section were then compared to those derived for earthquake resistant 
building class examined in Section 5 and finally extended in terms of fragility models, as dis-
cussed in Section 6. 

4.1 Two-dimensional versus three-dimensional models: EC2-compliant buildings 

To assess and compare the progressive collapse potentials of gravity-load designed struc-
tures in terms of analysis method and structural modeling, an internal 2D frame was first ex-
tracted from each 3D model and then analyzed by removing the leftmost ground column. That 
scenario was considered as it is the most demanding single column-removal condition in case 
of framed buildings [19]. As shown in Fig. 4, response estimates for the 2D models were then 
collected and compared to those provided by nonlinear static analysis of 3D models, in order 
to quantify the effects of secondary beam systems in the redistribution of gravity loads from a 
removed column. This sensitivity was initially investigated considering the results of standard 
pushdown analysis (i.e. P2) and the trends observed were then compared to those obtained by 
pushdown assuming a non-uniform load distribution (i.e. P1), thus exploring the influence of 
dynamic effects and corresponding equivalent load pattern on the resisting/redistribution me-
chanisms enforced in both primary and secondary frames. 

 
Figure 4: Pushdown (P2) curves of EC2-conforming buildings using 2D models (left) and 3D models (right). 

Fig. 4 presents the set of downward load-vertical displacement curves predicted for 2D and 
3D models, revealing a maximum progressive collapse capacity of about 1.35Qb in case of the 
most resistant 2D structure. Peaks of up to 0.83Qb can be observed if the median is considered, 
and capacities approximately lying within a ± 12% fork were shown when referring to median 
± 1 standard deviation. The set of numerical predictions obtained by 3D models confirmed the 
significant influence of secondary framing beams on progressive collapse potential of the sys-
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tem, as they provide a rationally-controlled alternative load path for the unbalanced demand 
induced by a column loss scenario. Given that one-way slabs were assumed according to con-
struction practice for such buildings, secondary beams were supposed to resist only their self-
weight so they were designed to comply with minimum reinforcement requirements by cur-
rent European standards [42] and, hence, they can be considered as a latent resource of stiff-
ness and strength. The redundancy provided by secondary beams or “secondary-beam effect” 
visibly improved the robustness of case-study prototypes, being their contribution effective in 
controlling the overall structural response. As a result, capacities approximately 3 times high-
er than those shown for 2D models were predicted in this case considering either maximum or 
median resistance of the EC2-compliant buildings. Slightly more scattered estimates were de-
termined as a wider fork of up to ± 24% resulted when computing median ± 1 standard devia-
tion. As discussed by Brunesi et al. [40], predictions suggested that these secondary members 
may be actively used to interact with the primary frame systems, resulting in a stiffer, stronger 
and more stable response under column loss-induced overloads. Due to their visible participa-
tion in primary mechanism, vertical displacement peaks more than halved can be shown when 
3D and 2D models are compared (Fig. 4). 

4.2 Uniform versus non-uniform load distributions: EC2-compliant buildings 

In this subsection, the sensitivity of progressive collapse resistance to analysis method was 
investigated, focusing on gravity-load designed 2D and 3D structural models. In detail, Fig. 5 
collects the series of downward load-vertical displacement capacity curves determined for the 
EC2-conforming population of structures by means of pushdown analysis based on the appli-
cation of code-compliant [15] non-uniform load distributions able to account for different le-
vels of dynamic amplification in specific portions of the structure. Peculiar behavioral aspects 
of obtained response (i.e. P1) were examined. In addition, a comparison was provided with 
those discussed in subsection 4.1 for conventional pushdown analysis approach (i.e. P2). 

 
Figure 5: Pushdown (P1) curves of EC2-compliant buildings using 2D models (left) and 3D models (right). 

Such an approach explicitly includes dynamic effects in a nonlinear static analysis using an 
equivalent/global procedure that provides a constant amount of overload dependent on plastic 
and yielding rotational capacity to be applied to specific structural portions more sensitive to a 
sudden column removal than others (adjacent spans versus areas away from the removed col-
umn). Therefore, predictions more conservative than those resulting from P2 were achieved in 
this case either for 2D or 3D models. Peaks of about 1.11Qb and 3.86Qb were predicted for the 
most resistant 2D and 3D structure, respectively. Such an outcome confirms the considerable 
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contribution provided by secondary frame elements for gravity load redistribution as a conse-
quence of a sudden column-removal condition. As previously mentioned, 3D models resulted 
in capacities approximately 3 times larger than those determined in case of 2D models. Com-
pared to P2, estimates roughly 10%-20% smaller can be observed as a consequence of equiva-
lent dynamic effects. By contrast, similar considerations can be drawn in terms of median and 
standard deviation. 

4.3 Regression models for DAF estimation: EC2-compliant buildings 

DAF can be considered as a mechanical measure that permits one to quantify the inaccura-
cy of pushdown analysis in comparison with IDA for different design targets beyond the elas-
tic range of the structure. As such, DAF was obtained as the ratio between static and dynamic 
capacities in terms of vertical peak resistance of the 2D or 3D structural model at a given ver-
tical displacement. Fig. 6 presents the series of force-based DAF versus vertical displacement 
curves of the population of gravity-load designed structures. 

 
Figure 6: DAF estimates for EC2-conforming building class using 2D models (left) and 3D models (right). 

To get a reliable estimate of this quantity, standard pushdown analysis (P2) was used as it 
is based on the application of a uniform downward load distribution, according to that as-
sumed for nonlinear dynamic simulations [40]. The set of static-to-dynamic capacity ratios of 
2D and 3D models collected in Fig. 6 were then used to conduct a regression analysis, which 
is aimed at providing specific analytical expressions for a quick assessment of DAF at a given 
vertical displacement/drift target. Accurate predictions were observed for both 2D and 3D 
models, as the coefficient of determination (R2) was equal to 0.88 and 0.91, respectively. 

5 PUSHDOWN ANALYSIS OF EC8-CONFORMING STRUCTURES 

The procedures assumed to perform progressive collapse analysis of EC2-compliant build-
ing class were then applied to the population of EC8-compliant structures. As before, numeri-
cal simulations were carried out considering either 2D or 3D models. Pushdown analysis with 
and without consideration of dynamic effects was performed on prototype buildings having 
the same overall geometry in accordance with MC random sampling of RVs but different de-
tailing as they were separately designed in compliance with EC2 [42] and EC8 [43]. In partic-
ular, the population EC8-conforming structures was designed for a medium-high seismicity, 
assuming the PGA at bedrock to be 0.30g for life safety limit state. A type C ground was se-
lected to perform design in medium ductility class by response spectrum analysis on 3D mod-
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els, incorporating accidental eccentricity of the center of mass. Further and more comprehen-
sive details regarding simulated design criteria and related sectional properties/reinforcement 
layouts may be found in Brunesi et al. [40], while the prevailing numerical observations re-
sulting from the series of pushdown analyses carried out are summarized hereafter, in direct 
relation to those derived for EC2-conforming case-study buildings. 

5.1 Two-dimensional versus three-dimensional models: EC8-compliant buildings 

The set of pushdown capacity curves obtained by 2D and 3D models are collected in Fig. 7, 
and reflected a visible benefit from seismic design/detailing rules. Peak force capacities 50%-
70% larger than those observed in case of gravity-load designed structures were predicted for 
earthquake-resistant framed buildings. 

 
Figure 7: Pushdown (P2) curves of EC8-compliant buildings using 2D models (left) and 3D models (right). 

Such an outcome is mostly due to more stable and robust flexural hinging mechanisms and 
arch effects/catenary actions developed in the critical portions of EC8-compliant structures, as 
a result of minimum seismic requirements and symmetrical arrangement of longitudinal rein-
forcement [43]. Compared to EC2-conforming buildings, their collapse modes were characte-
rized by different levels of resistance, robustness, rationale and control. The EC8-conforming 
prototypes can displace further in the nonlinear regime of their response, or alternatively carry 
higher loads for a given vertical displacement. Maxima of about 2.31Qb and 7.31Qb were de-
termined using 2D and 3D models, respectively. Hence, the trends emerged by comparing the 
responses of 2D and 3D gravity-load resistant framed structures were confirmed and corrobo-
rated even further by the series of pushdown curves shown in Fig. 7. 

5.2 Uniform versus non-uniform load distributions: EC8-compliant buildings 

Dynamic effects were included in progressive collapse analysis according to the equivalent 
procedure proposed in UFC [15], thus permitting one to evaluate their influence on robustness 
of EC8-conforming building class. In Fig. 8, the downward load-vertical displacement curves 
predicted by means of 2D models were compared to those obtained using a 3D structural idea-
lization. The peak progressive collapse resistance was found to be equal to 2.09Qb and 6.77Qb 
in case that the strongest 2D and 3D prototypes are considered, respectively. Compared to Fig. 
7, Fig. 8 reveals 10%-15% lower capacities, thus reaffirming the key role played by this code-
compliant procedure in controlling the unsafety level of a standard pushdown approach. When 
considering the median of EC8-compliant buildings, the maximum load carrying capacity was 
approximately 1.39Qb in case of 2D models and a ± 15% fork was observed whether referring 
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to median ± 1 standard deviation. On the other hand, a more than doubled peak resistance re-
sulted from the median of 3D models, in combination with a ± 10% wider fork for median ± 1 
standard deviation. 

 
Figure 8: Pushdown (P1) curves of EC8-conforming buildings using 2D models (left) and 3D models (right). 

The comparison between pushdown capacity curves of EC2-compliant and EC8-compliant 
random realizations (i.e. Fig. 5 versus Fig. 8) revealed trends similar to those evidenced when 
comparing the results of standard pushdown simulations (i.e. Fig. 4 versus Fig. 7). The signif-
icant benefit from seismic design/detailing criteria, which was highlighted for either 2D mod-
els or 3D models, can be therefore reaffirmed. 

5.3 Regression models for DAF estimation: EC8-compliant buildings 

Conventional pushdown predictions (i.e. P2) and IDA estimates [40] were used to quantify 
the discrepancy between the two simulation techniques at different levels of inelastic demand 
for column loss-induced overloads. As done in case of EC2-conforming prototypes, an expo-
nentially decaying model was fitted to the series of static-to-dynamic capacity ratios obtained 
by 2D and 3D models (see Fig. 9), thus proposing simplified equations for quick analytical 
assessment of DAF for earthquake resistant buildings. 

 
Figure 9: DAF estimates for EC8-compliant building class using 2D models (left) and 3D models (right). 
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The scatter is very low in case of 3D structural models, as the resulting regression function 
is characterized by a coefficient of determination equal to 0.95. Conversely, regression analy-
sis provided a less accurate fit using capacities from 2D models (i.e. R2 = 0.77), particularly in 
the small displacement range, that is when structural performance was characterized by minor 
or moderate damage. 

6 DERIVATION OF FRAGILITY MODELS 

To convolve capacity and demand under progressive collapse scenario, the following three 
criteria were introduced – either at global/structural (i.e. vertical drifts) or local/sectional (i.e. 
concrete and steel strains) levels – for limit states definition: slight (LS1), significant (LS2) 
and complete (LS3) damage. As discussed in [40], slight damage limit condition refers to a 
situation in which the building can be immediately used after an event with minor repair or 
strengthening only, so it can be regarded as a sort of serviceability limit state. Conversely, 
complete damage can be considered as an ultimate limit state beyond which the structure is 
close to collapse, being no longer able to deform and to sustain any further load increment nor 
the gravity loads for which it has been designed. Significant damage can be regarded as an 
intermediate case beyond which the building becomes unsafe for its occupants, being the ma-
jority of its source of nonlinearity yet fully in use. Therefore, LS2 may be identified as a sort 
of life safety limit state. 

To determine whether a structural element reaches a limit condition, strains and drifts ex-
perienced in the critical portion of the skeletal frame where the progressive collapse mechan-
ism was forced to occur were compared with conventionally identified limit capacities [40]: 

• LS1 was defined by steel and concrete strains for both EC8- and EC2-compliant building 
classes. For each randomly generated structure, the yielding strain of steel bars was com-
puted as the ratio between yielding strength and Young’s modulus, while concrete strain 
at peak strength was determined in accordance with Mander et al. [57]. 

• LS2 was supposed to occur when the vertical drift, obtained as the ratio between the peak 
displacement above the column removed and the beam span length, exceeded a determi-
nistic threshold. In detail, that drift was assumed to be equal to 0.5% and 1.0% in case of 
EC2-conforming and EC8-conforming building classes, respectively. 

• LS3 was characterized in terms of ultimate steel strain and ultimate concrete strain. For 
each randomly generated structure, the ultimate concrete strain was calculated according 
to different material properties and reinforcement arrangement, whereas the buck-
ling/fracture strain of steel bars was set to 4% and 6% in the case of EC2-conforming and 
EC8-conforming building classes, respectively. 

Therefore, a multiplier of Qb was identified on each pushdown (P1) curve for each damage 
state, in order to assemble a damage probability matrix. The latter contained fractions of sam-
pled structures in each damage state, for a set of increasing Qb levels. The cumulative fraction 
of buildings in each damage state was then computed, summing up the percentages of frames 
pertaining to each of them according to MC simulation. Finally, a lognormal cumulative dis-
tribution function was fitted to fragility points through regression analysis, thus providing the 
probability of exceeding each damage state in a continuous fashion. 

Fragility functions for each structure typology are shown in Figs. 10 and 11, while their pa-
rameters, in terms of mean, standard deviation and coefficient of determination, are collected 
in Table 1. A good match with fragility points from pushdown analysis was observed for each 
limit state (i.e. LS1, LS2 and LS3), design approach (i.e. EC2- and EC8-compliant structures) 
and structural idealization (i.e. 2D and 3D models), being R2 in the range 0.972-0.999. 
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Figure 10: Fragility models of EC2-compliant (left) and EC8-compliant (right) building classes – 2D prototypes. 
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Figure 11: Fragility models of EC2-compliant (left) and EC8-compliant (right) building classes – 3D prototypes. 

 

  
LS1 LS2 LS3 

Class Model µ σ R2 µ σ R2 µ σ R2 

EC2-conf. 
2D -5.243 2.053 0.985 -0.987 0.325 0.999 -0.749 0.240 0.985 

3D -0.964 1.112 0.972 0.186 0.472 0.997 0.440 0.338 0.982 

EC8-conf. 
2D -0.880 0.288 0.999 -0.122 0.319 0.998 0.051 0.261 0.996 

3D 0.367 0.399 0.999 0.731 0.456 0.995 1.084 0.332 0.994 

 

Table 1: Pushdown analysis (P1) – µ, σ and R2 of fragility functions in terms of Qb. 

A very low scatter can be observed in case of EC8-conforming structures, as their fragility 
models are characterized by a coefficient of determination close to unity (0.995 < R2 < 0.999) 
for both 2D and 3D models. As far as the EC2-compliant building class is concerned, an iden-
tical accuracy was obtained for LS2 and LS3, considering both 2D and 3D models, while the 
goodness of fit for LS1 was slightly lower as R2 equals 0.985 and 0.972 for 2D and 3D mod-
els, respectively. Nonetheless, that limit state (i.e. slight damage condition) is less crucial than 
others for progressive collapse applications, in which (i) moderate damage is likely to occur 
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as a consequence of redistribution of vertical loads from a removed column and (ii) an optim-
al design target is the life safety or collapse prevention limit state in light of classical perfor-
mance-based design principles. Moreover, the fragility models proposed in this study reaffirm 
the key role played by secondary framing beams and seismic design/detailing rules for a cost-
effective progressive collapse vulnerability mitigation of RC structures. In fact, a symmetrical 
reinforcement configuration is effective for the creation of a rationally-controlled primary re-
sisting mechanism, whereas redundancy added by secondary beam systems (designed to satis-
fy minimum reinforcement requirements prescribed in current code regulations) is crucial to 
ensure alternative load paths under abnormal loading conditions. In this respect, it can be em-
phasized that the additional robustness resources provided by secondary frame systems can be 
predicted at the design stage, for instance through a correlation between the maximum vertical 
displacement of the 3D model normalized to that of the equivalent 2D model (Dmax,3D/Dmax,2D) 
and the maximum demand-to-capacity ratio of beams [19]. 

Finally, the set of fragility models at multiple damage states derived and commented in this 
research were compared to the corresponding set of IDA-based functions proposed by Brunesi 
et al. [40]. Table 2 presents ratios of mean (χµ = µIDA/µP1) and standard deviation (χσ = σIDA/σP1) 
of IDA-based and pushdown-based fragility functions for each damage state, design approach 
and structural representation of interest. 

 

  
LS1 LS2 LS3 

Class Model χµ χσ χµ χσ χµ χσ 

EC2-conf. 
2D 1.249 1.132 1.224 1.205 1.158 1.038 

3D 1.528 1.182 0.232 1.169 0.789 1.073 

EC8-conf. 
2D 1.321 1.459 2.015 1.225 -0.511 1.075 

3D 0.344 1.208 0.822 1.192 0.909 1.040 

 

Table 2: IDA vs. P1 – ratios of mean (χµ = µIDA/µP1) and standard deviation (χσ = σIDA/σP1) of fragility functions. 

Pushdown analysis was therefore confirmed to be unconservative for vulnerability assess-
ment of RC framed structures subjected to progressive collapse, as detailed from a determinis-
tic standpoint in past studies [19, 40]. In light of this, ad hoc countermeasures are likely to be 
implemented in current regulations for progressive collapse scenario loss modeling. 

7 CONCLUSIONS 

In this work, a modeling procedure for large displacement inelastic pushdown analysis was 
integrated in a probabilistic framework for the derivation of fragility functions for RC framed 
structures under extreme loads resulting from a threat-independent sudden column loss. Two 
low-rise RC building classes were studied, namely gravity-load designed buildings and earth-
quake resistant buildings. The case-study structures were investigated using two analysis me-
thods, i.e. pushdown analysis with and without consideration of equivalent dynamic effects, 
and two modeling strategies, i.e. 2D and 3D fiber-based models. The progressive collapse fra-
gility was evaluated for both case-study building classes, considering both structural idealiza-
tions as well as uncertainties related to geometry of structural elements, material properties 
and gravity loads. Classical performance-based assessment principles assumed in earthquake 
engineering were extended to define demand and capacity at local and global structural levels. 
A set of fragility models were then derived, allowing the following conclusions to be drawn: 
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• The fragility models proposed in this study are optimally fitted to discrete fragility esti-
mates provided by pushdown analysis combined with MC simulation, particularly for life 
safety and total collapse prevention limit states which are crucial for progressive collapse 
assessment. 

• Different fragility levels are associated with multiple damage states, depending on the 
building class and modeling strategy considered in probabilistic progressive collapse as-
sessment. 

• Considerable benefits from seismic design and secondary beams on the actual robustness 
level of RC bare building structures are confirmed and quantified by the fragility models 
proposed herein. 

• Incremental-mass nonlinear dynamic analysis is suggested to be implemented in progres-
sive collapse-resistant building analysis and design, as pushdown analysis was proven to 
underestimate the fragility level associated with this type of structures in case of progres-
sive collapse. 
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Abstract. With the intention of focusing the attention on the extreme combined effects of tem-
perature and dynamic loadings, the high strain rate behaviour in tension of the widely used
S355 structural steel in a wide range of elevated temperatures is presented.
By means of a Split Hopkinson Tensile Bar (SHTB) equipped with a water-cooled induction
heating system, the main mechanical properties as well as different strain energy densities have
been evaluated. The reduction factors for the main mechanical properties, in which the novelty
of our data is the addition of the strain rate dependency to the temperature, are reported as well.
Lastly, a critic review of the Johnson-Cook constitutive law has been reported, highlighting that
the use of single averaged thermal softening parameter (m) could lead to considerable errors.
These results could be of great interest for the assessment of robustness in structures subjected
to fire induced progressive collapse.
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1 INTRODUCTION

An extended exposure to high temperatures may severely influence the performance of the
steel framed structures triggering for example a fire induced progressive collapse.

Even if the progressive collapse became an important topic after the partial collapse of the
Ronan Point Building (UK) in 1968 [1, 2, 3], only after the 9/11 World Trade Center tragedy
[4, 5] a significant amount of research has been carried out to assess the fire resistance and to
predict the blast response of steel structures. But, only uncorrelated effects of dynamic loadings
and high temperatures have been considered [6]. For that reason the mechanical response of
steel structures subjected to extreme combined effects has still criticisms open to investigation.

With the intention of fulfilling these criticisms, the mechanical behaviour of a widely used
structural steel, namely S355, in a wide range of temperatures (200 ◦C, 400 ◦C, 550 ◦C, 700 ◦C
and 900 ◦C) and high strain rates will be presented. The results can be of great interest for the
assessment of robustness in structures where a progressive collapse is triggered by a coupled
effect of fire and dynamic loadings.

2 PROGRESSIVE COLLAPSE: CHOICE OF THE APPROACH

Two approaches are known for studying the progressive collapse, namely the indirect and the
direct methods. While for the first, the designers may use an implicit design, in the second the
designers need to perform a structural analysis. Two typical used direct methods are the specific
local resistance method (known also as key element design) and the alternate load path.

Another approach that should be followed is based on the employment of discrete element
method (DEM) models. An extensive research in this field has been performed by Masoero et
al. [7, 8, 9], that demonstrated the DEM’s applicability to progressive collapse by simulating
the behaviour of 2D and 3D framed structures after a sudden damage.

Focusing the attention on the direct methods we should not forget the analytical procedure
that can be used to model the problem. Although simplified hypotheses are supposed, like lin-
ear static or non-linear static analysis as well as linear dynamic analysis, the most rigorous
approach for evaluating a progressive collapses is through the use of an explicit non-linear dy-
namic procedure. But, even if the non-linear dynamic procedure is the most accurate approach,
another fundamental aspect should be taken into consideration: the real mechanical properties
of the material subjected to extreme combined loadings [10].

With the intention of evaluating the structural performance in response of a coupled effect
of fire and blast loading, one of the most commonly implemented [11, 12, 13] and easy-to-use
constitutive relationships in the finite element programs is here considered. This constitutive
model has been proposed by Johnson and Cook during the eighties [14] and is widely used to
describe the material strength in numerical simulations of dynamic events. The flow stress can
be expressed as:

σ = (A+B · εnp ) · (1 + c · ln ε̇
ε̇0
) · (1− T ∗m) (1)

where εp is the true plastic strain, ε̇ is the considered strain rate, ε̇0 is the reference strain rate
(taken as 1 s−1) and T ∗ is a dimensionless temperature. In order to find the Johnson-Cook
parameters A, B and n [15], representing the strain hardening effects of the material in quasi-
static conditions, c [15] representing the strain rate sensitivity and m [16] representing the
thermal softening sensitivity, a mechanical characterisation in a wide range of temperatures and
high strain rates is necessary.
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3 MECHANICAL CHARACTERISATION AT HIGH STRAIN-RATES AND HIGH
TEMPERATURES

The mechanical characterisation at high strain-rates was carried out by means of a Split Hop-
kinson Tensile Bar (SHTB) installed at the DynaMat Laboratory [17]. The tests at elevated tem-
peratures were performed by using an Ambrell compact EASYHEAT induction water-cooled
heating system (Figure 1). A detailed description of the functioning of the SHTB equipped with
the induction water-cooled heating system has been given in [16].

Figure 1: Setup for the high strain rate tests at elevated temperature: (1) the input bar, (2) the output bar, (3)
the heating system, (4) the water-cooled induction coil, (6) the sample to be tested connected by means of a
thermocouple to a (5) thermal controller and (7) the cooling system for the input and output bars, respectively.

The specimens for the mechanical characterisation were obtained in the longitudinal direc-
tion from an hot-rolled wide-flange section HE A [18]. Starting from the initial section geom-
etry, wire electrical discharge machining (WEDM) was used in order to obtain small prismatic
samples, that where turned in order to obtain round samples with 3 mm in diameter and 5 mm
of gauge length. A full description of the geometry is reported in [19, 20].

In order to understand the effect of the temperature on the dynamic mechanical properties of
the S355 structural steel, the high strain rate tests at elevated temperatures were performed with
the same testing conditions adopted at room temperature. With these testing conditions and at
20 ◦C, the obtained averaged strain rates were approximately 300 s−1 (v1 = 2.30 m/s), 500 s−1

(v2 = 2.90 m/s) and 850 s−1 (v3 = 4.00 m/s). The corresponding particle velocities in the input
bar, used as a reference for the testing condition, are reported within brackets.

Additional tests were also performed by compensating the preload with the intention of ob-
taining tests with comparable effective strain rate. This has been helpful for the calibration of
the Johnson-Cook thermal softening sensitivity parameter (m).

4 RESULTS

Due to the different mechanical properties of steel at elevated temperatures, an increase of
the reflected pulses is noted for increasing temperatures (Figure 2 left). This lead to a noticeable
increase in the averaged strain rate at different temperatures (Figure 2 right).

The temperature effect on the mechanical properties of the S355 structural is represented in
Figure 3, where the engineering stress versus strain and the true stress versus strain represen-
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Figure 2: Comparison of reflected pulses at increasing temperatures (left) and effective strain-rate for increasing
temperatures (rigth) for a fixed testing condition (v1 = 2.30 m/s).

A B n c
(MPa) (MPa) (-) (-)

448 782 0.562 0.0247

Table 1: Johnson-Cook parameters obtained at room temperature [15].

tative plots are depicted. In Figure 4 the post-mortem images of the samples tested at different
temperatures are reported.

Another way of comparing the tensile properties at different temperatures is by means of a
reduction factor determined as the ratio of the value at elevated temperatures to the correspond-
ing value at room temperature. The reduction factors for the proof strength and the ultimate
tensile strength evaluated at high strain rates are reported in Figure 5. It is possible to observe
that the reduction factor proposed by the Eurocode 3 [21] for the proportional limit in quasi-
static conditions is not applicable for the high strain-rate tests, while the reduction factors seem
not to be strongly different for the three testing conditions. The reduction factors for the other
mechanical properties are reported in [16].

5 CONSTITUTIVE MODEL

The Johnson-Cook parameters evaluated by means of tests at room temperature are reported
in Table [15], while the experimental data at different temperatures and for a fixed strain rate
(450 s−1) were used to determine [16] the thermal softening sensitivity parameters (Table 2).

In a previous study by the current authors [16], a thermal softening factor obtained exper-
imentally at different temperatures was defined (R∗). In Figure 6 a comparison between this

m (450 s−1)
200 ◦C 400 ◦C 550 ◦C 700 ◦C 900 ◦C

(-) (-) (-) (-) (-)
0.551 0.675 0.988 0.953 0.454

Table 2: Johnson-Cook thermal softening sensitivity parameters at different temperatures [16].
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Figure 3: Comparison of engineering stress-strain curves (left) and true stress-strain curves (right) at different
temperatures.

Figure 4: Reduction of area of samples tested at elevated temperatures.

Figure 5: Reduction factors for the proof strength (left) and the ultimate tensile strength (right).
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factor and the thermal factor of the Johnson-Cook constitutive law (1− T ∗m) with fixed single
values of m is reported. It is possible to observe that single averaged values of m obtained by
comparing only two sets of data from room temperature and a single high temperature, could
lead to considerable errors.

Figure 6: Comparison between the thermal softening factors obtained experimentally and the thermal factor of the
Johnson-Cook constitutive law with fixed single values of m.

6 CONCLUSIONS

In this paper the high strain rate behaviour in tension of the widely used S355 structural steel
in a wide range of elevated temperatures has been presented.

• Due to the different mechanical properties of steel at elevated temperatures, a perceptible
increase in the effective strain rate was observed.

• The tensile properties were not significantly influenced by the different dynamic testing
conditions.

• A remarkable difference between quasi-static and high strain rate reduction factors was
highlighted.

• A perceptible variation of the thermal softening parameter (m) was highlighted.

• Using a single averaged value of m could lead to considerable errors.

These findings could be helpful in order to simulate the effect of a dynamic loading, e.g. an
explosion, on steel structural elements under different temperatures. As a future development
a numerical simulation will be implemented in Ls-Dyna considering the material properties of
the structural steel S355 at high temperatures and high loading rates.
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Abstract. Different procedures for assessing the robustness of a reinforced concrete (RC) frame
under progressive damage are proposed and compared. The removal of a column in a RC frame
structure is modeled with a commercial nonlinear finite element software according to three
alternative strategies: (i) reduction of mechanical properties of the damaged column, (ii) incre-
mental loading of the structure after total removal of the damaged column, and (iii) incremental
unloading of internal forces on the damaged column. Nonlinear analysis is performed under
a prescribed load combination on three concrete frames designed with three Italian building
codes in force in different periods. Despite the differences in the strategies for damage mod-
eling, similarities between structural response predictions are highlighted. In addition, it is
shown that seismic design provisions for RC building structures increase the ductility of the
structure but do not guarantee the robustness against the removal of a column.
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1 INTRODUCTION

Structural engineers have been concerned with the resistance of building structures to dis-
proportionate collapse since Ronan Point accident in 1968. In 2001, the catastrophic failures of
WTC towers in New York showed the true effects of progressive collapse and raised the public
interest on such topic. Specific guidelines have been developed and robustness requirements
have been inserted in building codes and laws. Eurocode 0, which is the document at the base
of the modern European national regulations on constructions, states that a localised failure due
to accidental actions may be acceptable, provided it will not endanger the stability of the whole
structure, and that the overall load-bearing capacity of the structure is maintained and allows
necessary emergency measures to be taken.

In such framework, the researches conducted since the second half of the last century have
focused the attention on sudden element removals [1, 2, 3]. Basically, such situations are in-
duced by explosions and impact loads [4]. For ensuring structural robustness in constructions,
the modern design philosophies switch from being reliability-based to accounting for conse-
quences of local failure. In this sense, Gudmundsson and Izzuddin [5] argued that the scenario
of sudden column loss is an effective and straightforward strategy for integrity assessment. Var-
ious design guidelines implement such approach through linear/nonlinear static or nonlinear
dynamic analysis [6, 7]. On one side, static analysis with dynamic increase factor may lead
to conservative rather than unsafe design depending on the structural behaviour and configura-
tion [8]. On the other, a large computational effort is required for detailed nonlinear dynamic
analyses [9].

Despite the previous scenario are the ones that have engendered and still cause many fatalities
for building occupants, the attention has recently switched on other sources of degradation and
damage [10, 11]. For example, Sun and others dealt with the progressive collapse of steel frames
due to fire [12, 13] modifying a FEM code developed at the University of Sheffield. Others
used commercial FEA software ABAQUS for investigating the behaviour of steel structures
and connections subjected to fire loads, e.g., [14]. Fang and others [15] proposed a simplified
energy-based robustness assessment approach in which the maximum temperature is unknown
(i.e., this represents an event-independent local damage scenario); they assess the integrity of
the steel structure subjected to fire through a multistage procedure implemented on ADAPTIC
code.

The robustness of concrete buildings subjected to element removal has been usually assessed
through numerical, experimental and analytical strategies (see, for example, [16, 17, 18]). In
addition, theoretical [19, 20, 21, 22] and probabilistic approaches [23, 24, 25] as well as scenario
analyses have been already formulated and proposed [26].

The aim of the research herein presented is to model in a simple and feasible way a pro-
gressive damage acting on concrete frame structure through a commercial software. This is
fundamental for assessing the robustness of a construction in such unexpected scenarios [27].

2 METHODS

A progressive damage acting on a column of the first level of a reinforced concrete structure
is simulated. The structure is subjected to the following load combination

1.50 (DL + 0.25LL) , (1)

where DL represents the dead load, i.e., the weight of the structural and nonstructural compo-
nents; LL is the live load, i.e., the moving loads. This load combination is suggested in GSA
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[28]; the term 1.50 is the dynamic amplification factor [29].
The test structure is represented by a 14 × 30 m reinforced concrete frame structure made

of 140 beams and 160 columns distributed in five levels. The columns are disposed along the
nodes of a grid, as depicted in the schematic of Figure 1(a). The plan position of each column
is identified by means of a letter (from A to H) and a number (from 1 to 4) As can be observed
in Figure 1(b), at each level, each node is connected with the neighboring ones through an
orthogonal mesh of beams (28 beams per level). The levels are labelled by Roman numbers
from I (ground level at +0.00 m) to VI (top level at +15.20 m). The interstorey height is 3.20
m for level II and 3.00 m for the remaining levels. The elevation of the levels is reported in
Table 1. The bottom nodes, i.e., the foundation nodes, are rigidly constrained.

1234

A
B

C
D

E
F

G
H

(a) (b)

Figure 1: (a) Plan view of the schematic of the reinforced concrete frame structure; (b) prospective of the frame
structure.

Level Elevation Level Elevation

I 0 m IV 9.2 m
II 3.2 m V 12.2 m
III 6.2 m VI 15.2 m

Table 1: Elevations of the levels of the structure.

In the following, the nodes are identified by the sequence N:[plan position(level)]; for exam-
ple, the node set at the fourth level at the position identified by letter E and number 3 is written as
“N:E3(IV)”. The beams are identified by the sequence B:[position of the initial node]:[position
of the final node]; in this sense, for example, the beam of the third level (+9.20 m) connecting
the nodes N:C2(III) and N:D2(III), is named as “B:C2(III):D2(III)”. The columns are identified
by the sequence C:[position of the bottom node]:[position of the top node]; for example, the
column between the nodes N:F2(II) and N:F2(III) is denoted as “C:F2(II):F2(III)”. The struc-
ture is doubly symmetrical in plan. Thus, the right-hand side lower quarter is considered in the
present paper. The results are replicable to the other corresponding parts of the structure.
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Referring to the amount of reinforcement within the elements, the structural safety (of the
undamaged structure) has been guaranteed through three different design philosophies. In the
first case (named “D+HoR” in the following), ultimate limit state semi-probabilistic approach
accounting for ductility and hierarchy of resistances has been implemented; in the second case
(named “D” in the following), only ductility requirements are satisfied; in the third case (named
“S” in the following), only static design accounting for dead and live loads (with basic seismic
design requirements) has been performed. The previous design philosophies correspond to
present and early Italian building laws, i.e., [31], [32], [33], respectively. Following the well-
known structural mechanics rules, the bending moment-curvature relationships for each of the
three structural schemes previously illustrated has been computed and the nonlinear flexure
relationships have been implemented in the corresponding Finite Element models.

The effects of progressive column removal have been analyzed through the implementation
of three different numerical strategies, described in detail in the following subsections.

In all simulations, eight columns, corresponding to the bottom column of the studied quar-
ter of the construction, are alternatively considered. The identification codes and sizes of the
columns are reported in Table 2. The behavior of the structure to the progressive damage is
evaluated through the maximum vertical drift of all the beams converging in the top node of the
damaged element. In reference to Figure 2 in which two horizontal beams converge in node N,
the vertical drift, vN, is

vN = max

{
∆1

`1
;
∆2

`2

}
. (2)

`1 `2

∆1 ∆2

N

Figure 2: Scheme for the evaluation of vertical drift.

Progressive
number

Identification code Size
(cm2)

Progressive
number

Identification code Size
(cm2)

#1 C:A1(I):A1(II) 30x50 #5 C:A2(I):A2(II) 30x65
#2 C:B1(I):B1(II) 60x30 #6 C:B2(I):B2(II) 65x40
#3 C:C1(I):C1(II) 60x30 #7 C:C2(I):C2(II) 65x40
#4 C:D1(I):D1(II) 50x30 #8 C:D2(I):D2(II) 30x60

Table 2: Damaged elements.

The simulations were performed on an Intel i7, 3.60 GHz, 64-bit computer with 16 GB
RAM. A specific MATLAB script controlled a SAP2000 solver and stored the displacement of
the monitored nodes on a database file. The computation times related to each simulation are
evaluated through MATLAB software.
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2.1 Damage model A

The damage model A implemented a progressive reduction of the cross-section area and in-
ertia. As implemented by Lematre and Chaboche [30], the degradation of the structural element
was controlled by a damage parameter d varying from 0, in case of no damage, to 1, in case of
total damage. If d = 1 the element is totally removed. The geometrical properties of the i-th
element, i.e., the damaged element, of the RC frame were

Aid = Ai0 (1− d) (3)
Jid = Ji0 (1− d)2 ,

where Ai0 and Ji0 are the cross-section area and inertia. The damage model acted on the size of
the concrete cross section, not on the area of the rebar.

The eight columns previously identified were alternatively subjected to the damage, and
the overall response of the frame structure was monitored. The simulations (21 in total) were
performed at the following values of the damage parameter d:

• from d = 0.000 to d = 0.700, with step of 0.100;

• from d = 0.700 to d = 0.850, with step of 0.050;

• from d = 0.850 to d = 0.950, with step of 0.025;

• from d = 0.950 to d = 0.990, with step of 0.010;

• at d = 0.995 and d = 1.000.

For each value of the damage parameter, the reduced geometrical properties, i.e., the ones de-
rived from Eqn. (3), are automatically assigned to the damaged element. For sake of simplicity,
a unique undamaged scheme was considered as a basis for all the simulations. The external load
was applied to the damaged structure with its nominal value, see load combination detailed in
Eqn. (1). SAP2000 solver was set as static nonlinear. Meanwhile, the vertical displacements
of the top node of the damaged column (i.e., the node set at level II, i.e., at +3.20 m), as well
as the boundary nodes at the same level, were monitored. In addition, the axial force in the
damaged element was recorded. This allowed to rapidly estimate the vertical drift of the beams
at +3.20 m, assessing the amount of damage on the floor. The results associated with each value
of damage parameter were independent one from each other. No previous damage history is
considered was each simulation.

2.2 Damage model B

The damage model B considered the total removal of the damaged element and the progres-
sive loading of the structure. Before the incremental loading of the structure, no additional loads
were acting on the scheme. The loading process was controlled by the vertical displacement of
the top node of the damaged element (i.e., the node set at +3.20 m). Because of that, the loading
process might be related to an incremental “pushdown” analysis. In order to monitor the effec-
tive load on the structure at each loading step, the total base vertical reaction was considered.
The reference base reaction value in the undamaged scheme was determined before the removal
of the element and, then, the corresponding values at each loading step were recorded.
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2.3 Damage model C

The damage model C considered the substitution of the damaged element with a set of forces
that simulate its presence. The forces are then progressively reduced to zero. The simulations
accounting for this damage model were implemented as follows, see Figure 3 for visual details.
First, (i) the undamaged structure was loaded with the external loads with the load combination
into Eqn. (1). A nonlinear solver was considered and the displacements and the forces in the
elements were evaluated. In particular, the forces acting in the potentially damaged element
were recorded, i.e., the red forces in Figure 3(a). In the present paper, only the forces acting at
the top end of the element were considered; the bottom end of the element, being a base column,
was restraint. Then, (ii) the damaged element was removed and a set of external forces, F ∗, were
added to the scheme, black forces in Figure 3(b). Such forces are opposite to the ones of the
previous step, i.e., F ∗ = −F . A nonlinear run was made and the nodal displacements were read
and it resulted that were approximatively equal to the ones computed at step (i). In the following
(iii), a system of forces f opposite to the ones derived in the previous step (ii) was added on
the node, as sketched in blue in Figure 3(c). The purpose of the model was to progressively
reduce the effects of forces F ∗, which means damaging the i-th element. Thus, forces f were
progressively increased from zero to F following a displacement controlled incremental scheme
(see Damage model B for details on the control node). Therefore, it results

f : 0→ F (4)
F ∗ + f : F ∗ → 0.

It might happen that it was not possible to increment the forces f to their nominal value
F because a failure occurs in the loading process. In this case, the ultimate value of f was
considered in the analysis.

i-
th

el
em

en
t

i-
th

el
em

en
t

F

(a)

F ∗

(b)

f

(c)

Figure 3: Damage model C. The details are reported in section 2.3.

3 RESULTS

The observed behavior modes of the three structures subjected to the three damage models
are presented in the following. Figure 4 displays the values of vertical drift as much as the
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damage parameter d increases. If figure panels are observed, it emerges that the trends obtained
for the three structures designed with different standards (“S”, “D” or “D+HoR”) are similar.
The increment of the vertical drift is relatively small for low values of damage parameter, while
it sharply increases as much as d tends to unity. The behaviors of the three different structures
to damage are compared observing the ranges of the damage parameter at equal vertical drift.
For the structure able to support static loads only, see Figure 4(a), a vertical drift of 10−3 is
given for values of d ranging between 0.65 and 0.85 (depending from the damaged element).
A narrow range of values of the damage parameter are found for the same vertical drift in the
other two structures: 0.84 – 0.91 in ductile only schemes (“D”) and 0.86 – 0.92 in “D+HoR”
structures.
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(a) “S”: static design
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(b) “D”: ductility design
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D+HoR: Damage model A
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(c) “D+HoR”: ductility + hierarchy of resistances design

Figure 4: Vertical drifts as functions of the damage parameter d for the Damage model A.

Figure 5 gives the outputs of pushdown analysis illustrated in the framework of Damage
model B. The loading percentage is plotted with reference to the vertical drift. It is observed
that the overall response varies depending on the structural design and on the damaged element.
In none of the considered cases, the values attain 100%, i.e., it is not possible to apply on the
structure the loading combination reported in Eqn. (1). The inspection of Figure 5(a) indicates
that the response of the structure “S” is variable: the maximum loading allowed on the damaged
scheme is about 50% in case of the removal of column C:A2(I):A2(II). Lower values, i.e.,
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between 25% and 30% of the nominal loading expressed by Eqn. (1), are found in case of
damage of the remaining elements. Different trends are observed for the structures designed
with ductility. The behaviors of “D” and “D+HoR” schemes under damage are essentially the
same. The maximum loading related to the tests performed on columns C:D1(I):D1(II) and
C:D2(I):D2(II), i.e., the violet and blue curves in Figures 5(b) and 5(c), is larger than 80% of
the nominal value. In the tests performed on the other columns, the maximum load ranges
between 40% and 60%. The plateau in some curves on “D” and “D+HoR” structures confirm
that, before failure, plastic hinges form and the structure dissipate energy in order to support
larger loads.
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(a) “S”: static design
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(b) “D”: ductility design
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D+HoR: Damage model B
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C:B1(I):B1(II)
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(c) “D+HoR”: ductility + hierarchy of resistances design

Figure 5: Vertical drifts and percentage of unloading for Damage model B.

Consistent results are found if Damage model C (Figure 6) is considered. Despite the loading
on the structure is different from the previous damage model, the results are quite similar. The
tests conducted on the structure designed to support static loads show that the unloading ranges
between 20% and 50%, as displayed in Figure 6(a). Meanwhile, the remaining schemes confirm
that it is not possible to add the nominal value of f in order to set to cancel the force F ∗. Ranges
between 40% and 90% are observed in Figures 6(b) and 6(c).

Both Damage model B and C identify the behavior of the damaged structure through values
of vertical drift and loading/unloading percentages. Therefore, a relationship between the two
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(a) “S”: static design
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(b) “D”: ductility design
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(c) “D+HoR”: ductility + hierarchy of resistances design

Figure 6: Vertical drifts and percentage of loading for Damage model C.

different approaches is investigated. The coupling between the results of the two damage mod-
els is made through the value of the vertical drift. The loading percentages of Damage model B
are interpolated at the values of the drifts corresponding to the computed unloading percentages
of Damage model C. In Figure 7 the correlation points are plot. It results that at 0% in Damage
model B, positive percentages are evaluated in Damage model C. This is due to the fact that at
the beginning of the simulation in Damage model B the structure is unloaded, i.e., no vertical
drift is recorded, while it is loaded (and, thus, deformed) at the initial step of the simulations
with Damage model C.

Fair correlation is seen in any of the considered structures for loading/unloading percentages
smaller than roughly 35%. In the schemes designed with ductility requirements (i.e., both “D”
and “D+HoR”) better results are observed in some tests for percentages larger than 50%.

In order to assess the computational effort for performing the simulations, the computation
times needed for getting the results herein presented have been recorded. As emerges in Table 3,
the time needed for the calculations related to Damage model A is one order of magnitude larger
than the one necessary to perform the robustness analysis on Damage models B and C.
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(c) “D+HoR”: ductility + hierarchy of resistances design

Figure 7: Coupling between Damage model B and Damage model C. The dashed line is the bisector of the quarter,
identifying the perfect correlation between the two damage models.

4 DISCUSSION AND CONCLUSIONS

A literature overview has highlighted that no detailed researches were conducted on the ways
to implement a damage condition in a commercial FEM software in order to assess the structural
robustness of a construction. The present approach deals with three different strategies that do
not expressly consider the damage from a local (microscopic effects on the damaged element)
to a global (the whole construction) scale. The first damage model evaluates the response of
the structure for various levels of cross-section reduction in selected damaged elements. The
second damage model presupposes that selected elements are removed and the structure is incre-
mentally loaded. In the last damage model, the damaged element is replaced by an additional
system of forces equivalent to the ones that it experiences in the undamaged structure; then,
forces are progressively reduced. In real situations, the external loads (gravity + dead load) are
always present throughout all the duration of the damage process. Because of that, we think that
Damage model C can provide a good representation of what might happen on a real damaged
structure. Meanwhile, we observe that a damage on a column is monitored through geometrical
and mechanical data (carbonation depth, spalling, aging): in this case, there are no clear connec-
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Scheme Dam. model A Dam. model B Dam. model C

S 6h 12m 0h 24m 0h 31m
D 5h 52m 0h 38m 0h 37m

D+HoR 3h 40m 0h 27m 0h 17m

Table 3: Computation times.

tions between the percentage of unloading and the amount of damage on the element. Although
Damage model A tries to overcome this problem through the damage parameter, its inadequacy
is highlighted by the fact that at the beginning of each simulation the structure is unloaded.
Damage model B does not consider neither the presence of the element during the damage pro-
cess nor the loads acting on the structure. However, it is the simplest to be implemented in the
analysis since no iterative calculations or advanced modeling are required.

We believe that the Damage model C can be the most accurate among the three proposed
strategies for assessing the structural robustness of a structure. However, at present, its im-
plementation in a commercial code is not simple because programming abilities are required.
Usually, softwares does not allow to control single loadcases, except those related to seismic
horizontal force in push-over analyses. The implementation of Damage model C in the com-
mercial softwares would require a specific plug-in able to perform such kind of analyses.

Anyway, the results of Damage models B and C are comparable, as found in Figure 7. That is
why we believe that Damage model B, which is the simplest and the quickest to be implemented
among the three proposed strategies, can give insights on the structural robustness of a scheme.
This choice is supported by the fact that there are no substantial differences in the computational
effort in choosing Damage model B or C for assessing the robustness of the structure.

In general, we found that none of the three structures designed with different standard re-
quirements are safe in case of the removal of a column at the bottom level. This confirms that
seismic design guidelines and principles do not necessarily ensure the structural robustness of
a building.

Future developments of the research would deal with the correlation between the physical
damage and the parameters to be used in the numerical simulation. This would permit to assess
the reliability of a structure onto which a progressive damage is acting.
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Abstract. The effect of natural or man-made disasters, especially when they assume 
exceptional character, on the urban habitat (buildings, infrastructures, etc.) can result in 
damages and losses for billions of dollars. In case of cascading events, the residual capacity 
of a construction damaged from a first threat is not evaluated through suitable calculation 
procedures neither well codified in actual standards. 

In this framework and with reference to framed structure buildings, the current research 
activity has the task to provide a tool which helps structural engineers to make a fast 
evaluation of the buildings performance after exceptional loading actions. Specifically, a 
theoretical formulation based on the results provided by pushover analyses for the assessment 
of the residual seismic capacity of buildings after damage produced by exceptional actions is 
herein presented. The theoretical method presented is basically applied to some case studies 
of steel framed buildings aiming at showing its effectiveness. To this purpose, a general 
analysis methodology, with the aim to show the procedure for the practical application of the 
theoretical formulation, is shown. Such a methodology has been applied to two steel framed 
buildings designed according to both the old and the new seismic Italian codes. After these 
frames have been subjected to a fire analysis at different temperatures, non-liner static 
analyses including P-Δ effects have been carried out with the aim to estimating both the 
force-displacement curves and the plasticity distribution in the structures. The analyses have 
provided the tangible application of the procedure, giving the structural parameters 
accounting for the structure damage status at the end of the exceptional loading action. 

. 

4942

mailto:antoform@unina.it
mailto:peppe.iazzetta@libero.it
mailto:gmarino1986@libero.it
mailto:landolfo@unina.it


A. Formisano, G. Iazzetta, G. Marino, F. Fabbrocino and R. Landolfo 

1 INTRODUCTION 

Disasters occur under many different forms and have duration ranging from a hourly 
disruption to days or weeks of ongoing destruction. They can be either natural [1] or produced 
by people, both of them having a great impact on the community. 

Hurricanes [2, 3] and tropical storms are among the most powerful natural disasters 
because of their size and destructive potential. Tornadoes are relatively brief but violent and, 
together with earthquakes, strike suddenly without warning. Flooding is the most common of 
natural hazards and requires an understanding of the environment natural systems. 

Disasters can also be caused by humans. Hazardous materials emergencies include 
chemical spills and groundwater contamination. Workplace fires are more common and can 
cause significant property damage and loss of life. Communities are also vulnerable to threats 
posed by extremist groups, who use violence against both people and property. High-risk 
targets include military and civilian government facilities, international airports, large cities 
and high-profile landmarks. Cyber-terrorism involves attacks against computers and networks 
done to intimidate or coerce a government or its people for political or social objectives. 

After constructions are subjected to a first extreme event, the structural performance 
evaluation should be related to the building response under gravity loads. After this step, the 
structure should be checked with reference to the seismic actions used in the design phase. 

For example, considering fire exposure as a damage event, few studies have been 
developed and implemented to assess the residual seismic capacity of framed structures after 
the above exceptional action. 

Among the limited researches available in literature, it was found that Mostafei et al. 
provided a study on the seismic resistance of fire-damaged reinforced concrete columns [4]. 
Analytical results show that the main seismic resistance properties of two reinforced concrete 
columns, namely the lateral load capacity and ductility, decreased substantially due to fire 
exposure. Mostafei also performed a structural test for evaluating the residual lateral load 
resistance of a reinforced concrete structure after fire damage [5]. Results of this test showed 
a reduction of both residual lateral stiffness and lateral load capacity of the structure after fire 
damage. 

In the framework of this research activity, in the first part of this study, a theoretical 
formulation (based on pushover curves) for the assessment of seismic residual capacity of 
framed structure after extreme load action has been proposed. Instead, in the second part, 
related to the numerical investigation on moment resisting steel frames after fire damage, an 
analysis methodology able to validate the equations given in the first part has been proposed. 

More in detail, based on the results provided in first part of this paper, with the aim to 
show a numerical procedure able to evaluate the functions kδ (ϕ), kF (ϕ) used to measure the 
reduction of structural performance after an exceptional action, numerical non-linear seismic 
analyses on two steel structures, before subjected to fire and designed according to both the 
old [6] and the new [7] seismic Italian codes, have been performed. 

2 THEORETICAL PREDICTION OF THE SEISMIC RESPONSE OF DAMAGED 
FRAMED STRUCTURES 

In the last few decades, with the development of Performance-Based Design procedures, 
the need of simplified methods to estimate with an adequate confidence level the seismic 
demand for structures is increased. Non-linear static procedures appear as one of the most 
attractive analysis tool due to both their ease of use and also for the simple and effective 
graphical representation of the structural response by means of the so-called pushover curve. 
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The procedure of a conventional pushover analysis [8] is an incremental-iterative solution 
of the static equilibrium equations. The forcing function is a set of displacements or forces 
that are necessarily kept constant during the analysis. During an increment of displacement or 
force, the resistance of the structure is evaluated from the internal equilibrium conditions and 
the stiffness matrix is updated under certain conditions dependent on the iterative scheme 
adopted. The unbalanced forces are re-applied if they are deemed large until a convergence 
criterion is satisfied. At convergence, the stiffness matrix is reorganised and another 
increment of displacements or forces is applied.  

In order to evaluate the seismic capacity of a framed structure before damaged by extreme 
actions, a theoretical formulation based on the F-δ pushover curve is herein proposed. The 
proposed formulation allows to evaluate the seismic response by determining three significant 
points of the cited response curve. 

With reference to the Figure 1, which schematically illustrates the results provided by a 
push-over analysis carried out on a generic undamaged framed structure, it is possible to 
identify the following points:  

 
Figure 1: General force-displacement curve. 

• Point a (Fy; δy) = seismic base shear and top horizontal displacement values 
corresponding to the first yielding; 

• Point b (Fu; δu) = seismic base shear and top horizontal displacement values 
corresponding to the structure excursion in the elasto-plastic field; 

• Point c (Fmax; δmax) = seismic base shear and top horizontal displacement values 
corresponding to the collapse. 

So, when the following conditions are met: 
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the structure is in the elastic-plastic range and, finally, when: 

 
[ ]
[ ]

;

;

u max

u max

F F F

δ δ δ

∈

∈
 (3)                                                                                               

the structure is in the plastic range up to the collapse condition (robustness field). 
The quantities shown in Figure 1, useful for the assessment of seismic capacity of 

undamaged framed structure, can also be used to determine the residual capacity of buildings 
damaged by exceptional loading actions.  

To this purpose, the mentioned quantities must be corrected to take into account the 
damage produced by an extreme load acting before the earthquake. In particular, in order to 
determine the seismic capacity of a framed structure damaged by an exceptional action, it is 
necessary to calculate the points a, b and c of the F-δ curve corresponding to each damage 
level induced by external (natural or man-made) actions. Consequently, the following 
relationships have to be considered: 
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where (Fy, Fu, Fmax) and (δy, δu, δmax) are parameters representative of the seismic 
behaviour of the original structure (without damage), while the corresponding (Fy(ϕ), Fu(ϕ), 
Fmax(ϕ)) and (δy(ϕ), δu(ϕ), δmax(ϕ)) are indicative of the structural seismic behaviour after 
induced damage. The parameter ϕ has to be seen as “the value of a generic parameter 
correlated to a specific damage state produced by an assigned external action acting before the 
seismic event”. Table 1 shows some meanings assumed by the damage parameter ϕ 
corresponding to different types of exceptional actions considered. 
 

Exceptional Load Φ 

Fire Temperature, Exposure time [4], [5], [9] 
Hurricane, Tornado Wind speed [2] 

Blast load, Explosion 
Wave front speed; Peck static overpressure;  
Maximum dynamic pressure  [10], [11], [12] 

Volcanic Ash Fall Ash thickness; Ash density; Ash temperature [13] 

 Volcanic Pyroclastic Flow 
Flow temperature; Flow dynamic pressure; 
Flow speed [13] 

Volcanic Lahar Lahar speed; Lahar hydrodynamic pressure [13] 
Volcanic Earthquake Earthquake Peak Ground Acceleration (PGA) [13] 

 

Table 1: Examples of damage parameters corresponding to various types of exceptional actions. 
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Once ϕ is defined and assuming known the values of the following functions: 
  

 [ ]
[ ]

( ) ( )

( ) ( )

( ) ( )

y y y

u u u

max max max

F F

F F

F F

a φ φ

a φ φ

a φ φ

 =  
=

=

 (6) 

 

( ) ( )
( ) ( )

( ) ( )

y y y

u u u

max max max

x φ δ φ δ

x φ δ φ δ

x φ δ φ δ

 =  
=   

=   

 (7) 

the values of displacements and forces after damage can be expressed in the following way: 
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From these general relationships it is possible to extrapolate a more compact formulation, 
thereby expressing the six constants (Fy, Fu, Fmax, δy, δu, δmax) as a function of only two 
maximum parameters (Fmax, δmax) of the curve. This is shown in Figure 2, where the 
dimensionless pushover curve obtained for a generic ϕ parameter is plotted. 

 
Figure 2: Dimensionless pushover curve. 
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Assuming once again known the functions described in equations (6) and (7), it is possible 
to write: 
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These functions must satisfy the following conditions: 
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Eδ (ϕ), Dδ (ϕ) and Rδ (ϕ) are parameters that can be seen as distribution coefficients of the 
seismic capacity of structures in terms of horizontal displacement. In particular, Eδ (ϕ) refers 
to the elastic field, Dδ (ϕ) to the ductile field and Rδ (ϕ) to the robustness field. 

Multiplying the expressions (10), (11) and (12) for the quantity (δmax . ξmax,), the following 
equations can be derived: 

 ( ) ( ) ( )max max yEδδ x φ φ δ φ⋅ ⋅ = ∆  (14) 

 ( ) ( ) ( )max max uDδδ x φ φ δ φ⋅ ⋅ = ∆  (15) 

 ( ) ( ) ( )max max maxRδδ x φ φ δ φ⋅ ⋅ = ∆  (16) 

where Δδi(ϕ) (i=y, u, max) are the displacement increment necessary for the transition from a 
behavioural phase to the following one.  

Through the equations (14), (15) and (16), it is possible to write: 

 ( ) ( )0y yδ φ δ φ= + ∆  (17) 

 ( ) ( ) ( )u y uδ φ δ φ δ φ= + ∆  (18) 

 ( ) ( ) ( )max u maxδ φ δ φ δ φ= + ∆  (19) 

where δi(ϕ) (i=y,u,max) are the basic displacements required to determine the seismic 
response in the displacement field.  

Placing the equations (14), (15), (16) in the equations (17), (18), (19), it is possible to write: 

 ( ) ( ) ( )0y max max Eδδ φ δ x φ φ= + ⋅ ⋅  (20) 

 ( ) ( ) ( ) ( ) ( )u max max max maxE Dδ δδ φ δ x φ φ δ x φ φ= ⋅ ⋅ + ⋅ ⋅        (21) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )max max max max max max maxE D Rδ δ δδ φ δ x φ φ δ x φ φ δ x φ φ= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅            (22) 
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Grouping the equations (20), (21) and (22) with respect to (δmax . ξmax(ϕ)), the following 
relationships are achieved: 

 

 ( ) ( ) ( ),y maxk Eδ δφ x φ φ= ⋅  (23) 

 ( ) ( ) ( ) ( ),u maxk E Dδ δ δφ x φ φ φ= ⋅ +    (24) 

 ( ) ( ) ( ) ( ) ( ) ( ),max max maxk E D Rδ δ δ δφ x φ φ φ φ x φ= ⋅ + + =    (25) 

where ki,δ (ϕ) (i= y, u, max) are the reduction factors of seismic performance of the structure in 
the displacement field, which take implicitly into account the repartition of the capacity itself. 

Definetively, it is possible to write: 

 ( ) ( ),y max yk δδ φ δ φ = ⋅   (26) 

 ( ) ( ),u max uk δδ φ δ φ = ⋅   (27) 

 ( ) ( ),max max maxk δδ φ δ φ = ⋅   (28) 

Instead the equations (26), (27) and (28) show that the basic displacements δy (ϕ), δu (ϕ) 
and δmax (ϕ) belonging to the F(ϕ)–δ(ϕ) curve can be calculated starting from the displacement 
value δmax only, therefore neglecting the δu and δy values. 

Equivalently, the trends of Fy (ϕ), Fu (ϕ) and Fmax (ϕ) can be expressed as a function of the 
Fmax value only by considering the kF,y (ϕ), kF,u (ϕ) and kF,max (ϕ) parameters as follows: 

 ( ) ( ),y max y FF F kφ φ = ⋅   (29) 

 ( ) ( ),u max u FF F kφ φ = ⋅   (30) 

 ( ) ( ),max max max FF F kφ φ = ⋅   (31) 

where: 

 ( ) ( ) ( ),y F max Fk Eφ a φ φ= ⋅  (32) 

 ( ) ( ) ( ) ( ),u F max F Fk E Dφ a φ φ φ= ⋅ +    (33) 

 ( ) ( ) ( ) ( ) ( ) ( ),max F max F F F maxk E D Rφ a φ φ φ φ a φ= ⋅ + + =    (34) 

Definitively, all the previous relationships provide a theoretical formulation for the 
calculation of the seismic response of a framed structure previously damaged by an extreme 
event. 

Unfortunately, into equations (8), (9), (26), (27), (28), (29), (30) and (31), the values of the 
functions α (ϕ), ξ (ϕ), kδ (ϕ) and kF (ϕ) are not known a priori (see respectively equations (6), 
(7), (23), (24), (25), (32), (33), (34)) . 

Basically, the main issue consists on the determination of the structure damage status at the 
end of the exceptional loading action. In this framework, Table 2 shows some of the variables, 
other than the building properties, which influence the structural response. 
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Exceptional Load Influential variables 

Fire Fire scenario, Fire model, Fire Proofing 

Hurricane, Tornado Wind speed 

Blast load, Explosion Explosive characteristic, Detonation scenario, Blast Proofing 

Volcanic Ash Fall 
Ash thickness, Ash density, Ash temperature , Roof 
configuration 

Volcanic Pyroclastic 
Flow 

Flow dynamic pressure, Building shape, Topographical 
configuration of the site 

Volcanic Lahar 
Structural typology, Impact Angle with structure, Lahar 
temperature, Impact surface, Flow density 

Volcanic Earthquake Earthquake Response Spectrum, Soil-Structure Interaction. 
 

Table 2: List of various variables influencing different types of exceptional actions. 

The variables listed into the above table must be considered in order to provide useful 
values of the functions α (ϕ) and ξ (ϕ) and, consequently, of the functions kδ (ϕ) and kF (ϕ) for 
design purposes. This aim can be accomplished through a comprehensive numerical and 
experimental investigation campaign by taking into account at least the variability of the 
above mentioned influential variables.  

Once known these functions and the undamaged structure capacity (Fmax; δmax), a 
simplified check of the seismic capacity of a given framed structure after an exceptional 
loading action can be executed without performing sequential non-linear analyses. 

3 THE CASE STUDIES 

In order to show the effectiveness of the theoretical method presented above, starting from 
the general equations described in Section 2, it can be possible to replace the dependence of 
the functions from “ϕ” with the specified damage parameter that, in the specific case, consists 
on the temperature value “θ” inside the structural members. 

Practically, starting from the following general equations: 

 
( ) ( )
( ) ( )

max F

max

F F k

kδ

φ φ

δ φ δ φ

= ⋅

= ⋅
 (35) 

 
it is possible to express the study significant parameters as a function of the parameter θ as 

follows: 

 
( ) ( )
( ) ( )

a φ a θ

x φ x θ

→

→
 (36) 

 
( ) ( )
( ) ( )

F Fk k

k kδ δ

φ θ

φ θ

→

→
 (37) 

which give rise to the following relationships: 
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( ) ( )
( ) ( )

max F

max

F F k

kδ

φ θ

δ φ δ θ

= ⋅

= ⋅
 (38) 

that are used to examine the structural seismic behaviour of steel MRF after fire. 

3.1 Geometrical and mechanical features 

In this study, two different types of steel framed structures have been analysed aiming at 
evaluating their seismic capacity after fire actions. The choice of the frame types has been 
done according to a previous study performed by the first Author [14, 15, 16].  

The first framed structure has been designed according to the old Seismic Italian Code 
(M.D., 1996), while the second one has been designed according to the new Seismic Italian 
Code (M.D., 2008). Both structures are subjected to permanent and variable loads of 5.15 
kNm-2 and 2 kNm-2, respectively.  

Both framed structures have the same geometric configuration with three 5m bays and 
three levels (H=3.50 m at 1st floor; H=3.00 m at 2nd and 3rd floor).  

Figure 3 shows the geometrical properties of the steel framed structures inspected. 
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(a)  (b) 

Figure 3: The examined steel framed structures designed according to M.D. 1996 (a) and M.D. 2008 (b).  

The selected framed buildings are made of S275JR steel profiles.  
Figure 4a shows the stress-strain relationships of the steel material used in this study, while 

figure 4b shows the reduction factors of the material mechanical properties at elevated 
temperatures [17]. 

In particular, six uniform temperature fields (θ= 20°C, 100°C, 200°C, 300°C, 400°C, 
500°C) have been applied to the structures before seismic loads have been considered.  

 

(a) (b) 

Figure 4: Mechanical properties of S275JR steel: constitutive laws (a) and reduction factors (b) at different 
temperatures. 
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3.2 The FEM models 

Non-linear static analyses including P-Δ effects have been performed by means of the FE 
software “ABAQUS v.6.10-1” [18] in order to estimate both the force-displacements 
pushover curves and the plasticity distribution in the inspected structures. 

Figure 5a and b show the details of the typical finite element model based on beam 
elements used for modelling the generic frame. In particular, columns and beams have been 
modelled by using into a 2D model the beam elements type B21. Second-order elements, like 
B22 ones, have been avoided owing to the so-called ‘volumetric locking’ problem, which is 
induced by the large strains in the frame deformed configuration. Firstly, the effect of 
different number of constitutive elements for columns and beams has been investigated in 
order to provide accurate results with a reduced computational time. It was found that 80 
elements are sufficient for a reliable analysis of the 2D plane frame model. 

 (a)  (b) 

Figure 5: Deformed FEM model under gravity loads of one of the tested frames (a) and horizontal displacements 
under seismic actions (b). 

The column bases of the steel framed structures are fixed (fully rigid column bases). For 
the sake of simplicity, rotational stiffness of beam-column joints have not been modelled, but 
the full continuity between beams and columns at their intersections has been considered. In 
the Abaqus numerical models, the non-linear stress-strain material curves have been 
modelled. Since the analysis involves large inelastic strains, the engineering stress-strain 
curves have been converted into true stresses vs. logaritmic plastic strains at different 
temperatures. In fact, in order to simulate the effect of fire, a simplified hypothesis has been 
done: only the mechanical property variation has been considered, neglecting thermal 
expansions and the related phenomena. So, mechanical properties change due to temperature 
has been considered constant through the cross-sections and applied to all structural members.  

3.3 Numerical results at θ = 20 - 100°C 

The analyses performed with the Abaqus software on the examined structures at the 
environment condition (θ = 20°C) have shown that their behaviour is analogous to that of the 
same structures at θ = 100°C. The numerical analysis results in the non-linear field on the case 
studies in terms of diplacements and force-displacement pushover curves are illustrated in 
Figures 6a and b, respectively. 
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(a) (b) 

Figure 6: Force-displacement pushover curves at θ = 20 – 100°C for frames designed with M.D. 08 (a) and  
M.D. 96 (b) codes. 

The points highlighted in Figure 6 have been determined starting from the study of 
plasticity distribution within the structures subjected to horizontal incremental loads [19, 20]. 
In order to better understand this aspect, firstly reference is made to the Figures 7a and 8a, 
where the damage state corresponding to the first yelding phenomena due to horizontal loads 
in the structures designed according to M.D. 08 and M.D. 96, respectively, is plotted. This 
plasticity distribution corresponds to the points “a” of the force-displacement curves of 
Figures 6a and 6b. 

(a) (b) (c) 

Figure 7: Plasticity distribution at θ = 20 – 100°C for the M.D. 08 frame: (a) first yielding; (b) mechanism 
activation; (c) collapse. 

(a) (b) (c) 

Figure 8: Plasticity distribution at θ = 20 – 100°C for the M.D. 06 frame: (a) first yielding; (b) mechanism 
activation; (c) collapse. 

Figures 7b and 8b provide a snapshot of the plasticity distribution at the time of the 
mechanism activation for M.D. 08 frame and M.D. 96 one, respectively. This condition is 
reached when a quasi-global collapse mechanism for M.D. 08 frame and a soft-storey 
mechanism for M.D. 96 frame are attained. In this condition, the points "b" of the curves in 
Figures 6a and 6b are reached. 

Finally, Figures 7c and 8c show the distribution and the extension of the yielded zone at 
collapse for the examined structures. This condition occurs when the extension of the plastic 
zones in the columns is equal to the cross-section height. Therefore, the parameters Fmax and 
δmax are attained, they providing the points "c" of the curves in Figures 6a and 6b. 
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3.4 Numerical results at high temperatures 

Following the procedure described in the previous section and considering different 
temperature values up to 500°C, the non-linear force-displacement curves of the investigated 
frames have been obtained. These curves, which are representative of the seismic capacity of 
the Italian frames under examination, are shown in Figures 9a and 9b. 

(a) (b) 

Figure 9: Force-displacement curves obtained from non-linear analyses on M.D. 08 (a) and M.D. 96 (b) frames. 

The analysis of results describing the plasticity evolution within the study framed 
structures has allowed to redact the Tables 3 and 4, where the lists of variables describing the 
seismic response curves are plotted. In such tables, the zero values are indicative of the 
incapacity of structures to withstand seismic actions after fire. 

From the analysis of results, it is highlighted that, at the same value of temperature, a 
substantial behavioural difference between the framed structure designed according to the 
new Seismic Italian Code (M.D., 2008) and the one designed according to the old Seismic 
Italian Code (M.D., 1996) exists. 
 

M.D. 08 
θ [°C] Fy [kN] Fu [kN] Fmax [kN] δy [m] δu [m] δmax [m] 

20 196.12 543.75 579.00 0.0386 0.180 0.300 
100 196.12 543.75 579.00 0.0386 0.180 0.300 
200 83.40 422.47 466.10 0.0180 0.141 0.170 
300 0 297.10 319.50 0 0.104 0.114 
400 0 177.70 192.20 0 0.066 0.075 
500 0 120.00 120.00 0 0.060 0.060 

 

Table 3: Numerical results obtained from analyses on the structure designed according to the M.D. 08 code. 

M.D. 96 
θ [°C] Fy [kN] Fu [kN] Fmax [kN] δy [m] δu [m] δmax [m] 

20 212.99 269.12 261.10 0.060 0.099 0.168 
100 212.99 269.12 261.10 0.060 0.099 0.168 
200 143.43 230.58 246.00 0.045 0.087 0.108 
300 76.34 177.57 198.33 0.027 0.075 0.093 
400 22.25 129.13 137.14 0.009 0.066 0.072 
500 0 103.13 108.80 0 0.066 0.072 

 

Table 4: Numerical results obtained from analyses on the structure designed according to the M.D. 96 code. 
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In order to quantify the above detected differences, the pictures reported in Figures 10a and 
10b need to be considered.  

(a) (b) 

Figure 10: Behavioural trends of the ρ – θ (a) and γ – θ (b) curves.   

The above graphs are representative of the following functions:  

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

. .08 . .96

. .08 . .96

. .08 . .96

y y yM D M D

u u uM D M D

max max maxM D M D

F F

F F

F F

ρ θ θ θ

ρ θ θ θ

ρ θ θ θ

 =  
 =  

 =  

 (39) 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

. .08 . .96

. .08 . .96

. .08 . .96

y y yM D M D

u u uM D M D

max max maxM D M D

γ θ δ θ δ θ

γ θ δ θ δ θ

γ θ δ θ δ θ

 =  
 =  

 =  

 (40) 

From the reported trends it can be observed that, at the same temperature, structure 
designed according to the M.D. 08 code always shows a seismic performance in the elastic-
plastic and plastic ranges greater than that of the frame designed according to the M.D. 96 
code. This occurs in terms of both forces and displacements up to 400 °C.  

Analogously to the design philosophy at basis of the two codes, the detected situation 
changes in the elastic range. In fact, it can be noted that the M.D. 96 frame, being designed to 
remain mainly in the elastic range under applied loads, has shown an elastic performance 
better than that of the M.D. 08 frame, which is designed particularly to dissipate the amount 
of the seismic energy input in the elastic-plastic range, showing greater excursions in the 
plastic field. To confirm this, it can be observed that, starting from a temperature of 300 °C, 
the formation of plastic zones in the M.D. 08 structure occurs already for vertical loads, while 
this condition for the other structure happens at a temperature of 500 °C.  

Regarding the degradation of forces and displacements with the temperature, reference is 
made to the trends shown in Figures 11a and 11b, which represent the functions described in 
the equation (6), for M.D.08 frame and M.D. 96 one, respectively. On the other hand, the 
variation of the parameter x with temperature θ is shown in Figures 12a and 12b. 

As it can be observed, at the same temperature, force and displacement parameters undergo 
significant reductions, particularly in the elastic field, for the structure designed according to 
the M.D. 08 code. 

This condition can be explained considering the reduced seismic capacity of the old 
structure compared to the new one, as well as the different collapse mechanisms attributable 
to the two structures analysed (floor mechanism for the M.D. 96 frame and column 
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mechanism at their base for the M.D. 08 frame, neglecting in both cases the beam 
mechanisms). 

(a) (b) 

Figure 11: α – θ curves for M.D. 08 (a) and M.D. 96 (b) frames. 

(a) (b) 

Figure 12: ξ – θ curves for M.D. 08 (a) and M.D. 96 (b) frames. 

3.5 Calculation of kF (θ) and kδ (θ) functions 

Starting from the results provided by the numerical analyses performed on the two steel 
frames, the functions described by equations (6) and (7) in Section 2 have been calculated.  

Once evaluated the pushover response parameters at θ=20°C, combining them with the 
functions cited above, the kF (θ) and kδ (θ) functions are achieved. 

Figures 13, 14 and 15 show the trends of the functions described above for the two frames 
designed with different seismic design codes. 

(a) (b) 

Figure 13: ky,F – θ (a) and ky,δ – θ (b) curves of the inspected framed structures. 
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(a) (b) 

Figure 14: ku,F – θ (a) and ku,δ – θ (b) curves of the inspected framed structures. 

(a) (b) 

Figure 15: kmax,F – θ (a) and kmax,δ – θ (b) curves of the inspected framed structures. 

As already detected in the previous section for the functions ξ (θ) and α (θ), at the same 
temperature, the most significant reduction of the functions kδ and kF with the temperature θ, 
especially in the elastic field, is detected for the M.D. 08 frame. 

Finally, it should be noted that, by multiplying the values of Fmax and δmax at 20°C for the 
appropriate values of the above functions, it is possible to fully reconstruct the values of 
Tables 3 and 4. 

4 CONCLUSIVE REMARKS AND FURTHER DEVELOPMENTS 

In this study, a research activity concerning the seismic behaviour of framed structures 
after damages deriving from application of an exceptional load has been carried out.  

Based on the results of a pushover analysis, a theoretical formulation to evaluate a 
simplified force-displacement curve for seismic appraisement of a structure damaged from an 
extreme event is reported. 

However, after the basic non-linear behaviour of the undamaged structure is estimated, the 
concrete application of the method requires the a priori knowledge of some functions 
depending on the structure damage status at the end of the exceptional loading action. This 
can be attained by means of a widespread experimental-numerical examination campaign for 
evaluating the damages deriving from some variables influencing the effects of a given 
exceptional action. 

An effective and practical way to apply the proposed method is provided in the Section 3 
of the paper, where the residual seismic capacity of steel Moment Resisting Frames (designed 
according to both the new and the old seismic Italian codes) subjected to a preliminary fire 
action is estimated. 
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Numerical analysis results have shown that the reduction of mechanical properties of steel 
material due to fire can drastically affect the seismic response of investigated structures. 

Results of this numerical investigation have shown that the structure designed according to 
the M.D. 08 code shows a seismic capacity in the post-elastic range greater than that designed 
according to the M.D. 96 code. Contrary, in the elastic field, the old frame behaves better than 
the new one. This is mainly due to the different design approaches used for the inspected 
frames. In fact the M.D. 96 structure is mainly designed to withstand applied loads without 
energy dissipation in the post-elastic range (no “capacity design” approach). This means that 
the first yielding in the old structure develops for base shear values greater than the new frame 
ones. 

Finally, it is perceived that at the room temperature, the base shear capacity of the M.D. 08 
frame is at least two times greater than the M.D. 96 structure one. Starting from this 
condition, the difference between the base shears drastically decreases after fire action. 
However, it can be noted that the force reduction trend shows a linear gradient with 
temperature, reaching its lower value at the temperature of 500 °C. The same behaviour is 
also observed for displacements. These trends are mainly due to the different distribution of 
damage under seismic loads, which appears to be more distribuited for the M.D. 08 frame, 
while it is localised at a certain storey for the M.D. 96 structure. 

As a further development of the research activity, in order to both better understand the 
seismic behaviour of steel MRF before and after fire and validate the theoretical formulations 
given, an exhaustive campaign of numerical and experimental investigations is strongly 
needed. Some of the aspects that need to be more investigated are: 

• The influence of the structure seismic response before fire damage, taking into account 
different geometrical configurations and any structural irregularities. 

• The influence of the fire model and location. 
• The influence of structural response at high temperatures, i.e. thermal expansions and 

related phenomena, as well as the actual temperature distribution in the cross-sections 
and along the structural elements. 
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Abstract. In this paper a variational formulation for dynamic analysis is adopted to investi-

gate rocking behaviour of masonry block structures under lateral loads. The model is com-

posed of rigid bodies interacting at potential contact points located at the vertexes of the bock 

interfaces. A no-tension and associative frictional behaviour with infinite compressive 

strength is assumed at contact interfaces. The contact dynamic problem is governed by equi-

librium equations, which relate external, inertial and contact forces, and by kinematic equa-

tions, which ensure compatibility between contact displacement rates and block degrees of 

freedom. Mathematical programming is used to solve the optimization problem arising from 

the formulation of the variational problem associated to dynamics of the block assemblages. 

To evaluate the accuracy and computational efficiency of the implemented formulation, a val-

idation study is presented for rigid blocks subjected to rocking behaviour under different ac-

celeration pulse types and for an in-plane wall panel problem from the literature. A good 

agreement in terms of failure mechanism and response time histories was observed.  The 

computational efficiency and the stability of the implemented procedure were found to be en-

couraging, thus suggesting that the proposed model may be used to model dynamic behaviour 

of masonry block assemblages with a large number of rigid bodies. 
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1 INTRODUCTION 

In case of seismic events, the response of masonry structures, such as historical monu-

ments made of stone blocks or facades in masonry buildings subjected to local failure mecha-

nism, is typically characterized by rocking behaviour [1-3].  

Different modelling approaches are available in the literature to investigate the dynamic re-

sponse of masonry block structures subjected to rocking. Among those, non-smooth contact 

dynamics (NSCD) represents an alternative modelling approach to discontinuous finite ele-

ment modelling as well as to the discrete element method (DEM) [4-8]. 

The NSCD method has been applied to masonry block structures since the beginning of its 

development and it is now receiving a growing attention in the research community on ma-

sonry structures [9-11]. This is due to different reasons, also including the availability of fast 

and accurate algorithm for the numerical solution of the formulations which have been pro-

posed in the literature for the mathematical programming problem arising from the conditions 

governing the contact dynamics [12-15]. 

In this paper a simple formulation for dynamic analysis of masonry block structures is 

adopted to investigate rocking behaviour of masonry block structures. The aim of the study 

was to evaluate its accuracy and computational efficiency when applied to in-plane loaded 

wall panels. The adopted modelling approach for contact interfaces represents an extension to 

dynamics of the point-based formulation used in the rigid block model which has been devel-

oped for limit analysis of masonry block structures in [16-18]. 

The static and kinematic variables as well as the relationships governing the behaviour of 

the rigid block model and the limit analysis formulation are presented in Sections 2 and 3. In 

Section 4 we present a validation study on single rigid block subjected to free rocking motion 

and to different acceleration pulse types. Finally, an application to a numerical case study of 

an in-plane wall panel considered in the literature is illustrated to show the ability of the im-

plemented formulation to capture rocking behaviour of multi-block assemblages.  

 

2 THE RIGID BLOCK DYNAMIC MODEL  

We consider a multi-body assemblage made of rectangular rigid blocks i interacting at po-

tential contact points k located at the vertexes of the interface j (Fig. 1).  

A no-tension and associative frictional behaviour with infinite compressive strength is as-

sumed at contact interfaces. 

The dynamic model is formulated following the approach proposed in [19, 20] for granular 

materials, though now detailed for two-dimensional assemblages of rectangular blocks.  

The contact variables are the internal forces acting at each contact point k, which are located 

at a vertex of interface j of block i (Fig. 2a). These variables are collected in vector c and in-

clude the shear force component tk and the normal force nk along the local coordinate axes. 

The kinematic variables associated in a virtual work sense to the contact forces are the 

relative displacement rates at the contact points, namely the tangential and normal displace-

ment rates tku  and nku  (Fig. 2b), which are collected in the vector u . 
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Figure 1: a) Rigid block assemblage; b) Rigid block i , interface j and contact point k. 

 

External loads applied to the centroid of rigid block i are collected in vector of external forces 

fext (Fig. 2a). 

The position at the centroid of block i is collected in the vector xi: 
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Figure 2: a) Contact forces and b) kinematic variables at block centroid i, and contact point k. 

The equations of motions are discretized with respect to time using the θ-method and as-

suming: 

    
1

1t
t

x
x = x0

Δ




 
   

 (2) 

where x = x x0Δ  is the displacement vector, x0  and x0  are the known position and veloci-

ty at time t0 and  ≥0.5. 

 

On the basis of the incremental expression (2), the equations of motion of the rigid block 

assemblage interacting at potential contact points can be posed as follows: 

 M x A c = f0 0Δ   (3) 

where A0 is the equilibrium matrix corresponding to contact forces; 

2

1

t
M = M


; 
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 M is the mass matrix collecting the mass mi and the mass moment of inertia Ji of each block;  

textf = f Mx0 0  .  

The non-penetration condition at potential contact point k is formulated in a linearized ex-

plicit form, that is assuming that the geometry is the same for two subsequent time steps.  

In matrix form, the condition can be expressed imposing that the normal component of the 

relative displacement at a contact point k has not to be greater than the initial gap g0k, as fol-

lows: 

 N u g
T

0 0Δ   (4) 

where N
T
0 is the matrix collecting the initial normal associated with surfaces j and g0 is the 

vector of initial gaps. 

For contact interactions, a complementarity condition is also included which ensures that 

contact forces are positive only if the gap is closed otherwise are zero: 

 
 diag( )

n 0

n N u g 0
T
0 0Δ



 
 (5) 

The behaviour at contact interfaces undergoing sliding failure is governed by failure condi-

tions which are expressed according to the Coulomb friction law.  

In vector notation, the limit conditions for sliding failure can be written as: 

 μt n   (6) 

where μ is the friction coefficient. 

 

3 FORMULATION AND IMPLEMENTATION OF THE VARIATIONAL 

PROBLEM OF RIGID BLOCK DYNAMICS 

Under the assumption of associative flow rule for displacement rates, the equilibrium equa-

tions (3), kinematic conditions (4-5) and sliding friction conditions (6) are equivalent to the 

following discrete mixed force–displacement problem [19, 20]:  

 

 

1
min  max  

2

subject to  μ           

x c
x M x x f x A c g

t n 0 n 0

T T T
0 0 0

Δ
Δ Δ Δ Δ  

   

 (7) 

 

The problem (7) can be uncoupled into two dual quadratic programming problems, corre-

sponding to the kinematic and force-based formulation of the contact dynamic problem. 

To calculate and update positions of the blocks and contact gaps, an iterative procedure 

was implemented to solve the mathematical program (7).   

The procedure was implemented in a computer code, DynoBlock_2D, which provides as 

outputs the time histories of contact forces and kinematic variables as well as the plots of the 

failure mechanisms at different time steps.  

The quadratic programming problems associated to (7) were solved using the primal–dual 

interior-point solver in MOSEK  [23].  
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The analyses were carried out using a PC containing a 3.3GHz Intel Xeon E3-1245 proces-

sor with 8 GB of RAM. The value of algorithm parameter θ for time discretization was set 

equal to 0.7 and time increment was set equal to 0.002 s. 

 

4 DYNAMICS OF THE SINGLE RIGID BLOCK   

To validate the proposed formulation, the case study of a single rigid block subjected to 

free rocking motion and to ground acceleration pulses was considered.  

The rigid block dimensions are 0.201.00m and the unit weight is 18.0 kN/m
3
 (Fig. 3).  

The friction coefficient µ adopted at the contact interface is equal to 0.7.  

2
·h

2·b

α0

m·g

a)

m·g

ag(t)

b)

φ

 

Figure 3:  Rigid block subjected to free rocking motion and to ground acceleration pulses. 

 

To analyze the free rocking motion response of the block subjected to gravity acceleration 

g an initial angle α0=0.01 rad was considered.  

The rotation time history of rigid block obtained from the proposed formulation is shown 

in Fig. 4. The comparison with closed form solution, which is referred to a value of the coef-

ficient of restitution 0.925r   relating the reduction of the angular velocity before and after 

the impact, shows a good agreement [21].  

The response obtained for the rigid block resting on the base and subjected to a constant 

horizontal ground acceleration ag was investigated as well for validation. The objective of this 

set of simulations was to test the accuracy of the formulation in predicting the minimum value 

of the horizontal acceleration for the motion to be initiated and the magnitudes of rectangular 

pulse excitations with duration of 1.0s  needed for overturning.  

The numerical simulations showed that the minimum value of the horizontal acceleration 

ag to begin tilting of the block was 0.20g. As expected, this value is in accordance with the 

condition /ga g  , corresponding to the simple condition that the overturning moment in-

duced by the lateral force on the contact has to be greater than the corresponding resistant 

moment related to the weight. 

The rotation time histories for different values of ground accelerations in the case of rec-

tangular pulse excitations are shown in Figure 5. 
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Case 

study 

Model 

size 

(b × c) 

 

ag (g) 
 

Acceleration value for 

rocking initiation 

Overturning acceleration 

amplitude for constant pulse 

with duration 1.0 s  

Overturning acceleration 

amplitude for a sinusoidal 

pulse with duration 1.0 s 

Differential 

equations 

 

Proposed 

 

Differential 

equations 

Proposed Differential 

equations 

Proposed 

Single 

block 
1 × 2 0.200 0.201 0.204 0.204 0.237 0.237 

Table 1: Single rigid block: acceleration values for overturning and CPU times. 
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Figure 4: Rotation time history of the rigid block subjected to free rocking motion: comparison of proposed and 

analytical formulations. 
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Figure 5: Rotation time histories of the rigid block subjected to constant (rectangular) acceleration pulses with 

duration of 1.0 s. 
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A similar study was carried out for sinusoidal pulse excitation. Also in this case the results 

are in good agreement with the response obtained from numerical integration of the differen-

tial equation of motion (see Table 1). 

 

5 APPLICATION TO IN-PLANE LOADED MASONRY WALL 

In this section we consider for validation a block panel analysed by Ferris and Tin-Loi [22] 

using mathematical programming with equilibrium constraints (MPEC) for computational 

limit analysis and subsequently investigated in [16] using a second order cone programming 

formulation (SOCP) . 

The main goal of this study was to compare results from the present QP dynamic formula-

tion with those obtained from previously developed limit equilibrium analysis (LA) proce-

dures and to illustrate the ability of the proposed formulation in capturing the rocking 

response in case of rectangular pulse excitation.  

The wall panel under investigation is illustrated in Figure 6 (example no.3 in [22]). The 

size of a full block is 0.4×0.175m, the friction coefficient is 0.65 and the unit weight is 

1.0kN/m
3
. To simulate the load cases of the limit analysis  formulation, in the contact dynam-

ic QP formulation the blocks are subject to a constant value of horizontal acceleration and to 

the gravity acceleration. The analysis is repeated increasing the horizontal acceleration by step 

of 0.001g until rocking motion is initiated. Once the minimum value of acceleration is ob-

tained, a constant acceleration pulse with duration of 1.1 seconds is applied to the panel to 

analyze the evolution of the failure mechanism over time.   

The sizes of the numerical model, expressed as the number of blocks b and contact points c, 

are reported in Table 2, together with the numerical results in terms of accelerations and ulti-

mate load factors obtained from limit equilibrium analysis, as well as CPU times.  

The computed acceleration magnitude to initiate rocking motion is in good agreement with 

the load factors obtained using previously presented limit equilibrium formulations (Table 2). 

Indeed, the computed acceleration values are comprised in the range of associative and non-

associative solutions from limit analysis problems.  

 
Case study 

 

Model size 

(b × c) 

 

Limit equilibrium analysis using SOCP 

[16] 

 

Dynamic analysis using QP  

(proposed) 

Associative friction solutions Non-associative friction 

solutions 

λ 
CPU Time 

(s) 
λ 

CPU Time 

(s) 
ag (g) 

CPU Time
*
 

(s) 

Example 

no. 3 [22] 

 

46 × 240 0.404 0.1 0.356 0.9 0.387 97.5 

*Referred to 3.3GHz CPU, per unit time duration of dynamic analysis (second) in the case of QP formulation. 

Table 2. In-plane loaded masonry wall: comparison of collapse load factors from LA formulations and accelera-

tion obtained from CD-QP problems. 
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Figure 6: Wall sample n.3 [22]: failure mechanism time history obtained from the contact dynamic formulation 

under a rectangular pulse excitation of 0.387g with duration of 1.1s.  
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Figure 7: Time history of the top drift displacement.  

 

The time history of the failure mechanism and the drift displacement at the top for the rec-

tangular pulse excitation with duration of 1.1 s are shown in Figures 6 and 7.  

It is interesting to point out the residual drift after pulse excitation and the stability of the 

predicted response, which shows no chattering effect and is only slightly affected by the few 

mechanical and algorithm parameters inherent the numerical model, namely the friction coef-

ficient, the  factor and the size of time step.  

 

6 CONCLUSIONS  

 A 2D formulation for contact dynamic analysis of block masonry structures with no-

tension and associative frictional joints and infinite compressive strength was presented. 

The formulation is based on the contact point model for interfaces and uses QP pro-

gramming to solve the discretized equation of motion under kinematic and static con-

straints.   
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 The model was validated against numerical case studies from the literature involving sin-

gle and multi-block assemblages and a good agreement in terms of failure mechanism 

and response time histories was observed.  

 The computational efficiency and the convergence stability of the implemented proce-

dure were found to be encouraging, also considering the small number of mechanical and 

algorithm parameters associated to the adopted formulation.  
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Abstract. The earliest modern work on rocking focussed on pure rocking structures. That is, 

structures that are able to uplift and where the tendency to self-centre is purely provided by 

self-weight. Since then, free rocking has evolved into a multitude of new design strategies due 

to the addition of elements such as post-tensioning (controlled rocking) or having multiple in-

terfaces in a single element where uplift can occur (segmental rocking). Although these new 

design strategies evolved from free rocking, there is little clarity in current literature about the 

differences in dynamic behaviour which is important in seismic design. A specific example of 

this, is that, the PRESSS system also known as DCR (dissipative controlled rocking: the com-

bination of post-tensioning, dissipative devices and free rocking) and free rocking are usually 

mistaken to reduce damage to a structure through the same mechanism of gap opening and 

hence that the dynamic behaviours are the same. This paper looks to give a short modern his-

tory of the evolution the rocking structure and argue that design strategies based on rocking 

may not have the same dynamic response as pure rocking through comparison of the results of 

non-linear response history analyses of a SDOF structure utilizing pure rocking, controlled 

rocking, and dissipative controlled rocking strategies. Following on the theme of the evolution 

of the rocking structure, at the University of Canterbury, unidirectional, quasi-static, cyclic, 

tests were conducted on a 1/3 scale two span bridge utilising a single cantilever controlled 

rocking pier which was designed to operate in three different configurations: without dissipa-

tive devices, with one set of hysteretic dissipative devices, and with two sets of hysteretic dissi-

pative devices. The very last configuration is a new design strategy proposed by the authors as 

“hierarchical DCR” where there are two sets of dissipative devices across the rocking interface 

and where one set is activated at a later pier displacement to the other. The concept behind this 

idea is to increase structural robustness of the DCR system as a means of collapse prevention 

due to subsequent or unusually rare events such as the maximum credible earthquake. This 

paper will also present the results of this testing. 
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1 INTRODUCTION 

Past major earthquakes have shown significant drawbacks related to bridges using conven-

tionally designed RC piers. These include: residual drift, which affects post-earthquake func-

tionality and speed of reinstatement; physical damage from non-linear material behaviour, 

which not only affects post-earthquake functionality and the speed of reinstatement, but also, 

the remaining life of the bridge; and major indirect losses, from down time of the bridge caused 

by the aforementioned consequences of allowing non-linear material behaviour within the pier 

member. An alternative to conventional RC design, whose aim is to minimise and or eliminate 

the aforementioned performance issues related to member plastic hinging, are a family of de-

sign strategies based on rocking. These include free rocking, controlled rocking and dissipative 

controlled rocking (DCR) also known as hybrid PRESSS [1] and are all shown in Figure 1. 

Controlled rocking is free rocking with the addition of unbonded post-tensioning (Fig. 1b). In-

stead of wholly relying on self-weight to provide self-centering, where the tendency to self-

centre reduces with displacement (Fig. 1a), controlled rocking also relies upon both the initial 

post-tensioning force and elongation of the tendons to provide self-centering. The name of this 

design strategy was coined from the fact that there is greater control over the tendency to self-

centre due to the adjustable nature of the post-tensioning. This combination results in a bilinear 

elastic force-displacement plot with positive stiffness after uplift initiates (Fig. 1b).  

Figure 1: Free body diagrams and force displacement plots for a rigid block on rigid foundation utilising: a) free 

rocking; b) controlled rocking; and c) hybrid PRESSS/DCR. 

The further addition of dissipative devices (usually metal hysteretic) across the rocking in-

terface (internal or external to the member) results in the design strategy of dissipative con-

trolled rocking (Fig. 1c). The dissipative devices add to the moment capacity and or damping 

of the structure resulting in a flag shaped hysteresis loop (Fig. 1c). 

This contribution focusses on rocking bridge structures and has three main aims. The first is 

to elaborate more on the variety and development of rocking solutions in order to show the 

evolution of the rocking structure and the reasoning associated with it. The second is to argue 

that not all design strategies based on rocking exhibit the same dynamic behaviour which is a 

common misconception. And the third is to present the concepts for a new design strategy called 

Multi-Performance DCR (MDCR) developed by the authors, in addition to results from exper-

imental testing as proof of concept. 

2 LITERATURE REVIEW: EVOLUTION OF ROCKING APPLIED TO BRIDGES 

Two main streams of design strategies for bridges based on rocking have evolved in parallel, 

namely, uplifting and jointed structures. Major interest in the use of rocking as a seismic design 

strategy stems from Housner [2] where he observed that water towers which were able to rock 
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on their foundations during the May 1960 Chilean Earthquake survived relatively undamaged 

compared to their monolithic counterparts.  

Uplifting structures encompass two types of foundation rocking: uplifting shallow founda-

tion (Fig. 2a, right) and pile cap rocking on supporting piles (Fig. 2a, left); and stepping (Fig. 

2b). These types of structures are the closest to classical free rocking structures due to their 

reliance on self-weight for self-centering. Of the uplifting structures, the rocking shallow foun-

dation [3–6]  and stepping structures were the first to be investigated [7,8]. While the rocking 

pile foundation was investigated later on [9,10] but more as a solution to geotechnical con-

straints imposed by poor soil conditions. 

Uplifting is a form of seismic isolation because seismic demands are reduced to the sup-

ported structure through period elongation [2,3,6,11–14]. However, the amount of period elon-

gation is dependent on the amplitude of rocking displacement [2,6]. In addition to this, soil–

structure interaction effects for foundation rocking structures also contribute to reducing seis-

mic demands [15]. 

 

 a)   b)    

Figure 2: a)Examples of foundation rocking structures [9]. Left, rocking on piles and right, rocking shallow 

foundation.  b) Examples of stepping structures. Left, displaced structure showing mode of movement [11]. 

Right, Rangitikei viaduct NZ a bridge using stepping piers [16]. 

 

The other stream of design strategies based on rocking are jointed structures, where, loca-

tions of plastic hinges are replaced with rocking joints as a means of reducing seismically in-

duced damage. This type of design strategy was initially developed for precast concrete 

buildings under the US PRESSS program where both a crude controlled rocking solution [17] 

and the present day hybrid PRESSS/ dissipative controlled rocking (DCR) [1] solution were 

developed. The first application of a jointed rocking structure to bridges was proposed by [18]. 

Mander and Cheng [18] envisioned both free and controlled rocking bridge piers (cantilever 

and pier bent) with steel armouring at the rocking interfaces to prevent damage to the edges of 

the rocking sections (Fig. 3a). 

The proposed application of the hybrid PRESSS system to bridges (Fig. 3b) was only made 

some years later by Palermo et al. [19] as a means of achieving improved seismic performance 

compared to monolithic construction. Initially the PRESSS system in bridges used internal dis-

sipative devices in the form of debonded mild steel reinforcement [20] (Fig. 3c). This then 

changed into the use of external dissipative devices [21] to facilitate easy observation and re-

placement (Fig 4a). Then Kam et al. [22] proposed improvement of the response of the DCR 

connection to both near and far field earthquakes through combining velocity (fluid viscous 

dampers) and displacement dependent dissipators (metal hysteretic) to produce an advanced 

flag shape hysteresis curve (Figs. 4b & c). 
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 a)  b)   c)  

Figure 3: a) Controlled rocking pier bent [18].  b) Proposed application of PRESSS to bridges showing possible 

design [19].  c) Design schematic of a cantilever PRESSS column used in experimental testing [20]. 

 

a)  b)   c)   

Figure 4: a) PRESSS/DCR column using external dissipators [21].  b) Advanced flag shape (AFS) hysteresis 

[22]. c) Experimental testing of the AFS concept showing the combination of viscous and metal hysteretic de-

vices to achieve the advanced flag shape [23]. 

 

Most of the previously described developments on DCR applied to bridges were made at the 

University of Canterbury, New Zealand. Outside this institution, research has been more fo-

cussed on applying low damage technologies to accelerated bridge construction (especially in 

the US) and the application of DCR to tall segmental concrete bridge piers (Fig. 5) as a means 

of increasing the dissipative capacity of the pier  [24–26]. 

 

 a)   b)  

 

 
Figure 5: a) Segmental pier combining controlled rocking with frictional means of energy dissipation from slid-

ing [27]. b) Segmental pier tested by Wang [24] using internal debonded reinforcement for energy dissipation. 
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Today, the authors of this paper see the DCR solution evolve into “Multi-Performance Dis-

sipative Controlled Rocking” (MDCR) [28]. Further explanation of this concept is given later 

in this paper. 

3 DISCUSSION: WHY FREE ROCKING AND HYBRID PRESSS ROCKING DO 

NOT WORK IN THE SAME WAY 

There is a common misconception that Dissipative Controlled Rocking (DCR) and free rock-

ing have similar dynamic behaviours and that their treatment in design can be considered sim-

ilar. This misconception arises from the assumption that the addition of post tensioning, and 

dissipative devices to a free rocking structure does not change the dynamic behaviour of the 

free rocking structure. However, other than the obvious similarities, these two design strategies 

exhibit very different dynamic behaviours which is an extremely important consideration for 

design. 

Consider for example the free vibration (Fig.7 ) and ground motion response (Fig. 8) of the 

HBD5/PT2 pier specimen (Fig. 6, right) taken from Marriott [29] and modelled in OpenSees 

using a simple 2 spring SDOF (Fig. 6, left) in three different configurations: free rocking of the 

pier, post-tensioning only (controlled rocking), and post-tensioning with metal hysteretic dissi-

pators (DCR). 

 

  

Figure 6: Left, OpenSees models of test specimens HBD5/PT2 taken from [29]. Middle, photo of HBD5 speci-

men from [29] with external buckling restrained fuse dissipators, and concrete to steel rocking interface. Right, 

comparison of the model and experimental flag shaped hysteresis curves. 

 

 a)   b)  

Figure 7: a) Free vibration response since release from 2% drift. b) Variation in the period of vibration as a 

function of the number of rocking impacts since release. 

 

It can be seen in Figure 7a that the addition of post-tensioning immediately reduces the initial 

period of vibration due to the additional restoring force provided by tendon elongation. Figure 

7b shows that the addition of post-tensioning has little effect on the damping of the system 

which is expected due to it behaving in the elastic range. This means that controlled rocking 
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mainly relies on contact damping for energy dissipation. Finally, with the further addition of 

metal hysteretic dissipators, the pier will tend to behave as a fixed base structure. This is due to 

the continuous supplemental damping provided by the dissipators quickly reducing the ampli-

tude of vibration so that the displacements of the dissipators are below yield and the pier no 

longer rocks due to the high elastic stiffness of the dissipators (Fig’s. 7a &b). 

Inspecting the response history (Fig. 8) of the same pier, in the same three configurations, 

subject to seven different ground motions (Fig. 8, top left) scaled to have the same PGA (0.365g) 

as the design spectrum, a similar trend in behaviour is apparent. The displacement response of 

the different configurations (Fig. 8) clearly shows the period elongation effects of free rocking 

which are not observed for the controlled rocking (post-tensioning plus rocking) or DCR con-

figurations. Hence, controlled rocking and DCR do not display seismic isolation properties and 

should therefore be treated more like fixed base structures in terms of seismic design. 

Figure 8: Top left, 5% damped elastic acceleration spectra used for nonlinear response history analysis. Top 

right, bottom left, and bottom right, displacement response of the three pier configurations subject to the 1940 

ElCentro 180, 1994 Leona Valley 090, and 1995 Takatori 000 records respectively. The 1994 Leona Valley 090 

record was the only record which did not result in overturning of the free rocking configuration. 

4 IMPROVING THE STRUCTURAL REDUNDANCY OF DCR: MULTI-

PERFORMANCE DISSIPATIVE CONTROLLED ROCKING (MDCR) 

In the context of cantilever bridge piers, the plastic hinging mechanism is of column sway, 

where, collapse prevention is dependent upon the ductility capacity of the plastic hinge at the 

base. In DCR cantilever bridge piers the rotational ductility against overturning is dependent 

upon the dissipators and post-tensioning. Currently, all the dissipators are designed to activate 

at a set level of earthquake loading and all have the same ultimate capacities. Hence, currently 

the robustness of DCR is purely provided by multiplicity in the number of dissipators and post-

tensioning. Once rupture of a few dissipators and yielding of the post-tensioning occurs, the 

pier would lose significant stiffness and would be prone to P-Δ effects which would eventuate 

in collapse of the structure (Fig. 9a). 

To mitigate this issue, research is being conducted by the authors on a new design strategy 

based on dissipative controlled rocking called “Multi-Performance Dissipative Controlled 
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Rocking” (MDCR). The concept is to delay the onset of collapse through discretizing the ca-

pacity of the structure provided by dissipative devices and or mechanisms (rocking), such that, 

the devices and or mechanisms are activated in a hierarchical manner under increasing levels 

of shaking. The authors have proposed three methods of achieving this [28], however, only one 

is explained in detail here due to its relation to the experimental results being presented 

 

 a)   b)   

Figure 9: a) Performance objectives and limits for a DCR pier [29]. b) Example of hierarchical activation used. 

 

The method of achieving hierarchical activation focussed on in this paper, is to have two sets 

of dissipators across one rocking interface (Fig. 9b). One set, is directly attached to the members 

either side of the rocking interface, while, the other is attached in such a way that it is only 

engaged when uplift at the rocking interface exceeds a specified value. The purpose of this 

arrangement, is that under frequent seismic loading (return period less than ULS) only one set 

of dissipative devices is relied upon and if the intensity of the ground motion exceeds that of 

the ULS ground motion then the second set of dissipative devices is activated in addition to the 

first set. In this way, after a ULS ground motion, even though one set of dissipators may be 

spent, the vulnerability of a DCR pier to a sequential significant ground motion (if the first set 

is not immediately replaced) is lessened due to the presence of the second unused set on standby. 

In addition to this, in extreme events where both sets contribute to resisting the ground motion, 

the onset of yielding of the post-tensioning and major P-Δ effects are delayed due to the acti-

vation of the second set reducing overall displacements. 

5 EXPERIMENTAL INVESTIGATION INTO MDCR 

Experimental testing was carried out on a 1/3 scale precast concrete bridge with single can-

tilever, post-tensioned, rocking pier designed to operate in controlled rocking, DCR, and 

MDCR configurations. The same pier was also tested in isolation after removal of the decks in 

DCR and MDCR configurations. The aim of the testing was to physically test the MDCR con-

cept and compare it to a conventional DCR benchmark. 

5.1 Specimen overview 

The specimen is based on a prototype structure (Fig. 10) typical of a two lane, short-span, 

reinforced concrete, New Zealand Highway Bridge. The prototype consists of two, 13m simple 

spans; a single, 1.5m diameter circular pier; and hammer head type cap beam, supporting, a 

precast superstructure made of standard design double hollow core units. The test specimen, is 

a fully precast concrete structure (design f’c = 40MPa) and is 1:3 scale. Like the prototype, it 

is a two span simply supported bridge (Fig. 11). The decks are hollow core slabs each nominally 

4222mm long by 2400mm wide and rest on rectangular UHMWPE bearings.  

The pier is 500mm in diameter, and has a clear length of 2140mm. The armouring at the 

base of the pier is a custom made, 500 x 10 CHS with an annular steel ring welded to the base 

(Fig. 12c).Shear studs welded to the inside of the CHS ensure composite action with the pier. 

Shear and torsion restraint of the pier base is provided by external shear and torsion keys (Fig. 
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12b). Pier post-tensioning is provided by a single 26.5mm diameter Macalloy bar of 3182mm 

unbonded length. Grooved type dissipators were used. The dissipators had 4 grooves, are 16mm 

in diameter, have a design fuse length of 185mm, a design fuse area of 135mm2 and are made 

from mild steel (Fig. 12e) The pier base accommodates a maximum of 8 dissipators (Fig. 12a) 

which are evenly distributed around the pier (Fig. 9b): 4 for conventional PRESSS hybrid con-

figuration and 4 for hierarchical activation (θengagement =2.5% so that yielding would occur prior 

to θMCE =2.75%). The dissipator to dissipator circle diameter is 570mm. 

 

 

Figure 10: Prototype bridge. 

 

 

Figure 11: Overall specimen dimensions and detail regarding the boundary conditions around the decks. 

5.2 Pier details: hierarchical activation of two sets of dissipators 

In the experimental testing shown here, hierarchical activation, involved two sets of dissipa-

tors, where, one set is engaged at a later pier displacement to the other. Many options for achiev-

ing this were investigated, however, most were either infeasible or impractical. The final option 

chosen, consists of dissipators being connected by pins to the foundation and pier (Fig. 12a), 

but where, the pinned bracket connecting the dissipator to the pier has a slotted hole (Fig. 12d). 
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Figure 12: a) Pier with all dissipators attached; b) Shear and torsion keys; c) Pier base rocking interface; d) Dis-

sipator bracket detail, pinned dissipator bracket in background; e) Groove type dissipator and confining tube. 

 

At zero lateral pier displacement, the pin in the slotted hole is designed to sit at the top of 

the slot. Then as the pier uplifts, the dissipator bracket with slotted hole moves upwards and 

relative to this the pin approaches the bottom of the slot. Only when the uplift is sufficient for 

the pin to engage with the bottom of the slot, is the dissipator pulled upon. This option for 

producing hierarchical activation was chosen for three reasons: the pins allow the dissipator to 

be pulled on axially, despite, the arced uplift movement of the pier; the slotted hole allows the 

dissipator to undergo compression once it has been extended, whilst, also providing vertical 

and horizontal restraint of the dissipator ends; and this option was reasonably practical to im-

plement, along with the spent dissipators being accessible for replacement. 

5.3 Specimen design 

In terms of seismic action design parameters, the prototype was assumed to be of importance 

level 2; sited in Christchurch, with a hazard factor of 0.3; constructed on non-liquefiable soil of 

class C; and not subject to near fault effects. Seismic design was only conducted in the trans-

verse direction due to this direction of loading being the governing load case for the pier. Dis-

placement based design was used to determine the seismic design parameters for the prototype 

pier which were then scaled for specimen design. Table 1 below summarizes the salient pier 

seismic design parameters calculated. 

 
Table 1: Summary of specimen seismic design parameters from displacement based design. 

Specimen ULS design actions and dimensions Units Value 

Design gravity load, Wscaled kN 195 

Design lateral load, Vscaled kN 42.9 

Effective height of equivalent SDOF, He, scaled mm 2550 

Pier diameter, Dscaled mm 500 

Design base moment, Mscaled kNm 109.4 

Design displacement, Δds mm 52 

MCE displacement, ΔMCEs (ADRS assuming EPP F-Δ) mm 81.4 

5.4 Test setup and loading regime 

The test set up consisted of a single 300kN ram, loading the bridge transversely at the cap 

beam level 2310mm above the base of the pier (Fig. 13). The position and direction of loading 

were chosen to simulate transverse seismic loading of the bridge and to allow later pier only 

tests to be conducted. Loading of the bridge was cyclic, displacement controlled, and quasi-

static. The loading protocol used for testing was derived from ACI T1.1-01 [30]: three fully 

reversed cycles are applied at each drift ratio; the first drift ratio is within the linear elastic 
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response range; subsequent drift ratios are between 1.25 and 1.5 times the previous value. Lat-

eral drifts of 0.1%, 0.125%, 0.175%, 0.25%, 0.35%, 0.5%, 0.75%, 1.0%, 1.5%, 2.0% 2.75% 

3.5%, and 4.5% were imposed. However, only during testing of the pier in isolation were all of 

the drift ratios imposed. During bridge testing, the maximum applied drift ratio was 2.75% due 

to safety reasons and the load capacity of the ram to cap beam loading attachment. 

 

Figure 13: Experimental test set up showing that the bridge was loaded by a single ram at the cap beam level 

5.5 Testing schedule 

The bridge and pier only test configurations relevant for comparing the performance of DCR 

and MDCR are summarized in Table 2 below. 

 
Table 2: Selected bridge and pier test schedules. No deck post-tensioning or deck dissipators were used in tests 

1,3 and 4. 

Test Pier post-

tensioning 

 kN 

Conventional 

pier dissipa-

tors 

Pinned 

dissipa-

tors 

1: Bridge, no pier dissipators 89.2 - - 

3: Bridge, 8 pier dissipators (MDCR) 91.37 4 4 

4: Bridge, 4 pier dissipators (PRESSS) 92.3 4 0 

12: Pier only (decks removed), λ(θ=2%) 

=1.33 

154.7 4 0 

13: Pier only (decks removed), λ(θ=2%) 

=0.75 

155.3 4 4 

5.6 Experimental results and analysis 

In the very first test of the bridge system (Test 1), energy dissipation was found to be signif-

icant despite the source only being from friction (Fig. 14a). The self-centering characteristic of 

the pier combined with the frictional hysteresis produced a flag shaped response. The addition 

of 4 dissipators in Test 4 so the pier would be in a conventional PRESSS hybrid configuration 

increased both the stiffness and damping of the entire system (Fig. 14a). In Test 3, the bridge 

was tested with the pier utilising hierarchical activation. However, due to the activation drift 

being just over 2% and the maximum drift applied being 2.75% the contribution made was 

small (Fig. 14a). In tests 3 and 4 no failure of the dissipators occurred. 

Testing of the pier in isolation, allowed the full effect of hierarchical activation (Test 13) to 

be observed (Fig. 14b). Compared to the conventional PRESSS arrangement (Test 12), the ac-

tivation of the second set of dissipators increased the amount of energy able to dissipated (Fig. 

15) in addition to the pier stiffness. In test 12, during unloading from the peak positive displace-

ment of the second cycle at 3.5% drift, failure of one dissipator on the extreme tension side of 
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the pier occurred. The dissipator failed due to shear failure of the dissipator threads engaged 

with the nut below the dissipator bracket. This caused that particular dissipator to work in ten-

sion only for the following load cycles resulting in pinching of the hysteresis loops. 

Further evaluation of the changes in damping between tests 12 and 13 was undertaken 

through evaluation and comparison of the area based hysteretic damping from these two tests 

(Fig.  16a).The area based hysteretic damping was computed using equation 1. Where: ED is 

the area enclosed in one cycle of a hysteresis loop; Fpp and Fpn are the signed peak positive and 

negative forces measured during that cycle; Upp and Upn are the signed peak positive and nega-

tive displacements for the same cycle; Keff, is the effective secant stiffness; and Uo is the average 

peak displacement. 

                           𝜉𝐴 =
𝐸𝐷

2𝜋𝐾𝑒𝑓𝑓𝑈𝑜
2      𝑤ℎ𝑒𝑟𝑒,      𝐾𝑒𝑓𝑓 =

𝐹𝑃𝑃−𝐹𝑃𝑁

𝑈𝑃𝑃−𝑈𝑝𝑛
 𝑎𝑛𝑑 𝑈𝑜 =

𝑈𝑝𝑝−𝑈𝑝𝑛

2
                 (1) 

Figure 16a compares the area based damping averaged over the repeated cycles for each drift 

level for tests 12 (conventional PRESSS) and 13 (MDCR). It can be seen that past a drift of 

1.5% for test 13, that the hysteretic damping is less than that for test 12 until failure of the thread 

on one dissipator occurred. This reduced hysteretic damping can be explained as follows: be-

cause the experiment was displacement controlled Uo is very much the same for both tests 12 

and 13, therefore, comparing the difference between the two tests in terms of the area based 

damping is effectively the average ratio of the energy dissipated per cycle (ED) to the effective 

stiffness Keff. Although, ED for test 13 is larger than the corresponding cycle in test 12 once 

activation occurs (Fig. 15), this increase in ED is not as large as the increase in Keff therefore 

resulting in a reduced value of area based damping when compared to test 12. The implications 

of this reduced area based hysteretic damping combined with increased secant stiffness with 

respect to transient seismic response is currently unknown and further work will be conducted 

to numerically assess such impacts. 

 

 

Figure 14: a) Comparison of the force displacements of tests 1, 3 and 4; b) Comparison of force-displacement 

behaviour of tests 12 and 13 showing effect of hierarchical activation during a pier only test. 
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Figure 15: a) Energy dissipated per cycle for pier only test 12 – PRESSS configuration.  b) Energy dissipated 

per cycle for pier only test 13 – MDCR configuration. 

 

 

Figure 16: a) Comparison of the average corrected hysteretic damping for tests 12 and 13 as a function of ductil-

ity.  b) Average effective stiffness for each drift level of tests 12 and 13. Activation of the second set of dissipa-

tors increases the effective stiffness. 

6 CONCLUSION 

In conclusion, a brief literature review was given outlining the family of rocking structures 

and their relation to one another. The literature review showed the progressive development 

and changes of rocking structures with time. The distinction in dynamic behaviour between free 

rocking, controlled rocking, and DCR was shown through the results of preliminary numerical 

analysis in OpenSees. A possible future evolution of PRESSS hybrid rocking was suggested in 

the form of hierarchical activation (MDCR) and description of this new design strategy given. 

Finally, results from experimental testing, focussing, on the comparison of DCR against MDCR 

were given. The results prove the concept of MDCR, however, the unexpected effect on area 

based hysteretic damping will require further investigation to ascertain whether this is detri-

mental to transient response. 
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Abstract. Allowing structural members to uplift and rotate around pre-defined pivot points
isolates and relieves the structure from deformation and damage during strong earthquakes.
Such rocking behavior has been examined as damage avoidance seismic design for bridges.
Rocking structures, either freestanding or hybrid (supplemented with energy dissipation and
re-centering devices), have been proposed by several researchers as high-performance sys-
tems that can survive major earthquakes without substantial damage. This paper investigates,
analytically and numerically, the seismic performance of a hybrid rocking bridge bent which
exhibits flag-shaped hysteretic behavior. The rocking frame is enhanced with elastic prestressed
central tendons to provide re-centering capacity and hysteretic buckling restrained braces to
dissipate energy. The present study examines its seismic behavior under both pulse-type and
non-pulse-type ground motions. The focus of the present analysis is on the role of the pre-
stressing force on the seismic performance. The results reveal the diverse influence of prestress.
Specifically, prestress is beneficial for small rocking rotations, but could become detrimental
when the frame sustains large rotations and as the size of the columns increases. Finally, the
results reveal the sensitivity of the different rocking design solutions to the characteristics of
the considered ground motion. As a consequence, none of the examined rocking frames can be
considered as the optimal design solution under all ground motions.
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1 INTRODUCTION

Rocking as a means of seismic isolation is attracting the interest of researchers for almost
a century (see [18, 16, 29, 6, 13, 9, 10, 30, 8, 39, 34] and references therein). Recently, there
is an increasing need to examine the dynamics of progressively more complicated and realis-
tic structures ([1, 2, 40, 38] among others). Of particular interest for bridge engineering is the
rocking frame configuration of Fig. 1 proposed originally by [22] as a “damage avoidance de-
sign” for bridges. The existing bridges designed to rock remain scarce (see [11] and references
therein), even though, an increasing number of studies illustrate their high seismic performance.
In particular, [7, 33, 35, 36] revealed that rocking piers can exhibit large drifts (around 6% to
10%) with minor damage and/or residual displacements. Recent experimental studies [37, 27]
showed that the residual drifts of posttensioned rocking columns are negligible (0.4%) com-
pared to the pertinent drifts of conventional monolithic columns (6.8%) with the same peak
drift ratios; in accordance with [32]. Further, [19, 20] showed that the stability of the rigid
rocking frame is enhanced, the more heavy its cap-beam is, regardless of the rise of its center
of mass; a counter-intuitive behavior.

Such self-centering systems aim to eliminate residual drifts after strong earthquakes. Many
researchers [25, 26, 28, 23, 17, 43] combine the use of additional re-centering with energy
dissipation devices, to propose “hybrid rocking systems” which exhibit flag-shaped hysteretic
behavior (FSHB). In this context [26, 23, 17] compared numerically and experimentally the
seismic performance of rocking versus conventionally designed monolithic piers. The rocking
piers showed higher self-centering capacity and lower residual displacements compared to the
monolithic solution. [11] examined a hybrid rocking frame with asymmetric configuration (with
columns unequal in height), and compared its stability with the pertinent symmetric configura-
tion. That study unveiled the marginal influence of the asymmetry on the stability despite the
very different kinematics between the two configurations. Building on previous work on hybrid
rocking structures [17, 21, 11], the present work investigates the effect of the prestressing force
on the seismic performance of hybrid FSHB rocking frames, and compares different rocking
design solutions.

2 ANALYTICAL MODELLING

This section examines (analytically) a rocking bridge bent which exhibits flag-shaped hys-
teretic behavior. The present study considers structures designed to exhibit planar rocking and
it assumes no sliding between the contacting bodies takes place [5]. Consider the rocking frame
of Fig. 1 enhanced with central (linear-elastic) prestressed tendons and (nonlinear-hysteretic)
buckling restrained braces (BRBs) at the bottom of the piers. Note that, this study ignores the
fracture of the tendons and the dissipaters, which is discussed in [11]. To describe the hysteretic
behavior of the BRBs, the Bouc-Wen model [4, 42] is adopted. The restoring dissipating force
is expressed as:

FD = εkdu (t) + (1− ε) kduyz (t) (1)

where ε is the post-yield to pre-yield elastic stiffness (kd) ratio, u (t) is the axial deformation
of the brace, uy is the yield displacement equal with uy = 4b sin (φy/2) with 2b the width of
the base of the column of the frame and φy the yield rotation (Fig. 1). z (t) is a dimensionless
hysteretic parameter that is governed by:

ż(t) =
1

uy

[
u̇(t)− γ |u̇(t)| z · |z|n−1 − βu̇(t)|z|n

]
(2)
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1 INTRODUCTION 

Rocking, as a means of seismic isolation, is attracting the interest of many researchers for 
almost a century (Kirkpatrick 1927, Housner 1963, Yim et al. 1980). Of particular interest for 
bridge engineering is the rocking frame configuration of Fig. 1 proposed by Mander and 
Cheng (1997) as a “damage avoidance design” for bridges. Makris and Vassiliou (2012) and 
DeJong and Dimitrakopoulos (2014) revisited the seismic response of the freestanding rock-
ing frame. The former study revealed that the stability of the frame increases the more top-
heavy it is. Soon after, Makris and Vassiliou (2014) studied a rocking frame enhanced with 
elastic prestressed central tendons and showed that the effect of the tendons becomes immate-
rial as the size of the columns or the weight of the cap-beam increases. 

The development of self-centering systems aims to eliminate residual drifts after earth-
quakes. The combined use of re-centering and energy dissipation devices leads to “hybrid 
rocking systems” which exhibit flag shaped hysteretic behaviour (FSHB). Such systems have 
been proposed for both buildings (Eatherton and Hajjar 2011, Wiebe and Christopoulos 2014) 
and bridges (Palermo et al. 2005, Palermo et al. 2007, Pollino and Bruneau 2007, Marriott et 
al. 2009, Kam et al. 2010). Within this context, Dimitrakopoulos and Giouvanidis (2015) re-
visited the hybrid rocking frame by examining an asymmetric configuration (with columns 
unequal in height), and compared its stability with the pertinent symmetric configuration. 
That study unveiled the marginal influence of the asymmetry on the stability despite the very 
different kinematics between the two configurations. 

While many “hybrid rocking systems” allow rocking in some fashion, the beneficial isola-
tion effect originating from the negative stiffness may be minimal or non-existent. To this end, 
the present study extends previous research on the hybrid rocking frame (Kam et al. 2010, 
Dimitrakopoulos and Giouvanidis 2015) examining a rocking configuration (Fig. 1) whose 
response is controlled by supplemental re-centering and energy dissipation devices, exhibiting 
flag-shaped hysteretic behaviour (FSHB). 

2 ANALYTICAL MODELING 

This section examines analytically the seismic response of a hybrid rocking bridge bent 
with flag-shaped hysteretic behaviour (FSHB). Consider the rocking frame of Fig. 1 enhanced 
with central (slack) tendons to provide additional re-centering capacity, and buckling re-
strained braces (BRBs) to dissipate the energy. This study assumes that the tendons remain 
linear elastic and the buckling restrained braces behave in a nonlinear hysteretic fashion. 
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Table 1: Example of the construction of one table. 

To describe the hysteretic system the Bouc-Wen model (Bouc 1967, Wen 1976) is adopted. 
The restoring dissipating force is expressed as: 

Figure 1: The examined hybrid rocking bridge bent (a) during counter-clockwise rotation, (b) at rest position and
(c) during clockwise rotation.

Parameters β, γ and n control the shape of the hysteretic loop. Following [3], β = 0.55,
γ = 0.45, n = 1, ε = 0.025 and uy = 3.5 mm.

2.1 Flag-shaped hysteretic behavior (FSHB)

Assuming positive (clockwise) rotations, the restoring moment offered by the weight of the
two columns and the cap-beam is equal with:

M gr
R

2 (mAB +mBC) gR
= sin (α− φ) (3)

where mAB and mBC are the masses of the column AB and the cap-beam BC respectively,
R is the half diagonal of the column of the frame, g is the gravitational acceleration, and α is
the slenderness of the column. φ is the generalized coordinate which describes the rocking
motion of the frame (Fig. 1). The additional re-centering and energy dissipation devices offer a
total restoring moment Mhyb

R :

Mhyb
R

2(mAB+mBC)gR
= 4 (ρt + ερd) sinφ+ 2 sinαpstr cos φ

2

+8 (1− ε) ρd sin φy
2

cos φ
2
z(t)

(4)

The dimensionless parameters ρd, ρt and pstr control the stiffness of the dissipaters kd, of the
tendons kt and the initial prestressing force P0 respectively:

ρd =
kdb

2

(mAB +mBC) gR
, ρt =

ktb
2

(mAB +mBC) gR
, pstr =

P0

(mAB +mBC) g
(5)

The present study assumes that the design parameters ρd, ρt and pstr vary within 0 ≤ ρd ≤
5.0, 0 ≤ ρt ≤ 0.7 and 0 ≤ pstr ≤ 0.1 respectively. The total restoring moment becomes:

MR

2(mAB+mBC)gR
= sin (α− φ) + 4 (ρt + ερd) sinφ+ 2 sinαpstr cos φ

2

+8 (1− ε) ρd sin φy
2

cos φ
2
z(t)

(6)

On the other hand, the overturning moment induced by the ground excitation (üg) becomes:

MOT

2 (mAB +mBC) ügR
= cos (α− φ) (7)
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Rocking initiates when the overturning moment of Eq. (7) becomes equal with the total
restoring moment of Eq. (6). This equality yields the minimum ground acceleration necessary
for rocking initiation:

üg,min = g tanα (1 + 2pstr) (8)

Eq. (8) shows that increase of the prestressing force, causes increase in the ground acceleration
necessary to initiate rocking. During rocking, the motion of the frame is interrupted by nons-
mooth impacts. At each impact, a part of the total kinetic energy is lost and the frame continues
its motion with a ratio between the angular velocity after and before the impact (coefficient of
restitution) equal with [11]:

η =
φ̇+

φ̇−
=

1− 3
2
sin2α + 3γm cos 2α

1 + 3γm
(9)

The present study assumes the coefficient of restitution η to be 0.92.
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Eq. (8) provides the maximum theoretical value of the coefficient of restitution. For the pre-
sent analysis it is taken as 0.92. Energy is also dissipated due to the hysteretic behaviour of 
the buckling restrained braces (Fig. 2(b)). This combination leads to a flag-shaped hysteretic 
behaviour system (Fig. 2(c)). 
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Table 1: Example of the construction of one table. 

An increase in the tendon’s and the dissipator’s stiffness causes increase in the overall stiff-
ness of the system, such that a transition from negative to positive lateral stiffness occurs (Fig. 
2) when: 

 1

4t d    (9) 

2.2 Initiation of rocking 

 
 

2.3 Equation of motion (EOM) 

The equation of motion of the hybrid rocking frame of Fig. 1 with flag-shaped hysteretic be-
haviour (FSHB) is derived from Lagrange’s equation. The calculation of the kinetic (T) and 
the potential energy (V) of the system follows from Dimitrakopoulos and Giouvanidis (2015). 

Figure 2: Restoring moments due to (a) gravitational forces, (b) the presence of tendon and dissipater and (c)
total restoring moment for the rocking frame subjected to M&P pulse with νg = 45◦, γg = 2.0, αg = 0.6g and
ωg = 6.09 rad/s.

The moment-rotation relationship follows the curves shown in Fig. 2. Observe that, the
restoring moment due to the gravitational forces of the columns and the cap-beam do not enclose
any area under the moment-rotation curve (Fig. 2(a)) since energy is dissipated only during
impact. The presence of buckling restrained braces provides additional energy dissipation, equal
with the enclosed area in Fig. 2(b). When tendons and dissipaters are combined, the hysteretic
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behavior of the rocking bridge bent becomes flag-shaped (Fig. 2(c)). Note that, increase in
the tendon’s and the dissipater’s stiffness causes increase in the overall lateral stiffness of the
structure. For positive stiffness systems, it holds:

ρt + ερd >
1

4
(10)

2.2 Equation of motion (EOM)

Fig. 1 illustrates the examined hybrid FSHB rocking frame. The equation of motion is de-
rived using Lagrange’s equation:

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= Q (11)

where L = T − V , with T the kinetic energy, V the potential energy and Q the generalized
force. The kinetic energy of the system is:

T = IpivotAB φ̇2 +mAB

[
u̇2g + 2u̇gR cos (α∓ φ) φ̇

]
+1

2
mBC

[
u̇2g + 4R2φ̇2 + 4Ru̇g cos (α∓ φ) φ̇

] (12)

where IpivotAB is the mass moment of inertia of the AB column with respect to the pivot point.
For a rectangular column is equal with IpivotAB = (4/3)mABR

2. The double sign in Eq. (12)
and throughout the present study denotes the sign of rotation. In particular, the upper sign
corresponds to clockwise (positive) rotations and the bottom to counter-clockwise (negative)
rotations.

The potential energy of the hybrid FSHB rocking frame is defined as a contribution from the
gravitational and the elastic forces from the tendons. Before rocking starts, the initial prestress-
ing force (P0) induces an initial elongation (δl0) to the tendon equal with δl0 = P0/kt, where
kt = EA/l is the elastic stiffness of the tendon with E being the Young’s modulus, A the
cross-sectional area and l the length of each tendon. During rocking, each tendon deforms.
The elongation of each tendon is equal to the sum of the elongations at the base and the top of
each tendon: δl = 4b sin (φ/2). Hence, the total elongation of each tendon is ∆l = δl + δl0.
Therefore, the potential energy of the hybrid FSHB rocking frame takes the form:

V = 2mABgR cos (α− φ) +mBCg
[
2R cos (α− φ) + rGBC sinψBC

]
+ kt

(
4b sin

φ

2
+
P0

kt

)2

(13)
where rGBC is the distance from the pivot point B (or C ′) to the center of mass GBC and the
angle ψBC is shown in Fig. 1.

The calculation of the non-conservative forces Q is based on the virtual work principle
δWD = Qδφ and yields:

Q = −4b cos
φ

2
[εkdu (t) + (1− ε) kduyz (t)] (14)

Therefore, Eq. (11) gives:

φ̈ = −1 + 2γm
1 + 3γm

p2
[

sin (αsgn (φ)− φ) + üg
g

cos (αsgn (φ)− φ) + 4 (ρt + ερd) sinφ

+2 sinαpstr cos φ
2

+ 8 (1− ε) ρd sin φy
2

cos φ
2
z (t)

]
(15)
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where p is the frequency parameter of the column of the frame, which for rectangular columns
becomes p =

√
3g/4R. sgn (φ) is the sign function and γm = mBC/2mAB is the mass

ratio. Ignoring the presence of the dissipater and of the prestressing force, Eq. (15) verifies the
equation of motion of the symmetric rocking frame enhanced with slack (unbonded) central
tendons [14], and for γm = 0 the pertinent equation of motion of the anchored rocking block
[10].

3 SEISMIC PERFORMANCE OF THE HYBRID FSHB ROCKING BRIDGE BENT

This section examines the seismic response of the planar (freestanding and hybrid FSHB)
rocking bent of Fig. 1. Consider a cap-beam 13 m wide with height 2h = 2 m. Assume
a two-(square)-column frame with 2b = 1.4 m base width, same density and height 2H =
9.8 m each. Both columns have the same slenderness α = 8.1◦ and frequency parameter
p = 1.22 rad/s, while the distance L is 8 m. The cap-beam/column mass ratio (γm) is taken
as 5. The yield displacement (uy) of the braces is assumed 3.5 mm [3], which corresponds to a
yield rotation φy/α = 0.018. The present section focuses on the influence of the prestressing
force on the seismic performance of the hybrid FSHB frame, while it ignores the deformation
of its structural members.

3.1 Pulse-type ground motions

This study considers first pulse-type ground motions to examine the seismic performance
of the hybrid FSHB rocking frame. Various mathematical expressions have been proposed
in the literature that can capture the long distinct pulses of near-fault ground excitations ([41]
among others). The present study adopts the Mavroeidis and Papageorgiou (M&P) [24] wavelet
according to which the frequency of the pulse (ωg), the acceleration amplitude (αg), the number
(γg) and the phase angle (νg) of half cycles are the four parameters which can idealize a wide
range of near-fault ground excitations. Eq. (16) provides the expression for the ground velocity
of the M&P pulse [24] with parameter A to control the velocity amplitude of the envelope of
the signal.

u̇g (t) =

{
A
2

[
1 + cos

(
ωg

γg
(t− t0)

)]
cos [ωp (t− t0) + νg] , t0 − πγg

ωg
≤ t ≤ t0 + πγg

ωg

0 , otherwise
(16)

This analysis compares the seismic performance of the freestanding and the hybrid FSHB
rocking bridge bent focusing on the influence of the prestressing force. In other words, the study
examines structural systems with fundamentally different behavior (i.e. negative, zero and pos-
itive post-uplift lateral stiffness) under two levels of the rocking rotation, (i) for small “safe”
rotations φ/α = 0.1 and (ii) large “critical” rotations φ/α = 1.0. Recall that, φ/α = 1.0 rep-
resents the “critical” rotation under which the freestanding frame is considered to become un-
stable. In the hybrid FSHB frame the “critical” rotation increases due to the presence of the
tendons and the braces. The exact “critical” rotation (φcr) is given by the solution of the non-
linear equation:

∂Vtot
∂φ

∣∣∣∣∣
φ=φcr

= 0 (17)

Contrary to Eq. (13), in Eq. (17) the potential energy accounts also for the presence of the
braces by simplifying their behavior from nonlinear hysteretic to bilinear elastic. Thus, the total

4988



Anastasios I. Giouvanidis, Elias G. Dimitrakopoulos

potential energy of the system becomes [15]:

Vtot = 2mABgR cos (α− φ) +mBCg
[
2R cos (α− φ) + rGBC sinψBC

]
+kt

(
4b sin φ

2
+ P0

kt

)2
+ 16 (1− ε) kdb2 sin φy

2
sin φ

2
+ 8εkdb

2sin2 φ
2

(18)

Therefore, Eq. (17) gives:

sin (α− φcr)+4ρt sinφcr+2ερd sinφcr+4 (1− ε) ρd sin
φy
2

cos
φcr
2

+
2b

R
pstr cos

φcr
2

= 0 (19)

Eq. (19) provides the “critical” rotation of hybrid FSHB rocking bridge bents for various values
of the (dimensionless) design parameters ρd, ρt and pstr. The combination of the design
parameters ρt and ρd, yield structural systems with (i) tendons flexible enough, such that the
frame maintains its negative stiffness, (ii) zero overall stiffness and (iii) stiffer tendons so that
the rocking frame exhibits positive post-uplift lateral stiffness. Recall that, the fracture of the
tendons and braces is ignored, hence hybrid rocking frames with zero or positive lateral stiffness
theoretically will not overturn.

Anastasios I. Giouvanidis, Elias G. Dimitrakopoulos 

increases, the hybrid frame’s behaviour converges to that of the freestanding frame. Especial-
ly for small rocking rotations ( ), the two frames show almost identical stability results. Fig. 3 
also verifies the beneficial effect of the dissipator’s stiffness (ρd) increase, as it slightly en-
hances the frame’s seismic performance regardless of the sign of the overall lateral stiffness. 
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Table 1: Example of the construction of one table. 

Fig. 4 compares hybrid FSHB rocking frames with different post-uplift lateral stiffness (i.e. 
negative, zero, positive). It also illustrates the effect on the seismic performance of increasing 
the number of the half-cycles (γg) of the ground excitation. Again, three levels of rocking ro-
tation and two of the dimensionless parameter  ρd  are considered. In particular, Fig. 4 illus-
trates the relatively marginal enhancement of the seismic performance as the stiffness of the 
system increases. The comparison of the negative, zero and positive stiffness systems shows 
small differences in general, without any of the systems dominating the other two. 

3.2 Historic excitations 

The present section extends the seismic analysis of the frame adopting historic earthquake 
records (Table 1), regardless of whether they contain distinguishable pulses or not. In particu-
lar, it employs a well-known set of historic ground excitations scaled to yield a probability of 
exceedance of 2% in 50 years (SAC 1997). 
 

Number Record Magnitude Scale 
Factor 

DT 
(s) 

Duration 
(s) 

PGA 
(cm/sec2) 

SE21 1992 Mendocino 7.1 0.98 0.02 59.98 741.13 

Figure 3: Seismic performance of the rocking bridge bent subjected to M&P pulse with νg = 45◦, γg = 2.0 for
different levels of prestress and for the following dissipation parameters (a) ρd = 0.0 and (b) ρd = 5.0.

Fig. 3 compares rocking frames with negative, zero and positive post-uplift lateral stiffness
under pulse-type ground motions. Fig. 3 unveils the diverse role of the prestressing force on
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the seismic performance of the hybrid FSHB rocking frame. In particular, for large rocking
rotations (φ/α = 1.0) and as the size of the columns increases (ωg/p > 3), the prestressing
force has negative effect on the stability of the frame; the lower the prestress the higher the
seismic stability. This is true regardless of the sign of the lateral stiffness, but more pronounced
to negative stiffness systems. Overall for large rocking rotations, both the freestanding and the
hybrid with zero prestressing force exhibit the highest seismic rotation. On the contrary, for
either small-sized rocking columns (ωg/p < 3) and large rotations (φ/α = 1.0) or large rocking
columns (ωg/p > 6) and small rotations (φ/α = 0.1), the prestressing force has beneficial
influence on the performance.

Further, note that each column of Fig. 3 considers frames with the same (negative, zero, or
positive) lateral stiffness. The ρd increase effect is slightly favorable regardless of the sign of
the overall stiffness. In addition, increasing the stiffness of the tendons (i.e. increasing ρt), the
overall lateral stiffness of the system increases. However, Fig. 3 shows that this increase doesn’t
lead to superior seismic performance (e.g. Fig. 3(a)).

3.2 Historic excitations

The present section examines the seismic response of the hybrid FSHB rocking frame to
historic ground motions, regardless of whether they contain distinguishable pulses or not. It
employs a well-known set of historic ground motions scaled to yield a probability of exceedance
of 2% in 50 years [31].

Number Record Magnitude Scale factor dt(s) Duration(s) PGA(cm/s2)
SE21 1992 Mendocino 7.1 0.98 0.02 59.98 741.13
SE22 1992 Mendocino 7.1 0.98 0.02 59.98 476.22
SE23 1992 Erzincan 6.7 1.27 0.005 20.775 593.60
SE24 1992 Erzincan 6.7 1.27 0.005 20.775 529.06
SE25 1949 Olympia 6.5 4.35 0.02 79.98 878.23
SE26 1949 Olympia 6.5 4.35 0.02 79.98 805.68
SE27 1965 Seattle 7.1 10.04 0.02 81.82 1722.40
SE28 1965 Seattle 7.1 10.04 0.02 81.82 1364.70
SE29 1985 Valpariso 8.0 2.9 0.025 99.975 1605.50
SE30 1985 Valpariso 8.0 2.9 0.025 99.975 1543.50
SE31 1985 Valpariso 8.0 3.96 0.025 99.975 1246.20
SE32 1985 Valpariso 8.0 3.96 0.025 99.975 884.43
SE35 1978 Miyagi-oki 7.4 1.78 0.02 79.98 595.07
SE36 1978 Miyagi-oki 7.4 1.78 0.02 79.98 768.62

Table 1: Earthquake records with probability of exceedance of 2% in 50 years (adapted from [31].

Figs 4, 5 compare the response of the examined rocking frames in terms of peak rotation
and time history analysis respectively. Both Figs 4, 5 verify the high seismic performance of
the examined rocking frames, since all of them survive the excitations even though the earth-
quake records are scaled to the maximum credible earthquake level. Note that, according to
the assumptions of the present analysis, when the structure survives the excitation, it eventually
re-centers with no permanent displacement and/or expected damage. In particular, Fig. 4 con-
firms the influence of the prestressing force on the seismic behavior. Prestressing the tendons
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First A. Author, Second B. Author and Third C. Author 

SE23 1992 Erzincan 6.7 1.27 0.005 20.775 593.60 
SE24 1992 Erzincan 6.7 1.27 0.005 20.775 529.06 
SE25 1949 Olympia 6.5 4.35 0.02 79.98 878.23 
SE26 1949 Olympia 6.5 4.35 0.02 79.98 805.68 
SE27 1965 Seattle 7.1 10.04 0.02 81.82 1722.40 
SE28 1965 Seattle 7.1 10.04 0.02 81.82 1364.70 
SE29 1985 Valpariso 8.0 2.9 0.025 99.975 1605.50 
SE30 1985 Valpariso 8.0 2.9 0.025 99.975 1543.50 
SE31 1985 Valpariso 8.0 3.96 0.025 99.975 1246.20 
SE32 1985 Valpariso 8.0 3.96 0.025 99.975 884.43 
SE35 1978 Miyagi-oki 7.4 1.78 0.02 79.98 595.07 
SE36 1978 Miyagi-oki 7.4 1.78 0.02 79.98 768.62 

Table 1: Example of the construction of one table. 
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Table 1: Example of the construction of one table. 

Fig. 5 and Fig. 6 compare the response of the freestanding with the pertinent hybrid FSHB 
rocking frame in terms of peak response and time history analysis respectively. Fig. 5 shows 
that although the earthquake records are scaled to the maximum credible earthquake level, 
both the freestanding and the hybrid FSHB rocking frame survive all the excitations. Recall 
that, according to the assumptions of the present study, when the examined frame survives the 
excitation, it eventually re-centers with no residual displacements/damage. 
Further, Fig. 5 unveils the sensitivity of the freestanding rocking frame to the SE23, SE24 
(Erzincan, Turkey) earthquake records. This is attributed to the distinguishable pulse these 
records contain. Recall that, large rocking structures (e.g. bridge bents) are particularly vul-
nerable to coherent ground motions (Acikgoz and DeJong 2014). Interestingly, for excitations 
without dominant distinguishable pulses (e.g. SE27, SE28) the response of the positive stiff-
ness system is increased compared to the negative and the zero stiffness system. Note that, 
depending on the particular earthquake record examined, a different system performs the best 
(e.g. for SE31, SE36 the freestanding frame shows the best behaviour, while for SE28 the 
negative stiffness, for SE27, SE30 the zero stiffness and for SE25, SE26, SE29 the positive 
stiffness frame) (see also Fig. 6). Hence, the assessment of the seismic performance of the hy-
brid FSHB rocking frame beckons for a probabilistic evaluation (Dimitrakopoulos and Par-
askeva 2015). 

Figure 4: Maximum rotations for the freestanding and hybrid FSHB rocking bridge bent with (a) negative (ρt =
0.075), (b) zero (ρt = 0.197), (c) positive (ρt = 0.65) stiffness, ρd = 2.0 and different levels of prestress.

deteriorates the seismic performance of the hybrid FSHB rocking frame regardless of the sign
of the overall stiffness. This degrading effect becomes even more pronounced on negative stiff-
ness systems when the frame sustains large rocking rotations (see for instance SE21, SE23,
SE24 SE25, SE27 in Figs 4(a), 5). In that cases, both the freestanding and the hybrid frame
with slack tendons (pstr = 0) outperform the hybrid FSHB with pstr = 0.1. On the contrary,
when the frame undergoes small rotations, the prestressing force has indeed beneficial effect
(e.g. SE30, SE32, SE35, SE36 in Figs 4(a), 5).

Further, Fig. 4 shows that increase of the stiffness of the structure (i.e. from negative to
positive) has beneficial effect on the seismic performance of the hybrid FSHB without however
changing the effect of the prestress, which remains detrimental regardless of the sign of the
lateral stiffness. This (slight) enhancement though, comes at the cost of higher energy demands
by the buckling restrained braces (as Fig. 6 shows). Specifically, Fig. 6 compares hybrid FSHB
rocking frames with negative, zero and positive overall lateral stiffness, in terms of the net
dissipated hysteretic energy. Fig. 6 shows that negative stiffness systems yield the lowest energy
demands. This is attributed to the fact that a negative stiffness system cannot resonate (in a
classical sense). Overall, positive stiffness systems exhibit the highest energy needs. In other
words, the rocking rotation mitigation due to the increased stiffness, comes at the cost of higher
energy demands by the dissipaters. Fig. 6 shows that increase of the prestress does not lead to
higher energy demands, since for most records the energy dissipated by the braces is slightly
lower for prestressed hybrid FSHB frames (pstr 6= 0) than for slack hybrid FSHB frames (pstr =
0).

In summary Figs. 3, 4, 5 and 6 show that depending on the characteristics of the examined
earthquake record, a different rocking design solution (i.e. freestanding or hybrid with negative,
zero, or positive post-uplift lateral stiffness) might yield the optimal rocking design solution in
terms of seismic performance. Therefore, the assessment of the seismic performance of hybrid
FSHB rocking bridge bents beckons for a probabilistic evaluation [12], which is not however
the scope of the present study.
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Table 1: Example of the construction of one table. 

 

4 CONCLUSIONS  

This study investigates the seismic performance of a planar freestanding and hybrid rock-
ing frame (enhanced with additional energy dissipation and re-centering devices exhibiting 
flag-shaped hysteretic behaviour). The analysis quantifies the enhancement of the seismic per-
formance of the hybrid FSHB frame as the overall lateral stiffness of the structure increases. 
However, this enhancement is marginal among the different stiffness systems examined. Fur-
ther, this work reveals that depending on the particular earthquake record, and its characteris-
tics (e.g. whether the record contains in its velocity or acceleration time-history a 
distinguishable pulse or not, the number of the excitation cycles etc.), a different rocking de-
sign solution (e.g. freestanding, hybrid with negative/zero/positive stiffness) might be better 
in terms of stability. 
 
 

4.1 Secondary headings 

Secondary headings should be written left aligned, 12 pt, boldface Roman, with an initial 
capital for first word only. There should be a 12pt space before and 6pt after the secondary 
headings. 

Figure 5: Time history analysis for the hybrid FSHB rocking bridge bent with (a) negative (ρt = 0.075), (b) zero
(ρt = 0.197), (c) positive (ρt = 0.65) stiffness, ρd = 2.0 and different levels of prestress.

First A. Author, Second B. Author and Third C. Author 

SE22 1992 Mendocino 7.1 0.98 0.02 59.98 476.22 
SE23 1992 Erzincan 6.7 1.27 0.005 20.775 593.60 
SE24 1992 Erzincan 6.7 1.27 0.005 20.775 529.06 
SE25 1949 Olympia 6.5 4.35 0.02 79.98 878.23 
SE26 1949 Olympia 6.5 4.35 0.02 79.98 805.68 
SE27 1965 Seattle 7.1 10.04 0.02 81.82 1722.40 
SE28 1965 Seattle 7.1 10.04 0.02 81.82 1364.70 
SE29 1985 Valpariso 8.0 2.9 0.025 99.975 1605.50 
SE30 1985 Valpariso 8.0 2.9 0.025 99.975 1543.50 
SE31 1985 Valpariso 8.0 3.96 0.025 99.975 1246.20 
SE32 1985 Valpariso 8.0 3.96 0.025 99.975 884.43 
SE35 1978 Miyagi-oki 7.4 1.78 0.02 79.98 595.07 
SE36 1978 Miyagi-oki 7.4 1.78 0.02 79.98 768.62 

Table 1: Example of the construction of one table. 
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Table 1: Example of the construction of one table. 
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Table 1: Example of the construction of one table. Figure 6: Net dissipated energy for the hybrid FSHB rocking bridge bent with (a) negative (ρt = 0.075), (b) zero

(ρt = 0.197), (c) positive (ρt = 0.65) stiffness ρd = 2.0 and different levels of prestress.
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4 CONCLUSIONS

This study investigates the seismic performance of planar freestanding and hybrid rocking
frames with flag-shaped hysteretic behavior. This work demonstrates the diverse role of the
prestressing force on the performance of the hybrid FSHB rocking bents. Prestressing the ten-
dons deteriorates the frame’s seismic performance when it sustains large rocking rotations and
as the size of the columns increases; a counter-intuitive conclusion. On the contrary, either for
small-sized rocking columns and large rocking rotations or for large-sized rocking columns and
small rocking rotations, the influence of the prestress becomes beneficial in restoring the frame.
The analysis also confirms the beneficial influence of the dissipater, which is more pronounced
for negative stiffness rocking frames. Increasing the overall stiffness, the seismic performance
of the frame is slightly enhanced at the expense, however, of higher energy demands by the
dissipaters. This is not the case for the prestressing force, since increasing the prestress does
not lead to higher energy demands. Finally, this work confirms the sensitivity of the examined
rocking frames (freestanding and hybrid FSHB) to the characteristics of the adopted earthquake
records, and that none of the rocking design solutions examined is optimal in all cases.
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Abstract. Rocking action isolates the structure from excessive lateral loads and relieves it
from deformation and damage. A complete description of the dynamics of a rocking structure
entails, apart from the equation of motion, an appropriate treatment of the contact phenomenon.
To date, most analytical and numerical investigations of rocking behavior treat contact with the
classical impact model or with ad-hoc assumptions. This paper revisits the contact process
adopting a nonsmooth dynamics approach. More specifically, it treats impact through a system
of inequalities, which is known as the linear complementarity problem (LCP). Throughout the
study, impact is considered to be instantaneous. Set-valued contact laws model the behavior
in the normal direction of the (unilateral) contact. The analysis assumes that sliding in the
tangential direction is prevented. The present study demonstrates the ability of the proposed
methodology to capture the impact behavior of different structures rocking on a rigid base. The
results show that the proposed LCPs verify the corresponding results of other methodologies.
In addition, the proposed nonsmooth dynamics approach offers a more concise description of
the impact problem in rocking structures and it contributes to a more realistic treatment and
better understanding of the contact phenomenon during rocking.
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1 INTRODUCTION

Rocking action relieves the structure from deformation and damage during strong earth-
quakes, offering a favorable seismic isolation effect (e.g.[15]). As a consequence, it attracts
the attention of researchers which examine the dynamic behavior of rocking structures either
experimentally [17] or analytically [25, 10, 24, 28]. While most studies ignore the (e.g. flexu-
ral) deformation of the rocking structures, [6, 23] studied the dynamics of flexible (deforming)
rocking structures. Those studies compared flexible base-fixed structures with flexible struc-
tures allowed to uplift, and showed that in most cases base-fixed structures sustain larger defor-
mations than rocking structures, verifying the earlier results of [19]. They also highlighted the
sensitivity of the characteristics of the rocking systems and of the excitation considered on the
response. Recent studies [20, 1, 2, 29, 27] revisited the stability of flexible rocking structures
sustaining large rotations. They unveiled that for large flexible rocking structures, the effect of
flexibility is not detrimental to the stability.

However, a complete description of the dynamics of a rocking structure requires, apart from
the equation of motion, an appropriate treatment of the impact. During rocking, the motion of
the structure is interrupted by nonsmooth impacts at the contact points. To date, most analytical
studies on the rocking behavior treat impacts with ad-hoc assumptions which usually hinge on
the conservation of angular momentum (e.g. [15, 18, 12, 13]). The classical approach results
in a coefficient of restitution, usually defined as the angular velocity ratio after and before im-
pact [15], which provides the unknown post-impact state. While such approach can provide
dependable results for very simple rigid rocking structures, the investigation of progressively
more realistic and more complicated rocking structures, creates incentive for more sophisticated
analysis/simulation methods of the involved contact/impact phenomenon. More systematic ap-
proaches have been proposed in the context of nonsmooth dynamics [4, 14, 16, 21] or finite
elements [26]. These methodologies rely on either a rigid multibody approach [5], or assume
deformable contact formulations [3], or utilize compliant contact elements between the contact-
ing bodies [30].

The present study describes the impact event adopting a nonsmooth dynamics approach. The
aim of this paper is (i) to present briefly the nonsmooth approach, (ii) to treat impact (without
sliding) between unilateral contacts and (iii) to evaluate its implementation to various rocking
structures.

2 PROPOSED NONSMOOTH ANALYSIS APPROACH

2.1 Nonsmooth dynamics

The proposed herein nonsmooth dynamics approach assumes that the response can be de-
composed into smooth motion and nonsmooth events [4, 14, 16, 8, 9, 11]. The present study
examines the impact phenomenon in two archetypal rocking structures (Fig. 2): (i) the rigid
block, and (ii) the flexible oscillator. The proposed approach originates from multibody dy-
namics with unilateral contacts [22, 16]. Specifically, impact, between rigid bodies which can-
not overlap (impenetrability constraint), is considered instantaneous. Subsequently, all non-
impulsive forces are considered negligible. Under these assumptions, instantaneous contacts
(i.e. impacts) induce sudden, velocity changes (“jumps”) making the response discontinuous
(nonsmooth). The focus of the present study is on structures designed to exhibit planar rocking.
Hence, this study assumes that sliding between contacting bodies is prevented, either by proper
detailing of the contact connections to act as shear keys or by sufficient friction coefficient.
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2.2 Linear complementarity problem (LCP) for impact

In general, the LCP is based on determining from a system of linear equations y = Ax + b,
with the matrices A and b known, the two unknown non-negative vectors x ≥ 0 and
y ≥ 0 satisfying the complementarity condition: yTx = 0. The LCP encapsulates a great
variety of contact states, such as impact, “flight” (detachment/separation), bouncing and full
contact [4].

The (Newton-Euler) equation of motion for a multibody system with unilateral contacts can
be written as:

Mq̈− h(C,K, üg (t))−WNλN −WTλT = 0 (1)

where q is the generalized coordinates vector. M, C and K are the mass, the damping and
the stiffness matrices respectively, and h is the vector containing all the non-impulsive forces
e.g. external excitation (üg (t)), dissipating and elastic forces. W are the direction matrices
of the contact forces in the normal (subscript ‘N’) and the tangential (subscript ‘T’) direction
of contact respectively, and λ are the pertinent contact force vectors. To capture the impact-
induced velocity jumps, we integrate the equation of motion (Eq. (1)) over the time interval of
impact. Let t− (and superscript −) and t+ (and superscript +) denote the time at the beginning
and at the end of impact respectively.

lim
t−→t+

t+∫
t−

h(C,K, üg)dt = 0, lim
t−→t+

t+∫
t−

λNdt = ΛN , lim
t−→t+

t+∫
t−

λTdt = ΛT (2)

Eq. (1) becomes:
q̇+ + q̇− = M−1WNΛN + M−1WTΛT (3)

where vector q̇ denotes the generalized velocities. Pre-multiplying Eq. (3) by WT
N (and WT

T )
returns the vectors of the relative contact velocities in the normal ġN = WT

N q̇ (and in the
tangential ġT = WT

T q̇) direction accordingly:

ġ+
N − ġ−N = GNNΛN + GNTΛT

ġ+
T − ġ−T = GTNΛN + GTTΛT

(4)

where the G matrices are:

GNN = WT
NM−1WN , GNT = WT

NM−1WT

GTN = WT
TM−1WN , GTT = WT

TM−1WT
(5)

This study assumes that sliding is prevented, therefore the tangential relative (contact) velocity
is zero ġT = 0, and Eq. (4) gives:

ΛT = −G−1
TTGTNΛN (6)

Newton’s impact law : Newton’s law defines the ratio of the relative normal contact veloci-
ties, before (ġ−N ) and after impact (ġ+

N ), as the coefficient of restitution εN :

ġ+
N = −εN ġ−N (7)

εN is the diagonal matrix of the dissipative coefficient of restitution εN , and varies from zero
for perfectly inelastic (plastic) impact to one for perfectly elastic impact. The velocity jump
along the normal direction of impact is:

vN = ġ+
N + εN ġ−N (8)
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then, Eq. (4) yields a system of linear equations:

vN =
(
GNN −GNTG−1

TTGTN

)
ΛN + (E + εN) ġ−N (9)

for which the additional complementarity conditions hold:

vN ≥ 0, ΛN ≥ 0, vTNΛN = 0 (10)

In Eq. (9), E is the identity matrix. Eqs (9), (10) define a LCP which treats (non-sliding) im-
pacts according to Newton’s law. The complementarity conditions (Eq. 10) reflect the inequality
character of (dry) contacts. Fig. 1 illustrates this complementary relationship; the positive part
of the horizontal axis allows positive normal impulses with zero velocities, while the vertical
axis allows positive relative velocities with zero normal impulses.
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 Figure 1: The inequality character of contact [22].

3 REVIEW OF THE ROCKING BLOCK USING THE PROPOSED APPROACH

The present section revisits the impact behavior of the rigid rocking block of Fig. 2(a) adopt-
ing the proposed nonsmooth dynamics approach. Consider a rigid block with base width 2b and
height 2H as in Fig. 2(a). The generalized coordinates vector for the planar rocking motion
of the block is: qT =

[
x y φ

]
, where x and y are the translations along the pertinent

axes, and φ is the planar rocking rotation. Assume that the two closed contact points (pivot
points “1” and “2”) produce two forces/impulses in the normal direction of contact (one force
per point), but only one force in the tangential direction of contact, the resultant of the two
tangential forces at the two pivot points (e.g. as in Fig. 3). The consideration of the resultant
tangential force (instead of its constituents) is eligible by the rigid body assumption (the two
constituents are linearly dependent) and most importantly, does not overconstraint the prob-
lem [8, 9, 11]. Thus, the mass matrix and the direction matrices in the normal and tangential
direction of contact become respectively:

M =

 m 0 0
0 m 0
0 0 I0

 , WN =

 0 0
1 1
−b b

 , WT =

 1
0
H

 (11)

where I0 is the mass moment of inertia with respect to the center of mass of the block. For
a rectangular block I0 = (1/3)mR2, where m is the mass of the block and R is the half
diagonal distance (Fig. 2(a)).
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R
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Title 1  Title 2 Title 3  
C21  C22  C23  
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Table 1: Example of the construction of one table. 

A 6pt space should separate the table from the caption, and a 12pt space should separate 
the table from the surrounding text.  
 
 

Figure 2: The examined rocking structures: (a) rigid block, (b) flexible oscillator.

3.1 Analysis of all physically feasible post-impact states

With reference to Fig. 3, consider a rigid block performing pure rotation (without sliding)
about pivot point “1” (g−N1 = ġ−N1 = 0). Impact takes place at pivot point “2” at the moment
g−N2 = 0 and with pre-impact contact velocity ġ−N2 = 2bφ̇− < 0. There are four possible
(post-impact) states (Fig. 3(E)): (i) full contact (E1/1), (ii) bouncing (E1/2), (iii) rocking (E2/1),
and (iv) “flight” (E2/2). This section examines all physically feasible post-impact states, and
determines the conditions under which each (post-impact) state occurs.

Full contact (A → E1/1) or bouncing (A → E1/2) (Fig. 3): When after impact, point “1”
remains in contact with the ground (ġ+

N1 = 0), point “2” might stay in contact or not (ġ+
N2 ≥ 0).

The corresponding velocity jumps at the two contact points are (Eqs (7), (8)):

νN1 = ġ+
N1 + εN ġ

−
N1 = ġ+

N1 = 0
νN2 = ġ+

N2 + εN ġ
−
N2 = −εN ġ−N2 + εN ġ

−
N2 = 0

(12)

Eq. (12) implies that the block bounces at point “2” with a contact velocity ġ+
N2 = −εN ġ−N2 >

0 for a nonzero (Newton) coefficient of restitution εN > 0, and it stays in full contact at point
“2” (ġ+

N2 = 0) for εN = 0. In either case, both velocity jumps are zero (Eq. (12)) and thus
known. It follows (Eq. 10) that the remaining two unknowns, the normal impulses ΛN1 and
ΛN2, are both positive. The solution of the LCP of Eq. (9) yields their values:

ΛN1

mġ−N2

= (1 + εN)
(

1
3sin2α

− 1
2

)
ΛN2

mġ−N2

= − (1 + εN) 1
3sin2α

(13)

with the help of which, Eq. (6) gives the (dimensionless) tangential impulse:

ΛT

mġ−N2

= (1 + εN)
cotα

2
(14)
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Figure 3: Post-impact states for the rocking block according to Newton’s law.

Note that, all unknowns (contact velocities and/or impulses) are given in dimensionless terms.
The inequality character of contact determines the (existential) conditions under which each

post-impact state occurs. Specifically, the ΛN1 > 0 condition and Eq. (13) show that the block
can bounce or remain in full contact with the ground after impact when:

H

b
<

1√
2

(15)

in agreement with [5].

Rocking (A → E2/1) or “flight” (A → E2/2) (Fig. 3): Assume that after impact the block
changes pivot point. Hence, contact at point “1” is lost ġ+

N1 > 0, while the new contact at point
“2” is either maintained ġ+

N2 = 0, or also lost ġ+
N2 > 0. The velocity jumps for the two contact

points are (Eqs (7), (8)):
νN1 = ġ+

N1 + εN ġ
−
N1 = ġ+

N1 > 0
νN2 = ġ+

N2 + εN ġ
−
N2 = 0

(16)

The velocity jumps of Eq. (16) give 0 = νN2 = εN ġ
−
N2. When εN is nonzero, contact at point

“2” is lost (ġ+
N2 = −εN ġ−N2 > 0) and uplifting (detachment) of both contact points takes place.

The former case (εN = 0) leads to pure rocking behavior while the latter (εN > 0) to “flight”
behavior. For velocity jumps νN1 > 0 and νN2 = 0, the complementarity conditions (Eq. (10))
return ΛN1 = 0 and ΛN2 > 0. The solution of the LCP of Eq. (9) yields the remaining two
unknowns, the normal impulse ΛN2 at point “2”, and the post-impact normal contact velocity
ġ+
N1 of point “1”:

ΛN2

mġ−N2

= (1 + εN)
(

3sin2α
4
− 1

)
ġ+N1

ġ−N2

= (1 + εN)
(

3sin2α
2
− 1

) (17)
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and from Eq. (6), the tangential impulse becomes:
ΛT

mġ−N2

=
3

4
(1 + εN) sinα cosα (18)

Again, the inequality character of contact dictates the (existential) conditions under which
each post-impact state occurs. Specifically, when contact at point “1” is lost (ΛN1 = 0), the
complementary behavior (Fig. 1) requires ġ+

N1 > 0. Hence, Eq. (17) shows that the block
exhibits rocking or “flight” post-impact behavior when [5]:

H

b
>

1√
2

(19)

In summary, Eqs (12) to (19) describe completely all possible post-impact states for the rigid
rocking block. Thus, the proposed methodology verifies the corresponding results from other
methodologies, while at the same time encapsulates all physically feasible post-impact states.
Specifically, the geometric slenderness criterion, derived by [5], is in agreement with Eqs (15),
(19). For non-sliding (sticking) impacts, a rocking block is considered “stocky” when Eq. (15)
is satisfied, whereas when Eq. (19) holds, the block is regarded as “slender”. In many studies,
including past work of the authors ([10, 7, 12, 13] among others), the ratio η = φ̇+

/
φ̇− defines

a coefficient of restitution with respect to the angular velocities. When a (slender) block rocks
or separates (“flight” mode) from the ground after impact (Fig. 3(E2/1/E2/2)), Eq. (3) with the
aid of Eqs (17), (18) shows that the relationship between pre- and post-impact angular velocity
ratio is:

η =
φ̇+

φ̇−
= 1− 3

2
sin2α− 3

2
εNsin2α (20)

Eq. (20) verifies the pertinent equation derived by [25, 17]. For perfectly inelastic (plastic) im-
pact (εN = 0), the block exhibits pure rocking behavior, and Eq. (20) agrees with the Housner’s
angular coefficient of restitution [15].
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Figure 4: Admissible regions for all the post-impact states for the rocking block.

Eqs (13), (14) treat the bouncing and full contact behavior of the block (Fig. 3(E1/1/E1/2)),
with the help of which Eq. (3) gives:

η =
φ̇+

φ̇−
= −εN (21)
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Eq. (21) shows that for εN = 0 the block remains in full contact after impact (φ̇+
/
φ̇− = 0),

while for perfectly elastic impact (εN = 1), the rocking block bounces without any loss of
kinetic energy.

Fig. 4 illustrates the admissible regions of all the examined post-impact states of the rigid
rocking block. For non-sliding impacts, Fig. 4 shows the admissible domain when rocking
occurs. A slender block exhibits pure rocking motion (Eq. (20)) when εN = 0. The grey area
in Fig. 4 describes the rocking behavior of the block which is accompanied by uplifts/jumps of
the pivot points immediately after impact occurs [25, 17]. Note that, the higher the slenderness
ratio H/b, the less energy is dissipated during impact, and, in the limit, as this ratio becomes
(theoretically) infinite, the block rocks without any energy loss.

4 NUMERICAL EVALUATION OF THE PROPOSED APPROACH

This section illustrates the versatility of the proposed approach by examining (numerically)
the behavior of a rigid rocking block and a flexible oscillator in terms of time history analysis
(Fig. 2). Consider (i) a stocky block with 2b = 1.4 m base width and H/b = 1

/√
2 (Eq. (15),

Fig. 5(a)) and (ii) a slender block with the same base width but H/b = 7.0 (Eq. (19), Fig. 5(b)).
The frequency parameter of a rocking block is p =

√
3g/4R, where g is the gravitational

acceleration and R is the half-diagonal distance (Fig. 2(a)). Fig. 5 plots the free rocking re-
sponse of both a stocky and a slender block (Fig. 5(a) and Fig. 5(b) respectively). Specifically,
Fig. 5(a)(top) plots the response of the block for three different (Newton) coefficients of resti-
tution. Both blocks have an initial rotation equal with α/3, where α denotes the slenderness
of the block (Fig. 2(a)). The stocky block does not change pivot point after impact and hence,
exhibits bouncing behavior. When εN = 0 the impact is considered totally inelastic (plastic)
and the block remains in full contact after impact with the ground. On the contrary, for totally
elastic impacts (εN = 1) the stocky block bounces without any energy loss at impact. The
slender block though, changes pivot point after each impact and exhibits pure rocking motion
for εN = 0 (Fig. 5(b)(top)). Fig. 5(bottom) shows the normal relative distance gN of the two
contact points (as Fig. 2 shows) for both the bouncing and the rocking motion of the two blocks.
It is important to note, that both bouncing and rocking behavior are captured numerically with
the aid of the same LCP.

Fig. 6 plots the response of the slender rocking block by comparing the proposed nonsmooth
dynamics approach for εN = 0 with the classical impact model [15] assuming an angular
coefficient of restitution equal with 0.97 (according to Eq. (20)). The two (identical) blocks
exhibit pure rocking motion and are subjected to the same sine pulse excitation with αg/g =
0.45 and ωg/p = 5.75. Fig. 6 shows that the results derived by the proposed methodology are
in complete agreement with the classical impact model. In addition, the proposed methodology
encapsulates all physically feasible post impact states; something that is not feasible with the
classical impact model.

Further, the proposed approach is also applicable to more complicated rocking structures.
Consider the flexible rocking oscillator of Fig. 2(b) with slenderness α = 0.1 rad and H/b =
10 [29]. The oscillator has a deformable column with mass mc uniformly distributed along
its length. Assume the concentrated (lumped) mass m on the top has zero moment of inertia,
whereas the base mass mb gives moment of inertia Ib = (1/3)mbb

2 with respect to its center of
mass. The generalized coordinates vector for the planar rocking motion of the flexible rocking
oscillator is: qT =

[
u x y φ

]
, where x and y are the translations of the base mass along

the pertinent axes, u is the elastic relative translation of the lumped mass and φ is the planar
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Figure 5: Free rocking response for (a) a stocky and (b) a slender block.
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Figure 6: Comparison between the nonsmooth dynamics approach and the classical impact model for a (slender)
rocking block subjected to sine pulse with αg = 0.45g and ωg = 5.75p.
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rocking rotation (Fig. 2(b)). Following [29], the present study assumes γmb
= mb/m = 2 and

γmc = mc/m = 1. Further, the damping ratio is taken as 1%, while the natural frequency
ωn/p is considered as 5, with p being the frequency parameter of the oscillator equal with
p =

√
g/R. First A. Author, Second B. Author and Third C. Author 

0 5 10
0

0.05

0.1

0.15
gΝ2 

gΝ1 

 pt

N
g

b

cr
u

u

pt

0.0N   0.0N 

  0.0N 
0 5 10

-0.5

0

0.5

0 5 10
-2

-1

0

1

2

0 5 10
-5

0

5

cr



ta
n

gu
g




 
 
 

11 FORMAT OF REFERENCES 

References should be quoted in the text by numbers [1, 2] and grouped together at the end 
of the paper in numerical order as shown in these instructions.  

12 CONCLUSIONS  

 Papers should be submitted online. 

 Papers should be written following the format of the Latex or Word macros for submis-
sion that can be found at the Congress website. 

 Papers must be translated to Portable Document Format (PDF) before submission 
through the Congress website. 

 Deadline for the submission of papers posted in the website must be respected. 

 The organizers do not commit themselves to include in the Proceedings any paper re-
ceived later than the above-mentioned deadline. 

 At least one of the authors should register and pay his/her registration fee before the full-
length paper submission deadline for their paper to be included in the final program of 
the Congress. 

Figure 7: Time history response of the (slender) flexible rocking oscillator subjected to sine pulse with αg =
5g tanα and ωg = 7p.

Fig. 7 shows that subjected to a sine pulse excitation with αg/g tanα = 5 and ωg/p = 7, the
flexible rocking oscillator of Fig. 2(b) exhibits pure rocking motion, which is in good agreement
with the pertinent results from [29]. Note that, φcr denote the “critical” rocking angle of
unstable equilibrium for the rigid rocking oscillator, and ucr the “critical” relative displacement
of the mass m at the time-instant rocking initiates [29].

5 CONCLUSIONS

The present study revisits the contact/impact phenomenon encountered in rocking structures
adopting a nonsmooth dynamics approach. In particular, it formulates the impact problem as
a system of inequalities, known as linear complementarity problem (LCP), and examines the
impact of two archetypal rocking structures: the rigid rocking block and the flexible rocking
oscillator. In the normal direction of contact, the present analysis adopts the Newton’s contact
law, while in the tangential direction sliding is prevented (non-sliding contact). The analysis
shows that the results from the proposed LCPs are in total agreement with the pertinent results
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of other methodologies. Overall, this work demonstrates the ability of the proposed nonsmooth
dynamics approach to capture all physically feasible post-impact states in a systematic and
condensed manner; at least for the rocking systems examined.
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Abstract. A simple analytical model for simulating a controlled rocking system consisting of 
a Precast Wall with End Columns (named as PreWEC) has been developed and compared 
against experimental results. The wall panel and end columns are secured to the foundation 
using prestressing, allowing PreWECs to experience rocking motions. The proposed model 
accounts for its predominant rotational degree of freedom formulation based on existing 
knowledge and adds new features to accurately capture the measured responses. They include 
a migrating rotation center that recognizes the variation in the contact length and its effect on 
the elongation in the post-tensioned tendons. Supplemental energy dissipation in PreWEC is 
provided by steel O-connectors, which horizontally join the wall panel to the end columns. 
These connectors are modelled using a system of nonlinear springs. Two different experi-
ments were used to demonstrate the accuracy of the model validation, which include: a) a 
5/18-scale PreWEC subjected to shake table motions; and b) a 1/5-scale PreWEC subjected 
to free vibration motions. It is shown that rotation responses and associated peaks experi-
enced by the PreWEC rocking system can be accurately predicted using a simplified model.  
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1 BACKGROUND 

Rocking is a phenomenon that can influence the response of structures, which are allowed 
to uplift from their base. The eminent work by Housner [1] provided the fundamental 
knowledge and first steps towards modelling free rocking response of rigid members.  

The topic of rocking response has received significant attention in recent years when verti-
cal post-tensioning is introduced along the member length to control the rocking response and 
allow structural members to re-center upon removal of the lateral load [7, 10]. A simple form 
of a controlled rocking system is shown in Fig. 1, which shows the post-tensioning tendons 
anchored at the top of the member and the foundation. This concept has paved the way for 
developing new seismic resilient structural systems that are able to minimize both structural 
damage and residual drifts when subjected to earthquake input motions.  

As part of the NEES Rocking Wall Project, a shake table testing of four controlled rocking 
concrete walls has been recently conducted by Nazari et al. [8] at 1/3.6 scale. As expected, the 
walls experienced negligible residual displacements and minimal damage that was mainly 
concentrated at wall compression toes. In another study, Ma [5] followed the original theory 
of Housner and extended it to modelling of controlled rocking systems as guided by experi-
mental results from a rocking post-tensioned masonry wall. Ma observed from the experi-
mental data that the assumption made in the Housner model of stationary pivot points at the 
bottom corners of the block did not hold for this controlled rocking unit. Instead, it was noted 
that the wall developed a contact over a finite area with the foundation surface, which was 
varying as a function of its angular displacement. This variation led to a continuously migrat-
ing rotation center residing within the contact area. The empirical model by Ma, therefore, 
accounted for this behavior by tracking the correct location of the pivot point. A method that 
provides a good estimate for the variation in the contact area of a controlled rocking body was 
suggested by Aaleti and Sritharan [1].  

Figure 1: An idealized controlled rocking block. 

2 RESEARCH SIGNIFICANCE 

The focus of this paper is on modelling of a specific controlled rocking unit, as the 
PreWEC system.  This system, shown schematically in Fig. 2, is one of the latest improve-
ments in controlled rocking systems that incorporate supplemental hysteric damping.  The 
PreWEC system consists of a precast wall with end columns with the wall panel and the end 
columns being individually anchored to the foundation using unbonded post-tensioned ten-
dons [11]. The end columns are horizontally connected to the wall with mild steel O-
connectors, which can be tailed to the strain and displacement demands [2]. This study pre-
sents analytical results from a model developed for the PreWEC system and compares them 
with experimental results obtained from shake table testing of PreWEC1 [9]  as well as from 
free vibration tests of another unit conducted by Twigden et al. [12].  
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Figure 2: A schematic representation of the PreWEC System [9]. 

3 SUMMARY OF EXPERIMENTAL STUDIES 

3.1 PreWEC system from NEES Rocking Wall Project 

Test Setup 
The unit designated as PreWEC1 used twelve O-connectors and a wall specimen that was 

1.524 mm long, 4,876.8 mm tall and 127 mm thick. The wall was post-tensioned to the foun-
dation with five 270 Grade centrally placed steel strands. The total initial prestressing force 
applied through these strands was 865.18 kN.  

The PreWEC1 system was placed within a small pocket on top of the foundation with a 
layer of grout ensuring full contact between the prefabricated members. This unit was tested 
using a shake table, whose base was attached to the laboratory strong floor using tie-downs. A 
seismic mass consisting of a frame and two mass blocks (each block being 2,489.2 mm tall 
with a square cross-section of 1,219.2 x 1,219.2 mm2) was used outside of the shake table, as 
shown in Fig. 3, connected to the wall panel using a rigid link beam.  

Figure 3: Test Setup for the PreWEC1 [9]. 

Input Motions 
The PreWEC1 was subjected to a series of 42 test runs consisted of several input motions, 

including recorded earthquake excitations with varying intensities. Analysis of the PreWEC1 
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response in this study focused on the 23 first test runs, during which the O-connector experi-
enced no deterioration or fracture. More information regarding the test setup, type of O-
connectors, instrumentation and input motions are available on NEEShub by Nazari et al. [9]. 

3.2 PreWEC system tested by Twigden et al. [12] 

Test Setup 
The unit was 800 mm long, 3,000 mm high and 125 mm thick. The wall was anchored to 

the foundation with three steel strands of 15.2 mm diameter, each prestressed to 0.5 f py . As 

shown in the test setup of Fig 4, this wall base was also placed in a grout pocket on the top of 
a foundation. Concrete mass blocks were placed on top of the wall to provide additional seis-
mic mass. A lateral support frame was employed to minimize any out-of-plane motion of the 
system.  

Figure 4: Test Setup for the PreWEC by Twigden et al. [10]. 

Input Motions 
Two free vibration test runs were conducted on this specimen using: a) four (system desig-

nated as PreWEC-1); and b) six (system designated as PreWEC-2) O-connectors joining each 
end column with the wall panel. The specimen was tilted laterally using a hydraulic actuator 
and quickly released at the desired top lateral displacement level (i.e., 60 mm). More infor-
mation about these experiments can be found in the paper by Twigden et al. [12], while in-
formation about the O-connectors used in this study can be found in Twigden and Henry [13].  

4 MODELLING OF THE PREWEC SYSTEM 

4.1 Equation of motion for PreWEC1 

A dynamic system consisting of two generalized coordinates ( 1q and 2q ) was built for simu-

lating the response of PreWEC1, where 1q corresponds to the wall rotation and 2q represents the 

rotation of the mass blocks with respect to the frame as observed from test videos. A schemat-
ic representation of this model is shown in Fig. 5. It is noted that the end columns were not 
included in this model and the contribution of O-connectors was included by assuming that 
the displacement demand imposed on the connectors was equal to the uplift of the wall panel 
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at one end and compression of the wall toes at the other end. This is consistent with experi-
mental observations [11].  

Figure 5: A schematic view of the model developed for PreWEC1. 

Modelling of the PreWEC1 followed the Housner approach. However, the rotation center 
was assumed to be located in the middle of the wall contact length at the foundation interface 
and is, therefore, migrating as a function of the rotation 1q . The simplified method proposed 

by Aaleti and Sritharan [1] was employed to compute the expected contact length at 2% top 
lateral drift of the wall, assuming properties of confined concrete and an equivalent stress 
block at the wall toes. The variation of contact length from 0 2→ % drift was modified from 
the original method using the Meregotto-Pinto equation [6] as shown in Fig. 6. 

Figure 6: Contact length variation for PreWEC1 model. 

Similarly, the degree of freedom, 2q , corresponding to the mass concrete block rotation 

was modelled assuming an inverted pendulum, in which a linear rotational spring was used to 
capture the observed rotation of the mass blocks with respect to the supporting frame (see Fig. 
5). The rotation center of the block was also modelled to vary as a function of its rotation in a 
similar fashion with Fig. 6 with a minimum distance of 495 mm from its bottom corner being 
reached at 0.005θ = rad. 

In addition to the hysteric dissipation provided by the O-connectors, the system’s energy 
dissipation included three damping components. As shown below, these components were 
provided by: a) the rocking wall panel; b) mass blocks; and c) frame supporting the mass 
blocks. 
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, 1 1damp wallM c q=    (1) 

, 2 2damp blocksM c q=    (2) 

( ), 3damp frame FR FRF sign r c r=   (3) 

where 1c , 2c and 3c were damping coefficients which were trained in an error minimization 

process using a set of two test runs (i.e., Test#4 and Test#18) [9]. Variables ,damp wallM  and 

,damp blocksM  also served as numerical damping parameters in the numerical ODE solver. 

Estimation of energy dissipation due to impact followed an approach described in Kal-
liontzis et al. [4]. Their proposed expression assume that the rotation centers of a rocking 
member just before and just after impact are as shown in Fig. 7. Using conservation of angu-
lar momentum before and after impact about the rotation center after impact, the equation for 
the coefficient of restitution (COR) in this approach is expressed as: 

  

( ) ( )( )
( ) ( )( )

22
2 2

2
2 2

1 1 sin 1

1 1 sin 1

cm

cm

MR a k
ICOR

MR a k
I

 
+ − + 

 =
 + − − 
 

      (4) 

where k is a factor defining the location of rotation centers just before and just after impact; 
and cmI denotes the mass moment of inertia of the block with respect to its gravitational center. 

With respect to Eq. 4, in the absense of a suitable value, 0.72k = is recommended for 
concrete rocking members, which is used in this study. 

Figure 7: Rocking block with rotation centers O  and 'O just before and just after impact, respectively; 
where b kb= with 0 1k≤ ≤ and b is the block half-width [4]. 

Assuming the two rotational degrees of freedom shown in Fig. 5 (i.e., one for the wall 
panel and the other for the mass blocks), two equations of motion were derived and they are 
presented in Eqs. 5 and 6.     
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In the above equations, ,1La and ,2La are the “slenderness” ratios with respect to the link beam 

location on the wall and mass blocks, respectively, which are updated with respect to the 
rotation center location; 

1LR ,
2LR , 1R and 2R are as identified in Fig. 5; PTF represents the total 

force applied through the post-tensioned strands to the wall panel and it was estimated as per 
the Aaleti and Sritharan approach [1]; and downF  and upF  denote the O-connector forces, 

respectively, on the the uplift and compression sides of the wall panel due to the wall rotation.  
In addition, the response of the wall system was also computed by using the 

experimentally recorded force applied through the link beam to the wall as the input 
parameter. In this case, the dynamic system consisted of a single degree of freedom, 1q , and its 

equation of motion is described in Eq. 13. 
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where LinkBeamF represents the experimentally obtained link beam forces recorded using a load 

cell. 

4.2 Modelling of O-connectors 

Fig. 8a presents experimental data obtained from a quasi-static cyclic reversal test on the 
O-connector used in PreWEC1 (Courtesy of Nazari Maryam, Ph. D. candidate at Iowa State 
University). Using a similar test setup to the one described by Henry et al. [2], the two pairs 
of O-connectors were subjected to the vertical displacement history shown in Fig. 8b.  

Figure 8: O-connector used in PreWEC1 (a) measured force vs displacement response of one connector; and (b) 
applied displacement history protocol. 

The recorded O-connector data was used to develop a numerical model for simulating the 
resistance of the connectors in the simulation of the PreWEC system. This model used the 
Meregotto-Pinto equation [6] to develop rules for the envelope, load reversals and reloading 
branches of the connector responses. Fig. 9 compares model response with the experimental 
data, showing satisfactory agreement including the strength degradation experienced by the 
connector toward the end of testing.  

Figure 9: Comparison of force-displacement responses produced by the O-connector model and experimental 
data. 

4.3 Initiation of rocking motion 

Previous research studies that employed the Housner model for investigating free rocking 
motion routinely assumed that a free-standing rigid block is expected to uplift once the 
overturning moment produced by the ground acceleration exceeds the moment resistance of 
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the block, which depends on its mass and geometric properties. Considering the case of 
PreWEC1, this limit is expressed as follows: 

1 ,1LinkBeam Lg PT iF Lu F b
g Mgh Mg h

 
+ ≥ + 

 



(14) 

with h representing the height of the gravity center of the system; and ,PT iF is the initial post-

tensioning force in the strands of the wall panel. While the above limit may accurately predict 
the initiation of controlled rocking of systems that can be reliably idealized as rigid blocks, its 
application to systems influenced by a migrating rotation center may not be satisfactory. 
Considering such a system at an initial rest condition being subjected to a horizontal ground 
motion, its imminent rotation point is unlikely to be located at its bottom corner. Hence, the 
moment equilibrium about this point is inapprorpiate without taking into account of the 
reaction forces at the wall base. To overcome this concern, the moment equilibrium may be 
taken about the correct rotation center, assuming that the rotation center coincides with the 
resultant compression force at the base.  

Fig. 10 shows an example based on the PreWEC1 model that the limiting expression in Eq. 
14 will not accurately capture when the rocking motion will initiate. The figure compares two 
analytical solutions established for the PreWEC1 response assuming the aforementioned limit. 
The first case assumed a migrating rotation center during rocking motion as described in 
section 4.1, while the second case assumes that the rotation center is always located at one of 
the bottom wall corners (i.e., the wall is fully rigid). The corresponding experimental rotation 
time history is also plotted in the figure. It is seen that the two models fail to detect the 
beginning of rocking motion by approximately 2 seconds, while the first case predicts a 
significantly higher peak angular displacement response compared to the experimental 
observation. On the contrary, due to the higher moment resistance resulting from a fully rigid 
wall assumption, the second case significantly underestimates the peak displacement. 

In order to tackle this issue associated with the initiation of rocking motion, the proposed 
model does not include a lower-bound limit for the overturning moment by assuming that the 
rotation center is located at the center of the wall base when the wall is at an initial rest mode. 
It is shown in the next section that this choice significantly contributes to accurately capturing 
the wall response for very small and large rotations. 

Figure 10: Measured rotation vs time of PreWEC1 in the second input motion of Test#4 compared with 
analytical responses based on the limit of Eq. 14.  

4.4 Modelling of PreWEC-1 and PreWEC-2 systems 

Modelling of these systems followed the same approach as that described for PreWEC1. 
Variation of contact length in these systems was similarly estimated using the simplified 
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method proposed by Aaleti and Sritharan [1]. Moreover, these PreWECs used O-connectors 
with different dimensions and thus, the modelling rules were modified accordingly. 

5 COMPARISON WITH EXPERIMENTAL RESPONSES 

5.1 PreWEC1 system 

Fig. 11 presents several comparisons of PreWEC1 model as per Eq. 13, with measured ro-
tation time histories using 1 5 oc I= . It is seen that the model is able to accurately reproduce the 

experimental responses for earthquake excitations of various intensities. Similar results were 
obtained with the use of the 2DOF system of Eqs. 5-6 with suitable selections of the stiffness 
and damping parameters characterizing the seismic mass (i.e., 539.63rk = kN-mm; 

2 ,6 o bc I= ; 3 0.88c = kN s/mm ). These results are shown in Fig. 12. 

Figure 11: PreWEC1 rotation time history responses from experimental and analytical results 

(a)                                                   (b) 

Figure 12: Rotation time history responses of a) the PreWEC1 using analytical results of Eq. 5 and Eq. 13; and 
b) the mass blocks using analytical results of Eq. 6 and experimental data (Test#17).
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In Fig. 13, typical force-displacement responses are also presented for both the analytical 
and experimental data, showing that the numerical model can accurately follow the experi-
mentally observed behavior. 

Figure 13: Comparison of force-displacement responses of the PreWEC1 system 

Finally, Fig. 14 presents the error obtained between peak rotation responses as computed 
by the model of Eq. 13 and experimental data, where positive values correspond to underes-
timation of the peaks while the negative peaks reflect overestimation of the peak responses. It 
is seen that the model is able to accurately capture the maximum responses established from 
the shake table tests, while the measured error remains below 10% for most of the cases. A 
mean value computed from all the absolute error measures was found to be approximately 5%. 

Figure 14: Estimated error for the maximum peak responses predicted by the analytical model 

5.2 PreWEC-1/2 systems 

Fig. 15 presents the analytical solutions for the free vibration motion of these PreWECs 
conducted by the model of Eq. 13 (where 0LinkBeamF = and 0gu = ) using a) four, and b) six O-

connectors. Note that a value of 1 2.5 oc I=  was selected in this case. Also included in this fig-

ure are experimentally recorded responses. For both cases, the free vibration responses closely 
match measured responses.  
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Figure 15: PreWEC-1 and PreWEC-2 Models vs experimental results of free vibration tests. 

6 CONCLUSIONS 

An analytical approach for estimating the dynamic response of PreWEC systems is intro-
duced in this paper. The proposed method uses the Housner’s model as the basis for develop-
ing the equation of motion, while allowing a migrating rotation center that was defined based 
on the contact length-rotation relationship by the Aaleti and Sritharan method [1]. Energy dis-
sipation in the proposed model consisted of a) an impact mechanism that was expressed per 
the Kalliontzis et al. approach [4], b) hysteric dissipation provided by the O-connectors, and c) 
empirically selected continuous damping mechanisms, which additionally served as numerical 
damping parameters for solving the equation of motion.  

Validation of the analytical model used two independent experimental investigations con-
ducted using: a) shake table, and b) free vibration testing. Comparison with these experi-
mental results show that the model developed for the PreWEC with hysteric energy 
dissipation is appropriate for both cases.  
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Abstract. It has been shown that assemblies of large rocking bodies have remarkable seismic 

stability and minimal residual displacement. Such dynamic response characteristics make 

freely rocking systems desirable for their superior seismic performance, but challenging to 

design. In Russia and the former Soviet Union structures have been constructed with an inten-

tionally “soft story” that comprises rocking columns able to take the seismic displacement. 

The uplift of the columns works as a mechanical fuse and limits the forces transmitted to rest 

of the structure. This paper describes an experimental investigation of the dynamic response 

of specimens comprising an elastic single-degree-of-freedom system fixed to a rigid beam that 

is rocking on rigid columns. The goal of the tests is to verify and validate the dynamic rocking 

model of a two-degree-of-freedom system of such rocking podium structures. The time history 

responses computed using the numerical model are in good agreement with the results ob-

tained in the experimental tests. Furthermore, the model predicts both the rocking column ro-

tations and the superstructure deformation relatively well. The prediction is better for smaller 

tilt angles. 
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1 INTRODUCTION 

Base isolation has been used for decades. It decreases the design forces of the superstruc-

ture and takes most of the displacement demand through a soft and specially designed layer 

between the structure and the ground. Usually this soft layer comprises either rubber or (con-

cave) sliding bearings. Simplified models, experimental validation of them, and code provi-

sions have resulted in the increasing use of seismic isolation. 

In Russia and the former Soviet Union states another method of seismic isolation has been 

used. The soft layer does not comprise bearings placed under the base slab, but the entire bot-

tom story intentionally designed as “soft”. Its concrete columns are designed to uplift and sus-

tain rocking motion during an earthquake. Thus, the design forces of the superstructure are 

controlled by the uplift force of the bottom story. The critical design parameters for such po-

dium building structure are the geometric properties of the columns. Column ends are protect-

ed by steel plates to avoid concrete crushing when they uplift (Figure 1). Unlike for concave 

or lead-rubber bearings (which have a hysteretic form of damping that results in residual dis-

placements) energy dissipation due to uplift and rocking is instantaneous and happens at every 

impact. Therefore the rocking podium system has minimal (if any) residual deformation and 

has a resilient behavior. Added dampers can be used to diminish the magnitude of the rocking 

motion. Interestingly, full-scale dynamic tests of rocking podium structures have been per-

formed on real structures. The structures were excited using a hydraulic jack to push the struc-

ture to an initial displacement and then release it [1, 2]. It should be mentioned that this 

system does not rely on the size of the rocking elements for its stability, as the rocking isola-

tion techniques proposed for solitary columns or rocking assemblies do [3–60]. 

The force-displacement response of concave friction-pendulum and lead-rubber bearings 

can be approximated by a bilinear envelope curve with positive stiffnesses. This allows for a 

rough approximation of the base isolated structure response using a secant stiffness linear 

model with viscous damping [61, 62]. On the contrary, a rocking podium structure has nega-

tive post-uplift stiffness (the restoring force decreases as the lateral displacement increases). It 

has been proven that these kind of systems cannot be approximated by a SDOF elastic sys-

tems and, hence, the widely used elastic response spectra are not applicable [12]. 

This paper presents a simplified model to describe the behavior of an elastic structure sit-

ting on a rocking podium. The model was validated using the results from small-scale exper-

iments performed in the Swiss Federal Institute of Technology (ETH) in Zurich, in the 

context of the Masters Semester project of the 2nd and 3rd author. 

 

Figure 1: Left: Basement with rocking columns. Right: Close up of a column out of reinforced concrete. [1] 
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2 DYNAMIC MODEL 
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Figure 2: Dynamic model of a rocking podium structure. Left: Initial position. Right: Rocking position. 

In order to gain insight into the behavior of rocking podium structure, an elementary planar 

analysis can be performed using a simple 2-DOF model. The parameters of the model are 

shown in Figure 2. It comprises two rocking columns (N = 2), one cap beam, and a SDOF 

system fixed to the beam. The elastic behavior of a more complex superstructure is described 

using an equivalent SDOF elastic system, thus neglecting any higher modes effects. The col-

umns and the slab are assumed to behave rigidly. Two dimensionless parameters γ and η are 

introduced. 
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The SDOF system on top with the mass mt has a fixed-base natural frequency ωs and a vis-

cous damping ratio ζ. Using a Lagrangian formulation, the following equations of motion are 

obtained: 
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where IC is the rotational moment of inertia of one column around its center of mass. The 

slenderness α of the column (Figure 3a) controls the magnitude of the forces transferred to the 
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superstructure. The ground acceleration that leads to the uplift of a single rigid column, and 

therefore initiates rocking motion, is: 
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Figure 3: a) Column. b) State of the structure at incipient uplift. c) Forces at incipient uplift. 

The contact forces acting on a single column right at the verge of uplift, rotating around 

point O, are shown in Figure 3c and given in equation (5). 

 
( ) ( ) ( )( )2 22 2
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For the model under consideration, the principle of virtual work at incipient uplift gives: 

 ( ) ( ) [ ]22 2 2 2 2 0
c b g s t t s t t c b t

Hm Hm u m u m u H Bm Bm Bm gδθ δθ ω ζω δθ+ − + − + + =ɺɺ ɺ  (6)

The SDOF superstructure will always start to oscillate before the columns start to rock be-

cause rocking starts only when the ground acceleration reaches the uplift limit of the podium 

structure. This limit not only depends on the ground acceleration üg but also on the actual dis-

placement ut of the top mass (Figure 3b). Equation (6) leads to the two following thresholds 

for the podium structure uplift acceleration üg: 
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Hence, the uplift acceleration for the podium structure can be higher or lower than g tan(α), 

the uplift acceleration for a single rocking column (equation (4)). 

As soon one of the thresholds in equation (7) is reached, the rocking motion of the podium 

structure starts. When the structure rocks back and hits the ground it is assumed to have 
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stopped rocking until equation (7) is fulfilled again – this could happen instantly, or not at all. 

There are limitations for this assumption: if the top mass is light a structure might not start 

rocking again in the numerical model although it could do so in reality. This, however, was 

not the case in the conducted experiments since only relatively top-heavy superstructures 

were used. A different approach is needed to model the response of rocking podium structures 

with light superstructures.  

The model dissipates input energy through structural damping of the SDOF model of the 

superstructure and through rocking impacts. Since the podium structure model has two de-

grees of freedom, two equations are necessary to formulate the energy loss. The model pro-

posed by Housner [63] assumes that impact happens instantaneously and that the contact 

forces are concentrated at the new pivot point. For a solitary column this means that the angu-

lar momentum about the new pivot point is conserved. Applying Housner’s assumptions to 

the 2-DOF model led to the first equation. The second equation was derived by assuming that 

the horizontal velocity of the top mass mt stays the same before and after impact [13, 43]. 

Thus, the coefficient of restitution for the 2-DOF system was derived: 
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Equation (8) can be compared to the expressions for coefficient of restitution of other, 

simpler, systems. With η = γ = 0 it yields exactly what Housner proposed for his rigid block, 

and with η = 0 it yields the solution of Makris and Vassiliou [39] for an array of free-standing 

columns capped with a free-standing rigid beam.  

Uplift of the podium structure affects the vibration properties of the SDOF superstructure 

[7, 27, 58]. An eigenfrequency analysis reveals that there are two distinct mode shapes of the 

podium structure: one is overturning of the rocking frame structure with a natural frequency 

of 0 Hz, and the other is the vibration of the SDOF system when the rocking frame structure 

is uplifted. In this state the natural frequency of the SDOF fs,u is amplified compared to its 

fixed-base counterpart, fs, and is given by equation (9): 

 

( ), 2

3 3 1

3 3 sin 1
s u sf f

γ η

γ η α

+ +
=

+ +
 (9)

For top-heavy structures (η → ∞ ) the amplification factor simplifies to sin-1(α). 

3 SPECIMEN AND TEST SETUP 

The 2-DOF model presented in the previous section was instantiated in the lab using two 

frames on top of each other, the first representing the rocking podium, and the second one 

representing the elastic SDOF system (Figure 4). In order to allow for replacements or im-

provements during the testing campaign, the specimen was screwed together. The base plate 

was fixed to the shake table. The material used for the specimens and the setup, apart from the 

steel masses on top, was aluminum (EN AW-6060). 

The rocking podium structure (i.e. the first story) has a total height of 500 mm and a col-

umn slenderness α of 0.1385 rad, determined by the column width of 69.7 mm. The two 

480 mm tall columns are identical, and stiff enough to be modelled as rigid. To achieve a high 

stiffness, each column is built out of two hollow 60 mm x 60 mm x 4 mm sections. Rectangu-

lar plates (5 mm x 50 mm x 400 mm), two at the bottom and two at the top of the columns are 
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used to connect the columns into a rigid frame. When rocking, the frame is assumed to rotate 

around the outer edges of these plates. 
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5 6
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1516
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hc
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Figure 4: Left: front view of the specimen with locations of the infrared markers. Right: 3D view of the speci-

men. 

The elastic SDOF superstructure was fixed to the aluminum plate positioned on top of the 

rocking columns. It comprises two elastic columns, the top plate, the top weights, and the 

connecting L-sections. The height of an aluminum sheet representing the elastic column is 

441 mm, the thickness is 3 mm and the depth is 400 mm. The connecting extruded L sections 

have a length of 400 mm and a cross section of 60 mm x 40 mm x 5 mm.  

 

Part 
Mass Quantity Ground Columns Beam Top 

[kg] [-] [kg] [kg] [kg] [kg] 

base plate 10.96 1 10.96 
   

slide restrainers 0.54 8 2.16 
 

2.16 
 

1 rigid column setup 3.94 2   7.88 
  

middle plate 11.09 1   
 

11.09 
 

L section 0.56 8   
 

2.24 2.24 

1 elastic column 1.56 2   
 

1.56 1.56 

top plate 7.88 1   
  

7.88 

top weights 7.92 2       15.84 

Total 65.57   13.12 7.88 17.05 27.52 

Table 1: Masses of the different parts. 
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Table 1 shows the weights of the different parts of the experimental setup, including 

screws and other small parts. The mass of the elastic columns of the superstructure is evenly 

distributed to the top and bottom mass. 

Then the mass ratios are: 

 17.05
2.16

7.88

27.52
3.49

7.88

b

c

t

c

m kg

N m kg

m kg

N m kg

γ

η

= = =

= = =

 (10)

3.1 Similitude Analysis 

The above mentioned model dimensions were chosen so that it reproduces, as closely as 

possible, a typical full size prototype podium structure. The main laboratory constraint was 

the size of the model, which resulted in a scaling down of the rocking column length dimen-

sion by a factor of 6 (given that a typical floor would have a height of 3.0 m). The other prop-

erties of the model were chosen so that similitude is maintained. The similitude analysis 

between the Prototype full-scale podium structure and the Model is shown in Table 2. 

 

 Parameter Prototype Model 

Story height  3.0 m 500 mm 

Excitation frequency  
pf   6

p
f  

Superstructure period  0.544 s  0.222 s 

Mass ratio γ  2.16  2.16 

Mass ratio η  3.49  3.49 

Table 2: Properties of the Prototype and Model podium structures. 

The fundamental vibration of the prototype superstructure was targeted to be in the range 

between 0.5 s and 0.6 s, chosen as typical for a 5-story masonry building. The fundamental 

vibration period of the fixed-base superstructure model was 0.222 s, corresponding to a fun-

damental period of 0.544 s for the prototype. The mass ratio γ = 2.16 (Table 1) is larger than 

what may be expected (as the slab weight would be much larger than the total column weight) 

but lower values were not possible in the lab, given that the model column had to be practical-

ly undeformable under its loads. The uplifted period was measured at 0.145 s which is 1.53 

times smaller than the fixed-base natural period of 0.222 s, confirming the value that equation 

(9) predicts, namely 1.53. 

3.2 Experimental Setup 

The experimental setup is shown in Figure 5. To avoid sliding, restrainers were added to 

the baseplate. The green steel columns and plywood plates were used for safety reasons and to 

prevent the specimen from collapsing.  
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Figure 5: Left: Front view of the specimen. Right: Overturned specimen at the end of the test. 

3.3 Excitation 

The ETH 1-D shaking table was used to apply a base motion to the specimen. It is support-

ed by roller bearings and actuated using servo-hydraulic actuators to move only in one hori-

zontal direction. The stroke of the table is 250 mm, and the maximum velocity is 225 mm/s. 

Each specimen was tested using 12 different symmetric Ricker wavelets and 12 different anti-

symmetric Ricker wavelets. 
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Figure 6: Left: Symmetric and antisymmetric Ricker wavelets. Right: Shake table motion limits 
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A Ricker wavelet approximates the main pulse of pulse-type ground motions [64]. Typical 

symmetric and antisymmetric Ricker wavelets are shown in Figure 6. The acceleration ampli-

tude, ap, and period, Tp, of a Ricker wavelet are discussed further in [33, 65]. The Ricker 

wavelets used in this study had acceleration amplitudes of ap = {0.20, 0.25, 0.30}g and the 

pulse periods of Tp = {0.20, 0.30, 0.40, 0.50}s. At the Prototype scale these values correspond 

to periods of {0.49, 0.74, 0.98, 1.23}s. 

For 3 out of the 24 different Ricker wavelets the shake table would reach its motion limits 

(Figure 6), namely the velocity limit of 225 mm/s. For our study this did not pose any prob-

lems. The acceleration and displacement output of the shake table was measured in all tests 

and subsequently used as input for the numerical model for comparison. Unfortunately, the 

shaking table reproduced the command motions with different degrees of accuracy during the 

test campaign, depending on the characteristics of the motion and numerous factors associated 

with the state of the shaking table.  

3.4 Data Acquisition System 

An Optotrak Certus System, manufactured by Northern Digital Inc., was used to track the 

position of the specimens during the tests. This system uses active infrared-emitting diodes as 

markers and a trinocular camera system to determine the position of the markers (Figure 4). 

Three markers (1, 2, 3) were placed on the shake table and parts of the specimen rigidly con-

nected to the shake table. These markers were used to define a rigid plane; the displacements 

measured during the tests were relative to marker 1. Eight other markers (5-8 & 13-16) were 

placed on the moving parts of the specimen to measure their position. The built-in tools of the 

Optotrak Certus System software were able to measure angles, either in 2D or 3D, between 

lines defined by two markers. Lines defined by markers 1-2 and 5-7 were used to identify the 

rocking angle in real time during the experiments. Other output parameters were defined to 

show the out-of-plane behavior of the specimen, to measure the differential rotation of the 

middle and top plate compared to the base plate. The position sampling frequency was 250 Hz. 

The accuracy of the system has been determined in previous experiments [56]. In the x- 

and y-directions in the plane where rocking motion takes place, the accuracy is about 

0.02 mm. In the z-direction, perpendicular to the plane of motion, the accuracy is about 

0.10 mm. 

3.5 Experiment Outcomes and Observations 

Table 3 lists the 24 tests with Ricker wavelets, numbered for reference.  

 

No. Excitation type ap [g] Tp [s] Exp. Num. 

1 Antisymmetric Ricker 0.20 0.20   

2 Antisymmetric Ricker 0.20 0.30   

3 Antisymmetric Ricker 0.20 0.40   

4 Antisymmetric Ricker 0.20 0.50 overturn overturn 

5 Antisymmetric Ricker 0.25 0.20   

6 Antisymmetric Ricker 0.25 0.30   

7 Antisymmetric Ricker 0.25 0.40   

8 Antisymmetric Ricker 0.25 0.50 overturn overturn 

9 Antisymmetric Ricker 0.30 0.20   

10 Antisymmetric Ricker 0.30 0.30   
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No. Excitation type ap [g] Tp [s] Exp. Num. 

11 Antisymmetric Ricker 0.30 0.40   

12 Antisymmetric Ricker 0.30 0.50  overturn 

13 Symmetric Ricker 0.20 0.20   

14 Symmetric Ricker 0.20 0.30   

15 Symmetric Ricker 0.20 0.40   

16 Symmetric Ricker 0.20 0.50   

17 Symmetric Ricker 0.25 0.20   

18 Symmetric Ricker 0.25 0.30   

19 Symmetric Ricker 0.25 0.40   

20 Symmetric Ricker 0.25 0.50   

21 Symmetric Ricker 0.30 0.20   

22 Symmetric Ricker 0.30 0.30   

23 Symmetric Ricker 0.30 0.40   

24 Symmetric Ricker 0.30 0.50 overturn  

Table 3: List of tests with Ricker wavelet excitation 

Typical test response is one where the frame uplifts and rocks without overturning, without 

out-of-plane motion, or stepping or sliding on the rocking surface, and where the superstruc-

ture SDOF vibrates in its uplifted frequency. The following deviations in specimen response 

were observed: 

� Sliding:  

Two different types of sliding were observed. One type was sliding occurring at every 

impact during rocking and the other type was sliding occurring when there was no rock-

ing. The amount of sliding during the rocking motion was small, and very difficult to 

detect in measured data (the transition from one edge of the rocking column to the other 

was usually fast and clear).  Sliding while the columns were not rocking was signifi-

cantly larger and could be detected in measurements. Such sliding occurs because the 

still-vibrating SDOF superstructure excites the podium frame, causing the relatively 

light columns to overcome friction at their bases and slide. Restrainers were placed near 

the column bases to keep such sliding to a minimum (< 0.3 mm) for small and light 

specimens tested in this study. 

� Out-of-plane movement: 

The large number of rocking interfaces (2 rocking columns with 4 rocking edges each) 

accompanied by unnoticeable but still present imperfections and asymmetry caused 

small out-of-plane movements during a few tests, accumulating to 2 mm in the worst 

case. 

4 COMPARISON BETWEEN EXPERIMENTAL AND ANALYTICAL RESULTS 

The objective of the experimental campaign was to validate the analytical model of a rock-

ing podium structure presented in the Section 2. The specimen was tested against 12 different 

symmetric and antisymmetric Ricker pulses. Figures 9-32 compare the numerical and experi-

mental time histories of the normalized tilt angle (θ/α), the absolute and relative top mass dis-

placement (uT and uT-uB), and the accelerations of the ground, beam, and the top mass (aground, 

abeam, and atop). For the numerical solution, the measured shaking table (i.e. ground) accelera-

tion was used as input. 
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Even though some tilt angle time histories were captured very well by the numerical solu-

tion, it is generally difficult to predict the entire time history correctly. Unlike elastic systems, 

the “period” of rocking oscillators strongly depends on their amplitude of vibration. In turn, 

the amplitude depends on the energy dissipated at each impact. Therefore, any error intro-

duced grows larger, since the solution goes out of phase with the experiment. This confirms 

the observations of many researchers and suggests that a stochastic (rather than a determinis-

tic) treatment of the rocking problem should be employed. 

Nevertheless, for analytical pulses, where the maximum tilt angle occurs in the beginning 

of the time history, the matching in terms of tilt angle maxima is generally good, even though 

the shake table controller was not able to enforce a clear pulse motion. Figures 7 and 8 

demonstrate this match by comparing the maximum tilt angles. For small absolute tilt angles 

(θ/α < 0.5) the results compare better. As the tilt angles increase, the negative post-uplift stiff-

ness of the rocking structure affects the highly nonlinear behavior more and more, leading to 

larger discrepancies between the computed and measured maximum tilt angles. 

 

Figure 7: Comparison of computed and measured maximum normalized tilt angle θ/α  

 

Figure 8: Comparison of computed and measured maximum tilt angle θ  
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The maximum superstructure deformation (uT-uB) is also captured quite well, with an aver-

age error of 8% (Table 4). The tests highlighted in gray were not taken into account because 

in these tests either the numerical and/or the experimental model overturned. 

 

Antisymmetric Ricker 
 

Symmetric Ricker 

No. Exp. Num. 
 

No. Exp. Num. 

[-] [mm] [mm] 
 

[-] [mm] [mm] 

1 5.03 6.09 
 

13 4.61 4.39 

2 6.48 6.20 
 

14 5.92 6.53 

3 8.27 7.49 
 

15 8.14 7.26 

4 5.83 4.47 
 

16 8.51 7.60 

5 5.93 5.82 
 

17 5.54 4.53 

6 8.79 7.77 
 

18 6.57 6.14 

7 8.63 7.51 
 

19 8.34 7.10 

8 4.54 4.50 
 

20 7.74 7.15 

9 6.46 6.16 
 

21 6.69 5.30 

10 7.83 6.49 
 

22 8.35 6.82 

11 8.55 8.40 
 

23 8.02 7.40 

12 8.44 3.74 
 

24 6.63 7.43 

Table 4: Comparison of computed and measured superstructure deformation uT-uB [mm]. Overturning occurred 

in tests highlighted in gray. 

The recorded motions of the top mass and have a pronounced high frequency component. 

This component is attributed to the rocking impacts. It cannot be captured by the analytical 

model, since the impacts excite higher modes of vibration which are not taken into account in 

the analytical model. 

5 CONCLUSIONS 

A small-scale model of a rocking podium structure was constructed and tested. A 2-DOF 

analytical model of a rocking podium structure was derived and verified and validated against 

the test results. The computed responses compare well to the test results in terms of the max-

imum tilt angle and peak superstructure deformation, as well as in terms of the eigenfrequen-

cy of the superstructure in the uplifted state. The computed and measured response time 

histories generally do not match equally well because rocking motion is very sensitive to im-

perfections at the rocking surfaces, imperfections in the specimens and errors in applying the 

excitation. The above observation urges for a probabilistic treatment of the rocking problem. 
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6 TIME HISTORIES 

 

Figure 9: Test No. 1: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 10: Test No. 2: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 11: Test No. 3: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 12: Test No. 4: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 13: Test No. 5: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 14: Test No. 6: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 15: Test No. 7: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 16: Test No. 8: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 17: Test No. 9: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 18: Test No. 10: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 19: Test No. 11: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 20: Test No. 12: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 21: Test No. 13: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 22: Test No. 14: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 23: Test No. 15: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 24: Test No. 16: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 25: Test No. 17: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 26: Test No. 18: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 27: Test No. 19: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 28: Test No. 20: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 29: Test No. 21: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 30: Test No. 22: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 31: Test No. 23: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Figure 32: Test No. 24: Time histories for: tilt angle θ/α, top displacement uT, relative top displacement uT-uB, 

ground acceleration, beam acceleration, top mass acceleration 
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Abstract. Following the work by Psycharis [1], in this paper we study the dynamic behavior 

of a rocking block resting on an elastic Winkler-type foundation for the out-of-plane seismic 

assessment of masonry walls. The equations of motion are derived and implemented for the 

simple smooth-rocking block and the calibration of the Winkler-type foundation stiffness is 

carried out according to the experimental results available in the literature. The dynamic 

response under natural seismic records is evaluated and the effect of the stiffness on the 

overall response is analyzed for different natural accelerograms. Both demand and capacity 

are calculated with reference to the kinetic and potential energies of the system and different 

intensity measures are considered with the aim of identifying the most representative one for 

the rocking motion. Finally, a comparison between non-linear time history analyses and a 

possible energy-based approach is discussed.  

1 INTRODUCTION 

The out-of-plane rocking of masonry walls is the most recurrent mechanism triggered by 

earthquake shocks in historical constructions. This is why, increasing interest is shown in the 

study of this type of mechanism for the purpose of predicting existing buildings responses 

during a seismic event. Even though this behavior is complicated to capture, it is seen that 

could be well represented by means of a single degree of freedom oscillator. This simple 

approach has been often preferred to more complex models, which, while having greater 

chance to better grasp the response, may present inherent difficulty in the choice of inputs 

parameters. 

The first major study on the behavior of slender structures subjected to rocking motion was 

carried out by Housner [2] in the well known “The behavior of inverted pendulum structures 
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during earthquakes”. He described the rocking motion with a model that included a linear 

force-displacement relation for the block and damping concentrated at impacts. Thanks to this 

simple but powerful approach, which proved able to reproduce the main feature of rocking 

behavior, Housner was the first to point up that a gravity structure can exhibit significant 

capacity towards overturning by tilting/rocking. Recently it has been demonstrated that the 

same model may be extended also to study the response of a wider set of mechanisms 

developed by masonry constructions (Mauro et al. [3]). After Housner fundamental study, 

many other authors have defined different force-displacement relationships for describing the 

motion of the block from the triggering of the mechanism until the out-of-plane collapse. In 

2002 Doherty et al. [4] presented a trilinear curve used to reproduce the nonlinear force–

displacement relationship obtained experimentally for unreinforced brick masonry walls. In 

Shawa et al. [5], starting from existing rocking models, a new three-branch model is 

formulated which takes into account the asymmetry resulting from the restraint provided by 

transverse walls and the out-of-plumb of the block. Ferreira et al. [6] proposed a simplified 

analytical approach based on a linearized four-branch model used to characterize the response 

of stone masonry sacco walls in terms of overturning moment-rotation relationship. The 

models adopted so far in literature proved able to reproduce the rocking of masonry blocks 

tested in laboratory. Nevertheless, their main drawback depends on the fact that, in order to 

increase the accuracy, the number of parameters is increased and that these parameters may 

lack a physical meaning. 

In this paper, a smooth single degree of freedom model is presented for reproducing the 

rocking behavior of masonry walls. With respect to the Housner model, only one parameter is 

added which consists in the stiffness of the foundation represented with a set of unilateral 

springs. 

2 GENERAL FORMULATION OF THE PROBLEM 

As mentioned before, the most known rocking block in literature is the one developed by 

Housner [2] that can only oscillate alternatively around the two pivot points O and O' (Figure 

1, a). Therefore it is assumed that the static friction coefficient between the block and its base 

is high enough for sliding to be negligible, verified hypothesis for adequately slender objects.  

Figure 1. Comparison between the rigid model (a) and the smooth-rocking model (b). 
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This inverted pendulum has only one degree of freedom, the tilting angle θ from the vertical 

position and its motion under a horizontal ground acceleration  ̈g can be described by 

equation 1. The significant parameters are the moment of inertia of the block I0 about the 

point 0, the restoring moment MR, that depends on wall geometry and self-weight W=g m, 

and the ground acceleration  ̈g . Symbols are depicted in Figure 1. 

    ̈              ))      ̈              )  )   ) 

The block will initiate rocking only if the ground acceleration is greater than a threshold value 

depending on its slenderness α. During rocking, motion is interrupted by subsequent impacts 

at the pivot points with consequently dissipation of energy [7]. In this paper, such 

phenomenon is treated as in Housner [2], by reducing the angular velocity when the block 

passes the resting position, as shown in eq. (2). 

 ̇
 
    ̇

   ) 

where  ̇
 
 and   ̇

 
are the angular velocities before and after impact, respectively. The equation 

of motion (1), together with the impact treatment, equation (2), have been implemented in 

Matlab R2015b and integrated numerically using a Runge-Kutta algorithm with integration 

step and tolerances sufficiently appropriate to guarantee an adequate accuracy of the solution.  

2.1 The smooth-rocking moment-rotation relationship 

Various experimental evidences ([4]) have shown that the actual response of masonry walls 

loaded out-of-plane may be far different from the rigid (bilinear) moment-rotation relationship 

assumed by Housner [2]. More precisely, when dealing with brick or stone masonries, a 

smoother response has been observed ([6]). In this paper, in order to better simulate the actual 

behavior of masonry walls, a smooth restoring moment-rotation is obtained by considering a 

rigid block resting on a Winkler-type foundation (Figure 1b). This approach makes it possible 

to introduce only one additional parameter with respect to those defined by Housner, precisely 

the stiffness k of the springs on which the wall is resting. 

The equations relative to the Winkler-type foundation, derived in Shawa et al [6] for the case 

of one-sided rocking, are here reported for the two-sided case (eq. 3) where MR is the 

restoring moment, θcr is the relative rotation corresponding to lift-off of the block, the other 

symbols have the same meaning as in Housner [2] (Figure 1b).  

                )   )           )  
 

 
               

    (3)                 )   )  
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The vertical component of the displacement is neglected during the motion of the block and 

the rotations instead are considered sufficiently small. In order to model the inability of the 

ancient mortar to sustain tensile stresses, it is assumed that the block is just resting on the 

springs, without any bond between them. In particular, the moment-rotation curve presents 

two fictitious branches corresponding to the case where the coupling of the springs is 

perfectly reagent (θ ≤ θcr), and the case where contact is lost in one of the base edges and a 

limited portion only of the base section is reacting (θ > θcr).  

In Figure 2 the moment-rotation relationship for a block having 2b = 0.25 m and 2h = 3 m and 

a specific weight of 12.06 kN/m
3
 is presented, comparing the results for different values of the

stiffness k. For finite values of k, a linear behavior is exhibited until θ ≤ θcr, then the response 

suddenly curves to the maximum allowable restoring moments and then goes to an almost 

linear branch with negative stiffness until the ultimate rotation is reached. Noteworthy, the 

maximum rotation the block can bear without overturning is not reached for θ = α as in the 

Housner [2] oscillator but it also depends on the stiffness of the springs and is derived here 

numerically starting from equation 3b). When the foundation springs are very stiff, the block 

is expected to behave as if it was rocking on a rigid foundation, therefore, for k → ∞, the 

second branch of the restoring moment-rotation curve (θ > θcr ) tends to WR sin(α –θ) and the 

first branch tends to infinity in the vertical direction.  

Figure 2. Moment rotation variation for different stiffness values. 

It is worth underlining that the curves represented in Figure 2 by varying the values of k 

resemble those obtained by de Felice [8] for multi-leaf walls exhibiting failure for 

disaggregation because of the absence of connection throughout the thickness of the wall. 

Accordingly, the introduction of the parameter k would make it possible to fictitiously 

account for any losses of monoliticity of the wall by reducing its restoring moment and 

ultimate displacement capacity. 
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The free oscillatory motion of a block occurs with a period which, as known, is a function of 

the maximum angle of rotation that is reached during the motion. In Figure 3, there are shown 

the values of the period of a block, obtained numerically according to the maximum rotation 

θu referring to different value of stiffness k. For initial rotation θ0 < θcr the period T is constant 

and corresponds to oscillations without partialization of the base joints. When approaching 

the overturning rotation periods tends to infinity. 

Figure 3. Period T of block laying in different stiffness layer rocking with amplitude θ0. 

3 CALIBRATION OF THE STIFFNESS K BASED ON EXPERIMENTAL DATA 

The equations of motions (eq. 3 and eq. 2) have been implemented in Matlab R2015b and 

integrated using the ode solver. Different integration options have been considered in order to 

better evaluate the response of the block. Aiming at investigating the feasibility of the 

proposed approach some comparisons with experimental data are briefly reported. 

3.1 Static tests 

The first comparison is made with respect to the experimental results presented by Ferreira et 

al. [6] which have performed static tests on six full-scale (1.3m x 0.65m x 2.50 m) 

unreinforced regular sacco stone masonry specimens subjected to horizontal out-of-plane 

loading and three different vertical loadings N.  Here are compared the results of the wall 

without force on the top (N = 0 kN) undergoing a uniform pressure applied by means of an 

airbag. Among the others setups tested, the wall selected exhibited a cracking pattern which is 

more in line with the assumption made in the present work, i.e characterized by a single crack 

at the base, while the other tests yielded to a bending-rocking pattern. The results reported in 

Figure 4, confirms that the proposed approach is able to fit reasonably well the response of a 

masonry wall undergoing static overturning forces. The image representing the cracking 

pattern is taken from [12]. 
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Figure 4. Overturning moment-rotation curves for airbag tests compared to the smooth model. 

 

3.2 Dynamic tests 

 

El Gawady et al. [9] performed some free rocking experimental tests of walls rocking on 

foundations made of different materials. Each block was initially tilted to an angle θ0, held 

still, and then released with zero angular velocity at time t = 0, thereafter rocking back and 

forth freely. In order to validate the equations of motion derived for free vibrations, we are 

comparing here the results for three different interface material: concrete, 4-layer rubber and 

timber for a block with aspect ratio 5. The parameters to calibrate for fitting the curves are 

two: the stiffness k and the coefficient of restitution η because they both depend on the 

foundation material. The parameter k has been calibrated referring to the half-period – 

rotation graphics starting from typical stiffness values for each interface material. Then the 

coefficient of restitution η is calibrated in order to better fit the rest of the experimental data. 

The results in figure 5 demonstrate that the proposed model can fit rationally well the free 

vibration of blocks resting on foundation made by different materials. 
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Figure 5. Comparison between experimental results and smooth model free oscillations on different interface 

material. 

 

4 ASSESSMENT STRATEGIES FOR THE SMOOTH-ROCKING BLOCK 

For the purpose of understanding how actual walls behave during the rocking motion, in this 

section we compare the non-linear time-history analyses of the smooth-rocking block with 

Italian code-procedures [10] and a possible energy-based approach [11]. Given the strong 

numerical integration sensitivity, a parametric analysis varying from time to time the 

accelerograms is performed. The latter varies in a purely random way by multiplying both the 

time-axis and the acceleration-axis with random coefficients belonging to a normal 

distribution having 3% coefficient of variation and unity mean [5]. Four walls, having (2b, 

2h) = (0.125, 1.5), (0.20, 3.0), (0.25, 3.0), (0.375, 3.0) m, are considered. The four 

accelerograms of table 1 are used, whose amplitudes are scaled with ten coefficients varying 

from 0.2 to 2.0. 

 

Earthquake  Year Mw   Station Soil type  Record PGA (g)  PGV (m/s) 

Irpinia 1980 6.9 Bagnoli Irpino A BagnirWE 0.167 0.377 

Umbria-Marche 1997  6.0 Nocera Umbra B R1168EW 0.438 0.280 

Irpinia 1980 6.9 Calitri B CalitWe 0.181 0.317 

Irpinia 1980  6.9 Sturno B SturWE 0.313 0.700 

Table 1: Accelerograms selected to perform numerical analyses. 

 

From each dynamic analysis an energy demand/capacity ratio, ED/EC, is obtained as 

originally proposed by Shawa et al. [5] for the rigid model while closed form solution 

equations are derived for the smooth model. In particular, the capacity EC is evaluated as the 

area underneath the restoring-moment – rotation curve and differs from block to block (Fig. 
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6b). The demand ED is evaluated as the maximum potential energy recorded during the 

motion if θ < θu, or otherwise, as the sum of potential and kinetic energies evaluated at θ = θu.  

Moreover, a reduced coefficient of restitution, η = 0.85, which multiplies angular velocity 

before impact to give angular velocity after impact, is used, based on experimental results. 

Each dot in the following figures represents the median demand/capacity ratio out of one 

hundred time histories, in order to account for the scatter of the response. A total of 16 000 

time history analyses have been performed. 

The demand/capacity ratio of the smooth-rocking block is then compared with force-based 

and displacement based procedures. In particular, for the force-based assessment procedure it 

is checked ED/EC in comparison to PGA/(2a0
*
) where PGA is the Peak Ground Acceleration, 

2 is a behavior factor and a0
* 

 is defined in equation 4, where λ0 is the static collapse load 

multiplier of the mechanism at rest and its value is calculated as tan(α), while e
*
 = 1 defines 

the participating mass and CF = 1 is a confidence factor.  

  
   

   

     
  (4) 

As far as regards the displacement-based procedure, the comparison is made between the 

demand/capacity ratio and the fraction between the spectral demand evaluated for the secant 

period SDe(Ts) and the displacement capacity du
* 
. 

 

Then, a possible energy based verification is considered as initially introduced by Sorrentino 

et al. in [11]. In this case, the verification is satisfied if the kinetic energy KE, multiplied by 2, 

is not larger that the area below the skeleton moment-rotation curve (E0) of the rigid block. 

The kinetic energy of the system is defined considering instead of the translational velocity v, 

the Peak Ground Velocity (PGV) of each accelerogram reported in table 1. Bearing in mind 

that the block motion is rotational, its kinetic energy depends on the angular velocity  ̇ 

instead of the translational one. 

The first comparison is made between the smooth block and the rigid one in terms of 

demand/capacity ratios (Figure 6). As it can be seen from the graph, the smooth model is 

probably more realistic since it reacts even in the field of small oscillations differently from 

the rigid block that starts rocking only if it is exceeded a certain threshold. Moreover the 

smooth model is less conservative as it has a smaller capacity as also shown in Figure 6b) 

which compares the various capacity curves between the four block studied, normalized with 

respect to block 4. 

 
Figure 6. Comparison between the smooth and rigid model in terms of demand/capacity ratios (a) capacity 

curves for the four blocks considered (b). 
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In the following, the behavior of masonry walls subjected to out-of-plane loads predicted by 

the proposed model is compared to the one predicted by the force-based (fig. 7a) and 

displacement-based procedures (fig. 7b) reported in the Italian code [10]. The discussion of 

the results is made in terms of conservativeness of the procedure and scatter of the response, 

measured through the coefficient of correlation R
2
 for a linear regression passing through the 

origin. When neglecting the results in which the block overturns for both numerical analysis 

and code-based procedures, force and displacement-based approaches seem very conservative 

while the energy-based approach (see fig. 8) seems less conservative also showing a slightly 

less scatter response. Currently there is a considerable scatter between non linear numerical 

analyses and simplified approaches models offset by adequate safety margins. This confirms 

the fact that the non-linear analysis prove valuable for a more physical representation of the 

phenomenon and also that the accuracy of the predictions using linear elastic spectra for 

rocking structures will always be very limited [13]. 

Anyway, further numerical analysis, considering a wider range of signals and blocks, should 

be done to better assess the level of reliability of the approaches proposed in the Italian code 

[10]. 

 

 
Figure 7. Comparison between the smooth model and code demand/capacity ratios (a) force-based  

and (b) displacement-based. 

 

 

 
 

Figure 8. Comparison between the smooth model and the energy-based approach. 
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5 CONCLUSIONS  

 In this paper, a smooth moment-rotation relationship for describing the response of 

a block subjected to rocking motion is presented and the most significant aspects of 

its behavior have been highlighted. 

 The replicated experimental tests have evidenced that the model is able to capture 

quite well the skeleton curve of the block in static conditions and the response under 

free oscillations, taking into account the stiffness of the foundation. 

 Preliminary results suggest that the model may be able to be adopted for simulating 

the behavior of walls with loss of monoliticity, but this issue should be still 

addressed in detail.  

 Comparing the results of the parametric analysis in terms of energy based ratios 

between the rigid and smooth block, it seems that the latter could be a good model 

to describe the behavior of rocking structures given that it reacts also in the field of 

small oscillations. Further numerical analysis should be done to better assess the 

reliability of code approaches. 
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Abstract. Rocking modifies the seismic response of structures, because uplifting works as a 

mechanical fuse and limits the forces transmitted to the structure. However, the engineering 

community is in general reluctant to let a structure uplift because it can overturn, and, more 

important, an unanchored structure has no redundancy against this failure mode. Using a 

safety factor for the design of a flat rocking foundation (i.e. designing it larger than minimum 

required to prevent overturning) goes against the essence of the rocking seismic isolation 

method, as the structure would end up behaving as fixed to the ground. To protect against 

overturning but preserve the ability to uplift we propose to extend the flat rocking foundation 

using curved wedges at its ends. This paper presents the results of dynamic tests of small bod-

ies rocking on curved foundations. The results compare relatively well with the analytical so-

lutions, but they are shown to be very sensitive to the coefficient of restitution. 
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1 INTRODUCTION 

Since Housner published his seminal paper [1] on rocking of rigid blocks, a plethora of 

studies on uplifting structures has been published [2-60]. The remarkable property of rocking 

blocks is that, for a given height to base slenderness ratio, they become more stable as their 

size increases. There are even cases when out of two columns with the same base, the taller 

one survived an earthquake while the shorter one did not [60]. It has also been proven that the 

presence of a cap beam atop of rocking columns, like in the case of the ancient Greek and 

Roman temples, increases the stability of the system [12, 38, 46]. These results have led re-

searchers to propose rocking as a seismic isolation technique, as the uplift works as a mechan-

ical fuse and limits the forces transmitted to the structures. However, even though some 

rocking structures have been built in New Zealand [2, 5], the former Soviet Union and Russia 

[63] and Greece [64], practicing engineers are generally reluctant to apply this method. One 

reason for that is the lack of codes and simplified methods of analysis. However, this reluc-

tance also stems on the inherent fear of engineers to design unanchored structures that may 

overturn. Engineers are used to the safety factors, where all the material, geometric, modelling 

and loading uncertainties are “hidden”.  

  

Figure 1. Top: Rigid block with curved wedges - resting position [65] 

Bottom: Rigid block with curved wedges - Phase I (rolling) and Phase II (rocking)  
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In the case of rocking foundations, when it comes to overturning “resistance”, the application 

of a safety factor would simply mean that the foundation should become larger. This goes 

against the essence of the rocking seismic isolation method, as the structure would end up be-

having as fixed to the ground. To protect against overturning but preserve the ability to uplift 

we propose to extend the flat rocking foundation using curved wedges at its ends [65] (Figure 

1). This paper presents the results of dynamic tests of small bodies rocking on curved founda-

tions. The tests were performed in the ETH Zurich within the semester project of the second 

and third author. The results compare relatively well with the analytical solutions, but they are 

shown to be very sensitive to the coefficient of restitution.  

2 REVIEW OF THE ROCKING RESPONSE OF A RIGID BLOCK. 

With reference to Figure 2 and assuming that the coefficient of friction is large enough so that 

there is no sliding, the equation of motion of a rocking block with size 2 2R h b   and 

slenderness α = arctan(b/h) for rotation around O and O’ respectively is (Yim et al. [3], Ma-

kris and Roussos [9], Zhang and Makris [10] among others) 

 ( ) ( )[ ] ( ) ( )[ ] ( )+ sin - - = - cos - - , < 0O gI θ t mgR α θ t mu t R α θ t θ t  (1) 

 ( ) ( )[ ] ( ) ( )[ ] ( )+ sin - = - cos - , > 0O gI θ t mgR α θ t mu t R α θ t θ t  (2) 

Where Io is the moment of inertia of the block around the pivot point. 

For rectangular blocks, ( ) 2= 4 / 3OI mR , and the above equations can be expressed in the 

compact form 

            2 sin sgn cos sgn
gu

t p t t t t
g

      


           


 (3) 

The oscillation frequency of a rigid block under free vibration is not constant, because it 

strongly depends on the vibration amplitude (Housner [1]). Nevertheless, the quantity 

 

 

Figure 2. Geometric characteristics of the rocking body model 
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3

4

g
p

R
  is a measure of the dynamic characteristics of the block. For the 2.0m×0.5m block 

shown in Figure 2 (e.g. a modern refrigerator), p = 2.67 rad/s, while p ≈ 8 rad/s for a typical 

clay masonry brick. When the angle of rotation reverses, it is assumed that the rotation con-

tinues smoothly from points O to O’ and that the impact force is concentrated at the new pivot 

point, O’. The ratio of angular velocity after and before the impact is 2 1=ε θ θ . Assuming 

(a) that the impact is instantaneous and (b) that all the impact forces are concentrated at the 

new pivot point, one can apply conservation of angular momentum about the new pivot point 

(Housner, [1]). This gives the following coefficient of restitution 

 2
3

=1- sin
2

ε α  (4) 

 
 

 

Figure 3 Response of blocks with different wedge curvature. Top: Lateral force – base rotation pushover re-

sponse curves; Bottom: Base moment – base rotation pushover response curves. 
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Under the action of a horizontal force F is applied at the center of mass of the block a rigid 

block does not displace until the force reaches the uplift equilibrium value. The force – rota-

tion pushover response curve of a rigid block is 

  tanF mg     (5) 

It is plotted in Figure 3 (top – dashed line). 

The base moment – rotation relationship is given by equation (6) 

 sin cosbaseM mgR a   (6) 

and is plotted in Figure 3 (bottom – dashed line). 

It is evident that the block has negative post-uplift stiffness while the base moment stays 

almost constant. An extensive discussion on the significance of the negative post-uplift stiff-

ness is offered in Makris and Vassiliou [47] and Vassiliou and Makris [58] 

3 ROLLING AND ROCKING RESPONSE OF A BLOCK ON A BASE WITH 

CURVED ENDS 

This section presents the model of a rigid block rocking and rolling on an extended curved 

base [65] (Figure 3) and briefly discusses its properties. An extended presentation of the 

above model and the numerical study of tis properties under seismic excitation is a subject of 

ongoing research and lies beyond the scope of this paper. 

The geometric properties of the block are shown on Figure 1. The added wedges are char-

acterized by their radius of curvature r and by their angle β. The curved wedges are assumed 

to be massless. When a horizontal force is applied to the center of mass of the block, the block 

stays initially at rest until the load reaches the critical value of mgtan(α). Next, the block rolls 

on the curved surface (Phase I) until the tilt angle reaches the value β. Phase II follows where 

the block rocks, i.e. rotates around the edge of the curved base. The force deformation rela-

tionships for the different cases are given in equations (7) and (8) (for positive θ): 

Phase I – Rolling: 

 
 

   

sin 2 cos sin
,

cos 2 cos 1 cos
F mg

    
 

    

 
 

  
 (7) 

Phase II – Rocking: 

 
    
    

sin 2 cos sin sin
,

cos 2 cos cos cos
F mg

      
 

      

   
 

   
 (8) 

where ρ is the normalized wedge radius of curvature: 

 
2

r

H
   (9) 

Linearization of the above equations gives: 

Phase I – Rolling: 

   2 1 ,F mg          (10) 

Phase II – Rocking: 

  2 ,F mg          (11) 
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Therefore, the post-uplift stiffness of the rolling phase is positive, if ρ > 0.5, and negative, 

if ρ<0.5. 

The base moment is equal to  

Phase I – Rolling: 

 cos 2 cot sin ,
sin

baseM

mgR
     


    (12) 

Phase II – Rocking: 

   cos 2 cot sin sin ,
sin

baseM

mgR
       


      (13) 

Linearization of the above equations gives: 

Phase I – Rolling: 

   ,baseM mg B r      (14) 

Phase II – Rocking: 

   ,base curvedM mg B B      (15) 

The F-θ and the Mbase-θ pushover response curves are shown in Figure 3. The post-uplift 

stiffness in Phase I depends on the curvature of the curved part of the base and can lie any-

where from negative to positive, resembling the behavior of the restrained rocking column 

presented in [58]. Overturning can occur either in the rocking phase, or in the rolling phase 

(when the wedge curvature is relatively large, e.g. case ρ=0.25 in Figure 3). 

The equation of motion for the Phase I is:  

 

  

      

    

2

2

2 2

2

3
cos sin 2 cos sin

2

sin 2 cos sin cos 2 cos 1 cos

3
6 cos 1 cos 3 cos cos cos

44

3

g

c

c

a

u
p

g

I

m R

     

         



       

 
     
 

  
          

  


 
 

       
 
 

 (16) 

and for the phase II it is: 

 

    

     

    

2

2 2

2

sin 2 cos sin sin

cos 2 cos cos cos

3
6 cos 1 cos 3 cos cos cos

44

3

g

c

c

u

g
p

I

m R

      

      



       

       
 
 
       
  
  
  
       
   
  

 (17) 

where p is defined as in the case of a rectangular rocking block: 
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3

4

g
p

R
  (18) 

ρ is the normalized radius of curvature: 

 
2

r

H
   (19) 

Ic is the moment of inertia of the system around its center of mass. In order to take into 

account the mass of the wedges, they need to be accounted for in the computation of Ic.  

Following Housner, it is assumed that at each impact is instantaeous and that all the impact 

forces are concentrated at the new pivot point (i.e. at a distance B from the axis of symmetry), 

the coefficient of restitution is: 

 

2
2

2

2
1 sin

post impact

pre impact c

mR
a

mR I










  


 (20) 

If the wedges are assumed massless the coefficient of restutition is given by the well 

known Housner coefficient: 

 
23

1 sin
2

post impact

pre impact

a









    (21) 

It is evident that according to the above assumptions the coefficient of restitution, and 

hence the damping, are controlled only by the slederness ratio, α, and are not influenced by 

the wedges. 

4 FREE VIBRATION TESTS OF A RIGID COLUMN WITH CURVED WEDGES  

4.1 Specimens and test setup 

A specimen consists of two columns (C), two link plates (L) and four changeable feet (F), 

all made of aluminium (Figures 4, 5 and 6). Two linked columns (instead of one) were used to 

avoid out-of-plane motion. The top feet were used because the specimens will be used in the 

future to test the response of a rocking frame on columns with curved end. For the tests pre-

sented herein, the top feet are obsolete and only result to the center of gravity being at column 

mid-height. 

The total height of all the specimens is 2H = 500mm. The horizontal projection of the 

curved feet (2 × (Bcurved + B) ) is identical in all specimens and equal to 150mm, giving 

tan(α΄) = 150/500 = 0.3. Two groups of specimens are examined: One with a flat base equal to 

2B = 50mm (tan(α) = 0.1) and one with a flat base equal to 2B = 75mm (tan(α) = 0.15). In 

each group, 4 different curvatures of the curved part are tested: flat, r = {500mm, 250mm, 

125mm}. For the curved specimens ρ = r/2H = {1, 0.5 , 0.25}. These curvatures correspond to 

a positive, zero and negative post-uplift stiffness. These geometrical properties of the speci-

mens are sketched in Figure 7 and are summarized (together with the specimen masses) in 

Table 1. 
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Figure 4. Sketch of a specimen and ist components 

 

Figure 5. Position of infrared markers 

 

Figure 6. Flat foot (left) and curved foot (right) 

 

 

2H 

[mm] 

2B+2Bcurved 

[mm] 

2B 

[mm] 

Bcurved 

[mm] 

tanα΄ 

[-] 

tanα 

[-] 

r 

[mm] 

ρ 

[-] 

β 

[-] 

mc 

[kg] 

Ic 

[kg mm2] 

1 500 150 50 –  0.3 0.1 – – – 5.717 229‘662 

2 500 150 50 50 0.3 0.1 500 1 0.100 6.331 266‘897 

3 500 150 50 50 0.3 0.1 250 0.5 0.201 6.255 262‘445 

4 500 150 50 50 0.3 0.1 125 0.25 0.412 6.391 270‘442 

5 500 150 75 – 0.3 0.15 – – – 5.737 230‘171 

6 500 150 75 37.5 0.3 0.15 500 1 0.075 6.328 267‘254 

7 500 150 75 37.5 0.3 0.15 250 0.5 0.151 6.287 265‘393 

8 500 150 75 37.5 0.3 0.15 125 0.25 0.305 5.717 261‘459 

Table 1: Geometric characteristics of the specimens 
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Figure 7. Geometric characteristics of the specimens. 

4.2 Test Method 

The specimens were tested on a flat, horizontal aluminium plate. They were tilted to an ini-

tial tilting angle and were let to move freely. The entire response time history was recorded, 

but in order to avoid experimental error due to potential unintended initial velocity, the time 

history was post processed and only the part after the maximum following the first impact 

was kept and later compared with the numerical solution. 

4.3 Data Acquisition System 

An Optotrak Certus System, manufactured by Northern Digital Inc., was used to track the 

position of the specimens during the tests. This system uses active infrared-emitting diodes as 

markers and a trinocular camera system to determine the position of the markers. In order to 

measure the tilt angle θ(t) and a potential slip on impact, four light-emitting diodes (LED) 

were used: two of them were placed on the rigid plate the structure was rocking on, a third 

one is positioned at the base, and the fourth one on top of the column (Figure 5). The NDI 

camera was able to compute the 3D angle between the LED 1-2 line and the LED 3-4 line as 
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well as the relative displacement between LED 1 and 3. The experimental design is shown in 

Figure 8. 

 

 

Figure 8. Experimental design 

The accuracy of the system was determined by measuring the position of a marker at rest 

over a long period of time.  In the x- and y-directions in the plane where rocking motion takes 

place, the accuracy was about 0.02 mm. In the z-direction, perpendicular to the plane of mo-

tion, the accuracy was about 0.10 mm. The position sampling frequency was 500 Hz. 

4.4 Results and comparison with numerical solution 

The objective of the experimental campaign was to validate the analytical model presented 

in the previous section. Each specimen was tested three times: 24 tests were performed. Fig-

ures 9-16 plot the time histories of the normalized tilt angle, θ/α.  Three time histories are 

ploted in each plot: (a) the experiment results, (b) the numerical solution with the theoretical 

(Housner) coefficient of restitution, and (c) the numerical solution with an empirical coeffi-

cient of restitution. The empirical coefficient of restitution was obtained from the first 10 mo-

tion cycles assuming that energy dissipation takes place only at impact. 

One can observe: 

1) Hounser assumptions give a good estimate of the coefficient of restitution. For ex-

ample, in Setup 1 the experimental value is εemp=0.990 while Housner assumptions 

would give εth=0.988. In terms of normalized energy loss per impact, the empirical 

coefficient would give 
21 1.99%emp   while Housner would give 21 2.39%th  . 

Considering the complicated nature of impact and damping, an accuracy of 20% is a 

good approximation. 

2) Hounser-like coefficients of restitution slightly overestimate energy dissipation for 

the specimens without curved wedges (Specimens 1 and 5). In an effort to explore 

the source of this deviation, one has to explore Housner assumptions:  (a) the impact 

is instantaneous, and (b) all the impact forces are concentrated on the new pivot 

point. Assumption (a) allows for the typical assumption that the non-impact forces 

(in this case the weight) can be neglected during the application of the impulse-

momentum theorem. Assumption (b) leads to the Conservation of Angular Momen-

tum Theorem (CAMT) applied about the new pivot point. Else, the CAMT should 

be applied about the point where the resultant of the impact forces is acting. Since 
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the bodies are rigid, the impact is expected to be instantaneous (and the weight is 

expected to be much smaller than the impact forces), at least for relatively large ve-

locity impacts. On the other hand back-calculations for Specimen 1 show that the 

slight difference between the experimentally observed and the Hounser coefficient 

of restitution means that the point of action of the force should be 0.2mm away from 

the new pivot point. Missing the point of application of the resultant of the impact 

forces by only 0.2mm (which corresponds to 0.4% of the base) shows that Housner 

assumptions are valid and reasonable.  

3) The addition of the curved wedges reverses the situation: Hounser assumptions un-

derestimate the energy loss consistently (with the exception of Specimen 6). It 

seems that the addition of the wedges shifts the point of action of the impact forces 

away from the axis of symmetry, hence increasing the energy dissipation. However, 

apart from stating that qualitative result, it is impossible to quantify the increase. 

4) In general, the coefficient of restitution decreases (implying a larger damping ratio) 

for low velocity impacts. This explains why a rocking block does not need infinite 

number of impacts to stop, as Hounser assumptions would predict [66] and is con-

sistent with the results presented in [23]. Evidently, for smaller velocity impacts, the 

weight of the specimen is not negligible when compared to the impact forces and 

Hounser assumption (a) does not hold: The weight contributes to the impulse-

momentum equation and slows down the motion. 

5) Even though the coefficient of restitution is predicted relatively well, in many cases 

the numerical solutions diverge from the experiment data (e.g. become out of phase 

with the experiment data). Unlike elastic viscously-damped systems (where the pe-

riod and the damping are only loosely related – 21d n    ) the „period“ or a 

rocking column (i.e. twice the time interval between two impacts) strongly depends 

on damping. This is attributed to the dependence of the period on the amplitude of 

vibration (hence on the coefficient of restitution). The above observation explains 

the difficulties in predicting the seismic response of a rigid block to a specific time 

history [56] and urges for a stochastic treatment of the rocking problem. It is evident 

that if deviations of 0.2mm in the prediction of the location of the impact point lead 

to different time history results, an error or 0.4% of the flat part of the foundation, 

then the deterministic treatment of the rocking problem is impossible. 

5 CONCLUSIONS 

Curved wedges are added to the flat base of a rocking rigid column in order to increase its 

overturning stability without significantly increasing the base moment. The equations of mo-

tion were derived and validated against free-vibration tests. It is shown that the theoretical 

values for the coefficient of restitution are numerically close to the experimentally obtained 

values. However, the response of the block is so sensitive to the exact coefficient of restitution 

value that a deterministic calculation of the response to a ground motion becomes practically 

impossible. 
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Figure 9. Normalized tilt angle, θ/α, time history for Specimen 1 
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Figure 10. Normalized tilt angle, θ/α, time history for Specimen 2 
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Figure 11. Normalized tilt angle, θ/α, time history for Specimen 3 
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Figure 12. Normalized tilt angle, θ/α, time history for Specimen 4 
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Figure 13. Normalized tilt angle, θ/α, time history for Specimen 5 
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Figure 14. Normalized tilt angle, θ/α, time history for Specimen 6 
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Figure 15. Normalized tilt angle, θ/α, time history for Specimen 7 
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Figure 16. Normalized tilt angle, θ/α, time history for Specimen 8 
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Abstract. In this study the seismic response of free standing, rocking columns and frames is 
investigated taking into account different intensity measures (IMs) of the seismic excitations. 
The seismic vulnerability of the examined structural systems is based on the probabilistic 
seismic demand model (PSDM), in which the degree of uncertainty is depended on the IM 
used. Thus 23 different IMs are evaluated in order to extract the most optimal one. A perfor-
mance based analysis is performed and fragility curves are generated conditional on uni-
variable and bi-variable IMs considering the maximum rotation normalized to the slender-
ness as engineering demand parameter (EDP). The seismic assessment of these structures is 
evaluated using three limit states. Nevertheless, in this study, the effect of the beams’ mass on 
the seismic rocking behavior of the frames is also examined. Finite element analysis models 
are used for the simulation of the structural members as deformable bodies while rigid con-
tact elements are employed for the interfaces. Time domain analyses are performed using a 
set of 30 natural ground motions. Results in terms of correlation coefficients and dispersion 
values are first presented, indicated that the length scale of the excitation (Lm) and the vector 
value IM, PGV-Tm are the most optimal uni-variable and bi-variable IMs, for describing the 
rocking response. Further results in terms of peak rocking rotations and fragility curves 
shown that free standing frames are less vulnerable than the single columns. Moreover, as the 
beam mass increases, the developed rocking rotation of the frame tends to be reduced. 
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1 INTRODUCTION 

The investigation of the seismic response of ancient structural systems such as ancient col-
umns and colonnades has received increasing attention during the last decades. These struc-
tural systems comprise the construction technique of Archaic, Classical, and Roman temples. 
Different types of columns with numerous variations in their geometrical characteristics can 
be found mainly in the Eastern Mediterranean region. In general, ancient columns are earth-
quake resistant, as proven from the fact that many monuments like these have survived many 
strong earthquakes over the centuries. This notable stability is displayed mainly due to the de-
sign method of these structures which is based on articulated mechanisms that demonstrate 
rocking behavior. Usually these are constructed of limestone or marble blocks (drums), which 
are placed on top of each other, without connecting mortar between them. These rigid-body 
assemblies display a very different dynamic response compared to modern structures. Their 
main difference as shown in Figure 1 is that the rocking behavior exhibits negative stiffness 
and low damping that occur only at the instant of impact in contrast with the modern design 
philosophy which is based on the positive stiffness of the structure and the ductility of the 
structural members [1]. Their response is composed primarily of rocking and sliding among 
the individual blocks of the structure and the ground. This behavior can be characterized as 
highly nonlinear due to the continuous changing of geometry and boundary conditions of the 
structural system during a strong earthquake. 
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Figure 1: Response of a moment resistance frame versus a rocking frame. 

Early work on the dynamics of the rocking column started analytically by Milne (1885) [2] 
while, Omori (1990) [3] was one of the first who performed experimental research on the 
seismic response of rectangular rocking columns. Subsequently, Kirkpatrick (1927) [4] pre-
sented a novel paper in which he relates the column size and the period of the excitation with 
the rocking response. It was Housner’s (1963) [5] study that offers a solution for the dynamic 
behavior of a single block under pulse excitation, through the formulation of the inverted pen-
dulum. Housner revealed both the size effect, which means that the larger block between two 
with the same aspect ratio exhibits greater stability under horizontal excitation, and the fre-
quency effect which indicates that the frequency content of the excitation substantially affects 
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the rocking response, with long period excitations being more likely in causing overturning 
than the short period ones. His pioneer work constitutes the basis of the rocking analysis theo-
ry. After these studies several followed as researchers were motivated by the need to under-
stand the rocking response, and they extended our previous knowledge, by revealing hidden 
aspects of rocking response [6-13].  

Multi block rocking response has also been under investigation [14-18]. Sinopoli’s work 
[14] has examined the impact problem between rigid bodies through a kinematic approach. 
Meanwhile, Psycharis [15] and subsequently Spanos et al. [16] proposed analytical solutions 
for the rocking response of two stacked rigid blocks assuming no sliding between them. Fur-
thermore, Makris and Vassiliou [17] present the equivalence between a rocking frame and 
singular rocking blocks whereas, DeJong and Dimitrakopoulos [18] generalized it also for 
asymmetric rocking frames. 

Extensive numerical investigation specifically on the response of ancient structural systems 
such as free standing single monolithic and multi-drum columns or columns connected to 
each other at the top level by architraves, which are usually consist the peristyles of ancient 
temples, has been presented by several researchers [19-25]. The numerical modeling of all 
these studies has been conducted using the Discrete Element Method (DEM). Using planar 
numerical modeling Psycharis et al. [19] investigated the seismic response of ancient columns. 
Moreover, Konstantinidis and Makris [20] also using a two dimension modeling, examined 
the effect of wooden poles installed in ancient times, but also of titanium poles which were 
installed during the restoration process, on the dynamic response of multidrum columns. Ad-
ditionally, studies are presented on the seismic response of ancient columns and colonnades 
with epistyles using a custom-made software based on the DEM [23], [24]. On the other hand, 
Papantonopoulos et al. [21] and Psycharis et al. [22] performed numerical analyses in three 
dimensions. It was noticed that 2D analyses are capable of capturing the rocking phenomenon 
but without computing the out of plane oscillation, which makes the problem more complex. 
Thus is slightly underestimate the overall response. Experimental studies were also performed 
by Mouzakis et al. [26] Pena et al. [27] and Drosos and Anastopoulos [28] and confirmed the 
conclusion obtained from the numerical studies.  

Due to the sensitivity of rocking response even to trivial changes of the ground motion 
characteristics or of the geometry of the model, Spanos and Koh [29] were the first to study 
the rocking response via a probabilistic framework. Afterwards, seismic vulnerability assess-
ment of rocking columns and frames were presented by Psycharis et al. [30] and Dimi-
trakopoulos and Paraskeva [31]. 

In this paper, we present a numerical investigation of the seismic response of free standing 
columns and colonnades. Time domain analyses are performed with the use of 30 natural rec-
ords. The scope of this study is to assess the seismic vulnerability of the examined rocking 
structures resulting in the most optimal intensity measures (IMs) [32] used for generating the 
probabilistic seismic demand model [33]. In addition, the difference of the colonnade with 
epistyle behavior against the single column response is studied while, the influence of the 
beams’ mass on the rocking response is also examined. 

2 NUMERICAL MODELING 

For the purpose of this study, finite element models are utilized for the in space simulation 
of the members, in which the blocks are simulated as deformable elements and the ground as 
a rigid surface. Despite the structural members being modeled as 3D members, planar anal-
yses were performed. Explicit dynamic analyses were employed as it is computationally effi-
cient for discontinuous events like impact problems, using the central difference algorithm. Of 
particular significance for the simulation are the appropriate modeling of the contact between 
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the blocks and the base, and in the case of multi block models the contact between each block. 
Rigid contact is used to model the interfaces while a Mohr-Coulomb model is adopted to de-
scribe the mechanical behavior of the joints. For both normal and tangential direction of the 
contact element, the stiffness is assumed as infinite. In the normal direction no tensile strength 
is considered while the shear strength is governed by the Coulomb friction coefficient without 
considering cohesion. As mentioned by a thorough investigation made by Papantonopoulos et 
al. [21], damping affects the amplitude of the intense rocking response and thus, zero value of 
damping gives better results during the strong motion part of the excitation. Consequently 
both the mass proportional damping and the stiffness proportional damping coefficients are 
set zero for the analyses. The mechanical properties of the block material as well as the inter-
face properties listed in Table 1 are assumed as typical values for marble blocks. 

 

Material  Properties 
Density (kg/m3) 2750 

Young’s modulus (Gpa/m) 84.5 
Poison ratio 0.23 

Interface Properties 
Friction coefficient 0.70 

Cohesion (MPa) 0 
Tensile strength (MPa) 0 

Table 1: Material and interface mechanical properties. 

Column with 8m height and slenderness α=0.165rad is studied. The selection of the dimen-
sion was made to be in accordance with the size and the slenderness of recorded ancient col-
umns. Specifically the columns of the Temple of Olympic Zeus and the Temple of Apollo in 
Syracuse have 8 m height. Additionally the Parthenon Pronaos columns have a slenderness of 
0.16rad. Concerning the effect of the architrave existence, two varying geometry architraves 
are examined. The values of the beam (architrave) mass (mb) are defined as a ratio over the 
columns mass (mc), taking values mb/2mc=0.25, 0.5. The axial distance between the columns 
is 3m and is spanned with a single block architrave. Figure 2 shows the dimensions in meters 
of the examined rocking column and frames. 
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Figure 2: Examined cases of free standing column and free standing frames. 
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3 SELECTION OF NATURAL GROUND MOTIONS AND INTENSITY 
MEASURES (IMS) 

3.1 Ground Motions  

A set of 30 ground motion time histories is used as input ground motion for the analyses. 
What proved to be useful, for the selection was an extensive review of ground motion selec-
tion methods for dynamic analysis of structural systems presented by Katsanos et al. [34]. The 
events were chosen from worldwide well-known sites with strong seismic activity. Excita-
tions generated from different types of fault types, with earthquake magnitudes (Ms) between 
5.3 and 7.6, including both near fault and far fault records as the closest distance to fault rap-
ture (R) varying from 0.6 to 115 km is employed in order to present a wide range of intensi-
ties and frequency contents. A further aspect which has been taken into consideration is the 
expected damage potential of the seismic excitation on the structure. Seismic excitations 
which provide a wide spectrum of structural damage, from negligible to severe, are taken into 
account. Based on the above assumption, a rigorous selection of ground motions carried out 
from the PEER [35] and the European [36] strong motion databases in order to use original 
records without any scaling. The complete list of the natural ground motions used for the 
analyses is shown in Table 2. 

 
Earthquake Record Date Ms R (km) 

Aigion AIGΑ 25/06/1995 6.4 21.5 
Athens ΑΤΗ4 07/09/1999 5.90 16.62 

Bucharest Bucharest 04/03/1977 7.50 115.0 
Chi-Chi CHY035 20/09/1999 7.62 12.56 
Chi-Chi TCU88 20/09/1999 7.62 18.16 

Chuetsuoki Nakanoshima Nagaoka 16/07/2007 6.8 19.89 
Coalinga Fault Zone 14 02/05/1983 6.36 29.48 
Corinth Corinth 24/02/1981 6.60 10.28 
Darfield Papanui High School 04/09/2010 7 26.76 
Duzce Lamont 531 12/11/1999 7.14 8.03 

Erzincan Erzincan 19/03/1992 6.69 4.38 
Friuli Tolmezo 06/05/1976 6.50 15.82 
Gazli Karakyr 17/05/1976 6.80 5.46 

Imperial Valley El Centro Array #9 19/05/1940 6.95 6.09 
Imperial Valley El Centro Array #7 15/02/1979 6.53 0.56 
Imperial Valley El Centro Array #8 15/02/1979 6.53 3.86 

Irpinia Sturno 23/11/1980 6.9 10.84 
Iwake Ichinoseki Maikawa 14/07/2008 6.9 23.02 

Kalamata Kalamata 13/09/1986 6.20 10.00 
Kobe Nishi -Akashi 16/01/1995 6.90 7.08 
Kobe Takatori 16/01/1995 6.90 1.47 

Landers Joshua Tree 28/06/1992 7.28 11.03 
Loma Prietta Los Gatos - Lexington Dam 17/11/1986 6.93 5.02 
Northridge Paicoma Dam 17/01/1994 6.69 7.01 
Parkfield Cholame #2 28/06/1966 6.20 17.64 

San Fernando Paicoma Dam 09/02/1970 6.61 1.81 
Taiwan SMART1(40) Smart1 M02 15/111986 6.32 60.89 

Superstition Hill Mtn Camera 24/11/1987 6.54 5.61 
Tabas Dayhook 16/09/1978 7.35 13.94 

Whittier LA - Obregon Park 01/10/1987 5.27 13.62 

Table 2: List of the ground motions used in this study. 
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3.2 Intensity measures (IMs)  

In order to designate the optimal earthquake intensity measures (IMs) for rocking response, 
a large number of seismic parameters is considered in the present study. Specifically 25 IMs 
were taken into account which can be classified into time history, energy, spectral, and fre-
quency parameters. The definition of all the examined IMs is presented by Kramer [37]. Re-
garding the time history parameters, peak ground acceleration (PGA), peak ground velocity 
(PGV), peak ground displacement (PGD), sustain maximum acceleration (SMA), sustain 
maximum acceleration (SMV), and effective design acceleration (EDA) are taken under con-
sideration. Additionally, with regard to the energy parameters the following were considered, 
root mean square of acceleration (Arms), of velocity  (Vrms), and of displacement (Drms), char-
acteristic intensity (Ic), Arias intensity (Iα), cumulative absolute velocity (CAV), specific en-
ergy density (SED), strong motion duration (TD) and Fajfar index (IF). The examined rocking 
structures do not possess natural modes in the classical sense [21] and so we do not use as in-
tensity measures, spectral acceleration or velocity values for a certain period, although we 
consider the acceleration spectrum intensity (ASI), the velocity spectrum intensity (VSI) and 
the Housner Intensity (SIH).  

According to the frequency parameters, the period corresponding to the peak acceleration 
(Tp,A) and to the peak velocity (Tp,V) of the elastic response spectrum, are of the most exten-
sively used frequency parameters in  earthquake engineering. Nevertheless, none of these pa-
rameters represent the frequency content of a signal, except for the second one which seems 
to be a good approach to it. Mean period (Tm) [38] which is calculated by the Fourier spectra 
seems to be the best frequency parameter for excitations with arbitrary time-history shape. 
Moreover, the ratio PGV/PGA is related to the frequency content of the excitation, as for a 
harmonic motion this ratio is equal to PGV/PGA=T/2π. Finally, the characteristic length scale 
Lp=vp·Tp, which is introduced by Makris and Black [39] for pulse-type excitations and ex-
tended for non-distinct pulses by Dimitrakopoulos et al. [40], is considered too. 

4 FRAGILITY ANALYSIS 

4.1 Probabilistic seismic demand model  

The vulnerability is assessed by estimating the conditional probability P where the seismic 
demand D measured to a specific engineering demand parameter (EDP), is higher than its ca-
pacity C, for a given value of a ground motion IM. 

 [ ]Fragility P D C IM= ≥  (1) 

The capacity is estimated by the proposed limit states while the demand is estimated using 
the relationship between the median structural demand Sd and each IM [33]: 

 b
dS aIM=  (2) 

where α and b are the linear regression coefficients for the logarithmic expression of the 
assumed scale law. 

Assuming lognormal distribution for both the demand and the capacity of the structure and 
considering only demand uncertainties (βD|IM), equation (1) can be rewritten in the following 
form: 

 
2

ln( / )
[ ] d c

D IM

S SP D C IM
β

 
 ≥ = Φ
 
 

 (3) 
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where Φ is the standard normal cumulative distribution function, Sc is the median value of 
the capacity which is estimated through the adopted limit states and βD|IM  is the dispersion or 
logarithmic standard deviation for the demand conditioned the IM. For the calculation of the 
conditional standard deviation of the regression which is used to estimate the desperation, the 
following equation is utilized, where di is the i-th realization of the demands from the time 
history analyses. 

 
2(ln( ) ln( ))

2

b
i

D IM

d aIM
N

β
−

≅
−

∑  (4) 

In order to conclude in an intensity measure that could reduce even more the demand un-
certainty (βD|IM), also is examined vector IMs (couple of IMs) [41] to express the median de-
mand as defined in the follow equation: 

 1 2
1 2
b b

dS aIM IM=  (5) 

4.2 Definition of the engineering demand parameter  

The introduced engineering demand parameter (EDP) has to get a clear physical meaning. 
Being aware of this principal, for the examined free standing structures, the best EDP that can 
be used has to be based on the rocking rotation as rocking is the dominant response of this 
structure. The absolute maximum developed rotation |θmax| divided to the critical overturning 
rotation which is equal to the slenderness of the column α, was selected. 

 maxEDP
θ
α

=  (6) 

4.3 Definition of the proposed limit states 

Performance Based Earthquake Engineering has introduced the concept of acceptable per-
formance levels. In vulnerability assessment analysis, capacity limit states (LS) are required 
to be defined, since the objective of the fragility analysis is to obtain the probability of ex-
ceedance the stated performance criteria. The capacity should be measured with the metrics of 
the EDP. Three performance levels, as presented in Table 3 are proposed for the current study. 
The first limit state (LSI) corresponds to slight rocking of the structure, the second (LSII) to 
moderate rocking which may cause local damage (imperfections) due to the impact and final-
ly the third (LSIII) that corresponds to collapse due to rocking overturn. 

 
Limit State |θmax|/α Performance Level Description 

LSI 0.20 Damage limitation Lightly damaged structure. 
LSII 0.40 Moderate Damage High likelihood of local damage due to impact. 
LSIII 1.00 Near collapse Rocking overturn of the structure. 

Table 3: Proposed performance criteria. 

5 RESULTS  

5.1 Correlation analysis 

To estimate the grade of interdependency between the intensity measures and the rocking 
response, the correlation coefficient according to Pearson is calculated. Pearson correlation 
coefficient shows how well the data fit to a linear relationship. The variables relationship is 
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based on the scale law of Equation (2). Figure 3 presents the correlation coefficient between 
the IMs and the EDP for the cases of a the free standing column and the free standing frame 
with masses ratio mb/2mc=1/4. 

Examining Spearman's rank correlation coefficient of Figure 3, the maximum correlation 
of the adopted EDP with all the velocity based ground motion parameters is easily reconcila-
ble. Specifically PGV and IF is the IMs that has the strongest correlation with the EDP fol-
lowed by the response spectrum IM SIH. In addition, it is noted that the developed rocking 
rotation is influenced by the frequency parameters. The mean period of the excitation (Tm) 
and the ratio PGV/PGA exhibit the highest grade of interdependency, whereas between the 
predominant periods of the acceleration and the velocity elastic response spectrum, the second 
one has a higher value of correlation with the EDP. Finally the characteristic length scale of 
the excitation (Lm) displayed the strongest correlation among all the IMs.  

On the other hand, the acceleration based parameters present the lowest grade of interrela-
tionship with the rocking behavior. Additionally, the displacement based as the duration IMs 
show very low correlation levels with the EDP. Among the IMs which least affects the rock-
ing behavior are the PGA the SMA and the TD. 

From the results of the correlation analysis it can be concluded that the IMs associated with 
the velocity and the frequency content of the ground motion exhibit a far better correlation 
with the examined EDP. On the contrary, the IMs associated with the acceleration, the dis-
placement and the duration of the excitation exhibit the lowest interdependency with the rock-
ing rotation. 
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Figure 3: Correlation coefficients between the intensity measures and the engineering demand parameter. 

5.2 Median seismic demand 

The median demand models are generated from the linear regression analyses. Table 4 
summarizes the expression of the median, the regression coefficient R2 and the dispersion 
βD|IM of the seismic demand conditioned on a certain IM, for the cases of the free standing 
column. One of the main objectives of this paper is to estimate the most appropriate IM that 
reduces the uncertainty in the seismic demand model of rocking structures. The most efficient 
IMs are those that decrease the amount of the variation in the estimated median demand 
which means reduced uncertainty. 
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ΙΜ PSDM R2 βD|IM 

PGA ln(0.202) + 0.256ln(IM) 0.01 1.31 
PGV ln(2E-4) + 1.729ln(IM) 0.75 0.66 
PGD ln(0.035) + 0.538ln(IM) 0.23 1.15 
SMA ln(0.172) + 0.072ln(IM) 0.01 1.31 
SMV ln(0.001) + 1.633ln(IM) 0.65 0.77 
EDA ln(0.219) + 0.331ln(IM) 0.01 1.30 
Arms ln(0.803) + 0541ln(IM) 0.03 1.29 
Vrms ln(0.015) + 1.264ln(IM) 0.50 0.93 
Drms ln(0.090) + 0.389ln(IM) 0.16 1.20 

Ic ln(1.010) + 0.68l3n(IM) 0.07 1.26 
IA ln(0.133) + 0.549ln(IM) 0.09 1.25 

CAV ln(0.002) + 0.651ln(IM) 0.06 1.27 
SE ln(0.001) + 0.755ln(IM) 0.65 0.78 
TD ln(0.117) + 0.124ln(IM) 0.01 1.31 
IF ln(8E-05) + 1.820ln(IM) 0.80 0.58 

ASI ln(0.289) + 0.475ln(IM) 0.02 1.30 
VSI ln(3E-05) + 1.761ln(IM) 0.75 0.66 
SIH ln(1E-04) + 1.541ln(IM) 0.79 0.60 

Tp, acc ln(0.383) + 0.896ln(IM) 0.27 1.12 
Tp, vel ln(0.209) + 1.388ln(IM) 0.65 0.78 

PGV/PGA ln(5.759) + 1.619ln(IM) 0.67 0.76 
Tm, acc ln(0.419) + 1.688ln(IM) 0.70 0.72 
Lm, acc ln(0.008) + 0.984ln(IM) 0.82 0.55 

Table 4: Seismic demands model for the examined IMs. 

It is noted that as the coefficient of determination R2 reaches higher values, the dispersion 
βD|IM gets less. Indicated also from the correlation analysis the IMs that minimize the variation 
of the data in the median demand model, being in general, the velocity and the frequency 
based ground motion parameters. Specifically, as the performance of the IMs is evaluated re-
garding the reduction of the dispersion, the most efficient IMs are the PGV, the IF, the Tm, and 
the Lm with dispersion values 0.66, 0.58, 0.72 and 0.55 respectively. 

In order to achieve an even better intensity measure from the perspective of efficiency, we 
lead to examine also vector valued IMs. In this case a multilinear regression analysis was car-
ried out (Equation (5)) in order to minimize the dispersion on the median demand model. 
Among all the probable IMs combinations, the couple PGV-Tm tends to be the best vector 
valued IM. The specific IM is generated from the combination of two individual IMs that are 
not directly interrelated, as the first one is an amplitude parameter and the second one a fre-
quency ground motion parameter. The regression coefficients took values α=0.01, β1=1.10 
and β2=0.85, the determination coefficient R2=0.83 and the dispersion βD|IM=0.54. In compari-
son with all the single IM models, the standard deviation has been reduced to the bi-variable 
one. Thus, the efficacy of the multivariable IM is shown in terms of uncertainty reduction. 

5.3 Fragility curves 

Fragility curves demonstrate the probability that the structure exceeds a certain capacity 
limit state, given a ground motion intensity level. The fragility curves of the rocking column 
resulting from the three most optimal IMs are presented in Figure 4.  
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Figure 4: Fragility curves for the three most optimal IMs 

The median values of the fragility curves using the PGV for the LSI, LSII, and LSIII are 43, 
65 and 110 cm/s respectively whilst, for Farjfar index are 76, 112 and 184 cm/(s0.75). Using 
the Tm are 0.64, 0.98 and 1.68 s for the three limit states, and finally using the Lm as intensity 
measure, the median values of the fragility curves are 25, 51 and 129 cm for each limit state.  

It is known that rocking structures exhibit an increased stability. This can also be observed 
from the fragility curves where the probability of exceeding the LSIII which corresponds to 
collapse by rocking overturn, are limited for intensity measure values that correspond to the 
majority of the ground motions. However, these structures which constitute some of the 
world’s cultural heritage, have to be preserved undamaged throughout the years. Thus, if 
needed, we have to propose protection methods for these structures, in order to be preserved 
from seismic excitations of any magnitude. 

Regarding the vector value IM, Figure 5 (a) depicts the surface fragility for all the limit 
states whilst, Figure 5 (b) shows the fragility curves of exceeding the LSII, for the PGV and 
for the vector-valued IM which is the couple PGV-Tm. Comparing the single-variable with the 
bi-variable fragility curves for given Tm values, it is easily observed that as the mean period 
gets larger values, the vulnerability increases. In addition Table 5 lists the probability of ex-
ceedance the stated capacity for various pairs of the 2 IMs and for each IM individually. It is 
obvious that the bi-variable IM provided a more accurate approach on the definition of the 
structures’ fragility as it can be shifted for even every simultaneous change of each of the two 
examined IMs. Comparing the probability values of Table 5, it can be seen that fragility 
curves generated using as uni-variable IM the mean period Tm seem to underestimate the 
probability of exceedance every stated performance level, especially when the mean period 
take low values. 
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Figure 5: (a) Fragility surfaces using vector-value IM (Tm-PGV), (b) Compative results of univariable with 
bivariable fragility curves for given values of Tm. 

Limit States Velocity (cm/s)  Mean Period (s) 

  0.5 1 2 univariable 

LS1 

50 0.48 0.85 0.98 0.65 
100 0.91 0.99 1.00 0.99 
150 0.98 1.00 1.00 1.00 

univariable 0.22 0.85 0.99 - 

LS2 

50 0.09 0.44 0.80 0.25 
100 0.52 0.87 0.99 0.87 
150 0.81 0.97 1.00 0.98 

univariable 0.06 0.53 0.95 - 

LS3 

50 0.00 0.28 0.20 0.02 
100 0.05 0.30 0.71 0.40 
150 0.21 0.61 0.91 0.79 

univariable 0.00 0.11 0.66 - 

Table 5. Probability values of exceeding the stated performance levels for both univariate and bivariate IMs. 

5.4 Mass effect on the rocking response 

In this section, the beams’ mass effect on the rocking response is examined. The results in 
terms of peak developed rotation versus the most optimal uni-variable IM, which is the length 
scale of the excitation (Lm), are presented and compared between the different cases. Subse-
quently, to obtain results through a vulnerability perspective the fragility curves of exceeding 
the LSII are displayed (Figure 6). 

There are two rocking frames considered with differences of the ratio of the beam mass to 
the columns masses (Figure 2). From Figure 6 it can be noticed that the single free standing 
column presents larger values of rocking rotation in contrast with the rocking frames regard-
less of the rise of the gravity center of the cap beam. Moreover, comparing the seismic re-
sponse of the frames, the one with the heavier beam exhibits increased stability. Both 
observations came into agreement with Papaloizou and Komodromos [23] and Makris and 
Vassiliou [17] conclusions. These remarks can easily be seen from the rotation versus the ex-
citation length scale plot but also from the respective fragility curves. 
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Figure 6: Comparative results of the maximum developed rocking rotation and the fragility curves of exceeding 

LSII, between a single column and rocking frames with defferent beam masses. 

6 CONCLUSIONS 

The effect of the seismic excitations parameters on the rocking response of free standing 
columns and frames is numerically investigated in this paper, in order to conclude in an opti-
mal uni-variable or bi-variable IM that reduces the uncertainties associated with the PSDM. 
Moreover, the influence of the size and the construction on the response of the structural sys-
tems is examined. The conclusion indicated by this study can be summarized as follows: 

• Rocking behavior is primarily affected by the velocity based and the frequency con-
tent parameters of the ground motion. Specifically, the peak ground velocity (PGV), the     
Fajfar index (IF), the mean period (Tm) and the length scale (Lm) of the excitation are the 
most optimal IMs.  

• Vector valued IMs provided better approach on the determination of the fragility 
curves, than the uni-variable IMs. In addition, between the bi-variables IMs the couple    
PGV-Tm is the most efficient one. 

• Rocking structures exhibit notable stability that can be seen also from the fragility 
curves in which the probability of overturning due to rocking is limited for IM values, which 
correspond to the majority of the ground motions. 

• Free standing frames are less vulnerable than the single columns. Moreover, as the 
beam mass increases, the developed rocking rotation of the frame tends to be reduced. 
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Abstract. We study the seismic response of rigid block structures against synthetic pulse-like 

ground motion records. A large number of synthetic ground motion records are systematical-

ly produced for various magnitude-distance scenarios. More specifically, we generate pulse-

like ground motions for a grid of 56 receiver stations assuming a vertical strike-slip fault. The 

site conditions simulate a NEHRP Class D site, while for every combination of hypocenter, 

magnitude and receiver location, we generate 100 realizations consisting of low- and high-

frequency components. The low-frequency component is based on a four-parameter wavelet, 

while the specific barrier model is used for the high-frequency component. The synthetic 

ground motions are used to study the seismic overturning of rigid blocks of various dimen-

sions. Τhe low-frequency pulse is described by four-parameters which refer to the amplitude, 

the prevailing frequency, the phase angle and the oscillatory character of the record, on top 

of which the high-frequency component is added. This description allows to parametrize the 

seismic response and thus improve our understanding on the effect of base motion character-

istics on the overturning of rigid blocks. 
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1 INTRODUCTION 

Following the pioneering work of Housner (1963), the problem of rocking response and over-

turning of free-standing blocks to earthquakes, and especially to harmonic ground motion 

pulses, has been the subject of intense analytical and experimental research. Despite its appar-

ent simplicity, the problem has proven to be a difficult task due to the nonlinear behavior in-

troduced by the impact of the block with the base and the sensitivity of the response to even 

trivial changes of the problem parameters. Previous studies (e.g. Muto et al. 1960; Yim et al. 

1980; Ishiyama 1982; Psycharis & Jennings 1983 & 1985; Priestley et al. 1983; Spanos & 

Koh 1984; Tso & Wong 1989; Cai et al. 1995; Anooshehpoor et al. 1999; Zhang & Makris 

2001; Prieto et al. 2004; Peña et al. 2007; Purvance et al. 2008; Kounadis 2010 & 2013; Di-

mitrakopoulos & DeJong 2012, among others) have revealed the complex response, including 

certain counterintuitive trends such as: the stability of a block subjected to a particular ground 

motion does not depend monotonically on the size or the slenderness of the block; overturning 

of a block under a certain ground motion does not necessarily imply overturning for an in-

crease in base excitation amplitude; the amplitude of the response does not always decrease 

with reduction in the value of the restitution coefficient. 

Figure 1. Rocking block geometry 

In this paper, we investigate the seismic response of rigid blocks subjected to synthetic pulse-

like ground motions. We consider rigid blocks of various dimensions which are subjected to 

pulse-like ground motions recorded at different locations with respect to the causative fault. 

The synthetic records consist of a low-frequency pulse, with known properties, and a high-

frequency component. Following a systematic workflow, we investigate the sensitivity of the 

response of rigid blocks, and especially the overturning risk, to different problem parameters, 

such as the magnitude of the event, the distance, block dimensions and slenderness and other 

ground motion properties. 

2 THE RIGID BLOCK PROBLEM 

A rigid block of dimensions 2b2h (Figure 1) oscillates about point A (or A’), provided that 

the coefficient of friction is large enough to prevent sliding. The block has weight W and mo-

ment of inertia I0 about point A (Figure 1). Assuming that the block is homogeneous and thus 
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the center of gravity is located at height h, the block will start rocking only if the incipient 

ground acceleration exceeds the value of (b/h)g or gtan(α), where α = atan(b/h) is the block 

slenderness. Note that α together with the block size parameter R =
2 2h b  fully define the 

geometry of the block. The equation of motion of the block (Housner 1963) thus becomes: 

           sin sgn cos sgno gI t mgR α t t mgu t R α t t               (1) 

where the angle of rotation θ is the only degree of freedom. The sign function is used to de-

fine the pivot point (A or A’), which depends on the sign of θ. Therefore, when A’ is the pivot 

point, θ receives a negative value as implied by the sign function. For rectangular blocks, the 

moment of inertia becomes I0 = (4/3)mR2, while for small rotations θ, Equation (1) can be lin-

earized: 

        2 sgn /gt p -α t t u t g       (2) 

where p denotes the characteristic frequency of the rocking block and is defined as: 

0

3

4

WR g
p

I R
  (3) 

Dimitrakopoulos and DeJong (2012) have shown that the frequency parameter p is equal to 

the oscillating frequency of the block if it is viewed as a pendulum with the rocking rotation 

point (A or A’) being the pivot point. Damping is event-based, meaning that energy is lost 

only when the angle of rotation reverses and impact with the base occurs. The conservation of 

angular momentum just before and right after impact gives the coefficient of restitution η. 

This coefficient typically receives values between 0.6-0.9 and its theoretical value (Housner 

1963) is: 

2

23
1 sin

2
 

 
  
 

  (4) 

The equation of motion is solved numerically, while closed-form expressions for harmonic 

ground motions have been proposed by Dimitrakopoulos and DeJong (2012). 

3 GENERATION OF BROADBAND SYNTHETIC GROUND MOTIONS 

The hybrid method proposed by Mavroeidis and Papageorgiou (2003) is used to simulate 

broadband near-fault pulse-like ground motions. The incoherent (high-frequency) seismic ra-

diation is synthesized using the specific barrier model (SBM) (Papageorgiou and Aki 1983). 

In the context of the SBM, the fault is visualized as an ensemble of non-overlapping circular 

subevents of equal diameter 2𝜌0 that cover a rectangular fault with length L and width W. As 

the rupture front sweeps the fault plane with a rupture velocity V, a local stress drop ∆𝜎L oc-

curs on each subevent. The subevent rupture starts from its center and spreads radially out-

ward with a constant spreading velocity until it is arrested by the barriers. The SBM has been 

calibrated to shallow crustal earthquakes of various tectonic regions (Halldorsson and Pa-

pageorgiou 2005). Given an earthquake magnitude and the tectonic region, the interdepend-
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ence of other source parameters on the local stress drop ∆𝜎L and the barrier interval 2𝜌0 al-

lows the causative earthquake fault to be constructed. Since the site of interest is considered to 

be in the “near field” of the ruptured fault, it is necessary to simulate time histories for each 

individual subevent of the SBM, rather than for the entire seismic event as an aggregate of 

subevents. The subevent time histories are subsequently summed up at the site with appropri-

ate consideration of time delays. 

On the other hand, the coherent (long-period) ground motion component is simulated using 

the mathematical model proposed by Mavroeidis and Papageorgiou (2003). The mathematical 

formulation for the representation of the near-fault velocity pulses is: 
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where Ap controls the amplitude of the signal, fp is the prevailing frequency of the signal, 𝜈 is 

the phase of the amplitude-modulated harmonic, γp is a parameter that defines the oscillatory 

character of the signal, and t0 specifies the epoch of the envelope’s peak. In addition, the pulse 

period Tp is defined as the inverse of the prevailing frequency fp. 

In what follows, we consider a vertical strike-slip fault in an interplate region and five scenar-

ios with a distinct moment magnitude (Mw 5.5, 6.0, 6.5, 7.0, 7.5). The diameters of the 

subevents 2𝜌0 are 2.9, 5.2, 9.2, 16.4 and 29.2 km for Mw 5.5, 6.0, 6.5, 7.0 and 7.5, respective-

ly. According to the calibration of the SBM for interplate regimes (Halldorsson and Pa-

pageorgiou 2005), the total number of subevents that make up the SBM is typically 15. 

Consistent with realistic values of fault dimensions, the 15 subevents are arranged in a 5×3 

pattern for events Mw 5.5, 6.0 and 6.5 (as illustrated in Figure 2), whereas for Mw 7.0 and 7.5 

the subevents are placed in two rows with the upper and lower rows consisting of 8 and 7 

subevents, respectively. The top edge of the fault is 0.1 km deep. The hypocenter is placed at 

L/2 along strike and 0.7W down dip whereas the rupture velocity is assumed to be 2.4 km/s. 

The high-frequency ground motions are generated at a grid of 56 stations (Figure 2) at dis-

tances normal to the fault equal to 0.2, 1, 5, 10, 15, 20, 25 km. The spacing of the stations in 

the fault-parallel direction is: -L/5, 0, L/5, 2L/5, 3L/5, 4L/5, 5L/5, 6L/5, where L is the fault 

length which is function of the moment magnitude Mw. The site characterization is assumed to 

be NEHRP site class D for all stations. We vary the seed number within the SBM so that 100 

realizations are obtained for every combination of magnitude and receiver location. The long-

period ground motion pulses are generated using the model input parameters as suggested by 

Mavroeidis and Papageorgiou (2003) and Halldorsson et al. (2011). The amplitude Ap is com-

puted as Ap = 0.9 PGV, where the logarithm of PGV follows a normal distribution with the 

mean value provided by: 

rup032.0040.2PGVlog r (6) 

and a standard derivation of 0.187. The distance measure rrup is defined as the closest fault-to-

station distance. The pulse period Tp scales self-similarly with earthquake magnitude, and the 

logarithm of Tp follows a normal distribution with the mean value determined by: 
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Wp 5.09.2log MT  (7) 

and a standard deviation of 0.143. In addition, parameter γp follows a normal distribution with 

a mean value of 1.93 and a standard deviation of 0.47. This distribution is left-truncated to 

one to ensure that all γp values are greater than one. Finally, the phase angle follows a normal 

distribution with mean 1.83 and standard deviation of 0.98. Note that for every combination 

of magnitude and receiver location, 100 samples for each model parameter (e.g. Ap, fp, vp and 

γp) are generated using Monte Carlo sampling. Finally, the long-period components of ground 

motion are superimposed on the high-frequency ground motions, with the initiation of the 

pulses aligned with time incident corresponding to 1% of the Arias intensity of the high-

frequency motions. 

Figure 2 Fault geometry and grid of receivers (stations). 

(a) (b) 

Figure 3 Mean PGA values of the synthetic ground motion records for: (a) Mw = 6.0, (b) Mw = 7.0. Smaller Mw 

events produce larger PGA values. 

Figure 3 shows the spatial distribution of the mean peak ground acceleration (PGA) of the 

synthetic broadband near-fault ground motions. For both Mw cases shown, larger mean PGA 

values are produced in the center of the fault-parallel direction that is closer to the epicenter, 

while the mean PGA attenuates as the distance in the fault-normal direction increases. Fur-

thermore, the mean PGA values are larger for events of smaller magnitude (Figure 3). This 
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was first observed empirically by Somerville (2000), while Mavroeidis and Papageorgiou 

(2003) and Mavroeidis et al. (2004) discussed and explained mathematically that acceleration 

pulses generated by smaller earthquakes are typically stronger i.e., they have higher amplitude 

but shorter duration than acceleration pulses of larger earthquakes. However, once the high-

frequency component is added to the pulse-type motions, this trend may be reversed. 

4 PRELIMINARY RESULTS 

4.1 Magnitude-distance plots 

We consider twelve rigid block configurations with aspect ratio λ = h/b equal to 2, 3, 5, 10 

and characteristic frequencies p = 1.5, 2.5, 5.0. The grid consists of 56 receiver stations and, 

for every station and block configuration, we perform block response history analysis using 

100 forward-directivity synthetic ground motions. Thus for every station, we perform 12000 

rigid block response history analyses. Unless otherwise specified, all analyses refer to a fixed 

value of the coefficient of restitution η = 0.9. 

(a) (b) 

(c) (d) 

Figure 4 Probability of block overturning: (a) Mw = 5.5, (b) Mw = 6.5, (c) Mw = 7.0, (d) Mw = 7.5. 

Figure 4 presents contour plots of the probability of block overturning. Four Mw scenarios, Mw 

= 5.5, 6.5, 7.0 and 7.5 are shown. The highest probabilities are observed for the Mw = 6.5 case, 
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while smaller probabilities were obtained for the Mw = 5.5 and Mw = 7.5 ground motions. 

Compared to the PGA plots of Figure 3, the spatial distribution is the same, but the overturn-

ing probabilities decrease for large magnitudes. This is due to the fact that large magnitude 

events produce weaker and longer pulses although they have a longer duration and a stronger 

high-frequency component. 

(a) (b) 

Figure 5 Probability of not initiating rocking for the grid of stations: (a) Mw = 5.5, (c) Mw = 7.5. 

Figure 5 shows the empirical probability that the ground motion is not strong enough to initi-

ate rocking. It is reminded that a block starts rocking only if the PGA of the incipient ground 

motion exceeds gtan(α). For the Mw = 5.5 case, practically all ground motions trigger rocking 

for small distances from the fault, while for stations far from the fault the probability that 

rocking is not initiated becomes very high. On the other hand, for the Mw = 7.5 case, the prob-

ability that no rocking is initiated is quite high even at sites very close to the fault (Figure 5b). 

(a) (b) 

Figure 6 PGA vs Ap. The blue lines refer to the closed-form expression of stable-unstable threshold for sine ex-

citation according to Dimitrakopoulos and DeJong (2012). 

4.2 Overturning spectra 

The results are grouped in Figure 6 in stable-unstable plots in the acceleration-frequency do-

main. In Figure 6a, the normalized PGA with respect to the critical acceleration for the initia-
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tion of rocking, gtanα, is plotted versus the normalized pulse period, ωp/p, while in Figure 6b 

the normalized pulse acceleration, Ap, is plotted versus ωp/p. Red points correspond to blocks 

that overturned and green points to blocks that did not overturn. Blocks that were not set to 

rocking motion are not shown; thus, PGA/(gtanα) is larger than one for all points shown in 

Figure 6a. However, Ap/(gtanα) can be smaller than one, as shown in Figure 6b.  

These plots are referred as “overturning spectra”, since the horizontal axis of Figure 6 

measures frequency, while the vertical axis measures the intensity of the ground motion. An-

gle α controls the slenderness of the block (Figure 1), while parameter p accounts for the size 

of the block. 

The two plots of Figure 6, which look similar, define the region in which the block might 

overturn. In both plots we also show, for comparison, with solid blue lines the closed-form 

solution of Dimitrakopoulos and DeJong (2012) that define the safe-unsafe threshold for a full 

sine pulse with amplitude equal to the PGA or the pulse amplitude Ap of our synthetic records 

and frequency ωp equal to that of the low-frequency pulse. The sinusoidal ground motions are 

assumed symmetric (i.e. ν = 0). The following observations can be made looking at Figure 6: 

 PGA/(gtanα) is preferable over Ap/(gtanα), since it is easier to calculate and respects the

condition that rocking will immense only if PGA/(gtanα) ≥ 1.

 The use of a sinusoidal pulse is overall more conservative.

 As we move to the right side of each plot of Figure 6, the points shown refer to blocks that

are either large (large R and small p) or are subjected to high frequency ground motions

(large ωp values). Therefore, these results show that overturning is rather improbable to oc-

cur in such cases. This seems to be true for ωp/p larger than 8, independently of the ampli-

tude of the normalized acceleration.

 On the left edge of the plots, specifically for values of ωp/p smaller than about 2, corre-

sponding to ground motions containing long-period pulses (small ωp values) or to small-

size blocks (large p values), overturning occurs for all ground motions capable to initiate

rocking.

 The apparent limit between the safe and the unsafe region implies only that the blocks on

the safe side do not overturn. In other words, there are many blocks on the “unsafe” region

that did not overturn. In this sense, the threshold between the safe-unsafe regions corre-

sponds to the minimum normalized ground acceleration PGA/(gtanα) for each value of

ωp/p that could topple the block, without meaning that all excitations with larger values of

PGA/(gtanα) will cause overturning.

 Compared to our results, the sinusoidal ground motions are more conservative for ωp/p

values that exceed 6. Beyond this limit, our broadband simulations yield that the blocks do

not overturn, as opposed to the case of sinusoidal pulse where the blocks are safe or their

response does not depend on the PGA/gtan(α) parameter.
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5 SENSITIVITY ANALYSIS 

5.1 Effect of distance and magnitude 

In Figure 7, the probability of block overturning versus the magnitude of the event is shown 

for several distances. The black solid line denotes the average trend. It is evident that the 

probability of block overturning is affected by both magnitude and distance. Concerning the 

effect of distance, small distances result to higher probabilities of block overturning, as ex-

pected. However, concerning the effect of magnitude, it is seen that the overturning probabil-

ity does not monotonically increase with magnitude as one would expect, since, for events of 

magnitude larger than Mw = 6.5, the overturning probability reduces as the magnitude increas-

es. This counter-intuitive response is attributed to the saturation of the PGV for earthquakes 

with magnitude larger than 6.5 while the period of the pulse is increasing exponentially with 

the magnitude (Eq. (7)). As a result, the directivity pulse has small acceleration amplitude for 

large magnitudes, which is not capable to produce intense rocking. 

Figure 7 Variation of the probability of block overturning with magnitude and rupture distance. The black solid 

line denotes the average trend. 

(a) (b) 

Figure 8 Clustering of the ground motions that caused block overturning with respect to the rupture distance: (a) 

all simulations; (b) envelope curves indicating the threshold between safe and unsafe regions. 

UNSAFE 

SAFE 

5121



Michalis Fragiadakis, Ioannis Psycharis, Yenan Cao and George P. Mavroeidis 

Further insight on the dependence of the block overturning probability with distance and 

magnitude is offered by Figure 8 and Figure 9, respectively. Figure 8 shows the effect of dis-

tance on the block overturning spectra. The left plot (Figure 8a) clusters the data depending 

on the distance, while Figure 8b shows the threshold curves that define the safe and the unsafe 

regions, allowing a better comparison. The number of blocks that overturn decrease with dis-

tance as also indicated by the overturning probabilities of Figure 7, which is attributed to the 

fact that the PGAs decrease at large-distances (Figure 3). However, as evident from Fig. 8b, 

the distance does not affect the safe-unsafe threshold for small values of ωp/p, but only for 

blocks with ωp/p ≥ 4, for which the unsafe region expands to the right for small-distant 

events. 

(a) (b) 

Figure 9 Clustering of the ground motions that caused block overturning with respect to moment magnitude Mw: 

(a) all simulations; (b) envelope curves indicating the threshold between safe and unsafe regions. 

Figure 10 Relationship of the period Tp of the directivity pulse with moment magnitude Mw and distance. As Mw 

increases longer period values are obtained, while there is no dependence with respect to the distance. 

Figure 9 shows the effect of moment magnitude Mw on the block overturning. The effect of 

Mw is strong, since the different magnitudes have distinct threshold curves (Figure 9b). This is 

due to the fact that both PGA and ωp depend on the magnitude. As shown in Figure 3, events 

of small Mw (e.g. Mw=5.5) produce larger PGA values than larger magnitudes (e.g. Mw=6.5), 

UNSAFE 

SAFE 

5122



Michalis Fragiadakis, Ioannis Psycharis, Yenan Cao and George P. Mavroeidis 

although the failure probabilities do not follow this trend (Figure 7). On the other hand, ωp 

decreases quickly with amplitude due to the exponential increase of the pulse period Tp 

(Figure 10), which means that only small values of ωp/p can be attained for large-magnitude 

events. In this sense, for a given block (given p), the normalized frequency ωp/p decreases ab-

ruptly as Mw increases and, therefore, the safe-unsafe threshold moves to the left for the range 

of the block dimensions examined (block size is measured by parameter p). 

Another interesting conclusion that can be drawn from Figure 9b is that, for values of ωp/p < 

3 the minimum PGA required to overturn a block is almost equal or slightly larger to the one 

needed to set it on rocking motion, since PGA/(gtanα) is close to unity. For events with large 

magnitude Mw (larger than 7.0), this means that, if the ground excitation is strong enough to 

trigger rocking, it will most probably cause overturning too. However, for events of smaller 

Mw, for which values of ωp/p > 3 can be attained, the minimum PGA required to overturn a 

block is significantly larger than the one needed to initiate rocking (equal to gtanα). 

Figure 11 Distribution of the normalized PGA of the ground motions that caused overturning with the γp param-

eter that controls the oscillatory character of the ground motion. 

(a) (b) 

Figure 12 Clustering of the data with respect to γp: (a) all simulations that cause block overturning, (b) envelope 

curves indicating the threshold between safe and unsafe regions. 

UNSAFE 

SAFE 

5123



Michalis Fragiadakis, Ioannis Psycharis, Yenan Cao and George P. Mavroeidis 

5.2 Effect of the oscillatory character of the directivity pulse (γp parameter) 

The γp parameter is a constant of the wavelet proposed by Mavroeides and Papageorgiou 

(2003) that defines the oscillatory character (i.e. zero crossings) of the signal. This parameter 

was assumed normally distributed when the synthetic records were generated. Figure 11 

shows the analyses that overturned the blocks as function of γp versus the normalized 

PGA/(gtanα) intensity. The distribution of the analyses with respect to the values of γp resem-

bles that of a normal distribution. Furthermore, Figure 12 shows the overturning spectra when 

the results are clustered with respect to γp. Both the cloud plots of Figure 12a and the thresh-

old lines of Figure 12b indicate that γp has a small effect on the overturning of the blocks. 

5.3 Effect of block properties 

5.3.1. Sensitivity to the coefficient of restitution η 

The coefficient of restitution η controls the damping of the rocking motion. Figure 13b shows 

the threshold curves of the overturning spectra (e.g. Figure 6a) for different values of the coef-

ficient of restitution η, namely η = 0.7, 0.8 and 0.9. Practically there is no difference between 

η = 0.8 and 0.9, while η = 0.7 shifts the threshold curves slightly to smaller ωp/p values. 

Therefore, the effect of η, in general, is small, although there are cases where this parameter 

may alter the results. This conclusion is compatible with the results of past studies based on 

pulse-like ground motions, as the ones shown in Figure 13b obtained with the aid of the 

closed-form relationships of Dimitrakopoulos and DeJong (2012). In this case, the coefficient 

of restitution affects only the closed-loop curves, which refer to block overturning after one 

impact, while the monotonically increasing upper curve, which corresponds to the threshold 

of overturning without impact, is independent of the coefficient of restitution. 

(a) (b) 

Figure 13 Effect of the coefficient of restitution η on overturning spectra: (a) this study; (b) obtained using si-

nusoidal pulses (Dimitrakopoulos & DeJong 2012). 

5.3.2. Effect of block slenderness 

Figure 14 shows the effect of the block slenderness ratio λ = h/b, i.e. the aspect ratio of the 

block. The h/b values considered are: 2, 3, 5 and 10, corresponding to slenderness angles α 

equal to 26.5, 18.4, 11.3 and 5.7 degrees, respectively. As expected, slender blocks are more 
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likely to overturn, as shown in Figure 14a, since they set to rocking motion for records with 

small enough PGA. Furthermore, slender blocks topple for significantly smaller angle of rota-

tion than stocky ones, therefore, they are more vulnerable to small-period ground motions. 

This is the reason that the threshold curves of the overturning spectra move towards larger 

ωp/p values as λ increases (Figure 14b).  

(a) (b) 

Figure 14 Overturning spectra for different values of the slenderness ratio λ of the blocks: 

(a) overturning probability versus λ; (b) overturning spectra. 

(a) (b) 

Figure 15 Effect of the frequency parameter p on the response of the block: (a) overturning probability versus p; 

(b) overturning spectra (note that the horizontal axis is not divided with p). 

5.3.3. Effect of block size 

In Figure 15, we examine the effect of the frequency parameter p which is used to measure 

the size of the block according to Eq. (3). We examine blocks with p = 1.5, 2.5 and 5, which 

correspond to blocks with half diameter R = 3.3 m, 1.18 m and 0.30 m, respectively. Figure 

15a shows the scale effect on the probability of overturning, which was first observed by 

Housner (1963), with smaller blocks (larger p) been more vulnerable than larger ones (smaller 

p) of the same aspect ratio. This is also shown in Figure 15b, in which the safe-unsafe thresh-

olds of the overturning spectra are shown w.r.t. the pulse frequency ωp. It is evident that small 

blocks overturn even for high-frequency ground motions, for which large blocks of the same 
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aspect ratio are safe. 

6 CONCLUSIONS 

There are several parameters that control the seismic response of rigid block structures when 

subjected to pulse-like ground motion records. This paper offers a systematic investigation on 

the impact of several critical parameters through generating a large number of synthetic 

ground motion records and considering receiver locations at different places with respect to 

the fault. The response is post-processed in the form of overturning spectra, i.e. plots of the 

peak ground acceleration normalized by the critical acceleration required to trigger rocking 

(PGA/gtanα) versus the pulse frequency normalized by the characteristic frequency of the 

block (ωp/p), from which the effect of various parameters on the threshold between the safe 

(no overturning) and unsafe (overturning) regions is investigated. The results show that the 

moment magnitude Mw is important, as it affects the pulse period Tp, while the effect of the 

distance is of lesser importance. Concerning the parameters of the directivity pulse, the oscil-

latory character of it (γp parameter) and the position of the hypocenter along the fault do not 

affect the results significantly. The same holds for the coefficient of restitution η, in contrast 

to the slenderness and the size of the block, which play an important role to the probability of 

overturning.  
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Abstract. In recent years, an increased interest in the use of rocking members for the design
of earthquake resistant structures is observed. As described in the literature, the use of rocking
members leads to more resilient structural systems, since, in contrast to conventional members
which develop damage and residual deformations, rocking members have the ability to re-center
without significant damage, leading to increased structural safety and lower repair costs after a
seismic event, while their yield-like response restrains the seismic forces acting on the structure.

Although much research has been conducted on the response of rocking members, mainly
regarding analytical solutions for free-standing rocking bodies with rigid bases and simplified
guidelines for the design of structural rocking members, it is believed that there is a need for
simple computational models, which can describe the response of rocking flexible members in
structural systems more realistically.

In this paper, a new approach that is able to take into account the deformation along the
height of the body and along the contact areas, especially required for cases of constrained
structural members, is applied for the development of a generalized macro-element, which can
be used in the context of a finite element program. The theoretical formulation of the problem is
based on the solution of the normalized semi-infinite strip problem with random loads on its free
side. The new macro-element is demonstrated using typical example problems and the results
are compared with corresponding results obtained with Abaqus, showing excellent agreement.
Concerning the required runtimes, the macro-element runs significantly faster compared to
conventional finite element codes.
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1 INTRODUCTION

The complex mechanics of the rocking motion of rocking bodies and structural members
have attracted attention from the scientific community in recent years, although the phenomenon
is known from ancient times, as many ancient monuments were built with members allowed to
rock.

The rocking motion occurs when a member is unrestrained or at least partially restrained
at its base, so that tensile stresses cannot be transmitted, as considered in classical structural
mechanics. Given that the imposed forces are large enough, the rocking body detaches from the
ground and rotates about one of its corners. The vertical force acts as the restoring force that
tends to bring the body back to its original equilibrium position.

The inclusion of rocking members in real structures is considered a promising solution to
the design of resilient structures. Conventional structural elements are designed to gradually
yield and develop damage and residual deformations during an earthquake. Such an approach
means that, after a seismic event, costly and time-consuming repairs of the building may be
necessary. In contrast, the motion of rocking members is a yield-like response, able to limit the
forces transmitted to the structure during an earthquake, without however developing significant
damage, while the residual deformations are virtually non-existent. As as result, fewer repairs
are needed after a seismic event in comparison to the conventional design.

Up to date, rocking members have been applied in case of bridge piers (e.g. the Rangitikei
Railway Bridge [1]), while extensive analytical and experimental work has been performed
on rocking shear walls in precast structures (e.g. [2], [3], [4]). Guidelines addressing this
alternative seismic design have been published by several organizations ([5], [6], [7]), while
in Eurocode 8 (EN 1998-1) [8], rocking is anticipated for large lightly reinforced walls during
strong earthquakes.

Although various analytic solutions exist regarding the motion of the rigid rocking block
(e.g. [9], [10], [11], [12]), as well as approximate formulas for the design of controlled rock-
ing systems, few models exist for modeling the response of deformable rocking bodies (e.g.
[13], [14], [15], [16]). These studies, however, consider only the deformability of the rocking
member along its height, while the lower face, along which the contact with the base takes
place, is considered rigid. As a result, rocking occurs around the corners of the bottom side.
The main attempts that have been presented including the flexibility of the base concern the
rocking of rigid bodies on a flexible foundation (e.g. [17], [18], [19], [20], [21], [22], among
others). Computational approaches taking into account the deformability of the base of rocking
members include [23], [24], [25], [26], [27].

In this paper, a new macro-element formulation is proposed, able to take into account both
the deformability of the rocking member along its height and along the contact area with the
base mat. The main idea behind the proposed approach is to assume a stress distribution acting
on the section of the rocking interface, depending on the resultant forces on this interface, and
try to predict the displacements of the rocking element due to this partial loading. To this end,
the similarity between the original problem of the flexible rocking body and that of a cantilever,
partially loaded on its free side with normal and shear stresses that model the ones acting on
the contact region of the body while rocking (Fig. 1) is used. More information on the applied
technique can be found in [28].
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Figure 1: Rocking body and partially loaded cantilever analogy

2 NORMALIZED SEMI-INFINITE STRIP PROBLEM

In order to calculate the displacements of a cantilever due to partial loading on its free side,
the spatial stress distribution near the loaded region has to be derived. From this stress distri-
bution, an elongation profile across the member section can be found, from which the relative
deformations of the element can be calculated.

The normal and shear stress distributions applied on the free side are separated into: (i)
stresses produced by the resultant forces (axial force, shear force and moment); and (ii) self-
equilibrating stresses. For the latter, since the effect of the self-equilibrating stresses is expected
to vanish along the cantilever (rightmost diagram in Fig. 1), as the Saint-Venant assumption
suggests, the easier semi-infinite strip problem is used instead. The stress distributions of the
resultant forces are calculated according to the technical theory, so the use of a cantilever model
is not necessary.

The general self-equilibrating stress problem for a semi-infinite strip of width B = 2b is
solved by first examining the normalized problem, which refers to a semi-infinite strip of b = 1
(Fig. 2).

x

y

σ

x

τ

xy

0

0

B

Figure 2: Semi-infinite strip normalized problem

The self-equilibrating stress distribution problem of the normalized semi-infinite strip is cal-
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culated with the method developed in [29], using stress functions of certain form. The problem
considered is that of a semi-infinite strip x ≥ 0, −1 ≤ y ≤ 1 with generalized stress distribu-
tions on the free side, x = 0 (Fig. 2).

In the proposed macro-element, the results produced for specific load distributions of interest
are approximated by polynomial expressions, which are easier and faster to implement.

The free surface of the semi-infinite strip is assumed to be loaded in the interval [−1, p− 1],
representing a contact region of length p of the corresponding rocking body (Fig. 3). The self-
equilibrating stress distributions assumed for the free surface of the semi-infinite strip originate
from the following stress distributions, similar to the contact stresses at the interface between
the rocking body and the base, after the removal of resultant forces:

Normal stresses which have a triangular distribution. The maximum value is s at the edge,
y = −1, while it becomes zero after length p, that is at y = p− 1.

Shear stresses which are assumed to have a parabolic distribution. Its values are zero at y = −1
and y = p− 1, while its maximum value t occurs at y = 0.5p− 1

s

p

t

p

x

y

x

y

Figure 3: Semi-infinite strip normal (s) and shear (t) load distributions, for loaded region of length p

For the real problem, the interface between the body and the base mat remains flat. However,
for the corresponding cantilever problem, the loaded region of the strip, although it remains
close to flat, is not exactly flat. This causes problems when the elongation and the corresponding
slope of a specific point on the loaded edge are used for the prediction of the axial elongation
and the rotation of the body. For this reason, the elongation profile u(y) of the fibers across
the loaded region [−1,−1 + p] is interpolated by a linear function g(y) = δ + θy (Fig. 1), in
which δ and θ are the predicted axial elongation and the top rotation of the normalized problem,
respectively, taking into account the gap existing between the loaded and non-loaded surfaces
(Fig. 1).

It can be shown that for the stress distributions examined, the displacement vector U = [δ, θ]T

can be very well approximated by the following expressions:

U =


1

E

(
sV T

s + tV T
t

)
P6

1

E

(
sRT

s + tRT
t

)
P6

 (1)

where

P6 = [p6 p5 p4 p3 p2 p 1]T (2)
Vt = Vt0 + νVtd (3)
Rt = Rt0 + νRtd (4)
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Table 1: Polynomial approximation constant term vectors

Vs Vt0 Vtd Rs Rt0 Rtd

−0.1403784
1.07433528
−3.2789455
5.21236206
−5.0376812
3.53446524
−1.5484860

0.14011296
−1.0383282
3.14664208
−5.1023030
5.24787880
−4.2918559
2.32362124

−0.2542931
1.50541409
−3.3275039
3.28205442
−1.2327789
0.41774356
−0.8192345

0.00789778
−0.0232445
0.01957306
−0.0568735
−0.2965314
1.58546025
−1.6046083

0.09467081
−0.5696705
1.40705090
−1.7749925
1.46712898
−2.1973954
2.38392244

−0.1525667
0.90318304
−2.0163212
1.95898891
−0.5395043
0.21059712
−0.8115360

E and ν being Young’s modulus and the Poisson ratio, respectively, and the polynomial constant
term Vs and Rs (for the normal stress contribution) and Vt0,Vtd,Rt0,Rtd (for the shear stress
contribution) vectors given in Table 1.

Also, the flexibility matrix of the normalized problem Ft = ∂U/∂R, with R = [p, s, t]T , is
calculated by the following expression:

Ft =
∂U

∂R
=


1

E

(
sV T

s + tV T
t

)
dP6

1

E
V T

s P6
1

E
V T

t P6

1

E

(
sRT

s + tRT
t

)
dP6

1

E
RT

s P6
1

E
RT

t P6

 (5)

where
dP6 = [6p5 5p4 4p3 3p2 2p 1 0]T (6)

The predicted displacements derived from the semi-infinite strip problem were compared
against results obtained with Abaqus. Two cases for various cantilever heights were considered,
with constant width B = 2: in the first one, the rocking member was loaded on its top with a
concentrated moment, while in the second one it was loaded with a concentrated horizontal
force. Figures (4) and (5) present the comparison results in relation to the different contact
lengths, p, which show that, generally, there is very good agreement between the results of the
two methods, especially for more slender members.

3 A MACRO-ELEMENT FORMULATION

By combining the self equilibrating stresses and the resultant force contributions (Fig. 6),
a macro-element algorithm is developed which accounts for the total response of the rocking
member.

For the rocking macro-element formulation, the concept of the simply supported beam nat-
ural system will be used, which is based on the geometrically non-linear force-based beam-
column element formulation proposed by Neuenhofer and Filippou [30]. This coordinate sys-
tem without rigid body modes demands only relative displacement values and not absolute ones,
thus enabling the use of relative displacements presented previously for the self-equilibrating
stresses contribution. The equations for the transformation of the displacements and forces to
and from the simply supported beam natural coordinate system can be found in [30].

For the normalized semi-infinite strip problem discussed in section 2, given the load param-

eter vector R = [p, s, t]T , the displacements U and the flexibility matrix
∂U

∂R
can be evaluated,

which refer to the cantilever-like reference system of the semi-infinite strip. However, in order
to combine these results with the resultant force ones, these quantities have to be converted from
and to a reference system of a simply supported beam.
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Figure 4: Rocking members with different heights loaded with a concentrated moment on their top: Central gap
and top rotation versus the contact length at the bottom, p, and for s = −1000, E = 30000000, ν = 0.2
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Figure 5: Rocking members with different heights loaded with a concentrated horizontal force on their top: Central
gap and top rotation versus the contact length at the bottom, p, and for s = −1000, E = 30000000, ν = 0.2
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Figure 6: Schematic procedure used to calculate the combined displacements q̄ from the forces Q̄

Additionally, the problem that was formulated in section 2 referred to a semi-infinite strip of
normalized semi-width b = 1, thickness W = 1 and stress distributions defined in the range
[−1, p− 1]. So, this problem has to be generalized to cover random width B, thickness W and
load direction cases.

The conversion of the simply supported beam forces, Q̄ = [Q̄1, Q̄2, Q̄3]
T , to the normalized

problem cantilever ones, Q̄c = [Nc,Mc, Qc]
T (Fig. 6a), to the corresponding stress load param-

eters, Rc = [c, s, t′]T , and finally to normalized problem stress load parameters, R = [p, s, t]T ,
is described by the following equations:

Q̄c = S1Q̄ (7)

Rc =



3

(
b+
|Mc|
Nc

)
2

3

Nc

b+ |Mc|
Nc

1

2

Qc

b+ |Mc|
Nc


with Nc < 0 (8)

R = S2Rc (9)

where

S1 =
1

W

1 0 0
0 1 0

0 − 1

L
− 1

L

 S2 =


1

b
0 0

0 1 0
0 0 ρ

 and ρ = sign(Mc) (10)

Similarly, after the calculation of the displacements U = [δ, θ]T of the normalized problem
(Fig. 6b), the conversion to the ones of the general simply supported beam problem, q̄ =

5135



Evangelos Avgenakis and Ioannis N. Psycharis

[q̄1, q̄2, q̄3]
T (Fig. 6c), is described by the equation:

q̄ = S3U (11)

where

S3 =

b 0
0 ρ
0 0

 (12)

The self-equilibrating part of the rocking element is active only if a portion of the section
supported on the ground is active, that is, only if

c < B ⇒
∣∣∣∣Mc

Nc

∣∣∣∣ > b

3
(13)

which means that the resultant normal force must be located outside the kern of the section.
Also, given the flexibility matrix of the normalized semi-infinite strip problem Ft =

∂U

∂R
, the

flexibility matrix in the simply supported beam coordinate system
∂q̄

∂Q̄
is evaluated as follows:

∂q̄

∂Q̄
=

∂q̄

∂U

∂U

∂R

∂R

∂Rc

∂Rc

∂Q̄c

∂Q̄c

∂Q̄
= S3 Ft S2 S4 S1 (14)

with

S4 =
∂Rc

∂Q̄c

=



−3
|Mc|
N2

c

3
ρ

Nc

0

2

3

b+ 2 |Mc|
Nc(

b+ |Mc|
Nc

)2 −2

3

ρ(
b+ |Mc|

Nc

)2 0

1

2

|Mc|Qc

(Ncb+ |Mc|)2
−1

2

ρNcQc

(Ncb+ |Mc|)2
1

2

1

b+ |Mc|
Nc


=


−3
|Mc|
N2

c

3
ρ

Nc

0

4

c
− 6b

c2
−6

ρ

c2
0

9

2

|Mc|Qc

N2
c c

2
−9

2

ρQc

Ncc2
3

2c


(15)

The contribution of the resultant forces can be calculated as usual. The flexibility matrix of
the elastic simply supported beam, taking into account shear deformation effects, is (e.g. [31]):

Fr =



L

EA
0 0

0
L

3EI
+

α

GAL
− L

6EI
+

α

GAL

0 − L

6EI
+

α

GAL

L

3EI
+

α

GAL

 (16)

where α is the shear shape factor with α ≈ 1.2 for rectangular cross sections (shear deforma-
tions contribution can be neglected by setting α = 0.0). So, the displacements at the nodes
originating from the resultant forces (Fig. 6d) are given by

q̄r = FrQ̄ (17)

The general algorithm for the macro-element which combines these two contributions, based
on the algorithm in [30], is presented in table 2, where index r refers to the resultant force prob-
lem and s refers to the self-equilibrating stress problem (extended semi-infinite strip algorithm).
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Table 2: Rocking macro-element algorithm

1. Elimination of rigid body modes
q̄i = Tiqi

∆q̄i = Ti∆qi

2. Nodal force increments ∆Q̄i = F−1i−1∆q̄i

3. Nodal forces Q̄i = Q̄i−1 + ∆Q̄i

4. Flexibility matrix and Nodal displacements for the resultant
force problem

q̄∗r = FrQ̄i

5. Check whether there is rocking or not. If not, ignore steps
(6)-(10) and set q̄∗s and Fs to the zero matrices

∣∣∣∣Q̄2

Q̄1

∣∣∣∣ > b

3
→ Rocking

6. Force parameters for the self-equilibrating stresses problem
Q̄c = S1Q̄i

Rc = Rc(Q̄c)
R = S2Rc

7. Displacements of the normalized problem U = G L

8. Displacements in the simply-supported beam natural system q̄∗s = S3 U

9. Flexibility matrix of the normalized problem Ft =
∂U

∂R

10. Flexibility matrix in the simply-supported beam natural
system

Fs = S3 Ft S2 S4 S1

11. Combined displacements q̄∗i = q̄∗r + q̄∗s

12. Displacement residuals ri = q̄i − q̄∗i

13. Combined flexibility matrix Fi = Fr + Fs

14. Extra nodal forces Q̄∗i = F−1i ri

15. Updated nodal forces Q̄i = Q̄i + Q̄∗i

16. (Optional) Check convergence
|Q̄∗i |
|Q̄old

i |
> error⇒ return to step 4

17. Inclusion of rigid body modes
Qi = T ∗Q̄i

Ki = T1i + T ∗
i F
−1
i T ∗T

i

4 EXAMPLES

As a first example, the response of a simple cantilever model is calculated using the proposed
macro-element. The results are compared with the results of the corresponding Abaqus model,
consisting of 2D plane stress elements with contact properties at the base which allow only
compressive stresses to develop.

In Fig. 7, a cantilever with height H = 2 m, width B = 1 m and thickness W = 0.2 m is
examined, which is loaded with a vertical force N = −400 kN. In Fig. 7a, the pushover curves
of such cantilevers with various E values and ν = 0.2 are shown together with the theoretical
rigid block case. It can be seen that, due to the non-linearity of the response, the maximum
strength achieved decreases with decreasing E values.

In Fig. 7b, the response of the body with E = 30 GPa case is examined more thoroughly:
apart from a magnification of the pushover curve in the initial region, the top rotation and the
vertical displacement at the center of the body with and without shear deformation effects are
presented. Comparison of the results with the ones of the corresponding Abaqus model shows
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Figure 7: Example 1, H = 2 m panel loaded with vertical force N = −400 kN and horizontal force P at its
top: (a) Pushover curves for different E values; (b) Pushover curves, top rotation and vertical displacement for the
E = 30 GPa case, which is also compared with the corresponding Abaqus model
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that, generally, the proposed macro-element can predict the response very accurately, especially
if shear deformations are considered.

As a second example, the rocking body is examined with an elastic tendon with Young’s
modulus Et and section area At installed along its center-line, imposing a prestress force with
initial value Pt0 = 400 kN. In this way, the vertical displacements are restrained after the
onset of rocking, while the axial force originating from the tendon increases as its elongation
increases.

The results are shown in Fig. 8 for typical values of tendon coefficients EtAt. It can be seen
that the prestressing tendons force the pushover curve to be ascending instead of descending,
offering stability to the system.

tendon

B

A

H

d

P

P

t

0 5 10 15 20 25 30 35 40
Horizontal displacement, d [mm]

0

100

200

300

400

500

600

H
or

iz
on

ta
l

fo
rc

e,
P

[k
N

]

EtAt =500000 kN

EtAt =300000 kN

EtAt =100000 kN

0 5 10 15 20 25 30 35 40
Horizontal displacement, d [mm]

0

500

1000

1500

2000

2500

T
en

d
on

fo
rc

e,
P
t

[k
N

]

EtAt =500000 kN

EtAt =300000 kN

EtAt =100000 kN

Figure 8: Example 2, H = 2 m panel with a horizontal force P at its top, constrained with a tendon with Young’s
modulus Et, section area At and prestress force Pt0 = 400kN : Pushover curve and tendon force

5 CONCLUSIONS

In this paper, a new macro-element algorithm is proposed, which can be used for the cal-
culation of the rocking response of flexible bodies, also accounting for the deformability of
their base. This is crucial in case of restrained rocking, when considerable axial forces develop.
The formulation of the element is based upon the solution of the normalized semi-infinite strip
problem, in order to account for the partial loading imposed on the rocking interface.

Two example problems are presented, showing typical cases where the proposed element
can be used. Comparison of the results with ones obtained using equivalent Abaqus models
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shows very good agreement between the two methods, while the proposed algorithm requires
extremely low runtimes compared to conventional finite element codes.
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rocking bodies: modeling and behavior under pulse-like ground excitation,” Earthquake Engineer-
ing & Structural Dynamics, vol. 43, no. 10, pp. 1463–1481, 2014.

[16] M. F. Vassiliou, R. Truniger, and B. Stojadinović, “An analytical model of a deformable cantilever
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Abstract. Steel frames with reinforced concrete infill wall (SRCW) are characterized by an 

high stiffness that minimize the inter-storey drift and the associated damage to non-structural 

elements. They are however characterized by critical drawbacks, that limit their use, such as 

the low dissipative capacity of the concrete wall that causes high seismic force and high over-

turning moment at the wall base foundation. Within the present study, an innovative steel 

frame with reinforced concrete infill shear wall system is proposed. It consists of a reinforced 

concrete infill walls surrounded by a steel frame which contains energy dissipation replacea-

ble elements within the columns. In this way the force transmitted to the other structural ele-

ments, and in particular to the foundations, are limited and an important portion of the 

seismic energy dissipated through plastic deformation. Within this paper the behaviour of the 

proposed system is investigated through nonlinear analyses based on advanced models sup-

ported by the experimental results on real scale specimens, highlighting advantages and 

drawbacks of the system.  
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1 INTRODUCTION 

Steel frames with Reinforced Concrete infill Walls (SRCWs) are structural systems that of-

fer many advantages such as their high initial stiffness, able to reduce the building damage 

under low-intensity earthquakes, and potentially easy repairs after moderate damage through 

the use of epoxy resins on the cracked wall [1]. In this way, SRCW systems provide a promis-

ing structural solution potentially able to reduce the seismic risk in all its aspects, i.e., eco-

nomic loss and fatalities, as for example contemplated in recent studies [2][3] following the 

2012 Emilia earthquakes in Italy and highlighting the necessity of an adequate structural be-

haviour also for low-to-moderate seismic events [4].  

In SRCWs three different resisting mechanisms to horizontal actions can be identified as 

depicted in Figure 1: 1) flexural behaviour of the steel frame; 2) direct interactions between 

the steel frame and the compression strut in the reinforced concrete (RC) infill walls; 3) inter-

actions between steel frames and the RC infill walls through friction and shear connectors. 

The ratio of horizontal forces resisted by each of the load transferring paths depends on the 

mechanical properties and geometrical configuration of the considered system.  

 

 

Figure 1: SRCWs resisting mechanisms to horizontal actions. 

Despite all the available research studies carried out in the last decades, it is not easy to de-

sign a SRCW system in seismic areas due to the lack of specific capacity design rules that al-

low controlling the formation of a proper dissipating mechanism. Refined numerical analyses 

previously carried out on SRCW systems [5] designed according to the Eurocodes, in fact, 

pointed out an unsatisfactory fragile behaviour due to the severe damage occurring to concrete 

long before yielding of the ductile elements. The failure mechanism is generally characterised 

by yielding of the steel frame concentrated mainly in the elements near the bottom of the wall 

(more specifically at the connections of the horizontal to the vertical parts). The plastic de-

formation on the concrete infill walls concentrates in a diagonal path clearly highlighted by 

the distribution of cracking. In addition, localized plastic deformations are also present near 

the corners of the infill walls due to the local action of the first studs of the horizontal and ver-

tical elements (Figure 2a). In order to overcome the observed critical aspects possibly affect-

ing the considered structural system, an innovative approach for ductile design of SRCWs, 

recently studied during a European research project [5] that also involved innovative steel and 

concrete hybrid coupled walls [6], is presented in this work leading to the solution depicted in 

Figure 2b. The RC infill walls are not connected to the vertical elements where the energy 

dissipation is expected. The system is conceived to control the formation of diagonal struts in 

the infill walls and behaves as a latticed brace instead of a shear wall. The energy dissipation 

is expected to take place only in the vertical elements of the steel frame subjected mainly to 

axial forces without involving the reinforcements of the infill walls. 
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Figure 2: a) critical aspects in the behaviour of conventional SRCW systems; b) innovative SRCW system. 

Detailing of the connection of the dissipating elements should allow their replacement and 

the presence of the infill wall limits the axial force in the compressed dissipative element 

avoiding its buckling. The formation of the diagonal strut is ensured by joint stiffeners and 

bearing plates. The joint may be welded in shops allowing speeding up the erection phases. 

The stud connectors are not required to transfer shear forces but they are mainly used to con-

nect the infill and the frame together during the seismic shakings. A capacity design proce-

dure, able to assure the desiderate energy dissipation mechanism, is proposed consistently 

with the Eurocode 8 [7] framework and explained in details. Sophisticated and simplified nu-

merical models are then adopted to better understand the global behaviour of the system and 

to check the validity of the design procedure proposed. Finally, the results of an experimental 

campaign on two different 2/3 downscaled one-storey specimens are illustrated to validate the 

design procedure and to provide insight into the influence of the shear studs distribution on 

the behaviour of the proposed SRCW system.  

2 DUCTILE DESIGN OF SRCW SYSTEMS 

The proposed innovative SRCW is composed by elements with specific tasks according to 

the proposed capacity design. The design procedure consists of 9 steps, it is force-based and is 

applied by considering the simple statically determined scheme representing the limit behav-

iour of the SRCW depicted in Figure 3. The procedure is described hereafter. 

 

Figure 3: Limit behaviour under seismic action of the innovative SRCW system. 
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Step 1: definition of the static equivalent lateral loads and calculation of the truss actions.  

A design spectrum reduced by a suitable behaviour factor is considered; the definition of 

the behaviour factor is rather delicate because the limit structural scheme adopted may not 

represent the behaviour of the system especially in the linear range for moderate earthquakes. 

 

Step 2: design of the cross sections of the ductile boundary elements in traction. 

These elements are subjected also to compression under the reversed loadings but they are 

not expected to yield in compression. Even if in principle no specific provisions are necessary, 

it is better to assure the element cross section being compact, e.g. at least class 2 according to 

Eurocode 3 [8].  

 

Step 3: capacity design of the connection of the ductile elements and of the adjacent ele-

ments.  

The design of the connection of the ductile elements and of the adjacent elements is per-

formed with the formula 

 fyovd R.R  11  (1) 

where γov is the over-strength coefficient of the element with plastic resistance Rfy of the con-

nected dissipative member based on the design yield stress of the material. The connection 

should be designed to resist the force in the linear range in order to reduce damage in the non-

ductile elements and to permit the possibility to replace the ductile element after seismic dam-

age. End-plates connections should be preferred to other types with the ductile element con-

nected to the split plate by means of full penetration welding. The adjacent vertical elements 

to which the ductile elements are connected should be over-strengthened; this can be assured 

by using a different steel grade or by suitably enlarging the resisting cross section that should 

have width equal or greater than the infill wall thickness. 

 

Step 4: calculation of geometric over-strength factors.  

These factors are calculated as usual for steel structures by the ratio of the real plastic re-

sistance of the ductile element and the relevant design force 
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i,Rd,pl
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min  (2) 

To guarantee yielding of the edge steel elements at the different levels, and to avoid formation 

of soft storeys, the maximum over-strength Ωi should not differ from the minimum value by 

more than 25%. At the higher levels, this condition may difficultly be satisfied. In such a case, 

the yielding takes place only at a limited number of storeys and the ductile elements should be 

designed to guarantee the global ductility, e.g. [9][10][11]. 

 

Step 5: calculation of axial forces in non-ductile elements by combining the effects of grav-

ity loads with those of the seismic action suitably magnified. 

These forces are calculated by suitably magnifying the seismic design component account-

ing for the material and geometric over-strength of the ductile elements with the usual formu-

la 

 E,EdovG,EdEd N.NN  11  (3) 

Step 6: capacity design of the reinforced concrete infill against concrete crushing (defini-

tion of wall thickness tw and width of the bearing plate lb).  
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This step is crucial as it assures the good performance of the system that should not be af-

fected by the wall failure (concrete crushing). As previously described, bearing plates are 

placed at the beam-to-column nodes to control the formation of the diagonal strut within the 

wall (Figure 4a). 

 

Figure 4: (a) diagonal struts within the infill walls; (b) compression fields involved to resist the axial force in the 

case lateral elements failed due to instability. 

A fan-shaped stress field is expected at the bearing plate; the effective width of the wall 

should be equal to the bearing plate width lb at the diagonal ends whereas the effective width 

is imposed by a coefficient α > 1 at mid diagonal. The design formula 
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is derived from Eurocode 2 (paragraph 6.5) [12]; the second value of the strut strength takes 

into consideration the transverse tension (υ = 0.6 may be assumed) whereas the first value 

considers a simple compression field. The two design parameters lb and coefficient α can be 

determined with a trial procedure or by imposing a tentative value for α. The bearing plate 

should be then proportioned and stiffened to avoid stress localization in the concrete. 

The wall reinforcements should be checked to guarantee the diffusive mechanism that de-

pends on the choice of the parameter α; for this purpose rules for partial discontinuity regions 

suggested in Eurocode 2 (paragraph 6.5.2) [12] are considered. In this case, tractions to be 

resisted by reinforcements is evaluated by means of the formula 

 RNT 











1
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1
 (5) 

Two different reinforcement layouts may be adopted (Figure 5), the former is constituted by 

two sets of orthogonal reinforcements whereas the latter is constituted by a set of specific 

transverse (with respect to the strut direction) reinforcements. In the first case, vertical and 

horizontal reinforcements should fulfil the conditions 
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It is worth noting that the first reinforcement layout is simpler but possibly less stiff than the 

second, which instead requires a third order of reinforcements that can be placed only in the 

case of sufficiently thick walls. 
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Figure 5: (a) reinforcements constituted by orthogonal rebar layout; (b) reinforcements constituted by additional 

stirrups. 

Step 7: design of the beams in traction.  

These elements are designed to resist magnified axial forces. To improve the system feasi-

bility, it is better that their width is compliant with the wall thickness. 

 

Step 8: check and possible re-design of the compressed edge elements.  

The ductile elements are checked for instability by using the formula 

 E,EdovG,Ed

M

y
N.N

Af





11

1

 (7) 

The effective length of the element can be selected to be equal to the distance between 

beam-to-column intersection nodes taking into account the real dimension of the enlarged 

zone necessary for realizing the bearing plate. In the case the verification is not satisfied, it is 

expected that the adjacent strip of the concrete wall collaborates to bear the compression force 

(Figure 4b); in such a case, the following points (8-1 and 8-2) have to be carried out. 

 

Step 8-1: design of the shear connection between the wall and the frame.  

The shear connection is designed to transmit to the adjacent RC wall the force in excess 

with respect to the bearing capacity of the ductile element given by 
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11
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E,EdovG,EdRd
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  (8) 

In this case, shear connection has to be placed at the vertical elements. It has to be de-

signed by taking into account that possible splitting failure mechanisms of the wall may occur 

instead of the usual failures due to concrete crushing and yielding. For this purposes, rules 

suggested by Eurocode 4 Part 2 (paragraph 6.6.4 and Annex C) [13] may be considered. 

 

Step 8-2: check of the vertical strut developing in the wall.  

This element withstands the same force calculated with equation (8) and has to be suitably 

reinforced with confinement stirrups. The same detailing rules suggested in Eurocode 

8 (paragraph 5.4.3.4.2) [7] for RC walls may be adopted. 

 

Step 9: calculation of the length of the dissipative element, in order to ensure the compli-

ance between local and global ductility.  

For this purpose, formulas derived by considering simplified mechanisms (Figure 6) can be 

adopted. To a first approximation, the following formula may be used: 
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where µs and µm are the ductility of the structure and of the material of the dissipative element 

respectively; the summation is extended only to the N elements that fall in the Ω ÷1.25 Ω 

range, δel is the structure elastic displacement evaluated for the static equivalent loading in-

ducing the first yielding; δpl is the structure plastic displacement evaluated considering only 

the elements expected to yield. 

 

Figure 6: a) Elastic and plastic deformations of the SRCW; b) material stress-strain relationship. 

3 NONLINEAR ANALYSIS OF THE INNOVATIVE SRCW SYSTEM 

3.1 Finite element model 

High fidelity finite element models are developed with the computer program ABAQUS 

for a preliminary analysis of the behaviour of the presented design approach for SRCW sys-

tems. A 4-storey system is considered and designed according to the procedure previously 

described. Details on the design parameters (i.e. geometry, vertical and horizontal loads, ma-

terial properties) are reported in [5]. The geometry of the system is closely reproduced by us-

ing shell finite elements both for the steel frame and for the concrete infill walls (Figure 7); 

these are assumed to be connected to the frame only at the inclined bearing plates where stud 

connectors are placed. In particular, 4-node linear shell elements with 5 degrees of free-

dom per node (reduced integration, small membrane strains) are used. Wall reinforcements 

are considered by introducing two layers of reinforcements according to the construction 

drawings. A coarse mesh (mean size of 0.5 m) is adopted for the concrete walls to avoid nu-

merical convergence problems, whereas a more refined mesh (mean size of 0.1 m) is adopted 

for steel members. 

The behaviour of the concrete is described adopting a smeared cracking model with full 

shear retention. The concrete behaviour is assumed to follow Mander’s law in compression 

and a linear elastic law in tension up to cracking, followed by a softening tract as later illus-

trated. Cracking is assumed to occur when the stress reaches a failure surface defined by a lin-

ear relationship between the equivalent pressure stress and the Mises equivalent deviatoric 

stress. When a crack is detected, its orientation is stored for subsequent calculations. Subse-

quent cracking at the same point is restricted to being orthogonal to this direction because 

stress components associated with an open crack are not included in the definition of the fail-

ure surface used for detecting the additional cracks. The behaviour of cracked concrete is 

modelled with a strain-softening branch that allows to simulate the interaction between rein-
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forcements and concrete (tension stiffening); in particular, it is assumed a linear strain soften-

ing with zero stress at a total strain of about 10 times the strain at tensile failure. Elastoplastic-

hardening models are considered for the reinforcements and the steel frame. The yielding 

point, the material plastic hardening and the ultimate stress for each steel grade considered are 

defined  according to the mechanical characteristics of materials adopted in the design.  
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Figure 7: SRCW finite element model. 

3.2 Results 

Figure 8a; shows the yielding pattern of the steel frame for three displacement levels 

measured at the top level. It is observed that plastic strains are attained only at the ductile el-

ements consistently with the dissipating mechanism assumed in the proposed design proce-

dure. The resisting mechanism adopted in the design is also corroborated by the stress field in 

the wall (Figure 8b) that clearly depicts the formation of the diagonal struts in the concrete 

panels. The values of the principal stresses do not increase with the overall displacement 

demonstrating that the wall is protected against crushing due to yielding of the side fuses. 
 

 u = 0.044 cm u = 0.069 cm u = 0.11 cm 

 
 u = 0.044 cm u = 0.069 cm u = 0.11 cm 

(a) 

(b) 

 = 44 mm  = 69 mm  = 110 mm 

 

Figure 8: Results of finite element analysis: a) yielding pattern in the steel frame; b) stress field in the wall. 
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4 EXPERIMENTAL BEHAVIOUR OF THE INNOVATIVE SRCW SYSTEM 

4.1 Introduction 

An experimental campaign was carried out on two two-third downscaled specimens in or-

der to validate the predicted behaviour of the proposed SRCW, evaluate possible problems 

related to the realization of such system, and highlight the influence of different shear stud 

distributions along the steel frame perimeter. The specimens, respectively named S1 and S2 

are shown in Figure 9. S1 is characterized by the presence of shear studs only in the steel 

frame corner zones while S2 has shear studs distributed all along the steel frame perimeter 

(excluded the dissipative zones). In both cases the RC wall is 12 cm thick.  

 
a)      b) 

Figure 9: SRCW Steel frame specimens: a) Specimen S1 with shear studs only in the corner; b) Specimen S2 

with shear studs all along the perimeter (excluded the dissipative zones). 

4.2 Test setup 

The SRCW specimen is bolted to a steel base firmly connected to the strong floor by 

means of an anchoring system and horizontal reaction system (Figure 10), while a lateral sta-

bilizing system avoids transversal displacements of the wall.  

 

Figure 10: Global test setup. 
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The system is connected to the wall specimen by ten friction connections and it is inde-

pendent from the lateral supporting system, allowing so the free tensile deformation of the 

dissipative elements. The displacements of the wall, the force applied, the deformation of dis-

sipative elements and of the load introduction system are recorded by several sensors placed 

as shown in Figure 11.  

 

 

Figure 11: Sensors position. 

The tests are carried out in displacement control and the displacement history imposed to 

the jacks end is reported, for both tests, in Figure 12. An initial maximum displacement equal 

to 20 mm is imposed cyclically in order to assess a displacement ductility equal at least to 3 

(during the test a yield displacement equal to about 6 mm is observed). The imposed maxi-

mum displacement is then raised to about 30 mm.  

  
a) b) 

Figure 12: Loading history of tests on a) specimen S1 and b) specimen S2. 

4.3 Experimental results 

In Figure 13 the experimental cyclic behaviour of specimen S1 is shown. The first loading 

cycle highlights a relatively “fat” hysteretic behaviour, while pinching phenomena, with the 

maximum resistance that remains practically constant, is exhibited during the subsequent cy-

cles. The first semi-cycle shows that the system is characterized by a behaviour very close to 

an ideal elastoplastic one with a displacement ductility equal, at least, to 3.  
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Figure 13:  Specimen S1: cyclic force-displacement curve. 

At the end of the first unloading phase, the concrete wall exhibits practically no damage, 

exception made for a little detachment from the lateral steel boundary elements. It can be in-

ferred that, mainly due to the low number of shear studs connecting the RC wall to the steel 

boundary elements, the wall behaves as a rigid body within the steel frame, avoiding any 

damage, except for the corner zones. Due to the continuous accumulation, cycle after cycle, of 

the vertical displacements in the lower edge, the force application point of the compressed 

concrete diagonal strut changes and causes the failure of the specimen due to an excessive 

shear deformation of the non-dissipative vertical steel element (Figure 14a). At the same time, 

the spalling of the concrete on the opposite lower corner of the infill wall and the complete 

detachment of the infill wall from the steel frame occurs (Figure 14b). Practically no other 

damages are visible within the RC wall.  

 

     
a)      b) 

Figure 14: Lower corners of S1 after failure: a) shear failure of the non-dissipative zone and b) spalling of the 

concrete and complete detachment by the steel frame. 

Specimen S2 shows a behaviour similar to the one of specimen S1 as can be seen in Figure 

15, with evident pinching phenomena but with an higher resistance. The diffused presence of 

the shear studs all along the perimeter of the steel frame allows the transmission of horizontal 

forces also through shear mechanism, as testified by the diffused diagonal cracking observed 
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within the wall. The more efficient connection between the wall and the boundary steel ele-

ments causes the propagation of a main crack from the base of the dissipative element in ten-

sion, as illustrated in Figure 16, avoiding any detachment phenomena between the RC wall 

and the steel frame. Due to the displacement accumulation, the vertical and horizontal rein-

forcing bars crossing the main crack break (Figure 16), causing the loss of some horizontal 

forces carrying capacity.  

 

 
a)       b) 

Figure 15. Specimen 2: a) cyclic force-displacement curve; b) first loading and unloading phase 

 

  
a)      b) 

Figure 16. Specimen S2 at the end of the test: a) global view; b) failure of the steel reinforcements in tension 

crossing the main crack. 

5 CONCLUSIONS 

A new steel frame with reinforced concrete infill wall (SRCW) is proposed and its actual 

behaviour assessed through experimental tests. The system is characterized by the presence of 

a dissipative element within the boundary steel columns that allows the activation of a proper 

dissipative mechanism. Consequently, the force transmitted to the other structural elements, 

and in particular to the foundations, are limited and an important portion of the seismic energy 

dissipated through plastic deformation. To allow the activation of the dissipative mechanism 

and in order to optimize the design of non-dissipative elements, a force-based capacity design 

method, applied  by considering the simple statically determined scheme representing the lim-
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it behaviour of the SRCW, is proposed. Rules and indications are supplied for the design of 

each element composing the system, selecting and adapting the design philosophy and the in-

dications of the Eurocodes. The real behaviour of the proposed system is then studied through 

an experimental campaign on two 2/3 downscaled specimens, characterized by a different 

shear stud distribution. Both specimens results highlighted a good monotonic displacement 

ductility and cyclic pinching phenomena, a practically constant maximum resistance and a 

tendency to  accumulate tensile plastic deformation on the dissipative elements. The specimen 

with shear studs only on the corners failed due to excessive shear damage to the non-

dissipative zone of the column and the spalling of the concrete on the opposite lower corner of 

the infill wall. The failure was probably caused primary by the uplifting of the concrete infill 

wall and the consequent uplifting of the contact point between the concrete strut and the steel 

frame. The other specimen, with shear studs distributed all along the non-dissipative steel 

boundary elements, failed due to the tensile failure of concrete wall reinforcements. It showed 

the same tendency to accumulate vertical displacement, but the accumulation took place on 

the main crack formed on the RC wall, while no detachment was observed between the wall 

and the steel frame. While the first specimen exhibited a latticed structural behaviour, the sec-

ond specimen highlighted also a shear resistance mechanism of the shear wall, with a conse-

quent initial lateral resistance higher than the one of first specimen.  Further researches are 

however needed for better understanding of the shear studs distribution influence and to study 

the effects on the failure mechanism of the vertical forces transmitted by the dead and live 

load to the SRCW systems. The presence of the vertical loads could, in fact, modify the effec-

tive failure mechanism, avoiding the accumulation of the vertical displacements. In this way, 

the re-centring capability, today accepted as one of the most important features for limiting 

the structural damage due to the earthquake actions [14][15], would be demonstrated also for 

SRCW systems.   
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Abstract. This paper deals with the seismic protection of existing buildings using external 

viscous damper systems to increase the energy dissipation capacity. Dampers and bracings 

can be arranged in very different configurations and the possible solutions can be grouped 

into different categories, depending on the specific kinematic behavior. The study analyzes a 

recent solution called "dissipative tower", which, for the dampers activation, exploits the 

rocking motion of a stiff steel truss hinged at the foundation level. A state space formulation 

of the dynamic problem is presented in general terms and some issues concerning the influ-

ence of the bracing properties on the behavior of a case study consisting of a building cou-

pled with a dissipative tower are investigated. The results presented concern both the 

influence of the external dissipative bracings on the most important modal properties of the 

system, and the global effect on the seismic response, evaluated via the modal decomposition 

method. It is shown that the addition of the towers yields a regularization of the drift demand 

along the building height, but it can also induce significant changes in the distribution of in-

ternal actions in the existing frame. Moreover, the contribution of higher order modes can be 

important for the internal actions evaluation, while it is negligible for the displacement esti-

mation. The results obtained by considering the coupled system are compared with the corre-

sponding results obtained by considering two limit cases: the bare frame, and the frame 

equipped with an infinitely stiff dissipative tower. 
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1 INTRODUCTION 

Passive control systems have proven to be very efficient solutions for new constructions 

and for seismic retrofitting of existing structures [1-4]. Viscous dampers are traditionally in-

stalled within a building frame in either diagonal or chevron brace configurations connecting 

adjacent storeys and there are many studies concerning both the dynamic properties of the 

damped system and the methods for the design [e.g., 5-10]. However, this type of damping 

system may present some disadvantages, particularly when employed for retrofitting existing 

buildings. Usually, the addition of dissipative diagonal in existing frames provides an incre-

ment of axial forces in the columns and this may lead to premature local failures [11]. Fur-

thermore, there may be some feasibility limits on the strengthening of the existing foundations 

at the base of the bracing system. Also, the indirect costs related to the interruption of the 

building utilization during execution of the retrofit can be very demanding, in particular for 

strategic buildings, such as hospitals or schools. 

These problems can be efficiently resolved by considering external damper configurations, 

i.e., by placing the dissipative bracings and the relevant foundations outside the building 

frame. External dampers and bracing components can be arranged in very different configura-

tions and the possible solutions can be grouped into three main categories, characterized by 

substantially different kinematic behaviors, but all permitting the control of both the total 

amount of the dissipated energy and the frame deformation at the various storeys. A possible 

solution can be obtained by placing the dampers horizontally at the storey level, between the 

frame and an external stiff structure [12]. This way, the links are activated by the floor abso-

lute displacements. A similar configuration can be obtained by placing the dampers between 

adjacent buildings, though this solution is efficient if the two buildings have strongly different 

dynamic properties [13-16]. An alternative solution can be obtained by coupling the frame 

with an external shear deformable bracing structure. The new and existing structures are con-

nected at the storey level and the dissipative devices are activated by the relative displace-

ments between adjacent floors, as in the more traditional case of bracings placed within the 

existing structure [3]. 

Recently, some applications have been developed by proposing a new configuration ex-

ploiting the rocking motion of a stiff brace hinged at the foundation level [17, 18]. In this con-

figuration, known as "dissipative tower" (Figure 1) [19], the dampers are activated by the base 

rotation of the tower.  

This work focuses on the coupling between an existing frame and a rocking dissipative 

configuration shown in Figure 1; the purpose is the investigation of the modal properties and 

the seismic response of the coupled system by means of a problem formulation presented in 

general terms. The dynamic behavior and seismic performance of the system is compared 

against that of two other limit cases, the first one being the bare building, the second the 

building coupled with an infinitely stiff dissipative tower. 

 

Figure 1: Dissipative Tower. 
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2 PROBLEM FORMULATION 

In the first part of this section, the equation of motion and the state variables of the consid-

ered problem are presented by assuming that both the building and the external damping sys-

tem exhibit a linear response. The limit case of stiff tower is also presented and the balance 

equations of the reduced single-degree-of-freedom (SDOF) system are obtained by introduc-

ing a constraint in the structure motion. 

2.1 Equation of motion 

The equations of motion for the system can be expressed as follows: 

        tattt
g

MpKuuCuM    (1) 

where   l
Rt u , is the vector of nodal displacements, the dot (∙) denotes time-derivative; 

l
Rp  is the load distribution vector, l denotes the total number of degrees-of-freedom, and 

ag(t) is the external scalar loading function describing the seismic base acceleration. The time 

invariant matrices M , K , C  describe the mass, stiffness and damping operators ll
RR  ; 

they result from the sum of the contribution due to the existing frame and the one coming 

from the external dissipative bracing system. The damping contribution of the frame and of 

the dissipative system are denoted respectively as C F and C D. Generally, the external bracing 

system notably influences the stiffness and damping operators while it contributes only mar-

ginally to the mass operator. The displacement vector  tu  collects both the displacements 

required for the description of the frame response and the displacements involved in the brac-

ing deformations. 

In order to study the dynamic response of the system it is useful to separate the displace-

ments associated with the masses, and thus involving inertial forces, from the displacements 

describing the internal degrees of freedom, related to stiffness and damping forces only. Ac-

cordingly, the total displacement vector  tu  can be split into the active components collected 

in the vector   m
Rt x  and the other components   n

Rt y ( nml  ). The matrices describ-

ing the linear operators and the distribution vector can be consequently partitioned as follows 
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As usual, only the masses related to the horizontal floor displacements are considered in 

order to reduce the dimension of the dynamic problem and to simplify the interpretation of the 

results. 

The distribution of the damping in the structure and, in particular, the location of the con-

centrated dampers of the external bracings, leads to a non-classically damped system. For its 

solution it is convenient to formulate the problem by introducing the vector    tt xv   and 

the state vector  tz  collecting the displacements and the velocities of the active displace-

ments and the displacements of the internal nodes: 
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Eqn. (1) can be reduced to a first-order state space form: 
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Vector p
~  is defined as: 
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2.2 Free vibrations and modal properties 

The free vibration problem can be solved by assuming a solution of the form   t
et


φz  , 

where φ,  are a eigenvalue-eigenvector pair of A , such that: 

 φA φ   (7) 

Complex eigenvalue has the following form: 

 2

00
1

iiiii
i    (8) 

and contains information regarding both the damping ratio ξi and the corresponding 

undamped circular frequency ω0i of the i-th mode. These information can be extrapolated as 

follows: 
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ii
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 (9) 

Known the modal properties, the problem solution can be obtained as a linear combination 

of the single mode contributions. Let Λ  be the diagonal matrix containing the complex ei-

genvalues and 
nm 


221

,...,, φφφΦ  the complex eigenmatrix containing the eigenvectors, 

such that the orthogonality property AΦΦΛ
1

  holds. 

2.3 Seismic response via modal decomposition method 

The motion can be obtained as a linear combination of modes: 

    tt Φqz   (10) 

where  tq  is a vector collecting the modal coordinates. The orthogonality property leads to 

the diagonal problem: 

      tatt
g

γΛqq   (11) 

where  
ii

pΦ
~1

 is the i-th (complex-valued) modal participation factor. 

Introducing the normalized complex modal response vector  ts  such that:    tstq
iii

 , 

the problem can be written in a normalized form: 
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      tatt
g

IΛss   (12) 

Assuming that the system is initially at rest, the solution can be obtained by the Duhamel 

integral: 

      datt
g

t

)(

0

  hs  (13) 

where the components  
t

i

ieth


  are the solutions related to an impulsive unitary input. 

2.4 Generalized SDOF system approximation 

The dissipative tower consists of an external bracings system that activates the dampers lo-

cated at its base through its rocking motion. In the case of an infinitely stiff tower all the de-

grees of freedom of the system (active displacements of the frame and displacements involved 

in the bracing deformations) are governed by the base rotation  . This means that the dis-

placement vector  tu , shown in eqn. 1, can be expressed as 

   Lu t  (14) 

in which L is a vector collecting the heights of the frame. The D'Alembert Principle for the 

problem at hand can be expressed by introducing a virtual velocity field  ˆˆ L , in which ̂  

is an arbitrary base rotation. Eqn. 1 can be rewritten for any time instant t as 

 
gbDFb

a ˆˆˆˆˆ  pMKuCuCuM      t  (15) 

where the matrices M b, K b,C F describe the mass, stiffness and damping of the frame and 

where C D is the dissipative contribution of the dampers located at the tower base. This way, 

the tower influences only the damping operator and the shape of the virtual displacement field. 

Eqn. 15 can be rewritten as 

  
gDF

amkccm
*~~~~

    (16) 

where LLM 
b

m
~ , LLC 

FF
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c
~ , LLK 

b
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~

, LpM 
b

m
*

 are the scalar 

parameters describing the properties of the system reduced to a SDOF, and   denotes the sca-

lar product. By solving Eqn. 15, the time-history of the base rotation is known, and the vector 

of nodal displacements of the MDOF system is determined by considering Eqn. (14). 

3 CASE STUDY 

3.1 Case study description 

The application of the proposed approach is illustrated by considering a r.c. frame structure, 

with limited ductility, typical of many buildings designed during the 80s in Italy without any 

specific seismic detailing. Along the longitudinal direction, the structure consists of two ex-

ternal frames with 6 spans and a central one with 7 spans (Figure 2). The building has 5 sto-

reys plus the roof. 

The presented results concern three configurations, the bare existing frame (As is), the r,c, 

frame coupled with dissipative tower hinged at the foundation level and equipped with linear 

viscous dampers located at the base (Retrofit), and the r.c. frame coupled with an infinitely 

stiff dissipative tower (Stiff). 
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Figure 2: Planar view and longitudinal section of the bare building. 

First, the previously described formulation is employed to investigate the influence of the 

external bracing properties on the overall dynamic properties of the coupled system, such as 

the modal displacement profile, the relevant internal action distribution and the modal damp-

ing ratios. Successively, the global effect of the retrofit on the seismic response is evaluated 

by solving the seismic problem with the modal decomposition method for the first two con-

figurations (As is and Retrofit) and with a direct integration method for the last one (Stiff). 

The dynamic system is described by considering only the motion along the longitudinal di-

rection. The floors are assumed to be rigid in the horizontal plane and the masses are concen-

trated at the storey levels so that the vector of active degrees of freedom x  collects the five 

storey motions only. 

3.2 Modal properties of the undamped system 

The bracing system influences both the stiffness and the damping properties of the coupled 

system, while its contribution to the masses is negligible. It is useful to separately analyze the 

variations on stiffness and damping and, for this purpose, the case of the added tower without 

dampers is considered separately from the case of the tower with dampers. 

Table 1 reports, for the five modes of the bare building (As is), the vibration periods, the 

undamped natural frequencies and the participant mass ratios, defined as 

 
iiii

M ψM ψψMp 
2* where 

i
ψ  are the eigenvectors of the undamped system. 

 

Ti [s] ω0
2
 Mi

*
 ΣMi

*
 

1.021 6.18 0.787 0.787 

0.300 21.03 0.117 0.904 

0.153 41.26 0.052 0.956 

0.097 65.51 0.03 0.985 

0.074 86.05 0.015 1 

 

Table 1: Modal analysis results - As is configuration. 

The modal analysis results of the coupled system in the Retrofit configuration are summa-

rized in Table 2, where it can be observed that the first two vibration modes involve the 95% 

of the total mass and the second period reduces to about half the value obtained with the As is 

configuration. The third case, i.e. the existing frame coupled with an infinitely stiff tower 

(Stiff), is characterized by one vibration mode only (T=0.925 s) as it behaves like a SDOF sys-

tem governed by the tower rocking motion. 
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Ti [s] ω0
2
 Mi

*
 ΣMi

*
 

0.964 6.52 0.806 0.806 

0.147 42.84 0.138 0.945 

0.073 86.24 0.035 0.980 

0.051 124.17 0.015 0.995 

0.041 151.63 0.005 1 

 

Table 2: Modal analysis results – Retrofit configuration. 

Figure 3 reports and compares the values of the interstorey drifts along the building height 

corresponding to the first three modes of vibration for the As is and the Retrofit configurations. 

It can be observed that the addition of the towers yields a regularization of the drift demands 

along the building height, even though a higher value of the drift is required at the first level. 

Figure 4 reports the distributions of the total shear forces in the As is and Retrofit cases for 

the first three modes, whereas Figure 5 shows, for the Retrofit configuration only, the storey 

shear demand for the building and the tower. It is worth to note that the shear contributions of 

the existing frame and the towers could have different signs at some levels and, for the con-

sidered case, the first mode shear forces acting on the existing frame is higher than the total 

shear force at the first level. 
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Figure 3: Interstorey drifts along the building height for mode 1 (a), mode 2 (b) and 3 (c). 
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Figure 4: Total shear force comparison for mode 1 (a), mode 2 (b) and 3 (c). 
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Figure 5: Shear force distribution for mode 1 (a), mode 2 (b) and 3 (c) – Retrofit configuration. 

 

3.3 Modal properties of the damped system 

The damping of the system is the sum of two contributions 
DF

CCC  , the former is de-

scribed by a Rayleigh damping matrix 
F

  C M K , related to the existing frame, provid-

ing a inherent damping ξ=0.05 at the first two vibration modes. The latter contribution is due 

to the dampers and it is directly related to their displacements produced by the rocking mo-

tion. 

A reference value of the damper dimensions is obtained by fixing a target total amount of 

the effective damping ratio βeff =0.25 (0.05 due to the building and 0.20 due to the dampers), 

and by using the expression reported in ASCE/SEI 41-13 (2013) 

 
4

j

j

e ff

k

W

W
 


 


 (17) 

where β is the damping in the structural frame (0.05), Wj the work done by j-th device in one 

complete vibration cycle and Wk is the maximum strain energy in the frame. 

The retrofit configuration consists of two dampers placed as in Figure 1, whose viscous 

constant values are designed by employing eqn. (17) assuming that the system deforms ac-

cording to its first undamped vibration mode. The total amount of added damping is measured 

by C0=135020 kNs/m, which is the sum of the viscous damping constant of the two devices. 

By means of the complex modal analysis it is possible to identify the damping ratio ξi cor-

responding to each one of the vibration modes, as shown in eqn. (9); moreover, by introduc-

ing a damper multiplier c for the total added damping C0, it is possible to evaluate the 

variation of the modal properties at different damping levels, defined by the parameter c. 

Figure 6(a) shows the influence of c on the vibration periods of the first three modes. The 

first three natural periods of the undamped system (dashed line in Figure 6) are 0.964 s the 

first period (blue line), 0.147 s the second (red line), and 0.073 s the third period (green line). 

The vibration periods of the coupled system decreases for increasing damping. For c=3.0, the 

first period attains the value 0.595 s, the second 0.141 s and the third 0.072 s. Thus, the 

amount of damping introduced influences significantly only the first vibration period of the 

system. Figure 6(b) shows the variation, with the total added damping c, of the damping ratio 

of the first, second and third vibration modes, ξ1, ξ2 and ξ3. It also reports the variation of the 

estimate of the damping ratio βeff, obtained by employing the approximate formula of 

Eqn.(17), for increasing values of c. 
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Figure 6: First three period trends (a) and first three modes damping trends (b) for increasing damping levels. 

The first modal damping ratio ξ1 is well approximated by the design formula of Eqn. (17)  

for  values up to 0.50 (c=2.25); for increasing values beyond this limit the amount of the ef-

fective damping decreases. As already observed for the periods, the influence of the damper 

dimensions on the second and third mode is negligible; the damping ratio varies in the range 

0.050-0.067 with a maximum 0.074 when c=1.25 for the second mode, while for the third 

mode the range is 0.091-0.094 with a maximum value of 0.097 when c=0.75. 

Due to the fact that all the dampers are concentrated at the tower base the system is notably 

non-classical damped and the extent of non-classical damping is synthetically quantified by 

the coupling index ρ (Claret e Venancio-Filho 1991), expressed as: 

 
jjii

ij






2

max  (i, j=1,2,…,m) ji     (18) 

where 
jixxij

ψψC   is the modal damping matrix component, 
xx

C  and m are defined in 

section 2.1 and 
i

ψ are the eigenvectors of the undamped system. The index assumes the value 

0 for classical damped systems and it spans the range [0,1] in the case of non-classical damp-

ing. Figure 7(a) shows the coupling index trend for increasing damping levels, while Figure 

7(b) shows the values of ρ obtained for the damping target value c=1. In the latter case the 

maximum value of ρ is equal to 0.35 and corresponds to the coupling among the first and the 

second mode. 
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Figure 7: ρ-index: (a) trend for increasing damping levels; (b) values for the fifth modes of the system (c=1). 
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3.4 Seismic response 

This section reports some results concerning the response of the three system configura-

tions to a seismic input. The seismic action is determined by assuming the building located in 

Camerino (MC, Italy), with soil category C and topographical one T1, according to Italian 

code [20]. Seven artificial earthquakes, generated in accordance with Italian Standards, are 

considered. The results reported concern the most interesting parameters, i.e., the displace-

ments, interstorey drifts, shear action distribution and the absolute accelerations; the values of 

these parameters reported below are the mean of the maximum values obtained for each of the 

seven time-histories analyses. The results related to the coupled systems (Retrofit and Stiff 

configurations) correspond to a total added damping multiplier c =1. 

Table 3 reports the floor displacements and the interstorey drifts for the three configura-

tions analyzed. The maximum top displacement, normalized with respect to that of the bare 

frame, is 54% for the Retrofit case and 58% for the Stiff case. Figure 8(a) and (b) show the 

distribution along the height of the building displacements xi and interstorey drifts i, for 

i=1,2,..,5. The reported values are normalized by dividing them by the corresponding values 

obtained at the 5th level in the Stiff configuration. 

 

level 
As is Retrofit Stiff 

xi [m] i [m] xi [m] i [m] xi [m] i [m] 

1 0.013 0.013 0.008 0.008 0.009 0.009 

2 0.040 0.028 0.019 0.011 0.018 0.009 

3 0.068 0.029 0.029 0.011 0.027 0.009 

4 0.092 0.026 0.040 0.011 0.036 0.009 

5 0.109 0.019 0.050 0.010 0.046 0.009 

 

Table 3: Floor displacements and drifts results 
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Figure 8: Displacements (a) and interstorey drifts (b) distributions for the three configurations. 

It is noteworthy that the coupling with an infinitely stiff tower leads to a linear distribution 

of the displacements along the height. Moreover, the displacement demand at the first level is 

higher in the Stiff case than in the Retrofit case, while an opposite trend is observed at the top. 

This means that the regularization of the frame displacement distribution is achieved with the 

tower interacting with opposite forces at the base and at the top of the frame. 
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Having employed the complex mode superposition approach to solve the seismic problem, 

the contribution of the higher vibration modes to the response can be estimated by comparing 

the full response accounting for all the modes to the response obtained by considering the 

contribution of the first mode only. Table 4 reports the displacement response for the As is 

and the Retrofit case. Figure 9 comparises the displacement responses of the As is and Retrofit 

cases. In both the cases, the first mode contribution nearly controls the total response, while 

the effect of higher order modes is negligible. 
 

level 
As is Retrofit 

xfull [m] x1 [m] xfull [m] x1 [m] 

1 0.0129 0.0121 0.0080 0.0080 

2 0.0405 0.0392 0.0188 0.0187 

3 0.0684 0.0680 0.0295 0.0294 

4 0.0918 0.0920 0.0399 0.0399 

5 0.1092 0.1081 0.0497 0.0496 

 

Table 4: Floor displacements and drifts results. 
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Figure 9: Contribution of the first mode to the full response of the (a) As is and (b) Retrofit cases. 

Table 5 reports the shear actions resisted by the frame in the three configurations; for the 

Retrofit case the shear actions resisted by the tower and the total shear actions are also report-

ed. It is noteworthy that the maximum shear for the tower and the frame may not occur at the 

same instant of time for all the records considered. As already discussed for the displacements, 

also the global shear demand decreases, but in a less significant way. The relative reduction of 

the maximum base shear acting on the frame, with respect to the bare frame, is nearly 19% for 

the Retrofit case and 6% for the Stiff one. 

Figure 10(a) shows the shear actions distribution along the height of the frame, normalized 

after dividing them by the value of the base shear in the Retrofit configuration. Figure 10(b) 

shows the shear forces in the frame and the tower for the Retrofit case; the values are normal-

ized with respect to the total base shear, obtained as the sum of the building plus the tower 

one. 
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level 

As is Retrofit Stiff 

Vi,frame 

[kN] 

Vi,frame 

[kN] 

Vi,tower 

[kN] 

Vi,total 

[kN] 

Vi,frame 

[kN] 

1 5215.67 4232.33 2661.26 3544.64 4877.47 

2 4789.76 1348.32 1915.45 3060.02 831.69 

3 4197.01 1455.88 1292.91 2543.55 1290.06 

4 3686.99 1366.94 1169.54 2336.51 1095.12 

5 2755.01 1740.77 1020.58 1819.51 1643.12 
 

Table 5: Shear actions results. 
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Figure 10: (a) Shear actions resisted by the frame in the three configurations and (b) shear actions resisted by 

the tower, the building and the frame compared to the total shear in the Retrofit case. 

The complex mode superposition is also employed to estimate the contribution of the high-

er order modes of vibration on the shear actions before and after the retrofit. Table 6 reports 

the shear actions distribution resisted by the frame in the As is case and the contributions of 

both the frame and the tower in the Retrofit one, due to the full response and the first mode. 

Differently from the case of the displacements, the contribution of higher order modes is im-

portant as the values of both the total shear response and the tower shear response are higher 

than the corresponding values obtained by considering the first mode only. However, the 

building response appears to be still dominated by the first mode of the coupled system. These 

observations, together with the fact that the increase of damping ratio after the retrofit is lower 

for the higher modes than for the first mode, could explain why the reduction of the displace-

ment demand is higher than that of the base shear. 

 

level 

As is Retrofit 

Vfull 

[kN] 

V1 

[kN] 

Vframe_full 

[kN] 

Vframe1 

[kN] 

Vtower_full 

[kN] 

Vtower1 

[kN] 

Vtotal_full 

[kN] 

Vtotal1 

[kN] 

1 5215.7 4751.3 4232.3 4202.4 2661.3 2204.3 3544.6 2963.0 

2 4789.8 4600.0 1348.3 1329.6 1915.4 1734.4 3060.0 2825.4 

3 4197.0 4116.0 1455.9 1440.3 1292.9 1344.5 2543.5 2507.4 

4 3687.0 3276.9 1366.9 1316.7 1169.5 958.4 2336.5 2007.0 

5 2755.0 2142.6 1740.8 1665.6 1020.6 687.9 1819.5 1328.4 
 

Table 6: Higher order modes influence on the shear actions. 
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Figure 11(a) depicts the first mode contribution to the full shear response of the frame in 

the As is case, normalized by the value of the total base shear. Figure 11(b) shows the same 

comparison for the Retrofit configuration. Figure 12 a) and b) depicts the first mode contribu-

tion to the full shear response of the tower and of total system for the Retrofit case. 
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Figure 11: First mode contribution on the total shear response of the frame in the (a) As is case and (b) Retro-

fit configuration. 
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Figure 12: First mode contribution in the Retrofit case (a) on the total shear response of the tower and (b) on 

the overall response. 

Table 7 contains the absolute acceleration values observed at the various levels of the 

building for the configurations investigated.. 

 

level 
As is Retrofit Stiff 

i
x  [m/s

2
] 

i
x  [m/s

2
] 

i
x  [m/s

2
] 

1 2.98 2.77 2.10 

2 3.86 3.36 1.80 

3 4.58 3.02 1.70 

4 4.14 2.34 1.97 

5 5.27 3.49 2.69 

 

Table 7: Absolute accelerations. 
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The coupling of the building with the external dissipative system induces a relative reduc-

tion of the maximum absolute acceleration values with respect to the values observed in the 

As is case. This result is noteworthy especially for all the non structural elements (e.g. medical 

devices) that could be hosted in a structure. Figure 13 shows the values of the absolute accel-

eration distribution along the height of the normalized by the value at the 5
th

 floor observed 

for the Stiff case. The relative reduction of acceleration is nearly 34% for the Retrofit case and 

48% for the Stiff case 
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Figure 13: Absolute acceleration distribution along the height. 

 

4 CONCLUSIONS AND FURTHER STUDIES 

This paper presents and analyzes three alternative categories of external viscous dampers 

retrofitting system which exhibit a different kinematic behavior. Among them, the dissipative 

tower configuration is deeply investigated, in terms of modal properties and seismic response 

of the coupled system. 

A problem formulation concerning the dynamic behavior of the coupled system is present-

ed in general terms. The results include also two limit configurations, the bare building and 

the coupling with an infinitely stiff dissipative tower. 

The case study results reveal that the addition of the towers leads to a regularization of the 

drift demand along the building height. After the retrofit, the shear force distribution in the 

existing frame could significantly change and the system is notably non-classical damped due 

to the fact that all the dampers are concentrated at the base of the tower. Moreover, from the 

dynamic response it appears that higher order vibration modes have a notable influence on the 

internal actions demand, while are almost negligible for the displacement response. 

The Stiff configuration highlights the benefits and drawbacks of the dissipative system. 

This limit configuration provides the best distribution of the inter-storey drifts but provides 

high shear forces in the frame, which are larger than the forces observed in the Retrofit case 

and similar to the forces observed in the As is case. 

A deeper and wider investigation is still necessary for a full comprehension of the problem, 

and should be oriented to understand the optimal stiffness range of the dissipative tower. 
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Abstract. A simple total displacement homogenization model suitable for the non-linear 
analysis of in and out of plane loaded masonry walls is presented. In the model, a running 
bond rectangular elementary cell is discretized into few triangular elastic constant stress el-
ements representing bricks and non-linear holonomic with softening mortar joints reduced to 
interfaces. The unrefined discretization adopted allows dealing with a homogenization prob-
lem ruled by few displacement variables, where homogenized stress-strain relationships can 
be found in semi-analytical form.  

The approach proposed is validated at a cell level in both the elastic and inelastic range, ex-
hibiting excellent numerical stability and accuracy.  

It finally allows a straightforward implementation at a structural level on a commercial code, 
where entire walls are modelled by means of rigid elements and non-linear homogenized in-
terfaces. Some example of technical relevance are analyzed in both the non-linear static and 
dynamic range and compared with those achieved using alternative numerical procedures. To 
this aim a first set of simulation is performed on a deep beam tested by Page while the second 
series of analyses are conducted on a church façade subjected to dynamic excitation. 
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1 INTRODUCTION 

Masonry is a traditional composite material obtained by the assemblage of bricks and mor-
tar. The elastic behavior is quite limited because masonry is typically characterized by a re-
duced, almost vanishing tensile strength and either macro- or micro-modeling strategies are 
adopted over elasticity. 

Macro-modeling [1]-[3] substitutes bricks and mortar with a homogeneous, sometimes or-
thotropic material with softening. It allows studying even large scale structures without the 
need of meshing separately bricks and mortar. It is therefore very convenient where efficient 
computations on engineering structures are needed. Nevertheless, the calibration of model pa-
rameters is typically done by means of comprehensive experimental campaigns. Theoretically, 
such approaches may be capable of adequately estimate the non-linear masonry behavior 
along any load combination, even if some meaningful limitations occur in specific cases but 
in practice the needed experimental data fitting would require –at least in principle- new cali-
brations case by case. 

The alternative micro-modeling is simply characterized by a distinct modelling of mortar 
joints and blocks at a structural level. The reduction of joints to interfaces [4][5] helps in lim-
iting variables, especially in the non-linear range, but the approach still remains computation-
ally very demanding, because bricks and mortar are meshed separately. In order to obtain 
sufficiently reliable solutions in terms of displacements and stresses, constituent materials 
should be meshed with more than one element, with the consequent grow of the number of 
non-linear equations to deal with, even for small masonry panels. Furthermore, the pre-
processing phase regarding the model generation is not straightforward. Partitioning methods 
have been recently proposed to overcome such computational limitations and speed up struc-
tural analyses. 

For the previous reasons, it can be affirmed that macro-scale computations with FEs still 
remain preferable when non-linear analyses for engineering structures are needed.  

In this framework, homogenization [5]-[16] is for sure much more suitable than both mi-
cro- and macro-modelling, because it allows in principle to perform non-linear analyses of 
engineering interest without a distinct representation of bricks and mortar, but still consider-
ing their mechanical properties and the actual pattern at a cell level.  

Homogenization is roughly an averaging procedure performed at a meso-scale on a repre-
sentative element of volume (REV), which generates the masonry pattern under consideration 
by repetition. A Boundary Value Problem BVP is formulated, allowing an estimation of the 
expected average masonry behavior to be used at structural level. As a matter of fact, the re-
sultant material obtained from meso-scale homogenization turns out to be orthotropic, with 
softening in both tension and compression.  

Instead of using refined FE discretization within the REV, in this paper a simplified ho-
mogenization two-step model is proposed for the non-linear structural analysis of masonry 
walls in- and out-of-plane loaded. The first step is applied at the meso-scale, where the as-
semblage of bricks and mortar in the REV is substituted with a macroscopic equivalent mate-
rial through a so called compatible identification. The unit cell is meshed by means of 24 
triangular constant stress (CST) plane stress elements (bricks) and interfaces for mortar joints. 
Triangular elements are assumed linear elastic, whereas the mechanical response of the inter-
face elements is holonomic and non-linear, including two dominant deformation modes, 
namely peel (mode I) and shear (mode II) or a combination of two (mixed mode). Both a 
piecewise linear and an exponential law formally identical to an improved version of the Xu-
Needleman law and proposed in another context [17]-[19] are implemented.  
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The second step, performed at a structural level, relies into the implementation of the ho-
mogenized stress-strain relationships into a rigid element approach (RBSM) where contiguous 
rigid elements are connected by shear and normal non-linear homogenized springs. The ex-
tension of the model to the out-of-plane mechanisms has been achieved by on-thickness inte-
gration of the homogenized stress-strain relationships obtained in the first step, thus adopting 
suitable out-of-plane interface laws at a structural level, whose behavior is formulated in order 
to describe flexural and torsional failures. 

The procedure is quite efficient and reliable because it is not necessary to discretize with 
refined meshes the elementary cell (only three kinematic variables are needed at the meso-
scale) and hence it is possible to drastically speed up computations. In addition, the ho-
lonomic laws assumed for mortar allow for a total displacement formulation of the model, 
where the only variables entering into the homogenization problem are represented by dis-
placements. 

The model is benchmarked at a structural level both in the non-linear static and dynamic 
range on a masonry deep-beam [20][21] in-plane loaded up to collapse and on a masonry 
church façade [22][23] loaded by a real accelerogram and collapsed during the 1976 Friuli 
(Italy) seismic sequence [24].  

2 THE HOMOGENIZATION MODEL 

2.1 The simplified compatible homogenization model  

Homogenization relies in the determination of averaged quantities representing the macro-

scopic strain and stress tensors [1][6] on a REV (Y), i.e. dY
A Y
 )(1

uεεE  and

dY
A Y
 σσΣ

1 ,where A stands for the area of the elementary cell, ε and σ  stand for the

local quantities (strains and stresses respectively) and <*> is the averaging operator.  
Anti-periodicity conditions are imposed on the stress field and periodicity on the displacement 
field u, given by: 








Y

Y

onperiodic-anti
onperper

σn

uuEyu (1)

Where u is the total displacement field, uper stands for a periodic displacement field, 
 zyxx ~  is the local frame of reference (see Figure 2), E is the homogenized strain ten-

sor and n is the outward versor of the Y surface. 
In this work, a simple compatible homogenization model suitable for the analyses of masonry 
in and out of plane loaded is proposed. The method herein discussed allows to use a coarse 
discretization, where only ¼ of the REV is meshed with 6 constant stress triangles (see Figure 
1). Bricks are supposed to behave elastically while mortar joints are reduced to non-linear ze-
ro thickness interfaces. Two interface relationships are considered: a piece-wise linear law 
and an improved version of the Xu-Needleman exponential law, accounting for, respectively, 
a decoupled and fully coupled approach. 
The homogenization procedure is subdivided in two steps: in the first one the homogenization 
model is implemented in a Matlab environment, while in the second one a series of non-linear 
analyses on masonry panels are discussed. 
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Figure 1. Micro-mechanical model proposed: a- Geometric properties of the elementary cell, b- Anti-periodicity 
of the micro-stress field and c- periodic displacement field. 

Indicating with )(n a stress component belonging to the n-th element, the plane stress Cauchy 
stress tensor inside the n-th CST element )(nσ is constituted by the components )(n

xx  (hori-

zontal stress), )(n
yy  (vertical stress) and )(n  (shear stress). When dealing with static quanti-

ties, equilibrium inside each element is a-priori satisfied, 0σdiv  , whereas two equality 
constraints involving Cauchy stress tensor components of triangles have to be imposed for 
each internal interface between adjoining elements.  
Assuming that the triangular elements are linear elastic, the following relationship between 
strains and stresses can be written: 
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Where bE , b  and bG  are the brick elastic modulus, Poisson’s ratio and shear modulus, re-
spectively. The simplified compatible identification procedure allows separating the analyses 
of the biaxial macroscopic strain state from the pure shear deformation one. In the following 
sections both deformation states are discussed and the results obtained using both the non-
linear interface laws are critically compared. 

2.2 Elastic case, biaxial strain state  

Let us consider a biaxial macroscopic strain state characterized by the following independent 
displacement variables: 0 9U Ux x    and 5 6

U Uy y
         . The evaluation of the aforementioned 

variables allows the determination of the kinematic and static unknowns governing the prob-
lem. The solution, fully explained in [9], can be obtained graphically plotting the two follow-
ing curves: 
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Where I
nf  and II

tf  are the non-linear laws of the interfaces I and II under normal (n) and 
shear (t) stresses. 0

, yxU  are the applied displacements on the boundary of the REV mimicking 
a macroscopic homogeneous biaxial strain state, in agreement with the compatible identifica-
tion procedure proposed. 

2.3 Shear deformation 

In case of a pure shear deformation, the deformation independent variables are t , t  and  , 
where: 

   42 2 2
/ 2
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t
yxU ,  are the applied displacements on the boundary of the REV mimicking a macroscopic 

shear, in agreement with the compatible identification procedure proposed. The numerical ap-
proach used to solve the previous problem is discussed in [9], where the reader is referred for 
further details. 

2.4 Holonomic relationship for non-linear interfaces 

In the present work, mortar joint interfaces are assumed to behave in agreement with two in-
terface relationships: (a) a multi-linear relationship, hereafter labeled as “PL”, with normal 
and tangential decoupled responses, i.e. ( )n   and ( )t  ; an improved version of the Xu–
Needleman exponential law, hereafter labeled as “XN”. In the latter case, the stress vector T 
at the interface is given by the following closed-form expression: 
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Symbols n  and t  denote the work of separation under pure Mode I and Mode II, respec-
tively, while n  and t  indicate the relevant characteristic lengths [17][19]. 

2.5 Non-linear behavior 

In the present section the results obtained with the proposed model are discussed with refer-
ence to two masonry patterns commonly used. 
Two different textures are studied: the first one (Type A) is a running bond masonry with 
bricks having dimensions equal to 122x37x54 mm3 and mortar joints of thickness 5 mm (see 
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Figure 2). The second one (Type B) is a header bond with blocks of dimensions 250x55x120 
mm3 and mortar joints 10 mm thick. 

Figure 2. Running bond texture. 

The elastic and inelastic mechanical properties of the considered masonry patterns are sum-
marized in Table 1-Table 2. 

Table 1. Mechanical properties assumed for the running bond texture. 
Stretcher bond Mortar joints Bricks 

Young Modulus Em=1250 MPa    Em=7000 MPa 
Poisson’s ratio            -		 				 =0.2 
Shear Modulus Gm=0.4* E MPa   Gb 
Peak tensile stress   ft= 0.29 MPa  - 
Cohesion c=1.4* ft MPa    - 

Table 2. Mechanical properties assumed for the running bond texture.  
Stretcher bond Mortar joints Bricks 

Young Modulus Em=1500 MPa   Em=8000 MPa 
Poisson’s ratio             -		 			 =0.2 
Shear Modulus Gm=0.4* E MPa    Gb 
Peak tensile stress   ft= 0.1 MPa   - 
Cohesion     c= 0.1 MPa  - 

Both a PL and XN holonomic law (for the sake of brevity only Type A masonry interfaces are 
depicted in Figure 3) has been adopted for mortar joints.  
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a- b- 
Figure 3. Running bond model (Type A): Normal (a-) and tangential (b-) behavior. 

3 INELASTIC CASE, BIAXIAL AND SHEAR DEFORMATIONS 

3.1 Biaxial strain state 

The homogenization approach discussed in the previous sections is herein adopted to perform 
a series of analyses at a cell level taking into account the non-linear behaviour of the mortar 
joint interfaces. Let us consider the strain Enn  defined as 2 2E E Enn xx yy  . In Figure 4, the ho-
mogenized stress-strain relationship obtained using the proposed model and assuming an 

0Exx   and 0Eyy   strain state applied up to failure of the REV is depicted. In Figure 4 the de-
formed shapes of the elementary cell at three different steps of the analysis (A elastic, B peak 
and C failure) are also represented (Type A and Type B). 
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Enn [-] 10-4
0 0.5 1 1.5 2

0
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0.15
Model II XN
Model II PL

A

C
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c- d- 

Xu-Needleman interface law Piecewise linear interface 
law Xu-Needleman interface law Piecewise linear interface law 

Figure 4. Homogenized stress-strain curves (Type A texture) (a-) and (Type B texture) (b-), deformed shapes of the 
homogenized cell at different steps for horizontal stretching, Type A texture c- and Type B texture d-. 

The same results in case of application of 0Eyy  and 0Exx   are summarized in Figure 5 (Type 
A) and (Type B). The reader is referred to [16] for further details.
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Figure 5. Homogenized stress-strain curves (Type A texture) (a-) and (Type B texture) (b-), deformed shapes 
of the homogenized cell at different steps for vertical stretching, Type A texture c- and Type B texture d-. 

 
From an analysis of the results, the following considerations can be done: 
- When dealing with a biaxial strain state both interface models furnish comparable outputs. 
Some differences can be found due to the coupling between normal and transversal response 
in the XN law. 
- Under horizontal stretching (see Figure 4), a not-negligible shear stress is detected. The fail-
ure mechanism of the REV is characterized by bed joint cracking under tangential stresses 
while head joints fail under normal tensile stresses. 
-For vertical stretching (see Figure 5) the failure experienced is always on the bed joint and 
strongly influenced by the value of the ultimate tensile strength adopted for mortar. 

3.2 Shear deformation state 

The results obtained applying a pure shear deformation state on the elementary cell are de-
picted in Figure 6 for Type A and Type B masonries. As expected in both cases both head and 
bed joint exhibit inelastic deformation that contributes to the overall strength and post peak 
behavior of the elementary cell. 
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Xu-Needleman interface law Piecewise linear interface law Xu-Needleman interface law Piecewise linear interface 
law 

Figure 6. Shear deformation state (Type A texture) (a- c-) and (Type B texture) (b- d-). 
 

4 STRUCTURAL IMPLEMENTATION 

4.1 Rigid body and spring model 

The present section is devoted to the discussion of a series of non-linear analyses performed 
in order to show the capability of the proposed model for the simulation of large scale panels 
subjected to different load conditions. All the analyses performed are conducted through the 
commercial software Abaqus, were the homogenized mechanical properties are implemented. 
The panels simulated are discretized by means of rigid quadrilateral elements connected with 
non-linear interfaces exhibiting an orthotropic behaviour. The interfaces are assumed to obey 
stress-strain curves with softening directly deduced by an energy equivalence criterion with 
the homogenized material. The method adopted for the spring identification will be briefly 
recalled in the following, but the reader is referred to [16] for further details. 
In order to perform the identification of the springs two adjoining rigid elements connected 
through non-linear interfaces with dimensions showed in Figure 7 were considered. 
 

a- b- 
Figure 7. Spring model: a- Axial spring, b- Shear spring. 
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Equating the volumetric strain energy of the rigid-spring model and the one related with the 
continuum, the following expressions can be deduced for the identified elastic moduli: 
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Where H and L are respectively the height and the length of the rigid elements and “t” is the 
out of plane thickness. The non-linear interfaces have thickness equal to “th”. Exx, Eyy and Gxy 
are the elastic properties of the homogenized orthotropic continuum model. 
The procedure previously recalled is adopted even for the definition of the elastic properties 
of out of plane interfaces. The extension of the model to the out-of-plane mechanisms has 
been achieved adopting suitable interfaces, whose behaviors have been formulated in order to 
describe flexural and torsional failures. To this aim the following expressions can be obtained. 
Where “t” refers to the thickness of the rigid quadrilateral elements, while “Ebxx”, “Ebyy” and 
“Gbxy” refer respectively to the elastic properties of the flexural and torsional interfaces. 
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4.2 Deep beam test 

The previously discussed procedure is used to simulate a deep beam panel tested up to failure 
by Page [20]. The wall, with dimensions of 757x457 mm2, was subjected to a uniform pres-
sure applied by a stiff steel beam placed on the central upper part of the panel. 
A running bond texture (Type A) was adopted to build the panel, using half scale bricks with 
dimensions equal to 122x37x54 mm3 and 5 mm thick mortar joints.  
The springs identification discussed in the previous section, led to use the following moduli 
for the springs: Enxx= 360 MPa, Enyy= 280 MPa and Gnxy= 2840 MPa. 
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Figure 8. Deep beam. Numerical and experimental results. 
 

 

  

 a- b- 
Figure 9. Deep beam. Damage maps in compression (-a) and in tension (-b). 

 
Despite the exiguous number of information reported by Page, in the recent past several re-
searchers have tried to simulate the aforementioned deep beam test using different numerical 
approaches. A comparison between the results (force displacement curves) obtained using the 
present model and those found numerically by Lourenço [21] and Milani [13] is shown in 
Figure 8. 
As can be noted, a satisfactory agreement is found, in terms of both elastic and post peak 
phase. The collapse load obtained numerically is very close to the value found experimentally 
by Page. In Figure 9 the damage maps obtained numerically at the end of the simulation are 
shown, in compression, tension and shear. 
As can be noted, the collapse mechanism is clearly formed by a compressive strut departing 
from the steel beam and ending on the support, with shear cracks appearing on a vertical line 
(orange circles, Figure 9-a) and compressive damages near the toe (red squares, Figure 9-a). 
Tensile damages are mainly concentrated in the central part of the panel along vertical inter-
faces and near the steel beam. This latter finding can be explained with the high level of stress 
concentrations reached in that zone. 

4.3 Transfiguration church non-linear static and dynamic analyses 

A second series of simulations is performed with reference to 3D masonry structures subject-
ed to both static and dynamic excitations, under in- and out-of-plane loads. As confirmed in 
the literature, some classes of buildings are particularly prone to experience severe damages 
during seismic events, among them masonry churches can be mentioned. In order to show 
how accurate results can be obtained using the proposed model even in presence of out of 
plane failure mechanisms, the authors chose to analyze the façade of the Transfiguration 
Church, collapsed during the 1976 Friuli, Italy seismic sequence. The church under considera-
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tion was located in Moggio Udinese, in the North-East of Italy, in a region (called Friuli) 
characterized by a high seismicity level. On Thursday, 6 May 1976, a devastating 6.4 Richter 
magnitude earthquake took place there, killing 989 people. The church reported severe dam-
age after the first main shock, and later collapsed as a consequence of the second seismic se-
quence that occurred during September of the same year. After the first main earthquake, a 
survey of the geometry and masonry walls was conducted by Doglioni et al. in [24], which is 
our main source of information for the problem at hand. The geometry of the façade, along 
with the discretization adopted for the present structural analyses are sketched in Figure 10. It 
is interesting to notice that a small portion of the unique nave perpendicular walls is modeled 
in order (a) to properly account for the actual lateral interlocking of the vertical edges and (b) 
to favor the reproduction of the 3D behavior, which includes a predominant two-way flexural 
deformation and a possible detachment for overturning in case of insufficient interlocking be-
tween façade and nave walls.  
The façade of the Church is modeled using 354 rigid quadrilateral elements, which appears a 
fair compromise between numerical efficiency paramount for non-linear dynamic computa-
tions and refinement needed to properly reproduce actual crack patterns. 
The church can be considered an example of Romanesque architecture quite frequent in the 
small towns of Italy, like those located in Friuli, and therefore it appears an interesting 
benchmark for the proposed models at the macro-scale. Approximately, the façade has a 
width of 16.30 meters, with a maximum height (tympanum top) of 18.05 meters and small 
openings in correspondence of the symmetry axis, see Figure 10. The façade has therefore 
global dimensions equal to 16.30x18.05 m, with walls 55 cm thick. Mechanical properties of 
the constituent materials are assumed in agreement with those available in the literature 
[22][23] and are not reported here for the sake of conciseness. Homogenized moment-
curvature diagrams obtained with the model proposed and used at a structural level are de-
picted in Figure 11, under three levels of vertical pre-compression roughly indicating what 
occurs on the tympanum (almost zero vertical in-plane load), middle height and base of the 
façade. The utilization of different moment-curvature relationships as a function of vertical 
membrane load is paramount for masonry buildings, since it has been proved that vertical 
compression plays a key role in the increase of both ductility and out-of-plane strength. 
 

  
-a -b 

Figure 10. Non-linear static and dynamic analysis of a church façade in Moggio 
Udinese (Transfiguration Church). –a: Geometric description of the case study. –b: FE 

discretization.
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Figure 11. Moment curvature diagrams used at a structural level, Transfiguration Church. Dia-
grams are plotted at different levels of vertical pre-compression. 

 
Two sets of simulations are performed in order to show the reliability of the proposed model 
for the seismic analyses of 3D masonry structures. First of all, the façade is analyzed using a 
non-linear static (pushover) approach and taking into account two distributions of forces in 
agreement with Italian code, one constant and the other reverse-linear along the height of the 
façade. Hereafter such distributions are called Mode 0 and Mode I respectively, but it is worth 
mentioning that in the Italian code they are labeled as G2 and G1 distributions. The results 
obtained using the proposed model are compared to those provided by Casolo and co-workers 
[22][23] in Figure 12. The control point for the displacement evaluation is placed in the upper 
part of the façade (tympanum center). As can be noted, there is satisfactory agreement with 
previously presented results, meaning that the proposed homogenization approach is able to 
accurately describe the elastic and inelastic behavior of real scale structures starting exclu-
sively from the knowledge of the constituent materials mechanical properties.  
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Mode 0 Mode I 

 

Figure 12. Pushover curves obtained (left) and corresponding deformed shapes (right) 
 
A non-linear dynamic analysis is then performed in order to deepen the seismic behavior of 
the facade when subjected to natural accelerograms. The results obtained applying to the 
structure the Fogaria (Friuli 1976) accelerogram are summarized in Figure 13 and Figure 14.  
In particular, in Figure 13 a comparison between a previous model [22][23] and present nu-
merical results at different heights of the control point is provided, whereas Figure 14 shows 
the façade deformed shape and crack patterns numerically obtained at the end of the simula-
tions(A: deformed shape. B1: vertical bending. B2: horizontal bending. B3: torsion). 
As can be noted, good agreement is found between the results obtained using the proposed 
approach and those achieved by Casolo and co-workers [22][23], in terms of both time-
displacements history and damage patterns found at the end of the simulations.  
As highlighted by the residual displacement found at the end of the application of the acceler-
ogram (Figure 13-b), the façade exhibits a collapse mechanism that mainly involves the upper 
part, with the resultant overturning of the tympanum. This finding suggests the activation of a 
slightly different failure mechanism with respect to that found in [22][23] where again the up-
per part is the most vulnerable, but with the formation of two inclined yield lines spreading 
from the upper corners down to the central rose window. Present results appear more in 
agreement with the expected behavior of masonry church façades. Damage patterns at the end 
of the simulation are depicted in Figure 14, separately for flexion and torsion as it usually oc-
curs in RBSM models. As confirmed by the deformed shape of the façade in Figure 14-a, 
which clearly shows the overturning of the tympanum, high levels of damage are reached in 
correspondence of the horizontal line where the out-of-plane mechanism of the tympanum 
takes place. It is worth noting that severe damages are visible also in correspondence of the 
vertical edges and near the central opening, in quite reasonable agreement with the results 
found by Casolo and co-workers [22][23]. 
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5 CONCLUSIONS 

A simple compatible homogenization model for the non-linear static and dynamic analysis 
of masonry structures in- and out-of-plane loaded has been presented. The approach consists 
in a two-step procedure suitable for the analysis of masonry panels subjected to a variety of 
loads. First of all, the REV is discretized by means of triangular elastic FEs and joints are re-
duced to non-linear holonomic interfaces. In order to obtain quickly homogenized properties 
of the continuum, a pseudo analytical approach has been proposed. A series of structural 
analyses have been finally performed on two cases of technical relevance, namely a deep 
beam loaded in-plane up to collapse and a church façade subjected to equivalent static (push-
over) and non-linear dynamic out-of-plane analyses. The structures have been discretized us-
ing a rigid body and spring model RBSM strategy. The springs identification has been carried 
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Figure 13. Comparison between previous models and present numerical results for the Transfiguration Church at 

different heights of the control point. 
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Figure 14. Deformed shape and crack patterns numerically obtained at the end of the application of the Fogaria ac-
celerogram. A: deformed shape. B1: vertical bending. B2: horizontal bending. B3: torsion. 
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out using an energy equivalence on the stress-strain homogenized relationships deduced at the 
meso scale. The homogenized RBSM have been implemented into the commercial software 
Abaqus, where all the discussed analyses have been performed. The procedure is efficient and 
reliable because: (1) the homogenized mechanical properties can be directly implemented at 
structural level with a very limited computational effort; (2) it is not necessary to discretize 
with refined meshes the elementary cell; and (3) the holonomic laws assumed for mortar 
joints allow for a total displacement formulation of the model, where the only variables enter-
ing into the homogenization problem are represented by displacements. 
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Abstract. Structural analysis of masonry buildings is affected by many uncertainties and 

characterized by issues related to the very nature of the material. In this scenario, refined 

analysis methodologies are confined to the research environment, while professional 

applications need simpler methodologies, which allow for a better understanding of the 

analysis results: the equivalent frame model is one of these methodologies. However, the 

method is affected by some issues, which, if not adequately addressed, may lead to unrealistic 

stress distributions. In this work, we propose a procedure that increases the reliability of the 

analysis results. It consists in the modification of the model depending on the nature of the 

acting loads in relation to the different construction phases of the structure. In addition, an 

extension of the method for the analysis of buildings constructed in different periods is 

introduced. Finally, the results of the analysis performed for a case study are presented in order 

to validate the proposed methods. 
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1 INTRODUCTION 

Among the various methods available for structural analysis of masonry buildings, the 

"equivalent frame model" is the most widely used in the professional field, thanks to the 

simplicity of one-dimensional finite elements and the good capacity to assess the real behavior 

of the structure. 

More accurate finite element models, which make use of shell or solid elements, are mainly 

employed in the research field. They require a rather high computational effort for being used 

in engineering practice and are still affected by uncertainties related to various parameters (in 

particular, the constitutive laws of the materials). 

Furthermore, dealing with existing buildings it should be pointed out that the fundamental 

method of analysis is the kinematic analysis of the collapse mechanisms, which assesses the 

stability of the structure. 

Static and dynamic, linear and nonlinear analyses performed on elastic models are 

meaningful only if the local collapse mechanisms have been prevented. They assess the 

resistance of the building, which is generally secondary to its stability. Therefore, elastic 

modelling should be kept simple avoiding excessive complexity. This is the reason why many 

national and international Standards [1] including Eurocodes [2] indicate the equivalent frame 

model as the reference methodology. 

On the other hand, modelling of a spatial structure through one-dimensional finite elements 

implies some critical issues, most of them related to the fact that one single model is used for 

the analysis under different load actions with the same mechanical parameters, internal and 

external constraints. Adjacent walls significantly different in dimensions correspond to a local 

inhomogeneity in the stiffness distribution. In fact, the stresses migrate towards the most stiff 

elements, with consequent unrealistic stress distribution even if the sole self-weight of the walls 

is applied. Moreover, under the action of vertical loads, significant shear and bending moment 

acting on masonry piers and spandrels appear quite unrealistic, as well as tensile stress, which 

may occur in masonry piers usually due to big stiffness discrepancy at the various stories or 

differential displacements in the foundations. 

These issues are not caused by the equivalent frame method, but by the way it is normally 

applied. In compliance with this modelling technique, a methodology that allows a more 

realistic stress distribution can be applied. 

The methodology illustrated in the following paragraphs stems from the will to overcome 

the difficulties described above through a generalized algorithm valid for any masonry structure 

and automatically executable by software. This procedure is based on the diversification of the 

characteristics of the model (mechanical parameters of the materials, internal and external 

constraints) depending on the type of load action. Although the methodology is calibrated on 

the equivalent frame model, it introduces concepts related to the construction phases, which are 

valid regardless of the modelling technique applied. 

2 CONSTRUCTION PHASES ANALYSIS 

Analysis of the construction phases has long been used in structural engineering for specific 

structural typologies, such as bridges. In general, before a construction is completed, the static 

scheme of the structure evolves. The mechanical characteristics and the restraint conditions can 

be considered variable during the different construction phases, which are characterized by 

loads of different nature. 

Normally, dealing with buildings, all the loads, whether they are vertical or horizontal, 

permanent or variable (including wind, seismic action) are applied to the same structural model, 
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and the results of the analyses performed for the different load actions are then combined 

together. In frame structures, sufficiently regular in terms of geometry and stiffness, such as 

steel or reinforced concrete frame structures, this methodology leads to acceptable 

approximations. In masonry structures, instead, issues related to the stress distribution among 

the resistant elements may arise. 

The proposed approach differentiates the structural scheme depending on the different load 

actions, which occur at different times during the life of the structure. While the structure is 

being built, it cannot be assumed that it behaves as a frame under the action of the self-weight; 

the frame will appear only once the construction is complete. The structure shows a frame 

behavior only under the actions that occur at the end of the construction: variable loads, wind 

and earthquake. Therefore, three construction phases have been defined and referred to as Phase 

0, Phase 1 and Phase 2. 

In Phase 0, the permanent loads, both structural (G1) and non-structural (G2), are applied on 

a static scheme, which leads to a stress distribution consistent with the influence area of each 

element. In Phase 1, the vertical variable loads (Q) are applied on a static scheme, which allows 

occurrence of in-plane and out-of-the plane stresses in masonry piers, while spandrels remain 

unstressed. Finally, in Phase 2 horizontal variable loads, wind and seismic action, are applied 

to the structure: in this last phase, the equivalent frame is considered totally reacting. 

2.1 Phase 0 

While the structure is being built, it settles under its own weight; this leads each pier to be 

mainly subjected to axial force with a value close to the one calculated with the classic method 

of the influence areas. Bending or shear stress may occur in the elements in case of walls which 

are offset at the different stories or in case of vaults and arches, whose thrust stresses the 

adjacent piers in-plane and out-of-plane. 

 In Phase 0, only permanent loads, both structural and non-structural, are applied. In order 

to achieve the previously described behaviour, the piers are assumed fixed at the base and with 

an in-plane hinge at the top, while the spandrels are considered hinged in their plane, taking 

into account the arch-behaviour, that is, the presence of an ideal arch which transform the 

distributed load acting on the spandrel as point loads at its two ends. Therefore, the spandrels 

are unstressed under vertical actions, since they develop an “arch behaviour” instead of a “beam 

behaviour”. 

 However, these hypotheses alone are not enough to ensure the desired behaviour. In fact, 

there remains the issue of stress migration due to large stiffness variation between adjacent 

elements. In addition, unrealistic moments may occur within irregular frames where piers are 

not continuous form foundations to top and lability may arise in the wall plane due to the applied 

releases. 

 

The following modifications have been introduced in order to overcome these issues: 

• Migration of stress due to sharp stiffness variation. Besides the pier restraints mentioned 

above (fixed end at the base and in-plane hinge at the top), the values of modulus of elasticity 

E and shear modulus G are amplified in order to obtain very stiff elements. In this way, the 

effects of stress redistribution due to different pier sections vanish, since the stresses are 

distributed within a rigid system. Furthermore, vertical translation is released in the rigid 

links between orthogonal walls, in this way a more realistic distribution of the slab loads is 

achieved, avoiding stress migration among transversal walls. 

• Occurrence of local lability due to the applied releases. The figure below highlights the 

mechanism that may occur in the wall plane: the hinges introduced at the top of the piers and 
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at the two ends of the spandrels are aligned, thus the system is labile. To overcome this issue 

the joint X and Y rotations are restrained at the top of the piers and, as a result, the system 

assumes a “shear-type” behaviour.  

 

Figure 1. Possible lability in the wall plane. 

In order not to create rigid relations among the joints, which may affect the distribution of 

the vertical loads, the hypothesis of rigid level and rigid slabs are ignored.  

As regards the foundations, it should be pointed out that in masonry structures they are 

usually very stiff, they do not deflect and during the construction they settle under the weight 

of the structure. Therefore, in this phase it can be assumed that the stress are transferred to the 

ground through a rigid body and that differential settings capable to create stress states in the 

superstructure will occur in a later phase when the structure behaves as a spatial frame. In order 

to achieve the goal, first, the foundation joints at the base of the walls are fixed allowing 

evaluating the resultant of the action in terms of vertical load and bending moment. Then, the 

stress in the ground is determined using the formula for compression and flexure applied to the 

section defined by the foundation plan:  

 𝜎(𝜉, 𝜂) = 𝑁/𝐴 + 𝑁 ∙ 𝜂𝑁 ∙ 𝜂/𝐽𝜉 + 𝛮 ∙ 𝜉𝑁 ∙ 𝜉/𝐽𝜂  

where: 𝜉  and 𝜂 are the coordinates of the vertex of each foundation frame in the global 

reference, N is the resultant vertical force, 𝜉𝑁 and 𝜂𝑁 are the eccentricity of N with respect to 

centroid of the section, A is the total area of the foundation plan,  𝐽𝜉  and 𝐽𝜂 are the second 

moment of inertia about the axes 𝜉 and 𝜂. 

 

To sum up, the hypothesis introduced in Phase 0 are the following: 

• Piers fixed at the base and with in-plane hinge at the top.  

• Spandrels hinged in their plane at the two ends with arch-behavior. 

• Amplified modulus of elasticity for masonry elements. 

• Shear-type behavior for joints at the top of masonry piers. 

• Vertical translation released for rigid links between orthogonal walls. 

• Rigid levels (master-slave relations) and slab stiffness are ignored. 
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• Rigid foundations and determination of soil stresses through the formula of compression and 

flexure applied to the section defined by the foundation plan. 

2.2 Phase 1 

In Phase 1, the vertical variable loads are applied to the equivalent frame. These loads occur 

once the structure is completely built, so it cannot be assumed that the structure settles under 

their action. Therefore, moments and shear force in masonry piers are considered plausible. 

However, since the vertical load acting in this phase are still static, the spandrels are modelled 

so as not to be subjected to bending moment and shear.  

As regards the foundations, in this phase they can be modelled as beams on elastic soil 

according to Winkler theory, allowing for the occurrence of differential settlements. 

To sum up, the described behavior is achieved through the following modification of the 

standard frame: spandrels are hinged in their plane with arch-behavior; rigid levels and slab 

stiffness are ignored. 

2.3 Phase 2 

In Phase 2, the horizontal loads (wind and seismic action) are applied to the completely 

reacting frame. Bending moments and shear forces are accepted in all the elements including 

spandrels. This is the last phase where the equivalent frames method is applied with the original 

formulation without modification of the elements. 

2.4 Combination of the results 

Construction phases analysis is performed by means of three different structural models, one 

for each phase. The final stress and strain state of each element is given from the combination 

of the results obtained for each phase, of course taking into account the combination coefficients. 

However, modal analysis is carried out on the standard equivalent frame model (Phase 2), 

since it is representative of the dynamic behavior of the structure. In seismic analysis, the static 

effects obtained from Phase 0 and Phase 1 are combined with the seismic effects obtained from 

Phase 2. 

 

3 ANALYSIS OF THE CONSTRUCTION STAGES 

The study of the construction phases analysis provided the basis for developing a more 

accurate analysis procedure when dealing with buildings which have undergone modification 

in later construction stages. In particular, the study considers buildings that have been enlarged 

with the integration of new volumes, rather than those which have undergone a demolition. This 

case occurs frequently in the engineering practice, since interventions aimed to extend or raise 

an existing building are very common. 

 Looking at the very nature of the intervention, it is evident that it represent an extension of 

the construction phases methodology outlined in the previous paragraphs. Even in this case, the 

building can be analyzed considering three different construction phases, but it should be taken 

into account that when the enlargement has been built the original part of the structure was 

already consolidated. 

For the purposes of the analysis the original structure is referred to as Structure A while the 

enlargement is referred to as Structure B. The construction phases analysis is performed through 

the analysis of the following models:  
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• Model 0-A. This model consists only of the original structure modelled according to the 

hypothesis of Phase 0. The analysis is performed for the corresponding permanent loads. 

• Model 0-B. The enlargement is modelled according to Phase 0 while the original structure is 

modelled according to Phase 1. The analysis is performed for the permanent loads related to 

the enlargement. 

• Model 1. Both original structure and enlargement are modelled according to Phase 1. The 

analysis is performed for vertical variable loads.  

• Model 2. Both original structure and enlargement are modelled according to hypothesis of 

Phase 2. The analysis is performed for horizontal variable loads (wind, seismic action). 

Once all the analysis have been performed on the four models, the results are combined 

taking into account the combination coefficients provided by the Standards for each different 

load action. 

 

4 CASE STUDY 

The proposed methodology has been applied to the case of a three-story building located in 

Fivizzano, Tuscany [5]. The construction dates back to 1918. In 1967, the building has 

undergone renovations that led to the enlargement of ground floor and first floor. The layout of 

the structure, although rather simple, shows all the critical aspects related to the equivalent 

frame modelling and allows focusing the attention on the effects of the construction phases 

analysis. 

 

Figure 2. View of the building 

The different typologies of masonry and slabs confirm that the structure was built in two 

different periods. The walls of the structure dating back to 1918 are made of irregular stone 

masonry, while the walls built in the later stage are made of brick masonry with regular pattern.  

The following figures show an elevation and two floor plan of the building, the different colors 

highlight the different construction stages. 
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Figure 3. South-East Elevation 

 

Figure 4. Plan of the Ground Floor. 

 

Figure 5. Plan of the First Floor 

The analysis of the building was carried out according to three different approaches: (i) 

standard approach; (ii) construction phases analysis; (iii) analysis of the construction stages. 

The differences between the three methodologies are highlighted in terms of stress state 

resulting from linear static analysis. 

4.1 Standard approach 

The following figures show the modelling of the building through the standard equivalent 

frame method. 
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Figure 6. Standard equivalent frame model. 

Masonry piers and spandrels are modelled through frame elements. Rigid links connect the 

spandrels to the adjacent piers and provide the connection between transversal walls. As a result 

each slab boundary is a closed polyline made of frame elements (spandrels and rigid links). The 

slabs in the original part of the building are considered deformable, while the ones made of 

concrete in the enlargement part are considered infinitely rigid. The spandrels are modelled 

assuming the arch-behavior [6 - 8]. As regards the foundations, they are modelled as beams on 

elastic soil with Winkler modulus 𝐾 = 0.05 𝑁/𝑚𝑚3. The following table gives the mechanical 

properties of the masonry materials. 

 

  Stone masonry Brick masonry  

Modulus of elasticity E 1600 5000 N/mm2 

Shear modulus G 240 500 N/mm2 

Weight per unit volume w 23.50 18.00 kN/m3 

Table 1. Mechanical properties of masonry materials 
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Static linear analysis was performed with the aid of the software Aedes.PCM [9]. The results 

shown below refer to a load combination that includes only vertical loads with all the 

combination coefficients equal to 1. Such combination, although not required by the Standards, 

is useful to simplify the comparison of the results. In fact, the scope of this first analysis is to 

highlight the critical aspects of the equivalent frame model. The following figure shows the 

axial force diagram. 

 

Figure 7. Static analysis. Axial force diagrams 

Several issues affect the resulting stress distribution: masonry piers in tension, stress 

migration among adjacent elements, spandrels subjected to high bending moments and shear 

force. Let us focus our attention on the frontal alignment (Figure 8), evaluating the differences 

between the analysis results and a manual calculation of the stress state. 

 

Figure 8. Axial force diagrams. Frontal alignment 
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Piers 6 and 205 are perfectly aligned and definitely affected by an issue: looking at the axial 

force diagram we notice an unnatural decrease at the interface between the two elements.  

   

Figure 9. Axial force diagrams. Piers 6 and 205 

This issue is caused by stress migration towards other elements. The amount of the decrease 

in axial force is at least equal to 

𝑁205 − 𝑁6 = 289.72 − 217.84 = 71.88 𝑘𝑁 

Considering that the total weight of Pier 205 is equal to 103 𝑘𝑁, the error is rather large. In 

fact, about 70% of the weight of Pier 205 is not transferred to pier 6 but migrates to other 

elements. 

Another important aspect is the stress state in the spandrels. Despite they were modelled 

with the arch-behaviour, the spandrels are subject to shear and bending moments under the 

action of the sole vertical loads. The following table shows the characteristics of the stress state 

resulting in Spandrel 14. 

 

 Joint i Joint j  

N 7.47 7.47 kN 

Vy 0.78 0.78 kN 

Vz -8.92 8.92 kN 

Mx -0.08 -0.08 kNm 

My 3.41 -10.85 kNm 

Mz 0.65 -0.59 kNm 

Table 2. Stress state in Spandrel 14 

As highlighted before, these issues are caused by the way the equivalent frame method is 

applied and construction phases analysis is able to overcome them. The results of the analysis 

performed with the proposed approaches are given in the following paragraphs. 
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4.2 Construction Phases Analysis 

The building is now analyzed with the construction phases approach described in §2. The 

following figures show the results of static linear analysis in terms of axial force diagram. Let 

us focus on the frontal alignment. 

 

Figure 10. Static analysis results. Axial force diagrams 

 

Figure 11. Axial force diagrams. Frontal alignment 

The results of the analysis show no elements in tension. Comparing Figure 8 with Figure 11, 

we can notice in the latter a more rational stress distribution: there are no unnatural variation of 

axial force in continuous elements. Moreover, in-plane and out-of-plane bending moments are 

considerably reduced since now they are caused by the sole variable loads acting in Phase 1. 

5200



Francesco Pugi, Alessio Francioso and Giacomo Sevieri 

 

Figure 12. Axial force diagrams. Piers 6 and 205 

Looking at Piers 6 and 205, we still notice a step in the axial force diagram, but this time it 

is the natural increment due to the weight of the spandrels:  

𝑁6 − 𝑁205 = 282.21 − 251.19 = 31.02 𝑘𝑁 

The following table show the characteristics of the stress state in Spandrel 14. We notice a 

significant reduction of the stress, consistent with the hypothesis of arch-behaviour.  

 

 Joint i Joint j  

N 0.00 0.00 kN 

Vy -0.05 -0.05 kN 

Vz 0.00 0.00 kN 

Mx 0.00 0.00 kNm 

My 0.00 0.00 kNm 

Mz -0.04 0.04 kNm 

Table 3. Stress state in Spandrel 14 

4.3 Analysis of the construction stages 

The third approach refers to the analysis of the construction stages described in §3. As shown 

in Figure 6, part of the structure was built in 1918, while the rest was constructed in 1967 as 

part of the renovation interventions.  

This approach is based on the hypotheses of the construction phases analysis, thus the results 

are similar to those obtained with the previous approach given in §4.2. The only difference is 

the influence that the structure built in a later stage exerts on the original structure. This aspect 

is properly addressed only in the current approach, where the analysis under the action of the 

permanent loads is carried out by means of two models (0-A and 0-B).  

Similarly to the previous approaches, we discuss the results of static linear analysis with a 

load combination that includes the sole vertical loads, focusing on the frontal alignment of the 

building (Figure 13, 14). The axial force distribution is regular, without piers in tension or 

particular stress migration. 
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Figure 13. Static analysis results. Axial force diagrams 

 

Figure 14. Axial force diagrams. Frontal alignment 

 

As expected, the results are very similar to those obtained with the construction phases 

approach, although they are obtained through different models. This confirms the feasibility 

and the accuracy of the proposed methodology.   
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Figure 15. Axial force diagrams. Piers 6 and 205 

Focusing on Piers 6 and 205 in Figure 15, we notice a larger value of the axial force with 

respect to the previous approach (Figure 12). The difference is more evident in Pier 6 at the 

ground floor, which is affected by the weight of the most recent part of structure. In this case 

the variation of axial force at the interface of the two piers is: 

𝑁6 − 𝑁205 = 302.05 − 251.61 = 50.44 𝑘𝑁 

Shear forces and bending moments in masonry piers are considerably reduced with respect 

to the standard approach, except for the original elements, which are also influenced by the 

permanent loads acting on the structure built in a later stage. 

Again, the following table reports the stress state in Spandrel 14. 

  

 Joint i Joint j  

N 0.00 0.00 kN 

Vy 0.27 0.27 kN 

Vz 0.00 0.00 kN 

Mx 0.00 0.00 kNm 

My 0.00 0.00 kNm 

Mz 0.22 -0.20 kNm 

Table 4. Stress state in Spandrel 14 

The stress is slightly larger than the previous approach since the spandrel belongs to the 

original structure and is affected by the most recent part of the building. Nevertheless, the stress 

state remains acceptable and consistent with the physical problem and the hypothesis of the 

proposed approach. 

4.4 Manual Calculation 

In order to verify the accuracy of the results let us perform a manual calculation of the axial 

force diagram. The model considered here includes Piers 6 and 205 as well as the pier above 

them and all the adjacent spandrels. The piers are considered as cantilever, while the spandrels 

are considered hinged at the two ends in their plane with arch-behavior. Therefore, under the 

action of vertical loads, the spandrel are unstressed and the piers are simply in compression.  
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As shown in Figure 16, each pier is subjected to the self-weight and to additional forces, 

which account for the vertical loads acting on the spandrels and the slab loads at roof level. The 

values of these forces are:  

 𝑁3 = 20.00 𝑘𝑁  

 𝑁2 = 24.16 𝑘𝑁  

 𝑁1 = 25.10 𝑘𝑁  

The following Table provides the dimension of each pier together with the specific weight 

and allows the calculation of the self-weight. 

 

 Pier 363 

Second floor 

Pier 205 

First floor 

Pier 6 

Ground floor 

  

Thickness 0.50 0.50 0.50  m 

Width 2.70 2.70 2.30  m 

Height 3.10 3.25 3.85  m 

Specific weight 23.50 23.50 23.50  kN/m3 

Self-weight 98.35 103.10 104.05  kN 

Table 5. Calculation of self-weight 

Given these data, the axial force acting on each pier can be calculated and the results may 

be represented in a diagram. The following Figure is a comparison of the axial force diagram 

obtained through analysis of the construction stages and the one calculated manually.  We 

notice that the maximum deviation between the two diagrams, at the base of the wall, is equal 

to 11.49 kN, about 3% of the axial force in the corresponding section. Therefore, the analysis 

of the construction stages is very accurate especially if compared with the results of the standard 

approach, which show a much larger discrepancy with the manual calculation.  

 

Figure 16. Comparison of axial force diagrams from analysis of the construction stages and manual calculation 
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5 CONCLUSION 

In this paper, a methodology aimed to improve the application of the equivalent frame model, 

through a more realistic stress distribution, was introduced. The approach, based on the 

construction phases analysis, consists in the use of different structural models for the analysis 

of the different load actions. The models vary in terms of mechanical characteristics of the 

materials, internal releases of the frames, joint restraints and load distribution. This allows to 

obtain a more accurate stress state of the elements and to overcome the typical issues related to 

the equivalent frame method when applied according to the standard approach. 

Three phases have been defined. Phase 0, where the sole permanent loads are applied, aims 

to catch the ability of the structure to settle under its own weight during the construction. 

Therefore, in this phase the equivalent frame is not completely established and the stress is 

distributed consistently with the influence areas of each element. Moreover, the spandrels are 

modelled with arch-behavior and remain unstressed under the action of vertical loads. 

 In Phase 1, only vertical variable loads are applied to the equivalent frame model. Besides 

axial force, piers may now be subjected to shear force and bending moments, while the 

spandrels still behave as arches. 

In the third and last phase, Phase 2, horizontal variable loads (wind, seismic action) are 

applied. The hypothesis are the one of the standard equivalent frame model with no 

modifications. 

Once the analyses are performed for each load action through the corresponding phase and 

model, the results are combined according to the relevant load combinations. 

Furthermore, a procedure for the analysis of structures built in two different periods has been 

described. The analysis of the construction stages is based on the construction phases analysis 

but this time the original part of the structure and the one built in a later construction stage are 

treated differently. The application of the construction phases analysis in this case requires to 

split Phase 0 into two more Phases (0-A and 0-B). This allow to properly assess the influence 

of the most recent structure on the original one. 

The case study of a building rather regular in plan and in elevation was presented. The 

structure, built in two different periods, was analyzed according to three approaches: standard 

approach, construction phases analysis and analysis of the construction stages. The typical 

issues related to the standard application of the equivalent frame model were highlighted; 

especially with respect to the stress distribution, which in many case is affected by unrealistic 

stress migration. A comparison of the results obtained with the proposed approaches confirmed 

that they are more realistic and consistent with the real physical problem. The accuracy of the 

results has been proven through comparison with the stress state obtained through a simple 

manual calculation. 

The building was analyzed though static linear analysis since the proposed methodologies 

mainly influence the structural behavior under the action of vertical loads. In a later work, the 

results of seismic analyses performed through the construction phases approach will be 

presented. The advantages of the proposed methodologies are evident in pushover analysis 

where the capacity curve of the structure is more realistic than the one obtained with the 

standard approach.  

Finally, the proposed procedures represent an improvement of the equivalent frame method, 

leading to more accurate results with a slightly higher computational effort. This is particularly 

important, considering that the equivalent frame method is widely used in the engineering 

practice. However, the concepts of construction phases analysis could be applied even to more 

refined finite element models, since they are based on the differentiation of the structural model 

depending on the nature of the load actions. 
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Abstract. The present study describes the first stage of an ongoing research project aim-
ing to investigate the failure mechanisms activated when reinforcing bars are pulled-out from 
the body of the reinforced element. Attention is given to the progressive failure of the inter-
faces between the constituent elements of the marble-cement paste-titanium (MCT) complex, 
which appears in case marble structural members of classic stone monuments are restored 
according to the pioneering technique used on the Acropolis of Athens worksite. Experience 
from already implemented projects indicates that, when restored structural members are sub-
jected to tension or bending, the failure of these interfaces leads to debonding and finally to 
catastrophic pull-out of the reinforcing bar from the body of the marble volume.  

In this direction, a series of pull-out experiments were implemented, with specimens made 
of Dionysos marble, in the form of prisms of various dimensions with threaded titanium bars 
inserted into predrilled holes which were then filled with suitable cement paste. The results ob-
tained from these experiments, by employing both conventional and innovative sensing tech-
niques, were used for the calibration of a Finite Element model, which will be used for the 
thorough investigation of the parameters affecting the overall response of the restored element.   

The commercial package ABAQUS was used for the implementation of the numerical anal-
ysis. The surface contact features of the package were properly exploited in the direction of 
comparatively exploring and evaluating of possible modeling approaches for simulating the 
actual interfaces of the marble-cement-titanium complex. A reliable performance law, allowing 
for the incorporation of damage initiation and evolution criteria, was determined permitting 
satisfactory modeling of the pull-out behavior at the interface between marble and cement paste. 
Critical parameters, material properties and modeling choices that have a significant impact 
on the final outcome were considered. The numerical model finally designed approaches in a 
very satisfactory manner the experimentally obtained load-displacement curve, providing an 
easy-to-use, flexible and reliable tool for further study of the pull-out phenomenon. 
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1 INTRODUCTION 

The pioneering technique that is nowadays adopted for the restoration of fractured struc-
tural members of classic marble monuments of Greek architecture is based on the insertion of 
threaded titanium bars into pre-drilled holes, while filling the intermediate gap with a suitable 
cementitious paste (Fig. 1) [1]. The number and the diameter of the bars are chosen in such a 
way that the restored epistyle sustains its self-weight and the weight of the structural elements 
that are planned to be superimposed on the structure in the future. Furthermore, attention is 
paid for the extent of interventions to the authentic marble to be the minimum possible. The 
basic principle that governs this kind of restorations is the reversibility of the interventions. This 
means that if needed, the monument can be restored to its condition prior to the intervention.  

 

Figure 1: The main steps for the restoration of a marble epistyle [2]. 

Experience gathered by the scientists working for the restoration project of the Acropolis 
monuments has shown that the integrity of the structure after restoration strongly depends on 
quite a few details of the aforementioned technique. Several experimental and numerical stud-
ies have been conducted, investigating the parameters that influence the mechanical response 
of the specific joint [3]. It has been definitely proven that the weakest link of the three materi-
als (MCT) chain lies within the layer of the cementitious material [3, 4]. The failure mode 
most commonly observed, is the relative slip of the bar-mortar block with respect to the mar-
ble volume (without fracture of neither the marble nor the bar) which is known as pull-out. 

This work focuses on the development of a reliable numerical model that, hopefully, could 
effectively describe the behavior of a thin layer between the cement paste and the marble 
body while being effective concerning the computational time. Critical parameters influencing 
the effectiveness of the model in terms of time requirement are considered to be the model’s 
meshing, the analysis of time-increment and the choice regarding two or three-dimensional 
modeling. The models developed are calibrated taking advantage of the data for the load-
displacement curve of a series of pull-out experiments which were implemented at the Labor-
atory of Testing and Materials of the National Technical University of Athens.  
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2  EXPERIMENTAL PROCEDURE 

2.1 Specimens 

The specimens tested were orthogonal prisms cut from Dionysos marble blocks. Their di-
mensions were equal to 10x10x15 cm3. A central through hole, of diameter equal to dhole=14 
mm, was drilled normally to the upper face of the prisms. The hole was then filled with liquid 
cementitious material and a threaded titanium bar, of outer diameter equal to dbar=11.0 mm, 
was driven in the hole and kept normal to the upper face of the cube until setting of the cement 
paste. All specimens have the same dimensions, anchoring length (7.5 cm) and thread’s geo-
metry and were cured for 28 days (Fig. 2). Attention was paid for the prisms to be cut normal-
ly to the material layers of the blocks in order to reduce scattering due to marble’s anisotropy. 

     
Figure 2: Preparation of the specimens. 

2.2 Experimental procedure 

For the experimental procedure, a stiff servo-hydraulic INSTRON loading frame of capaci-
ty 250 kN (Model 1126) was used. All tests were carried out under quasi-static displacement-
control mode at a rate equal to 0.2 mm/min, with the titanium bar gripped by the frame’s up-
per jaw. The marble cube was constrained by a rigid metallic plate with a hole of diameter equal 
to 50 mm in its center. The plate was supported by four stiff threaded bars (Fig. 3 (a), (b)). 
For the direct measurement of the axial strain developed along the titanium bar an Instron-
Dynamic Extensometer of gauge length equal to 12.5mm was used (Fig. 3 (c)).  

 

Figure 3: (a) The experiment set up, (b) The configuration of the metallic plate (c) The Dynamic Extensome-
ter used in the experiments 

During the tests, the relative displacement of the bar with respect to the marble prism was 
measured and recorded using a calibrated LVDT (Linear Variable Differential Transformer) 
touching the bar’s lowest end through the cube’s bottom face (Fig. 4 (a), (b)). Furthermore, in 
order to monitor the whole system’s deformation and determine the actual movement of the 
bar, three additional LVDTs were placed at the bottom of the rigid plate (Fig. 4 (c)).  
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Figure 4: (a) The LVDT’s position schematically (b) The lowest end of the cube (c) The LVDTs’ positions 

under the rigid metallic plate. 

In the experimental procedure, two innovative sensing techniques were employed, namely 
the Acoustic Emission (AE) and the Pressure Stimulated Currents (PSC) ones. So far, it is prov-
en that these two techniques, when applied to brittle materials, can successfully detect cracks 
and damages at the material’s interior while providing consistent pre-failure indicators [5, 6]. 

AE is based on the detection and record of transient elastic waves which are produced 
when the stress field developed exceeds (either locally or globally) the material’s critical lim-
its resulting to damage. The sudden release of energy accompanying damage produces waves 
which propagate spherically outwards until they are captured by a number of acoustic sensors, 
properly mounted on the specimen’s surface [7]. In the present experimental protocol, eight 
acoustic sensors were attached on the marble surface, as close as possible to the area where 
the acoustic signals were expected to be produced, permitting 3D detection (Fig. 5(a)). 

On the other hand, the PSC technique is based on the detection of weak electrical signals 
produced during the formation and growth of micro-cracks inside rock-like materials [5, 6]. 
For the PSC recordings two electrical contacts were placed in the specimens. The first one 
was embedded in the cement paste before its curing while the second one was inserted in a 
short predrilled hole (of depth equal to 1cm) on the marble (Fig. 5(b), (c)). The main goal is 
the accurate recording of electrical signals produced on the marble-cement paste interface.   

     
Figure 5: (a) The acoustic sensors on the marble surface (AE) (b), (c) The electrical contacts (PSC). 

Observing macroscopically the fractured specimens, three main failure modes were distin-
guished, depending on the composition of the cementitious paste: pull-out of the titanium bar, 
fracture of the marble prism and failure (fracture or yield) of the titanium bar (Fig. 6 (a), (b), (c)). 
Taking into account the aim of the present study, attention is restricted from this point on to the 
tests for which the marble cube and titanium bar remained intact while the bar was pulled out. 
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Figure 6: (a) Pullout of the bar (b) Marble’s fracture (c) Bar’s failure. 

2.3 Results 

Typical results from experiments in which pure pull-out was observed are presented in Fig. 
7(a), where the variation of the load is plotted versus the bar’s axial strain. The differences ob-
served, concerning the maximum load attained are significant and could be well attributed to 
uncontrollable parameters related to the inhomogeneity and anisotropy of Dionysos marble [8, 
9], which dictate marble’s response. On the contrary, the differences observed for the overall 
stiffness of the system (namely the slope of the load - axial strain curve) are rather negligible.   

The pull-out phenomenon is typically described by the load-bar’s displacement curve. Such 
a typical curve is shown in Fig.7b. It consists of an almost linear initial portion (until slightly 
before the maximum load) followed by a well distinguishable non-linear portion till the max-
imum load. A decreasing branch follows the peak force, the slope of which decreases gradually. 

Figure 7: (a) Load vs bar’s strain (b) load vs bar’s displacement. 

3 NUMERICAL ANALYSIS 

The numerical model designed to simulate the pullout experiments was developed using the 
commercially available finite element software ABAQUS [14]. The specimens and the experi-
mental procedure were simulated in every detail, to achieve optimum reproduction of the tests. 

3.1 Model’s geometry and materials’ properties 

The models consist of three bodies, i.e. the threaded titanium bar, the cement paste and the 
marble prism. The dimensions of the prism are the same as those of the tested specimens (Fig. 
8 (a)). The geometrical characteristics of the threaded titanium bar are shown in Fig. 8 (b).  
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The second step of the numerical analysis is the identification of the mechanical properties 
of the three materials. For the Acropolis monuments, Dionysos marble is almost exclusively 
used since it is considered the material most compatible to the authentic building stone (i.e. 
Pentelic marble). It is characterized by two principal anisotropy directions (parallel to the ma-
terial layers and normal to them) thus appearing to be transversely isotropic. Moreover, it is 
slightly non-linear and bimodular, i.e. its elastic modulus in compression exceeds slightly that 
in tension [8-10]. For the sake of simplicity, these features were here ignored and Dionysos 
marble was simulated as linearly elastic and isotropic. Its modulus of elasticity was set equal 
to Em=84.5 GPa, its Poisson’s ratio equal to vm=0.26 and its density equal to 2.78 gr/cm3.  

Titanium was modeled also as linearly elastic (given that the loads to be imposed produce 
stresses well below its linearity limit) and isotropic material. Its modulus of elasticity was set 
equal to Et=105 GPa, its Poisson’s ratio equal to vt= 0.32 and its density equal to 4.51 gr/cm3.  

Finally, with regard to the cementitious paste interposed between marble and titanium, it 
was considered, also, as linearly elastic and isotropic material with modulus of elasticity equal 
to Ep=15.4 GPa, Poisson’s ratio equal to vp=0.26 and density equal to 1.70 gr/cm3 [11-13].  

3.2 Contact properties 

As already mentioned, previously reported experimental data, have definitely indicated that 
the most common failure mode in pullout tests was the debonding at the paste-marble inter-
face [9, 10]. For this reason, the metallic bar in the model was considered perfectly bonded to 
the cementitious paste (obviously the threaded geometry of the bar is considered to play a sig-
nificant role in this direction). Consequently, the overall behavior of the MTC complex is here 
dictated by the failure of the intermediate interface, i.e. that between marble and paste.  

In ABAQUS practice, in case of bonded interfaces the thickness of which is negligibly 
small, the response of the cohesive layer is defined directly in terms of traction versus separa-
tion [10]. The available traction-separation model assumes an initially linear elastic behavior, 
which is followed by the initiation and evolution of damage. When the damage initiation 
criterion is met, the resultant behavior of the interface follows a damage evolution law. There 
are two alternative choices available for this law in the traction - seperation space, i.e. linearly 
or exponentialy decreasing. The respective curve is schematically shown in Fig. 9. 

Concerning the initiation of damage the ABAQUS software provides four main criteria: 
The maximum nominal stress, the maximum nominal strain, the quadratic nominal stress and 
the quadratic strain [14]. Regardless of the criterion that is adopted in modeling, the results ob-
tained are the same assuming of course that reasonable compatibility laws are applied for the 
transition between the various options. 

Figure 8: (a) Dimensions of the Marble block (b) Thread characteristics. 
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Figure 9: Schematical representation of traction-separation response [14]. 

4 THE NUMERICAL MODEL 

4.1 Mesh density 

In computational solutions, meshing is among the most significant parameters that can de-
termine the reliability of the results. Improved mesh quality provides more accurate solutions. 
Unfortunately, the meshing quality is strongly related to another parameter that has to be con-
sidered, i.e. the CPU time or in other words how time-consuming the analysis is. It is general-
ly accepted that finer meshing is related to increased computational time demands.  

In this direction (and taking into account the increased number of parameters that will be 
investigated using the present model) the relation between the mesh quality and the CPU time 
was thoroughly considered. The validation of the model was achieved taking advantage of a 
typical experimental pull-out curve (Fig.7b). Models of different mesh densities are compared 
with reference to the CPU time. Four different models were constructed, for which tetrahedral 
elements were used for the mortar-bar complex and hexahedral elements for the marble body. 
The number of tetrahedral and hexahedral elements, the approximate ratio of their size and the 
respective CPU time for each model are recapitulated in Table 1. The mesh for the first testing 
case (model 01) is shown in Fig.10. The overall results of this step of the analysis are present-
ed comparatively in Fig. 11, in juxtaposition to the respective experimental data. 

   
Figure 10: Mesh geometry of (a) bar-paste complex (b) marble block (model 01). 
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Title CPU time 
(sec) 

Number of  
tetrahedral 
elements 

Number of  
hexahedral 
elements 

Approximate size of 
tetrahedral /hexahedral 

element 
Model 01 4878,8 152532 15150  1:5 

Model 02 52853 352358 72350 ~ 1:4 

Model 03 65400 92620  93728 ~ 1:2 

Model 04 278673 42840 215625  1:1 

Table 1: CPU time with the respective model’s total number of elements. 

 

Figure 11: Load versus bar’s displacement (experimental results/analyses of different mesh density). 

It is definitely concluded from Fig.11 that all four numerically obtained curves are very close 
to each other. Moreover, their deviation from the experimental data is relatively small, despite 
the quite significant differences recorder for the respective CPU times (shown in Table 1). 

4.2 Time increment analysis 

In ABAQUS Standard, the overall convergence rate and the robustness of the progressive 
failure simulation of composite structures is significantly affected by the time increment of the 
analysis: Low time increment may give more precise results but it increases the CPU time. 

For the model that was considered as the optimum one according to the results of Section 
4.1 (i.e. model 01), three different time increments were considered in this step (Table2).  

 

Title CPU time (sec) Time increment 

Model_01 42584 0,001 

Model_02 4878,8 0,01 

Model_03 1508,8 0,1 

Table 2: CPU time with the respective time increment. 
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The results of the analyses are given in Fig. 12. The larger time increment (blue curve), char-

acterized by fewer integration points, results to deviations from the experimental data around 
the peak force, which may be proven critical. The medium (model_02-black curve) and fine 
time increments (model_01-yellow curve) provide identical curves but they differ significant-
ly in their CPU time (Table 2). The model with finer time increments is almost 10 times more 
time-consuming compared to the one with medium time increments. Taking all these into ac-
count it can be concluded that the model with medium time increment is the optimum choice. 

 
 Figure 12: Load versus bar’s displacement (experimental results/analyses of different time increment). 

4.3 2D versus 3D models 

In numerical simulations, it is important to achieve the required accuracy in the minimum 
possible computational time. The symmetry characterizing the specimens of the present expe-
rimental protocol permits the design of simplified numerical models, significantly decreasing 
the CPU time. In this direction, an axisymmetric model (with respect to the central symmetry 
axis of the configuration) was designed, as it is shown in Fig. 13. It is worth noticing that the 
computational time of the axisymmetric model is almost 10 times less than the computational 
time of the respective 3D one while the results seem to be well comparable (Fig. 14). 

 
Figure 13: Axisymmetric model of pullout test 
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Figure 14: Load versus bar’s displacement of axisymmetric and 3d pullout model.  

5 DISCUSSION AND CONCLUSIONS 

A finite element model was designed that will be used for the parametric study of the pull-
out phenomenon observed in restored marble structural members. The model was calibrated ac-
cording to the data gathered from a specially designed non-standardized experimental protocol. 
At this point the question could arise related to the accuracy and reliability of the experimental 
data themselves. In an attempt to eliminate such doubts the data of a typical test, as they were 
gathered by three different sensing techniques, are plotted in Fig. 15. More specifically the 
relative displacement of the bar with respect to the marble prism (as recorded by the respective 
LVDT) is plotted against the load level in conjunction to the cumulative electric load Q (as 
determined using the PSC technique) and the cumulative energy of the acoustic events (as 
determined by the AE technique). It is very intersting to observe that the data gathered by all 
three techniques are in excellent mutual qualitative agreement. In depth analysis of these data 
has proven that they are also in very good quantitative agreement [15], enhancing confidence 
to the reliability of the experimental results used to validate the numerical model. 

 
Figure 15: Comparative representation of the data gathered by the LVDT, the PSC- and AE-techniques. 
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The model designed was optimized in relation to two crucial aspects, i.e. meshing and time 

increment of the analysis. A satisfactory compomise between accurracy and CPU time con-
sumption was achieved. Morever the model’s effectiveness was assessed in case a simplified 
axisymmetric design is chosen against the “heavier” three dimensional version. It was con-
cluded that the diffrences are rather negligible and, at least for this specific application, no 
reason exists to use three dimensional analysis.  
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Abstract. In this paper, the out-of-plane response of infill walls is investigated by means of 
non-linear monotonic (push-over) analyses through a combined finite and discrete modelling 
approach. The model accounts for material deformability, crack formation, sliding, separa-
tion and formation of new contacts. Masonry units are modelled as finite elements, and differ-
ent material models are assumed for the masonry. Contact between masonry units, and 
between masonry and frame elements is modelled by means of interfaces, which permit tan-
gential motion with frictional sliding. Frame elements are modelled by means of a linear-
elastic material. The results of the numerical analyses are compared with those of experimen-
tal tests available in the literature. The advantages and disadvantages of the adopted model-
ling strategy are investigated.  
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1 INTRODUCTION 
Masonry walls are widely used as infills in steel and reinforced-concrete (RC) frame struc-

tures. The failure of infills, which may develop both in- and/or out-of-plane, may cause casu-
alties and heavy socio-economic consequences.  

Recent earthquakes have shown that the out-of-plane failure of infills can occur even for 
moderate intensity of the ground motion [1, 2, 3]. For this reason, the interest in the out-of-
plane behaviour of infill walls has been growing in the last years. A number of experimental 
tests have been performed by different investigators to assess strength and ductility of infill 
masonry walls loaded in the out-of-plane direction [4]. Moreover, several analytical models 
have been developed for the assessment of the out-of-plane response of masonry infills [5]. 
Most of them are based on rigid body mechanisms [6], either with or without the description 
of the arching behaviour. 

More complex modelling is performed when numerical solution methods are adopted. 
These approaches involve either a smeared-crack or a discrete-crack modelling. The former is 
usually adopted to model the global behaviour of a structural system, while the latter is used 
to model the actual interaction between adjacent elements. The discrete-crack modelling can 
realistically predict the structural response when the crack pattern follows the locations of 
mortar joints [7]. 

The finite Element (FE) method has been applied more extensively to predict the in-plane 
behaviour for infills with [8] or without [9] openings. Some numerical studies are performed 
through the software DIANA [9, 10]. ANSYS software has been used by several researchers 
as well [11]; Mohyeddin et al. [12] have developed a three-dimensional FE model of infilled 
RC frames at a micro-level, showing that the model can be employed to interpret the response 
of the infilled frame under in- or out-of-plane loading over a wide range of drifts, allowing a 
parametric/sensitivity analysis [13]. 

Two classes of models can be identified [14]: discrete-crack modelling, including unit and 
joint model, with detailed micro modelling, where the material properties for the different 
components are generally taken from experiments [13, 14]; smeared-crack models, either 
weak or strong, for which a Total Strain Cracking Model is used to represent the material be-
haviour of the masonry [10] or macro-modelling of the masonry based on concrete smeared 
cracking and damaged plastic material (Concrete Damaged Plasticity model in Abaqus) [15]. 

A FE model is used to evaluate the out-of-plane capacity of an infill wall surrounded by a 
RC frame [10] with 3D curved-shell elements for both frame (8-node) and interface between 
infill and frame (6-node); mortar and unit-mortar interface are smeared out in the continuum. 
For the compressive and tensile behaviour of masonry the concrete material in the FE soft-
ware DIANA is used. Two models are considered, depending on the boundary conditions of 
the infill wall, the first one representing two-way arching action, whereas the second repre-
sents one-way action.  

FE modelling has been used also for the analysis of retrofitted infill masonry under out-of-
plane loads [16], with simplified micro-modelling, where units are represented by continuum 
elements, mortar joints by interface elements, and reinforcing bars by truss elements; a more 
simplified FE model with equivalent vertical bars have been studied as well, in order to 
evaluate the sensitivity to modelling parameters. In this case the presence of the retrofitting 
reduces the sensitivity to variations of the material constants, which is usually rather high.  

In this paper, the out-of-plane response of infill walls is investigated by means of non-
linear analyses through a combined finite and discrete modelling approach. The results of the 
numerical analyses are compared with those of experimental tests available in the literature.  
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2 MODELLING ASPECTS  
In order to reproduce the main characteristics of the response of different specimens of in-

fill walls tested in the out-of-plane direction, several models are implemented using the LS-
DYNA software package [17], which is a finite-discrete element code capable of simulating 
three-dimensional problems. This code is used here, within an ANSYS environment, to nu-
merically reproduce the results of experimental tests.  

A combined finite and discrete modelling approach is used. Units are modelled as linear 
elastic 8-node solid elements with a single integration point. The major disadvantage of one-
point integration is the need to control the zero-energy modes that arise, called hourglassing 
modes, which might enlarge and destroy the solution. A Flanagan-Belytschko stiffness-type 
stabilisation is used here [18].  

Mortar is not explicitly considered in the model; instead contact interfaces are used. Con-
tact interfaces allow the transmission of both compressive and tensile forces, moreover a tan-
gential motion with friction sliding is permitted. Frictional sliding occurs when the frictional 
stress limit is reached. In tension, the contact interface failure criteria is based on the normal 
tensile stress limit. In compression, to avoid the penetration between nodes and contact sur-
face, the standard penalty method is used. The method consists in placing normal springs be-
tween all penetrating nodes and the contact surface. The interface stiffness depends on the 
stiffness of the materials that are in contact and on a scale factor, named penalty factor.  

With the aim of comparison, FE models resorting to a smeared-crack approach are also 
implemented. In these cases, the contact surfaces are used only at the interface between the 
masonry panel and the surrounding structure. 

Vertical loads are first applied to the system. Static or quasi-static processes can be simu-
lated resorting to dynamic relaxation or to mass damping to eliminate dynamic oscillations. 
Preliminary analysis have shown that, for the cases at hand, the two methods give equivalent 
results. To avoid high frequency oscillations during the application of the gravity loads, these 
are applied slowly from zero to gravity acceleration. Afterward, horizontal displacements are 
applied in the out-of-plane direction. 

2.1 Material modelling  
Different types of material have been initially examined for modelling units: linear elastic 

(MAT_001), Winfrith smeared-crack concrete model (MAT_084/085), smooth-surface cap 
model (MAT_159), damage-plastic concrete model (MAT_273). 

The linear elastic material (MAT_001) is particularly suitable when no damage is expected 
in the units, both in tension and compression, i.e. when the cracks pattern follows the joints. 
The use of this material requires the definition of a very limited number of parameters and 
allows to reduce the computational effort. However, given that the out of plane failure of in-
fills may occur due to excessive compression in the units, a non linear material is more ade-
quate to represent the actual behaviour. 

The Winfrith material model (MAT_084-085) is a smeared-crack model developed in [19, 
20]. The mechanical parameters that have to be defined are initial tangent modulus, Poisson's 
ratio, uniaxial compressive and tensile strengths. Moreover, a volumetric strain versus volu-
metric pressure curve is required. If the curve is omitted, a default pressure versus volumetric 
strain curve is automatically used. The Winfrith material includes also the option of consider-
ing reinforcement in a smeared fashion.  

Material type 159 (MAT_159), which is available for solid elements, is a smooth-surface 
cap model, i.e. with a smooth intersection between the shear surface and the hardening cap 
[21]. This material has been created to reproduce accurately the response of concrete subject 
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to impact loads. Many parameters, such as moduli, strengths, hardening, softening, and rate 
effects parameters, must be supplied, otherwise default values are provided. Default parame-
ters are fit for unconfined compression strengths between about 20 and 58 MPa and aggregate 
sizes between 8 and 32 mm and, therefore, are not suitable for the modelling of masonry. 
Given the difficulties in calibrating the parameters (more than thirty) with the experimental 
tests available for masonry materials, this material type was not used.  

The damage-plastic concrete model (MAT_273) is based on the studies in [22][23], and is 
aimed to simulate the failure of concrete structures subjected to dynamic loads. The model is 
based on effective stress plasticity, with damage based on both plastic and elastic strain meas-
ures. The definition of the model requires a large number of parameters, but several of them 
are directly related to one another by explicit expressions. Other parameters can be deter-
mined from certain assumptions, or taken by their recommended default values [22], so that a 
limited number of material properties must be specified.  

With the aim of highlighting the differences between these materials, a simple two-blocks 
model has been tested under compression (Figure 1). Input data are reported in Table 1. As 
already noted, values of the compression strength lower than 20 MPa are incompatible with 
the material MAT_159. In this case the analysis runs out immediately. For the other material 
types, the vertical resultant force and the minimum principal stress are reported in Figure 2. 
The use of MAT_273 leads to a larger stiffness of the model and the analysis stops before the 
attainment of the material compressive strength, hence this material is not used in the follow-
ing analyses. The Elastic (MAT_001) and Winfrith (MAT_084-085) materials give the same 
results in the elastic range, the latter presents a stiffness reduction when the displacements in-
crease.   
 

Material RO E ν As fc ft 
 (kg/m3) MPa  mm MPa MPa 
MAT_001  2200  2.8E+3  0.2 - - - 
MAT_084-085   2200 2.8E+3 0.2 1 2.84 - 
MAT_159 2200 -  - 1 2.84 5.69E-1 
MAT_273* 2200 2.8E+3 0.2 - 2.84 5.69E-1 
RO = density; E = Elastic modulus; ν = Poisson’s ratio; and As = Aggregate size; fc = compressive 
strength; ft = tensile strength.  

Table 1: Input values for different material types. 

 

 
Figure 1: Two-blocks model: minimum principal stress. 
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Figure 2: a) Force-displacement (a), and minimum principal stress-time plots (b). 

3 CASE STUDY  
Different models have been selected and analysed, in order to replicate the tests by 

Modena and da Porto [24]. This experimental investigation concerns nine hollow-block ma-
sonry panels (976×2520×291 mm3, b×h×t) loaded at mid-height by means of a horizontal 
rigid beam. At the top and the bottom the panels are mortared to rigid RC supports, whereas 
vertical edges are not restrained. Six specimens were constructed with horizontal-hole blocks, 
the other three specimens were constructed with vertical-hole blocks, thus achieving the ma-
sonry compressive strength necessary for arching behaviour. Consequently, out-of-plane 
strength of vertical-hole blockwork is almost thrice that of horizontal-hole one and is noticea-
bly underestimated by available equations [5]. One of the vertical-hole specimens, FVC1, is 
considered in the following analyses.  

In the numerical simulations have been used both the Elastic and the Winfrith materials, 
whose main mechanical characteristics are reported in Table 2. For the finite-discrete models, 
the mechanical characteristics of the units have been adopted, the tensile strength has been 
increased so that the tensile failure occurs in the contact interfaces. For the smeared-crack 
model, the masonry elastic modulus has been used and tensile strength is assumed equal to 
20% of compressive strength. As far as the contact interfaces is concerned, the parameters 
that affect the global response are: the normal failure stress (in tension), the frictional stress 
limit, the coefficient of friction and the scale factor on default penalty stiffness (penalty fac-
tor). As observed in Section 2, the penalty factor is used to calculate the interface stiffness. 
For this parameter, a default value of 0.1 is recommended in the case of contact between simi-
larly refined meshes of comparably stiff materials. However, according to [7] a value of 0.05 
is expected to give reasonable results for masonry walls. To investigate the influence of this 
factor, three values of the penalty factor are used herein, i.e. 0.02, 0.05, and 0.10. It is noted 
that this values are the product of two input parameters: SFS (or SFM), which is the scale fac-
tor included in the contact card, and SLSFAC, which is the scale factor for sliding interface 
penalties included in the control card.  

The model geometry and the adopted mesh are shown in Figure 3. With the aim of captur-
ing the stress field across the wall thickness, four finite elements are present in the transversal 
direction. Top and bottom supports are modelled as rigid bodies, so as the loading central 
beam. Prescribed horizontal displacements are assigned monotonically to the rigid beam up to 
10 mm.   
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 Units properties Contact properties 

Model ID Material E ν fc ft NFLS SFLS Penalty 
factor 

  MPa  MPa MPa MPa MPa  
M01  Elastic 20.83E+3 0.15 - - 0.78 0.78 0.02 
M02  Elastic 20.83E+3 0.15 - - 0.78 0.78 0.05 
M03   Elastic 20.83E+3 0.15 - - 0.78 0.78 0.10 
M04 Winfrith 20.83E+3 0.15 20.83 5.22 0.78 0.78 0.02 
M05 Winfrith 20.83E+3 0.15 20.83 5.22 0.78 0.78 0.05 
M06 Winfrith 20.83E+3 0.15 20.83 5.22 0.78 0.78 0.10 
M07(1) Winfrith 5.22E+3 0.15 5.22 1.04 - - - 
M08(1) Winfrith 5.22E+3 0.15 5.22 1.04 - - - 
E = Elastic Modulus; ν = Poisson’s ratio; fc = masonry compressive strength; ft = masonry tensile strength; 
NFLS = contact normal failure stress; SFLS = contact frictional stress limit.  
(1) Smeared-crack modelling: elastic modulus is that of the masonry.   

Table 2: Masonry and contact mechanical properties. 

 

 
(a) (b) 

Figure 3: Model: a) geometry; b) mesh. 

3.1 Results  
Horizontal force resultant versus prescribed displacements are reported in Figure 4 for the 

numerical models and for the specimen. The models with the Elastic material (M01, M02 and 
M03) are less stiff compared to the experimental results. A moderate stiffness increase can be 
obtained increasing the compressive stiffness of the contact interface, i.e. with an increase of 
the penalty factor (Figure 4a). However, an increase of the penalty factor leads to deforma-
tions that are inconsistent with the experimental ones. The deformed shape and the principal 
compression stress for models M02 and M03 are reported in Figure 5. The model M02 pre-
sent an horizontal crack at mid-height, in agreement with experimental results, while, in the 
model M03, a sliding occurs at the second course. As shown in Figure 6, the sliding starts 
abruptly at about 52 s, when the displacement at mid-height of the wall is about 4.5 mm.  
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Figure 4: Horizontal force resultant versus prescribed mid-height displacements, experimental and numerical 

models: a) discrete-crack Elastic material; b) discrete-crack Winfrith material;  
c) smeared-crack Winfrith material. 
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In the case of the Winfrith material the increase of the penalty factor produces local stress 
increments and the earlier termination of the analysis. In fact, models M04, M05 and M06 do 
not terminate the analysis (Figure 4b) due to sudden increment of the principal compression 
stress, as shown in Figure 7. When the Winfrith material is used in a smeared-crack approach 
to model the blockwork, but interfaces are still present between masonry and RC frame, these 
local phenomena are avoided and the global response represents better the actual behaviour 
(Figure 4c). The stress distribution along the height of the walls is consistent with an arching 
behaviour (Figure 5c).    

As observed, the finite-discrete models with higher penalty factors are not able to provide 
the maximum strength when the Winfrith material is adopted, whereas the smeared-crack 
models approximate better the experimental curve. 

 

   
(a) (b) (c) 

Figure 5: Deformed shape and principal compression stresses for models: a) M02; b) M03; c) M07. Displace-
ment are not to scale.  

 

 
Figure 6: Model M03, horizontal displacement (mm) time history (s) at second course (see Figure 5b). Red line: 

displacement of the upper surface; green line: displacement of the bottom surface. 

 

sliding 
location 
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(a) (b) 

Figure 7: Minimum principal stress (kN/mm2) time history (s) in the most compressed elements for models: a) 
M04; b) M05. 

 

4 CONCLUSIONS 
In this paper the out-of-plane response of infill masonry panels is modelled through a dis-

crete-finite element approach. Interfaces are present between masonry units, as well as be-
tween blockwork and reinforced-concrete frame. For the sake of comparison a smeared-crack 
approach has been also used to model masonry.  

It is concluded that, when using a finite-discrete method, the stiffness of the contact inter-
faces is one of the most important parameters affecting the solution, because modifies the 
global stiffness of the model, if an elastic material is used for the blocks. When a non-linear 
material is used, in addition to the modification of the model stiffness, a local increment of 
stress occurs, leading to the earlier termination of the analysis. These shortcomings are 
avoided in a smeared-crack approach, reproducing better the experimental results, while still 
resorting to contact surfaces at the interface between masonry panel and surrounding structure.  
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Abstract. Palazzo La Sapienza, historical seat of the University of Pisa since the XVI century, 
represents one of the most important examples of the Tuscany cultural heritage, nowadays not 
in use due to several problems related to maintenance and structural deficiencies. The 
building, in its current form, is the result of several modifications, enlargements, elevations, 
connection with adjacent parts, resulting finally more similar to a “structural aggregate” - 
made up of single units connected together without specific scheme and organization - than to 
a single unitary building. After the earthquake of May 2012, the Palace was temporarily 
closed in relation to the ordinance issued by the Major’s Office and then subjected to wide in 
situ investigations aiming at analyzing in a very detailed manner all the criticisms related to 
structural, nonstructural, geotechnical and maintenance problems; the deep in situ survey 
campaigns allowed to reach a very deep knowledge of the building, of its progressive 
morphological evolution and of its actual condition, including problems not directly related 
to the structural condition but, as an example, to the instability and heterogeneity of the 
ground soil and of the foundation system. All the information so obtained allowed the 
execution of static and seismic vulnerability assessment – according to the actual 
prescriptions of Italian Standard for Constructions (D.M. 14/01/2008) – through the 
elaboration of complex global and local models and the final elaboration of an executive 
retrofit design comprehensive of local interventions on significant structural elements or sub-
portions of the building. In the present paper, after a short description of the knowledge 
analysis of the building and of its safety verification, the retrofit executed to obtain a 
satisfying level of safety is presented.  
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1 INTRODUCTION 

Recent seismic events (i.e., Umbria - Marche 1997, Aquila 2009, Emilia-Romagna 2012) 
evidenced the high vulnerability of existing masonry cultural heritage and the need to define 
operational strategies for modifying, improving or locally retrofitting structures (or portions 
thereof) without altering their original characteristics and ensuring a sufficient margin of 
structural safety. Such buildings, during the centuries, underwent changes, expansions and 
reconstructions transforming them from ‘single buildings’ into ‘structural aggregates’, often 
in a significant state of decay caused by insufficient maintenance, earthquakes, collapses, 
cracking scenarios and so on, consequently evidencing the need to perform extensive static 
and seismic safety checks to plan suitable retrofit operations. 

Several methodologies exist for the execution of seismic vulnerability analysis of 
monumental buildings. Some of such methods [1, 2] classify the buildings basing on a wide-
scale damage analysis together with macroseismic intensity maps, defining vulnerability 
curves and identifying those structures for which retrofit shall be immediately organized. 

Current standards for constructions [3, 4, 5] foresees the determination of the “Knowledge 
Level” (KL) – achieved through historical analysis, structural and geometrical surveys, 
geological and geotechnical investigations and mechanical characterization of materials – 
intended as the degree of uncertainty to be adopted when the safety checks and retrofit are 
performed.  

Several applications aiming at evaluating the seismic behaviour of monumental buildings 
can be found in the current scientific literature, adopting detailed three-dimensional finite-
element models elaborated basing on the results of laser-scanner surveys and in-situ deep 
investigations [6, 7] analyzing the local behaviour of significant portions of the buildings 
accounting for the damage scenario revealed [8] or proposing a displacement-based approach 
considering the ability of historical buildings to sustain earthquakes as long as they have 
sufficient capacity to move without collapse, so determining different limit states [9, 10, 11]. 
The problems regarding the numerically modelling of complex structures were widely 
discussed by [12], finally suggesting the execution of experimental dynamic analyses and 
investigations of both the whole aggregate and of portions thereof to characterize the 
structural behaviour of existing buildings. 

D.M. 14.01.2008 [3] and the Guidelines of the Ministry for Cultural Heritage [13] 
prescribe global checks and evaluations of the local collapse mechanisms of significant 
structural units, identified through the mapping of the critical points from the surveys and the 
results of the global checks. The assessment of the structural safety of the building shall be 
executed with reference to different levels of analysis, ranging from large-scale evaluations to 
the local macro-element models representing independent portions of the whole building. The 
assessment of existing complex structural aggregates cannot then follow the usual approaches 
included in modern standards: complex models and cumbersome numerical analyses are not 
always able to represent masonry structural aggregates; many of the structural and 
maintenance diseases can be fully understood only through detailed surveys and the 
correlation between the morphological evolution of the building, its modifications throughout 
the centuries and its current condition. 

A proper methodology, accounting for its intrinsic structural, architectural, geotechnical 
and functional complexities and their mutual interrelationships, shall be adopted for the safety 
assessment of a structural aggregate. A deep, extensive and multi-disciplinary approach, 
combining critical historical studies of the building’s evolution, morphological/structural 
surveys, geotechnical investigations, mechanical characterization of materials and 
structural/geotechnical monitoring is necessary.  
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The present study deals with the assessment of structural safety and seismic vulnerability 
of the “Palazzo La Sapienza”, in Pisa, Italy. The building, site of the University since the 14th 
century, is currently not in use due to the pending ordinance by the Mayor's Office of May 
2012 because of ensuing surveys conducted by Pisa Fire Department. The Palace is a 
“structural aggregate” made up of interconnected units joined together during more than eight 
centuries [14, 15, 16]. The building’s peculiarity and its importance to the urban setting was a 
unique occasion for the development and adoption of the multidisciplinary approach above 
mentioned. Accurate critical historical studies, including reconstruction of the building’s 
evolution over time and detailed architectural surveys through both direct and indirect 
techniques, allowed identifying the structural units making up the aggregate. Each unit was 
subjected to accurate studies aiming at determining its structural system, the constituent 
materials and any critical detail revealed by geometrical and historical investigations, with the 
following organization of suitable monitoring systems able to identify causes of local 
(substructures, structural elements and units) and global (structural aggregate) problems. The 
proper combination of local and global numerical models, used and applied critically because 
of building complexity, allowed an accurate interpretation of the structural problems 
recognized by aforementioned multidisciplinary analysis, becoming the real “core” of the 
assessment procedure (rather than cumbersome, complex and often not representative global, 
linear and nonlinear, numerical analyses) and of the retrofit interventions, planned to preserve 
the original nature of the Palace giving a sufficient margin of safety. 

2 STRUCTURAL ASSESSMENT  

2.1 General presentation of the building 

The building presents a trapezoidal plan (about 80.0 m x 53.7 m) with three floors above 
the ground and a gable roof accessible only for maintenance. The central courtyard, 
surrounded by a ground-level colonnade and a first-floor arcade running roughly parallel to 
the ground floor sides, has maximum dimensions of 35.5 m by 21.2 m. Due to the presence of 
different types vaulted surfaces and storey slabs, the height of the ground floor varies between 
4.30 m and 5.50 m; similar situations can be found at the first and second floors, with 
maximum heights respectively equal to 5.60 m and 5.20 m.  

The ground floor of the building houses staff rooms, university classrooms, university 
department offices and the historical Aula Magna. The 1st floor, besides department offices 
and the double volume of the Aula Magna Nuova, houses the University Library, covering 
about two sides of the building (along Piazza Dante square and Vicolo dell’Ulivo at 1st floor 
and Via della Sapienza and Vicolo dell’Ulivo at the 2nd floor), with mezzanines and loft 
structures to hold the books. Figure 1 shows the plan of all floors with indication of the use 
destinations foreseen just before the closure of the Palace. 

2.2 Analysis of the state of art of the Palace 

The analysis of the morphological evolution of the Palace [17] enabled to identify a series 
of critical structural issues, due to the modifications, heightening, enlargements and loading 
changes made over the centuries, currently evidenced by the widespread cracking scenario 
visible in various portions of the building, to be analyzed based on in-depth knowledge of the 
structure. The structural complexity of the building was confirmed through the extensive 
campaign of in situ studies, designed on the base of the results of the historical/evolutionary 
analysis and aiming to reconstruct the current structural condition of the building.  
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Figure 1: Plan overview of the different levels of the building and use destinations for the different rooms. 
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The masonry typologies of vertical walls were determined by removing the plaster on 
50x50 cm portions with following endoscopic examination to check the presence of cavities 
or adjacent facings of different thickness and type. Figure 2 shows the periods of realization 
of vertical walls of the ground floor and the corresponding variability of revealed masonry 
typologies: six different patterns and the absence of suitable connections between 
perpendicular walls were determined.  

Different types of horizontal structures are present in the building: the ground floor (Figure 
3) shows cross or cloister vaults with solid-brick masonry, mainly located in correspondence 
of the ancient and not modified areas of the Palace – such as in the rooms around the internal 
courtyard parallel to Piazza Dante and Via dell’Ulivo. The double-height Aula Magna is 
topped by a masonry/r.c. vault. Floor slabs made of steel and brick blocks in single or double 
bonds - mainly located in correspondence of Piazza Dante at the ground floor and, in general, 
at 1st and 2nd floor, portions of the building that suffered for progressive modifications, 
enlargements and transformation due to use requirements – were also deeply surveyed to 
obtain information regarding structural profiles and weight of the upper filling layers. 

The roofing structure, consisting of trusses of different types and materials is the result of 
the modifications undergone by the building over the years. On the Piazza Dante side, steel 
Polonceau trusses (similar to those over the double-height of the new Aula Magna, dated back 
to the early 20th century) are located; the other sides of the building present wooden trusses of 
different sizes and shapes, with various degrees of deterioration due to the poor maintenance, 
bad connections among elements, presence of small solid-brick walls to support the bearing 
elements, accumulations of debris etc., resulting from operations aiming at compensating for 
local deficiencies but losing sight of the building and its overall structure. 

The cracking scenario present in several portions of the building (with different 
concentration and entity) is the result of the modifications undergone by the Palace during the 
centuries, with increasing acting load due to the library, to the activities developed inside the 
building and to the differential subsidence related to the heterogeneity of soil and foundation 
structure (Figure 3). The progressive growth of the cracks, especially in proximity of the 
separations of the structural units, is still quite evident in the building’s vertical and horizontal 
surfaces: as an example, a wide cracking scenario was revealed in the corner between Via 
Curtatone e Montanara and Via della Sapienza, born by the incorporation of ancient tower 
houses into the current structure, and in correspondence of the vaulted surfaces of colonnade 
and internal arcade, characterized by the presence of different foundation settlements and by 
structural problems yet identified during the 18th and 19th centuries (Figure 3). Two 
monitoring systems (one periodic with fixed steel reference gauges and one continuous with 
electronic transducers) were set up in order to determine the possible evolution of the ongoing 
subsidence and damages (Figure 3). Analysis of the monitoring results enabled the 
identification of differential displacements, highlighting problems and evolution of structural 
cracking mainly in correspondence of the vaults of the ground floor colonnade and 1st floor 
arcade. 

The inhomogeneous and inadequacy of the foundation structure to sustain the increasing 
loads due to the enlargements of the building in relation to the hosted activities was evident 
by the early 1900s. A deep in situ investigation of foundations was executed through micro-
core samplings at different angles in the proximity of the masonry walls, at locations planned 
according to the evolutionary reconstruction of the building: different types of foundations 
(for both size and depth) were determined (Figure 3). The investigations performed in 
correspondence to the interior colonnade revealed the absence of connections between single 
columns, with an isolated square footing placed at -1.90 m from ground level, below the 
foundation of the portico pillars, laid at -1.75 m.  
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Figure 2: Hypothesis of the evolutive development of the building and plan of ground floor with indications of 

the various types of masonry. 
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Figure 3: Distribution of the floor slabs and types on the building’s ground floor, Foundation plan, different 

typologies evidenced and ground floor plan with indication of monitoring points. 

The foundation of the portico interior walls reaches different depths (between -1.0 m and -
1.5 m), with width varying between 1.50 and 2.40 m. The two investigations performed along 
Vicolo dell’Ulivo provided similar results, with foundation depths of 2.75 and 2.10 m, and 
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widths of 1.75 and 1.60 m, respectively. The Piazza Dante side foundation reaches a depth of 
about -1.50 m below with a width of 0.90 m. 

Deep investigations were executed to determine the geotechnical parameters and properties 
characterizing the foundation soil. Several experimental tests, including continuous core 
drillings, static penetration tests, tests with seismic dilatometer and  dynamic penetration tests 
were executed. The obtained information allowed determining the local seismic response 
spectrum: a preliminary one-dimensional analysis under free-field conditions was performed.  
The procedure used for the local response seismic analysis is deeply presented in [15]. 

3 DISAGGREGATION AND ANALYSIS OF STRUCTURAL UNITS 

3.1 Recognition of structural units 

Critical issues of the structural aggregate were identified with reference to the single 
structural units recognized as constitutive parts of the building. The Palace was considered as 
composed by a suitable number of units connected by horizontal structures (foundations, 
floors and vaults, roof) influencing the mutual interactions among portions, preventing or 
activating local mechanisms. Structural units were identified in relation to the 
morphological/structural evolution of the Palace [17], to the modifications undergone during 
the centuries, to the presence/absence of connections among vertical and horizontal elements 
and to the interpretation of the cracking scenario. The behaviour of such units was 
investigated firstly separately and then the framework of the aggregate itself.  

A diffused lack of connection between masonry walls was evidenced (Figure 4a) and 
different masonry typologies were revealed even in the same element: Figure 4b and Figure 
4c, for example, show the presence of masonry arches of ancient openings nowadays closed 
due to the modified functional needs. The heterogeneity of masonry walls is higher at the 
ground and first floors (i.e. corner Via Curtatone e Montanara / Via della Sapienza, Figure 2) 
respect to the second level, realized at the beginning of the 19th century. 

Horizontal floors and roofing systems can allow the connection among masonry walls, 
preventing the activation of local mechanisms; the horizontal systems of Palazzo La Sapienza 
are characterized by the presence of vaulted surfaces (mainly at the ground floor where no 
significant changes took place) and more recent floors with steel profiles (Figure 3). If vaulted 
structures can constitute a rather significant restraint for vertical structural elements, 
horizontal steel slabs cannot be considered a “rigid” diaphragm. A considerable geometric 
heterogeneity of foundations, influencing the mechanical response of the building and its 
bearing capacity in relation to the variable stiffness of the soil, was also evidenced. 

Such more or less rigid systems connect several different structural units resulting from 
modifications executed during the centuries; according to the results of 
structural/architectural/geotechnical surveys, the following systems can be identified as 
“independent structural units inside the aggregate”, as simply summarized in Figure 5: 

 
1. Corner between Via Curtatone e Montanara and Via della Sapienza. 
2. Open gallery and arcade at the ground floor and colonnade at the first floor. 
3. Aula Magna and adjacent rooms at ground floor. 
4. Double volume of the Aula Magna Nuova at the first/second floor. 
5. Portion of the building facing Piazza Dante. 
6. Portion parallel to Piazza Dante facing the internal courtyard (ground and first floors). 
7. Second floor of the Palace. 
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1. Corner between Via Curtatone e Montanara and Via della Sapienza. As visible from 
Figure 2, pillars characterized by the presence of full bricks and squared stones demonstrate 
the pre-existence of ancient tower houses incorporated and connected to adjacent masonry 
structures during the centuries. The discontinuity and heterogeneity of masonry belonging to 
different constructive typologies, realized in different periods and not connected to one 
another yielded, during the years, to the development and to the progressive spreading of a 
diffused cracking scenario visible both in vertical elements and in horizontal structures, 
allowing the clear identification of this structural unit. 

 

2. Open gallery and arcade at the ground floor and colonnade at the first floor. The 
internal arcade and the open gallery facing the entrance along Via Curtatone e Montanara at 
ground floor are characterized by the presence of vaulted cross surfaces with different 
geometries and heights. The damages present in correspondence of the extrados of the vaults 
are the result of relative differential subsidence of foundations characterized by different 
width and depth (Figure 3), already demonstrated by past damages [17]. The absence of 
horizontal connection between the pillars of the internal arcade make the columns behave 
“separately” from one another, with relative displacements and rotations. Relative 
displacements between the wooden roof of the colonnade and the masonry walls are also 
clearly visible. 

 

3. Aula Magna and adjacent rooms at ground floor. The portion of the building at the 
ground floor facing Via dell’Ulivo houses the historical Aula Magna and additional rooms 
once used for teaching activities. The Aula Magna and the adjacent room, actually 
characterized by the presence of a partition wall, present the same vaulted surface on which 
the masonry wall at the first floor directly loads [17]. The two teaching rooms facing the 
courtyard are the result of the closure of the original lodge that, on the western part of the 
Palace, exactly reproduced the opposite situation of the arcade, as justified by ancient plans 
and through the analysis of the cracking scenario and from the observation of the masonry 
pillars of the original colonnade (Figure 2).  

 

4. Double volume of the Aula Magna Nuova at the first/second floor. The double volume 
of the Aula Magna Nuova, generated at the end of the 19th century in relation to the 
modifications of the building necessary to overcome the new use requirements, has an internal 
open space not provided by transversal retaining walls (demolished in 1905) and 
characterized by the lack of horizontal restraints between the two opposite facades. The 
roofing system presents brick truss with r.c. elements and masonry lightening blocks 
(thickness 3.0 cm) not able to constitute a rigid diaphragm. 

5. Portion of the building facing Piazza Dante. The block constituted by the rooms 
facing Piazza Dante can be considered a separate structural unit, generated in a more recent 
period [17], modified at the beginning of the 20th century and clearly distinguishable from the 
rest of the building due to the presence of horizontal steel storey slabs and of masonry walls 
not connected to the pre-existences. This situation is clearly visible both at the ground and the 
first floor. 

6. Portion parallel to Piazza Dante facing the internal courtyard. The architectural and 
structural surveys of the building evidenced the absence of perpendicular walls in 
correspondence of the first floor of the building in the portion facing the internal courtyard 
and parallel to Piazza Dante: the increasing need of place for the library and the new activities 
developed in the building leaded to the demolition of the walls perpendicular to the internal 
main façade, generating the activation of overturning mechanisms due to the absence of 
transversal restraints.  
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7. Second floor of the Palace. The 2nd floor of the building, according to the 
morphological and structural analyses of the Palace, can be considered a “separate” structural 
unit [17], characterized by a more recent edification and a more homogeneity for what 
concerns materials, masonry organization and floor typologies. 

a)  b)  c)  

Figure 4: Discontinuities of vertical masonry walls: a) absence of connection between perpendicular walls, b-c) 
arches identified in correspondence of the first floor level, probably old windows currently closed. 

3.2 Analysis of structural units of the building 

The structural behaviour of the significant portions of the building (Figure 5) was analyzed 
through the adoption of local models able to reproduce their main features on the base of the 
knowledge obtained from in situ and experimental investigations. With reference to the list 
already elaborated for structural units, the following Limit States (LS) and vulnerabilities (V) 
can be determined. 

1. Corner between Via Curtatone e Montanara and Via della Sapienza 

A diffused cracking scenario is visible in correspondence of this area, directly related to 
the differential subsidence of foundations, with relative displacements that strongly affects the 
overall structural aggregate, and to the intrinsic nature of the masonry of vertical walls. The 
widespread discontinuities in the structure’s geometry, materials and constraints, the presence 
of voids, air spaces and facings, together with the dubious degree of collaboration, lead to 
local stress concentrations confirmed by the results of the experimental flat jack tests and by 
the extensive cracking phenomena.  

2. Open gallery and internal arcade at the ground floor and colonnade at the 1st floor 

The relative displacements evidenced in correspondence of the wooden elements of the 
colonnade at the 1st floor and the masonry walls, as well as the diffused cracking scenario 
revealed in the crossed vaulted surfaces of the ground floor are the direct consequence of the 
differential subsidence due to the different typologies of foundations (Figure 3). The 
foundations of columns of the internal arcade are not connected to one another and lay at 
different levels respect to the masonry walls facing the courtyard: these differences result in 
relative subsidence evidencing the non uniformity of the overall mechanical response of the 
foundation system, the variability of soil stiffness and of ultimate loads. The structural 
analysis of foundations considering actual loads (permanent, live and seismic action) allowed 
the determination of the unit load-subsidence diagrams of the foundation-ground assemblage 
of the various analyzed sections (Figure 6a): the difference between the building’s perimeter 
and its interior (i.e. colonnade and pillars of the interior courtyard) can expose the whole 
structure to considerable damages in those areas where significant differences in stiffness and 
loads were measured (Figure 6b). 
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Figure 5: Structural units that can be determined as independent parts of the aggregate. 
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3. Aula Magna and adjacent rooms 

The progressive enlargement of the building at the 1st floor necessary to house the library 
lead to the introduction of a solid brick curtain wall in order to separate the library rooms and 
those used for teaching activities. The masonry wall – with thickness equal to 17 cm, height 
equal to two floors – according to Figure 4 was already present at the end of the 16th century 
and nowadays represents the effective separation between the portion of the building 
belonging to the University of Pisa and the University Library. The wall directly rests upon 
the vaulted surface of the room adjacent to the Aula Magna, generating a critical situation 
especially in presence of seismic action. Moreover, the analysis of the cracking scenario 
affecting the Aula Magna at the ground floor, the adjacent rooms and the other areas facing 
the internal courtyard (Figure 5) is strictly related to the progressive modifications executed 
during the centuries. Severe damages can be observed in correspondence of the vertical 
masonry walls and in the vaulted surfaces of the two rooms facing the internal court: at the 
origin of the Palace, this portion was directly part of the colonnade (Figure 2) and the closure 
of the area was dated around the end of the XVI century; the relative displacements between 
the colonnade and the vertical masonry walls of the building – as well as proved by the 
analysis of the monitoring data – are directly connected to the evidenced cracking scenario. 

4. Aula Magna Nuova: double volume at first and second floor 

The analysis of the double volume (1st and 2nd floor) of the New Aula Magna evidenced 
cracks in the vertical masonry walls (not perfectly visible due to presence of ancient paintings) 
and on the vaulted surface. A deep in situ investigation allowed the determination of the 
effective structure of the roofing system: steel Polonceau trusses – dating back to the early 
20th century – are present sustaining the roof, while the vaulted surface is made up of thin 
brick elements (3.0 cm) positioned between main r.c./masonry truss with a typical shape used 
not to transfer horizontal thrusts to the masonry walls. Cracks visible in correspondence of the 
vaulted surface are, mostly, due to the “geometrical” distance of light brick elements; the 
support of those elements in correspondence of the main bearing truss is equal, at maximum, 
to 3.0 cm, generating the possible detachment with the following risk to people and to the 
structure itself. The overturning phenomena of external and internal walls was analyzed 
following the linear kinematic approach: the PGA activating the mechanism was equal to 
0.112g respect the design value of 0.118g.  

5. Portion parallel to Piazza Dante facing the internal courtyard 

The progressive increase of space due to the need to house the libraries during the last 
centuries – executed through the demolishing of internal walls and the introduction of 
mezzanines at the 1st and 2nd floors – leaded to overload the bearing structures, significantly 
altering their original local response towards dynamic loads and exposing the building to out-
of-plane instability in correspondence of the walls to which the mezzanines’ cantilever beams 
are anchored, characterized by the lack of adequate restraints between perpendicular walls. 
The out-of-plane problems were evident in correspondence of the sub-unit facing the internal 
courtyard and parallel to Piazza Dante (1st and 2nd floors), resulting from progressive 
modifications and demolitions of masonry walls as widely evidenced by the historical 
analysis). Since typical mechanisms were recognized (i.e., the overturning of masonry vertical 
walls), linear kinematic analysis was adopted for the determination of the value of horizontal 
peak ground acceleration (PGA) activating the mechanism. The internal masonry wall is not 
provided by perpendicular retains, resulting in the possibility to activate the global 
overturning of the wall both at first and second level: the PGA leading to the activation of the 
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collapse overturning mechanism were respectively equal to 0.060g and 0.079 g for the 1st and 
the 2nd floor, towards a foreseen design PGA equal, for the considered site, to 0.118g. 
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Figure 6: a) Unit load-subsidence curves for the different sections investigated, b) estimates of the subsidence of 
different building zones as a function of the applied loads. 

3.3 Structural behaviour of the aggregate 

Even if not strictly necessary for the understanding of the behaviour of a structural 
aggregate, in Italy the elaboration of a global three-dimensional model is nowadays required 
[3]) for the execution of safety checks on masonry vertical walls (i.e. shear, flexure in and out 
of the plane); the global model represents an improved condition respect to the effective 
situation of the Palace. 

A simplified FEM model of the building was realized using SAP 2000, with two-
dimensional elements for masonry walls and vaulted surfaces modelled as equivalent plane 
elements  and one-dimensional elements for the steel profiles of the floor slabs, the roofing 
and the university library mezzanines. The soil-structure interaction was represented through 
the Winkler model, with elastic three-directional springs calibrated according to the results of 
the geotechnical investigations and in relation of foundations’ shape and size. Cracking 
phenomena of masonry were considered by reducing the stiffness to values equal to 80% and 
60% of the undamaged conditions respectively on the ground and the first and second floors 
[18]. Linear dynamic analysis with response spectrum was performed; a behaviour factor 
equal to 2.25 was adopted, conservative in comparison to the values contained in the 2010 
Guidelines [13]. Global vibration modes were determined for both flexural behaviour in x and 
y directions; the significant periods ranged between 0.89 s (global flexural mode in y direction) 
and 0.59 s.  

The described model it is not clearly able to include the extreme variability and strong 
nonlinear behaviour of constituent materials as well as complex behaviour of internal and 
external restraints among single structural elements and structural units, anyway can provide 
useful information when a critical analysis of results is executed basing on the 
multidisciplinary studies conducted on the building and on the results obtained on single 
structural units.  

The safety checks were performed in agreement with D.M.14/01/2008 [3]. The most 
evident criticisms were revealed in correspondence of the portions of the building 
characterized by high heterogeneity of materials and structural typologies and in those areas 
that underwent the most significant changes and modifications during the centuries, 
confirming the considerations coming from the analysis of the structural behaviour of single 
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portions or units determined inside the aggregate (Figure 5), such as in correspondence of the 
corner Via Curtatone e Montanara/Via della Sapienza (i.e. heterogeneity of materials), of the 
historical Aula Magna (i.e. closure of the colonnade), of the New Aula Magna (i.e. 
modifications and enlargements up to the double volume). 

4 RETROFIT OF THE STRUCTURAL AGGREGATE 

The traditional global approach proposed by current standards for retrofit, foreseeing the 
possibilities of global/partial and local strengthening of the whole building or of several 
structural elements cannot be easily applied to historical buildings. The retrofit of cultural 
heritage shall pursue the preservation of the original nature of the building, maintaining its 
historical aspects and providing a considerable increase of the margin of structural safety. The 
retrofit can be considered, then, the final amount of many local interventions: local retrofit 
operations regarding single structural units globally cooperate to provide the aggregate with a 
higher level of structural safety. Many structural interventions were then planned for Palazzo 
La Sapienza to solve the problems evidenced through the structural analysis, related to the 
different structural units constituting the Palace. Some of them are briefly summarized in the 
following pages. 

Open gallery at ground floor and colonnade at the first floor 

The retrofit of the vaulted surfaces consisted in the removal of the filling material on the 
extrados of the vaulted surfaces – with the following decrease of the dead load – and in the 
restoration of cracks using specific materials for historical masonry buildings (Figure 7a); a 
similar retrofit procedure was also adopted for cracks present at the intrados of the vaults. A 
thin shaving layer of 2-3 cm of thickness with welded steel mesh (φ 3 mm and spacing 50x50 
mm) was also foreseen provide a global behaviour without altering the structural feature of 
the aggregate. Some problems were revealed also in correspondence of the 1st floor colonnade, 
with relative displacement between the wooden secondary elements of the roof and the 
masonry wall, with support length equal, in some cases, only to few centimeters; in order to 
prevent the pull out of such elements, an additional steel profile was positioned in 
correspondence of the whole perimeter of the colonnade (Figure 7b), providing a final support 
length of about 10 cm. Several additional retrofit interventions were designed for damaged 
elements of the roofing system. 

Aula Magna and adjacent rooms 

To solve the problem of the masonry infill wall directly bearing on the vaulted surface 
close to the Aula Magna at the ground floor, the introduction of a steel HEA profile able to 
directly sustain the masonry wall and the rest of the superstructure - including the vault at 1st 
floor and the corresponding masonry wall at the 2nd floor - was accurately designed. The 
design of the bearing profile took into account both strength and stiffness aspects – this last to 
avoid the vertical deflection of the masonry wall – and, moreover, the analysis of the 
assembly procedure (Figure 8). A temporary bearing structure made up of two twin truss 
beams with transversal support steel beams with spacing equal to 50-70 cm was adopted, 
allowing safety conditions during the phases of cutting of the masonry wall and introduction 
of the HEA bearing beam. 

Vertical masonry walls 

Diffused interventions were executed on vertical masonry walls in order to solve the 
problems related to the diffused cracking scenario revealed and, in some cases, monitored at 
the different floors of the Palace, such as for example in correspondence of the corner 
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between Via Curtatone e Montanara, in which cracks appear mostly in relation to the 
progressive modifications and changes executed during the centuries as a consequence of 
functional requirements. Different typologies of interventions were foreseen in relation to the 
entity of revealed cracks. 
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Figure 7: a) Example of the intervention foreseen for the retrofit of the vaulted surfaces of the ground floor ar-
cade; b) retrofit intervention foreseen to provide adequate support to the wooden elements of the first floor co-

lonnade. 
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Figure 8: Introduction of stele profile and assembly procedure to avoid the load directly upon the vaulted surface 
near the Aula Magna. 
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5 CONCLUSIONS 

The deep analysis of the current condition of such complex building as Palazzo La 
Sapienza in Pisa, including the historical and morphological investigation of its modifications 
and extensions during the centuries, the in situ survey of materials, walls, horizontal storeys 
and vaulted surfaces, the analysis cracking scenario, of foundations and roofing system, the 
geological and geotechnical characterization of the soil highlighted the need to consider the 
building not as a single structural unit, but rather as an aggregate made up of several units 
connected to each other and built using different techniques.  

The combined analysis of the historical evolution of the Palace and of the structural survey 
of its current condition – especially for what concerns the cracking scenario and its main 
causes - allowed the determination of structural units, whose behaviour shall be deeply 
analyzed on the base of the progressive modifications of bearing elements, acting loads, 
connections and mutual influence. If, according to current standards for existing constructions 
a global analysis of the building is necessary for the execution of safety checks, in the present 
work the need of a “double” analysis including the interpretation of the structural behaviour 
of sub-units, their mutual interrelationships and the possible activation of significant 
partial/local mechanisms, and a simplified global analysis providing indications regarding 
static condition and relative information about the most critical and stressed portion of the 
building itself, is highlighted. 

A critical evaluation of the building’s safety, together with a clear, deep understanding and 
knowledge of the structure itself, constitute the basis to define the objective of any structural 
interventions, carefully designed to achieve appropriate safety levels, durability of relevant 
portions of the building and, at the same time, produce the least impact possible on this 
important living example of Italy’s historical heritage. 
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Abstract. The analysis of masonry structures is of particular interest in the civil engineering 
and architecture community due to the large amount of historical masonry constructions in 
Europe and in Italy in particular. Masonry is a heterogeneous material obtained by composi-
tion of blocks connected by dry or mortar joints. The use of refined models for investigating 
the in and out of plane nonlinear behaviour of masonry is an active field of research. Consid-
ering historical masonry, the mechanical properties of joints are usually lower than those of 
blocks, allowing to assume that damage occurs more frequently along joints. For this reason, 
discrete element models (DEMs) may be frequently adopted for representing masonry behav-
iour, assuming blocks as rigid bodies and joints as interfaces, with a small number of degrees 
of freedom and parameters involved in the analysis. As well known, masonry walls may be 
considered as the most important category of load-bearing elements in masonry structures 
and they are subject to vertical and horizontal actions generated by gravitational loads and 
seismic actions, respectively. Horizontal loads may act in plane or out of plane, causing two 
different collapse mechanisms for a masonry wall. In this work a simple and effective discrete 
element model, already developed in linear field for in and out of plane analysis and already 
extended in nonlinear field but only for in plane analysis, is here extended to the three dimen-
sional nonlinear analysis of masonry walls. A Mohr-Coulomb yield criterion is adopted for 
modelling interface behaviour. A numerical experimentation is carried on in order to deter-
mine the limit load multiplier, together with the collapse behaviour, of several masonry walls. 
Moreover, existing results are taken in consideration in order to calibrate the proposed model 
and to evaluate its effectiveness. 
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1 INTRODUCTION 

Masonry is a heterogeneous material composed by natural or artificial blocks connected by 
dry or mortar joints. Masonry was the main building material for many centuries; earthquake 
actions are one of the main causes of collapse and the assessment of seismic performance of 
masonry structures remains a challenging task in the structural analysis field of research. 
The strength of masonry structures is affected by geometrical configuration and constructive 
details. As well known, such details have effects on the two main different seismic induced 
damages and collapse modes of masonry walls: in-plane and out-of-plane collapse mecha-
nisms. The former are responsible for extended shear deformations and cracks, while the latter 
may cause the tilting of entire wall portions, leading eventually to the partial or total collapse 
of the construction. These collapse mechanisms were observed in past earthquakes and ade-
quate descriptions by means of numerical and analytical models were done and are still being 
developed [1,2]. 
Several types of numerical models may be adopted for studying masonry behaviour such as 
heterogeneous or homogenized Finite Element Models (FEMs) or Discrete Element Models 
(DEMs); moreover, several analysis types may be performed such as limit analysis or incre-
mental analysis. For instance, an overview of the methods for modelling masonry structures 
may be found in the work of Smoljanović et al. [3] and a deep literature review of out of plane 
behaviour and models for masonry has been recently done by Ferreira et al. [4]. 
A DE Model, based on the assumptions of rigid blocks and joints modelled as interfaces, may 
be suitable for investigating masonry behaviour due to the small number of degrees of free-
dom (DOFs) needed for performing a numerical analysis of block assemblages. These as-
sumptions may be suitable for historical masonry, in which block stiffness is larger than joint 
stiffness, allowing to assume blocks as rigid bodies; moreover joint thickness is negligible if 
compared with block size, especially in case of dry joints, allowing to model joints as inter-
faces. Discrete models were adopted in the past by many authors for studying masonry out of 
plane behaviour in linear and nonlinear fields [5-10]. In particular, Cecchi and Sab [7] defined 
a simple and effective DEM for studying the three-dimensional behaviour of masonry panels 
with a small computational effort due to the small number of degrees of freedom involved. 
In this contribution, the original three-dimensional discrete element model (3D DEM) intro-
duced by Cecchi and Sab [7] in the linear elastic field, is extended to the field of collapse 
analysis by assuming a Mohr-Coulomb yield criterion for restraining interface actions. With 
this aim, a nonlinear -elastic perfectly plastic- interface behaviour is considered by assuming 
action restraints as elastic limits. The theoretical work of Orduña and Lourenço [8] is taken as 
reference for defining restraint conditions relative to interface shear force, torsion and their 
combination. Moreover, a static solution approach characterized by the determination of the 
stiffness matrix of the masonry assemblage is adopted, following and extending the procedure 
already adopted by authors for the nonlinear incremental analysis of masonry walls in plane 
loaded [11] and for the in and out of plane modal analysis of masonry walls [12,13]. Several 
numerical experiments are carried on in order to validate the proposed nonlinear DEM with 
respect to existing numerical and laboratory results. For first, numeric out of plane tests per-
formed by Orduña and Lourenço [9] are reproduced, then, the experimental campaign on 
scaled masonry-like specimens performed by Restrepo Vélez et al. [14] is taken in considera-
tion and several cases are reproduced with the proposed nonlinear DEM. In general, the pro-
posed numerical solution method turns out to be effective for the determination of limit loads 
and out of plane collapse mechanisms of the masonry walls considered. 
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2 THREE DIMENSIONAL DISCRETE MODEL 

A regular masonry with standard running bond periodic pattern is considered; the generic 
block ,i jB  is in contact with six neighbours by means of six interfaces or joints 

1 2,k kS , with k1, 

k2 = ± 1 for horizontal interfaces and k1 = ± 2, k2 = 0, for vertical interfaces (Figure 1). Block 
dimensions are: a (height), b (width) and s (thickness). 
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Figure 1. Discrete model, running bond Representative Elementary Volume (REV). 
 

Assuming rigid block hypothesis, the displacement of a generic block is represented by a rigid 
body motion referred to the motion of its centre and the rotation with respect to its centre: 

 , , , ,( ) ( )i j i j i j i j= + −u y u Ω y y . (1) 

Where ji ,y  is the position of block centre in the Euclidean space: ,
1 2( / 2)i j i b j a= +y e e ; 

considering the three dimensional case , , , ,
1 2 3{ }i j i j i j i j Tu u u=u  is the translation vector of jiB ,  

and ,i j
Ω  is the rotation skew tensor collecting block rotations with respect to coordinate axes: 
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In and out of plane block translations and rotations may be collected in 
, , , , , , ,

1 2 3 1 2 3{ }i j i j i j i j i j i j i j Tu u u ω ω ω=q . Following the procedure described in [7], the interactions 

between two adjacent blocks jiB ,  and 
1 2,i k j kB + +  through a generic interface 

1 2,k kS  are repre-

sented by interface tensions σ that are related to the relative displacement and rotations be-
tween adjacent blocks by means of a constitutive relation =σn K d , neglecting for simplicity 
apex k1,k2. Here σ is the stress tensor, n is the normal vector to the generic interface, K  is the 
interface stiffness matrix and d is the vector that collects interface relative translations: 
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and relative rotations: 
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and that may be written as 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , ,
1 2 3 1 2 3{ }k k k k k k k k k k k k k k Td d d δ δ δ=d . It is worth noting that 

in order to better highlight the relation between relative displacements and global block trans-
lations and rotations, the above expressions may be written in matrix form as 

1 2 1 2 1 2, , ,k k k k k k=d H q , where 1 2,k kq  collects translations and rotations of two adjacent blocks and 
1 2,k kH  may be defined as interface ‘compatibility’ matrix [15] that collects, following Equa-

tions (3)-(4), the relative distances between the centres of the blocks considered. 
Assuming initially the hypothesis of elastic interface behaviour, the interface stiffness matrix 
K  may be detailed for horizontal and vertical case: 1 2, diag{ }k k

h t n t r t rK K K K K K=K  and 
1 2, diag{ }k k

v n t t t r rK K K K K K=K , collecting tangential (Kt), normal (Kn) and rotational (Kr) 

stiffness of the interface. It is worth noting that rotational stiffness assumes the same value of 
normal stiffness (Kr = Kn), but it is defined by a different variable given that in the following 
description of interface nonlinear behaviour it will be necessary to distinguish between non-
linear behaviour of normal forces with respect to that of bending moments. Assuming mortar 
joints with an isotropic and elastic behaviour, interfacial stiffness values are function of mor-
tar elastic modulus Em and Poisson ratio νm [7]. 
The elastic energy of the interface is determined by defining the product of interface stresses 
and interface relative displacements: 

 
1 2

, ,1 2 1 2

,

1 1 1 1
= ( ) ,

2 2 2 2
k k k k

T T T T
k k

S S

dS dSΠ = = =∫ ∫σ d d K d d KA d d K d  (5) 

where apex k1,k2 for vectors and matrices is omitted for simplicity, A is the generic (diagonal) 
matrix of area and inertias of the interface, that may be detailed for horizontal and vertical 
cases: Ah = diag{Sh Sh Sh Ih1 (Ih1+ Ih3) Ih3}, Av = diag{Sv Sv Sv (Iv2+I v3) Iv2 Iv3}, with 

 
3 3

1 3

3 3
2 3

= / 2, = / 24, = / 96,

= , = /12, = /12.
h h h

v v v

S b s I b s I b s

S a s I a s I a s
 (6) 

Interface forces and moments may be obtained by differentiating the expression of interface 
elastic energy in Equation (5) with respect to each block displacement component. Such un-
known forces 1 2 1 2 1 2, , ,

1 2 3, ,k k k k k kf f f  and moments 1 2 1 2 1 2, , ,
1 2 3, ,k k k k k km m m  may be collected in 

1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , ,
1 2 3 1 2 3{ }k k k k k k k k k k k k k k Tf f f m m m=f  and it can be easily demonstrated that 

1 2 1 2 1 2, , ,k k k k k k=f K d . 
Extending Equation (5) to the entire masonry assemblage (i.e. masonry panel), the total elastic 
energy Π is obtained and the subsequent equilibrium equation for the assemblage subject to 
generic in and out of plane actions Fext is: 

 / = ,ext panel= ∂Π ∂F q K q  (7) 

where q collects block displacements and rotations of the entire panel. Equation (7) may be 
solved by adopting a molecular dynamics algorithm [7] or directly by explicitly defining the 
stiffness matrix of the entire assemblage Kpanel, joining together the procedures already pro-
posed by authors [11-13] for the in and out of plane cases, respectively, and used separately in 
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the field of in and out of plane modal analysis of masonry panels and in the field of nonlinear 
analysis of masonry panels in plane loaded. In particular, the determination of panel stiffness 
matrix is based on the definition of a ‘compatibility’ matrix [15] Hpanel obtained by assem-
bling matrices 1 2,k kH  over the panel and that relates relative displacements of the entire panel 
dpanel with block displacements and rotations: panel panel=d H q . Then, panel stiffness matrix 

may be calculated as: ( )panel panel T panel panel=K H K H , where panelK  is a diagonal matrix col-
lecting interface stiffness values of the entire panel. 

2.1 Yield criterion for interface 

The nonlinear behaviour of interfaces is governed by a Mohr-Coulomb yield criterion, 
characterized by a cohesion c and a friction ratio µ = tanφ. For instance, dry interfaces cannot 
support tension and have a negligible cohesion, whereas mortar joints are characterized by a 
tensile strength σt and a cohesion value that may be determined by means of experimental 
tests (for instance EN 1052-3:2002). However, both interface types are characterized by a 
frictional behaviour and an unlimited compressive strength is assumed. 
Considering a generic interface and assuming a local coordinate system y1y2y3, with plane y1y2 
coincident with interface mid-plane and y3 orthogonal to it. Forces and moments exerted by 
two adjacent blocks at the interface centre are (Figure 2): normal force 3 3 3nf f=e e , shear 

forces 1 1 2 2,f fe e , bending moments 1 1 2 2,m me e  and torsion 3 3me . 

 

y1

y2

y3

f 1
f 2

f 3

m3

m2 m1
lc2

lc1

 
 

Figure 2: Generic interface with local coordinate system and interface forces and moments. 
 

2.1.1 Normal and flexural interface strength 

Considering for first interface normal force and bending moments, the nonlinear behaviour 
is governed by tensile strength and a simple elastic-plastic relation between actions and rela-
tive displacements is adopted. Normal force and bending moments must satisfy the following 
conditions: 

 
3

1 1

2 2

,

| | ( ) ,

| | ( ) .

n t

t n c

t n c

f f f

m f f l

m f f l

= ≤
≤ −
≤ −

 (8) 

Where ft represents the tensile strength of the interface, defined as the product of joint tensile 
strength σt and area of the interface (Sv or Sh) and lci with i = 1,2 is the characteristic length of 
the interface with respect to interface plane directions, namely the maximum eccentricity of 
normal force with respect to block centre that may be supported by the interface. Each value 
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is equal to 1 2/ 2, / 4c cl s l b= =  for a horizontal interface and to 1 2/ 2, / 2c cl a l s= =  for a ver-

tical one. 
First and second conditions in Equation (8) have been already adopted by authors for the in 
plane case [11] and they turn out to be coincident to those adopted by Trovalusci and Masiani 
[16]. In particular, the first condition may be defined as ‘detachment’ condition, whereas the 
second and third ones may be defined as ‘rotation’ conditions with respect to y1 and y2 axis. 
The relationship between interface normal force and relative normal displacement and the re-
lationships between interface bending moments and relative rotations follow an elastic-
perfectly plastic behaviour. In particular, if the interface is subject to excessive moment, only 
its rotational stiffness is set equal to zero, whereas if the interface is subject to detachment, all 
interface stiffness values are set equal to zero: 

 
0,

| | ( ) 0 1,2.
n t n t r

i t n ci r

f f K K K

m f f l K i

> → = = =
> − → = =

 (9) 

2.1.2 Shear and torsion interface strength 

Differently than the in plane case, characterized by interface shear force acting together 
with a normal force and a bending moment, in the three dimensional case shear stresses are 
generated by two components of shear force f1 and f2 and by a torsion m3 and such stresses act 
together with normal stresses generated by normal force and bending moments. Limit condi-
tions for shear forces and torsion adopted here follow the expressions introduced by Orduña 
and Lourenco [8]. In particular, if torsion is not present, uniform shear stresses are assumed 
over the interface and the well-known Mohr-Coulomb yield criterion is applied to the resul-
tant of interface shear forces as follows: 

 2 2
1 2 3| | ( ) tan if 0.s t nf f f f f mϕ= + ≤ − =  (10) 

The condition above may be defined as ‘sliding’ condition and the quantity [( ) tan ]t nf f ϕ−  

represents the shear strength of the interface. It is worth noting that in this case the cohesion 
of the interface is represented by the shear strength in absence of a normal action, hence it can 
be assumed that such strength is equal to [ tan ]h tc S f ϕ=  for a horizontal interface and to 

[ tan ]v tc S f ϕ=  for a vertical one. 

If shear forces over the interface are equal to zero, the torsion generates shear stresses depend-
ing on relative rotation and on the distance from interface centre, that represents the twisting 
centre. Torsion over the interface must be less than the torsion strength as follows: 

 3| | ( ) tan if 0,t t n sm C f f fϕ≤ − =  (11) 

where Ct is the torsion constant defined in [8], that is based on an interface subdivision into 
eight rectangular triangles. If shear forces and torsion act together over the interface, the 
twisting centre moves away from interface centre and the shear-torsion interaction may be 
defined analytically by integrating shear stresses over the interface. The simplified shear-
torsion interaction curve defined by Orduña and Lourenço [8] is adopted. An elastic-plastic 
behaviour is assumed also in this case and if restraint conditions for shear force and torsion 
are not respected, the interface tangential stiffness Kt is set equal to zero, whereas normal and 
flexural stiffness values are not modified. 
In order to appreciate the correct adoption of shear and torsion nonlinear behaviour in the 
proposed DEM, a simple specimen of two blocks connected by an interface modelled with 
DEM is tested by applying to the interface an increasing torsion with several fixed values of 
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shear force and by applying an increasing shear force with several fixed values of torsion. 
Friction ratio µ = 0.7 is assumed and a normal force fn = 240 N is applied over the interface. 
Interface size are 0.2 m × 0.3 m. The following Figure 3 shows separately the torsion-relative 
rotation incremental curves for varying shear force and the shear force-relative displacement 
incremental curves for varying torsion. As expected, torsion strength decreases for increasing 
the applied shear force and similarly shear strength decreases for increasing the applied tor-
sion. Both groups of incremental curves allow to obtain the simplified shear-torsion domain 
proposed by Orduña and Lourenço [8]. 
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Figure 3: Incremental analyses of a simple specimen subject to increasing torsion with several values of fixed 
shear force and subject to increasing shear force with several values of torsion. 
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Figure 4: Torsion strength-bending moment interaction curves. 
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Finally, if bending moments act over the interface together with shear force and torsion, the 
effective area of the interface is reduced taking into account eccentricity values e1 = m2/fn and 
e2 = m1/fn, then the torsion constant Ct gets smaller, leading to a smaller torsion strength with 
respect to the case without bending moments. Considering again a simple specimen made of 
two blocks connected by an interface and varying both values of bending moments over the 
interface, Figure 4 shows the corresponding torsion strength values and the curves obtained 
numerically are in excellent agreement with those obtained analytically by Orduña and Lou-
renço [8]. 

2.2 Nonlinear DEM 

As previously stated, restraint conditions for interface forces and moments allow to define 
the elastic limits of force-relative displacement and moment-relative rotation constitutive laws, 
that are assumed to be elastic-perfectly plastic. Then, incremental analyses may be performed 
by applying incremental load steps to the discrete model and updating the stiffness matrix ac-
counting for local interface nonlinear behaviour. For instance, the stiffness matrix at a generic 
load step, needed for the evaluation of the corresponding increment of displacements iδq  and 

internal forces int
iF , is based on interface damage at the previous step as follows: 

1

1
( )( )

i

panel ext
iδ δ

−

−= qq K F  and 
11 ( )i

int int panel
i i iδ

−−= + qF F K q . Then, internal forces are corrected ac-

counting for the yield criterion adopted and residual forces int ext
i i= −R F F  are determined as a 

starting point of an iterative process of residuals minimization. 
In the following paragraphs, numerical tests are performed considering masonry panels sub-
ject to self-weight and increasing lateral loads (in or out of plane). Such loads are proportional 
to the weight (P ab sγ= , where γ is block volumetric weight) and are identified by the load 
multiplier λ; then, the vector collecting the total forces applied at block centres may be de-
fined as λ

ext
D L= +F F F , where FD represents dead loads, collecting block weight P and λFL 

represents unknown horizontal live loads (in or out of plane). 

3 IN PLANE NUMERICAL EXPERIMENTS 

In order to appreciate the effectiveness of the proposed nonlinear DEM, several numerical 
experiments of masonry panels in plane loaded by self weight and increasing lateral loads are 
performed. For instance, the numerical tests originally performed by Baggio and Trovalusci 
[17] and already studied by authors [11] are reproduced, obtaining the same results of previ-
ous in plane analyses (Figure 5). 

 

 
 

λ
DEM = 0.49; λREF [17] = 0.50 λDEM = 0.36; λREF [17] = 0.34 

 

Figure 5: Failure mechanisms for masonry panels subject to self weight and increasing in plane lateral loads. 
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4 OUT OF PLANE NUMERICAL EXPERIMENTS 

a b c  
 

Figure 6: Typical out of plane collapse mechanisms for a masonry wall [18]. 
 
In this paragraph, several numerical experiments are carried on in order to evaluate the ef-

fectiveness of the proposed nonlinear DEM in the determination of out of plane collapse 
mechanisms and limit loads of masonry panels. In particular, the typical mechanisms de-
scribed by Rondelet [18] are going to be reproduced numerically and several existing results, 
both numerical and experimental, are taken as reference. In particular, the first mechanism 
type defined by Rondelet is the typical out of plane rigid rotation of a free masonry wall with 
respect to its base (Fig. 6a), whereas the second mechanism regards a masonry wall restrained 
along a vertical edge by an orthogonal wall, leading to the formation of a diagonal crack and 
to a roto-translation of a triangular portion of the wall (Fig. 6b). This mechanism is character-
ized by a larger ultimate load with respect to the previous case. Finally the third mechanism 
regards a masonry wall restrained by two orthogonal walls at both vertical edges; in this case 
a vertical crack along panel axis of symmetry forms together with two diagonal cracks start-
ing from panel upper corners (Fig. 6c), leading to two triangular portions that rotate with re-
spect to diagonal cracks. In this last case, the ultimate load is larger than those of the previous 
mechanisms. 

4.1 Case studies proposed by Orduña and Lourenço 

a b 
 

Figure 7: Case studies considered originally by Orduña and Lourenço [9]. 
 
Two simple examples of masonry panels out of plane loaded are taken into account for 

first, by assuming as reference the numerical tests performed by Orduña and Lourenço [9]. In 
both cases masonry panels are made of blocks assembled following a running bond pattern 
and having dimensions a = 0.081 m, b = 0.210 m, s = 0.07 m and volumetric weight equal to 
20 kN/m3. Contacts between blocks are dry, with µ = 0.7 and null cohesion. In the first exam-
ple, panel overall dimensions are: length L = 0.630 m, height H = 1.053 m and thickness s = 
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0.07 m, obtained by assembling 3 blocks along panel length and 13 blocks along its height; 
moreover block translations are fixed along panel left column (Figure 7a). In the second ex-
ample panel dimensions are: L = 1.260 m, H = 1.053 m and s = 0.07 m, obtained with 6 
blocks along panel length and 13 blocks along its height. In this case, block translations are 
fixed along external columns (Figure 7b). 
Figure 8a shows a collapse mechanism characterized by a diagonal crack starting from the 
right side of the panel after the 2nd row of blocks. Such mechanism is in quite good agree-
ment with the one showed in the original analysis and the limit load obtained with the pro-
posed nonlinear DEM is included between FEM and limit analysis performed by Orduña and 
Lourenço (Table 1). Figure 8b shows a collapse mechanism characterized by a symmetric 
flexural deformation with large displacements along vertical axis of symmetry. Similarly to 
the previous case, collapse mechanism and limit load (Table 1) are in quite good agreement 
with reference solutions. 
 

a      b 
 

Figure 8: Failure mechanisms for the masonry panels studied by Orduña and Lourenço [9] modelled with 
DEM. 

 
 case 1 case 2 
λ

DEM 0.175 0.215 
λ

REF,FEM 0.210 0.260 
λ

REF,lim 0.127 0.193 
 

Table 1: Limit loads obtained with DEM and reference results of the masonry panels studied by Orduña and 
Lourenço [9]. 

 

4.2 Restrepo Vélez, Magenes and Griffith experiments 

In this paragraph, several experimental tests performed by Restrepo Vélez et al. [14] are 
taken as reference. Original tests were performed on scaled masonry-like specimens with dry 
joints, subject to self-weight and increasing out of plane loads by means of an inclined plane 
machine, in order to obtain out of plane failure mechanisms. Block dimensions are a = 28.24 
mm, b = 79.78 mm and s = 39.68 mm and block volumetric weight is 26.8 kN/m3. Dry joints 
are characterized by friction ratio µ = 0.7 and null cohesion. All cases are characterized by 21 
block courses along panel height and varying number n of blocks along panel length (from 4 
to 14, for instance). Panel restraints at one or both lateral edges were obtained with one or two 
orthogonal walls (Figure 9a and b, respectively); for this reason, several mechanisms turned 
out to involve also blocks in orthogonal walls. In the present campaign, the effect of orthogo-
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nal walls is simply modelled by restraining block translations and rotations along one or both 
lateral columns (Figure 9d and e, respectively). Then, the present model will not be able to 
represent complex collapse mechanisms involving orthogonal walls, leading to small differ-
ences between proposed numerical results and experimental tests. Moreover, an additional 
specimen type considered a panel without orthogonal walls simply supported at the base and 
loaded by several wooden beams (Figure 9c). 

 

a b c

d e f  
 

Figure 9: Masonry specimen types considered in the experimental campaign by Restrepo Vélez et al [14] (a-
c); corresponding specimens modelled with DEM in present analysis (d-f). 

 
Figure 10 shows failure mechanisms of several panels restrained along left column, varying 
the number of blocks along panel length (for further details about block number see the first 
row of Table 2). Mechanisms are characterized by a diagonal crack starting from lower-right 
panel corner, directed towards the upper-left panel corner and a triangular/trapezoidal portion 
of panel is subject to a roto-translation with respect to such diagonal crack. These mechanism 
types are in quite good agreement with experimental tests, moreover numerical results ob-
tained with the proposed nonlinear DEM are in quite good agreement with experimental re-
sults (Table 2), especially for specimens S11, S12 and S13, thanks to the large number of 
blocks of the models, whereas for specimen S15, characterized by a small number of blocks 
along panel length, limit load obtained with DEM is quite far from experimental result with 
respect to other cases. 
Figure 11 shows failure mechanisms of several panels restrained along both lateral vertical 
edges. Such mechanisms are characterized by a vertical crack along the axis of symmetry of 
the panel and diagonal cracks starting from lateral edges and moving down to panel axis of 
symmetry. Mechanisms are similar but not coincident with respect to those obtained experi-
mentally, due to the real restraint adopted for masonry specimens; however limit loads ob-
tained numerically with nonlinear DEM are still in quite good agreement with experimental 
results. 
Finally figure 12 shows the failure mechanism of a simply supported panel loaded by eleven 
wooden beams (16.46 N transmitted by each beam) and subject to increasing out of plane 
loads (see Figure 9c for the corresponding specimen type and Figure 9f for the corresponding 
DEM representation). The mechanism is characterized by a horizontal hinge in the upper por-
tion of the panel, along the joints between the 15th and 16th block courses and it is almost co-
incident with the real mechanism obtained during laboratory tests; similarly, the collapse load 
is close to the one evaluated experimentally. 
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S11 S12 S13 S15 

 
 

  

 

Figure 10: Failure mechanisms for several masonry panels restrained along left column considered by Re-
strepo Vélez et al. [14] modelled with DEM. 

 
S6 S1-S2-S3 S5 

  
 

 

Figure 11: Failure mechanisms for several masonry panels restrained along lateral columns considered by 
Restrepo Vélez et al. [14] modelled with DEM. 

 
S32 

 
 

Figure 12: Failure mechanisms for the masonry panel loaded by a set of wooden beams and simply supported 
at its base considered by Restrepo Vélez et al. [14] modelled with DEM. 

 
 S11 S12 S13 S15 S6 S1-S2-S3 S5 S32 

n 12 8 6 4 13 11 8 14 
λ

DEM 0.100 0.125 0.165 0.250 0.160 0.225 0.350 0.305 
λ

REF 0.097 0.129 0.181 0.199 0.208 0.208 0.349 0.293 
 

Table 2: Limit loads obtained with DEM and reference results of the masonry specimens considered by Re-
strepo Vélez et al. [14]. 
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5 CONCLUSIONS  

• In this contribution, the three-dimensional DEM introduced by Cecchi and Sab [7] for 
modelling regular masonry in the linear elastic field has been extended to the collapse 
analysis field by adopting a Mohr-Coulomb yield criterion and following the work of 
Orduña and Lourenço [8] for defining the interaction between interface shear forces, tor-
sion and bending moments. 

• The proposed nonlinear DEM for three-dimensional analysis turned out to be simple and 
effective in the determination of limit loads and collapse mechanisms of masonry panels 
having regular texture and dry joints, subject to self weight and out of plane loads. 

• Several numerical tests reproduced the laboratory campaign carried out by Restrepo Vé-
lez et al. [14], in this case the nonlinear DEM simulated correctly limit loads of the 
specimens taken into account. Moreover, considering collapse mechanisms, the ones rel-
ative to panels restrained by a lateral orthogonal wall have been reproduced correctly by 
the DEM, whereas small differences have been found in collapse mechanisms relative to 
panels restrained by orthogonal walls along panel lateral edges. 

• Further developments of the model will regard the assessment of nonlinear analysis of 
more complex masonry specimens, characterized for example by blocks arranged irregu-
larly, openings, lintels and also by real orthogonal walls and roofs. 
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Abstract. In the last decades increasing attention has been devoted to masonry structures 

both from researchers and professionals. This is due to the awareness of the great importance 

of these structures in the historical urban context, together with the great risk that they suffer 

in seismic areas.  

Growing success has been obtained by a simplified approach that models masonry walls 

through “equivalent” plane frames, with concepts and procedures drawn from the study of 

reinforced concrete and steel frames. In this approach, known as Equivalent Frame Method 

(EFM), each masonry resisting wall is modelled as a system of linear (frame) elements repre-

sentative of the behaviour of finite portions of the wall (pier and spandrel panels). 

Up to now EFM has proven to be effective in the case of new buildings characterized by regu-

lar geometrical configurations and with openings’ dimensions for which the frame-like as-

sumption is suitable. Critical issues emerge from existing buildings in European historical 

centres, where irregularities are almost always present and geometrical anomalies can be 

detected even in the case of regular walls. 

For the specific case of geometrically regular URM walls, this paper presents sample cases 

tested with linear and non-linear analyses, with the aim to explore the applicability of EF 

procedures and to identify its limits. A comparison between an EFM procedure with a fiber 

approach and a more detailed FEM method with plane elements, is adopted as a validation 

tool, to evaluate the accuracy of the results provided by the EFM for walls characterized by 

different geometrical configurations. 
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1 INTRODUCTION 

Unreinforced masonry (URM) structures are a worldwide recurring element in the huge va-

riety of building local traditions. Associated to different construction techniques and structural 

materials, URM buildings make up a large part of the built heritage, having at the same time 

an enormous cultural and historical value but also a high seismic vulnerability. In general, 

masonry structures were not designed for seismic resistance. Moreover, they may have had 

over the time modifications altering their structural performance and increasing their vulnera-

bility. 

With the aim to provide effective tools for the modelling of this heterogeneous set of exist-

ing structures, researchers and professionals have dedicated significant efforts to investigate 

the behaviour of masonry structures [1]. Among the various methods, the Equivalent Frame 

Method (EFM) has become one of the more successful ones due to its compromise between 

accuracy and efficacy [2-4]. 

EFM is a simplified modelling procedure based on the assimilation of masonry walls in-

plane behaviour to a plane frame structure. In this approach, each resistant masonry wall is 

discretized in finite portions whose structural behaviour is simulated by means of one-

dimensional beam elements connected to each other by fully rigid nodes.  

The EFM has been employed till now both in the case of new and existing buildings. In the 

first case, the structure is characterized by regular geometrical configurations and by open-

ings’ dimensions such that the frame-like assumption is suitable for modelling the resisting 

walls. On the other hand, in the case of existing constructions, the structure may show signifi-

cant irregularities making the frame-like assumption hard to be accepted. In addition to these 

geometrical aspects, the application of the EFM to existing masonry constructions faces criti-

cal points related to the quality of masonry materials, the presence of deformable diaphragms 

and the interaction with other structures in aggregate configurations.  

Considering the great popularity of EFM in professional practice, there is the need to vali-

date the EF approach by means of a numerical comparison with the more detailed FEM ap-

proach. In this paper the attention is focused on the regular geometrical configurations. For 

these types of walls the EF discretization is generally considered reliable and suitable. How-

ever, as discussed here, also in the case of regular URM walls it is possible to identify some 

limit cases that cannot be readily represented by the frame-like scheme.  

2 EQUIVALENT-FRAME MODELS FOR URM WALLS 

EFM is currently one of the most popular tools adopted for structural modelling of mason-

ry structures in professional practice, due to its remarkable simplicity of application and inter-

pretation of the results. 

As it is well known, EFM is based on the discretization of each masonry wall in macro-

elements, namely masonry panels distinguishable for mechanical and geometrical properties 

and modelled as beam-column elements connected by rigid nodes. The wall is studied as a 

plane frame, with a consequent remarkable reduction of the number of degrees of freedom 

and hence of the computational effort, with respect to more detailed and accurate methods, 

such as FEM. 

The macro-elements discretization of masonry walls on which the EFM procedures is 

based is compatible with the observed damages suffered by masonry structures under seismic 

catastrophic events. It is in fact recurrent the concentration of damages in such parts of the 

wall modelled as deformable mono-dimensional elements (piers and spandrels). Only minor 

damage is usually observed in correspondence of the connection area between piers and span-

drels (node panels), suggesting the idea of a greater strength and stiffness for these elements. 
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The accuracy of the EFM procedures is strictly connected to the capability to correctly simu-

late all the failure mechanisms and the damaging phenomena that can affect a masonry wall 

subject to in-plane actions, namely flexural and shear failure mechanisms. 

However, and generally speaking, the EFM can be considered suitable and realistic only in 

the case of masonry walls characterized by a regular distribution of openings with “standard” 

dimensions. In these cases, the identification of the structural elements composing the ideal 

frame is straightforward, while in the case of walls characterized by an irregular arrangement 

of openings (irregular walls) or by very small windows, the definition of the frame configura-

tion is more uncertain and problematic. 

2.1 Discretization of walls in macro-elements and definition of their characteristic di-

mensions 

In the EF idealization, masonry walls are considered as an assemblage of mono-

dimensional structural components that can be geometrically identified by extending the con-

tours of openings. In this way, it is possible to identify the following macro-elements (Figure 

1): 

 Pier panels: vertical structural panels whose function is to carry the gravitational and 

seismic actions and to transfer them to the foundation system; 

 Spandrel panels: horizontal panels whose function is to transfer the floors’ loads to the 

piers and to connect piers; 

 Node panels, connecting spandrels and piers, modelled as fully rigid nodes. 

 a)  b)  c) 

Figure 1: Identification of macro-elements in a masonry façade: piers (a), spandrels (b) and node panels (c). 

Looking to the ideal frame configuration proposed in the EF approach, an important role in 

the walls’ structural behaviour is played by spandrels. Such elements represent the horizontal 

resisting elements of the ideal frame configuration and can give an important contribution to 

the seismic performance of the wall by behaving as coupling elements and/or restraints for 

pier panels. The strength and stiffness of the spandrels, in fact, influence the mechanical be-

haviour of the adjacent piers, which can be modelled with static schemes ranging between the 

two extreme conditions of cantilever and double-fixed member. The activation of damaging 

mechanisms in the spandrels can also dissipate energy. 

For what concerns the geometrical definition of spandrels, their characteristic width is usu-

ally assumed as equivalent to the average width of the openings that include it. 

A more important role is played by pier panels, whose stiffness deeply influences the total 

stiffness and the global seismic behaviour of the wall. The definition of the effective height of 

the pier was actually one of the first important problems addressed in structural modelling of 

masonry buildings by the EFM. 
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The POR method [5] represents one of the first modelling procedures proposed for URM 

structures anticipating the EF approach, in which only the shear failure of piers is taken into 

account, with a simplified constitutive shear-deformation law. No clear rules are provided by 

the POR method about the piers’ effective height, even though it strongly affects both their 

stiffness and shear strength. 

A geometrical criterion was introduced by Dolce [2], taking into account the boundary 

conditions of each piers. The pier’s behaviour and stiffness are in fact influenced by the mu-

tual interaction with the surrounding spandrels and by their deformability. 

Starting from these consideration and from a previous theoretical study carried out for 

coupling beams in reinforced concrete structures [6], Dolce proposed an empirical formula for 

the definition of the piers’ effective height as a function of a geometrical parameter (h’ in 

Figure 2a). This parameter is defined as the distance between the midpoints of the line con-

necting the vertices of two consecutive openings, fixing a limit value for the inclination of 

these lines equal to 30° [2]. The criterion proposed by Dolce was validated by numerical FEM 

simulation on different pier-spandrel systems. The formula provided by Dolce represents, 

with some simplifications, the main reference adopted in the most common EF methods actu-

ally available for structural modelling of URM structures [3, 4]. 

Recovering and updating the assumption of “strong spandrel and weak piers” contained in 

FEMA 356 [7], a different proposal was provided by Augenti [8] by assuming the piers’ ef-

fective height equal to the height of the openings computed from the side of the earthquake 

loading. This assumption leads to the need for considering two different models for asymmet-

ric walls, taking into account both the possible horizontal directions of the earthquake, as 

shown in Figure 2. 

 a) 

b) 

Figure 2: Proposals for piers’ effective height by Dolce [2] (a) and by Augenti (b), as a function of the horizontal 

forces direction [8]. 

Augenti’s proposal is based essentially on direct observation of recurrent damages and 

failure mechanisms caused by past earthquakes to ordinary masonry buildings. In most of the 
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cases it is usually possible to observe diagonal shear cracks starting from the corners of the 

openings, which suggest the idea of different structural responses depending on the direction 

of the seismic actions. This proposal was validated by experimental tests carried out on ma-

sonry building prototypes, whose damage patterns appeared in good agreement with Augen-

ti’s assumptions [9]. 

A comparative analysis between the two proposals for piers effective height has been re-

cently presented by Marques and Lourenço [10]. They have compared the well-known EF 

methods and then tested on simple regular URM structures. In particular, non-linear static 

analyses have been carried out by the authors on a two-storey masonry wall by using several 

EFMs (SAM [4], 3MURI [3] and RAN [11]) related to Dolce’s and Augenti’s assumptions 

for piers’ effective height and with different boundary conditions (double-fixed and cantilever 

schemes). The results of the analysis were compared in terms of capacity curves. The compar-

ison showed an important aspect that has been confirmed in the present work. Augenti’s as-

sumption presents a better accuracy in evaluating the base shear capacity and the forces 

distribution among the vertical elements, while the global stiffness of the wall was is strongly 

overestimated. On the other hand, Dolce’s approach obtaines better results for stiffness ap-

proximation, while base shear capacity is underestimated. 

Due to the fundamental importance of the definition of piers’ effective height for structural 

modelling of URM buildings, the assumptions provided by Dolce and Augenti have been tak-

en into account in the present work and assumed as alternative criteria for the implementation 

of EF models. The aim of the present work is the evaluation of the accuracy of the EFM in 

simulating the structural behavior of regular masonry walls. For this purpose, some sample 

cases of regular masonry walls have been tested in linear and non-linear field. The models 

studied with EF approach have been modelled considering both the assumptions for piers’ ef-

fective height formulated by Dolce and Augenti. The results have been compared with refer-

ence to corresponding FE models. This comparison gives the possibility to evaluate the effect 

of different geometric modellings of the piers on the results of the EF models. 

2.2 Equivalent-Frame model with fiber approach 

In the present work the EFM approach is implemented with a recent formulation for the 

mechanical characterization of walls’ structural components, namely a fiber model initially 

implemented for reinforced concrete structures [12] and then extended also to URM structures 

[13]. Fiber approach represents in fact a good compromise between the accuracy of a tri-

dimensional FE procedure and the computational convenience of a simplified uni-dimensional 

modelling approach. 

Differently from other currently available EFM procedures, the use of the fiber approach 

allows the implementation of the non-linear behavior with a spread plasticity model. 

The fiber model is based on the discretization of the beam elements’ cross-section into 

longitudinal fibers, which allows the simulation of the flexural behaviour of the structural el-

ement by means of ad hoc non-linear constitutive  laws. The fiber is assumed as having 

only axial deformation and, for this reason, with this model it is not possible to simulate the 

flexural and the shear behaviour at the same time. Given the importance of the shear failure 

mechanisms in masonry structures, the model has been therefore completed by introducing a 

non-linear spring with shear constitutive law into the fiber discretization [13]. 

The resulting model is composed therefore of three springs working in series. The central 

one is a non-linear spring calibrated according to a multi-linear V- law, to simulate the pos-

sible shear mechanisms than can affect masonry panels, i.e. diagonal cracking and shear slid-

ing. The two extreme springs are defined by fiber discretization, so by means of a spread 
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plasticity model. For what concerns the simulation of the flexural behaviour, the uniaxial con-

stitutive law provided by Kent and Park [14] has been adopted. 

The models adopted in the present work for non-linear simulations have been implemented 

in the software Midas GEN © [15], where it is possible to combine the fiber discretization of 

beam elements with non-linear springs simulating shear constitutive laws. 

3 REGULAR AND FRAME-LIKE MASONRY WALLS 

The concept of structural regularity is usually referred to the global configuration of the 

structures. Making reference to the prescriptions provided by the Italian technical code [16], a 

generic construction can be defined regular if it fulfils requirements based on the stiffness, 

geometrical and inertial properties of the whole structural system. 

In the case of URM buildings, namely structural systems composed by the intersection of ver-

tical load-bearing walls and horizontal slab diaphragms, the global seismic performance is 

strongly dependent on the in-plane response of the single load-bearing walls, once ensured a 

low probability of activation of out-of-plane failure mechanisms. In this case, the global seis-

mic vulnerability of a URM building is due to the in-plane performances of its load-bearing 

walls, each of them working for the horizontal forces transferred by the slab diaphragms. As a 

consequence, it is important to extend the concept of regularity to the single load-bearing wall 

and in particular to such structural features that can affect its in-plane response. The definition 

of regularity adopted in this work is therefore a purely geometrical concept referred to the 

configurations of single masonry walls. The arrangement of the openings in a URM wall is 

strictly connected to the definition of regularity. A URM wall can be defined regular if its 

openings are perfectly aligned in both vertical and horizontal directions [17], as for the sample 

schemes of Figure 3. 

As already explained in section 2, the EFM is essentially based on the identification be-

tween a single load-bearing wall and an ideal plane frame. In this sense, it is possible to dis-

tinguish between configurations that appear clearly consistent with the frame idealization, 

here denoted as “frame-like”, and configurations for which the affinity with a frame system 

may be questionable, namely “non-frame-like” ones.  

Two schemes are reported in Figure 3 to clarify the distinction between frame-like and 

non-frame-like walls, with reference to a two-story masonry wall. Both the sample schemes 

fulfill the definition of regular wall. However, only the scheme of Figure 3a is characterized 

by piers and spandrels having geometrical properties compatible with the assumption of 

mono-dimensional elements. For this scheme a good degree of affinity with a plane frame can 

be recognized, so the definition of frame-like is suitable to describe its configuration.  

On the contrary, the extremely small dimensions of the windows in the scheme of Figure 

3b induce anomalies in the geometrical properties of piers and spandrels. This scheme appears 

strongly in contrast with the frame idealization and hence with the previous definition of 

frame-like masonry walls. 

5267



R. Siano, G. Camata, V. Sepe, E. Spacone, P. Roca, L. Pelà 

    a)  

    b) 

 

Figure 3: Identification of the equivalent-frame model for frame-like (a) and non-frame-like (b) URM walls. 

4 NUMERICAL VALIDATION OF EQUIVALENT-FRAME METHOD FOR URM 

WALLS 

This section discusses the accuracy of EFM for regular URM walls depending on their ge-

ometry. The study is part of a wider research on regular and irregular walls characterized by 

an increasing level of complexity [18]. The first results are discussed here with reference to 

the models introduced in Figure 4. Both the walls have been submitted to a linear static analy-

sis under the same loading, mechanical and boundary conditions. A distribution of horizontal 

loads proportional to the first mode of vibration has been computed and distributed over the 

nodes of the wall in order to avoid any stress concentration. 

The EF models have been built using the two aforementioned approaches for piers’ effec-

tive height, i.e. the modelling scheme by Dolce [2] and the scheme of “strong spandrel and 

weak piers” by Augenti and co-workers [11]. 

The results given by the EF and FE models have been compared in terms of forces and 

displacements. The base shear reactions and the absolute horizontal displacements have been 

assumed for comparisons because of their importance in the evaluation of the wall’s structural 

performance. The percentage difference between the predictions provided by EF models and 

by FE models, in terms of reactions and displacements, has been assumed as a measure of the 

accuracy of EFM in simulating the actual structural behaviour of URM walls. 

Figure 4 shows the percentage differences between EF and FE results for the two sample 

schemes with regards to the base shear and the top displacement of one of the external piers of 

the wall. 
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1)            2) 

  

Figure 4: Percentage difference between EF and FE predictions of Base Shear and top Displacement for a frame-

like (1) and a non-frame-like (2) URM wall.  

Given the strong non-linearity of masonry structures, the validation of a numerical ap-

proach for the structural modelling of such structures cannot be limited only to the linear field. 

Masonry structures show in fact a non-linear behaviour also under low states of stress. Alt-

hough the study of linear models can be helpful to check the capability of a numerical simula-

tion to predict the elastic stiffness and the distribution of internal forces induced by 

gravitational loads, it is necessary to extend the study also to the non-linear field in order to 

have a complete overview of the critical points affecting the modelling method under consid-

eration. For this reason, a non-linear analysis of the same regular schemes has also been per-

formed. The results provided by FE models have been assumed as reference for the evaluation 

of the EFM accuracy. The FE models have been defined as two-dimensional systems com-

posed by plane-stress rectangular elements implemented in MIDAS FEA © [15]. 

For what concerns the mechanical characterization of masonry non-linear behaviour, in the 

EF approach a fiber discretization has been adopted to simulate the flexural behaviour of the 

uni-dimensional beam elements (piers and spandrels). A non-linear element, located in the 

midsection of each structural element, has been also added to simulate the two possible shear 

mechanisms than can affect the masonry panels, i.e. diagonal cracking and shear sliding [13]. 

The definition of loading conditions has been made by steps, separating the application of 

gravitational and horizontal loads in both the modelling procedures adopted. An initial load-

ing step has been defined to apply gravitational loads, that have been introduced by assuming 

a unit weight equal to =18.0 kN/m3 and a slab load equal to 15.90 kN/m for both the levels. 

A second loading step has been defined to apply horizontal actions directly on the deformed 

shape obtained at the end of the first loading step. A monotonic incremental time function has 

been used to apply a distribution of horizontal forces proportional to seismic masses. Finally, 

a displacement controlled procedure has been adopted to carry out the non-linear static analy-

sis by assigning the value of the horizontal displacement for a control node located at the sec-

ond floor level of the wall. The iterative solution procedure applied is based on the “initial 

stiffness” method. 
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Figure 5 shows the comparison of the capacity curves obtained by the EFM and FEM ap-

proaches for the two sample schemes under consideration. 
 

1)            2) 

  

Figure 5: Comparison of the capacity curves obtained with EF and FE models for a frame-like (1) and a non-

frame-like (2) URM walls. 

4.1 Discussion of results 

The two sample schemes analysed in this work show different levels of similarity with the 

ideal configuration of a frame structure. In particular, the analogy with a frame seems hardly 

applicable in the case of the second scheme. According to the distinction between frame-like 

and non-frame-like walls introduced in Section 3, the results obtained in both the linear and 

non-linear fields confirm that a regular geometry is not sufficient to justify the assumption of 

the EF discretization in the modelling of URM walls. As expected, the percentage differences 

associated to EF models predictions, with respect to FEM results, tends to increase for the 

second wall. 

Figure 4 shows the different level of accuracy that characterizes the two assumptions for 

the piers’ effective height in the EF models, namely the Dolce’s and the Augenti’s criteria 

(Section 2.1). As already observed by Marques and Lourenço [10], the criterion adopted by 

Augenti estimates better the actual distribution of forces among piers than the criterion pro-

vided by Dolce. As for the prediction of the base shear, the models defined according to Au-

genti’s criterion provide percentage differences up to 10% with respect to the corresponding 

FEM results. An opposite trend is shown by the models defined according to Dolce’s criterion. 

For such models a negligible error can be recognized with respect to FE models in the hori-

zontal displacements predictions, while the difference increases significantly for what con-

cerns the forces distributions among the piers. 

Such observations about the prediction of shear distributions and horizontal displacements 

are confirmed by the theoretical bases of the two criteria. The rule provided by Dolce [2] to 

define the effective piers’ height, in fact, is derived by equivalent stiffness considerations 

among EF and FE models. The effective height of masonry piers was defined following a 

principle of statistic equivalence between the elastic stiffness expressed by EF and FE models 
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for several examples of pier-spandrel modules. On the other hand, Augenti’s criterion is tai-

lored on observed damage and therefore provides better results for the evaluation of the 

strength. 

The observations made in linear field have been generally confirmed also by the non-linear 

analyses, although the differences between the results provided by EF models and the FE ones 

are smaller in the non-linear cases. The higher accuracy shown by the EF approach in the non-

linear field demonstrates a better performance of the approach in reproducing the redistribu-

tion of forces among the structural elements as a consequence of incremental damaging condi-

tions. 

5 CONCLUSIONS 

This work presents a comparison between Equivalent Frame Method (EFM) and FEM in 

the simulation of URM existing buildings. The accuracy of EFM is treated as a function of the 

degree of similarity between the effective masonry wall’s geometry and an ideal frame con-

figuration. A distinction between frame-like and non-frame-like configurations is introduced 

with the aim to delimit the set of URM walls’ configurations for which EFM approach can be 

applied. 

Two sample URM walls are considered, in order to provide a measure of the EFM applica-

bility. For both walls the definition of regular configuration can be assumed, i.e. a configura-

tion characterized by openings aligned in both horizontal and vertical direction, but they differ 

in terms of “frame-like” or “non-frame-like” geometry. A comparison is discussed between 

EFM and FEM results for both models, with the purpose of measuring the applicability of 

EFM with respect to the predictions provided by the more detailed FE models. 

The models are investigated using both linear and non-linear static analyses. The results of 

these analyses, expressed in terms of shear distributions and displacements, are compared 

with predictions provided by FE models. The study shows that the differences in results by EF 

and by FE models increase as the URM walls and the frame schemes are unlike. 

The effects of different assumptions for the definition of the piers’ effective height are also 

evaluated following the procedures proposed by Dolce [2] and Augenti [11]. Augenti’s crite-

rion shows a greater accuracy in predicting the distributions of shear forces among the piers. 

On the other hand, Dolce’s criterion yields more accurate predictions of the horizontal dis-

placements. 

The models presented in this work are part of a broader research [18] aimed at exploring 

the range of applicability of EF procedures in the case of regular and irregular URM walls. In 

particular, it is aimed at further verifying the capability of EFM to simulate the main irregu-

larities that can affect the in-plane structural behaviour of existing URM walls, such as those 

caused by misalignments of the openings or anomalies in their dimensions. 
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Abstract. In the present paper a comprehensive seismic vulnerability assessment of several 
historical masonry towers, mainly built during the medieval age and located in the North-
East region of Italy, is carried out by means of simplified and advanced FE approaches. 
Three-dimensional finite element models of the masonry towers are created on the basis of 
geometrical data deduced from both existing available documentation and in-situ surveys. 
Nonlinear static (pushover) and dynamic full 3D analyses are carried out to investigate the 
seismic performance of the towers. A comparison between non-linear dynamic analyses and 
non-linear static procedures, even at a global level, can provide useful information about the 
seismic vulnerability of such type of structures. Numerical results provide an accurate 
understanding of the behavior of the towers under horizontal loads and highlight the effects of 
some geometrical features, such as slenderness, thickness of the perimeter walls,  presence of 
perforations, internal vaults, irregularities and inclination. 
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1 INTRODUCTION 
The protection of historical masonry constructions against seismic actions is of strategic 
importance in many European countries, especially in Italy, which are prone to earthquakes. 
Ancient masonry towers are widely disseminated in Italy and represent one of the main 
elements of the local cultural heritage. In ancient times these structures were usually 
conceived mainly to resist vertical loads and are particularly vulnerable to earthquakes 
because of the limited ductility of masonry combined with the slenderness of the towers that 
are sometimes characterized by complex geometry and irregularities. The axial stresses due to 
gravity loads could be of the same order of magnitude as the compression strength of the old 
masonry and, when combined with the dynamic loads induced by earthquakes, can produce 
heavy damage and even local collapse. The prediction of the seismic response of historical 
masonry buildings represents a crucial issue and a challenging research item. An effective 
seismic vulnerability assessment of such structures can be obtained through non-linear 
dynamic and static analyses by means of suitable finite element (FE) models. In recent times, 
national and international codes have imposed the evaluation of the structural performance 
under horizontal loads, encouraging the use of sophisticated non-linear methods of analysis. 
The paper, which can be considered as a thoughtful collection of case studies useful to infer 
general considerations, presents a comprehensive numerical study on the seismic performance 
assessment of eight historical masonry towers located in the North-East region of Italy. The 
towers exhibit different geometrical characteristics in terms of slenderness, cross-section area, 
openings, wall thickness and internal irregularities, but they are built with similar 
technologies and masonries presenting similar mechanical properties. Their structural 
behavior under horizontal loads may be therefore thought to be influenced mainly by 
geometrical issues. 
Detailed three-dimensional finite element (FE) numerical models are created through the 
software package Abaqus to represent the geometry of the towers. The main geometrical 
features of the towers are deduced from both existing available documentation and in-situ 
surveys. The evaluation of the seismic response of the historical masonry towers is carried out 
through non-linear dynamic analyses. A damage plasticity material model, exhibiting 
softening in both tension and compression, already available in the commercial code Abaqus, 
is used for masonry. The seismic performance assessment of the towers is carried out in terms 
of displacement time-history and tensile damage distribution. The effects of different 
geometrical characteristics and local irregularities on the seismic response of the towers are 
investigated.  
A non-linear static procedure based on pushover analysis is also used for the seismic 
vulnerability assessment of the masonry towers. The results obtained by the two methods are 
compared in order to verify whether the simplified approach may represent the seismic 
behavior of the towers. A comparison between non-linear dynamic analyses and non-linear 
static procedures, even at a global level, can provide useful information about the seismic 
vulnerability of the towers.  
2 TOWERS UNDER STUDY AND FE MODELS 
This section provides a concise overview of the main geometrical features of the towers under 
study, along with some rough details on the FE discretization adopted. The elevation views 
and the FE models of the eight towers are presented in Figure 1 and Figure 2. The FE models 
of the eight towers (bell, clock or battle towers) are created directly in the commercial code 
Abaqus. Three-dimensional elements are used to model masonry, with different material 
properties where necessary, to suitably take into account the presence of infill over the vaults 
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or the possible central layer in multi-leaf walls. The choice of the element size is done in 
order to share the advantages of sufficiently reliable results and numerical efficiency during 
the non-linear dynamic analyses that usually needed very long time to be performed, even in 
workstations with large RAM. A preliminary size equal to 0.4-0.5 m is chosen for the sides of 
the 3D elements, with local or global refinements, depending on the specificity of the 
structure. Still, reasonable values of the mesh distortion are obtained, with a worst aspect ratio 
ranging between 2 and 3. 
 

 Figure 1: Schematic elevation views of the towers under study and indication of the height.  
 

    
Tower I Tower II Tower III Tower IV 

    
Tower V Tower VI Tower VII Tower VIII 

Figure 2: Finite element model of the towers under study  
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3 MATERIAL MODEL 
The 3D FE models of the towers are implemented into Abaqus taking into consideration 
geometrical (large displacement effects) and material non-linearity by means of the Concrete 
Damage Plasticity (CDP) model, fully available in the standard package. 
Concrete Damage Plasticity model is based on the assumption of a scalar isotropic damage 
with distinct damage parameters in tension and in compression. It is particularly suitable for 
applications in which the material exhibits damage, especially under loading-unloading 
conditions, and therefore for seismic analyses. A different inelastic behavior in tension and 
compression is then introduced. 
To describe the multi-dimensional behavior in the inelastic range, masonry is assumed to 
obey a Drucker-Prager strength criterion with non-associated flow rule. The strength domain 
is a standard Drucker–Prager surface modified by means of the so-called K parameter, 
representing the ratio between the second stress invariant on the tensile meridian and that on 
the compressive meridian. This parameter is set equal to 0.666 in the numerical simulations. 
A value equal to 10° is adopted for the dilatation angle, which seems reasonable for masonry 
subjected to a moderate-to-low level of vertical compression. This value is in agreement with 
experimental evidences available in the literature. To avoid numerical convergence issues, the 
tip of the conical Drucker-Prager strength domain is smoothed using a hyperbola. Abaqus 
code allows for smoothing the strength domain by means of the so-called eccentricity 
parameter, which represents the distance between the points of intersection with the p-axis of 
the cone and the hyperbola in the p-q plane, where p is the hydrostatic pressure stress and q is 
the Mises equivalent stress. A value equal to 0.1 is adopted for the eccentricity parameter in 
the numerical simulations. 
The available experimental results on regular masonry wallets show a moderate orthotropy 
ratio (around 1.2) under biaxial stress states in the compression-compression region. 
Obviously, such feature cannot be taken into account when an isotropic model, like the 
present one, is utilized. However, it is commonly accepted in the literature the utilization of 
isotropic models (like concrete smeared crack approach available in both Ansys and Adina) 
after an adaptation of the parameters to fit an average behavior between vertical and 
horizontal compression. A suitable model should also take into account the ratio between the 
ultimate compression strength in biaxial stress states and in uniaxial conditions. Such a ratio, 
which exhibits similar values for concrete and masonry, is reasonably set equal to 1.16.  
The final stress–strain relationship in tension adopted for the dynamic analyses follows a 
linear-elastic branch up to the peak stress 0t . Then, micro-cracks start to propagate within 
the material, leading to a macroscopic softening. In compression, the response is linear up to 
the yield stress 0c . Then, a linear hardening is assumed up to the crushing stress cu , 
followed by a linear softening branch. 
The damage variables in tension dt and compression dc are defined by means of the following 
standard relationships:       pl

cccc
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where ( )t c   is the uniaxial tensile (compressive) stress, 0E is the initial elastic modulus, 
t ( c ) is the uniaxial total strain in tension (compression), ( )pl pl

t c  is the equivalent plastic 
strain in tension (compression). In the present study, only tension damage is assumed to be 
active, because the adopted tensile strength of the material is significantly lower than the 
compressive strength. When the strain reaches a critical value, the material starts to degrade 
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showing, in the unloading phase, a modulus equal to 0E E . In particular, in the numerical 
simulations conducted in this study a reduction equal to 5% of the Young modulus with 
respect to the initial value is assumed for a plastic deformation equal to 0.003. 
.  
4 ANALYSES PERFORMED 

Two different numerical approaches, namely non-linear static procedure based on 
pushover analyses and non-linear dynamic analyses, are carried out in this study, with a level 
of numerical complexity that can be considered ranging from moderately high to high in 
common design practice. 
4.1 Non-linear dynamic analyses 

The real accelerogram registered in Mirandola on the 20th of May 2012 during the Emilia-
Romagna seismic event is used to investigate the seismic response of the towers under study. 
The accelerogram is appropriately scaled in order to obtain two acceleration time histories 
with different values (0.1g and 0.2g) of the peak ground acceleration (PGA). Figure 3 shows 
the acceleration time history with PGA=0.1g along with some meaningful instants identified 
with different letters and colors. 

The dynamic analyses are performed applying the accelerogram, separately, along the two 
principal (X and Y) directions of each tower. The horizontal displacement time histories of 
some control points, normally the nodes at the top of the towers, along with the damage state 
at the end of the simulations, are used to qualitatively determine if the structure is in a state of 
incipient collapse or not. 

 

 Figure 3: Scaled real accelerogram used in the non-linear dynamic analyses and meaningful points used to 
evaluate the state of damage of the towers under study.  

4.2 Simplified procedure based on pushover analysis 
A simplified assessment procedure is also adopted for the seismic verification of the global 
structural behavior of the towers under study. The procedure was developed at the University 
of Ljubljana by Fajfar and is based on pushover analyses and on inelastic demand spectrum. 
This simplified method of analysis is an effective technique for the seismic assessment of 
existing structures and combines pushover analysis of a multi-degree-of-freedom (MDOF) 
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model with the response spectrum analysis of an equivalent single-degree-of-freedom (SDOF) 
model. The method is formulated in the acceleration-displacement (AD) format, which 
enables the visual interpretation of the results. By means of a graphical procedure, the 
capacity of a structure is compared with the demand of an earthquake ground motion on the 
same structure, Figure 4.  
The capacity of the structure is represented by a force-displacement curve obtained by non-
linear static analysis. The capacity curve of the structure is transformed into the capacity 
curve of an equivalent SDOF system by means of the transformation factor 

2/i i i im m    , where i  is the ith component of the eigenvector Φ  deduced from 
modal analysis and im  is the mass of the node i. The capacity curve of the equivalent SDOF 
system is then reduced to a bilinear elastic-perfectly plastic force-displacement diagram on 
the basis of the equal energy concept (the areas underneath the actual and bilinear curves are 
approximately the same, within the range of interest).  

The displacement capacity corresponds to the end point of the bilinear curve. The inelastic 
demand in terms of accelerations and displacements is provided by the intersection point of 
the capacity curve with the demand spectrum corresponding to the ductility demand μ, as 
schematically shown in Figure 4. In this study, the seismic demand is computed with 
reference to the Eurocode 8 response spectrum (soil type C). The theoretical predictions are 
performed for Sag levels equal to 0.1g and 0.2g. The displacement demands refer to the 
equivalent SDOF system. The displacement demands of the structure are obtained by 
multiplying the displacement demands of the SDOF system by the transformation factor Γ. 
Seismic assessment is performed by comparing displacement capacity and demand. The main 
results of the non-linear static procedure are reported for a direct comparison with the results 
of the non-linear dynamic analyses. 

 

 Figure 4. Elastic and inelastic demand spectra versus capacity diagram in acceleration-displacement (AD) 
format.  

5 RESULTS OF NON-LINEAR DYNAMIC ANALYSES 
It can be roughly stated that if a residual deformation, defined as the ratio between the 
horizontal inelastic residual displacement and the height of the tower, ranging between 0.4% 
and 0.8% is reached, the structure may be reasonably considered in incipient state of collapse. 
Values of 0.4% and 0.8 % of residual deformation are taken with reference to masonry piers 
behavior at failure under in-plane bending and shear, respectively, in agreement with Italian 
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code specifics. While such a choice is rather debatable, because masonry towers can be hardly 
thought to behave as single piers, it is probably the only quantitative indication that can be 
attempted in this case.  

The inelastic residual deformations obtained for all the cases investigated are synoptically 
shown in Figure 5, where threshold values of 0.4% and 0.8% are also indicated. The 
maximum values of the top displacements normalized to the height of the towers are 
summarized in Figure 6. 
From an overall analysis of the results of the dynamic simulations with two different PGAs, 
the following remarks may be drawn. 
Under seismic excitation with PGA=0.1g, it can be noted that Tower I, Tower II, Tower III, 
Tower IV and Tower VIII exhibit values of residual deformations smaller than 0.4% of the 
height. It can be observed that the values of residual deformation are critical (within 0.4%-
0.8%) for Tower VI and Tower VII; Tower V can be considered as prone to collapse. These 
results are confirmed in terms of non-dimensional top displacements. 

 

 Figure 5: Non-linear dynamic analyses: residual deformations at PGA=0.1g and PGA=0.2g in the X and Y 
directions for the different towers.  

 Figure 6: Non-linear dynamic analyses: maximum normalized top displacement (top displacement/height) at 
PGA=0.1g and PGA=0.2g in the X and Y directions for the different towers (values of normalized top 

displacements are interrupted at 1.2%).  
Under seismic excitation with PGA=0.2g, basing on the criterion of inelastic residual 

deformations, a collapse mechanism is activated for Tower III, Tower V, Tower VI, Tower 
VII and Tower VIII. The values of residual deformations are critical (within 0.4%-0.8%) for 
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Tower I; Tower II and Tower IV exhibit acceptable residual deformations (smaller than 0.4% 
of the height). These results are confirmed in terms of normalized top displacement, but also 
Tower II and Tower IV present non-dimensional top displacement within 0.4%-0.8%. 
6 SIMPLIFIED PROCEDURE BASED ON NON-LINEAR STATIC ANALYSES 

The results of the non-linear static procedure in the acceleration-displacement response 
spectrum plane are illustrated in Figure 7. The capacity curve of the equivalent SDOF system, 
transformed in a bilinear curve, is reported and the seismic demand corresponds to two values 
of the effective peak ground accelerations equal to Sag=0.1 and Sag=0.2g; for the sake of 
clarity, only the elastic demand spectrum is shown. The seismic vulnerability is evaluated by 
comparing the displacement demand and the displacement capacity obtained through the 
pushover analyses. The displacement capacity and demand in the X and Y directions are then 
summarized for the towers under study in Figure 8 and Figure 9 for two different seismic 
intensity levels. 

 

  Tow
er I

 

  Tow
er V

 

  Tow
er I

I 

  Tow
er V

I 

  Tow
er I

II 

  Tow
er V

II 

  Tow
er I

V 

  Tow
er V

III 

X direction Y direction  X direction Y direction  

Figure 7: Non-linear static procedure in the acceleration-displacement response spectrum plane (X and Y 
directions) for different seismic intensity levels: Sag=0.1g (continuous blue line) and Sag=0.2g (dashed green 

line). 
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 Figure 8: Non-linear static procedure, X direction: displacement capacity and displacement demand at 
different seismic intensity levels for the different towers.  

 Figure 9: Non-linear static procedure, Y direction: displacement capacity and displacement demand at 
different seismic intensity levels for the different towers.  

The results obtained from the non-linear static procedure are also synoptically summarized 
in Table 1 for a direct comparison with the outcomes of the non-linear dynamic analyses. As 
can be noted, the seismic safety assessment provided by the two methods is very similar for 
almost all the towers, in some cases with a very satisfactory agreement. The non-linear static 
procedure may provide reasonable synthetic predictions of the seismic vulnerability of the 
towers. A slightly more conservative trend for the non-linear dynamic simulations can be 
noticed after a detailed analysis of individual cases. The non-linear static procedure provides 
smaller values of displacement demand than those resulting from the non-linear dynamic 
analyses. The simplified static approach is not able to capture the inertial effects associated 
with seismic excitation that can lead to heavy damage and premature collapse of the structure. 

 
7 DISCUSSION OF RESULTS 
7.1 Comparison between the procedures 
The displacement demands obtained by the non-linear static procedure are in a good 
agreement with those obtained by the non-linear dynamic analyses when the check of the 
structural safety is verified. When the check is not satisfied according to the non-linear static 
procedure, the seismic demand is smaller than the maximum value of the top displacement 
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experienced by the structure during the non-linear dynamic analyses. In the majority of cases 
this result can be explained by the large increase of the displacements registered in the non-
linear dynamic analyses when a collapse mechanism occurs. From an overall analysis of the 
results, it can be noted that the non-linear static procedure generally gives reliable results in 
terms of displacements. Large differences are observed in the cases of Tower V and Tower VI, 
where local collapse mechanisms are registered during the non-linear dynamic analyses and 
for this reason the displacement distribution differs significantly. In the case study of Tower 
V, the non-linear static procedure does not catch the collapse of the upper vaults, which is 
registered at the end of the non-linear dynamic analyses. In the case study of Tower VI, a 
local collapse of the upper part of the thin wall is clearly observed during the non-linear 
dynamic analysis: moreover the presence of this type of irregularity triggers non-uniform 
displacement demands at the top of the structure. Non-linear dynamic analyses are able to 
account for higher mode effects that may be introduced by local irregularities. 
 

Table 1. Comparison on the collapse state of the towers evaluated through the non-linear static procedure and 
the non-linear dynamic analyses: X and Y directions, PGA=0.1g and PGA=0.2g. 
 X direction Y direction Collapse  √ YES  × NO √/× Borderline 

Non-linear static procedure 
Non-linear dynamic analysis 

Non-linear static procedure 
Non-linear dynamic analysis 

Tower PGA 0.1g PGA 0.2g PGA 0.1g PGA 0.2g PGA 0.1g PGA 0.2g PGA 0.1g PGA 0.2g 
I × √ ×/√ √ × × × ×/√ 
II × × × × × ×/√ × × 
III × √ × √ × √ ×/√ √ 
IV × × × ×/√ × × × ×/√ 
V × √ × √ × √ √ √ 
VI ×/√ √ √ √ × × × √ 
VII × √ ×/√ √ × ×/√ × × 
VIII × ×/√ ×/√ ×/√ × √ × √ 

 The tensile damage distribution corresponding to the displacement demand is generally 
similar to the damage pattern observed at the end of the non-linear dynamic analyses, but the 
numerical values of damage are always smaller. The only exception is the severe damage 
observed at the base of the towers during the pushover analyses: it is less evident at the end of 
the non-linear dynamic analyses. However, the damage pattern detected by the pushover 
analysis can represent a good indicator of the vulnerable parts of the structure.  
The choice of the control point, representative of the global behavior of the structure, is a 
fundamental issue for the application of the non-linear static procedure. The results of the 
procedure significantly depend on the selection of the control point and, in some cases, show 
quite large variations. Therefore, the results obtained by the non-linear static procedure should 
be evaluated with caution in function of the control point chosen for the procedure. This result 
is proven by the study of the Tower VI, where torsional effects are evident.  It is shown that 
the results obtained with a control point which is not part of the local collapse overestimate 
the capacity of the structure. On the contrary, if a point belonging to the vulnerable part of the 
structure is chosen as a control point, the results underestimate the capacity of the structure.  
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The non-linear static procedure can give a satisfactory representation of the seismic 
behavior of the towers in terms of structural safety verification and displacement demands 
when significant irregularities are not present. In slender towers with presence of irregularities 
the contribution of higher modes to the global response may be considerable. Structures with 
higher mode effects exhibit a complex dynamic response that necessitates the use of more 
sophisticated methods of analyses. 
7.2 Seismic safety assessment and failure modes of the towers 
The check of the seismic safety of the analyzed towers is satisfied according to the non-linear 
static procedure under Sag=0.1g, with the exception of Tower VI that is a borderline case. 
Similar results are obtained through the non-linear dynamic analyses. Only Tower V and 
Tower VI present large residual deformations, indicating the activation of local failure 
mechanisms, mainly due to the geometrical irregularities, even for peak ground acceleration 
equal to 0.1g.  
According to the non-linear static procedure, the analysed towers are not able to 
accommodate the seismic demand under Sag=0.2g, with the exception of Tower IV and 
Tower II. These results are supported by the outcomes of the non-linear dynamic analyses.  
The peculiar geometrical characteristics and configurations are the main reasons of the larger 
seismic resistance of these two towers than the one of the other towers. In the case of Tower 
IV, the thickness of the four perimeter walls is larger than the one of the other towers and it 
remains constant along the height of the structure. In addition, at the top of the tower there are 
no large openings, which can represent a vulnerable upper part, when compared to the 
majority of the other towers. Tower II is symmetrical both in plan and in elevation and 
presents a regular internal distribution. The tower has a square plan and its weight is much 
smaller than the one of the other towers, leading to a great reduction of the seismic forces. 
For the other towers under study, different failure modes can be observed. The role played by 
both the geometrical characteristics and the presence of irregularities on the possible collapse 
mechanisms is highlighted by the results of the analyses. Problems relative to the structural 
configuration, especially asymmetry and inadequate arrangement of openings, can affect the 
level of damage in the towers. 
A non-uniform stiffness and strength distribution, in plan and elevation, and torsional effects 
can be some of the main causes for a widespread damage and even collapse of the towers. 
Tower VI is characterized by a wall with small thickness and a large opening at the top. A 
failure mechanism involving the detachment of the wall is registered.  
For Tower V and Tower VIII, the role played by the internal vaults in modifying the load path 
for gravity and earthquake loads is evident and unexpected stress concentrations may arise. 
Localized and severe damage as a result of a redistribution of internal actions transferred by 
the vaults is highlighted by the analyses. Moreover, Tower V exhibits sudden variations of the 
walls thickness along the height and Tower VIII presents some irregularities within the 
perimeter walls. 
The quite marked inclination, the high slenderness and the plan asymmetry are the main 
causes for the widespread damage of Tower VII.  
A significant reduction of stiffness and strength of a wall is observed when multiple openings 
are present, like in the cases of Tower I and Tower III. Tower I has several openings on two 
parallel walls and Tower III presents large openings both at the base and at the top. A damage 
concentration with cracks propagating vertically is observed near the openings. 
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8 CONCLUSIONS 
A comprehensive numerical study conducted by means of advanced FE simulations (non-
linear dynamic and static analyses) on eight historical masonry towers located in the North-
East region of Italy is presented. From an overall analysis of the results obtained in this study, 
the following conclusions may be drawn. 
-The results of the non-linear dynamic simulations show the high vulnerability of historical 
masonry towers under horizontal loads. It can be roughly stated that if a residual deformation 
ranging between 0.4% and 0.8% is reached, the structure may be reasonably considered near 
collapse. 
-Some geometrical characteristics, such as plan and elevation irregularities, presence of belfry, 
large openings, sudden variation of cross-section, internal vaults and tower inclination, play a 
crucial role on the seismic performance of the towers. The correlation between local 
geometrical issues and possible failure modes of the towers is clearly highlighted by the 
numerical analyses. 
-The seismic demands obtained by the non-linear static procedure are generally in a good 
agreement with those obtained by the non-linear dynamic analyses, above all when the check 
of the structural safety is verified according to the non-linear static procedure. When the 
check is not satisfied according to the non-linear static procedure, the seismic demand is 
smaller than the maximum value of the top displacement experienced by the tower during the 
dynamic simulations. The simplified static approach is not able to capture the inertial effects 
associated with seismic excitation that can lead to heavy damage and premature collapse of 
the structure. 
-The non-linear static procedure may provide reasonable synthetic predictions of the seismic 
vulnerability of the towers. The two approaches provide similar results in terms of seismic 
safety assessment, with slightly less conservative predictions for the non-linear static 
procedure. A comparison between the results obtained by the two approaches shows that the 
non-linear static procedure is able to assess the structural safety only when local collapse 
failures are not involved. 
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Abstract. This study presents some results of advanced numerical investigations carried out 
on the Nativity Church in Bethlehem in order to study the seismic response of the structure 
and identify possible causes of damage. Detailed three-dimensional finite element models of 
the church are developed and a damage plasticity material model, exhibiting softening in both 
tension and compression, is used for masonry. Non-linear bidirectional dynamic analyses are 
first performed on the model of the entire church in the actual configuration. From an overall 
analysis of the numerical results, it is possible to observe damage in the vault system, in the 
semi-domes and near the interlocking of the orthogonal walls. Then, the narthex is separated 
from the church and is analyzed under seismic excitation applied only in the longitudinal 
direction. The numerical simulations carried out provide some results that fit reasonably with 
the actual deformed configuration and can be considered as a useful tool for future 
rehabilitation interventions. 
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1 INTRODUCTION 
Very little is known about the history of the transformations of the narthex of the Nativity 

Church since its construction. The narthex that we see now, or at least the narthex that we can 
imagine on the basis of the current volumes or of the traces of some ancient and still visible 
openings on the walls, replaced in the second half of the VI century AD a larger cloister 
belonging to the previous Church, wanted by Queen Helena, mother of Emperor Constantine, 
in the IV century. From the outcomes of some archaeological excavations made in the thirties 
of the last century by R.W. Hamilton and from the results of the studies that have followed, it 
was possible to go back to the original form of the narthex that, unlike as it is now, was 
composed of a single volume, had a bigger central door flanked by two smaller side doors in 
both longer walls and two windows placed symmetrically with respect to the front door, 
Figure 1. 

 

 Figure 1: Original narthex of the Church of the Nativity.  From some traces found in the walls during the restoration works still in progress, it was possible to deduce that the original roof of the narthex was made of timber, with a single pitch, as in almost all early Christian and Byzantine basilicas with narthex. The typology of this wooden roof is still unclear, although the traces left on the walls suggest that it consisted of a series of simply supported beams arranged according to the slope of the roof. Anyhow it was a light roof. Over the centuries, especially during the Middle Ages, the Church increasingly took on the appearance of a fortress equipping itself with walls and towers for defense. Some traces of these additions are visible today even in the narthex, in particular in a small protective parapet above the façade and in two thick interior walls, perpendicular to the façade, probably the base of two outer towers, Figure 2 and Figure 3. Maybe, in order to allow these transformations for protective purposes, or in consequence of some destructive earthquakes, the original timber roof was replaced by a system of masonry cross vaults and some openings were infilled or reduced in size. The two internal walls are made of masonry of poor quality, or at least lower than that of the external walls, and they are simply adhering to the façade walls of the narthex and Church without any effective connection.    
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 Figure 2: Plan of the Church with the current narthex.  

 Figure 3: Longitudinal section of the Church  Also the vaults, made of irregular and roughly cut stones, are connected to the façade walls of both narthex and Church only in correspondence of the corbels at the base of the arches and for a height of about 1,10 – 1,30 m. Instead, such vaults are well connected with each other in the direction East-West (the longitudinal direction of the Church) by means of arches, orthogonal to the façade and built with greater and more regular stones; such stones have two different lengths, which alternate to allow for a greater connection between arches and vaults. Even the diagonal arches of the vaults are made with more regular stones, although not as the ones of the arches mentioned before. The thickness of the vaults is not constant everywhere and it varies between 35 – 40 cm. Before starting the restoration the space between the external paving and the extrados of the vaults was filled with sand and remains of a medieval paving. Some inspections made on site have shown that the walls of the narthex continue downwards with a constant thickness up to a depth of 94 cm from the floor; then they have an enlargement of 20 cm on each side up to a depth of 141 cm and continue with a compact layer of stones and mortar for other 150-165 cm before reaching the bedrock. The two side walls of the narthex are 1,00 m thick and have an inner core of undefined thickness; the façade wall, 
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like the façade of the Church, is 1,15 thick, made of regular stones and with limited or null inner core. The narthex is now connected with the monasteries of the Franciscans Friars (North) and of the Armenian religious community (South), Fig. 2, who, together with the Greek-Orthodox one, manage the activities in the Church according to the current status quo. On the external front, towards the square, there is a big buttress probably built after the XVI century: in fact some drawings by Fr. Bernardino Amico, dating back to 1609, show the façade of the narthex still without the buttress, Figure 4.  

 Figure 4: Plan of the Nativity Church (1609).  
2 STATE OF STRUCTURAL DAMAGE AND CAUSES 

The structure of the narthex is today strongly deformed. The façade wall exhibits a rotation 
towards the square more pronounced in the middle of its length and starting approximately 
from the architrave of the Humility door, about one meter above the ground. In consequence 
of this rotation, the façade wall has undergone a maximum horizontal displacement at the top, 
approximately in the middle of the wall, of about 40 - 42 cm measured from the base of the 
parapet. It is a very high value when compared with the height of the wall, about 8.70 meters. 
If some fractures have occurred in the past, these are now closed due to local interventions of 
cleaning and consolidation made over the centuries, which shows that the damage evolution is 
now over and that it was probably over even when the external buttress, still perfectly vertical, 
was added. The façade of the Church, opposite to the one of the narthex, exhibits a light out-
of-plane deformation which starts from the roof of the narthex and achieves 10 cm at the top 
of the tympanum. In consequence of the rotation of the façade of the narthex the three central 
vaults, and in particular the one in the middle, underwent vertical displacements downwards 
in the central zones, detachments from the façade walls and cracks both at the extrados and 
the intrados. Especially the central vault, propped since the thirties of the last century, exhibits 
detachments 17-19 cm wide from the narthex façade and 10-11 cm wide from the Church 
façade Figure 5. Moreover big cracks, parallel to the façades, are visible at the extrados 
Figure 6. 
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 Figure 5: Detachments from the wall.  

 Figure 6: Cracks at the extrados of the central vault.  The arches connecting the vaults to each other (in the East – West direction) and also the ones along the diagonal planes of the vaults are strongly deformed. The causes of these damages have never been clarified. The replacement of the original wooden roof with a set of thrusting masonry vaults probably gave a significant contribution to the rotation of the façade towards the square. It is believed, however, that such thrusts alone cannot have been able to cause maximum horizontal displacements as large as those measured. Therefore, since Bethlehem is in a seismic area which over the centuries underwent several earthquakes, some of them even severe, it is very probable that a seismic event, occurred before the construction of the buttress, was one of the main causes of damage. The external buttress, added in the last centuries, as mentioned above, shows no sign of rotation and no differential vertical displacement. The aim of this work is to identify, through a proper numerical simulation, the seismic event that, together with the thrust of the vaults, might have caused damage in the vault system and the present out-of-plane deformation of the narthex façade and of the tympanum of the main entrance. To this purpose, a 3D finite element model of the entire Church was built and analyzed by using the commercial software ABAQUS. The model reproduces the actual configuration of the church, but without the external buttress and without connections with the monasteries of the Franciscans Friars and of the Armenian religious community. The vaults at both ends of the narthex (North and South) were not modelled because their survey had not been yet carried out at the time of the present analysis. The presence of the three internal walls was taken into account. It is worth noting that a three-dimensional structural analysis of the entire Church is significant when a good level of interlocking among the structural elements is guaranteed. If such connections are not reliable, as in the case of the Church of the Nativity, it is, on the other hand, advisable to perform numerical analyses on smaller portions that may be affected by local collapse mechanisms.  A detailed finite element model of the narthex was then created by using a finer discretization. The model reproduces, with some approximations and simplifications, the structure of the narthex as depicted by Fra Bernardino Amico at the beginning of the XVII century, without the external buttress, with a unique access door (the Humility door) and only two small 

5291



Gabriele Milani, Marco Valente, Claudio Alessandri 

windows on the façade, with masonry cross vaults instead of the original wooden roof. The side walls of the narthex are supposed clamped to the Church, the height and thickness of the vaults have values computed as an average of the real ones and the vaults are connected to the façade walls of both narthex and Church. Moreover they are connected to each other in the East - West direction (longitudinal direction of the Church) by means of arches similar to the real ones, Figure 6, and clamped to the façades of the narthex and Church. The façade of the Church is supposed to be clamped at the intersection with the orthogonal walls of the nave and the aisles. Figure 7 shows a view of the system of masonry cross vaults in the model of the narthex.   

 Figure 7: The system of masonry cross vaults in the model of the narthex.  
3 FINITE ELEMENT NUMERICAL MODELS 
With the aim of reproducing the actual state of damage on the narthex it is chosen to study the effects of a possible earthquake by non-linear dynamic analyses by applying spectrum compatible acceleration time-histories at the base of the structure. Such a method of analysis is very time consuming, but it is much more accurate and reliable than other approaches for its capability to identify in- and out-of-plane, as well as local and global failure mechanisms. Different three-dimensional finite element models of the church and the narthex are implemented in Abaqus, taking into consideration geometrical (large displacement effects) and material non-linearity (elastic-plastic with damaging behavior of the masonry material). Despite the general drawbacks regarding non-linear dynamic analyses, the use of sophisticated 3D models requires a relatively reasonable computational effort on sufficiently powerful workstations, if the discretizations are not excessively refined and the material models do not exhibit strong softening. On the other hand, Italian Guidelines for the built heritage specify that such analyses can be conducted using finite element models and considering suitable constitutive models. Such models should be capable of reproducing the typical strength and stiffness degradation exhibited by the masonry material in the inelastic range. Italian Code on Constructions NTC 2008 and subsequent explicative notes underline that the aim of dynamic analyses would be the evaluation of the structure in the non-linear range under an expected accelerogram, allowing for a comparison between required and available ductility. Also, it is possible to verify the integrity of the structural elements which can potentially show brittle behavior. When dealing with material properties assumed and available in Abaqus software code, the so-called “Concrete Damage Plasticity” model was adopted. Such a model is based on the assumption of a scalar isotropic damage with distinct damage parameters in tension and 
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compression. It is particularly suitable for applications in which the material exhibits damage, especially under load-unload conditions and hence for dynamic analyses. An elastic-plastic behavior in both tension and compression can be also taken into account. To describe the multi-dimensional behavior in the inelastic range, masonry is assumed obeying a Drucker-Prager strength criterion with non-associated flow rule. A value equal to 10° is adopted for the dilatation angle, which seems reasonable for a masonry material subjected to moderate-low levels of vertical compression, also in agreement with experimental evidences available in the literature. To avoid numerical convergence issues, the tip of the conical domain of the Drucker-Prager strength domain is smoothed with a function having hyperbolic shape. Abaqus code allows ruling smoothing by means of the so-called eccentricity parameter, which represents the length of the segment between the points of intersection of the cone and of the hyperbola with the p axis in the p-q space. A value equal to 0.1 is adopted for the eccentricity parameter. Experimental results reported by Page on regular masonry wallets and successive numerical models show that such a material exhibits a moderate orthotropy ratio (around 1.2) under biaxial stress states in the compression-compression region. Obviously, such feature cannot be taken into account when an isotropic model, like the present one, is used. However, the use of isotropic models (like concrete smeared crack approach available in both Ansys and Adina) is commonly accepted in the literature after adapting the parameters to fit and average behavior between vertical and horizontal compression. A suitable model should also take into account the ratio between the ultimate compression strength in biaxial stress states and in uniaxial conditions. Such a ratio, which exhibits some similarities between concrete and masonry, is reasonably set equal to 1.16. In tension the stress-strain response follows a linear-elastic relationship until the peak stress 
0t  is reached. Then, micro-cracks start to propagate in the material, a phenomenon which is macroscopically represented by softening in the stress-strain relationship. Under axial compression, the response is linear up to the value of the yield stress . After the yield stress, the response is typically characterized by hardening, which anticipates compression crushing, represented by a softening branch beyond the peak stress . Damage variables in tension and compression are defined by means of the following standard relationships:       pl

cccc

pl
tttt

Ed
Ed






0
0

1
1                                                                 ( 1 ) 

where t ( c ) is the mono-axial tensile (compressive) stress, 0E  is the initial elastic modulus, 
t ( c ) is the total strain in tension (compression), pl

t ( pl
c ) is the equivalent plastic strain in tension (compression). When strain reaches a critical value, the material elastic modulus degrades in the unloading phase to E < 0E . In particular, within the simulations, a reduction equal to 5% of the Young modulus with respect to the initial value is assumed for a plastic deformation equal to 0.003.  The issue of mechanical properties to adopt for the constituent materials results particularly difficult, especially in the absence of ad hoc experimental campaigns and specific indications by local building codes. It is common opinion, however, that the major damages registered in historical churches are a consequence of very poor mechanical properties of joints, whereas clay bricks exhibit a quite high strength. In the absence of specific indications, it was chosen to refer to what stated by Italian Code for existing masonry buildings. As a matter of fact, masonry is a material which exhibits distinct directional properties due to the mortar joints, acting as planes of weakness. Considering the well-known limitation of use of both micro-modelling and homogenization at large scale, isotropic macro-models are adopted for masonry. The reason for adopting an isotropic material stands in the impossibility to evaluate many parameters 
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necessary for anisotropic materials in the inelastic range, in the absence of ad-hoc experimental characterizations. Finally, it is worth noting that commercial codes rarely make available to users anisotropic mechanical models suitable to describe masonry with regular texture in the non-linear range. According to Italian Code NTC 2008 and subsequent Explicative Notes, the mechanical properties assumed for masonry material depend on the so-called knowledge level LC, which is related to the so-called Confidence Factor FC. There are three LCs, labeled from 1 to 3, related to the knowledge level about the mechanical and geometrical properties of the structure. The knowledge level LC3 is the maximum, whereas LC1 is the minimum. For the cases at hand, a LC1 level is assumed in the absence of specific in-situ test results. Confidence Factor FC summarizes the knowledge level regarding the structure and the foundation system from a geometric and mechanical point of view. It can be determined defining different partial confidence factors FCk (k=1,4), on the basis of some numerical coefficients present in Italian Code (Table 4.1 Italian Guidelines). Due to the limited knowledge level achieved in this case, the highest confidence factor (FC = 1.35) was used. The values adopted for cohesion and masonry elastic moduli are taken in agreement with Table C8A.2.1 of the Explicative Notes, assuming a masonry typology with very poor mechanical properties of the joint and quite regular courses. With the lowest knowledge level LC (confidence factor FC=1.35), Italian Code requires to select, in Table C8A.2.1, the lower bound values for strength and the average values between lower and upper bound for elastic moduli. The application of the acceleration time-history occurs at the second step, where the 
structure is unrestrained using trailers, thus allowing it to move along the direction of the 
seismic action. The numerical analyses are carried out by means of a dynamic approach with 
implicit integration in the time domain, using a time step equal to 0.005 s, which corresponds 
to the accelerogram registration time interval. The results of the analyses conducted in this 
study are reported in the following sections. 

 
4 NON-LINEAR DYNAMIC ANALYSES OF THE CHURCH  
A detailed three-dimensional finite element model of the entire Church was developed by means of  ABAQUS code, Figure 8, with the aim of investigating the seismic behavior of the structure through non-linear dynamic analyses. A finite element discretization, based on four nodes tetrahedral elements presenting an average size of 0.40 m, was adopted. The total number of elements of the model was equal to 131551. In particular, the mesh was refined near the regions where the main failure mechanisms were likely to start. Since not negligible out of plane displacement may occur during a seismic event, large displacement effects were considered. Perfect connection was assumed between perpendicular walls.  

 Figure 8: Finite element model of the entire Church of the Nativity. 
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The bidirectional non-linear dynamic analyses were performed by using artificial accelerograms generated by means of the software code SIMQKE. In this study the Church was subjected to spectrum compatible accelerograms corresponding to a peak ground acceleration equal to 0.15g according to Eurocode 8. The area where the Church is located is a medium-intensity seismic area with ag = 0.15g, where ag is the maximum horizontal acceleration occurring in the area, with a 10% of probability of exceeding this value over 50 years. Due to the complexity of the model and the high computing time of this type of analysis, the duration of the accelerograms was set equal to 10 s. In Figure 9 the contour plots of tension damage (red color is associated to full (1) damage and blue color to zero (0) damage), are shown from different points of view at the end of the numerical simulation. From an overall analysis of the numerical results, it is possible to notice that the Church exhibits significant damage under the expected earthquake excitation. It is evident that the damage spreads very quickly in the vault system, in the semi-domes and near the interlockings of the orthogonal walls. The damage in the vaults starts in the lateral right corner and then propagates towards the middle.  
 

 Figure 9: Contour plots of tension damage at the end of the non-linear dynamic analysis (red, 1: full damage; blue, 0: no damage).  Figure 10 shows the horizontal displacement time history for various control nodes of the Church along both the longitudinal and transversal directions. The main control nodes of the Church model monitored during the numerical simulations are shown in the same figure. In the longitudinal direction a maximum top displacement equal to 6 cm was computed for the top of the tympanum (control node P1) after about 7 s from the beginning of the ground motion. The stiffening presence of the internal walls of the narthex have the effect of reducing the out-of-plane rocking of the narthex façade during the application of the accelerograms. The maximum top displacement measured on the top of the narthex façade is about 5.5 cm.  
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 Figure 10: Displacement time history of some control nodes along the longitudinal and transversal directions during non-linear dynamic analyses.  
5 NON-LINEAR DYNAMIC ANALYSES OF THE NARTHEX 
The results of the non-linear dynamic analyses performed on the model of the whole Church showed the vulnerability of the structure under horizontal loads pointing out some critical regions. It is worth noting that the use of sophisticated three-dimensional finite element models requires a large computational effort and the model of the entire Church proved to be very-time consuming under bidirectional non-linear dynamic analyses. A finite element model of the narthex only was created in order to perform different non-linear dynamic analyses with various peak ground accelerations. Then, the seismic performance of the narthex was assessed through non-linear dynamic analyses with response spectrum-compatible artificial accelerograms. A finer mesh, consisting of about 85000 tetrahedron elements and depicted in Figure 11, could be used for the narthex in this model. The internal walls were not modelled in order to reproduce the original configuration of the narthex and to neglect the stiffening effect provided by these elements.  The evaluation of the seismic response of the narthex was carried out using an artificial accelerogram, with duration equal to 20 s. For sake of simplicity, numerical analyses were carried out only in the longitudinal direction. The accelerogram used was generated by means of the software code SIMQKE in order to match the Eurocode 8 response spectrum. Different peak ground accelerations ranging between 0.15g and 0.25g were considered for the analyses. This finite element model was used to identify the possible different collapse mechanism that can occur in the narthex. A ground motion applied in the longitudinal direction can determine the detachment of the narthex façade from the façade of the church, creating tensile stresses in the vault system. The vault system represents a critical element for the narthex and it is expected to undergo significant damage at the beginning of the numerical simulation. Figure 11 describes the tensile and compression damage evolution, respectively, during the non-linear dynamic analysis. The results are reported at the end of the analysis (20 s). It can be noted that damage concentrates mainly in the cross vault system and, to a small extent, on 
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both the façades. In particular, the tensile damage starts at the base of the vault system and then propagates to the middle part involving the whole system of vaults.  On the contrary, the compression damage starts at the top of the vault system and then 
propagates to the base. It can be noted that the interlocking of the longitudinal walls with the 
western façade of the Church tends to experience considerable damage. 

 

  
Figure 11: Contour plots of the tensile damage in the narthex at the end of the numerical simulation (red, 1: full damage; blue, 0: no damage).  

The horizontal and vertical displacement time histories for some control nodes are reported in 
Figure 12. All the control nodes of the narthex model monitored during the numerical 
simulations are shown in the same figure. The horizontal displacements of three meaningful 
control nodes are measured during the numerical simulations: they are located on the top of 
the narthex façade, of the tympanum and of the central cross vault. The maximum horizontal 
displacement (about 10 cm) is observed for the control node N14 at the top of the tympanum 
of the main entrance. The narthex façade exhibits a peak horizontal displacement equal to 
about 6 cm. As regards the vertical displacement, the maximum value, equal to 9 cm, is 
registered for the central vault. 

 

 

 Figure 12: Horizontal and vertical displacement time-history of some control nodes during non-linear dynamic analyses.  

5297



Gabriele Milani, Marco Valente, Claudio Alessandri 

The maximum values of the vertical displacements of the control nodes of the cross vaults are shown in Figure 13 for different peak ground accelerations. As can be noted, the maximum vertical displacements of the central vault is always larger than the other vaults. For higher values of seismic intensity levels (ag=0.25g), the central vault presents a maximum value of vertical displacement equal to 15 cm. The maximum values of the horizontal displacement of three meaningful control nodes are shown in Figure 14 for different peak ground accelerations. It can be noted that the peak values of the horizontal displacement of the narthex façade are always smaller than the top of the tympanum of the western façade. Under a seismic intensity level of 0.25g the tympanum exhibits peak displacements equal to about 35 cm, whereas the maximum displacement registered for the narthex façade is about 20 cm. Non-linear dynamic analyses are able to provide, among other information, residual 
displacements of the control nodes. The maximum values of the residual displacements (35 
cm) are registered for the western façade of the Church when subjected to seismic excitation 
with ag=0.25g. As can be observed, the residual displacement found for the façade of the 
narthex is about 20 cm, still lower than the real ones, but indicating that a seismic event may 
be the cause of the present state of degradation. Probably larger residual displacements might 
be achieved by simulating the occurrence of a sequence of ground motions, as confirmed by 
the chronicles of the earthquakes in the area. 

 

 Figure 13: Maximum values of vertical displacement of some control nodes for different peak ground accelerations.  

 Figure 14: Maximum values of horizontal displacement of some control nodes for different peak ground 
accelerations. 

6 CONCLUSIONS  
This study summarizes the numerical investigations carried out on the narthex of the Nativity Church in Bethlehem. Advanced finite element numerical models accounting for 
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masonry damage and softening have been used within demanding non-linear dynamic simulations in order to identify the possible causes of damage in the narthex. Non-linear bidirectional dynamic analyses were first performed on the model of the entire Church in the actual configuration. From an overall analysis of the numerical results, it is possible to notice that the Church exhibits damage for the expected earthquake excitation. It is evident that damage spreads very quickly in the vault system, in the semi-domes and near the interlocking of the orthogonal walls. The damage in the vaults starts in the lateral right corner and then propagates towards the middle. Then, the narthex was separated from the Church and was analyzed under seismic 
excitation applied only in the longitudinal direction. Numerical results show the behavior of 
the narthex is considerably affected by the presence of the vaults that act as connecting 
element between the western façade of the Church and the façade of the narthex. During a 
moderate intensity earthquake, the vault system is subjected to significant stresses and 
consequently to severe damage. The second critical element of the narthex is the western 
façade that tends to show a local overturning mechanism due to the gradual accumulation of 
damage near the base of the vault system. Moreover, the façade of the narthex can reach 
significant displacements under seismic actions with ag=0.25g. The results seem to indicate 
that the rotation of the narthex façade, with a consequent maximum out-of-plane displacement 
of 40 cm approximately, is probably due to a seismic event of great intensity or to several 
seismic events occurred in sequence over time. Certainly, results closer to the measured data 
can be obtained by introducing proper unilateral contact conditions at the interface between 
vaults and façade walls or between longitudinal walls and façade walls. 
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Abstract. This paper attempts to address the earthquake performance of Basilica churches in 

parts of Greece during the last 30 years. Towards this objective use is made of in-situ 

observations together with relatively simple numerical tools. The numerical study includes 

soil-foundation deformability. The earthquake performance of three specific stone masonry 

Basilica churches is investigated. The second and third of these churches are simply covered 

by a wooden roof whereas the first has also a stone masonry vaulted superstructure under its 

wooden roof. All three churches developed significant structural damage typical of   churches 

of this Basilica typology as was observed in Greece during the last 30 years. It has been 

observed that such churches develop structural damage to the masonry walls and vaults, in 

certain cases quite serious, that is believed to arise from the amplitude of the gravitational 

and seismic actions combined with the deformability of the foundation which is included in 

the current investigation. The numerical models simulating the main structural system of 

these churches  are  supplemented at the foundation level with flexible springs in an effort to 

capture the influence of such soil-foundation deformability. Simple numerical analysis results 

together with assumed strength values are utilized to predict the behaviour of the various 

masonry parts that belong to the longitudinal and transverse peripheral wall  in in-plane 

shear and normal stress as well as out-of-plane flexure. The recorded ground acceleration 

during the Kozani 1995 earthquake for the first two churches and the 1978 Thessaloniki 

earthquake for the third church, as it was recorded at a relatively close distance, is used in 

this numerical investigation. Towards this end, the dynamic characteristics in terms of eigen-

modes and eigen-frequencies of the examined structural systems are also utilized.  
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1 INTRODUCTION 

During the last thirty years various parts of Greece have been subjected to a number of 

damaging earthquakes ranging from Ms=5.2 to Ms=7.2 on the Richter scale [1]. One of the 

most demanding tasks for counteracting the consequences of all these seismic events was the 

effort to ensure the structural integrity of old churches that were built in periods ranging from 

400 A.D. up to today; in many cases they sustained considerable damage ([1], [2], [3], [4], 

[5]). The earthquake behaviour of churches belonging to the so-called Post-Byzantine period 

(16th to 19th century A.D.) has been studied numerically in some detail ([2], [3], [4], [5], [6]) 

In all these cases the foundation was considered to be non-deformable. However, this is a 

gross approximation as in most cases these churches are founded on deformable soil. In some 

instances, the deformability of the soil caused considerable damage as is the case of the 

church of The Assumption of the Virgin Mary at Dilofo-Voio-Kozani, as will be presented in 

section 2 ([7], [8]). In some other cases the main cause of recent damage is the earthquake 

activity that is accentuated by the deformability of the soil ([9], [10], [11], [12]). This is 

presented in the section 3, where the damage of the church of Agia Triada at Vithos-Kozani 

and of Profitis Elias at Siatista-Kozani is also included, as well as in section 4 where the 

earthquake performance of the old Byzantine church of Achiropoiitos in Thesalloniki is 

examined. It must be noted that all these churches were built in a number of phases on old 

existing sacred sites. During the Turkish occupation the most prominent Christian churches 

were transform to mosques or prohibitions were imposed forbidding the construction of new 

churches but allowing the maintenance of existing ones, after special permit [13]. In what 

follows an overview of three specific cases of Greek Byzantine churches where the 

foundation deformability influenced the dynamic and earthquake behaviour is presented and 

discussed. 

  

Figure 1. Damage to the  South-East corner  Figure 2. Partial collapse of the central dome 

 

2 THE CHURCH OF THE ASSUMPTION OF THE VIRGIN MARY AT DILOFO 

The West part of this church is founded on hard soil (weathered flysch layers) whereas the 

East part is founded on relatively soft soil that was deposited on top of the layers to 

compensate for the natural slope at this location ([7], [8]). The unequal settlement of the 

foundation of the stone masonry walls as well as of the internal columns that supported the 

vaulting system, which covered this church, caused considerable damage. A very wide crack 

initiates at the top of the East peripheral wall near the apse and propagates towards the bottom 

of this wall being inclined to the South-East corner (figure 1). Furthermore, a similarly wide 

crack propagates through the North peripheral wall from top to bottom. It must be noted that 
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the thickness of these masonry walls varies from 750mm to 800mm. From this extensive 

peripheral wall damage, the vaulting system that is supported by these peripheral walls also 

suffered extensive cracking that eventually caused the partial collapse of a part of the central 

dome, as shown in figure 2. 

    Initially, the 3-D numerical simulation of this church, including the peripheral walls, the 

vaulting system of the superstructure and the wooden roof, assumed that the foundation was 

non-deformable. The results of the modal analysis for the church supported on the non-

deformable foundation are shown in a summary form in figures 3a and 3b. In these figures the 

most significant eigen-modes are depicted together with the corresponding values of the 

eigen-periods as well as the modal mass participation ratios either in the x-x direction (Ux) or 

in the y-y direction (Uy). As can be seen the longest eigen-period is, as expected, for the 

fundamental x-x direction translational mode, with a value equal to 0.228seconds that 

mobilizes 72.48% of the total mass. The next longest eigen-period is for the fundamental y-y 

direction translational mode, with a value equal to 0.132seconds that mobilizes 59.37% of the 

total mass. 

 

 
 

Figure 3. 

Eigen-

modes 

a) Mode 1, 

T1=0.228sec 

Ux=72.48% 

b)  Mode 2, 

T2=0.132sec 

Uy=59.37% 

c)  Mode 1, 

T1=0.391sec 

Ux=83.48% 

d)  Mode 2, 

T2=0.276sec 

Uy=78.37% 

 

Next, layers of deformable soil were introduced beneath the foundation of all the peripheral 

walls and internal colonnades. The stiffness of these soil layers was varied with the depth as 

well as in plan in order to simulate the relatively hard soil at the West part of the church and 

the relatively soft soil at the North-East part of the church. The results of the modal analysis 

for the church (low-stiffness soil layers) supported on the deformable foundation are shown in 

a summary form in figures 3c and 3d. In these figures the most significant eigen-modes are 

depicted together with the corresponding values of the eigen-periods as well as the modal 

mass participation ratios either in the x-x direction (Ux) or in the y-y direction (Uy). As can 

be seen the longest eigen-period is, as expected, for the fundamental x-x direction 

translational mode, with a value equal to 0.391 seconds that mobilizes 83.48% of the total 

mass. The next longest eigen-period is for the fundamental y-y direction translational mode, 

with a value equal to 0.276seconds that mobilizes 78.37% of the total mass. As can be seen, 

apart from the lengthening of the fundamental eigen-period values, the deformable foundation 

resulted in a larger portion of the mass being mobilized for the first two translational eigen-

modes in the x-x and y-y direction than for the case of non-deformable foundation.  

The 3-D numerical representation of the church, including the peripheral walls, the 

vaulting system of the superstructure and the wooden roof were subjected to load 

combinations of either 0.9G±1.4Ex or 0.9G±1.4Ey, where G is the gravitational loads and Ex, 

Ey the earthquake forces along the x-x axis (longitudinal East-West direction) or the y-y axis 

(transverse North-South direction, respectively.  

This was done for both the non-deformable and the deformable foundation. Selected 

results of the obtained maximum stress response are shown in figures 4a to 4d. More results 
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are given by Manos et al. ([7], [8]). The following summarize the most significant 

observations of this numerical study: 

 

 
 

4a)  Non-deformable foundation, σ11 top  face, 

max σ11 = 0.38 MPa    (NW view) 0.9G+1.4(+Ex) 

4b)  Deformable Foundation, σ11 top  face, max σ11 = 

0.53 MPa    (NW view) 0.9G+1.4(+Ex) 

  

4c)  Non-deformable foundation, σ11 bottom  face, 

max σ11 = 0.46 MPa    (SE view))  0.9G+1.4(-Ex)   

4d)  Deformable Foundation, σ11 bottom  face, max 

σ11 = 0.64 MPa    (SE view) 0.9G+1.4(-Ex)   

 

- The foundation deformability due to layers of soft-soil deposits at the North-Eastern part 

of the foundation, as was approximated numerically, increased both the fundamental 

translational modes eigen-periods and the corresponding modal mass participation factors. 

- This foundation deformability, as was approximated numerically, also increased the 

maximum predicted vertical and horizontal displacement values. This increase was threefold 

for the horizontal displacements and ten-fold for the vertical displacements.  

- This foundation deformability, as was approximated numerically, also increased the 

maximum predicted axial stress values parallel to the bed-joint. This increase was of the order 

of 20% up to 40%. 

- Due to this increase of the predicted maximum axial stress values parallel to the bed-

joint, arising from the foundation deformability, the assumed corresponding tensile strength is 

exceeded in all the locations where actual damage was observed. 

- Despite the simplicity of the adopted numerical modeling as well as of the assumed 

failure criteria in the direction parallel to the bed-joint, this simple failure criterion and the 

predicted relevant maximum stress values can explain the observed damaged in all the 

locations. 

- Further research is necessary in order to establish stone masonry strength values and 

failure criteria that are based on tests representative of the stone masonry that is investigated. 

- The capabilities of more refined numerical modeling should also be investigated. 
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3 THE CHURCH OF PROFITIS ILIAS AT SIATISTA – KOZANI.  

    This is also a Post-Byzantine three nave Basilica built in 1701 A.D. on the top of a hill in 

the town of Siatista of the prefecture of Kozani. It also has a wooden roof without the vaulting 

system of the Basilica church described in section 2. The horizontal dimensions of this church 

are 23.25m in length and 16.60m in width. The top of the roof lies at 7.1m from the floor 

level of the interior of this church. The naves are formed by 4-column colonnades built with 

stone masonry. The lower part of the key of each arch of these colonnades lies at 5.25m from 

the floor level of the interior of this church. All the exterior walls are made of stone masonry. 

Apart from the main church a narthex was built at the North side at a later stage; this is of a 

relatively lower height than the main church. The West part of the church is allocated to the 

women’s quarters that is separated from the rest of the interior by a mid-transverse wall. The 

South longitudinal wall is supported by a system of wooden beams. These were installed after 

the Kozani-1995 earthquake sequence. Additional wooden supports are also placed at the 

mid-transverse wall as well as at the mid-span of a longitudinal beam that spans the women’s 

quarters from East to West. According to past records, the structural system of this church 

showed signs of distress from soil-settlement sometime before the occurrence of this 

particular earthquake sequence. The records do not give information of any countermeasures 

being taken in the past up to the point of the earthquake occurrence. The main structural 

damage, as recorded after this earthquake sequence, is described below. Inclination of the 

South longitudinal  wall outwards that is accompanied by extensive cracking at its joints with 

the East and West exterior masonry walls as well as with the mid-transverse wall. Cracking is 

evident at the arches of the colonnades. Recently, almost 20 years after this earthquake 

damage, a number of counter measures were introduced towards repairing the masonry walls 

as well as introducing a relatively shallow reinforced concrete beam at the foundation level 

from the exterior of the West, South and East peripheral walls. 

 

   The numerical investigation of this church included the following ([9], [10], 11]): 

 

a) Simulation of the behaviour assuming non-deformable supports at the foundation level.  

b) Simulation of the behaviour assuming deformable supports at the foundation level, 

introducing at this level elastic springs with properties reflecting the actual soil deformability 

that was found from in-situ sampling. 

    The soil consists of clay in its upper layers. For quantifying the stiffness of these soil layers 

use was made of the data from three bore-holes drilled in the vicinity of the church relevant to 

the constitution of the soil deposits at a depth up to 15m. All the numerical simulations 

assumed elastic behaviour with relatively low-values of the modulus of elasticity for the stone 

masonry equal to E=1660MPa. In the case of Basilica churches damaged in Kefalonia Greece 

by the 2014 earthquake sequence in-situ measurements of the dynamic response of a bell-

tower were utilized in order to define indirectly the soil-foundation deformability ([12], 14]). 

The system of the wooden roof was modeled as well as all the wooden elements that connect 

the longitudinal and transverse walls with the interior colonnades and the mid-transverse wall. 

A small number of mortar samples were taken from the church. The natural stone used in the 

masonry elements is a type of slate with a compressive strength equal to 24MPa, as given in 

the literature survey. 

 

    Next, the procedure outlined by Manos et al. ([9], [10], [11], [12]) was followed for 

evaluating the performance of this church. This is based: 
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a) On the numerical predictions of the state of stress of the masonry walls as obtained from 

the dynamic analysis of this elastic numerical simulation being subjected to a combination of 

dead load and seismic forces and  

b) On the values of the strength over demand ratios at the most critical locations of the 

masonry walls and vaults. In doing so, strength values were assumed for in-plane shear and 

flexure as well as out-of-plane flexure for relatively weak unreinforced stone masonry ([9], 

[10], [11], [12]).  

    The ratio of the in-plane shear or tensile strength value over the corresponding demand is 

signified by Rσ or Rτ whereas RM denotes the ratio of the out-of-plane tensile strength value 

over the corresponding demand. Ratio values smaller than one (Rσ, Rτ ,RM <1) predict a 

corresponding limit state condition ([9], [10, [11], [12], [15]). 

 

  

Figure 5a. G+0.3Q. Non-Deformable soil Rσ Ratio of 

in-plane strength / demand F11 parallel to bed joint 

Figure 5b. G+0.3Q. Deformable soil Rσ Ratio of in-

plane strength / demand F11 parallel to bed joint 

 

     Figures 5a and 5b depict Rσ ratio values for the masonry arches above the internal 

colonnades. These Rσ ratio values of in-plane strength / demand were found by applying the 

limit tensile strength scenario parallel to bed-joint (F11). The demands in these figures were 

obtained for the load combination G+0.3Q. As can be seen from the above figures, the Rσ 

ratio values are smaller for the deformable than the non-deformable foundation, which 

demonstrates the detrimental effect of the foundation deformability for this church even only 

for the gravitational forces. For the load combination 1.3G+1.5Q, that dictates the design for 

the gravitational forces under current code provisions, the above ratio values will become 

even smaller, which signifies that the colonnades cannot withstand the maximum gravitational 

forces. This is verified by the observed damage which is quite evident for these structural 

elements in this church having been supported for quite sometime after the earthquake event 

of 1995 by temporary wooden shoring internally as well as externally. 

     From the evaluation of the demands obtained from this numerical simulation as compared 

with the limit strength values adopted for the stone masonry of this church it can be concluded 

that the deformability of the foundation results in strength / demand ratio values smaller than 

the corresponding ratio values for the non-deformable foundation. This signifies critical 

regions of the masonry structural elements that cannot withstand the forces, as prescribed by 

the current code provisions.  Moreover, such an evaluation can also explain, up to a point, the 

development of the existing current state of structural damage. Gaining such confidence in the 

employed methodology the designer gains also the advantage in evaluating with the same 

methodology the effectiveness of a potential retrofitting scheme. 
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      In order for such a retrofitting scheme to be effective the resulting strength / demand ratios 

should attain values larger than the corresponding values without this retrofitting scheme and, 

if possible, larger than 1 (10], [11], [15]). Such an evaluation has been performed for the most 

vulnerable structural elements of this church; that is the internal colonnades, the South 

peripheral wall and the East peripheral wall with the apses. The existing or potential damage 

is predicted by the numerical analysis results when the strength / demand ratio values are well 

below 1. This is shown in figure 6 for the internal colonnade. In almost all structural elements 

the out-of-plane tensile behaviour results in strength / demand ratios with values well below 

one (RM <1). The internal colonnade has visible signs of out-of-plane displacements and 

extensive cracking that are in agreement with the distress predicted by the followed 

methodology. 

 

 

Figure 6. Internal colonnade. Regions with small values of the strength / demand RM out-of-plane tensile 

behaviour (orange color), Rτ in-plane shear behaviour (green color), Rσ in-plane tensile behaviour (blue color)   

4 THE CHURCH OF ACHIROPOIITOS,  AT THESSALONIKI  

    This church is a three nave Basilica located at the center of Thessaloniki, Greece. It is one 

of the oldest Greek Christian churches dating from the middle of the 5
th

 century A.D. The 

interior is shaped by the peripheral (longitudinal and transverse) masonry walls and two series 

of colonnades formed by twelve columns each. The masonry is built with the old Christian 

construction technique whereby horizontal zones of brick masonry are succeeded by 

horizontal zones of stone masonry along the height of the peripheral walls.  
 

 

Figure 7. Longitudinal (East-West) cross section of the church of Achiropoiitos 
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The overall external dimensions are 51.9m in the longitudinal East-West direction and 

30.80m in the transverse North-South direction and a height of 14.0m for the peripheral 

masonry walls. The clear width of the central nave is 14.20m whereas the North and South 

nave width is 6.20m and 6.30m, respectively.  At the East end the central nave extends further 

than the North and South naves  by an extension that is partly formed with an apse. The whole 

structure is covered by a wooden roof that rises from the ground level 22.0m at the central 

longitudinal axis. Initially the church was larger than the one which survives today.    

 
a) View from the North-West 

 
b) View from the North-East 

Figure 8.  Numerical simulation of the church of Achiropoiitos 

 

   Figure 7 depicts a longitudinal East-West cross section whereas figures 8a and 8b depict the 

numerical simulation of this church. As was done for the churches of the Assumption of 

Virgin Mary and for Profitis Ilias the foundation deformability was also examined for this 

church. This was done by assuming a) rigid soil-foundation conditions (pinned), b) 

deformable rather stiff soil-foundation and c) deformable rather flexible foundation condition. 

The soil-foundation deformability was introduced in the numerical simulation with a series of 

link elements at the soil-foundation interface.  

Cumulative Modal participation mass ratios 

Rigid Foundation  

(Pinned) 

Stiff - Deformable  

Foundation 

Flexible 

Deformable Foundation Eigen-Modes 

 
SumUX SumUY SumUX SumUY SumUX SumUY 

1
st
  main translational transverse 

x-x (North-South, Transverse) 
30.5% 0 % 51. %1 0 % 68.8% 0.1% 

2
nd

 30.7% 0.6% 51.2% 1.7% 68.9% 16.7% 

3
rd

 67.9% 0.7% 67.9% 14.1% 68.9% 70.6% 

4
th

  main translational longitudinal 

y-y (West – East, Longitudinal) 
68.0% 70.2% 72.1% 72.6% 73.2% 71.5% 

5
th

  70.2% 70.5% 73.8% 72.6% 73.3% 71.8% 

Table 1. Cumulative Modal participation mass ratios of the church of Achiropoiitos 

      Table 1 lists the values of the cumulative mass participation ratios of the most significant 

eigen-modes (1
st
 to 5

th
), whereas in table 2 the values of the corresponding eigen-periods are 

listed. As can be seen from table 1 the most significant eigen-modes are the 1
st
 x-x 

translational eigen-mode in the transverse (North-South) direction and the 4
th

 y-y translational 

longitudinal (East-West) direction. As can be seen in table 1, the increase in the flexibility of 

the soil-foundation results in a 1
st
 x-x translational eigen-mode that mobilizes a larger modal 
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mass than for the case of the rigid foundation. Moreover, this increase in the flexibility of the 

foundation results, as expected, in the lengthening of the corresponding eigen-period values, 

as was also discussed for the previously examined churches of the Assumption of  the Virgin 

Mary and for Profitis Ilias. 

 

Eigen-period values (sec) 

Eigen-Modes 

Rigid Foundation  

(Pinned) 
Stiff - Deformable  

Foundation 

Flexible 

Deformable 

Foundation 

1
st
  main translational transverse 

x-x (North-South, Transverse) 
0.5877 0.6111 0.6704 

2
nd

 0.5724 0.5740 0.5781 

3
rd

 0.4974 0.5241 0.5617 

4
th

  main translational longitudinal 

y-y (West – East, Longitudinal) 
0.4734 0.5189 0.5439 

5
th

  0.3663 0.3688 0.3801 

Table 2. Eigen-period values (sec) of the church of Achiropoiitos 

 

    As was done before, the loading conditions examined were a) G+Ex,   b) G-Ex ,  c) G+Ey  ,  

and d) G-Ey, where G is the gravitational loads and Ex, Ey the earthquake forces ([1], [16], 

[17], [18]) along the x-x axis (transverse North-South direction) or the y-y axis (longitudinal 

East-West direction), respectively. The amplitude of these earthquake forces was obtained by 

utilizing the recorded ground acceleration during 1978 Thessaloniki earthquake at a close 

distance from the site of this church.  In figures 9a to 9d the values of the ratio of shear 

strength value over the corresponding shear demand signified Rτ is plotted for the case of 

rigid foundation and for the case of flexible foundation. In figures 9a and 9b this is done for 

the North peripheral wall and for the load combination G+Ey for the case of rigid and flexible 

foundation, respectively. In figures 9c and 9d this is done for the West peripheral wall and for 

the load combination G+Ex for the case of rigid and flexible foundation, respectively. 

 

 
 

Figure 9a. Values of the ratio Rτ  towards assessing the performance of the North peripheral wall against in-

plane shear for load condition  G+Ey . Case of rigid foundation 
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Figure 9b. Values of the ratio Rτ  towards assessing the performance of the North peripheral wall against in-

plane shear for load condition  G+Ey . Case of flexible foundation 

 

 
 

Figure 9c. Values of the ratio Rτ  towards assessing the performance of the West peripheral wall against in-plane 

shear for load condition  G+Ex . Case of rigid foundation 

 

 

 

Figure 9d. Values of the ratio Rτ  towards assessing the performance of the West peripheral wall against in-

plane shear for load condition  G+Ex . Case of flexible foundation 

   

    As can be seen in these figures 9a to 9d there are many locations in both the North and the 

West peripheral walls where these shear strength over shear demand ratio values are smaller 
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than 1, which signifies the appearance of shear mode of failure. This observation is in line 

with the damage that the masonry walls of this church sustained during the 1978 Thessaloniki 

earthquake sequence. Moreover, as can be seen by comparing the shear strength over shear 

demand Rτ ratio values for the same location of these two peripheral walls (North wall, 

figures 9a and 9b or West wall, figures 9c and 9d) between the two cases of rigid and flexible 

foundation it can be seen that the flexibility of the foundation results in Rτ values noticeably 

smaller than the case of flexible foundation. This observation supports the partial conclusion 

that the soil-foundation flexibility was an additional factor contributing to the observed 

earthquake damage. 

 

5 CONCLUSIONS  

• 1. The dynamic behaviour and earthquake performance of churches is a very wide 

subject. This paper attempts to address the earthquake performance of Basilica churches 

in parts of Greece during the last 30 years. Towards this objective use is made of in-situ 

observations together with relatively simple numerical tools. The numerical study 

includes soil-foundation deformability. The earthquake performance of three specific 

stone masonry Basilica churches is investigated. The second and third of these churches 

are simply covered by a wooden roof whereas the first has also a stone masonry vaulted 

superstructure under its wooden roof. All three churches developed significant structural 

damage typical of churches of this Basilica typology as was observed in Greece during 

the last 30 years.   

• 2. The eigen-periods, eigen-modes and the deformation patterns to horizontal earthquake 

actions of the examined churches were predicted numerically.  These numerical 

simulations resulted in large out-of-plane displacements at the top of the longitudinal 

peripheral walls for all examined churches. The presence of stone masonry vaulting 

systems increases the stiffening effect at the top of the peripheral wall level; however, 

such vaulting systems also add considerable masses at a high level that generate large 

seismic forces. 

• 3. The predicted regions most vulnerable to damage are near the door and window 

openings for the in-plane behaviour; this agrees reasonably well qualitatively with 

observed damage, although the numerical simulation is based on elastic behaviour. For a 

superstructure consisting of vaults and domes, large seismic forces are generated leading 

to stress concentration at the bases of the domes and vaults and at the keys of the arches. 

Further investigation is needed to establish appropriate limit-state criteria for these stone 

masonry elements. 

• 4. The foundation deformability was investigated introducing linear deformable springs 

at the foundation level. The results of such a numerical approximation combined with the 

followed methodology of limit state criteria of strength / demands ratio values (Rτ , Rσ ,  

RM) demonstrate in all the examined cases that the foundation deformability, when 

combined with the gravitational forces and seismic actions, leads to Rτ , Rσ , and RM 

ratio values  that are considerably smaller than for the case of non-deformable foundation 

thus verifying the detrimental effect of the foundation deformability in all the examined 

cases. 
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• 5.  Retrofitting counter measures that aim at improving the earthquake performance of 

such structures must employ comprehensive means for improving the soil-foundation 

deformability and the interaction with the masonry walls resting on such foundation. This 

problem is also amplified by the presence of underground water pressures during certain 

time of the year with substantial rain fall or snow melting. Unfortunately, in many cases 

these counter measures of improving the soil-foundation-structure interaction are rather 

superficial. 
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Abstract. This paper gives the results of a series of tests carried out on brick columns and 

panels reinforced with Fibre Reinforced Cementitious Materials. Steel and glass fibres were 

used, and cement and lime mortars were employed as the matrices. The issue of durability of 

reinforced masonry structures, that is the transformation from sole masonry structures to hy-

brid ones, was investigated. Six brickwork columns (three unreinforced and three reinforced) 

and eighteen solid brick panels were built and tested (two unreinforced, 16 reinforced with 

steel cords or glass fibre). Tests were carried out in laboratory, and the results enabled the 

determination of the compression strength of the masonry before and after the application of 

the reinforcement, and before and after environmental effects. The main goal of the durability 

testing was to verify whether the artificial ageing process hinders the resistance. At the end of 

the cycles, a first visual observation was performed in order to evaluate if superficial altera-

tions took place, such as efflorescence or micro cracking due to the immersion in the sodium 

chloride (NaCl) solution. The aged reinforced specimens appear to have a losses that range 

from 4% to 25% of the ultimate load, depending on the type of reinforcement and mortar used, 

although scattering of results confirm the need of more extensive testing. 

 

1 INTRODUCTION 

Structural enhancement of masonry elements, built with natural stones or clay bricks, is 

frequently necessary; in particular, compressed members, as columns, are prone to brittle fail-

ure under seismic forces or static overloads. Recent earthquakes in Molise (2002), Umbria 
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(2009), Abruzzo (2009) and Emilia-Romagna (2012) have shown that masonry structures are 

extremely susceptible to the forces imposed during such events [1-2]. Thus, there is an urgent 

need to upgrade these deficient masonry elements to meet the current design standards in 

seismic regions. Steel jacketing and reinforced concrete (RC) have been extensively used in 

Europe, particularly Italy, to retrofit masonry columns and have proved to be effective, but 

have some drawbacks [3-4]. Such techniques are in fact often non-reversible, expensive and 

add mass to the structure. Such issues have led researchers to investigate new retrofit solu-

tions using innovative materials such as Fibre Reinforced Polymers (FRP) [5-9] or Steel fibre-

Reinforced Polymers (SRP) [10-12] composites in the form of bonded surface reinforcements. 

Wrapping with FRP or SRP reinforcement offers the designer an outstanding combination of 

properties, including ease of handling, speed of installation and high strength-to-weight ratio 

[13-15].  

On the other hand, some considerations advise against the use of such techniques. In fact, 

frequently natural masonry blocks are subjected to moisture entrapment from the ground, re-

leased through the external surface during their service life; for that reason it is not always 

recommendable to apply continuous epoxy-bonded jacketing, inhibiting the material transpi-

ration. As a result of such considerations, beside the “traditional” FRP/SRP wrapping this pa-

per presents the results of a second experimental investigation in a series dealing with the 

possibility of application of Fibre Reinforced Cementitious Matrices (FRCM). This gives a 

promising technique that may represent a new opportunity in the field of restoration, since it 

is reversible, aimed at integrating the masonry rather than transforming it and compatible with 

the preservation of the building materials.  

In this paper, the structural validity of FRCM materials has been analysed by doing com-

pression tests on FRCM-confined columns. Subsequent experimental work focused on the 

durability of FRCM reinforced elements. After an initial period of durability testing solely on 

the fibres, with and without their polymeric matrix, attention turned to research that would 

prove whether the degradation of the FRP system when applied to structural support would 

increase damage or simply result in not providing the structural reinforcement it had been de-

signed to give. There were cases in which the degradation which started in the FRP system 

caused mould or other aggressive attacks to the underlying structural system, provoking more 

damage than if the FRP had not been present [16]. From the data analysed in previous exper-

imental campaigns [17], the more aggressive durability testing performed on FRCM speci-

mens consisted in wet/dry cycles in a 5% sodium chloride solution. Therefore this type of 

cycle was chosen for the durability on an FRCM reinforced structural element, in the attempt 

to verify whether the artificial ageing registered in the second experimental campaign de-

scribed above had the same detrimental effects when the FRCM system was applied to ma-

sonry structures. Different schemes of reinforcement were here investigated, the difference 

consisting in the type of fibres, glass or steel, and the type of matrix, cement mortar or lime 

mortar. 

2 MATERIALS 

Small brick columns and panels were assembled, subjected to both compression loads and 

wet/dry durability cycles and tested in laboratory.  

Compression tests were first conducted on FRCM reinforced columns. The results of com-

pression tests show an interesting increase of load bearing capacity with respect to unrein-

forced columns and give useful indications on the correct application of the reinforcement. 

The columns were built using solid bricks and reinforced with different types of steel wires. 

The brick columns were 50 cm in height, were made of 8 courses of bricks and had two dif-

ferent cross sections: octagonal and square. 
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For wet/dry durability cycles, each panel was composed of five bricks (dimensions: 

200x100x50 mm). Total panel’s dimensions were 290x100x200 mm (Fig. 1). The test matrix 

is reported in Table 1. 

 

Number of 

Specimens 

Type of cementitious 

matrix for 

Reinforcement 

Type of 

Reinforcement 

N° of wet/dry 

cycles 

8 Lime 
Steel (4) 0 (2) 75 (2) 

Glass (4) 0 (2) 75 (2) 

8 Cement 
Steel (4) 0 (2) 75 (2) 

Glass (4) 0 (2) 75 (2) 

2 None Unreinforced (2) 0 (2) 

 

Table 1: Test matrix. In parenthesis the number of specimens per type. 

 

Figure 1: Graphic scheme (dimensions in mm) of the brick masonry panels, plan and elevation, a) unreinforced 

panel, b) reinforced panel. 

 

  a)         b) 
 

Figure 2: UHTSS steel fibres: a) the coil, b) detail of a single cord. 
 

Two panels from a total of 18 remained unreinforced, as control specimens. All other pan-

els, 16 in total, were reinforced though steel or glass fibres placed on the wide faces of the 

panels (200x290 mm) with either lime or cement-based mortar, in the manner of reinforced 

plaster. The mechanical properties of the steel and glass fibres used in the investigation are 

illustrated in Table 2.  

The steel fibres are made of UHTSS (Ultra High Tensile Strength Steel) cords, which are 

provided from coils available on the market (with the commercial denomination 3X2), pro-
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duced by Hardwire llc. They are either brass coated or galvanized with zinc, for increased 

protection against corrosion. When lime-based mortar is utilized for repointing, it is best to 

use cords protected by zinc galvanizing The coils used for the steel cords are about 30 cm 

wide and variable in length, and consist of a series of cords laid out parallel to each other and 

held together by a polyester mesh (Fig. 2). The most interesting property of the cords used in 

the proposed system consists in the high bonding and compatibility between the cords and the 

mortar surrounding them, due to their small size (their average diameter is 1 mm) and shape. 

In fact, the cords are made by twisting five individual filaments together (three straight fila-

ments wrapped by two filaments at a high twist angle). The specifications of the single cord 

are shown in Table 2. The mechanical properties of the metal cords were verified by tensile 

tests carried out on 8 samples. The results substantially confirmed the values given by the 

manufacturer on the technical sheet, with small variations of the failure load (1539 N) and of 

the deformation at failure (2.1% ) . 

 

Cord diameter (mm) 0.89 

Sample size 10 

Tensile failure load (N) 1539 

Cross section area (mm
2
) 0.62 

Young’s modulus (GPa) 206.8 (16.4) 

Tensile strength (MPa) 2479 (127) 

Strain to failure (%) 2.1 
 

Nominal dry section (mm
2
)  3.8 

Sample size  7 

Tensile failure load (kN)  3.679 

Tensile strength (MPa)  968.2 (85.93) 

Young’s modulus (GPa)  74.2 (3.4) 

Strain to failure (%)  1.3 
 

 

Table 2: Mechanical properties of the steel fibres. 

Standard deviation in ( ). 

Table 3: Mechanical properties of the GFRP grid. 

Standard deviation in ( ). 
 

 

The fiberglass grid (Glass Fiber Reinforced Polymer: GFRP) used in this research program 

was manufactured using AR-glass (Alkali-Resistant) fibers and a polyester resin. Specimens 

extracted from the composite mesh have been measured with a tensile modulus ranging from 

71.1 to 79.8 GPa. The mesh has a nominal cross section dry fibre-area of 3.8 mm
2
 both in the 

vertical (weft) and horizontal (warp) direction and has an opening of 66 mm in both directions 

(Fig. 3). The main mechanical characteristics of GFRP material measured via tensile tests, are 

shown in Table 3.  
 

  a)         b) 

 

Figure 3: GFRP grid: a) the grid, b) detail of the joint. 
 

The lime and cement mortar used as cementitious matrices for the FRCM system are de-

scribed in Table 4. The mortar used in the assembly of the panels was a cement mortar, hand 
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mixed (lime, cement 32.5 MPa, sand) with proportions in weight 1:1:6 (PCement, Tab. 4). 

This mortar was used solely in the building of the panels, and not in their reinforcement. 

Small cubic specimens of bricks, 5.5x5.5x5.5 cm in size, were tested in compression (Tab. 5).  

Once the panels were assembled with the cement mortar described above, they were left to 

cure for 60 days in a humidity free environment at room temperature (circa 19°). Once curing 

was completed, the panels were reinforced, in number and type of reinforcement as described 

in Table 1. A layer of cementitious matrix was applied to the surface of the panel, covering 

the entire façade evenly. The reinforcement was then applied and pressed to ensure attach-

ment to the applied layer of mortar. A second layer of mortar was applied, thus covering the 

fibre. The reinforced panels were left to cure again for another 60 days and in order to ensure 

complete curing, in order to avoid that this process could occur during the artificial ageing 

cycles.  

 

Mortar Type 

Average 

Flexural 

Strength 

(MPa) 

Average  

Compressive 

Strength (MPa) 

Lime 0.17 0.52 

Cement 0.42 4.05 

PCement 0.25  0.62 
 

 

Average  

maximum  

compression load 

(kN) 

Average 

compressive 

strength (MPa) 

Clay 

bricks 
142.15 47.04 

 

 

 
Table 4: Average values of flexural and compression 

strength obtained through testing on mortar specimens. 

Table 5: Average compressive strength found for 

solid clay bricks used to build the panels. 
 

3 ARTIFICIAL AGEING METHOD 

Once curing was complete, wet/dry cycles on eight reinforced panels commenced. The cy-

cles consisted in a wet period, during which the specimens were immersed in a solution of 

sodium chloride (NaCl) at 5%, followed by a dry period, during which the specimens were 

placed in a ventilated oven at 35°C. These specimens required a period of 45 minutes for 

complete sorption to occur. This amount of time was determined through weighing the speci-

mens dry, and then after having been immersed in the NaCl solution at intervals of 5 minutes. 

Once the registered weight was stable, thus indicating that sorption was at maximum values, 

the time elapsed was considered to be the necessary amount for a complete wet cycle. The 

panels were immerged with the 5% NaCl solution at a level which covered the specimens for 

at least 2.5 cm and then placed in the oven and left to dry for 24 hours. One cycle duration of 

75 days was chosen for all aged specimens. 
 

4 TEST METHOD 

4.1 Columns 

For compression testing, six brick columns were subjected to axial compression tests in order 

to determine the efficacy of the confinement with steel fibres in terms of load bearing increase, 

ductility and axial stiffness. Testing was conducted through an oil-hydraulic Metrocom type 

press with a 3000 kN load cell with load increases of 5-7 kN/sec. Figure 4 shows the two 

types of columns tested while Figure 5 gives the cross-section dimension. The steel cords 

were glued by using a cement-based mortar. Reinforcement was executed in the following 
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steps: a) cleaning of the column surfaces of all inconsistent material to improve the adhesion 

between mortar and masonry; b) application of a first layer of mortar; c) application of a uni-

directional FRCM sheet; d) application of a second layer of cementitious mortar. All speci-

mens were wrapped with orientation perpendicular to their axis. 

   a)     b) 

Figure 4: Brick columns: a) octagonal cross section, b) square cross section. 

 

Figure 5: Column cross section (dimensions in mm). 

4.2 Panels 

Testing was carried out through eccentric compression loading. One of the objectives of 

this campaign was to study the behaviour of the fibres and the bonding, in an aged condition. 

By comparing the position of the central core of inertia with the compressive load, it was pos-

sible to verify that the compressive and tensile stresses were actively being applied to the 

brick panels. Loading was applied through a load cell (TCLP–10B Tokyo Sokki Kenkyujo Co, 

Ltd.) with a maximum capacity of 100 kN applying pressure on a steel cylinder positioned at 

50 mm to the right of the central axis of the panel.  

 

 

 

Figure 6: Graphic scheme of the positions of the me-

chanical strain gauges and transducers during testing 

(mm), with Left Hand (L) and Right Hand (R) sides 

indicated (dimension in mm). 

Figure 7: Mechanical Strain Gauge. 

 

L R

H 
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The steel cylinder is the same width of the panel, ensuring that the load is applied only on 

the masonry structure and not on the FRCM reinforcement. Deformations were recorded 

through two mechanical strain gauges on the short sides of the panels and two cantilevered 

displacement transducers (CE-10 Tokyo Sokki Kenkyujo, Fig. 6). The two displacement 

transducers attached to the upper face of the panels measured the vertical displacement of the 

panel during loading. The second typology was applied for recording relative movements be-

tween the two extremities of the gauges. Omega-shaped (Fig. 7), the ends of these strain 

gauges are attached to the specimens and their hemispherical central part allows these ends to 

follow the displacements of the specimen. 

 

5 RESULTS  

5.1 Compression tests on columns 

The specimens were subjected to axial monotonic load until failure occurs. The first three 

tests were conducted on unreinforced columns in order to obtain the average compressive 

strength of the columns, which resulted in 719 kN. Considering the area of the octagonal 

transversal section of the columns, 512 cm
2
, the compressive strength is approx. 14 MPa. A 

similar value was measured for square cross section (14.8 MPa). 

For octagonal cross-section columns confined by steel composites, the FRCM reinforce-

ment (specimens 2&3) requires the application of a significant thickness of cementitious mor-

tar, up to 5cm, which in some cases may be incompatible with the requirement of an unvaried 

transversal section. The compression testing on the reinforced columns show an increase of 

maximum load of 28% compared with unreinforced columns (Tab. 6).  

 

Sample 
Cross  

Section 
Rinf. 

Compression 
strength (MPa) 

Failure load 
(kN) 

Axial stiffness  
(MPa) 

1 octagonal no 14.0 719 2034 

2 octagonal steel 21.3 1089.8 2306 

3 octagonal steel 14.7 755.9 1462 

4 square steel 16.9 1020 2033 

17 square no 15.6 945 1745 

18 square no 14.0 847 2576 

 

Table 6: Results of compression tests. 
 

    

   Figure 8: Compression test (reinforced column).              Figure 9: Stress vs. axial strain response. 
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For columns with a square cross-section, the effectiveness of the reinforcement is smaller 

(13.8%). This is mainly due to the stress-concertation near the columns corners. The flexural 

stiffness of the steel cords also prevent an adequate bonding of the fibres to the masonry sur-

face and this partially compromises the confinement effect of the FRCM reinforcement. 

The collapse mode of reinforced columns (Fig. 8) includes the cracking of the masonry 

underneath the fibres and the subsequent bulging of the columns around the midpoint. Total 

collapse of the columns occurs for the rupture of the fibres once the masonry is completely 

cracked internally. Significantly, the rupture of the FRCM reinforcement does not occur at the 

corners of the columns, a typical collapse mode in FRP reinforced columns, but at the mid-

point of the specimens once the tensile strength of the fibres has been exceeded. Figure 9 

shows the compression stress vs. axial strain response of reinforced and unreinforced columns. 

 

5.2 Compression tests on small panels 

Values for both reinforced and unreinforced specimens remain within values that range 

from 35 to 50 kN (Fig. 10). The small variation between reinforced and unreinforced speci-

mens may be due to the fact that the FRCM system is simply bonded to the façades of the 

panels without mechanical anchoring systems. While the ultimate loads values do not vary 

greatly, the collapse mechanisms are different.  

 

Figure 10: Average maximum loads for unaged and aged panels. 

Unreinforced specimens fractured gradually. The average failure load of unaged specimen 

was 38.71 kN. The ageing process caused a negligible decrease of the panels’ capacity of 

2.3%. Cracks at first appear immediately below the point of load application, given by exces-

sive compressive stress for a load of approx. 30 kN. At this point there is a drop in the load 

(Figs. 11-13). A secondary crack then appears at the bottom of the column opposite the load-

ing point (Fig. 11a). This mechanism is not visible in the FRCM reinforced panels until the 

fibres detach completely from the side they are attached to, and even when detachment occurs 

it does not crack due to tensile strength; the rupture in reinforced specimens is abrupt and due 

to excessive compressive force as opposed to the gradual collapse verified in unreinforced 

specimens. The FRCM system does not prevent the masonry panel from cracking. The lateral 

shorter sides of the panels are free from reinforcement. Therefore when cracking of the bricks 

occurs, there may be a rotation of the elements shortly after the detachment of the fibres 

commences. This is the consequence of the  eccentric compression, when the loads are out-

side the central core of inertia of the panel. The fact that the slate of FRCM detaches either 

completely or only partially makes little difference to the resistance of the panel; in fact, once 

the FRCM begins to detach, it is as if the fibre reinforcement is virtually non-existent. 
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Figure 11: Graphic description of the cracks that occurred in unreinforced specimens; a) Specimen 1UR and 

b) Specimen 2UR. 

 

It is possible that strain gauges and transducers register concurrently opposing displace-

ments. Due to the position of the instruments separated by two bricks which may rotate and 

move in directions other than those of the two bricks the gauges are glued to (Fig. 14), dis-

placements may have opposing sign when referring to one side of the specimen. In the testing 

condition, the larger displacement has been recorded under the loading point. After collapse, 

vertical cracks appeared with elongations of the right side (Fig. 15). 

 

  

Figures 12 and 13: Load - displacement diagrams for Unreinforced Specimen 1; values given by cantilevered 

vertical displacement transducers and Omega transducers. 

 

Figure 14: Axonometry of panels with strain gauges and displacement transducers. The mortar layers where 

possible rotations may lead to discording diagrams are highlighted.  

The application of the FRCM reinforcement always caused an increase in the panel capaci-

ty. The application of the reinforcement is moderately able to absorb the tensile stresses and 

to partially prevent brickwork from cracking near the bed joints. The use of a cementitious 

mortar to bond the GFRP reinforcement increased the panel capacity of 29% compared to un-

reinforced specimens. The use of a lime-based mortar for both GFRP and steel reinforcements 

caused a limited increase of the panel capacity between 11.5 and 17%: this is probably due to 

the small tensile and shear strength of this mortar. 
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As for the differences in behaviour between aged and unaged specimens, none of the val-

ues of the aged specimens differed greatly from those of their unaged control specimens, as is 

clearly shown in Figure 10.  However the ageing process caused a significant reduction of the 

panel capacity. 

 

Figure 15: The upper section of the panel, showing larger displacements on the right side of the panels, and a 

graphic scheme of elongations that might occur in the right side of specimens. 

Again, the ageing process on panels reinforced using a lime-based mortar caused a limited 

decrease of the panel capacity (approx. 5%) and this demonstrated that both the steel and 

GFRP reinforcement can be used to reinforce wall panels without significant ageing problems. 

However the oxidation of the steel fibers is another aspect to consider, when steel fibre - Ce-

ment matrix are used to reinforce masonry members. However since the number of specimens 

tested was limited, results should be confirmed by a larger experimental programme. Howev-

er, the emerging line seems quite correct. As may be inferred by the following graphs, all of 

the reinforced panels reach their ultimate load abruptly (Figs. 16-17), with no substantial dif-

ferences between aged and unaged specimens. 

 

  

Figures 16 and 17: Load - displacement diagrams for Steel Fibre - Cement Matrix Specimen 4 after 75 wet/dry 

cycles; values given by cantilevered vertical displacement transducers and Omega transducers. 

Some other considerations can be made from the observation of the photographic survey 

conducted during testing which seem to be relevant to all unaged specimens. From physical 

observations of the aged specimens, the most evident effects of the ageing cycles is in the ef-

florescence of the saline solution on the surface of both the brick structure, visible at the sides 

of the panels, and the cementitious matrix covered faces of the panels. The glass fibres did not 

show any signs of degradation after the artificial ageing cycles were complete, while the steel 

fibre reinforced specimens began to show rust on the surface of the matrix used to cover them 

as soon as the 5th cycle. By the end of the 75 wet/dry cycles, the rust was heavily distributed 

throughout the matrix surface. However, rust was not detected on the surface of the masonry 
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once the reinforcement detached after testing, and no other kinds of spots or smears were de-

tected; the formation of mould, which could eventually cause the fibre reinforcements to de-

tach from their structural supports, did not appear in the aged specimens. 

6 CONCLUSIONS 

The main inquiry of the present experimental campaign was aimed towards determining 

whether FRCM reinforced masonry panels are severely affected by artificial ageing, achieved 

in this particular case through wet/dry cycles in a 5% NaCl solution.  

Sheet of steel or glass fibres (GFRP) can be easily applied as masonry strengthening. Pre-

liminary compression tests demonstrated that it is possible to increase the compression ca-

pacity of brickwork columns by wrapping with FRCM systems using steel fibres. Increase in 

capacity up to 30% have been measured compared to unreinforced columns. However the 

shape of the cross-section could influence the effectiveness of the FRCM reinforcement. 

It may be also noted that the FRCM system does not appear to be affected by the wet/dry 

cycles. While no substantial differences were found between the two types of specimens, due 

to the lack of anchorage of the reinforcement to the masonry substrate, the reinforced ones 

presented abrupt ruptures due to detachment of reinforcement, while the unreinforced ones 

collapsed in a more gradual manner. The degradation caused by the 5% NaCl solution appears 

only in saline efflorescence in all aged specimens, while in the steel fibre reinforced speci-

mens rust was apparent from as soon as the 5th wet cycle. When the FRCM system was re-

moved from the surface of the masonry panels after testing, no mould formations were 

detected. Regarding the resistance of the FRCM system to the tensile strength to which the 

panels were subjected as a consequence of eccentric compression, cracks caused by tensile 

stress did not appear in reinforced specimens, leading to the conclusion that the fibres suc-

cessfully absorbed such stresses.  

From the results of testing in the present campaign and the observations conducted 

throughout the cycles, it can be stated that FRCM reinforced panels are not affected by 

wet/dry cycles as regards the ultimate load carrying capacity. However, the superficial degra-

dation of the specimens, in particular of those reinforced with steel fibre, must be addressed in 

order to avoid the detachment of the FRCM.  
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Abstract. In the present contribution, a novel Genetic Algorithm NURBS-based approach for 

the limit analysis of FRP reinforced masonry vaults based on an upper bound formulation is 

developed.Vaults geometry can be described by a NURBS representation of their mid-surface, 

which can be generated within any commercial free form modeler, together with information 

about the local thickness at each point of the surface. By exploiting the properties of NURBS 

functions, a mesh of the given surface, which still provides an accurate representation of the 

vaulted surface, can be obtained. Each element of the mesh is a NURBS surface itself and is 

idealized as a rigid body. Starting from the obtained rigid bodies assembly, an upper bound 

limit analysis problem with very few optimization variables can be devised and in which dis-

sipation is allowed along element edges only. A possible dissipation at the interfaces between 

FRP and masonry is also considered in order to take into account, in an approximate but ef-

fective way, the possible delamination of the strips from the supports. Due to the very limited 

number of rigid elements used, the quality of the collapse load so found depends on the shape 

and position of the interfaces, where dissipation is allowed. Mesh adjustments are therefore 

needed which is carried out by adopting a simple meta-heuristic (like a standard Genetic Al-

gorithm GA) approach of mesh adjustment. The strength of the proposed GA-NURBS method 

lies in the fact that even by using a mesh made of very few elements (which therefore require 

a negligible computational time to have an estimate of collapse loads), it is possible to obtain 

accurate load multipliers and failure mechanisms, thus exhibiting an edge over existing 

methods for the collapse analysis of masonry vaults in terms of computational efficiency. 
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1 INTRODUCTION 

Masonry vaults represent one of the most widespread structural typologies in the historical 

buildings of both Eastern and Western architecture. Therefore, the interest for their preserva-

tion is growing over time along with the need for developing new efficient tools to analyze 

and evaluate their load-bearing capacity.  

As pointed out in [1, 2], it can be affirmed that the modern theory of limit analysis of ma-

sonry structures, which has been developed mainly by Heyman [3], is the most reliable tool to 

assess the ultimate load bearing capacity of masonry vaults. According to Heyman [3], limit 

theorems of plasticity, i.e. static (lower bound) theorem and kinematic (upper bound) theo-

rem, can be applied to masonry structures provided that the following conditions are verified: 

i) the compressive strength of the material is infinite; ii) sliding between parts is prevented;

iii) tensile strength of masonry is negligible.

Let us observe that for structures made of clay bricks and mortar, collapse generally occurs

at small overall displacements. Moreover, in some cases sliding is possible though with a rela-

tively high friction coefficient [4] and shear failure at the joints can be treated within the 

framework of non-associate plasticity [5]. Finally, although clay bricks masonry exhibits an 

almost zero tensile strength and a good compressive strength, the infinite compressive 

strength hypothesis is questionable and, as shown in [3], it is possible to include finite com-

pressive strength within a limit analysis formulation. Nevertheless, material crushing play a 

minor role in the collapse behavior of masonry structures, except for very shallow segmental 

arches, pillars, towers and massive vertical structures.  

Limit analysis can be also extended to the case of FRP (fibro-reinforced polymers) reinforced 

masonry structures [6].  

Other essential aspects concerning actual masonry vaults should be considered, such as the 

effects due to material heterogeneity, the importance of the overall geometry for achieving the 

equilibrium, the importance of properly taking into account the infill and the presence of ex-

isting cracks [7]. 

The recently developed computational methods for masonry vaults, simple or reinforced, 

can be classified into two broad categories: the Finite Element methods developed both for 

nonlinear incremental analysis [8] and for limit analysis [9], and the thrust network methods 

[10-11] directly based on a lower bound formulation [12].  Practical application of these 

methods requires skilled users and, in the case of thrust network methods, the definition of an 

equilibrium surface for the vault, which is a priori unknown.  

The present paper proposes a new NURBS-based approach [13] for the limit analysis of 

masonry vaults based on an upper bound formulation also allowing for the presence of FRP 

reinforcements, developing an idea proposed in [14] for masonry arches. NURBS (i.e. Non-

Rational Uniform Bi-Spline) are special approximating base functions widely used in the field 

of 3D modeling [15]. A given masonry vault geometry can be represented by a NURBS par-

ametric surface, which can be generated within any commercial free form modeler. By ex-

ploiting the properties of NURBS functions, a mesh of the given surface, which still provides 

an exact representation of the vaulted surface, can be obtained. Each element of the mesh is a 

NURBS surface itself and can be idealized as a rigid body.  

Starting from the obtained rigid bodies assembly, an upper bound limit analysis formula-

tion can be devised, which takes into account the main aspects of masonry material (i.e. negli-

gible tensile strength and good compressive strength) and in which dissipation is allowed 

along element edges only. Furthermore, a meta-heuristic approach based on the implementa-

tion of a Genetic Algorithm allows adjusting the initial NURBS mesh until a good estimate of 

the collapse load multiplier is obtained. This happens when element edges describes the actual 
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failure mechanism.  The strength of the proposed method lies in the fact that even by using a 

mesh made of very few elements, it is possible to obtain an accurate estimate of the load mul-

tiplier, thus exhibiting an edge over existing methods for the collapse analysis of masonry 

vaults in terms of computational efficiency,  

The paper is organized as follows: in Section 2 a synthetic survey is given about how the 

geometric shape of a masonry vault can be described by a NURBS surface representation and 

a NURBS mesh can be defined on it. In Section 3, an upper bound limit analysis formulation 

is proposed, based on the NURBS geometric representation of the masonry vault, which al-

lows to compute the collapse load for a set of given failure mechanisms. Section 4 outlines a 

Genetic Algorithm, which is capable of selecting the correct failure mechanism, by adequately 

adjusting the initial mesh.  Finally, Section 5 is devoted to presenting several simple numeri-

cal results obtained by the proposed procedure. 

2 NURBS GEOMETRIC DESCRIPTION 

Description and computation of geometries in commercial CAD packages are based on B-

Splines and NURBS approximating functions. More precisely, NURBS basis functions are 

built on B-splines basis functions, which are piecewise polynomial functions defined by a se-

quence of coordinates 
1 2 1{ , ,..., }n p      , also known as the knot vector, where the so-

called knots, [0,1]i  , are points in a parametric domain, in which p and n denote the poly-

nomial order and the total number of basis functions, respectively. Once the order of the basis 

function and the knot vector are known, the i-th B-spline basis function, 
,i pN  , can be com-

puted by means of the Cox-de Boor recursion formula [15]. Given a set of weights,
iw  , the 

NURBS basis functions, 
,i pR , read 

,

,

,

1

( )
( ) .

( )

i p i

i p n

i p i

i

N w
R

N w










 (1) 

NURBS share many properties with B-spline basis functions [13]. Among these, they are all 

nonnegative, they have a compact support, and build a partition of unity (PoU), that is 

, ,

1 1

( ) ( ) 1
n n

i p i p

i i

N R 
 

     (2) 

for each [0,1]   [13]. Hence, according to Eqs. (1) and (2) B-spline basis functions can be 

thought of as NURBS basis functions when all weights 
iw  are equal to one. However, 

NURBS basis functions have the great advantage of representing exactly the geometry of a 

wide set of curves such as circles, ellipses, and parabolas [15], and of the surfaces that can be 

generated by these curves. Geometries that can be generated with B-spline and NURBS are 

obtained as linear combinations of basis functions [13]. If one considers a set of NURBS basis 

functions 
,i pR , a NURBS curve of degree p is a parametric curve in the three-dimensional 

Euclidean space defined as 

,

1

( ) ( )
n

i p i

i

u R 


C B (3) 

where coefficients 3

i B  are known as control points. Unlike standard Lagrange and Her-

mite approximations, NURBS geometries do not usually interpolate these points. The conti-
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nuity of the curve follows from that of the adopted basis functions [15], which is generally 
1pC 
 throughout the domain. However, if a knot has multiplicity, m, the continuity decreases 

m times at that point [15]. Analogously, a NURBS surface of degree p in the u-direction and q 

in the v-direction is a parametric surface in the three-dimensional Euclidean space defined as  

, ,

0 0

( , ) ( , )
n m

i j i j

i j

u v R u v
 

S B (4) 

where { }ijB form a bidirectional net of control points. A set of weights 
,{ }i jw and two separate 

knot vectors in both u and v directions must be defined. Given a NURBS surface ( , )u vS , iso-

parametric curves on the surface can be defined by fixing one parameter in the parameter 

space and letting the other vary. By fixing 
0u u   the isoparametric curve 

0( , )u vS is defined 

on the surface S , whereas by fixing 
0v v   the isoparametric curve 

0( , )u vS is obtained. 

Many commercial free form surface modelers, such as Rhinoceros® [16], utilize NURBS 

representation and its properties to generate and manipulate surfaces in the three-dimensional 

space. In what follows, simple vault geometries have been generated within Rhinoceros and 

the resulting NURBS structure have been imported within a MATLAB® environment through 

the IGES (Initial Graphics Exchange Specification) standard [17]. Once the NURBS structure 

has been transferred to the MATLAB® environment, it is possible to manipulate it by exploit-

ing NURBS properties in order to define a NURBS mesh on the given surface, i.e. a mesh in 

which each element is a NURBS surface itself. When working with simple surfaces like the 

one considered in the present contribution, the easiest way to generate a NURBS mesh on the 

given surface is to define a subdivision of the two-dimensional parameters space u-v, which 

follows from subdividing the knot vectors in both u and v directions into equal intervals. The 

resulting mesh is formed by isoparametric curves on the surface in the three-dimensional Eu-

clidean space. Each element is a NURBS surface and its edges are branches of isoparametric 

curves belonging to the initial surface. More precisely, the counter-image of each element of 

the mesh is a rectangle 2

1 1[ , ] [ , ]ij i i j jS u u v v     defined in the parameters space. For each 

element (which can be denoted by 
ijE ), the area of the surface can be computed through the 

following relation: 

1 1i j

i j

ij

u v

ij u v
u v

S

A dS du dv
 

     S S (5) 

where 
uS  and 

vS  are partial derivatives of the parametric surface ( , )u vS in the u and v direc-

tions. Analogously, the center of mass of each element may be computed with the following 

relation: 

1 11 1
( , )

i j

i j

ij

u v

u v
u v

ij ijS

dS u v du dv
A A

 

    c x S S S (6) 

Computations can be numerically carried out using a standard Gauss quadrature method. 

3 KINEMATIC LIMIT ANALYSIS 

Limit analysis is a powerful tool to assess the structural safety level of a masonry construc-

tion. As already discussed, given the NURBS geometric representation of the vaulted surface, 

a NURBS mesh can be defined on the same surface. Each element of the mesh, which is a 

NURBS surface itself, can be regarded as a rigid body. Starting from the geometrical proper-
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ties of each element, an upper bound formulation can be outlined and implemented through a 

linear programming algorithm in order to assess the ultimate load bearing capacity of  a given 

masonry vault. This paragraph summarizes the proposed upper bound formulation.  

Be EN  the number of elements composing the NURBS mesh, which geometrically repre-

sents the vaulted surface. Each element is considered as a rigid element. Thus, the kinematics 

of each element is determined by the six (three translational and three rotational) generalized 

velocity components { , , , , , }i i i i i i

x y z x y zu u u     of its center of mass iG , expressed in a global 

reference system Oxyz . On the structure, dead loads 0F  and live loads Γ  are acting. Internal 

dissipation is assumed to occur only along element interfaces. Indicating by IN  the number of 

interfaces, total internal dissipation power intD is equal to the sum of the power dissipated 

along each interface
int

iP , which is defined in Section . Furthermore, total internal dissipation 

power intD  is equal to the sum of the powers of live ( 1 ) and dead (
0

F ) loads, indicated as 

P
Γ

 and P
0F respectively: 

int int

1

IN
i

i

D P P P


   0Γ F
(7) 

  is a load multiplier. The linear programming problem related to the kinematic formulation 

of limit analysis consists in an appropriate minimization of the load multiplier   under the 

action of suitable constraints, which are described in the following Subsections. The vector of 

unknowns of the linear programming problem, X , contains the six generalized velocity com-

ponents for each element and a number of plastic multipliers along each interface which will 

be defined in Subsection 3.2.   

3.1 Geometric constraints 

Vertex belonging to element free edges, which do not constitute an element interface, can 

be subjected to external kinematic constraints, by imposing an assigned value for translational 

and/or rotational velocities at these points.  For each of such vertex 
jV , kinematic constraints 

can be expressed in terms of generalized velocities of the center of mass of the i-th element 

they belong.  For example, in case only translational velocities of a given vertex 
jV , belong-

ing to element i, are constrained to zero, the following relation holds as a geometric constraint: 

j j i

i

V V G
    
 

u u R x x 0 (8) 

where [ , , ]j j j

j

V V V T

V x y zu u uu  are the three translational velocity components of the vertex 
jV ,  

[ , , ]i i i i T

x y zu u uu are the three (unknown) translational velocity components of the center of 

mass of element i to whom vertex 
jV  belongs, and R  is a rotation matrix whose elements are 

the (unknown) generalized rotational velocities of the center of mass of element i. In general, 

all linear geometric constraints can be re-written in the following standard form: 

, ,eq geom eq geomA X b (9) 
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where
,eq geomA  is the matrix of geometric constraints and 

,eq geomb the corresponding vector of 

coefficients. 

3.2 Compatibility constraints 

In order to enforce plastic compatibility along interfaces and correctly evaluate dissipation 

power, intrados and extrados edges of each interface have been subdivided into an assigned 

number ( 1)sdN   of points iP  . On each point iP , a local reference system ( , , )n s t  have been 

defined, where n is the unit vector normal to the interface, s is the tangential unit vector in the 

longitudinal direction and t  is the tangential unit vector in the transversal direction.  

On each point iP  of each interface, which separates the two elements E  and E , the fol-

lowing compatibility equation must hold: 

f
 


u λ

σ
(10) 

where [ , , ]nn ns nt  σ  is the stress vector acting on iP  in the three local reference directions, 

( )f σ  is a suitable yield function and λ  is an unknown plastic multiplier vector. In Eq. (10), 

u is the representation in the local reference system of the quantity u  in the global refer-

ence system which is defined as: 

i iP P
   u u u (11) 

where 
iP
u is the vector composed by the three translational velocity components of the point 

iP  seen as belonging to element E  and 
iP
u . u is related to u through the following rela-

tion: 

  u R u (12) 

where R is a suitable 3 3  rotation matrix whose rows are respectively the components of the 

three local vectors ( , , )n s t expressed in the global reference system.  

For the sake of simplicity, the yield surface ( )f σ  have been defined in the stress-space as 

the parallelepiped defined by the inequalities c nn tf f   ,
0, 0,ns ns ns     ,  

0, 0,nt nt nt      where 
0, 0,, , ,c t ns ntf f    are material parameters corresponding respectively 

to  compression strength, tensile strength, shear strength in the direction tangential to the in-

terface midline and shear strength in the direction orthogonal to the interface midline. If the 

interface is reinforced by FRP strips at intrados or extrados tf  is replaced by the delamination 

stress df  computed according to [18] in order to take into account dissipation due to FRP de-

lamination. 

With the assigned yield surface, Eq. (10) simplifies and must hold for each point iP  of each 

interface. On each point iP , six unknown plastic multipliers , , , , ,nn nn ns ns nt nt          
 are de-

fined. Therefore, the total number of unknown plastic multipliers is equal to 6 ( 1) 2sd IN N   . 

3.3 Non-negativity of plastic multipliers 

An additional constraint which must be included into the linear programming problem is 

the non-negativity of each plastic multiplier: 
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0.ij   (13) 

3.4 Normality condition 

The last condition to be applied is the so-called normality condition which requires that the 

external power dissipated by the live load 1  set equal to one, is itself equal to one, i.e.: 

1 1P   (14) 

This condition allows to rewrite Eq. (7) in the following way: 

0int

1

IN
i

F

i

P P


   (15) 

3.5 Internal dissipated power and linear programming problem 

On each interface i , covering the surface iS ,  the internal dissipated power is defined as 

the integral: 

int

i

i

S

P dS σ u (16) 

in the local reference system, where both σ  and u have been defined in Subsection 3.2. 

Therefore, remembering Eq. (15) and following the kinematic theorem of limit analysis, the 

related linear programming problem can be stated as follows: 

int

1

min
IN

i

i

P P


 
 

 
 0F

 (17) 

under geometric constraints (9), compatibility constraints (10), non-negativity of plastic mul-

tipliers constraints (13) and the normality condition (14). The unknowns of the linear pro-

gramming problem are the 6 EN  generalized velocity components of the center of mass of 

each element and the 6 ( 1) 2sd IN N    plastic multipliers at each point of each interface. 

4 GENETIC ALGORITHM 

A genetic algorithm is used to progressively modify the mesh in order to find the minimum 

collapse multiplier among all possible configurations and therefore to determine the actual 

collapse mechanism. A genetic algorithm is a method for solving both constrained and uncon-

strained optimization problems based on a natural selection process that mimics biological 

evolution. The algorithm repeatedly modifies a population of individual solutions. At each 

step, the genetic algorithm randomly selects individuals from the current population and uses 

them as parents to produce the children for the next generation. Over successive generations, 

the population "evolves" toward an optimal solution. 

A NURBS mesh of a vaulted surface, is determined by a given number 
parN  of real pa-

rameters 
1 2, ,..., Nparp p p , that depend on the type of collapse mechanism which must be de-

tected. A given NURBS mesh is regarded as an individual and each individual (or 

chromosome), is written as an array with 1 parN  elements: 
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1 2[ , ,..., ]Nparindividual p p p  (18) 

Each individual has a cost, found by evaluating the cost function f at the parameters 

1 2, ,..., Nparp p p . The cost function f is defined as a function which outputs the collapse load 

multiplier c for every assigned individual (i.e. an assigned mesh on the surface) through the

implementation of the limit analysis procedure described in Section 3: 

1 2( ) ( , ,..., )c Nparf individual f p p p   (19) 

To begin the genetic algorithm, we define an initial population of 
ipopN  individuals. A ma-

trix represents the population with each row in the matrix being a 1 parN array (individual) of 

continuous parameters values. Given an initial population of 
ipopN  individuals, the full matrix 

of 
ipop parN N  random values is generated by 

( ) { , }ipop parIPOP hi lo N N lo   random (20) 

where { , }ipop parN Nrandom  is a function that generates an 
ipop parN N  matrix of uniform ran-

dom numbers, hi and lo are the highest and lowest number in the parameter range. 

Individuals are not all “create equal”: each one’s worth is assessed by the cost function. In 

order to decide which chromosomes in the initial population of individuals are fit enough to 

survive and reproduce offspring in the next generation the 
ipopN  costs and associated individ-

uals are ranked from lowest cost to highest cost. We retain the best 
popN members of the pop-

ulation for the next iteration of the algorithm and the rest die off. This process is called natural 

selection and from this point on, the size of the population at each generation is 
popN . An 

equal number of mothers and fathers is selected within the 
popN  individuals, which pair in 

some random fashion. There are various reasonable ways to pair individuals [19]. In this pa-

per, a weighted cost selection with assigned probabilities is used [19]. Each pair produces two 

offspring that contain traits from each parent. Mating is carried out by choosing one or more 

points in the chromosome to mark as the crossover points and the, parameters between these 

points are merely swapped between the two parents.  

Finally, if care is not taken, the genetic algorithm converges too quickly into one region of 

the cost surface and this may be not good if the problem we are modeling has several local 

minima, in which the solution may get trapped. To avoid this problem of overly fast conver-

gence, we force the routine to explore other areas of the cost surface by randomly introducing 

changes, or mutations, in some of the parameters. A mutation rate of 15% is chosen.  

5 NUMERICAL EXAMPLES 

In this Section, two numerical examples of NURBS based kinematic limit analyses of both 

reinforced and unreinforced masonry vaults are synthetically described. For each example, the 

mid-surface of the vault have been modeled with the 3D free form modeler Rhinoceros® and 

the corresponding NURBS structure have been imported within a MATLAB® environment 

using the IGES protocol. The limit analysis procedure described in Section 3 have been im-

plemented and the collapse mechanism is determined by suitably adjusting the mesh through 

the genetic algorithm described in Section 4. 
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5.1 Unreinforced skew barrel vault 

The proposed GA-NURBS approach is applied to the skew circular arch experimentally 

tested in [20]. The arch, named Skew 2 in [20], has a clear square span of 3000 mm, a rise of 

750 mm and a skew of 45 degrees. The width of the barrel was approximately 670 mm and 

the average thickness 215 mm. The arch was constructed using Class A engineering bricks 

were on two reinforced concrete abutments representing rigid supports. The geometry of the 

arch is reported in Fig. In the test, a concentrated load P was applied under force control at the 

three quarter span mid-width of the arch barrel. The load was monotonically increased up to 

17.4kN when collapse occurred because of the formation of cracks extending in the mortar 

joints through the whole width of the arch, giving rise to a 3D failure mode typical of skewed 

masonry arches. An average brickwork compression strength cf  of 2.4 MPa and a tensile 

strength tf of 0.2 MPa were measured, whereas a shear strength   of 0.1 MPa is assumed. 

Average specific weight of brickwork is 22 3/kN m . The initial NURBS mesh of the vaulted 

surface is formed by three quadrangular elements. A single centered vertical live load of 

1kN   is applied at 1/4L.

Figure 1: Skew arch geometry in the test configuration described in [20]. 

Figure 2: (a) 3D NURBS model of the skew arch experimentally tested in [20] generated with Rhinoceros®. (b) 

Three-element NURBS mesh (blue) and collapse mechanism from kinematic limit analysis (red).  
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Figure 3: Skew arch: convergence of the genetic algorithm towards the optimal solution in terms of best fitness 

and mean value (a) and in terms of best, worst and mean scores (b) at each generation; evolution of the free in-

terfaces towards the optimal solution (c). 

The genetic algorithm allows evaluating the optimal position of the two active interfaces, 

in order to minimize the collapse load multiplier and therefore obtaining the actual collapse 

mechanism. Due to the point load presence, the position of the active interfaces is governed 

by three parameters: two parameters fix the extremes of the unloaded interface, whereas a 

third parameter fixes the position of the loaded interface (since this interface is bound to pass 

though the load application point). In the genetic algorithm an initial population of 40 indi-

viduals have been chosen, each individual being a 1x3 vector. 

A collapse load multiplier 18.78   have been obtained. Fig.2(a) shows the 3D NURBS 

model of the vault generated within Rhinoceros® and Fig.2(b) depicts the computed collapse 

mechanism, which proves to be equal to the one observed in [20].  

As shown in Fig. 3(a-b), the algorithm presents a fast convergence towards the optimal solu-

tion and the final best fitness value is obtained after the first four generations. Fig. 3(c) repre-

sents the evolution of the mesh towards the optimal solution.  

5.2 FRP reinforced square barrel vault 

At first, a comparison with the experimental tests presented in [21] and later analyzed in [9, 

14] for the unreinforced square barrel vault is carried out. In [21] the ultimate strength of a

segmental masonry arch was tested, with a clear span of 3 m, an inner radius of 2.5 m and a 

sagitta of 0.5 m. The arch is a one-head brick structure with depth equal to 0.10 m and width 

equal to 1.25 m. The test-arch had 51 layers and was built with Rijswaard soft mud bricks and 

1:2:9 mortar. Brick compressive strength was 27 MPa and mortar compressive strength was 

2.5 MPa. The test-arch was loaded with four concentrated loads, applied by four hydraulic 

jacks 600 mm centre to centre. In Fig. 5a the geometry of the test-arch and its loading condi-

tions are reported. Only the second concentrated load from the left was increased until failure, 

whereas the remaining loads were maintained constant at the values of 5.9, 9.1 and 9.1 kN 
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respectively. At failure, a four hinges collapse mechanism was observed in [21], which is de-

picted in Fig. 6a and measured a collapse load equal to 40.7 kN at the second jack. An aver-

age brickwork compression strength cf  of 2.4 MPa, a tensile strength tf of 0.1 MPa and a 

shear strength   of 0.1 MPa are assumed. Average specific weight of brickwork is 20 3/kN m . 

  The described test-arch has been modeled within Rhino and its 3D model is reported in Fig. 

5b. The initial NURBS mesh of the vaulted surface is formed by four quadrangular elements.  

Figure 5: (a) Schematic representation of the segmental masonry test-arch used in [21]: geometry  and loading 

conditions. (b) 3D NURBS model of the arch experimentally tested in [21] generated with Rhinoceros®.  

Figure 6: (a) Experimental failure mechanism obtained in [21]. (b) Failure mechanism computed through the 

GA-NURBS approach. 

Figure 7: Square barrel vault: convergence of the genetic algorithm towards the optimal solution in terms of best 

fitness and mean value (a) and in terms of best, worst and mean scores (b) at each generation. 
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The genetic algorithm allows evaluating the optimal position of the active interfaces, in or-

der to minimize the collapse load multiplier and therefore obtain the actual collapse mecha-

nism. Only the second point load from the left have been marked as a live load. Collapse will 

occur after formation of four plastic hinges. Thus, the position of the active interfaces is gov-

erned by four parameters. In the genetic algorithm an initial population of 20 individuals have 

been chosen, each individual being a 1x4 vector. A collapse load multiplier 41.2   have 

been obtained. Fig.6(b) depicts the computed collapse mechanism, which proves to be equal 

to the one observed in [21] and depicted in Fig. 6(a). As shown in Fig. 7, the algorithm pre-

sents a fast convergence towards the optimal solution. 

Finally, the same vault was analyzed by assuming FRP reinforcement set on the extrados 

(Fig. 8). In order to prevent the formation of the plastic hinges indicated in Fig. 6(b), we sup-

pose to strengthen the arch by means of two sets of FRP strips (width 100mm). The first set of 

strips is disposed at the extrados of the arch, whereas the second is applied at the intrados. The 

reinforcement tissue has thickness of 0.2 mm, Young’s elastic modulus is assumed equal to 

164 GPa (for tensile stress only) and an ultimate strain of 2% is adopted. FRP delamination 

stress fd has been calculated by following the Italian FRP Design Guidelines [18]. Masonry 

strength parameters have been assumed the same of the unreinforced arch. The NURBS mod-

el is kept unchanged and so is the number of parameters governing the problem.  

Again, the genetic algorithm allows evaluating the optimal position of the active interfaces, 

in order to minimize the collapse load multiplier and therefore obtaining the actual collapse 

mechanism. 

The GA-NURBS approach allows to compute a collapse load multiplier λ = 86.3  of the 

FRP reinforced arch, which is in agreement with the results presented in [6].  

Figure 8: Reinforced parabolic arch. FRP strips dimensions and disposition. 
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Figure 9: Square barrel vault: convergence of the genetic algorithm towards the optimal solution in terms of best 

fitness and mean value (a) and in terms of best, worst and mean scores (b). 

Figure 10: Square barrel vault: convergence of the genetic algorithm towards the optimal solution in terms of 

best fitness and mean value (a) and in terms of best, worst and mean scores (b). 

In Figure 9 the four hinges collapse mechanism is shown: in this case the mechanism de-

velops only after FRP delamination has occurred at the extrados hinges. The thick red line 

represents the outline of the FRP reinforcement.   

As shown in Fig. 10, the algorithm presents a fast convergence towards the optimal solu-

tion and the final best fitness value is obtained after few generations.  
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Abstract. Monuments and historical buildings are degraded as time passes due to natural 

ageing, environmental factors, as well as natural phenomena such as earthquakes. Their 

conservation and restoration thus becomes crucial in order to preserve our cultural heritage. 

Repointing of monuments and historical buildings is perhaps the most usual conservation 

action, as it restores and ensures masonry continuity in a reversible manner. However, this is 

accomplished only if the restoration mortar applied fulfills compatibility and serviceability 

criteria. In the current study, the characterization of the historical mortars of the Kaisariani 

monastery was undertaken and six restoration mortars were selected from literature and 

examined in order to assess their compatibility with the historical structure of the Kaisariani 

Monastery in Greece. The restoration mortars were assessed regarding their compatibility 

with the structural materials of the Kaisariani Monastery, as well as their impact on the 

earthquake resistance of the structure. A new stochastic computational framework for 

earthquake resistant design of masonry structural systems, based on fragility analysis and 

artificial neural networks was applied for the assessment of the seismic vulnerability of the 

Kaisariani Monastery, for three different repairing scenarios, utilizing the results of the 

examined restoration mortars. The results showed that a variety of restoration mortar 

characteristics can be achieved, an important feature, which coupled with the results of the 

fragility analysis for the repairing scenarios, can be utilized for the selection of the optimum 

restoration mortar in terms of compatibility and serviceability. 
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1. INTRODUCTION

Monuments and historical buildings are degraded as time passes due to natural 

ageing, environmental factors, as well as natural phenomena such as earthquakes [1]. 

Their conservation and restoration thus becomes crucial in order to preserve our 

cultural heritage. Repointing of monuments and historical buildings is perhaps the 

most usual conservation action, as it restores and ensures masonry continuity in a 

reversible manner. However, this is accomplished only if the restoration mortar 

applied fulfills compatibility and serviceability criteria. 

The need for knowledge of the traditional mortars has recently arisen from an 

increased interest in the techniques and materials used in the past. Negative results in 

recently restored buildings due to the use of improper materials have created a 

growing demand for research into the field of the traditional ones. Traditional 

building materials, such as joint mortars, plasters, waterproofing mortars etc., have 

exhibited remarkable longevity throughout time, however their production technology 

has been lost, as traditional materials have been replaced due to the extensive use of 

common contemporary materials, like cement and polymers, materials highly 

incompatible with the authentic building materials, resulting in extensive and 

irreversible damage to many cultural heritage monuments [2, 3, 4]. 

A methodology which has proved helpful in this procedure is reverse engineering [1, 

5, 6]. Thus, by discovering the ancient technology employed for the production of the 

original mortars, new, compatible restoration mortars can be designed. The researcher 

however cannot rely solely on the results of the analysis of the historical mortar; one 

must examine the other building materials as well, such as stones and bricks, in order 

to assess whether the new restoration mortar is compatible with these materials as 

well. Furthermore, one must always take into consideration the specific environment 

of the monument, as environmental factors, such as excessive humidity or atmosphere 

pollution also affect the longevity of the materials [7, 8]. The most important steps 

that must be followed, are i) sampling of representative mortar samples, selecting the 

mortars that exhibit the least possible decay (environmental, physical, mechanical), ii) 

characterization of the historical mortar through various techniques, classification in 

order to determine the range of acceptability values, as well as analysis of specific 

considerations, deriving from the in situ analysis of the structure, the restrictions 

accompanying the other building materials and the study of the materials decay and 

iii) production of proper restoration mortars or selection of restoration mortars

available in literature and compatibility and serviceability assessment [6]. 

In the current study a number of historical samples deriving from the Kaisariani 

monastery masonries were studied through Fiber Optic Microscopy (FOM), Sieve 

analysis, Differential Thermal and Thermo-Gravimetric Analysis (DTA-TG), Mercury 

Intrusion Porosimetry (MIP) and Total Soluble Salts Measurements. Several 

compatibility and serveacability criteria were set during this process, in order to then 

evaluate the selected restoration mortars and concretes. Six restoration mortars were 

selected from existing literature and the results of their analysis were examined in 

order to assess their compatibility with the historical structure of the Kaisariani 

Monastery in Greece. The restoration mortars examined were two lime-metakaolin 

mortars and one hydraulic lime mortar, and two  lime-metakaolin concretes and one 

hydraulic lime concrete (thick joint mortars) [9, 10]. The concretes were designed 

with the addition of crushed bricks, in order to simulate historical mortars of 

byzantine monuments that have shown excellent performance in earthquakes [11]. 

The restoration mortars were examined by DTA/TG, in order to assess their 
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physicochemical characteristics and MIP in order to study their microstructural 

characteristics. These results were crucial in the assessment of compatibility. Finally, 

the mechanical strength of the restoration mortars was examined. Thus, the restoration 

mortars were assessed regarding their compatibility with the structural materials of 

the Kaisariani Monastery, as well as their impact on the earthquake resistance of the 

structure through the use of fragility analysis for different repairing scenarios, thus 

accomplishing the selection of the optimum restoration mortar in terms of 

compatibility and serviceability. 

The Catholicon of the Kaisariani Monastery is a typical mid-byzantine Athenian 

church structure (11
th

 or 12
th

 century), its main building elements consisting of carved

stones, bricks and mortars. The monastery has a rich history, and subsequently many 

construction phases throughout the centuries. The original building was a complex 

cross-in-square four-column domed church, without a narthex; the domed narthex was 

added to the west of the original structure in the early 17
th

 century, and the barrel-

vaulted chapel dedicated to Aghios Antonios positioned at the southwest of the 

Catholicon was added in the late 17
th

 century (Fig. 1), thus comprising the present

structure. The monastery complex has undergone many conservation treatments, 

which are not fully documented; however two important reconstruction projects took 

place in the complex in the beginning and the middle of the 20
th

 century [12-14].

Figure 1: Ground plan of the church [15], with probable construction phases 

2. SAMPLING

A number of historical mortar samples deriving from the historic masonry of the 

original Catholicon structure were examined (Table 1, Figure 2), as well as two brick 

samples. The samples were obtained internally and externally of the main temple, 

from different sides and depths of the walls. 

Sample 

Code 
Sampling 
Location 

Sample 
Description 

ΜΚ1 East wall of the Catholicon, in depth of 

the exterior masonry leaf. 
Position from ground level 1.4 m 

Whitish mortar with the addition of 

straw, aggregates not discernible 

ΜΚ2 East wall of the Catholicon, in depth of 

the exterior masonry leaf. 
Position from ground level 1.4 m  

Mortar with evident lime lumps and the 

addition of straw, presence of dark-

colored aggregates 
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ΜΚ2b East wall of the Catholicon, exterior. 
Position from ground level 1.4 m  

Whitish joint mortar, deriving from the 

joint of the cloisonné, presence of straw 

in matrix. Very low cohesion between 

mortar constituents 
BR3a East wall of the Catholicon, exterior. 

Position from ground level 0.4 m 
Detached ceramic, evident 

biodegradation 
BR3b East wall of the Catholicon, exterior. 

Position from ground level 0.4 m 
Whole piece of ceramic brick deriving 

from the cloisonné masonry. Mortar 

with straw adhered on the surface 
ΜΚ4 North wall of the Catholicon, masonry 

left of the entrance, in depth of the 

exterior masonry leaf. 
Position from ground level 3.1 m 

Whitish mortar straw additives, 

presence of dark-colored aggregates 

ΜΚ5 North wall of the Catholicon, masonry 

right of the entrance, exterior. 
Position from ground level 3.5 m 

Mortar, deriving from the joint of the 

cloisonné. Two layers visible: Exterior 

layer is pink hued and appears as 1mm 

thick (ΜΚ5a). Interior layer is (ΜΚ5b). 
ΜΚ6 North wall of the Catholicon, masonry 

left of the entrance, in depth of the 

interior masonry leaf. Position from 

ground level 3 m 

Whitish mortar with the presence of 

discernible dark-colored and light grey 

colored aggregates 

ΜΚ7 Interior west wall of the Catholicon, 

joining with the Narthex 
Position from ground level 2.1 m 

Whitish mortar. Presence of lime 

lumps. Presence of dark-grey colored 

aggregates, presenting a wide grain size 

distribution. 

ΜΚ8 South wall of the Catholicon, in depth 

of the exterior masonry leaf. Position 

from ground level 3.6 m 

Whitish mortar with dark-colored 

aggregates. 

Table 1 Description of samples 

3. METHODS AND TECHNIQUES

Various lab techniques were applied in order to characterize and study the samples 

taken from the Catholicon. Fiber Optic Microscopy (FOM) was employed in order to 

examine the samples microscopically, using a PICO SCOPEMAN-MORITEX and 

x50 magnification.  Sieve analysis was performed according to Normal 27/88 [16] in 

order to analyze the mortar aggregates grain size distribution and to calculate the 

binder aggregate ratio. The sieves used were according to ISO 565. Differential 

Thermal and Thermo-Gravimetric Analysis (DTA-TG) provides qualitative and 

quantitative information regarding the composition of the samples (Mettler Toledo 

651e). The temperature range applied was 25-1000
o
C and the heating rate was

selected at 10
o
C/min [17]. X-ray diffraction (XRD) provides information regarding

the mineralogical composition of the materials (Advance D8 Diffractometer of Bruker 

Corporation) [16-18]. The microstructural characteristics of the samples were studied 

through the use of Mercury Intrusion Porosimetry (MIP) with the use of a Pascal 400 

Thermo-Electronics-Corporation [16, 19]. Taking into consideration the high water 

content of the masonries as well as the efflorescence of salts on the interior walls of 

the church [20], Total Soluble Salts Measurements were conducted, in accordance to 

the guidelines of Normal 13/83 [21], as well as spot tests in order to identify the salts 

present [22]. Finally, Water Absorption by Capillarity test was conducted in 

accordance to Normal 11/85, in order to estimate the capillarity absorption coefficient 

of the brick sample [23]. 
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The restoration mortars were selected through extensive research of available 

literature [9, 10]. The selected mortars were all designed for use in historical buildings 

through the reverse engineering methodology. Furthermore, it was a prerequisite that 

the restoration mortars were examined with the same techniques as the historical 

samples, in order to assist the examination of their compatibility. The compatibility of 

the selected mortars was examined through the evaluation of their physicochemical 

and mechanical characteristics in relation to the historic mortars of the original 

structure, as well as the criteria arising from the study of the materials decay and the 

environmental factors affecting the monument. Finally, the use of the restoration 

mortars is evaluated as far as serviceability through the use of fragility curves. 

4. RESULTS AND DISCUSSION

4.1 Characterization and classification of historical mortars 

Fiber Optic Microscopy (FOM) results indicated that all samples are in a bad state of 

preservation, presenting low adhesion between binder and aggregates. Lime lumps are 

present in all samples, except for MK5a (the final mortar layer of the cloisonné). The 

presence of straw additives is detected in samples MK1, MK2, MK2b and MK4, 

whereas no straw is detected in samples MK5b, MK6, MK7, MK8. Furthermore, 

extensive biodeterioration is evident on the surface of brick sample BR3a (Fig. 2). 

Figure 2: Selected FOM images of samples, a) MK2 – evident straw addition, b) MK2b – evident lime 

lumps, c) BR3a – Evident bio deterioration, d) Mortar attached on BR3b – evident straw hay addition 

The grain size distribution analysis showed a good sorting of aggregates. MK1 and 

MK4, deriving from the exterior wall of the Catholicon present a greater similarity in 

comparison to sample MK7, the mortar of the interior wall joining the main temple 

and the Narthex (Fig. 3). The binder to aggregate ratio differs between samples. 

Figure 3: Grain size distribution analysis results 

a) b) c) d) 
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The results from the historical mortar sieve analysis act as a guide for the selection of 

the aggregates for the restoration mortar. Taking into consideration that the gradation 

curves of the historical mortars are only indicative of the original aggregates’ 

gradation curve, as after many centuries the material has deteriorated and altered, the 

gradation curve of the restoration mortar aggregates must be as close as possible to 

that of the historical mortars, thus fulfilling compatibility criteria, but at the same time 

it must present a normal distribution, in order to fulfill serviceability criteria. 

Thermal analysis was conducted on all mortar samples, as well as on the binder parts 

of the mortars separated through sieve analysis. The results show two types of 

mortars. The first type (samples MK1, MK2, MK2b, MK6) presents a curve as seen in 

Figure 4a, and the second type (samples ΜΚ4, ΜΚ5a, ΜΚ5b, ΜΚ7 and ΜΚ8), which 

presents an exothermal peak at 420-480
ο
C, corresponds to a curve as seen in Fig. 4b.

The values of physically bound water, which is connected to weight loss observed in 

the temperature range <120
 ο

C, are very low, corresponding to lime mortars
 
[1]. In the

temperature 120-200 
ο
C weight loss is attributed to the dehydration of hydrated salts.

The weight loss in the temperature range 200-600
ο
C is attributed to the dehydration of

water chemically bound to hydraulic compounds, however in the case of samples 

ΜΚ4, ΜΚ5a, ΜΚ5b, ΜΚ7 and ΜΚ8 the exact amount cannot be calculated, as an 

exothermal peak connected to the presence of organic matter, probably due to the 

addition of plant-based natural fibers, is also observed within this range (420-480
ο
C).

Therefore the reversed hydraulicity index cannot be calculated for the aforementioned 

samples. The endothermal peak at 580
ο
 C, not accompanied by any mass loss, is

attributed to the transition of quartz-a to quartz-b. The high values of CO2 loss (>600 
ο
C), corresponding to the decomposition of calcium carbonate, in combination to the 

high reverse hydraulicity index calculated in the cases where no decomposition of 

organic matter was noticed, further confirms the classification of the mortars as lime 

mortars (Table 2, Fig.5) [24]. Furthermore, the mortar aggregates are solely calcitic in 

the case of samples ΜΚ1, ΜΚ2,ΜΚ2b, ΜΚ4, whereas in the rest of the samples, 

aggregates are a mix of calcitic and silicate nature. Thermal analysis results can be 

utilized to correlate physicochemical values to mortar tensile strength (Fig.6) [1]. 

Sample 

Mass loss for each temperature range (%) 

CO2/H2Och.b CaCO3 <120 120-200 200-600 >600 

H2Oph.b H2Osalts H2Och.b. CO2 

MK1 1,06 1,83 2,14 39,30 18,36 89,21 

MK1binder 0,85 2,02 2,33 39,22 16,83 89,03 

MK2 1,21 2,34 2,03 31,43 15,48 71,35 

MK2b 0,42 0,50 3,6 28,39 9,28 64,44 

MK4 0,50 0,52 5,12
**

39,25 7,67
**

89,10 

MK4binder 0,52 0,45 3,82 40,00 10,47 90,80 

MK5a 0,95 2,05 7,36
**

27,50 3,74
**

62,42 

MK5b 0,68 0,90 6,05
**

24,55 4,06
**

55,73 

MK6 0,38 0,54 2,76 20,35 7,37 46,19 

MK7 0,50 0,57 5,93
**

29,87 5,04
**

67,80 

MK7binder 1,09 0,20 3,14 36,80 11,71 83,54 

MK8 0,69 0,96 7,7
**

26,48 3,44
**

60,11 
* H2Oph.b: physically bound water, H2Och.b.: chemically bound water

**Samples with the presence of organic matter – the exact amount attributed to chemically bound water cannot be 

calculated and therefore the reverse hydraulicity index calculated is not indicative 

Table 2: Thermal Analysis Results 
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Figure 4: Selected thermal analysis diagrams a)MK1 – mortar with the addition of straw, b)MK4 – 

mortar with the addition of organic additive 

  

Figure 5: Grouping of the Kaisariani mortars 

according to thermal analysis results 

Figure 6: Correlation of tensile strength and 

inverse hydraulicity index 

Thermal analysis results can be further utilized in the selection of the proper 

restoration mortars, as the restoration mortar selected must be compatible with the 

historical mortars, regarding its physicochemical characteristics, and in particular in 

terms of  reverse hydraulicity index and CO2 % loss. 

X-ray diffraction analysis of mortar samples, showed the mineralogical compositions 

(Table 3 and Fig. 7). The principal mineralogical phase of all examined mortars is 

calcite. Quartz is detected in all samples, muscovite is detected in almost all samples. 

X-ray diffraction results 

Sample Mineralogical Composition 

ΜΚ1 Calcite, quartz 

ΜΚ2 Calcite, muscovite, quartz, albite, chlinochlore 

ΜΚ2b Calcite, quartz, muscovite, chlinochlore 

MK4 Calcite, quartz 

MK5a Calcite, quartz, muscovite, hornblende, chlinochlore 

MK5b Calcite, muscovite, quartz 

MK6 Calcite, quartz, muscovite, albite, chlinochlore, vaterite 

MK7 Calcite, quartz, muscovite, chlinochlore, albite 

MK8 Calcite, quartz, muscovite, albite, chlinochlore 

Table 3: X-ray diffraction results 

a) b) 
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Figure 7: Selected X-ray diffraction diagrams, a)MK1, b)MK2 

The microstructural characteristics of selected samples were examined through 

mercury intrusion porosimetry (Table 4, Fig.8). The brick samples present 

characteristics similar to handmade byzantine bricks, as found in literature [25, 26]. 

The mortars examined through MIP were MK6 deriving from the north wall and 

selected from the interior, MK7, from the interior west wall of the Catholicon, in joint 

with the Narthex wall and MK8, selected from the South Wall of the Catholicon. All 

samples present relatively high total cumulative volume values (MK7 total cumulative 

value is much higher than the other two). MK7 also presents a very low bulk density 

value, whereas MK6 and MK8 present similar values. MK6 and MK8 present similar 

average pore radius, total porosity and specific surface area values, whereas MK7 

presents a much higher total porosity, as well as a lower average pore radius and 

higher specific area. The examination of the mortars microstructure confirms them as 

lime mortars [27]. 

Sample 

Total 

Cumulative 

Volume (mm
3
/g) 

Bulk 

Density 

(g/cm
3
) 

Total 

Porosity(%) 

Average 

pore radius 

(μm) 

Specific 

Surface 

Area (m
2
/g) 

BR3a 131,24 1,89 24,85 0,81 5,82 

BR3b 167,68 1,82 30,54 0,85 1,03 

MK6 233,75 1,61 37,70 0,44 3,27 

MK7 337,86 1,37 46,47 0,33 5,64 

MK8 255,81 1,62 36,55 0,47 3,40 

Table 4: Mercury Intrusion Porosimetry results 

    

Figure 8: Pore size distribution for a)BR3b, b)MK6, c)MK7, d)MK8 

The microstructural characteristics of the historical mortars, serve as a tool in the 

selection of the optimum restoration mortar, as it must present compatibility regarding 

microstructural characteristics. A study by Moropoulou & Bakolas 1998 assists in this 

task as it states the acceptability limits for restoration mortars for different mortar 

categories [27]. 

a) b) 

a) b) c) d) 
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The presence of soluble salts in the church masonries was then assessed through the 

examination of the samples with Total Soluble Salts Measurements. The percentage 

of soluble salts is calculated through the following equation: 

SST% = (C x 6,88) / M,    (1) 

where C is the measured conductivity in μS and M is the mass of the sample 

undergoing the measurement. Following the Total Soluble Salts Measurements, the 

results of which are presented below, spot tests were conducted in order to identify 

the salts present. The detection of chloride (Cl-), sulphate (SO4
-2

) and nitrate (NO2
--
) 

salts was possible through the use of AgNO3, BaCI2 and diphenylamine respectively. 

Sample Conductivity TSS Cl
- 

SO4
3- 

NO
2--

 

MK1 72,2 4,84 - - + 

MK2 83,3 5,54 - - + 

MK2b 65,7 4,38 - + - 

BR3b 53,8 3,57 - - - 

MK4 97,1 6,53 + - ++ 

MK5 122,1 8,28 - - +++ 

MK6 48,3 3,2 - - - 

MK7 61,4 4,09 + - - 

MK8 87,7 5,91 - - + 
*Very high content (+++++), high content (++++), medium content (+++), low content (++), extremely low 

content (+), traces (tr). 

Table 5: Total Soluble Salts measurements results and spot test results 

All examined samples present high soluble salts contents, above the limit of 3%. A 

very high content of nitrates was detected in the mortar samples of the North wall, 

attributed to the more intense biodeterioration on this side, the transportation of 

fertilizers through rising damp into the masonries, as well as the presence of an 

underground ossuary at close proximity to the north wall of the church. The high 

amount of soluble salts must be taken into account when selecting the proper 

restoration mortars, as the presence of salts, as well as the movement of salts through 

water transportation phenomena, creates various problems to masonries. 

Finally, the capillary rise coefficient of the brick sample (BR3b) was estimated 

through the Water Absorption by Capillarity test. The experiment was conducted at 

15 
o
C and 70% RH. The capillary rise coefficient (C.R.C.) is calculated as: 

C.R.C.=ΔΒ/(S*t
1/2

)      (2) 

Where, S is the surface of the sample in contact with the water and ΔΒ is the amount 

of water absorbed at a chosen time t(s). The above results where then designed in the 

following diagram, selecting the experimental results up to the time of    = 30 which 

corresponds to the linear part of the experimental curve, in order to estimate the trend 

line, and calculate the coefficient which is equal to the trend line slope. The trend line 

shows a very good R-squared value of 0.9948. The capillary rise coefficient value was 

thus calculated as C.R.C.ΜΚ3b=16.5 mg/(cm
2.

s
1/2

) (Fig.9). The restoration mortars 

must present a capillary rise coefficient equal or higher than this value in order to 

avoid moisture concentration in the brick elements. 
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Figure 9: Plot of selected water absorption by capillary test results in order to estimate the capillary rise 

coefficient 

4.2 Determination of decay factors, restriction arising from other building 

materials and earthquake behavior 

An important degradation factor of the structure is the high water content of the 

structure, as revealed by non-destructive techniques in a previous study [20]. The high 

humidity content of the structural materials is attributed to rising damp, low sun 

radiation on all sides except for the south, as well as intense vegetation at a close 

proximity to the masonries of the structure and is further aggravated by problems in 

the roof system. The restoration mortars must be hydraulic in order to harden in high 

humidity conditions, as well as to serve adequately in this environment. 

Furthermore, the detection of soluble salts above the acceptable limit of 3% for 

building materials dictates the use of a hydraulic mortar, either lime-pozzolan, either 

natural hydraulic lime, either a lime crushed brick restoration mortar, as these mortars 

exhibit a better behavior in the presence of soluble salts [8]. 

Although no stone samples were permitted, a previous study managed to categorize 

the building stones of the historical masonries of the Kaisariani Monastery and to 

estimate the compressive strength of the most common stone (fossiliferous) appearing 

in the structure. The compressive strength of the fossiliferous stone was estimated 

through a Schmidt hammer rebound test and the average value was estimated at 8.2 

MPa with a standard deviation of 1.72 [20]. As the fossiliferous stone is the weakest 

building stone in the masonry, this values must act as a limit as far as the restoration 

mortar compressive strength is concerned, in order to avoid compatibility problems. 

As the region of Greece is in constant danger from a potential earthquake, it is 

important to examine the structural system in earthquake stresses. Due to the 

thickness of the joint mortar in the Catholicon masonries, the restoration mortar is an 

important element contributing to the mechanical properties of the structure; the 

restoration mortar will inevitably affect the behavior of the structure to earthquake 

stresses. Therefore an important serviceability criterion must be the results of the 

fragility analysis for different repairing scenarios; the fragility analysis results can be 

utilized for the selection of the optimum restoration mortar. 

Another important factor is the use of the monument; if a monument is in use or even 

only accessible to visitors as a cultural site, it is important that the restoration mortars 

used present high values of early strength. Therefore another serviceability criteria 

arises, namely the restoration mortar must present adequate early strength values.  
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4.3 Evaluation of selected restoration mortars 

The goal in selecting the optimum restoration mortar is the compromise between all 

compatibility and serviceability requirements. The restoration mortars selected exhibit 

adequate hydraulicity, so as to ensure hardening in high humidity conditions and 

resilience in the presence of salts. Specifically, two lime-metakaolin and one 

hydraulic lime mortar, and two lime-metakaolin and one hydraulic lime concrete were 

selected (Table 6). The concretes were designed with the addition of crushed bricks, 

in order to simulate historical mortars of byzantine monuments that have shown 

excellent performance in earthquakes [11]. The raw materials used fulfilled all criteria 

in order to be acceptable for use in a historical masonry [6]. The selected aggregates 

presented a good agreement with the historical mortars’ gradation curve, as well as a 

good sorting and normal distribution. 

Sample 

Code 

Lime 

powder 

Meta 

kaolin 

NHL3,5 Silicate Sand 

(0-2 mm) 

Silicate Sand 

(0-6 mm) 

Crushed brick 

(0-16 mm) 

LΜ1 27,5 2,5 - 70 - - 
LM5 25 5 - 70 - - 
NHL - - 25 - 75 - 
LΜC5. 27,5 2,5 - - 35 35 

NHLC10 - - 30 - 35 35 
LMC15 20 10 - - 35 35 

Table 6: Synthesis of selected restoration mortars [9, 10] 

The thermal analysis results are stated for all selected restoration mortars (Table 7, 8). 

Furthermore, the resulting data is compared with the historical mortars thermal 

analysis results in order to assess compatibility (Fig.10); it is clear that they fulfill 

compatibility requirements, especially the lime-metakaolin mortars. 

Restoratio

n mortar 

Curing 

time 
(months) 

(H)t.ch.b. H-CH CH 
(CH)reac

t. (%) 
CO2 CaCO3 

CO2/(H

)t.ch.b. 

LM1 

0 0,16 4,73 19,44 0 1,40 3,18 8,75 
1 2,44 3,06 12,58 35 3,91 8,88 1,60 
3 2,44 2,22 9,12 53 6,90 15,68 2,83 
6 2,20 1,30 5,34 73 8,50 19,31 3,86 

12 1,91 0,00 0,00 100 12,38 28,13 6,48 

LM5 

0 0,23 4,70 19,33 0 1,85 4,21 8,04 
1 6,85 2,80 11,51 40 2,81 6,38 0,41 
3 3,24 2,50 10,28 47 2,88 6,54 0,89 
6 3,67 2,19 9,00 53 7,67 17,43 2,09 

12 3,60 0,00 0,00 100 10,70 24,31 2,97 
NHL 0 0,00 0,83 3,41 0,00 9,82 22,30 9820 

1 1,15 0,18 0,74 10,84 17,43 39,57 15.16 
3 1,88 0,12 0,49 40,96 13,38 30,37 7.12 
6 1,83 0,00 0,00 100 12,40 28,15 6.78 
9 1,90 0,00 0,00 100 16,47 37,39 8.67 

*(H)t.ch.b.: total chemically bound water, H-CH: water chemically bound to  Ca(OH)2, CH: Ca(OH)2, (CH)react.(%): 

percentage of consumed  CH 

Table 7 Mass loss percentages for restoration mortars in relation to curing time [9, 10] 
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Sample Code CH (%) in relation to curing time 

0 months 1 month 3 months 6 months 12 months 
LMC5 23,5 18,3 16,4 10,2 3,8 

NHLC10 12,5 12,1 14,1 11,7 4,1 
LΜC15 16,5 3,2 0,0 0,0 0,0 

*CH(%): percentage of Ca(OH)2 not yet consumed at testing date 

Table 8 Mass loss percentages for restoration mortars in relation to curing time [9] 

 

Figure 10: Correlation of %CO2 loss with inverse hydraulicity index 

The microstructural characteristics of the selected mortars are presented in the 

following table. The concretes, due to the large size of the aggregates were only 

analyzed regarding their apparent density. 

Sample 

code 
T.C.V. 

(mm
3
/g) 

S.S.A. 

(m
2
/g) 

Por. Rad. 

Av. (μm) 
dbulk 

(g/cm
3
) 

dcorr. 

(g/cm
3
) 

Total 

Porosity (%) 
LM1 198,78 4,15 0,32 1,73 2,63 34,30 
LM5 191,63 5,56 0,29 1,75 2,64 33,57 
NHL 151,1 4,24 0,28 1,90 2,67 28,7 
LMC5 - - - 1,62 - - 

NHLC10 - - - 1,85 - - 
LΜC15 - - - 1,69 - - 

*T.C.V.: Total Cumulative Volume, S.S.A.: Specific Surface Area, Por.Rad.Av.: Average Pore Radius, dbulk: 

apparent density, dcorr.: corrected density, Total Porosity (%) 

Table 9 MIP results – Hardened restoration mortar characteristics [9, 10] 

Regarding the thermal analysis results, at the end of twelve months the entire 

Ca(OH)2 has reacted, except for concretes LMC5 and NHLC10, where a very small 

amount remains. Regarding the microstructural characteristics of the selected mortars, 

all lime-metakaolin mortars, as well as the lime-metakaolin concretes, are within the 

range of acceptability limits [27]. Therefore, regarding physicochemical and 

microstructure compatibility, LM1, LM5, LMC5 and LMC15 are all deemed as 

acceptable and exhibit adequate hydraulicity, thus fulfilling serviceability criteria. 
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The average values of flexural and compressive strength measured for the examined 

mortars is listed in Table 10. The flexural strength values result as the average of the 

value measured for three different prismatic samples for each mortar mix, while the 

compressive strength values result as the average of the value measured for six 

different cubic samples for each mortar mix. 

Sample 

Code 
Curing 

time 
Ff (MPa) St.Dev. Fc (MPa) St.Dev. Εd (MPa) 

LM1 12 months 1,59 0,34 3,92 1,40 6532 
LM5 12 months 1,51 0,46 5,88 0,88 6641 
NHL 12 months 1,00 - 4,50 - - 
LMC5 12 months 1,50 0,25 8,4 0,36 6981 

NHLC10 12 months 2,22 0,27 18,7 0,50 18547 
LΜC15 12 months 2,40 0,35 21,4 1,26 13334 

*Ff: Flexural strength (MPa), Fc: Compressive strength (MPa), St.Dev.: standard deviation, 

Ed:Dynamic elasticity modulus 

Table 10 Flexural and Compressive strength values for examined mortar and concrete mixes – 

Dynamic elasticity modulus [9, 10] 

In the case of the lime-metakaolin mortar mixes, LM1 και LM5, it is concluded that 

the early acquirement in compressive strength noticed is enhanced due to the use of 

metakaolin (Fig.11). Furthermore, the results show that by increasing the percentage 

of metakaolin in relation to the lime powder, the compressive strength also increases. 

Regarding the gain in flexural strength with hardening, it is concluded that both lime-

metakaolin mortar mixes present similar final values, however not the same trend in 

the progression of hardening in time. In the case of the hydraulic lime mortar, the 

highest compressive strength value is measured at 6 months of curing, while it has 

already acquired 66% of its final mechanical strength values already from the first 

month of hardening. The final compressive strength value measured for the hydraulic 

lime mortar is between the compressive strength values of LM1 and LM5. The flexural 

strength of the hydraulic mortar is relatively lower than the lime-metakaolin mortar 

mixes. The concretes examined present a large range of compressive and flexural 

strength values (Table 10). As expected the concretes mixes examined presented 

much higher modulus of elasticity values in comparison to the mortar mixes. 

Amongst the concretes, the lowest values of dynamic elasticity modulus are exhibited 

by concrete LMC5, which also presented the lowest values of flexural and compressive 

strength; the highest dynamic modulus of elasticity values by far is exhibited by the 

hydraulic lime concrete, although it exhibited lower compressive and flexural strength 

values than LΜC15. The mortar containing the highest amount of metakaolin p.w., 

presented the highest compressive strength values, and also the highest modulus of 

elasticity value, however near the value exhibited by LM1.  

In Fig.11 compressive strength values are presented in relation to curing time. The 

results show that a large range of mechanical properties can be achieved with small 

variations to the mortar mixes and furthermore the use of the selected mortars fulfills 

the serviceability criteria set, namely the early acquirement of compressive strength. 

The optimum selection in order to ensure a good behavior under seismic action is the 

compromise of a high compressive strength and low dynamic elasticity modulus. In 

Fig.12 these values are correlated for the selected restoration syntheses. 

The selected lime-metakaolin mortars present C.R.C. values between 17-25 

mm
3
/g.s

1/2
, and are therefore compatible with the original brisk elements of the 

historical masonry [9]. 
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Figure 11: Compressive strength values (MPa) in relation to curing time (months) 

 

Figure 12: Correlation of compressive strength and dynamic elasticity modulus for selected restoration 

mortars and concretes 

Fragility analysis was conducted for the case of the Catholicon of the Kaisariani 

monastery, for different repairing scenarios, in accordance to the analysis of the 

selected restoration mortars [28-36]. The entry values selected for the original 

materials was an average values of 12 MPa compressive strength for the building 

stones, taking available literature into account, and 1 MPa for the original mortars, as 

correlated through the analysis of the physic-chemical properties [20]. Specifically, 

the probability of damage occurring under the effect of different ground accelerations 

was estimated for a) the original structural materials, b) repointing of joints with 

restoration mortar exhibiting 5 MPa compressive strength, c) repointing of joints with 

restoration mortar exhibiting 10 MPa compressive strength. The fragility analysis 

concerned the probability of appearance of insignificant, moderate and heavy damage 

(Fig.13-15) for the different repairing scenarios. 
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Figure 13: Probability of insignificant damages occurring for different ground accelerations 

 
Figure 14: Probability of moderate damages occurring for different ground accelerations 

 
Figure 15: Probability of heavy damages occurring for different ground accelerations 
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The results show that even the use of a restoration mortar exhibiting compressive 

strength 5 MPa, can achieve an improvement in terms of damage in the case of an 

earthquake; the improvement is greater as the damage severity increases. At this 

point, the restriction deriving from the low compressive strength of the fossiliferous 

stone must be taken into consideration; NHLC10 and LΜC15 are therefore rejected as 

possible restoration mortars, in order to ensure compatibility with the original 

structural materials. Thus, restoration mortar LM5 and LMC5 can be selected in order 

to use according to the joint thickness, as these restoration mortars exhibit 

compatibility with the original structure and serviceability in the environment of the 

Kaisariani monastery, at the same time contributing to the mechanical performance of 

the structure under earthquake stresses.  

5. CONCLUSIONS 

 The mortars of the Kaisariani Monastery Catholicon are typical lime mortars 

mixed with calcite and aluminosilicate aggregates, with high porosity values and 

occasionally the addition of straw or fiber admixtures 

 Tensile strength can be estimated for historical mortars, through correlation with 

physicochemical properties; this is only an estimation, but can be indicative and 

assist in the assessment of the seismic behavior of the masonry 

 The microstructural characteristics of the examined bricks are typical for 

handmade bricks of the byzantine period 

 By setting requirements during the characterization of the historical materials and 

the in situ investigation of the monument, the selection of the optimum mortar, 

complying with the set compatibility and serviceability requirements can be 

accomplished 

 Lime-metakaolin mortars present similar physicochemical and microstructural 

characteristics with the examined historical mortars, at the same time contributing 

in a decisive manner to the behavior of the masonry under earthquake stress 

 The role of restoration mortars is crucial in the earthquake protection of thick joint 

masonries  

 Fragility analysis is a valuable tool that can be utilized for the selection of the 

optimum restoration mortar in terms of compatibility and serviceability amongst 

different repairing scenarios 
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Abstract. This paper newly proposes the use of ambient vibration testing, vibration-based
continuous dynamic monitoring and automated modal identification for structural assessment
of monumental masonry domes. The final purpose of this research is the development of a
general methodology for online structural health monitoring of large domes, enabling early
detection of damages caused by low return period earthquakes, in a general framework of
preventive conservation and heritage resilience. The case study considered here is the dome of
the Basilica of Santa Maria degli Angeli in Assisi, recently added to the World Heritage List
of Unesco. The basilica is located in the center of Italy and it was built between 1569 and
1679 on the design of the architect Galeazzo Alessi. It consists of a latin cross plan, with 126
m and 65 m dimensions, with a nave, two aisles and a semicircular apse. At the intersection
between the transept and nave the building hosts the Porziuncola, a little ancient chapel, symbol
of Franciscan spirituality and pilgrims destination since the construction of the basilica.

In order to preliminary assess the structural behavior of the dome, several dynamic ex-
perimental investigations have been carried out and ended with the installation of a simple
vibration-based monitoring system, based on the use of a few high sensitivity accelerometers,
placed at the top and the base of the drum, as well as temperature and humidity sensors. This
paper presents and discusses the first results of the vibration-based monitoring of the drum-
dome system, demonstrating the potential for using similar approaches for the preservation of
this special kind of historic structures.
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Figure 1: Basilica of Santa Maria degli Angeli in Assisi.

1 INTRODUCTION

Monitoring the structural integrity of historical constructions is an important topic for the
conservation of the architectural heritage [1], that has received a considerable interest both
from researchers and practitioners in the last decades [2, 3, 4, 5, 6, 7]. Within this context,
vibration-based dynamic monitoring can be considered as a quite novel approach, if applied
to cultural heritage. In particular, while the use of Operational Modal Analysis (OMA) tech-
niques is well-established for performing dynamic structural investigations and/or implement-
ing continuous monitoring of relatively new slender structures [8, 9], their application in the
context of heritage monumental buildings is far less common. A few documented applications
of vibration-based monitoring to monumental buildings are however available, whereby some
literature studies have proposed the use of OMA techniques for the dynamic identification of
masonry civil and bell towers [10, 11, 12]. On the contrary, applications to different kinds of
historic structures are quite rare and only a few studies have proposed to use OMA techniques
in the context of continuous dynamic monitoring systems [13, 14]. This is mainly due to the
low levels of vibration typically exhibited by massive masonry buildings, as well as to their
complex structural behavior, that makes the development of vibration-based continuous moni-
toring systems for cultural heritage preservation a new and worthwhile scientific and technical
challenge.

In this paper, the results of ambient vibration tests carried out on a masonry dome, which lead
to the installation of a permanent dynamic monitoring system, are presented. The case study
considered here is the dome of the Basilica of Santa Maria degli Angeli in Assisi, recently
added to Unesco’s World Heritage List, which represents one of the most important focal points
of the franciscan spirituality (Figure 1). Field measurements of the dynamic response of the
structure have been carried out by installing high sensitivity accelerometers both at the top and
at the base of the drum. Data are first processed to preliminary assess the structural behavior
and to attain a proper configuration of the sensors layout for the monitoring system. The same
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Figure 2: Basilica of Santa Maria degli Angeli in Assisi: (a) plan; (b) longitudinal section [15].

data are then continuously processed by using both classical Frequency Domain Decomposition
(FDD) and Stochastic Subspace Identification (SSI) techniques. The results of the first months
of monitoring are presented, providing an overall demonstration of the potential of this kind of
measurements in the context of heritage preservation.

2 THE DOME OF THE BASILICA OF SANTA MARIA DEGLI ANGELI IN ASSISI

2.1 The architecture

The Basilica of Santa Maria degli Angeli in Assisi was built between the 16-th and the 17-th
centuries, on the design of the architect Galeazzo Alessi. It consists of a latin cross plan, with
126 m and 65 m dimensions, with a nave, two aisles and a semicircular apse. The Basilica
contains the Porziuncola, a little ancient chapel representing a symbol of Franciscan spirituality
and an important pilgrims destination. This chapel is located at the intersection between the
transept and nave. Figures 2(a) and 2(b) show the plan and the longitudinal section of the
Basilica carried out after a recent architectural survey [15].

The presence of the Porziuncola inside the basilica, as well as the need to provide a visi-
ble sign for pilgrims coming from all over the world, have induced the architect to design an
uncommonly high drum-dome system. In this way, the dome appears majestic and impressive
owing to the singular slenderness and lightness of the drum. It is characterized by a single shell
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Figure 3: Superposition between Fontana’s drawing and the dome section of the Basilica of Santa Maria degli
Angeli [17].

and provided with an external staircase to climb up to the lantern. The inner diameter is of
approximately 20 m and the variable thickness of the unique shell ranges from 1.80 m at the
bottom, up to 0.90 m at the top. The inner perimeter of the drum is circular, while the outer
one is octagonal; the coupled pilasters at the angles of the octagon become stiffening ribs over
the dome’s extrados, joining at the oculus, the base of the lantern, that gives to the architectural
complex an overall height of approximately 75 m.

It should be noted that, if compared with the rules of construction illustrated in the most
important architectural treatises, e.g. the work of Carlo Fontana [16], the drum appears to be
very high. In particular, its height is more than twice the height that would correspond to the
prescriptions proposed by Fontana, conferring to the structure a really unusual slenderness and
unique architectural feature. This aspect is emphasized in Figure 3, where the section of the
drum-dome system is superimposed to a drawing explaining the geometrical rules proposed by
Fontana.

It is worth recalling that Fontana’s graphical rules were developed for the design of some
structural parts of the Vatican Temple, which made his treatise a fundamental reference for
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Figure 4: Lineengraving of the basilica damage state after the 1832 earthquake. Prospetto delle ruine del famoso
Tempio di Santa Maria degli Angioli di Asisi, by Cilleni Nepis.

architects of those times [19]. Nonetheless, the dome of the basilica of Santa Maria degli Angeli
was a notable exception to those rules and differed from all other contemporary designs. This
significant slenderness motivated the authors towards the implementation of a vibration-based
monitoring system for the dome.

2.2 Evolution of the structural system

Throughout its history, the Basilica of Santa Maria degli Angeli was subjected to significant
seismic events. The most important one was certainly the earthquake of 1832, which caused
the collapse of the nave and of a portion of the left aisle (Figure 4). The drum-dome system
was severely damaged, but did not collapse, conceivably because of its high flexibility and low
natural periods of vibration. The strengthening of the drum with three orders of steel rings
dates from this period. In the reconstruction phase, a particular attention was devoted to the
cross section of the central vault and to the timber truss system of the roof designed by Poletti,
in order to reduce the horizontal thrust acting on the lateral walls [20]. After the Umbria-Marche
earthquake of 1997, the basilica was subjected to other phases of strengthening and restoration
[21]. However, a pattern of cracks and micro-cracks, that can be attributed to seismic and static
actions, is still evident both in the drum and the dome. The most significant through-wall cracks
are located above the north-east side, for the presence of internal staircases and tunnels, and the
west side of the drum.

3 ANALYSIS PROCEDURES AND MONITORING SYSTEM

3.1 Data processing

Field recorded vibration data have been processed using two different techniques. The first
considered approach is the classic Frequency Domain Decomposition (FDD) based on the eval-
uation of the spectral matrix G( f ) (i.e. the matrix of cross-spectral densities) of recorded accel-
erations, whose diagonal terms are the auto-spectral densities (ASD), while the out of diagonal
are the cross-spectral densities (CSD). The time series are first resampled in order to estimate
G( f ) with a frequency resolution of 0.01 Hz. Subsequently, the contour plot of the first singu-
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Figure 5: Structural monitoring system installed in the dome of the basilica.

lar value (SV) of the spectral matrix G( f ) estimated in consecutive data sets has been obtained.
This plot is commonly known as frequency spectrogram, which highlights resonant frequencies
and their variation in time as local maxima of the SV contour plot and, consequently, of the
energy content of the data, in the time-frequency domain.

The second considered approach is based on the Stochastic Subspace Identification (SSI)
technique. This method has been used to identify the natural frequencies of the structure by
a fully automated for step procedure [22, 23]: (i) run of SSI-data analysis, using the classic
Canonical Variate Analysis (CVA) formulation, for different values of the order of the model
and of the number of output block rows adopted to construct the block Hankel matrix of the
data; (ii) elimination of noise modes on the basis of similarity checks between modal param-
eters estimates; (iii) clustering of remaining modes; (iv) extraction of mean values of modal
parameters estimates with 95% confidence intervals, under variation of model’s order and num-
ber of block rows of block Hankel matrix. Using the SSI technique to consecutive data sets it is
possible to obtain a frequency time series of the lower structural natural modes.

3.2 Dynamic monitoring system

The monitoring system installed in the drum and the dome consists of five high-sensitivity
(10V/g) uni-axial accelerometers placed at the base of the drum and at the base of the dome,
as described in Figure 5. In particular, three accelerometers have been fixed on the easily
accessible external side of the drum base (sensors A1, A2 and A3 in Figures 6(a) and 6(b))). The
sensors A4 and A5 have been placed in the only accessible part with highest location inside the
dome shell (Figure 6(c)), at the top of the internal staircases which allow the access to the dome
extrados. The data have been recorded by using a multi-channel system, carrier model cDAQ-
9188 with NI 9234 data acquisition modules (24-bit resolution, 102 dB dynamic range and anti-
aliasing filters), down-sampled at 100 Hz for storage purpose and stored in 30-minutes long
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Figure 6: Images of the accelerometers installed at the base of the drum (a) and (b), and of the dome (c).

ρ [t/m3] µE [MPa] σln,E µG [MPa] σln,G
Brick 1.8 1500 0.2 500 0.2
Stone 2.2 2800 - 860 -

Table 1: Mechanical material properties: mass density (ρ); mean value (µE ) and standard deviation of the logarithm
(σln,E ) for the elastic modulus; mean value (µG) and standard deviation of the logarithm (σln,G) for the shear
modulus

time histories, representing the data sets. The monitoring system also includes humidity and
temperature sensors, as well as displacement transducers monitoring the evolution of existing
cracks. The related information is however not illustrated in this work and, therefore, these
additional sensors are not considered.

4 ANALYSIS OF RESULTS

4.1 Preliminary numerical model

The Basilica of Santa Maria degli Angeli has been investigated focusing on both historical
and structural aspects [17, 18]. As far as the structural analysis is concerned, a preliminary Fi-
nite Element numerical model has been developed in order to investigate the static and dynamic
behavior of the structure, with a focus on the drum-dome system. The model details the central
core of the basilica, i.e. the triumphal arches, the drum and the dome, while the remaining parts
of the basilica are considered as lateral restraints. In this way, it has been sufficient to include a
rough model of the nave, the transepts and the apse to reproduce a consistent lateral stiffness.

A peculiarity of the developed numerical model is the probabilistic approach for the esti-
mation of the eigenfrequencies and eigenmodes starting from a stochastic model for the elastic
moduli of the materials. The main constituent material is brickwork everywhere, except for
the stone pillars of the nave. An homogeneous material with orthotropic elastic behaviour has
been considered, in which the values of stiffness have been selected from the recent instruc-
tions proposed by the Italian National Research Council [24], with their lognormal distribution
parameters (Table 1).

A set of 1000 samples have been generated for both the Young’s modulus (E) and shear
modulus (G) of the brickwork (Figure 7), and then multiplied by a coefficient α = 1.5 which
takes into account the good condition of the mortar.

Figure 8 shows the eigenproblem solutions of the first modes. For each mode the distribution
of the corresponding frequencies for the 1000 samples of the elastic parameters is reported. It
should be noted that all considered modes are flexural in x and y directions, with the only

5365



N. Cavalagli, G. Comanducci, M. Gioffrè, V. Gusella and F. Ubertini

Figure 7: Generated values of Young’s modulus (a) and shear modulus (b) from the statistical moments of the
related distributions.

Figure 8: Modal shape and distribution of the related frequencies of the first seven modes derived by FE model by
varying material stiffness [25].

exception of the third mode, which is a torsional mode. The x and y directions are defined
according to the reference system of the numerical model (Figure 8).

4.2 Dynamic identification of the modal parameters and frequency tracking

The dynamic monitoring system has been started on October 16-th 2015. Figure 9 shows an
example of acceleration time histories of a sample 30-minute data set, with excitation mainly
given by micro-tremors due to road traffic around the Basilica and by wind loading. The very
low levels of vibration in operational conditions are especially noteworthy, whereby peak ac-
celerations are of the order of 0.2-0.3 mm/s2. The different levels of noise in the signals can be
conceivably due to the length of the cables connecting the sensors to the data acquisition unit.

The modal parameters of the structure have been estimated by means of the aforementioned
SSI technique. In particular, the analysis has allowed to clearly identify the first five natural
modes, where the first two modes are flexural in the y (Fy1) and x (Fx1) directions, respectively,
the third mode is torsional (T1), and the last two modes are, again, flexural in the y (Fy2) and
x (Fx2) directions, respectively. Figure 10 and Table 2 summarize the results of the modal
parameters with their mean values and standard deviations identified from October 16th 2015

5366



N. Cavalagli, G. Comanducci, M. Gioffrè, V. Gusella and F. Ubertini

Figure 9: Sample of a 30-minutes recorded data.

Mode Type Frequency [Hz]
µ f σ f

1 Fy1 1.77 9.25e-3
2 Fx1 1.81 1.10e-2
3 T1 3.08 1.01e-1
4 Fy2 3.51 4.78e-2
5 Fx2 4.40 5.57e-2

Table 2: Identified modal frequencies of the drum-dome system: mean values µ f and standard deviations σ f .
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Figure 10: Representation of the identified modal shapes.

to January 4th 2016.
The application of the FDD technique has allowed to extract the first resonant frequencies

through the peak-peking method. As an illustrative example, Figure 11(a) is a plot of the sin-
gular values of the power spectral density matrix of recorded accelerations as a function of
frequency, for the sample data set in Figure 9. The first five resonant frequencies identified
by SSI analysis can be clearly detected in the plot of Figure 11(a). Peaks associated to higher
frequencies are also visible in this plot, which might conceivably correspond to higher order
modes. A final decision about the nature of these peaks goes however beyond the purposes of
the present investigation.

Figure 11(b) shows the spectrogram of the first singular value of the PSD matrix of the five
acceleration records over the monitoring period. The traces of the first five modal frequencies
are clearly visible in this plot and are indicated through dashed lines. By a closer inspection
of the analysis results, it could be verified that these modes corresponds to those identified by
FDD in a single data set, as discussed above. Another remark on the plot of figure Figure 11(b),
is the presence of daily vertical lines that are associated with an increase in vibration energy
during day-time and a decrease during night-time. This periodicity is conceivably associated to
the periodicity of traffic intensity around the basilica.

Figure 12 shows the identified natural frequencies versus time, as obtained by the application
of the aforementioned fully automated SSI technique on the data sets recorded over the mon-
itoring period. The presented results are in perfect agreement with those obtained by spectral
analysis of accelerations, as presented above. In particular, a quite clear tracking of the frequen-
cies of the first five modes is achieved. Daily and long-term fluctuations of such frequencies
are also clearly visible in this plot and conceivably attributable to changing environmental con-
ditions, primarily ambient temperature. Also, natural frequencies are almost systematically
identified during the day-time, while some frequencies are missing during night-time, due to a
comparatively lower level of excitation.

From the results presented above, some comments on the agreement between experimen-
tally identified and numerically predicted natural frequencies are mandatory. This comparison
reveals that the frequencies of the second and the third numerical modes are in a good agreement
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Figure 11: (a) Singular values of the power spectral density matrix and identification of the first resonant frequen-
cies. (b) Spectrogram of the natural frequencies obtained by the FDD technique.
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Figure 12: Frequency tracking of drum-dome system obtained by SSI technique.

with experimental results. The comparison with the higher modes requires further investigations
which have not been carried out in this work. A final remark concerns some resonant frequen-
cies in the range around 2.3÷ 2.5 Hz which are often observed (e.g. Figure 11(a)). These
phenomena are probably to be ascribed to the lateral restraint effect of the surrounding basil-
ica. The numerical model is not able to describe these effects since, at this preliminary stage,
the lateral structural elements are not fully reproduced. However, it can be concluded that the
agreement between the preliminary developed finite element model and the identified natural
frequencies is acceptable.

5 CONCLUSIONS

In this paper the first results obtained by a vibration-based monitoring system installed in the
dome of the Basilica of Santa Maria degli Angeli in Assisi have been presented. The structural
modal parameters and, in particular, the natural frequencies of the lower order modes, have been
estimated over time in a continuous fashion using classic spectral analysis and a more advanced
automated SSI technique. These natural frequencies have been also compared with those ob-
tained by a FEM model developed in a previous study. In general, a good agreement between
numerically predicted and experimentally identified modal parameters has been observed, both
for natural frequencies and mode shapes.

Overall, the results presented in the paper represent a first attempt to monitor the behavior of
large domes using vibration measurements and automated operational modal analysis. The pre-
sented results are promising towards the implementation of a vibration-based SHM procedure
aimed at the early detection of damages in the structure caused by low return period earthquakes
or other types of dynamic loads.
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[25] N. Cavalagli, M. Gioffrè, V. Gusella, Structural monitoring of monumental buildings: the
Basilica of Santa Maria degli Angeli in Assisi (Italy). Proceedings of the 5th International
Conference on Computational Methods in Structural Dynamics and Earthquake Engineer-
ing, COMPDYN 2015, Crete Island, Greece, 25–27 May, 2015.

5372



ECCOMAS Congress 2016 

 VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 
Crete Island, Greece, 5–10  June 2016 

BEHAVIOR OF SINGLE STORY BEARING WALL MASONRY 

STRUCTURES IN VARIOUS CONDITIONS  

A.T. Kassem 

Department of Civil Engineering, Beni-Suef University 
Beni-Suef Egypt 

e-mail: abdelraouf_kassem@yahoo.com 

Keywords: Bearing walls, Masonry, Bricks, Boulders, principle stresses, Cracks. 

Abstract. As a part of a governmental action for studying the structural condition of public 

schools across Egypt, there was an awesome opportunity to perform such a research, using a 

valuable amount of available data for typical school models built in different environments 

and subjected to various loading and environmental conditions. A field study has been per-

formed on fourteen, geometrically typical, single story schools to study effects of permanent 

gravitational loads, differential settlement and lateral pressure on the structural response of 

concrete and masonry. Structures under investigation were built by bricks or boulders and 

covered with an inclined reinforced concrete deck or steel or timber cladding. Finite element 

analyses have been performed to allocate regions and directions of principles stresses, expect 

failure pattern and compare with real structures. Modelling was capable to take into account 

various material and geometric parameters. Outcomes related to significance of various de-

sign parameters, loading and environmental conditions have been extracted. In addition re-

sponse of various construction materials to the loading environment.    
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1 INTRODUCTION 

Even bearing walls system is an ancient system for building lightly loaded structures, it is still 

the most used system worldwide, especially for single and double floor buildings. This exten-

sive use of that system imposes a supporting research work studying structural properties, be-

havior, and response towards various loading conditions. This research was based on the 

opportunity arising from a governmental project of studying structural safety of school build-

ings all over EGYPT. The study has been performed on a typical single story bearing wall 

system used for educational purposes. Field investigation and measurements have been per-

formed, in addition parametric and structural analyses have been established. All buildings 

studied in that paper have been built about twenty years ago and did not show seismic failure 

patterns since they did not face any significant seismic motion, in addition low rise restrained 

bearing walls behave well in moderate seismic actions1&2. Two main types of bearing walls 

materials were adopted in this research. The first is boulders and the second is bricks. The 

first type is known for its cracking resistance due to having irregular mortar interfaces3. Foun-

dations of all the investigated models were of the same configuration and sub-base, resulting 

in the same stiffness5.   

 

2 FIELD INVESTIGATION 

A typical building model, as shown in figure 1, has been considered for both investigation and 

analysis. The building is composed of a single compartment with a 15o inclined ceiling.  

 

 

 

a) investigation model b) analysis model 

Figure 1: Building typical model 

 

Openings for the door and windows are shown in figure 2. Bearing walls are 25 cm thick with 

a typical strip footing as shown in figure 3. Building geometry and life time were not studied 

parameters (constants), while construction material for walls and ceiling, soil pattern, natural 

ground level inclination, presence of neighboring structures, and interference with ground wa-

ter table were considered as studied parameters.  
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Figure 2: Building typical plan (Dim. in meters) Figure 3: Typical wall x-section 

 

3 FINITE ELEMENT MODEL 

A finite element model has been developed to study stress distribution within the bearing 

walls body considering various loading conditions arising from field investigation. Shell ele-

ments were chosen to model walls and ceiling, as shown in figure 4. Specific releases were 

assigned at ceiling-walls interface to account for the difference in material and absence of ro-

tational constraints. Springs have been used to model foundation elasticity, since foundation 

and subgrade properties were identical. Concrete slabs and bearing walls material non-

linearities have been considered. 

 

  

a) First side b) Second side 

  

c) Third side d) Fourth side 

Figure 4: Finite element model 
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4 RESULTS AND DISCUSSION 

Outputs of the study have been divided into two categories. The first is field investigation and 

measurements. Investigations considered loading conditions clarifying the structure's status, 

concentrating on the proposed most significant parameters as building material, ceiling type, 

soil type, natural ground level profile, presence of close neighboring structures, and interfer-

ence with ground water level; in addition to crack pattern. While measurements concentrated 

on major crack width. Special conditions, as the presence of side embankment were found in a 

single building; so it was not considered as a studying parameter, but a load case.  Table 1. 

Summarizes conditions of each building concerning studied parameters and noticed patterns 

of failure (major crack pattern and width). 
 

Table 1: Brief Description of buildings condition 
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The second output pattern is the finite element modeling. Two main finite element models 

have been established. The first reflects normal gravitational loads, while the second reflects 

the case of side embankment resulting in lateral loads. Figures 5, 6, and 7 represent horizontal 

normal stress (S11), vertical normal stress (S22), and maximum tensile stresses (Smax) in 

(kN/m2). 
 

 

 

Figure 5a: S11 (gravitational loads) Figure 5b: S11 (gravitational loads) 
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Figure 5c: S11 (gravitational loads) 

 

 

Figure 6a: S22 (gravitational loads) 

 

Figure 6b: S22 (gravitational loads) 
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Figure 7a: Smax (lateral loads) 

 

Figure 7b: Smax (lateral loads) 

Reviewing field study outputs and analysis outputs showed an accepted level of compatibility 

between both of them. Consequently both of them have been considered to perform a para-

metric analysis to study parameters significance. Outputs of the parametric study could be 

summarized as follows. The most significant parameter concerning cracking is the use of 

boulders, where 35% of the investigated buildings were constructed by boulders and they all 

showed a high level of resistance towards cracking, this could be attributed to two factors, the 

first is the higher strength of boulders relative to bricks, while the second could be due to the 

irregularity if boulders interfaces that make crack propagation difficult. The second signifi-

cant parameter is the natural ground level profile, where 21% of the investigated buildings 

were built on a sloping ground or at the edge of a slope. All these buildings suffered inclined 

cracking exceeding 5 mm width. The third significant parameter is soil formation, where 57% 

of structural failure took place in clayey soils, putting into consideration that clayey soils rep-

resent 57% of the investigated buildings sub-base. The forth significant parameter is applied 

loads, where lightly loaded buildings (steel or timber ceilings) did not show any failure pat-

terns. Other parameters as interference with ground water table and the presence of adjacent 

structures seems to be insignificant.  
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A comparison has been conducted between field study and structural analyses. This compari-

son concentrated on location of relatively high tensile stresses, resulting from structural analy-

sis and cracking, noticed in field investigation. Figure 8 shows door cracking at location of 

maximum tensile force due to gravitational loads, which is compatible with figure 5a. Figure 

9. Shows windows cracking at the location of maximum tensile stresses, which is compatible 

with figure 5b. Figure 10 shows lateral earth pressure resulting from natural embankment 

reaching windows. This earth pressure resulted in tensile stresses shown in figures 7a and 7b 

and appeared in the form of cracking shown in figure 11 
 

 

 
Figure 8: Door cracking (gravitational loads) 

 

 
Figure 9: Window cracking (gravitational loads) 
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Figure 10: Windows Earth pressure loads 

 

 
Figure 11: Window cracking due to earth pressure loads 
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5 CONCLUSIONS 

Field and analytical studies resulted, concurrently, in the following conclusions: 

 Bearing walls, built by boulders showed much more durability than those by bricks. 

 Natural ground inclination has a highly passive influence on bearing walls failure.  

 Lightly loaded ceilings (timber or corrugated sheets), results in no structural cracking, 

in case of proper foundations. 

 Foundation submergence in ground water table does not influence bearing wall failure 

significantly. 

 Most long-term cracking takes place in non-granular soils 
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Abstract. The research has developed an integrated, interdisciplinary and innovative meth-
odology to evaluate the seismic behaviour of monuments and historic structures. This meth-
odology enables condition assessment of monuments, in a way that allows selection of 
effective preservation intervention techniques using appropriate materials. It also yields use-
ful recommendations for engineers and authorities responsible for the procurement, realiza-
tion and approval of studies and their subsequent applications to protect monuments and 
historic structures. Given the importance and complexity of historic structures in terms of de-
sign, construction techniques and materials, advanced computational tools and methods were 
utilized to meet the needs of the proposed research. In particular, implementation of the pro-
posed methodology on selected case-study historic structures included: (a) documentation of 
the existing state through surveys and architectural studies; (b) recording of damage; (c) 
identification of the construction materials; and (d) monitoring of the monument and the 
evaluation of parameters, such as regional seismicity and soil conditions, that affect their 
seismic response. Static tests on wall specimens as well as shaking table tests were conducted, 
producing valuable data related to the true seismic behaviour of structures. Two well known 
monuments have been selected as case studies in order to be analysed using several types of 
analysis and failure criteria. Moreover, methodologies established for the study of monu-
ments and historic structures were assessed in terms of their reliability, accuracy and effec-
tiveness by comparing analytical results with experimental data. 
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1 INTRODUCTION 

The interest of the scientific community involved in the protection of cultural heritage was 
rekindled at the end of the Second World War when many monuments across Europe showed 
irreparable damage [1-3]. This interest focused on the condition assessment of monuments, 
methods for more efficient maintenance, and development of simulation techniques to model 
their behaviour, facilitated by the evolution of computational tools and the parallel progress 
made in many scientific fields. 

The study of the behaviour of a monument or a historic building is particularly difficult be-
cause of the complexity of the structure, construction method, age, and of course because of 
its historic significance [4]. These parameters limit the choice of means and methods of moni-
toring and intervention for these types of structures. Detailed data collection, use of advanced 
computational methods and development of complex models is usually required [5-7]. As-
sessing the status of a historic building becomes even more difficult when the structure is 
prone to seismic activities [8]. In this case the risk of partial or total collapse should be stud-
ied [7, 9]. Furthermore, the existence of seismic activity in the vicinity of an aging monument 
usually suggests that the structure has already suffered damage, which must be considered in 
the study, and in addition, any proposed interventions should be targeted to protect the struc-
ture from future earthquakes [10-13]. 

Therefore, it is evident that the seismic protection of monuments involves a great number 
of parameters that should be investigated thoroughly and systematically. Although the survey-
ing of a historic structure is a prerequisite for its study and protection against seismic actions, 
current practice has demonstrated deficiencies, as demonstrated by several current examples 
of failures reported in the literature, such as the Tower in Pavia, Italy, an important monument 
that collapsed without any indication of damage. A similar case- study is a Cathedral in the 
south of Sicily that was partially propped after an earthquake in 1990, and then collapsed in 
the 1996 without another seismic event. Use of suitable investigation methods and testing 
would have allowed an accurate assessment of the status of the above monuments and early 
detection of damage. 

This research develops a methodology for thorough documentation of the geometry, as-
sessment of structural condition and calculation of seismic response through experimental and 
analytical methods, as well as application or enhancement of innovative preservation tech-
niques to monuments and historic structures.  

 
Figure 1: The temple of Hephaestus in the Ancient Agora, Athens: (a) western façade; (b) southern view.  

(a) (b) 
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Figure 2: The Catholikon of Kaisariani Monastery, Hymettus Athens: (a) western façade; (b) southern view.  

Two monuments of major importance were selected, representing the classical and the 
byzantine era: (a) the Temple of Hephasteus in the ancient Agora in Athens; (b) the Cathol-
icon of the Kaisariani Monastery. The temple of Hephaestus was probably erected between 
460 and 420 BC by a yet unknown architect on top of Agoraios Kolonos hill, which is delim-
iting the Ancient Agora of Athens to the west. It is one of the best preserved ancient temples, 
partly because it was transformed into a Christian church. The central church (Catholicon) of 
the Monastery of Kaisariani is located on a hillside at the foot of Mount Hymettus on the east 
of Athens, Greece. The Catholicon is a Byzantine crossed-dome church constructed during 
the 11th/12th centuries. The two monuments are shown in Figures 1 and 2. 

2 CONDUCTED RESEARCH 

The geometric survey of monuments is a sophisticated and demanding process, as regards 
to the use of suitable equipment (simple tools, photogrammetry or laser scanners surveys), 
software, expertise, time and effort. The importance of accuracy in monument surveying is 
obvious. The need for a detailed record of the architectural elements of the bearing structure, 
deformation and damage is often a catalyst for the choice of retrofitting methods. A full doc-
umentation of the main structure, including the main horizontal, vertical and inclined structur-
al elements that transfer the imposed stresses and strains at the foundation elements, has been 
performed for the two monuments. In Figure 3 the final 3D model for the temple of Hephaes-
tus derived with the use of a Leica ScanStation 2 laser scanner is shown [14]. 

 
Figure 3: Documentation of temple of Hephaestus with laser scanner: View of the 3D model from the northeast 

corner [14]. 

(a) (b) 
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Local soil conditions have a profound influence on the structural response. In this context, 
site surveying includes the study of local topography (i.e., slopes, valleys), nature of the bed-
rock and nature and geometry of the deposited soils. These factors may contribute to the qual-
itative interpretation of the observed damage. The role of soil behaviour and site 
characteristics on the seismic response is now internationally recognized. A Geophysical in-
vestigation has been performed for the Kaisariani Monastery to evaluate the velocities for P 
and S waves along depth, as depicted in Figure 4a. Based on the geological and geotechnical 
data available at the positions of the two monuments, the soil profiles have been derived and 
analysis of soil response has been conducted to estimate maximum acceleration, maximum 
velocity and design spectra at the top of the soil. An indicative elastic acceleration spectrum at 
the ground surface is shown in Fig. 4(b) [15].  

 
Figure 4: Soil investigation: (a) determination of S-waves velocity in Kaisariani Monastery; (b) elastic spectral 

acceleration at ground surface in Hephaestus temple [15]. 

A detailed study of seismic hazard is also completed, that is, assessment and evaluation of 
seismic loads resulting from the seismicity of the area in which the monument is located, con-
sidering possible nearby active faults and near-fault phenomena. The significance of the mon-
uments requires the probabilistic assessment of seismic risk, which is based on regional 
seismicity including historic earthquakes and the establishment of the probability distribution 
of occurrence for seismic events. The combination of the regional seismicity and attenuation 
relationships of ground motion result in the formation of seismic hazard curves that provide 
the expected ground acceleration, depending on soil type, for different annual frequencies of 
exceedance and return periods. Based on typical values of acceleration, appropriate pairs of 
earthquake magnitude and distance were determined, and used for seismic analysis. In Figure 
5 the annual frequency of exceedance of peak ground acceleration for stiff soil conditions is 
depicted [16].  

Another important parameter, necessary for the complete documentation of the structure 
and for understanding its behaviour, is the identification of material properties, which may 
have different characteristics depending on construction phases of the structure. Beyond iden-
tifying these components, namely the structure and the mechanical properties of the materials, 
the scientific community interest focuses on the modeling approach of historic mortars, since 
application of inappropriate mortars for the preservation of monuments in the past resulted in 
devastating effects, i.e., cracks, failure of the original materials, surface staining or spalling. A 
thorough and organized survey of the two monuments has been conducted including the im-
plementation of various non-destructive techniques (NDTs) [17-19]. In the case of Kaisariani 
monastery, after a thorough in-situ macroscopic investigation, a variety of NDTs where ap-

(a) (b) 
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plied: Ground-penetrating Radar (GRP), Infrared Thermography (IR), Fiber Optics Microsco-
py (FOM) and Schmidt rebound hammer.  

 
Figure 5: Seismic hazard curve [16]. 

 
Figure 6: Results of Infrared Thermography at the Catholikon. Detection of different structural phases [17]. 

The results were analyzed and combined in order to extract information regarding the orig-
inal building materials, the type of masonry construction, as well as information regarding 
non-documented different construction phases and problematic areas. In Figure 6 indicative 
results of infrared thermography are shown regarding the Catholikon. A series of NDT tests 
have been conducted also at the Hephaestus temple including the use of ground penetrating 
radar, endoscopy and rebound hammer testing. In Figure 7 the results of radar are shown re-
garding a wall of the south façade. 

Monumental and historic buildings are generally constructed with masonry walls. These 
construction materials present significant variances of the mechanical and dynamic character-
istics, which are very difficult to identify. The identification of these variances is required in 
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order to perform the analysis of the monument and assess its behaviour. The large dispersion 
of these characteristics is mainly attributed to the fact that the monument during its life has 
been strained by several actions, including subsidence, temperature changes, environmental 
vibration and seismic loads. The impact of these actions is partly depicted in the form of 
cracks. The existence of severe cracking could result in separating the monument in different 
parts; thus, increasing the difficulty to assess its behaviour under seismic excitations.  

For these reasons, a thorough understanding of the behaviour of the monument is achieved 
through structural monitoring under small-intensity earthquakes in order to assess the effects 
of cracking on the behaviour of individual parts. The information from structural monitoring 
can be a basis for developing numerical and analytical models that will be validated according 
to the results of a monitoring program in order to approximate the real behaviour of the struc-
ture with acceptable accuracy. In Figure 8 the positions for the placement of six triaxial accel-
erometers are depicted for the Catholikon. The accelerometers are connected with a central 
data acquisition system.  

Another important source of information is through testing of models. These experiments 
allow simulation of the seismic action by selecting the intensity, frequency spectrum and most 
parameters that characterize an earthquake motion. The specimens are constructed to satisfy, 
in as much as possible, the actual construction and to facilitate the study of specific parame-
ters. However, there are few experiments in the literature related to historic structures because 
of the many implementation difficulties. A number of masonry specimens have been con-
structed at the Laboratory for Earthquake Engineering of the National Technical University of 
Athens, LEE-NTUA, to be tested under compression as shown in Figure 9.  

 
Figure 7: Results of ground penetration radar testing at the Hephaestus temple [19]. 

 
Figure 8: Monitoring scheme for the Kaisariani monastery. Placement of recording devices. 
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Identifying potential failure modes of a monument or a historic building requires under-
standing of its structural behaviour. This can be aided by examining the response of pertinent 
subsets of the structure based on the method of macroelements, or the finite-element method, 
using linear or non-linear analysis [20, 21]. Development of reliable macroelement and finite 
element models is necessary to perform elaborate analyses, including nonlinear static and dy-
namic time-history analysis. In Figure 10(a) and 10(b) the finite element models of the He-
phaestus temple and the Catholikon are depicted, respectively [22]. In Figure 11(a) the central 
apse of the Catholicon is selected as a macroelements in order to study a local mechanism of 
failure governed by overturning. The transversal behaviour is assessed by means of a 
macroelement that isolates three arches and the supporting pillars of the central nave as shown 
in Figure 11(b) [9]. 

Common practice in describing failure is the application of criteria based on stress distribu-
tion. Successful use of an analytical mathematical model that incorporates the particular geo-
metric, mechanical and structural features of a historic structure can provide information on 
the type, extent and location of damage. The results from such an analysis can be used in a 
deterministic way or alternatively, following a probabilistic approach with which parametric 
analyses are performed for a range of values of a critical parameter. The statistical evaluation 
of the results has led to the development of fragility curves that correlate the estimated dam-
age to the seismic intensity based on a given type of probability. Indicative fragility curves for 
the Kaisariani monastery are shown in Figure 12b referring to the failure criterion depicted in 
Figure 12a [18, 23]. 

 
Figure 9: Masonry specimens to be tested for compression: (a) drawing; (b) as build. 

 

(a)  (b)  

(a) (b) 
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Figure 10: Finite element models: (a) Hephaestus temple; (b) Catholikon [9, 22]. 

 

Figure 11: Macroelement analysis for the Kaisariani monastery: (a) Overturning of the central apse; (b) Trans-
versal behavior. 

 
Figure 12: Vulnerability the Kaisariani monastery: (a) development of failure criterion; (b) fragility curves for 

moderate damage [23]. 

The main purpose of the analysis of a monument or a historic building is to assess its seis-
mic risk in order to propose specific intervention measures for an effective seismic upgrade 
and protection of such structures. In addition to conventional treatments, application of seis-
mic base-isolation is an efficient engineering methodology designed to reduce or even elimi-
nate damage caused by dynamic excitations. In fact, seismic isolation is a type of support that 
separates the structure from the soil response and results in a reduction of seismic energy in-
put rather than enhancement of structural resistance. The application of this technology leads 
to structures that continue to behave elastically even during major seismic events [24]. The 
effectiveness of using base isolation is also studied at LEE-NTUA with the aid of a masonry 
specimen depicted in the drawing of Figure 13 [25-26]. 

3 MANAGEMENT STRUCTURE AND PROJECT TEAMS 

The conducted research was organized in thirteen Work Packages (WP):  

 

(a) (b) 

 
(a) (b)
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WP 1: Coordination of the project including synchronization of the research groups and fi-
nancial management; 

 

 
Figure 13: Masonry specimen for the study of base-isolation application in historic structures. 

WP 2: Development and implementation of the methodology including development and 
documentation of the methodology and derivation of instructions for proper application;  

WP 3:  Geometrical documentation including surveying of the case-study structures, geo-
metrical and damage documentation;  

WP 4: Seismic hazard assessment including study of historic seismicity, derivation of Gut-
tenberg-Richter curve, investigation of near-fault phenomena and development of seismic 
hazard curve; 

WP 5: Assessment of the soil influence on seismic response including literature review, 
geological mapping and geotechnical investigation, seismic response analyses and soil failure 
analyses;  

WP 6:  Selection of proper monitoring system including assessment of the effectiveness of 
the system and installation on a case-study structure;  

WP 7:  In-situ  surveying  of materials and characterization of mechanical properties in the 
laboratory including application of non-destructive techniques, sampling and mapping of ma-
terials, damage and mechanical resistances, characterization of structural materials applying 
laboratory tests, correlation of in-situ results with laboratory results, design and construction 
of compatible mortars;  

WP 8: Experimental evaluation of masonry characteristics including construction and test-
ing of representative masonry wallets and assessment of their behaviour under static and 
seismic loading; 

WP 9: Testing on the shaking table of LEE including construction of specimens, installa-
tion of base isolation and testing on shaking table until failure and comparison with the non-
isolated behaviour to assess the effectiveness of base-isolation;  

WP 10: Development of probabilistic models, fragility curves, evaluation of the results and 
preparation of recommendations/ instructions;  
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WP 11: Implementation of probabilistic methodology including application of the method-
ology on selected monumental and historic structures, correlation of analytical with experi-
mental results and implementation of failure criteria for masonry;  

WP 12: Numerical modeling and application of methodologies to determine the seismic re-
sponse including correlation of the experimental results with analytical linear and non-linear 
deterministic methodologies and implementation on case-study structures;  

WP 13: Application of seismic isolation including dynamic analysis of shaking table tested 
structures with and without base isolation, correlation with experimental results, analysis of 
case-study structure with and without base-isolation and preparation of recommendations/ in-
structions for seismic isolation.  

Dr. Constantine Spyrakos, Professor NTU Athens, is the Project Coordinator responsible 
for the completion of the several stages of the work within the submitted timetable, as well as 
for the financial management of the project. The First Research Team coordinated by Dr. E. 
Vintzileou, Professor NTUA, has been responsible for the methodological development that 
determined the priorities of other groups and provided the theoretical framework of the activi-
ties. It has provided data to the other two research teams, through either field measurements or 
experimental results. The Second Research Team coordinated by Dr. A. Moropoulou, Profes-
sor NTUA has been responsible for the study and evaluation of critical parameters affecting 
the determination of the seismic response of monuments and historic structures. The results of 
the second group were essential for the continuity and reliability of the other research teams, 
since they were used by the first group during the experiments and by the third group as input 
data to complete their work packages. The Third Research Team coordinated by Dr. I. 
Psycharis, Professor NTUA has been responsible for the evaluation of experimental results 
from the shake table testing at LEE-NTUA, the development and validation of analytical 
models that simulated the seismic behaviour of the monuments as well as the evaluation of 
various methods that calculate the seismic response and estimate structural damage. Substan-
tially, the third team was the receiver of information that was produced by the first and second 
teams aiming at the formulation of conclusions regarding the seismic behaviour of monu-
ments and historic structures.  

4 LEE INFRASTRUCTURE 

In LEE an Earthquake Simulator with six degrees-of-freedom has been installed and used 
in this program. The equipment was initially calibrated and started its operation at the begin-
ning of 1986 and has been operating ever since. The shaking table consists of a rigid steel 
platform with dimensions 4x4x0.6 (m) and 100 kN weight. It is capable of simultaneous vi-
bration in all six degrees-of-freedom (6 DOFs), with vertical load capacity of 640kN and a 
horizontal reference at 320 kN. The maximum acceleration in both horizontal directions that 
can develop is 2g, while in the vertical direction is 4g. The operating frequency rate of the 
simulator ranges from 0.1 up to 50 Hz. The generation and processing of seismic excitations 
and analysis of the experimental results is performed by special signal processing programs 
available in the library of LEE. 

An independent reaction wall is also available at the laboratory. Its capacity is 10 MNm, is 
6m in height and consists of two sections each 4 and 5 m long, 1.1 m width. Several jacks are 
installed and may function with independent control. The jacks have capacities of 500 kN, 
300 kN, 200kN and 100kN. A mobile data multi-channels acquisition system is supporting 
this facility. An innovative testing apparatus is also functioning at the laboratory in order to 
test specimens under recyclic loads horizontally applied, such as walls with up to 1.5 m height, 
1.0 m long and 0.5 m thickness. The vertically applied load may be up to 1000 kN and can be 
kept constant without any variation throughout the tests. Innovative testing apparatus are also 
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functioning at the Laboratory in order to measure mechanical characteristics (compression 
strength, modulus of elasticity, Poisson’s ratio, stress-strain curve) of masonry specimens.  

Diverse instrumentation is also available for in-situ testing such as flat jacks, ambient test-
ing, displacement strain measurements, pull-out tests, etc. 

In 2000 the LEE-NTUA was certified by TUV CERT (TUV Austria Hellas), for Dynamic 
and Seismic Tests using the earthquake simulator, according to ISO 9002/1994. Starting on 
12/1/2007, it implemented a Quality Management System for DYNAMIC SEISMIC TESTS 
certified by TUV Austria (the Austrian Organization of Inspection and Certification). The cur-
rent relevant certification of the LEE by this organization is according to standard EN ISO 
9001:2008. 

In addition, LEE-NTUA has a highly experienced staff in preparing, testing and analyzing 
of the experimental results. The staff has over twenty five years of experience and participa-
tion in the successful completion of a multitude of national and international research pro-
grams. A representative number of international projects relevant to the proposed research are 
listed: 

 New Integrated Knowledge based approaches to the protection of cultural heritage from 
Earthquake-induced Risk – NIKER (DCT - Università degli Studi di Padova). 

 Seismic Engineering Research Infrastructures for European Synergies – SERIES (Uni-
versity of Patras/ European Commission/ Framework Programme 7). 

 Performance of Innovative Mechanical Connections in Precast Building Structures un-
der Seismic 

 Conditions – SAFECAST (FP7-SME-2007-2). 
 Seismic Resistance of new Reinforced or Isolated Perforated- Brick Masonry Housing 

Construction in Low 
 Seismic Region (ECOLEADER Access to Research Infrastructures). 
 Seismic Behaviour of Capacity designed masonry Walls in low Seismicity regions 

(ECOLEADER Access to Research Infrastructures). 
 Experimental evaluation of technical interventions for reduced seismic vulnerability of 

old existing buildings. 
 Experimental evaluation of technical interventions to reduce seismic vulnerability of 

masonry buildings. 
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Abstract. The variable operation of turbomachinery components turns out as a special chal-
lenge in the design process. Changing the turbines rotational speed leads to entirely new load
conditions and, thus, to a range of different operating points. Beside structural mechanical de-
pendencies (i.e. stiffening effects), the shroud contact situation is very sensitive to the systems
rotational speed. In this paper a model of a real low pressure steam turbine blade is investigated
numerically and experimentally. For the calculation, a three dimensional structural mechani-
cal model including a spatial contact model is considered. The steady-state vibration response
is calculated by the multi-harmonic balance method (MHBM) and an alternating frequency-
time scheme (AFT). The test rig consists of a single blade clamped with two dummies at the
shroud. The vibration response of the blade is measured by laser-doppler-vibrometry for vari-
ous excitation levels and pressure distributions in the shroud contact. The comparison between
measured and computed frequency response function (FRF) of the first edgewise bending mode
(1E) shows a very good agreement. Both the frequency shift, as well as the reduction of the
amplitude were detected by the MHBM and successfully verified experimentally. The obtained
results of the single blade system are transferred to a rotating bladed disk assembly.
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1 INTRODUCTION

One of the main challenges in the mechanical design of turbine blades is the prevention of
high cycle fatigue (HCF) failures. Successful blade design must account for both high static,
caused for example by centrifugal forces, and high dynamic loads, caused, among others, by
oscillating forces of the working fluid. These loads, even the static ones, depend on the tur-
bines operating condition. However, not only the loading, but also material parameters, like the
elastic modulus, and structural mechanical properties, like the damping ratio, and stiffening or
softening of the blade, depend on the turbines operating condition. Indeed, material properties
are temperature dependent, the tangent stiffness is stress dependent and the overall damping
depends on many factors simultaneously - stress, temperature, contact pressure at the joints.
Friction in the joints like the blade root or the blade tip shrouds can be used to dissipate the
vibrational energy and, thus, the amplitude of the blade vibrations. However, the nonlinear
dependence of the relative displacements on the contact pressure and thus on the operational
condition, makes the design for friction a very challenging task.
Nonlinear steady-state forced response analysis, which can aid in such a design, has been a
subject of active research for the last three decades [1–5]. However, a forced response analysis
under variable operating conditions remained largely unstudied.
In this study, we analyze two different operating points with respect to the turbines rotational
speed. The investigation is performed both experimentally and numerically. The experimental
setup consists of a single model blade, fixed at its root, with variable contact pressure applied
at the shroud through two dummies, mounted on air bearing. The blade is excited by shaker
and the frequency response function (FRF) was measured using laser-doppler-vibrometry for
various excitation and contact pressure levels. These results were used to verify the numerical
approach, based on the multi-harmonic balance method (MHBM), described in [6] and [7], in
which the nonlinear forces are computed by the means of an alternating frequency-time (AFT)
scheme [8].

2 FORCED RESPONSE CALCULATION

2.1 Computation of the steady state solution by the multi-harmonic balance method

The dynamical behavior of a nonlinear mechanical system can be described by the following
equation of motion in the time domain:

Mü(t) + Du̇(t) + Ku(t) + fnl(u̇(t),u(t)) = fe(t) (1)

where M, D, K are the mass, viscous damping and stiffness matrices. The external force is
denoted by fe and the nonlinear force by fnl. For a forced response analysis, the external force
fe is assumed to be a harmonic function

fe(t) = <
{
f̂ee

iΩt
}
. (2)

In the linear case, i.e. fnl = 0, the resulting displacements, u(t), are harmonic functions with
frequency Ω. In the presence of nonlinearities, e.g. contact forces, the response function u(t)
is no longer harmonic, but nevertheless assumed to be periodic. This assumption allows the
approximation of the displacments’ vector u, as well as the nonlinear forces fnl, by a truncated
Fourier series. This so-called multi-harmonic balance method (MHBM) is widely used to com-
pute the nonlinear forces in conjunction with an alternating frequency-time scheme (AFT) [8].
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Applying Galerkin’s procedure the nonlinear equations of motion (1) can be rewritten in the
frequency domain with the complex displacements

u(t) = <

{
nh∑
n=0

ûneinΩt

}
(3)

and the complex nonlinear forces

fnl(t) = <

{
nh∑
n=0

f̂nl,neinΩt

}
(4)

as
Ŝnûn + f̂nl,n − f̂e,n = Rn. (5)

Here, Ŝn is the dynamic stiffness matrix

Ŝn = −(Ωn)2M + iΩnD + K (6)

and Rn denotes the residual vector. The set of nonlinear equations (5) constitutes a minimiza-
tion problem, which has to be solved iterative by means of a Newton-Raphson algorithm. To
reduce the computational effort, a model reduction of the dynamic system is performed by the
well-known Craig-Bampton reduction technique [10].

2.2 Contact Model

In this study, an elastic point contact model is used to compute the nonlinear contact forces,
see Fig. 1, a widely used model in dynamical systems with frictional contacts [6, 7, 11]. For
the calculation of a three-dimensional spatial contact, it is assumed that the tangential compo-
nents are independent of each other, a common assumption in forced response calculations with
frictional contacts [7].

Figure 1: Unilateral elastic contact model

The normal force fN(t) is given by the normal relative displacement wN(t) and the contact
stiffness kN. The contact state ratio, closed or separated, depends on the static preload fN,0 and
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determined by the unilateral contact law

fN(t) = max (fN,0 + kNwN(t), 0) . (7)

A negative preload value of fN,0 is equivalent to a gap between the contact nodes and is defined
as gN,0 = −fN,0/kN. The contact force along the tangential directions y and z is given by
the contact stiffness kT,j and the tangential relative displacement wT,j(t), for j = y, z. The
Coulomb friction law is applied to determine the state ratio in tangential direction by

fT(t) =


kT,j(wT,j(t)− wT,c,j(t)) sticking contact,
µfN(t)sgn(wT,c,j(t)) sliding contact,

0 separation.
(8)

3 APPLICATION TO SHROUDED TURBINE BLADES

3.1 Mechanical model of a single turbine blade

A model of a single low pressure shrouded turbine blade is investigated, see Fig. 2a. For
convenience, the root of the blade is modeled as a rectangular block and the angular pitch is
set to zero. The neighbored blades are simplified as dummies with high masses mounted by
frictionless supports, see Fig. 2b. Thus, the normal load on the shroud can be stated as fN =
fL sinα. Compared to a fully assembled bladed disk, changing the loading fL is representing a

Figure 2: a) Single shrouded turbine blade, b) experimental setup.

variation of the turbine’s operating point. Nevertheless, a change of the operating point of the
real turbine influences in addition the pressure distribution at the shroud contact or the structural
mechanical properties due to centrifugal stiffening. Since the main objective of the presented
experimental setup is the correlation between excitation load fe, preload fL and the response
of the system, here, the variation of the pressure distribution as the centrifugal stiffening is
neglected.

Finite element analysis is used to discretize the shown model with a total number of 16755
elements and 28112 nodes. The shroud contact area is discretized with 30 contact nodes. The
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structural mechanical matrices M and K of the whole system read:

M =

MBlade 0 0
0 MDummy,L 0
0 0 MDummy,R

 ,K =

KBlade 0 0
0 KDummy,L 0
0 0 KDummy,R,

 . (9)

In the first instance, there are uncoupled submatrices in (9). The coupling of the substructures
takes place in the nonlinear calculation by contact forces.
In this work the first flapwise bending mode (1F) and the first edgewise bending mode (1E) of
the coupled system is investigated. The mode shapes of the coupled and the free standing blade
are showed in Fig. 3. Note that the mode shapes are calculated assuming a rigid coupling of the
linear system in the case of Fig. 3b. It should be emphasized here that a full separating of the
contact is leading to a completely different dynamical system behavior. For the nonlinear forced
response, contact parameters must be specified, i.e. contact stiffnesses, friction coefficient and
pressure distribution. The contact stiffnesses are defined by a magnitude of 109 N/m and the
friction coefficient is set for all simulations to µ = 0.3. The pressure distribution is calculated
by a quasi-static nonlinear FE-analysis.

Figure 3: First two mode shapes of: a) the free standing, b) coupled blade.

3.2 Experimental Setup

The test rig in Fig. 4 is used to measure the forced response of the coupled structure. A
shaker is set up for the force excitation and the vibration amplitudes are measured by laser-
doppler-vibrometry. Due to the strong nonlinearities a controlled force amplitude is necessary.
Hence, the excitation force is measured by a piezoelectric force sensor and controlled to the
desired excitation level. Weights are applied by rope pulleys to impress the normal loading.
The frequency response function is measured for various excitation levels and normal loadings.
It is important to note that the measurements are based on the fundamental harmonic.

4 Results

4.1 Comparison of experiment and simulation

The experimental results show that the resonance frequencies of both modes are sensitive
to a variation of the normal load fL, see Fig. 5a and b. The reason for this effect depends on
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Figure 4: Test rig.

the mode shape and the contact kinematics. In Fig. 5b the maximum amplitude of the 1E-
mode decreases for increasing excitation level fe or decreasing normal load fL, a well-known
phenomenon of underplatform damper mechanics, see [9]. Due to high relative displacements
in tangential direction of the shroud area sliding friction forces are leading to energy dissipation
and, thus, to lower amplitudes. Besides, the resonance frequency significantly decrease due
to microslip phenomena in the contact area. The 1F-mode shows a quiet different vibrational
behavior. The mode shape depends highly on the contact situation and pressure distribution.
Separation of the contact results to a shift of the nodal point of the mode shape and much higher
amplitudes at the tip of the blade. Nevertheless, friction damping still occurs at the shroud area
that is more dominant for lower normal loads, see Fig. 5a. A comparison to the simulation
results shows a good agreement. The amplitudes are in the same order of magnitude and, in
particular, a relative error of the resonance frequencies of ∆f

f0
< 1% is remarkable. In addition,

the amplitude reduction caused by friction of the 1E-mode correlates well to the experiment,
see Fig. 5b. Note that the amplitude reduction depends on the friction coefficient, which is
set to µ = 0.3. The reduction of the resonance frequency due to microslip can also be shown
by the simulation model. The simulation results of the 1F-mode show the same dynamical
behavior as the experiment, see Fig. 5a. According to Eq. (7) either low normal preloads or
high relative displacements lead to separation and at the same time to a loss of contact stiffness.
Consequently the FRFs tend to tilt to the left side. However, the increase of the amplitude
caused by a change of the mode shape can not be shown by the simulation model. This is
motivated by the underlying Craig-Bampton reduction technique [10]. Here, the constraint
interfaces are defined by the contact areas and, thus, the fixed interface modes are based on the
coupled system.
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Figure 5: Forced response functions of the experiment a), b) and the simulation c), d) for various excitation levels
and preloads.

4.2 Computation of a tuned bladed disk assembly

Figure 6: a) Bladed disk assembly, b) FE-model of a cyclic sector and calculated pressure distribution.

In this section a bladed disk with NSeg = 60 blades is analyzed, see Fig. 6a. All blades
are assumed to be perfectly tuned and, thus, cyclic symmetry can be used to reduce the com-
putational effort. Two different operating points with respect to the pressure distribution at the
shroud contact are investigated, see Fig. 6b. For the forced response analysis Eq. 1 is set up for
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one cyclic segment. The displacement vector for any segment k is

(k)u(t) = e−i(k−1)∆ϕ (1)u(t) (10)

where k = 1(1)NSeg and ∆ϕ = 2π/NSeg denotes the phase angle [12].
The results of the bladed disk assembly show similar characteristics as the single blade system,
see Fig. 7. For pressure distribution A only the lower edge of the shrouds is in contact and
the total preload is concentrated on the edge. The FRFs of the 1F-mode show strong nonlinear
characteristics, see Fig. 7a. Due to the high normal relative displacement the contact closes
and the stiffness of the dynamical system increases strongly. Increasing the excitation force
or decreasing the preload is leading to lower maximum amplitudes due to frictional energy
dissipation. Changing the pressure distribution, the FRF of the 1F-mode seems to be strongly
influenced, see Fig. 7b. Again, an increase of the excitation level leads to lower amplitudes and a
shift of the frequency at maximum amplitude. But, at a low preload value local separation of the
contact appears and the FRF is tending to lower frequencies. The occurrence of a closing and a
separating contact at once have a high impact on the convergence behavior. Care must be taken
when choosing numerical parameters. The 1E-mode of the cyclic system is rarely influenced
by the variable pressure distribution, see Fig. 7b and d. Both cases show the same behavior as
the single blade system in Fig. 5d. The slight increase of the resonance frequencies at pressure
distribution B is caused by increased initial contact area and, thus, by higher stiffness.

Figure 7: FRF of the 1F- and 1E-mode of the cyclic system (nodal diameter=25) for various preloads and excitation
levels: a), b) pressure distribution A, c), d) pressure distribution B.
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5 Conclusion and outlook

In this paper the dynamical behavior of a turbine blade model is analyzed numerically and
experimentally. A comparison shows a very good agreement, qualitatively as well as quantita-
tively. The results are transferred to a rotating bladed disk. Two different operating points with
respect to the pressure distribution are investigated showing similar phenomena as the single
blade system. Regarding variable operating points turns out as a special challenge due to a high
sensitivity by minor changes in the shroud contact. In particular, large relative displacements in
normal direction may affect the convergence. The outlook of the work is the experimental in-
vestigation of a rotating bladed disk assembly for various operating points, i.e. rotational speed.
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Abstract. In this work the influence of geometry, load and material properties on the non-

linear vibrations of a simply supported viscoelastic circular cylindrical shell subjected to lat-

eral harmonic load is studied. Donnell’s non-linear shallow shell theory is used to model the 

shell, assumed to be made of a Kelvin-Voigt material type, and a modal solution with six de-

grees of freedom is used to describe the lateral displacements. The Galerkin method is ap-

plied to derive a set of coupled non-linear ordinary differential equations of motion. Obtained 

results show that the viscoelastic dissipation parameter has significant influence on the insta-

bility loads and resonance curves. 
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1 INTRODUCTION 

Circular cylindrical shells have been extensively used in modern industrial applications 

and have made their analysis an important research area in applied mechanics and biomechan-

ics. Viscoelastic materials are frequently used in sandwich structures such as beams, plates 

and shells where damping is desired for a wide range of frequencies. However, in spite of a 

large number of studies on cylindrical shell dynamics, just a small number of these works is 

related to the analysis of viscoelastic shells. 

An approximate theory for the linear dynamic response of viscoelastic cylindrical shells 

and cylindrical laminated composites with viscoelastic layers was proposed [1]. Also, ed the 

finite element method was applied  to study the vibration of damped viscoelastic shells based 

on a first-order shear deformation theory including rotation around the normal [2]. A finite 

element formulation was developed to study the damping effects due to a constrained viscoe-

lastic layer on the natural frequencies and loss factors of empty and fluid filled cylindrical 

shells [3]. 

Later, the dynamic behavior of viscoelastic cylindrical shells subjected to axial loads using 

the Von Kármán-Donnell non-linear shell theory, together with the Boltzmann laws to model 

the linear viscoelastic material was studied and observing the complex non-linear responses of 

the shell such as hyperchaos, chaos, strange attractors, and limit cycles [4]. The post buckling 

behavior of imperfect cylindrical panels considering a non-linear Schapery viscoelastic mate-

rial was considered. It was possible to observe that, if linear viscoelastic and non-linear visco-

elastic models are compared, the non-linear viscoelastic constitutive model predicts higher 

deflections than the linear viscoelastic ones [5]. 

After, a general methodology looking to describe the non-linear vibrations of viscoelastic 

shell structures, considering periodic or damped responses through the coupling of the har-

monic balance method with one mode Galerkin discretization was considered [6]. The radial 

motions of compressible non-linearly viscoelastic cylindrical and spherical shells under lateral 

time-dependent pressures [7]. Considering temperature effects, the thermal post-buckled char-

acteristics of cylindrical composite shells with viscoelastic layers by applying the finite ele-

ment method considering transversal shear deformation and variable in-plane displacements 

through the thickness of the shell [8]. 

The problem of dynamic stability of viscoelastic, extremely shallow, circular cylindrical 

shells considering any viscoelastic functions as well as the inclusion of time-dependence of 

Poisson’s ratio was also considered [9]. Forced vibrations of elastic and viscoelastic arches, 

panels and cylindrical shells using an asymptotic numerical method was studied in [10]. In the 

analysis, a mathematical formulation was developed in order to take into account various vis-

coelastic models in the frequency domain. 

In a series of papers [11, 12, 13, 14, 15, 16] the vibrations and dynamic stability of viscoe-

lastic cylindrical shells and cylindrical panels, with and without concentrated masses, using 

the Kirchhoff-Love hypothesis and Timoshenko theories and taking into account shear defor-

mation and rotary inertia were considered. 

Based on the profile of displacement fields of the core layer in static deformation, a new 

higher-order expansion of transverse and in-plane displacement fields in the thickness direc-

tion of the core layer was developped [17]. 

Recently, a detailed literature review of current studies on non-linear vibrations of shells 

where, a reduced number of studies dedicated to the analysis of viscoelastic cylindrical shells 

can be confirmed [18]. 

In the present paper, the influence of geometric relations, load and material properties on 

the non-linear vibrations and dynamic instability of a simply supported viscoelastic circular 
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cylindrical shells subjected to lateral harmonic load is studied. Donnell’s non-linear shallow 

shell theory is used to model the shell, which is assumed to be made of a Kelvin-Voigt mate-

rial type, and a modal solution with six degrees of freedom. The Galerkin method is applied to 

derive a set of coupled non-linear ordinary differential equations of motion that are, in turn, 

solved by the Runge-Kutta method. Results show that the viscoelastic dissipation parameter 

has a very significant influence on the instability loads and resonance curves. 

2 MATHEMATICAL FORMULATION 

Consider a perfect thin-walled simply supported circular cylindrical shell of radius R, 

length L and thickness h. The axial, circumferential and radial coordinates are denoted by x, 

y = R and z, respectively, and the corresponding displacements of the shell middle surface 

are denoted by u, v and w, as shown in Figure 1. The shell is assumed to be made of a Kelvin-

Voigt viscoelastic material with initial Young’s modulus E, Poisson ratio , and density . 

L

R

x (u)

y (v)
z (w)

h

 
 

 

(a) 

f

 
(b) 

Figure 1: Shell characteristics. (a) Shell geometry; (b) Harmonic lateral pressure f. 

The shell is subjected to the following harmonic lateral pressure: 

    tn
L

xm
hFf LoL 







 
 coscossin22  (1) 

where FL is the nondimensional coefficient of the amplitude of the load, o is the natural 

frequency of the shell, m ,the number of axial half-waves, n, the circumferential wave number, 

L , the frequency of the load and t the time. 

Based on Donnell shallow-shell theory, the middle surface kinematic relations are given, in 

terms of the three displacement components, by: 

 

,,,

,,
2

1
,

2

1

,

2

,

,

,

,,

,

0,2

2

,,

0,

2

,,0,

R

w

R

w
w

R

w
wv

R

u

R

w

R

w

R

v
wu

x

xxxxx

xxxxxx

























 (2) 

where x,0 and  are the strains in the axial and circumferential directions, x is the 

shearing strain component at a point on the shell middle surface, xx and  are the curvature 

changes and x is the twist.  

The strain components εxx, εθθ and γxθ at an arbitrary point of the shell are related to the 

middle surface strains εx,0, εθ,0 and γxθ,0 and to the changes in the curvature by the following 

relations: 
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.,, 0,0,0,   xxxxxxxx zzz 
 (3) 

In this analysis, the viscoelastic behavior of the material is modeled in the base of the Kel-

vin-Voigt viscoelastic theory. This viscoelastic model can be represented by a viscous damper 

element and an elastic spring element connected in parallel as illustrated in Fig. 2. 
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Figure 2. Kelvin – Voigt viscoelastic model

 

Considering the plane stress problem and the Kelvin-Voigt constitutive model of a viscoe-

lastic material, the stress-strain relations can be written as [19]: 
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where E is the Young’s modulus ,  is the Poisson coefficient, t is the time and  is the co-

efficient of the viscoelastic dissipation parameter, also named retardation time, and it is meas-

ured in seconds. 

Using the stress function F, the forces in the axial, circumferential and tangential directions 

are 
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The non-linear equation of motion, based on the Donnell shallow shell theory, in terms of a 

stress function F, the lateral displacement w is given by: 
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where c = 2o (kg/m
3
 s) is the viscous damping coefficient,  is the viscous damping ra-

tio of the shell  and f is the radial pressure applied to the surface of the shell due to external 
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force. In equation (8) a global viscous damping has been introduced in addition to the viscoe-

lasticity of the shell material.  

The compatibility equation is given by 

 

2
4 4 4 2 2 2 2

4 2 2 2 4 4 2 2 2 2 2

3 2 2 3 3 3 2

2 2 2 2 2 2 2 2

2 1 1 1 1

1 1 1 2
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F F F w w w w
E h

x R x R R x R x R x

w w w w w w w

R x t R x t R x t R x t x

   


   

        
        

          

       
     

                (9) 

The simply supported out-of-plane (Eq. 10) and the in-plane (Eq. 11) boundary conditions 

are respectively given by: 

 LxMw x ,0at0,0   (10) 

 LxvNx ,0at0,0   (11) 

For a formulation based on a stress function, the in-plane boundary conditions are satisfied 

on the average by introducing the following conditions, as justified, for example, in [20, 21, 

22, 23, 24]  

 LxdRN x ,0at0

2

0




  (12) 
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0 0

 


   (13) 

Equation (12) assures a zero axial force Nx on the average, while Eq. (13) is satisfied when 

u and w are continuous in  on average, and v = 0 on average at both ends. 

In this work, the following modal expansion for the lateral displacements w(x,,t) in terms 

of the circumferential and axial variables is adopted: 
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where 1(t), 2(t), 3(t), 4(t), 5(t) and 6(t) are the time-dependent non-dimensional modal 

amplitudes, where the shell thickness h has been used as non-dimensionalization parameter. 

This leads to a six-degrees-of-freedom reduced order model. This modal expansion satisfies 

the out-of-plane boundary conditions (10) and includes the basic vibration mode, the compan-

ion mode and four axi-symmetric modes and has been thoroughly tested in [20, 21, 24]. 

The solution for the stress function may be written as F = Fh + Fp, where Fh is the homo-

geneous solution and Fp, the particular solution. The particular solution Fp is obtained analyti-

cally by substituting the assumed form of the lateral displacement, Eq. (14), on the right-hand 

side of the compatibility equation, Eq. (9), and by solving the resulting partial differential 

equation together with the relevant boundary and continuity conditions. 
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The homogeneous part of the stress function can be written as (Amabili et al, 1999): 
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where  xx NNN
~

and
~

,
~

 are the in-plane restrain stresses at the ends of the shell. 

Upon substituting the modal expressions for F and w(x, , t) into the equation of motion, 

Eq. (8), and applying the Galerkin method, a set of six non-linear ordinary differential equa-

tions is obtained in terms of the time-dependent modal amplitudes, i(t). 

In analysis, the following non-dimensional parameters are used for time and shell frequen-

cy: 

 oLo t   ;  (16) 

3 NUMERICAL RESULTS 

Consider a simply supported viscoelastic cylindrical shell with the following physical and 

geometrical properties: R = 0.2 m, L = 0.4 m,  = 1340.0 kg/m
3
,  = 0.195, E = 45.5e9 N/m

2 

[25],  = 0.001. 

To study the influence of geometry on nonlinear dynamic behavior of the orthotropic shells, 

Table 1 displays the selected L/R ratio, R/h ratios, associated longitudinal and circumferential 

wavenumber and natural frequencies which will be used on the foregoing analysis. 

 

L/R R/h (m,n)  (rad/sec) 

2,0 

100 (1,5) 3447.29 

300 (1,7) 2007.06 

600 (1,8) 1427.86 
Table 1: Selected shell geometries 

To try to understand the influence of both the viscoelastic dissipation parameter and the 

lateral load on the non-linear dynamic behavior of the shell, several resonance curves and 

time responses have been computed. The bifurcation diagrams were obtained using Poncaré 

mapping and considering the excitation frequency as control parameter. The nondimensional 

coefficient of the amplitude of the lateral load FL was assumed as 0.2; for the coefficient of 

the viscoelastic dissipation parameter of the Kelvin-Voigt model , the following values were 

assumed: 0.0, 1.0e-5, 2.0e-5 and 3.0e-5 and 1.0e-4 s. 

Figure 3 displays the resonance curves of driven mode for FL = 0.2; L/R = 2.0; R/h=100 

and increasing values of the dissipation parameter. As it can be observed in Fig. 3(a), for a 

shell without viscoelasticity ( = 0.0), as the frequency parameter  is increased the shell dis-

plays small amplitude period oscillations (1T). At excitation frequency near  = 0.90 the shell 

displays a jump from small to large amplitude oscillations displaying softening behavior. As 

the value of  is increased, the shell shows a reduction of the amplitude of oscillations. 

Now, when the viscoelastic dissipation parameter is considered ( ≠ 0), the non-linear be-

havior of the shell is strongly influenced. Figure 3(b) shows the resonance curve for  = 1.0e-

5 s and as the frequency parameter  is increased, the shell displays small amplitude 1T peri-

od oscillations. Again at a value close to  = 0.90, the shell displays a jump to large ampli-

tude oscillations with strong softening behavior. Then, for  between 0.72 and 0.77, the shell 

displays three different stable equilibrium points, which means that there will be three stable 
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attractors. At large amplitude a folding of the backbone curve (turning point) associated with 

large bending effects occurs. 

When  is increased to 2.0e-5 s as shown if Fig. 3(c), the resonance curve is again affected 

and it shows softening behavior but with smaller vibration amplitudes than for the previous 

case. Also, in Figs. 3(b) and 3(c) for =1.0 the shell displays a bifurcation point where the 

unstable path is linked to the large vibrations amplitudes path. Now, in Fig. 3(d) for n = 3.0e-

5 s, the shells displays only small amplitude vibrations without any jump. 

Figure 4 displays the resonance curves for FL = 0.2; L/R = 2.0; R/h=300 and increasing 

values of the dissipation parameter. Now, in Fig. 4(a) for  = 0.0, as the frequency parameter 

 is increased the shell displays small amplitude period oscillations (1T). At excitation fre-

quency near  = 0.92 the shell displays a jump from small to large amplitude oscillations dis-

playing softening behavior, as can be observed, the vibrations amplitudes for this case are 

higher than those of Fig. 3(a) showing the great influence of geometric relations on the non-

linear oscillations of the shell. For this case, it is also possible to observe a bifurcation point 

near to  = 1.00 where stable solutions coexist.  

Now, if dissipation parameter is considered ( ≠ 0.0), Fig. 4(b) the shells depicts the reso-

nance curve for  = 1.0e-5s, as can be observed, there is softening behavior with large ampli-

tude 1T oscillations with similar behavior as Fig. 4(a). Now, if dissipation parameter is 

increased to  = 2.0e-5s as displayed on Fig. 4(c), the non-linear response of the shell is af-

fected and the shell displays softening behavior with smaller amplitude oscillations and the 

coexistence of stable and chaotic vibrations. When dissipation parameter is increased up to 

 = 3.0e-5s as shown in Fig. 4(d), the system displays a jump with softening behavior but 

again with smaller vibration amplitudes that in previous cases. 

Finally, Fig. 5 depicts the resonance curves considering FL = 0.2; L/R = 2.0; R/h=300. In 

Fig. 5(a) the dissipation parameter is not considered ( = 0.0) and, as observed, the shell dis-

plays softening behavior with very large amplitude if compared with previous cases. In Fig. 

5(b), Fig. 5(c) and Fig. 5(d) the shell always shows softening behavior but only with 1T stable 

oscillations. For  = 3.0e-5s as seen in Fig. 5(d), the amplitude of oscillations are smaller than 

in Fig. 5(b) or Fig. 5(c). 

From these diagrams, it is possible to see the strong influence that geometry ratios and dis-

sipation parameter have on the non-linear dynamic response of the shell. For a shell with low 

R/h ratio the shell displays smaller vibration amplitudes than a shell with high R/h ratio. When 

dissipation parameter is considered, for low values the amplitude of oscillations of the shell 

are increased even knowing that this parameter is a dissipation, for higher values of the pa-

rameter the vibration amplitudes of the shell will be reduced. 
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Figure 3. Ressonance curves for L/R = 2,0 and R/h = 100. (a)  = 0.0; (b)  = 1.0e-5s; (c)  = 2.0e-5s; (d) 

 = 3.0e-5s. 
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Figure 4. Ressonance curves for L/R = 2.0 and R/h = 300. (a)  = 0.0; (b)  = 1.0e-5s; (c)  = 2.0e-5s; (d) 

 = 3.0e-5s. 
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Figure 5. Ressonance curves for L/R = 2.0 and R/h = 600. (a)  = 0.0; (b)  = 1.0e-5s; (c)  = 2.0e-5s; (d) 

 = 3.0e-5s. 
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4 CONCLUSIONS 

In this work, the non-linear vibrations analysis of a viscoelastic Kelvin-Voigt simply sup-

ported cylindrical shell subjected to lateral time dependent loads is analyzed. To model the 

shell, the Donnell’s non-linear shallow shell theory is applied and an expansion with 6 de-

grees of freedom is used to describe the lateral displacements. Results show that the inclusion 

of the viscoelastic dissipation parameter  of the Kelvin-Voigt material affects strongly the 

non-linear response of the shell. 

It is observed that the complexity of the non-linear response and consequently the number 

of bifurcations, non-linear paths and coexisting solutions depends on the value of the viscoe-

lastic dissipation parameter. 

For higher values of the dissipation parameter, the shell only displays small amplitude vi-

brations without jumps, hysteresis and multiple solutions. This illustrates the beneficial effect 

of viscoelasticity in reducing large amplitude unwanted vibrations. The amplitudes of vibra-

tions obtained in the numerical results calls to the necessity to use a more refined shell theory 

to describe the non-linear dynamic behavior with good accuracy. 
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Abstract. Due to their damping properties, elastomer materials are commonly used in the
industry to achieve anti-vibration junctions between mechanical subsystems. These links are
usually made of various materials (metallic, composites and elastomers) and have complex
geometries based on the targeted application. In order to predict the dynamic behavior of
these junctions in their environment, efficient numerical dynamic models have to be developed.
They should take into account the viscoelastic behavior of the elastomer and the material and
geometric nonlinearity. The objective of this work is thus to develop effective models of flexible
damping devices made of elastomer for the prediction of the dynamic behavior of complex
systems.

Firstly, a three-dimensional finite element nonlinear code using hyper-viscoelasticity consti-
tutive relations is developed for the numerical modeling of the elastomer junctions. Secondly,
the parameters of the viscoelastic law are identified in the frequency domain from experimental
tests using DMA (Dynamic Mechanical Analysis). Thirdly, a reduced order model is developed.
It is based on a component mode synthesis approach adapted to highly damped structures. We
also propose in this study to construct models based on input-output laws connecting the gen-
eralized quantities of the faces of the junction in contact with substructures. In other words,
the model links displacements and rotations of the faces to forces and torques applied to these
faces.
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1 INTRODUCTION

Due to their capacities to dissipate energy, elastomers are highly used in damping devices
like silent blocs or joints. A typical example of this use is found in the spatial industry: during
take off and flight, launchers are subject to a significant amount of vibrations from either the
propulsion engine or the acoustical environment. Shocks may also occur during the pyrotechnic
separation of the different floors of the launcher. All these vibration sources may damage the
satellite or any other sensitive equipments on-board, and a common solution is to use viscoelas-
tic damping devices to dissipate a part of the mechanical energy. The design and optimization
of theses damping devices are usually done by using finite element codes. The computational
cost of the associated models may become prohibitive. Many solutions already exist to reduce
the numerical model of linear undamped structures, but only a few give access to reduced mod-
els with damping behavior, especially when it comes from viscoelasticity which may be seen
as a strong form of damping. Two types of solutions for the reduction of viscoelastic models
can be found in the literature. The first one is based on the theory of triboelasticity [6] and con-
sists in the replacement of the damping device model by an equivalent rheological model which
can be identified through a series of experimental measurements on the damper [7]. The main
problem with this type of approach is that the behavior of the rheological model may not fit the
real behavior of the damper in all directions, and more importantly it can’t be used for a design
purpose due to the non predictive aspect of the rheological model that is done for a specific
geometry and material [8]. The second way of reducing a viscoelastic model is to extend the
classical modal projection methods to the frequency dependent case and a review of the most
common methods can be found in [2]. The chosen method in this work to achieve the reduction
of the damper model is a modified Craig-Bampton method, based upon the work of Balmès
[3] and Rouleau [2]. The original Craig-Bampton method [4] uses a combination of static and
dynamic modes to reduce the finite element model of a sub-structure to a smaller finite ele-
ment model called super-element. The super-element is first obtained by using a kinematical
constraint to enforce rigid body motion of the sub-structure interfaces. Then, to further reduce
the finite element model, the reduced finite element matrices are condensed onto the previously
kinematically constrained interfaces. The combination of all these techniques leads to a twelve
dofs super element replacing the initial full model.

2 STUDIED CASE AND MATERIAL MODELS

The complete model is composed of a support structure mounted on four hourglass shaped
dampers, as seen on figure (1). The support structure is made of aluminum and the dampers
are made of two aluminum thin interface plates and an elastomer core. Two different material
models are used: a classic linear elastic Hooke’s model is chosen for the aluminum, and a
viscoelastic fractional Zener model for the elastomer. This fractional model is defined by its
complex frequency dependent modulus G∗(ω):

G∗(ω) =
G0 + G∞(iωτ)α

1 + (iωτ)α
(1)

where G0 and G∞ are two asymptotic values: the static modulus G0 = G∗(ω → 0) and the high
frequency limit of the dynamic modulus G∞ = G∗(ω →∞). Also, τ is the relaxation time and
α is the order of the fractional derivative. More information about this model, its identification
and its finite element implementation in time domain can be found in [5]. The adimensional
viscoelastic modulus G∗(ω)/G0 is then used in the dynamic equation to take into account the
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9600 dofs (+ dampers) 22620 dofs
A damperFull structure

2 mm

Ø10 cm

Core (dofs uI)

Interface (dofs uB)

10 cmØ7 cm
90 cm

Observation point P

60 cm
1 m

Figure 1: The complete structure mounted on four dampers, and details of a damper

viscoelastic behavior of the elastomer:(
Ke + Kv

sph +
G∗(ω)

G0

Kv
dev − ω2M

)
u = f (2)

where M is the mass matrix, Ke is the purely elastic part of the stiffness matrix which is assem-
bled on the aluminum interfaces dofs and Kv is the viscoelastic part of the stiffness matrix which
is assembled on the elastomer core dofs. The viscoleastic stiffness matrix is also separated into
a spheric part Kv

sph and a deviatoric part Kv
dev. This separation is used due to the fact that the vis-

coelastic behavior of elastomer is mainly caused by distorsional strain (not by volume change).
This deviatoric stiffness matrix is the only matrix subjected to the complex modulusG∗(ω). The
dynamic equation can also be expressed in terms of a static stiffness matrix K0 and a frequency
dependent stiffness matrix Kω:(

K0 + iωh∗(ω)Kω − ω2M
)

u = f (3)

where K0 = Ke +Kv
sph +Kv

dev and Kω = (G∞/G0 − 1) Kv
dev and where h∗(ω) is a dimensionless

frequency dependent modulus:

h∗(ω) =
τα(iω)α−1

1 + (iωτ)α
(4)

The material parameters used to build the mass and stiffness matrices are given in table 1 for
the aluminum and table 2 for the elastomer. The materials parameters in table 2 comes from
[1]. The structure is composed of 7540 nodes for each rubber damper, which is enough to get
converged results in the frequency range of interest, and 3200 nodes for the upper aluminum
structure. Only the computational cost of the dampers model is studied and reduced here, so
the mesh of the upper structure is kept small for convenient computation time. Each damper
represents 22620 dofs. The total number of dofs in the complete structure is about 105, includ-
ing more than 90% for the dampers only, thus underlining the need for an efficient reduction
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Table 1: Material parameters of the aluminum.

Parameters Values
E 70 GPa
ν 0.3
ρ 2700 kg·m−3

Table 2: Material parameters of the elastomer.

Parameters Values
E 0.947 MPa
ν 0.45
ρ 1000 kg·m−3

G0 0.327 MPa
G∞ 0.126 GPa
α 0.3
τ 0.52 µ s

method. The finite element code for this study is an in house program developed in both Python
and Fortran. The finite elements are 8 nodes hexahedra anywhere in the structure. Rubber
dampers are connected to the aluminum structure through their upper interface.

3 MODEL REDUCTION OF THE DAMPERS

3.1 Rigid interfaces assumption

Due to the difference between the aluminum and the elastomer stiffness, the aluminum in-
terfaces may be considered to be rigid compared to the rubber core. A kinematical constraint
is used to enforce the rigid body motion of the interfaces. The velocity of any point A of an
interface can be written in terms of the velocity of the center C of the same interface and the
cross-product of the distance between point A and point C and the rotation Ω of the interface.
This relationship can be extended to the displacement within the context of small displacement,
namely:

−→u A = −→u C +
−→
AC×

−→
Ω (5)

In matrix form, the same constraint is written by:

uA

vA

wA

 =

1 0 0 0 (zA − zC) (yC − yA)
0 1 0 (zC − zA) 0 (xA − xC)
0 0 1 (yA − yC) (xC − xA) 0




uC

vC

wC

Ωx

Ωy

Ωz

 (6)

where x, y and z are coordinates in the 3D space, uX, vX and wX are the displacements of a
point X following axes ~x, ~y and ~z, and Ωx, Ωy and Ωz are the interface rotation around the same
axes. Following this approach, all interfaces dofs are eliminated from the global finite element
model dofs list, thus reducing the computational cost of the structure model. In place of those
eliminated dofs, each damper face is now represented by 6 dofs: 3 translational dofs and 3
rotational dofs.
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3.2 Model reduction of the core of the dampers

The method used here to reduce the damper finite element model combine a Craig-Bampton
method [4] and a multi-model approach [2] [3]. In the case of a structure made of elastic and
viscoelastic materials, the dynamic equation is given by equation (3). Following the Craig-
Bampton method, boundary and internal dofs are separated. Here, the boundary dofs are the 12
dofs of the rigid interfaces noted uB and the internal dofs are the remaining dofs of the dampers
noted uI. This leads to write equation (3) as:([

K0
BB K0

BI
K0

IB K0
II

]
+ iωh∗(ω)

[
Kω

BB Kω
BI

Kω
IB Kω

II

]
− ω2

[
MBB MBI

MIB MII

])[
uB

uI

]
=

[
fB

0

]
(7)

where the right-hand side is only composed of reaction forces fB at the interfaces.
The first part of the reduced basis is composed of the static modes ΨIB which are defined by:

ΨIB = −(K0
II)
−1K0

IB (8)

The number of static modes is equal to the number of interfaces dofs, 12 in the present case.
The second part of the reduced basis is composed of the eigenmodes of the fixed interface

problem solutions of the following generalised :(
K0

II + iωh∗(ω)Kω
II − ω2MII

)
uI = 0 (9)

Solving equation (9) would lead to the vibration modes of the structure but due to the frequency
dependence of the the term iωh∗(ω), this eigenproblem is non-linear in frequency and can not
be solved directly. The proposed solution is to use a multi-model approach which is inspired by
the Takagi-Sugeno fuzzy model. It has been often used to represent non-linear dynamic systems
by interpolating locally linear models obtained from the sampling of the non-linear system [9].
It has been applied by Balmès [3] and Rouleau [2] to build a projection basis representative
of the complex non-linear eigenvalue of equation (9). The multi-model basis is here built by
the combination of many smaller basis Φωj

and each of these basis is computed by solving the
pseudo-eigenvalue problem (10) where only the real part of the equation is kept:(

K0
II + < (iωjh∗(ωj)) Kω

II − ω2
kMII

)
Φωj ,k = 0 (10)

where ωj values are chosen to sample the whole frequency range of interest. In any basis
Φωj

the modes are independent but the modes from two different basis may be co-linear so a
Gramm-Schmidt orthonormalisation algorithm may be necessary. In the literature, two modal
basis evaluated at the minimum and the maximum frequency of the range of interest combined
with a static correction lead to a good approximation of the dynamic response of highly damped
structures. In this study, the static correction is already taken into account by the static modes
of the static response, so only the modal basis at the minimum and maximum frequency need
to be computed. Solving equation (10) for ω = ωmin and ω = ωmax lead to the two basis Φmin

and Φmax which both respect the orthogonality conditions:

ΦT
ω̄< (K∗II(ω̄))Φω̄ = diag

(
ω2

1, ..., ω
2
I

)
(11)

ΦT
ω̄MIIΦω̄ = 1I (12)

where ω̄ stands for ωmin or ωmax and where:

K∗II(ω̄) = K0
II + iω̄h∗(ω̄)Kω

II (13)
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Both Φmin and Φmax diagonalize the < (K∗II(ω̄)) matrix but they don’t diagonalize K0 or Kω and
this will have an impact on the further condensation step. The dynamic of the system is then
reduced by truncating the basis Φmin into ΦIp and the basis Φmax into ΦIq with p < I and q < I.
The complete dynamic response is then obtained by combining the two truncated modal basis
ΦIp and ΦIq into matrix ΦIm, with m = p+ q < I.

By combining the static response coming from the behavior of structures connected to the
damper’s interfaces, and the dynamic response from the core of the damper, a complete reduced
basis can be assembled in the form:[

uB

uI

]
=

[
IBB 0Bm

ΨIB ΦIm

] [
uB

qm

]
(14)

The projection of equation (7) onto this reduced basis gives the following reduced system:([
K̄0

BB 0Bm

0mB K̄0
mm

]
+ iωh∗(ω)

[
K̄ω

BB K̄ω
Bm

K̄ω
mB K̄ω

mm

]
− ω2

[
M̄BB M̄Bm

M̄mB M̄mm

])[
uB

qm

]
=

[
fB

0

]
(15)

where K̄ω
mB =

(
K̄ω

Bm

)T and M̄mB =
(
M̄Bm

)T. The details of the different terms of these reduced
matrices are given by:

K̄0
BB = K0

BB + K0
BIΨIB (16)

K̄0
mm = ΦT

ImK0
IIΦIm (17)

K̄ω
BB = Kω

BB + Kω
BIΨIB + ΨT

IBKω
IB + ΨT

IBKω
IIΨIB (18)

K̄ω
mB = ΦT

Im (Kω
IB + Kω

IIΨIB) (19)

K̄ω
mm = ΦT

ImKω
IIΦIm (20)

M̄BB = MBB + MBIΨIB + ΨT
IBMIB + ΨT

IBMIIΨIB (21)

M̄mB = ΦT
Im (MIB + MIIΨIB) (22)

M̄mm = ΦT
ImMIIΦIm (23)

It is also important to note that due to the multi-model approach used in the computation of the
dynamic response, a major difference arises between the method presented here and the usual
Craig-Bampton: the classic method would results in null matrix in place of K̄ω

mB and the blocks
K̄mm and M̄mm would be diagonals which is not the case here.

3.3 Condensing the system on interfaces dofs

In order to further reduce the size of the system, it is proposed to condense the generalized
unknowns qm on the boundary dofs. The second line of system (15) gives the following relation
between the generalized coordinates qm and the interfaces displacements uB:

qm = −
(

K̄0
mm + iωh∗(ω)K̄ω

mm − ω2M̄mm

)−1 (
K̄0
mB + iωh∗(ω)K̄ω

mB − ω2M̄mB

)
uB (24)

For the undamped case, the terms in the first parentheses are diagonal so the inversion is in-
stantaneous, but in the damped case these terms are non-diagonal and the inversion adds some
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computation time. In order to limit this cost, it is possible to exploit the fact that the non-
diagonal matrices are sparse. Replacing equation (24) into equation (15) leads to a condensed
system on the interfaces which is equivalent to a super-element where its dimension is equal to
the number of interface dofs (12 here):(

Ksuper(ω)− ω2Msuper(ω)
)

uB = fB (25)

where the super-element mass and stiffness matrices are given by:

Ksuper(ω) = K̄0
BB+iωh∗(ω)K̄ω

BB−
(

K̄0
Bm + iωh∗(ω)K̄ω

Bm

)(
K̄0
mm + iωh∗(ω)K̄ω

mm − ω2M̄mm

)−1

(
K̄0
mB + iωh∗(ω)K̄ω

mB − ω2M̄mB

)
(26)

Msuper(ω) = M̄BB − M̄Bm

(
K̄0
mm + iωh∗(ω)K̄ω

mm − ω2M̄mm

)−1

(
K̄0
mB + iωh∗(ω)K̄ω

mB − ω2M̄mB

)
(27)

4 APPLICATION TO THE SUPPORT STRUCTURE MOUNTED ON 4 DAMPERS

A comparison between the reference full finite element model and the proposed super-
element is made. An harmonic displacement is imposed on the structure lower interfaces, in
a direction that is parallel to these interfaces: the dampers are not moving up and down but
rather in a left-forward/right-backward kind of motion. The frequency range is chosen from 0
Hz to 500 Hz and the resulting displacements at observation point P (see figure (1)), for both
the full reference model and the super-element, are plotted on figure (2). The displacement of
point P for the full model without damping is also plotted to show that the chosen viscoelastics
parameters lead to a well damped structure. In the same time, the error in displacement is plot-
ted on figure (4). Two types of modes (damper only or full structure) are shown in figure (3)
and their frequencies are plotted in vertical line on figure (2)

One hundred modes are taken in the dynamic modal basis at null frequency in the multi-
model approach. The high number of modes needed here is due to the same stiffness difference
that is exploited for the kinematical constraint of the dampers interfaces: the stiffness of the
elastomer core is so low that around a hundred modes are found in the frequency range 0-500
Hz. The frequency limit chosen for the calculation of this modal basis is 512 Hz, which is
roughly equal to the max frequency of the frequency range, so the method is accurate.

For the second basis of the multi-model, the one that contains the pseudo-normal modes at
the max frequency, only ten modes are needed to give a good approximation. This is due to the
fact that pseudo-normal modes are computed from the real part of the complex stiffness matrix
at a given frequency. The real part of the complex modulus is greater than one thus adding
stiffness to the system so a lower number of modes is present in the frequency range of interest.
The frequency limit chosen for the calculation of this second modal basis is 582 Hz, which
again is roughly equal to the max frequency of the frequency range.

As it can be seen on figure (2) and (4), the super-element matches the results of the refer-
ence model with a maximal error in displacement around 0.016%, thus validating the modified
Craig-Bampton proposed in this work. The different computational times from both the FRF
calculation of the reference model and the super-element are given in table 3. The same com-
puter is used to do both of them. The assembly of the super-element is done once for all, before

5423



A. Legay, J.-F. Deü and B. Morin
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Figure 2: Normalized displacement of point P (see figure (1)) for the reference undamped model (dotted line), the
reference damped (full line) and for the reduced model (cross-dotted line)

Figure 3: Modes of the undamped full structure at 98.23 Hz and 152.64 Hz (see the two vertical lines on figure 2)
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Figure 4: Error (norm 2) in displacement of the reduced model compared to the reference model

the FRF calculation, and the corresponding computational times is given under the name of Pre
CPU time in table 3.

The sum of both the super-element assembly time and the FRF computational time of the
modified Craig-Bampton is more than 10 times lower than the computational time of the refer-
ence model, thus further validating the present super-element approach.

Table 3: Computational time of both the reference and super-element models.

Reference model Super-element
Pre CPU time - 23 min
FRF CPU time 14 h 40 min 51 min
total CPU time 14 h 40 min 1 h 14 min

5 Conclusion

The aim of the presented method is to reduce the finite element model of a damper made of
elastomer and aluminium to a 12 dofs super-element. This super-element is built through the
combination of a kinematical constraint to enforce rigid body motion at the damper interface
and a Craig-Bampton to reduce and condense the finite element model on it’s interfaces dofs.
A multi-model approach is used to keep the frequency dependence of the finite element model
during the Craig-Bampton reduction process. The result is a 12 dofs super-element that replace
the more than 2.105 dofs finite element model. This super-element can be connected to any
other finite element model through its interfaces nodes, each of them having three translational
dofs and three rotational dofs. To test this method, the case of an aluminium structure supported
on four dampers is studied. A reference model, consisting in the structure and four non-reduced
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dampers, and a reduced model, made of the same structure with four super-elements, are com-
pared. Displacements of one of the structure point are computed for both the reference and
reduced models and are shown to be very close, and the error in displacement roughly stays
under 0.016% on the whole frequency range thus validating the proposed method. The compu-
tational times of both models are also investigated and show that the reduced model is more than
10 times faster to compute than the reference model. A library of super-elements corresponding
to different damper geometries and materials can be built off-line through this approach and
then be used for design and optimization purposes in a full model.
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Abstract. In this paper, dynamics of a five degree-of-freedom system formed by a main linear

oscillator coupled to four light nonlinear systems in series is studied. The aim is to control

and/or to harvest the energy of the main structure under harmonic excitations around its reso-

nance. A multiple scales method is used to derive the behavior of the system at different time

scales. At fast time scale, detected slow invariant manifold gives an overall comprehension of

the possible behaviors that the system can undergo. At slow time scale, the modulated behavior

of the system around its invariant is described by traced equilibrium and singular points. The

former predict periodic regimes, while the latter hint at strongly modulated responses charac-

terized by persisting bifurcations of the system around its unstable zones. All analytical results

are validated by numerical simulations.
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1 INTRODUCTION

Nonlinear oscillators are known to be efficient to passively attenuate vibratory energy of

mechanical systems. Several works in the literature deal with two degree-of-freedom (dof)

systems. Gendelman [1] studies energy pumping by means of energy transfer to a nonlinear

mode of a system consisting of a linear and a nonlinear coupled oscillators. Kerschen et al. [2]

make experimental investigations on energy transfer from a linear oscillator to a cubic nonlinear

one. Passive control of nonlinear systems have also been studied. Dahl type and piece-wise

linear systems coupled to a piece-wise linear oscillator are examined by Ture Savadkoohi and

Lamarque [3] and Lamarque et al. [4], respectively. The present work aims to study passive

control of a linear system by four nonlinear oscillators in series. This represents a step towards

investigation of system with higher dof, i.e. a main system coupled to a chain of oscillators.

It is organized as it follows: model of the system and methodology of treatment are given

in Sect. 2. Study of the system behavior at fast and slow time scale, leading to detection

of slow invariant manifold and equilibrium and singular points, respectively, is led in Sect. 3.

Analytical predictions are compared to numerical results in Sect. 4. Finally, concluding remarks

are summarized in Sect. 5.

2 MODEL DESCRIPTION AND SYSTEM EQUATIONS

The five dof system described in Fig. 1 is studied. A linear structure under external excitation

F (t) which has a mass M , a stiffness K and a damping â is coupled to four nonlinear oscillators

in series via a linear spring ρ and a damper ã. The nonlinear oscillators have a mass m, a

damping ã and a nonlinear potential Ṽ . Their masses is very small compared to the main

system one’s (m = ǫM , 0 < ǫ ≪ 1).

M m

F(t)

K

â

Figure 1: Five dof model studied consisting of a forced linear structure coupled to four nonlinear oscillators

(m = ǫM , 0 < ǫ ≪ 1)

Displacements of the main system and the nonlinear oscillators are called as v and uj , j =
1, . . . , 4, respectively. Let us introduce wl as new variables of the system:

w1 = u1 − v
wl = ul − ul−1 l = 2, 3, 4

(1)

Besides, new parameters are defined as followed:
K

M
= ω2

0
,
ρ

M
= ǫr,

˜V (z)

M
= ǫ(Bz +Dz3),

â

M
= ǫa,

ã

M
= ǫa1 and

F (t)

M
= ǫf(t). External forcing is assumed to be sinusoidal, oscillating

at the angular frequency ω: f(t) = f 0 sin(ωt). We study the system around resonance of the

main structure: ω2 = ω2

0
(1 + σǫ). Finally, a multiple scale method [5] is used by embedding
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time to different scales, i.e. fast time scale τ0 = t and slow time scales τj = ǫjt, j = 1, 2 . . .
Governing equations of the system read:

ÿ + (C0 + ǫC1)ẏ + (A0 + ǫA1)y +N (y) = ǫF(t) (2)

where

A0 =













ω2

0
0 0 0 0

−ω2

0
r −B 0 0

0 −r 2B −B 0
0 0 −B 2B −B
0 0 0 −B 2B













A1 =













0 −r 0 0 0
0 r 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













C0 =













0 0 0 0 0
0 a1 −a1 0 0
0 −a1 2a1 −a1 0
0 0 −a1 2a1 −a1
0 0 0 −a1 2a1













C1 =













a −a1 0 0 0
−a a1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













N (y) = D















0
−w3

2

2w3

2
− w3

3

−w3

2
+ 2w3

3
− w3

4

−w3

3
+ 2w3

4















y =













v
w1

w2

w3

w4













F(t) =













f 0 sin(ωt)
0
0
0
0













(3)

As A0 is diagonalizable, there exists a matrix P0 such as P−1

0
A0P0 = Λ2

0
, i.e. A0 and Λ2

0

are similar matrices. Furthermore, we assume that Λ2

0
= ω2Id5 + Λ̃2

0
, where Id5 is the 5 × 5

identity matrix. System (2) can be rewritten:

ÿ + ω2y + (C0 + ǫC1)ẏ +P0Λ̃
2

0
P−1

0
y + ǫA1y +N (y) = ǫF(t) (4)

Following complex variables of Manevitch [6] are introduced to the system (4):

Φeiωt = ẏ + iωy with Φ =













ϕ1

ϕ2

ϕ3

ϕ4

ϕ5













(5)

In order to keep only first harmonics and to truncate higher order ones, a Galerkin method is

used by applying following formula on each equations sj, j = 1, . . . , 5 of system (4):

Sj =
ω

2π

∫ 2π
ω

0

sj(τ0)e
−iωτ0dτ0 (6)

Φ is supposed to be independent of τ0, which will be eventually verified at least for an asymp-

totic state. Finally, system (4) reads:

Φ̇+
1

2
(C0 + ǫC1)Φ+

1

2iω
(P0Λ̃

2

0
P−1

0
+ ǫA1)Φ−

3iD

8ω3
Nm(y) = ǫFm(t) (7)
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Nm(y) =













0
−|ϕ2|

2ϕ2

2|ϕ2|
2ϕ2 − |ϕ3|

2ϕ3

−|ϕ2|
2ϕ2 + 2|ϕ3|

2ϕ3 − |ϕ4|
2ϕ4

−|ϕ3|
2ϕ3 + 2|ϕ4|

2ϕ4













Fm(t) =















f 0

2i
0
0
0
0















(8)

3 SYSTEM BEHAVIOR AT DIFFERENT TIME SCALES

3.1 Fast time scale τ0

The system behavior at fast time scale is described by system (7) derived at ǫ0 order:

∂Φ

∂τ0
+

1

2
C0Φ +

1

2iω0

P0Λ̃
2

0
P−1

0
Φ− iDNm(y) = 0

⇔
∂Φ

∂τ0
+













0
H2(Φ)
H3(Φ)
H4(Φ)
H5(Φ)













= 0

(9)

where D =
3D

8ω3

0

.

Fix points of system (9) verify lim
τ0→+∞

∂Φ̃

∂τ0
= 0 where Φ̃ = ( φ1 φ2 φ3 φ4 φ5 )T . They

define the slow invariant manifold (SIM) of the system:

H =









H2(Φ̃)

H3(Φ̃)

H4(Φ̃)

H5(Φ̃)









= 0 (10)

Introducing polar coordinates as φj = Nje
iδj , j = 1, . . . , 5, SIM can be written after some

cumbersome algebra:









φ2

φ3

φ4

φ5









=
φ1

g(N2

3
, N2

4
, N2

5
)









h2(N
2

3
, N2

4
, N2

5
)

h3(N
2

3
, N2

4
, N2

5
)

h4(N
2

3
, N2

4
, N2

5
)

h5(N
2

3
, N2

4
, N2

5
)









(11)

hj(N
2

3
, N2

4
, N2

5
) and g(N2

3
, N2

4
, N2

5
) are complex functions. From system (11), SIM can be

plotted in the (N1, N2, N3, N4, N5) space. This manifold houses all possible asymptotic states

of the system.

Stability of the SIM can be computed by introducing an infinitesimal perturbation of Φ in

system (9) around the SIM as:

Φ → Φ̃+∆Φ̃ , ∆Φ̃ =
(

0 ∆φ2 ∆φ3 ∆φ4 ∆φ5

)T
(12)
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Linearizing the obtained system leads to the following matrix system:













∂∆Φ̃

∂τ0

∂∆Φ̃
∗

∂τ0













= Σ





∆Φ̃

∆Φ̃
∗



 (13)

where Σ is an 10 × 10 matrix. Points where real parts of the eigenvalues of Σ are negative

determine unstable zones of the SIM.

3.2 Slow time scale τ1

Let us consider first equation of system (7) derived at ǫ1 order:

∂ϕ1

∂τ1
+

(

iσω0

2
+

a

2

)

ϕ1 +

(

ir

2ω0

−
a1
2

)

ϕ2 +
if 0

2
= 0 (14)

This equation provide necessary additional information to detect equilibrium and singular points

at slow time scale. Equilibrium points predict periodic regimes whereas singular points are hints

of strongly modulated response (SMR) [7] which is characterized by persistent bifurcations of

the system around its unstable zones. Separating its real and imaginary parts and using system

(11), Eq. (14) becomes:

∂ϕ1

∂τ1
+

(

iσω0

2
+

a

2
+

h2

g

(

ir

2ω0

−
a1
2

))

︸ ︷︷ ︸

α

ϕ1 +
if 0

2
= 0

⇔











∂N1

∂τ1
= −αrN1 −

f 0

2
sin(δ1) = E1

∂δ1
∂τ1

= −αi −
f 0

2N1

cos(δ1) = E2

(15)

where .r and .i stand for real and imaginary parts, respectively. Moreover, from systems (10)

and (15), one can obtain:

∂H

∂τ1
= 0

⇒ det(S2)Id8





































∂N2

∂τ1
...

∂N5

∂τ1

∂δ2
∂τ1

...
∂δ5
∂τ1





































= −adj(S2)S1





E1

E2





︸ ︷︷ ︸

G

(16)
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where adj(.) stands for the adjugate matrix and:

G =







G1

...

G8
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(17)

Equilibrium points verify:
{

det(S2) 6= 0
E1 = E2 = 0

⇔

{

det(S2) 6= 0
G1 = . . . = G8 = 0

(18)

Singular points verify:
{

det(S2) = 0
G1 = . . . = G8 = 0

(19)

4 NUMERICAL RESULTS

Analytical developments are compared in this section with numerical simulations obtained

for direct integration of system (2). This task has been carried out thanks to function ode45 of

Matlab. Following parameters are fixed all along this section: ω0 = 1, a = 0.2, ǫ = 0.001,

B = 0.2, r = 0.5, a1 = 0.2 and D = 10. Assumed initial conditions are: v = 1 and

v̇ = u1 = u̇1 = u2 = . . . = u̇4 = 0.

4.1 SIM

SIM of the system is illustrated in Fig. 2. Figures 2(a)-(d) represent N1 versus N2, N3, N4

and N5, respectively. Unstable zones are plotted in dotted red line. The SIM presents two local

extrema for N1 which delimit an unstable zone. Furthermore, one can see what appears to be a

double point in Fig. 2(a). This is an effect of the projection in the plane (N1, N2), as shown by

the three-dimensional flow of the SIM in the (N1, N2, N3)-space in Fig. 2(e).

4.2 f0 = 0.2 and σ = 0 (exact resonance)

Position of equilibrium and singular points are given in Fig. 3. The system possesses one

stable equilibrium point (no. 1). SIM of the system and corresponding numerical results are

given in Figs. 4(a) and (b). We picked two representations, N1 versus N2 and N1 versus N5,

among four possible. Corresponding time series are given in Figs. 4(c),(d) and (e), where am-

plitudes of predicted equilibrium point no. 1 (see Fig. 3) are depicted by a blue dashed line.

Besides, the amplitude that the main system would have without additional nonlinear oscillators

is plotted in solid black line in Fig. 4(c). One can see that numerical results match analytical

predictions, as the system behavior is instantaneously attracted to the SIM and stabilizes around

the above-cited equilibrium point. Moreover, vibratory energy has been localized in the nonlin-

ear oscillators, as the main system’s amplitude equates to around 27% of the amplitude it would

have on its own.
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Figure 2: SIM of the system. (a) N1 versus N2, (b) N1 versus N3, (c) N1 versus N4, (d) N1 versus N5 and (e)

Three-dimensional flow of the SIM in the (N1, N2, N3)-space. Stable and unstable zones of the SIM are plotted

in black solid line and dotted red line, respectively
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Figure 3: Position of equilibrium and singular points of the system with f0 = 0.2 and σ = 0. The system possesses

one equilibrium point (no. 1). Black points represent points where G1 = . . . = G8 = 0 (see Sect. 3.2)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

N
2

N
1

(a)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

N
2

N
1

(b)

0 2 4 6 8
x 10

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

N
1

(c)

0 2 4 6 8
x 10

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

N
2

(d)

0 2 4 6 8
x 10

4

0

0.2

0.4

0.6

0.8

t

N
5

(e)

Figure 4: f0 = 0.2 and σ = 0. (a) SIM of the system in red and corresponding numerical results in blue: N1

versus N2, (b) SIM of the system in red and corresponding numerical results in blue: N1 versus N5, (c) N1 versus

time, (d) N2 versus time and (e) N5 versus time. Amplitude of predicted equilibrium point no. 1 (see Fig. 3) is

depicted by a blue dashed line. Amplitude that the main system would have without nonlinear oscillators is plotted

in black
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4.3 f0 = 0.5 and σ = 0.6

Position of equilibrium and singular points are given in Fig. 5. The system possesses one

unstable equilibrium point (no. 1) and four singular points (no. 2, no. 3, no. 4 and no. 5).

Consequently, SMR is expected. Figures 6(a)-(e) depict SIM of the system, corresponding

Figure 5: Position of equilibrium and singular points of the system with f0 = 0.5 and σ = 0.6. The system

possesses one equilibrium point (no. 1) and four singular points (no. 2, no. 3, no. 4 and no. 5). Black points

represent points where G1 = . . . = G8 = 0 (see Sect. 3.2)

numerical results and evolution versus time of the same variables as in the previous section.

This time, the system faces repeated bifurcations around its unstable zone, i.e. it undergoes

SMR. The system behavior during SMR is plotted in green in Figs. 6(a)-(b). Again, passive

control has been operated on the main system as shown by the difference of its amplitude with

nonlinear oscillators and without (marked by a solid black line in Fig. 6(c)).
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Figure 6: f0 = 0.2 and σ = 0. (a) SIM of the system in red and corresponding numerical results in blue: N1

versus N2, (b) SIM of the system in red and corresponding numerical results in blue: N1 versus N5, (c) N1 versus

time, (d) N2 versus time and (e) N5 versus time. Amplitude that the main system would have without nonlinear

oscillators is plotted in black
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5 CONCLUSION

A five degree-of-freedom system consisting of a linear system coupled to four nonlinear

oscillators is studied. Theoretical approaches such as implementation of Galerkin technique,

complexification and time multi-scale methods are endowed for detection of fast and slow dy-

namics of the system. Numerical simulations and analytical predictions are in good agreement

and provide evidence of passive control of the main system. In prospect, a similar method will

be applied on a system with higher degree-of-freedom, in order to compare efficiency of pas-

sive control according to the number of nonlinear oscillators. Moreover, it will be interesting

to study the behavior of the chain (propagation of a wave, localization in a few degrees of free-

dom, etc.) and to compare the results obtained with different approaches such as the search of

nonlinear modes.
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Abstract. Nonlinear systems can have periodic solutions evolving with the parameters of the
system. Studying this evolution (numerical continuation of solutions) uncovers sought-after
regimes in musical acoustics : many musical instruments rely on auto-oscillation, that is, the
excitation of a nonlinear system coupled with a linear resonator, where some parameters may
be adjusted by the player. Periodic solutions can be approximated as truncated Fourier series
(Harmonic Balance Method) ; the period is one of the unknowns. Several stable or unstable
solutions can be found for the same playing parameters thanks to continuation.
An important challenge is the continuation of quasi-periodic solutions, also called multiphonic
sounds by musicians. Depending on the context, these oscillation regimes are considered pleas-
ant (jazz or contemporary music for instance) or unpleasant (classical music). We developed a
method based on double Fourier series, coupled with a continuation technique. The two base
frequencies are unknowns and incommensurable. The system is reformulated as quadratic in
order to allow straight interface with previous work on periodic harmonic balance.
This method is illustrated on simple models relevant to musical acoustics, though the method
can be applied to many nonlinear problems, without a priori knowledge of the solutions.
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1 INTRODUCTION

Nonlinear systems can have periodic solutions evolving with the parameters of the system.
Studying this evolution (numerical continuation of solutions) uncovers sought-after regimes in
musical acoustics : many musical instruments rely on auto-oscillation, that is, the excitation of
a nonlinear system coupled with a linear resonator, where some parameters may be adjusted
by the player. Periodic solutions can be approximated as truncated Fourier series (Harmonic
Balance Method) ; the period is one of the unknowns. Then, using a continuation technique,
solutions can be continued ; they can be either stable or unstable, and different solutions may
occur for the same playing parameters.

However, other solutions can arise, namely quasi-periodic solutions. They are well-known
by musicians, who may call them multiphonics. These solutions can be undesirable : for in-
stance, the wolf note on bowed string instruments is a rough, beating sound, and it is an example
of a quasi-periodic regime of an autonomous system. These solutions can also be produced vol-
untarily, using a forced system: singing at a frequency f1 while playing at a frequency f2 on a
brass instrument can create stunning effects.

Our aim is the continuation of two-frequencies, quasi-periodic solutions. It is important to
notice that even the direct computation of quasi-periodic solutions can be difficult. Because
of dependence on initial conditions, some solutions may be overlooked when using numerical
integration. Moreover, compared to the periodic case, it is not relevant anymore to perform
integration on long intervals to get rid of transient solutions : one cannot determine easily if the
steady-state solution is reached. These drawbacks have lead to specific algorithms to compute
quasi-periodic solutions, first as a response to a quasi-periodic drive [1]. More recently, the com-
putation of quasi-periodic solutions for forced or autonomous systems, based on the Alternating
Frequency/Time Domain Method (AFT [2]), was performed with good qualitative agreement
on a disc brake model [3]. Peletan et al. [4] designed a continuation method, coupling AFT
with pseudo-arclength continuation, and applied it to a Jeffcott rotor. For this system, one of
the two frequencies is known ; and an harmonic selection procedure improves the efficiency of
computations.

For periodic solutions, Cochelin and Vergez [5] showed that given a quadratic reformula-
tion, a coupling of the Harmonic Balance Method and the Asymptotic Numerical Method was
straightforward and allowed computations with high number of harmonics. The method devel-
oped here is an extension of this idea with double Fourier series. The two base frequencies
are unknowns and incommensurable. The system is reformulated as quadratic in order to allow
straight interface with previous work on periodic harmonic balance.

This method is illustrated on simple models, with a forced system and an autonomous one.
System parameters could be chosen to present results more closely related to musical acoustics.
However, simple values underline that the method can be applied to many nonlinear problems,
without a priori knowledge of the solutions.

2 TWO-FREQUENCY HARMONIC BALANCE METHOD

2.1 Principle : quadratic formulation

Instead of one Fourier series, a variable x is sought after in the form

x(t) =
H∑

k1=−H

H∑
k2=−H

xk1,k2e
i(k1ω1+k2ω2)t (1)
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where ω1 and ω2 are the two unknown pulsations. Adding auxiliary variables, a smooth
nonlinear differential system can be transformed into a first-order differential system, with non-
linearities being only products, either of two variables, or a variable and the continuation pa-
rameter λ. Let U denote the vector of variables in the time domain, the following system is
called quadratic formulation :

mU ′ = c0 + λc1 + l0U + λl1U + q(U,U) (2)

where c0, c1 are constant vectors, m, l0 and l1 are constant linear operators, and q is a constant
quadratic operator. Like in the periodic case [5], since eq. (2) is quadratic, and due to the
decomposition of variables assumed in eq. (1), substituting this double series in eq. (2) leads to a
(larger) quadratical system where the unknowns are Fourier coefficients plus the two pulsations
ω1, ω2. Note that in the case of a forced system one of these pulsations is the forcing pulsation
(see section 2.2). This larger system reads as a quadratical residual function R :

R : RN+1 −→ RN , (X,λ) 7→ C0 + λC1 + L0(X) + λL1(X) +Q(X,X) (3)

where X contains Fourier coefficients of U , ω1 and ω2. The solution branch R(X,λ) = 0
can then be followed thanks to the Asymptotic Numerical Method.

2.2 Forced system

An example of a forced system that exhibits a quasi-periodic behaviour is a forced Van der
Pol oscillator :

x′′ − µ1x
′ + µ2xx

′ + µ3x
2x′ + a1x = cos(λt) (4)

with µ1 = µ2 = 0.1, µ3 = a1 = 1. A Neimark-Sacker bifurcation occurs at λ ' 1.79
[6], and the periodic solution at pulsation ω = λ becomes unstable. A quadratic formulation,
emphasizing constant, linear and quadratic parts in the right-hand side, is

x′ = 0 + y + 0 (5)
y′ = cos(λt) + µ1y − a1x− µ2xy − µ3yz (6)

0︸︷︷︸
mU ′

= ︸ ︷︷ ︸
c0

0 ︸ ︷︷ ︸
l0U

+ z ︸ ︷︷ ︸
q(U,U)

− x2 (7)

The forcing term cos(λt) is placed in the constant operator, similarly to the periodic version
of the method (see [5], example 4).

The continuation of the quasi-periodic solution branch can be performed efficiently and pre-
cisely : in this example, Fourier series were truncated with H = 5. A plot of L2 norm of x is
shown in figure 2.2. Dots indicate the beginning of each continuation step : the ANM provides
smooth continuation with an automatic step size determination. The solution obtained through
this quasi-periodic Harmonic Balance is qualitatively good with H = 2 (figure 2.2, left) : peak-
to-peak amplitude and general shape of the curve in the phase space are reached. But areas left
blank are not actually correct, while with H = 5 (right), its pointwise agreement with a time
integration scheme [7] is excellent.
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Figure 1: Energy (L2 norm) of x with respect to the continuation parameter λ. Red dots indicate the beginning of
each continuation step.
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Figure 2: Phase diagrams (x, y), for λ = 2.58. Left : quasi-periodic Harmonic Balance, H = 2. Right :
comparison of quasi-periodic Harmonic Balance (H = 5, blue solid line) and time integration (red dashed line).

2.3 Autonomous system

The equations used for two coupled Van der Pol oscillators are :

x′′1 + a1x
′
1 + Ω2

1x1 = a2λ(x′1 + x′2)− a3λ(x′1 + x′2)(x1 + x2)− a4λ(x′1 + x′2)(x1 + x2)
2 (8)

x′′2 + b1x
′
2 + Ω2

2x2 = b2λ(x′1 + x′2)− b3λ(x′1 + x′2)(x1 + x2)− b4λ(x′1 + x′2)(x1 + x2)
2 (9)

and the quadratic formulation is :
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x′1 = y1 + 0 + 0 (10)
y′1 = 0 − a1y1 − Ω2

1x1 + λ (a2(y1 + y2)− a3v − a4w) + 0 (11)
x′2 = y2 + 0 + 0 (12)
y′2 = 0 − b1y2 − Ω2

2x2 + λ (b2(y1 + y2)− b3v − b4w) + 0 (13)
0 = 0 + r − (x1 + x2)

2 (14)
0 = 0 + v − (x1 + x2)(y1 + y2) (15)
0 = 0 + w − r(y1 + y2) (16)

Parameters values are chosen as : Ω1 = 1, a1 = 0.01, a2 = 0.5, a3 = a4 = 2 ; Ω2 = 2.5,
b1 = 0.025, b2 = 1, b3 = b4 = 4. For these equations, the quasi-periodic solution branch
requires higher orders of truncation of Fourier series H than the forced Van der Pol above. For
example, around λ = 0.36, a good agreement with time integration is achieved with H = 10
(figure 2.3), and some differences are noticeable ifH is too low (areas left empty are not correct
with H = 4). For this system the continuation process takes roughly 6 seconds per step for
H = 4, 43 seconds for H = 6, 220 seconds for H = 8.
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Figure 3: Phase diagrams (x1, y1), for λ = 0.36. Left : quasi-periodic Harmonic Balance, H = 4. Right :
comparison of quasi-periodic Harmonic Balance (H = 10, blue solid line) and time integration (red dashed line).

3 CONCLUSION

The coupling of two-frequencies harmonic balance with the Asymptotic Numerical Method,
a robust continuation technique, is performed automatically thanks to the quadratic framework.
It proves very efficient to continue quasi-periodic solutions, without any a priori knowledge
nor optimization. As one could expect, better accuracy is obtained using more Fourier coeffi-
cients, and comparison with time integration is successful. Future works will focus on musical
examples, though this method is relevant for many nonlinear systems.
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Abstract. The deformation of the orthotropic spherical layer under normal pressure applied
on the outer and inner surfaces is analyzed. The layer is assumed to be slightly orthotropic,
it permits to apply asymptotic methods. The equations of zeroth and first approximations are
derived. For the shell, which is much softer in the transverse direction than in the tangential
plane, one gets singularly perturbed boundary value problem. Solving this problem in the
zeroth approximation the asymptotic formula for the change of the relative layer thickness under
normal pressure is obtained. Also the effect of Poisson ratio and the layer thickness on the
deformation is studied. For the cases of the thick and thin layers the last formula may be
simplified. The asymptotic results well agree with the exact solution. The developed formulas
are used in analysis of the scleral shell under intraocular pressure and may also be used in
solution of the inverse problem, i.e. in analysis of the stress-strain state of a human eye under
injection. The solution of the problem helps to estimate the mechanical parameters of the sclera,
i.e. to find the ratio of the tangential and transversal Young moduli using clinical data for the
sclera thickness change.
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1 INTRODUCTION

The 3D problem for deformation of orthotropic spherical layer under normal pressure is
considered. Such model may be used, for example, to describe the changes of the stress strain
state of the external human eye shell under intraocular injections. For isotropic spherical layer
this problem, known as Lame problem, is discussed, for example, in [1]. For transverse isotropic
spherical layer the analytical solution has been obtained in [2, 3] and asymptotic solution in [4].
The stress-strain state of a two-layered transversely isotropic spherical shell is discussed in [5].

2 PROBLEM STATEMENT

2.1 Equilibrium equations in displacements

Consider orthotropic spherical layer with the internal radiusR1, external radiusR2 and thick-
ness h = R2 −R1 (see Fig. 1).

Figure 1: Orthotropic spherical layer

The position of the point of the spherical layer in given by spherical coordinates: ρ — radial
coordinate, ϕ— meridional coordinate, θ — circumferential coordinate. Equilibrium equations
for the spherical layer have the form [1]

∂σρρ
∂ρ

+
1

ρ

∂σρϕ
∂ϕ

+
1

ρsinϕ

∂σρθ
∂θ

+
cosϕ

ρsinϕ
σρϕ +

1

ρ
(2σρρ − σϕϕ − σθθ) + fρ = 0,

∂σϕρ
∂ρ

+
1

ρ

∂σϕϕ
∂ϕ

+
1

ρsinϕ

∂σϕθ
∂θ

+
3

ρ
σϕρ +

cosϕ

ρsinϕ
(σϕϕ − σθθ) + fϕ = 0,

∂σθρ
∂ρ

+
1

ρ

∂σθϕ
∂ϕ

+
1

ρsinϕ

∂σθθ
∂θ

+
3

ρ
σθρ +

2cosϕ

ρsinϕ
σθϕ + fθ = 0,

here σρρ, σϕϕ and σθθ — normal stress, σρϕ, σρθ, σϕθ — tangential stress, fρ, fϕ, fθ — projec-
tions of the external forces in corresponding directions.

We consider axisymmetric problem without external forces. In this case the displacements
do not depend on angle θ, and tangential stresses σρθ, σϕθ and deformations εϕθ, ερθ are equal
to zero.

Thus, system of equations becomes
∂σρρ
∂ρ

+
1

ρ

∂σρϕ
∂ϕ

+
cosϕ

ρ sinϕ
σρϕ +

1

ρ
(2σρρ − σϕϕ − σθθ) = 0, (1)

∂σρϕ
∂ρ

+
1

ρ

∂σϕϕ
∂ϕ

+
3

ρ
σρϕ +

cosϕ

ρ sinϕ
(σϕϕ − σθθ) = 0.
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The displacements of the spherical layer are given with projections of the displacement vec-
tor (w, u, v) in directions ρ, ϕ and θ correspondingly. For axisymmetrilc problem v = 0. The
relations for deformations and displacements of the spherical layer are the following [1]

ερρ =
∂w

∂ρ
, εϕϕ =

1

ρ

∂u

∂ϕ
+
w

ρ
, εθθ = cotϕ

u

ρ
+
w

ρ
, ερϕ =

1

2

(
1

ρ

∂w

∂ϕ
− u

ρ
+
∂u

∂ρ

)
. (2)

Next consider constitutive relations for stresses and deformations. For the orthotropic media
they contain 9 independent elastic moduli: Eρ, Eϕ, Eθ — Young moduli, νϕρ, νθρ, νθϕ, —
Poisson ratios, Gρϕ, Gϕθ, Gρθ — shear moduli [6]

ερρ =
1

Eρ
σρρ −

νρϕ
Eϕ

σϕϕ −
νρθ
Eθ

σθθ, ερθ = σρθ/Gρθ,

εϕϕ = −νϕρ
Eρ

σρρ +
1

Eϕ
σϕϕ −

νϕθ
Eθ

σθθ, εϕθ = σϕθ/Gρθ, (3)

εθθ = −νθρ
Eρ

σρρ −
νθϕ
Eϕ

σϕϕ +
1

Eθ
σθθ, ερϕ = σρϕ/Gρϕ.

Due to symmetry of relations (3) the following equalities are valid

Eϕνϕρ = Eρνρϕ, Eϕνϕθ = Eθνθϕ, Eθνθρ = Eρνρθ. (4)

Introduce new constants [6]

ν∗ϕθ =
νϕθ + νϕρνρθ
1− νθρνρθ

, ν∗ϕρ =
νϕρ + νϕθνθρ
1− νθρνρθ

, ν∗θϕ =
νθϕ + νθρνρϕ
1− νϕρνρϕ

, (5)

ν∗θρ =
νθρ + νθϕνϕρ
1− νϕρνρϕ

, ν∗ρϕ =
νρϕ + νθϕνρθ
1− νϕθνθϕ

, ν∗ρθ =
νρθ + νϕθνρϕ
1− νϕθνθϕ

,

E∗ϕ = Eϕ/
(
1− ν∗ϕθνθϕ − ν∗ϕρνρϕ

)
, E∗θ = Eθ/

(
1− ν∗θϕνϕθ − ν∗θρνρθ

)
, (6)

E∗ρ = Eρ/
(
1− ν∗ρθνθρ − ν∗ρϕνϕρ

)
,

where
E∗ρν

∗
ρϕ = E∗ϕν

∗
ϕρ, E∗ϕν

∗
ϕθ = E∗θν

∗
θϕ, E∗θν

∗
θρ = E∗ρν

∗
ρθ. (7)

Substituting (3) and (2) into (1) and taking into account (5)–(7) we get equilibrium equations
in displacements as

c0
∂2w

∂ρ2
+ c1

∂w

∂ρ
+ c2

∂2w

∂ϕ2
+ c3

∂w

∂ϕ
+ c4w + c5

∂2u

∂ρ ∂ϕ
+ c6

∂u

∂ρ
+ c7

∂u

∂ϕ
+ c8u = 0, (8)

d0
∂2u

∂ρ2
+ d1

∂u

∂ρ
+ d2

∂2u

∂ϕ2
+ d3

∂u

∂ϕ
+ d4u+ d5

∂2w

∂ρ ∂ϕ
+ d6

∂w

∂ρ
+ d7

∂w

∂ϕ
+ d8w = 0,

where expressions for ci and di are listed in Appendix.
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2.2 Boundary conditions

We consider the quarter of the spherical layer, i.e. domain 0 6 ϕ 6
π

2
and R1 6 ρ 6 R2.

On the boundary ϕ = 0 and ϕ =
π

2
we assume

u(ρ, 0) = u
(
ρ,
π

2

)
= 0,

∂u

∂ϕ
(ρ, 0) =

∂u

∂ϕ

(
ρ,
π

2

)
= 0,

∂w

∂ϕ
(ρ, 0) =

∂w

∂ϕ

(
ρ,
π

2

)
= 0. (9)

On the boundary ρ = R1 and ρ = R2 we suppose that the normal pressure P1, P2 is given

σρρ (R1, ϕ) = −P1, σρρ(R2, ϕ) = −P2 (10)

where

σρρ = E∗ρ

(
∂w

∂ρ
+
ν∗ρϕ + ν∗ρθ

ρ
w +

ν∗ρϕ
ρ

∂u

∂ϕ
+
ν∗ρθ cot(ϕ)

ρ
u

)
.

Equations (8) and boundary conditions (9)–(10) provide the boundary value problem.

2.3 Restrictions on elastic constants

As we mention above the descriptions of the orthotropic material requires 9 independent
elastic moduli. However, due to the positive definiteness of the elastic potential its coefficient
must satisfy Sylvester criterion, from which the following inequalities may be found [6]

νρϕ <
√
Eϕ/Eρ, νρθ <

√
Eθ/Eρ, νϕθ <

√
Eθ/Eϕ, (11)

νρϕνϕθνθρ < 1/2
(
1− ν2ρϕEρ/Eϕ − ν2ϕθEϕ/Eθ − ν2θρEθ/Eρ

)
.

3 SLIGHTLY ORTHOTROPIC MATERIAL. PERTURBATION METHOD

Consider that the elastic modulus in the circumferential direction is little different from the
modulus in the meridional direction. We assume that the following relations for the material
elastic constants are valid

Eρ = E1, Eϕ = E, Eθ = E(1 + µ), νθϕ = ν, νϕρ = νθρ = ν1.

Gϕθ = G+ µG′ =
E

2(1 + ν)
+ µG′, Gρϕ = G1, Gρθ = G1 + µG′′,

where µ� 1. For µ = 0 the material becomes transverse isotropic.
In this case the limitations on elastic modulii (11) are

ν <
1

1 + µ
, ν1 <

√
E1

E
·min

(
1,

√
1

1 + µ
,

√
1 + µ− ν2

(1 + µ)(2 + µ+ 2ν)

)
. (12)

The domain of the material parameters (µ, ν, ν1) is plotted in Fig. 2
Solution of equation (8) we seek in the form

w(ρ, ϕ) = w0(ρ) + µw1(ρ, ϕ) +O(µ2), u(ρ, ϕ) = µu1(ρ, ϕ) +O(µ2).

Equation of zeroth approximation for function w0(ρ) have been considered in [4]. This is
equation for the transversely isotropic layer. We report shortly the results of [4] in next section.
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Figure 2: The domain of the elastic moduli (µ, ν, ν1) for E/E1 = 0.01.

4 EQUATION OF ZEROTH APPROXIMATION

For zeroth approximation the equilibrium equations for the normal displacement may be
reduced to a single equation in the form

w′′0(ρ) +
2

ρ
w′0(ρ)− 2

E(1− ν1)
E1(1− ν)ρ2

w0(ρ) = 0, (13)

and boundary conditions are

2EE1ν1w(Ri) + E2
1(1− ν)w′(Ri)Ri = −PiRi

(
E1(1− ν)− 2Eν21

)
, i = 1, 2.

The restrictions on elastic constants becomes

ν < 1, ν1 <

√
E1

E
·min

(
1,

√
1− ν

2

)
,

and since for all known materials ν > −1 then

√
1− ν

2
< 1. This problem has an exact

analytical solution obtained in [2, 3], but formulas for the displacement w and stress functions
are rather complicated. That is why it is more convenient to use an asymptotic approach to
analyze the effect of the parameters of the spherical layer on the stress-strain state of the layer.

4.1 Asymptotic analysis

For the layer, which is much softer in the transverse direction than in the tangential surface
we assume E1 = ε2E. ν1 = εαν∗1 , where ε� 1, ν∗1 ≈ 1, α ≥ 1. In the further analysis α = 1.
The equation for the normal displacement becomes

ε2w′′0(ρ)ρ2 + 2ε2ρw′0(ρ)− (a+ bε)w0(ρ) = 0, (14)

where a =
2

1− ν
; and b = − 2ν∗1

1− ν
, and the boundary conditions are

εfw(Ri) + ε2gw′(Ri)Ri = −cpiRi, i = 1, 2. (15)

Here pi = Pi/E, c = (1 − ν − 2ν∗1
2), f = 2ν∗1 , g = 1 − ν. To solve singularly perturbed

equation (14) we follow [7] and seek a solution in the form

w(ρ) = e
1
ε

∫ ρ
0 λ(t)dt(w0(ρ) + εw1(ρ) + · · · ). (16)
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After substitution in (14) and equating the coefficients at εk to zero we obtain a system of
equations for the unknowns λ(ρ), w0(ρ), w1(ρ), . . .

w0(ρ)(−a+ ρ2λ2(ρ)) = 0,

2ρ2w′0(ρ)λ′(ρ) + w0(ρ)(−b+ 2ρλ′(ρ)− ρ2λ′′(ρ)) = 0, (17)
· · ·

The solution of the first equation gives λ(ρ) = ±
√
a

ρ
and the solution of the second equation

is

w0(ρ) = ρβ, β =
1

2

(
± b√

a
− 1

)
.

So, for the first approximation we get

w(ρ) = Aργ1 +Bργ2 , (18)

where γ1,2 = ±
√
a

ε
+

1

2

(
± b√

a
− 1

)
. Constants A and B may be found from the boundary

conditions

A = −c
ε

R1G1p1 −R2G2p2
F+(G2

1 −G2
2)

, B = −c
ε

G1G2(R2G1p2 −R2G2p1)

F−(G2
1 −G2

2)

where F± =
√
ag ± f and Gi = R

√
a/ε

i . The change of the layer thickness is obtained using
formula for the normal displacement

∆h =
w(R2)− w(R1)

R2 −R1

or

∆h = −c
ε

p1R1(F
+G2 − F−G1) + p2R2(F

−G2 − F+G1)

(F−F+(G1 +G2))(R2 −R1)
(19)

4.2 Examples and applications

Further simplification of the formula for the change of the layer thickness is based on the
assumptions on ratio of the values R1 and R2. For example, for the thick layer R1 � R2, then
ξ = R1/R2 � 1 (ξ � 1) and G1 � G2. In this case the first approximation for ∆h has the
form

∆h = −c
ε

p1ξF
+ + p2F

−

(F+F−)(1− ξ)
. (20)

For the thin layer R1 ≈ R2. In this case

∆h = − c

εη

p1(1− η)(F+ − F−(1− η)κ) + p2(F
− − F+(1− η)κ)

F−F+(1 + (1− η)κ)
,

where R1 = (1− η)R2 (η = 1− ξ � 1), κ =
√
a/ε.

Let consider as an example the scleral shell with parameters [8] ν = 0.48, P1 = p×133.3 Pa,
P2 = 0 Pa, E = 14 MPa, ν∗1 = 0.5, Here p = 20 is the intraocular pressure in mm Hg. The
change of the layer thickness as a function of ε is represented in Fig. 3 for thick layer (η = 0.7)
(left) and for thin layer (η = 0.04) (right).

The change of the layer thickness as a function of ε and ξ = R1/R2 is represented in Fig. 4
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Figure 3: The change of the layer thickness vs. ε (the exact solution (blue line), the asymptotic solution (red line)).
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Figure 4: The change of the layer thickness as a function of ε and ξ = R1/R2.

.

5 EQUATIONS OF FIRST APPROXIMATION

For the first approximation we get equations

m0
∂2w1

∂ρ2
+m1

∂w1

∂ρ
+m2

∂2w1

∂ϕ2
+m3

∂w1

∂ϕ
+m4w1 +m5

∂2u1
∂ρ ∂ϕ

+m6
∂u1
∂ρ

+

+m7
∂u1
∂ϕ

+m8u1 +m9w0 = 0, (21)

n0
∂2u1
∂ρ2

+ n1
∂u1
∂ρ

+ n2
∂2u1
∂ϕ2

+ n3
∂u1
∂ϕ

+ n4u1 + n5
∂2w1

∂ρ ∂ϕ
+ n6

∂w1

∂ϕ
+

+n7
∂w0

∂ρ
+ n8w0 = 0,

where expressions for mi and ni are listed in Appendix and boundary conditions

u1
∣∣
ϕ=0

= u1
∣∣
ϕ=π/2

= 0,
∂u1
∂ϕ

∣∣∣
ϕ=0

=
∂u1
∂ϕ

∣∣∣
ϕ=π/2

= 0,
∂w1

∂ϕ

∣∣∣
ϕ=0

=
∂w1

∂ϕ

∣∣∣
ϕ=π/2

= 0, (22)

and
σ1
ρρ (R1, ϕ) = σ1

ρρ(R2, ϕ) = 0, (23)

where
σ1
ρρ = l0

∂w1

∂ρ
+ l1w1 + l2

∂w0

∂ρ
+ l3w0 + l4

∂u1
∂ϕ

+ l5u1,

and
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l0 = 1, l1 =
2

ρ

Eν1
E1(1− ν)

, l2 =
Eν21

(1− ν)(E1(1− ν)− 2Eν21)
, (24)

l3 =
l2
ν1ρ

, l4 =
Eν1

E1(1− ν)ρ
, l5 = l4 cot(ϕ).

So, the boundary value problem for the first approximation consists of equations (21) and
boundary conditions (22)–(23). We note, that the change of the shear moduli (G′,G′′) do not
effect equations and boundary conditions of the first approximation.

Figure 5 depicts deformed orthotropic layer for two different ratio of Eθ/Eϕ. The layer
parameters are taken as follows R2 = 12 mm, R1 = 0.9R2, Eϕ = E = 14 MPa, Eρ = E1 =
1.26 MPa, ν = 0.48, ν1 = 0.03. The inner boundary ρ = R1 is subjected to normal pressure
P1 = 20× 133.3 Pa.

Figure 5: Deformed orthotropic layer with Eθ/Eϕ = 0.7 (µ = −0.3) and Eθ/Eϕ = 1.3 (µ = 0.3).

6 CONCLUSIONS

1. For transversely isotropic material the asymptotic formula describing the change of the
layer thickness under normal pressure is obtained. Asymptotic relations show that for
deformation of the spherical layer under the inner pressure the relative thickness varies
more for the layer with smaller thickness.

2. The change of the scleral thickness under intraocular pressure (IOP) well agree with clin-
ical data on decrease of scleral thickness in primary open-angle glaucoma (POAG) [8].
POAG is an eye disease, which is generally accompanied by the IOP increase.
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APPENDIX

c0 = 1, c1 =
2

ρ
, c2 =

1

2ρ2
Gρϕ

E∗ρ
, c3 = c2 cot(ϕ),

c4 =
1

ρ2

(
ν∗ρϕ + ν∗ρθ −

E∗ϕ + 2 ν∗ϕθE
∗
ϕ + E∗θ

E∗ρ

)
,

c5 =
1

ρ

(
ν∗ρϕ +

Gρϕ

2E∗ρ

)
, c6 =

cot(ϕ)

ρ

(
ν∗ρθ +

Gρϕ

2E∗ρ

)
, (25)

c7 =
1

ρ2

(
ν∗ρϕ −

E∗ϕ
E∗ρ

(1 + ν∗φθ)−
Gρϕ

2E∗ρ

)
,

c8 =
cot(ϕ)

ρ2

(
ν∗ρθ −

E∗ϕν
∗
ϕθ + E∗θ
E∗ρ

− Gρϕ

2E∗ρ

)

d0 = 1, d1 =
2

ρ
, d2 =

2

ρ2
E∗ϕ
Gρϕ

, d3 = d2 cot(ϕ),

d4 = − 2

ρ2

(
1 +

E∗ϕν
∗
ϕθ

Gρϕ

+
E∗θ
Gρϕ

cot2(ϕ)

)
, (26)

d5 =
1

ρ

(
1 + 2

E∗ρν
∗
ρϕ

Gρϕ

)
, d6 =

2 cot(ϕ)

ρ

E∗ρ
Gρϕ

(ν∗ρϕ − ν∗ρθ),

d7 =
2

ρ2

(
1 +

E∗ϕ
Gρϕ

(1 + ν∗ϕθ)

)
, d8 =

2 cot(ϕ)

ρ2
E∗ϕ − E∗θ
Gρϕ

,

m0 = 1, m1 =
2

ρ
, m2 =

Gρϕ

2ρ2E∗ρ0
, m3 = m2 cot(ϕ),

m4 = − 2

ρ2
E(1− ν1)
E1(1− ν)

, m5 =
1

ρ

(
Gρϕ

2E∗ρ0
+

Eν1
E1(1− ν)

)
,

m6 = m5 cot(ϕ), m7 = − 1

ρ2

(
E(1− ν1)
E1(1− ν)

+
Gρϕ

2E∗ρ0

)
, (27)

m8 = m7 cot(ϕ), m9 = − 1

ρ2
E(1− ν1)
E1(1− ν)2

,

E∗ρ0 =
E2

1(1− ν)

E1(1− ν)− 2Eν21
.
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n0 = 1, n1 =
2

ρ
, n2 =

2E∗ϕ0

Gρϕρ2
, n3 = n2 cot(ϕ),

n4 = − 2

ρ2

(
1 +

E∗ϕθ0
Gρϕ

+
E∗ϕ0

Gρϕ

cot2(ϕ)

)
, n5 =

1

ρ

(
1 +

2E∗ρϕ0

Gρϕ

)
n6 =

2

ρ2

(
1 +

2E∗ρϕ0

Gρϕν1

)
, n7 = −2 cot(ϕ)

ρ

E∗ρϕ0

Gρϕ(1 + ν)
, n8 =

n7

ν1ρ
, (28)

E∗ϕ0
=

E(E1 − Eν21)

(1 + ν)(E1(1− ν)− 2Eν21)
, E∗ρϕ0

=
EE1ν1

E1(1− ν)− 2Eν21
,

E∗ϕθ0 =
E(E1ν + Eν21)

(1 + ν)(E1(1− ν)− 2Eν21)
.
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Abstract. The aim of this paper is to assess the degree of accuracy in modelling the dynamic 

behaviour of reinforced concrete beams with and without discontinuities. Finite element mod-

els of three damaged and undamaged reinforced concrete beams were developed in Abaqus 

combining solid and beam elements and experimentally validated using experimental modal 

analysis. For the undamaged beams the agreement between the lowest 24 eigenfrequencies 

from the models and the measurements were within 3 %. For the damaged beams, the 

agreement was within 4 % above the lowest axial mode, whereas the errors were up to 10 % 

below the lowest axial mode. The validated finite element models will be used for further stud-

ies on the dynamic behaviour of collapsed reinforced concrete buildings.  
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1 INTRODUCTION 

Every few years an earthquake of high magnitude occurs around the globe leading in col-

lapsed structures with people trapped inside them. When victims are trapped inside a col-

lapsed building, the challenge is to detect and locate survivors within a period of time that 

will allow them to be rescued. The majority of documented live rescues are accomplished 

within the first 5 to 6 days [1]. However, important variables affect the survivability including 

the structure type and void space formation, the cause of the structural collapse, the survival 

location in the building and the speed and sophistication of available search and rescue capa-

bilities [2].  

Airborne sound from survivors tends to be highly attenuated by layers of rubble and re-

quires the existence of air paths for propagation to the surface. For this reason there is greater 

potential to detect physical movement or signals by measuring vibration due to structure – 

borne sound (i.e. seismic research method). In a seismic search, a small number of seismic 

sensors are moved over a regular grid so that the operators can be certain they have searched 

the entire site. The placement and positioning of these sensors is critical for the successful de-

tection of the survivors. However, grid spacing and sensor placement are often decided simply 

by checking whether it is possible to detect transients generated by the operators in an adja-

cent grid area on the surface in places where the structure is safe to walk [3]. This can be mis-

leading because horizontal propagation of vibration across the surface of a collapsed structure 

is only vaguely indicative of propagation into the depths of a collapsed structure. 

This research forms part of a PhD project which is funded by the EPSRC and concerns an 

approach to search for human survivors using structure-borne sound propagation in collapsed 

and fragmented structures through the development, validation and use of theoretical models. 

The aim in this paper is to assess the degree of accuracy in modelling the dynamic behaviour 

of damaged and undamaged one-dimensional reinforced concrete building elements. Experi-

mental modal analysis is carried out on three reinforced concrete beams with and without dis-

continuities and the results are used for the validation of finite element models. 

2 METHODS 

2.1 Test specimens  

The experimental samples consist of three reinforced concrete beams (C25/30, S500) with 

the same dimensions (2.4 m length, 0.2 m width and 0.3 m depth). The beams are reinforced 

with four longitudinal steel bars of 16 mm diameter and transverse reinforcement consisting 

of 8 mm diameter stirrups placed at 200 mm centres along the beams (see Figure 1). Three 

beams were measured: Beam 1 - an undamaged beam, Beam 2 - a beam with a 100 mm dis-

continuity in one position and Beam 3 - a beam with two 100 mm discontinuities in two posi-

tions. Figure 1 shows the structural details of the three reinforced concrete beams.  

The discontinuities on beams 2 and 3 were formed by using a diamond saw to cut out the 

concrete. This also introduced cuts into some of the longitudinal steel bars which randomly 

reduced their cross-sectional area by 15 to 60%. These cuts into the steel bars are located at 

the beginning and end of each discontinuity zone (see Figure 2) and increased the uncertainty 

in the Abaqus models. 

Table 1 gives the weight of each reinforced concrete beam that was measured using a crane 

scale.  
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Beam Weight [Kg] 

 1 352.0 

 2 330.8 

 3 322.6 

Table 1. Beam weights. 

 

 

Figure 1. Structural details of the reinforced concrete beams. 

 

 

 

Figure 2. Example of the reduction in the cross-section of a steel bar caused by a diamond saw cut 

Steel bar cut 
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. 

2.2 Experimental work 

Experimental modal analysis was carried out on the three reinforced concrete beams in or-

der to identify their dynamic characteristics (i.e. eigenfrequencies and modeshapes). The 

beams were suspended using polyester slings from an overhead crane in order to approximate 

a beam with free – free boundary conditions as the sling was assumed to have negligible ef-

fect on the dynamic response (Figure 3). 

 

 

Figure 3 Test setup showing the test equipment and the polyester slings that approximate the free-free boundary 

condition for Beam 3 

The beams were excited using a Brüel & Kjær Type 8200 impact hammer and the response 

on beams 1, 2 and 3 was measured using three, six and nine Brüel & Kjær Type 4371 accel-

erometers respectively. The transducers were connected to a Brüel & Kjær Type 3050-A-060 

FFT analyser via a Type 2692 Nexus Conditioning Amplifier. The commercial software Brüel 

& Kjær Pulse Reflex was used for signal processing and the modal analysis. The accelerome-

ters remained at fixed positions whilst the impact hammer was moved along a mesh of excita-

tion points with spacing of 0.15m or 0.2m along the length and 0.1m in the other two 

directions. It is noted that only the concrete parts of the beams were excited. The total number 

of excited degrees of freedom was 206, 244 and 282 for beams 1, 2 and 3 respectively.  

2.3 Finite element modelling 

Finite element models of the three reinforced concrete beams were developed in Abaqus [4] 

and eigenfrequency analysis was carried out to define their dynamic characteristics (eigenfre-

quencies and modeshapes). 

The solid element C3D20R (20 nodes) and the beam element B32 (3 nodes) were selected 

from the element library of Abaqus to model the concrete and the steel bars respectively. Both 

elements were selected to have interpolation functions of the same order (quadratic) to avoid 

accuracy issues [5]. This technique of combining three–dimensional (solid) with one dimen-

sional (truss or beam) elements for modelling reinforced concrete members is well-established 

in the finite element analysis literature [6, 7]. A finite element mesh with dimensions of 25 

mm in the longitudinal and 20 mm in the other two directions  resulted in 27 elements per 

wavelength for the concrete and 8 elements per wavelength for the steel bars, at 3200 Hz. 

5457



Marios Filippoupolitis, Carl Hopkins and Siu-Kui Au 

This mesh density fulfils the requirement for at least 6 quadratic elements per wavelength in 

structural and vibroacoustic problems [8]. 

For the models of Beams 2 and 3 the discontinuities were formed by removing the appro-

priate number of solid and beam elements in each discontinuity zone (Figure 4). This ap-

proach was an efficient way of creating discontinuities in different positions of the beams 

without re-meshing. 

 

 
Beam 1 

 
Beam 2 

 
Beam 3 

Figure 4. Finite element modeling of the reinforced concrete beams using solid and beam elements. 

In order to investigate the influence of the steel cuts in the dynamic behavior of beams 2 

and 3, local sectional area reduction zones of 2 mm length were modelled in Abaqus where 

generalized sections were used to approximate the profile properties. 

Table 2 shows the physical and mechanical properties of the materials used in the models. 

The material properties of the steel and Poisson’s ratio of the concrete were taken from the 

literature [9, 10]. The density of the concrete for each beam was defined by dividing the 

weight of the beams by their volume after extracting the weight of the steel reinforcement. 

 The Young’s modulus of the concrete, Ec was estimated after model updating against the 

experimental results. Numerical trials with different Young’s modulus, Ec were carried out for 

beam 1 up to the stage where the first numerical eigenmode had 0% difference against the 

first experimental eigenmode in terms of eigenfrequencies. The estimated value of the 

Young’s modulus is relatively high but it is inside the range that is proposed in the literature 

for C25/30 concrete [11].  

 

Material Density, ρ [Kg/m3] 

Young’s 

modulus, 

E [N/m2] 

Poisson’s 

ratio, ν 

Concrete 

Beam 1 2328.7 

36875E06 0.2 Beam 2 2277.8 

Beam 3 2320.8 

Steel 7800 200E09 0.3 

Table 2. Material properties. 
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3 RESULTS 

In this section the mode pairs are characterized according to their mode shape as being ei-

ther bending (B), torsional (T) or axial (A) modes. Table 3 compares the results of the finite 

element analysis against the experimental results for Beam 1 in terms of eigenfrequencies.  

 

Mode  

type 

Mode 

 pair 

Experimental modal 

analysis 

[Hz] 

FEM 

[Hz] 

Difference 

[%] 

B 1 138.19 138.19 0.00 

B 2 209.57 205.59 1.90 

B 3 366.30 365.72 0.16 

T 4 447.96 446.14 0.41 

B 5 529.20 521.30 1.49 

B 6 684.87 680.10 0.70 

A 7 861.64 838.87 2.64 

T 8 896.33 892.54 0.42 

B 9 944.14 927.07 1.81 

B 10 1069.14 1057.70 1.07 

T 11 1343.43 1339.40 0.30 

B 12 1408.26 1382.50 1.83 

B 13 1499.09 1480.10 1.27 

A 14 1721.10 1675.70 2.64 

T 15 1799.68 1787.00 0.70 

B 16 1902.95 1864.40 2.03 

B 17 1961.47 1933.30 1.44 

T 18 2253.04 2235.30 0.79 

B 19 2410.26 2358.00 2.17 

B 20 2451.17 2407.00 1.80 

A 21 2577.19 2507.70 2.70 

T 22 2709.78 2684.40 0.94 

B 23 2920.24 2853.10 2.30 

B 24 2948.11 2893.70 1.85 

Table 3. Comparison between experimental modal analysis and FEM in terms of eigenfrequencies – Type A1 

beam. (B, T and A correspond to bending, torsional and axial modes respectively).  

Figure 5 and Figure 6 show the percentage difference between experimental and FEM ei-

genfrequencies for the 26 and 28 mode pairs of beams 2 and 3 respectively.  
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Figure 5. Percentage difference between FEM and experimental eigenfrequencies for beam 2 (B, T and A corre-

spond to bending, torsional and axial modes respectively). Modes are ordered from the lowest to the highest ei-

genfrequency from left to right. 

 

Figure 6. Percentage difference between FEM and experimental eigenfrequencies for beam 3 (B, T and A corre-

spond to bending, torsional and axial modes respectively). Modes are ordered from the lowest to the highest ei-

genfrequency from left to right. 
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Figure 7. Comparison between experimental and FEM eigenfrequencies for beams 1, 2 and 3. 

4 ANALYSIS AND DISCUSSION 

In general, close agreement was achieved between FEM and experimental eigenfrequen-

cies for all three reinforced concrete beams as indicated in Figure 7. Therefore the number of 

discontinuities did not significantly affect the accuracy of the finite element models in terms 

of their eigenfrequencies. 

For beam 1, close agreement was achieved between FEM and experimental results (see 

Table 3). All the mode pairs in the frequency range from 1 to 3200 Hz had differences less 

than 3 % in terms of eigenfrequencies. 

For beam 2, all the 21 mode pairs above the first axial mode (450.9 Hz) and mode pair 2, 

showed close agreement between FEM and the experimental results with differences in the 

eigenfrequencies of less than 4.0 % (see Figure 5). Higher differences occurred with mode 

pairs 1, 3, 4 and 5 with differences between 6 and 10 %.  

For beam 3, close agreement was achieved between FEM and experimental results for all 

the mode pairs in the frequency range from 1 to 3200 Hz with differences less than 5 % (see 

Figure 6).  Apart from mode pairs 1 and 4 the other pairs all showed differences below 3 %.  

The effect of including the diamond saw cuts to the reinforcement bars in the FEM model 

of beams 2 and 3 was negligible above the first axial mode. Figure 5 and Figure 6 show that 

in the models with the discontinuities, the steel cuts mainly affect the modes before the first 

axial mode. Modelling the steel cuts improved the agreement between FEM and experimental 

results for beam 2 while it is not clear that including the steel cuts had a significant effect for 

beam 3. 
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5 CONCLUSIONS 

Experimental work has quantified the material properties and the dynamic behavior of 

three reinforced concrete beams with and without discontinuities. These represent undamaged 

and damaged beams as might occur in a building after an earthquake.  

Finite element models have been successfully validated against experimental modal analy-

sis for these three beams. It was shown that the number of discontinuities did not significantly 

affect the accuracy of the predicted eigenfrequencies. For the undamaged beams the agree-

ment between the lowest 24 eigenfrequencies from the models and the measurements were 

within 3 %. For the damaged beams, the agreement was within 4 % above the lowest axial 

mode, whereas the errors were up to 10 % below the lowest axial mode. 

An efficient and accurate method of creating discontinuities was experimentally validated. 

This will inform later stages of the work where numerical experiments will be carried out to 

assess the influence that various patterns of discontinuities have in the dynamic behavior of 

one dimensional reinforced concrete members. This will allow Monte Carlo simulations to 

incorporate aspects of uncertainty that would exist in real fragmented buildings. 
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Abstract. The study reviews the existing methods for estimation of the peak and residual shear 

strength of columns and the main parameters that affect their shear drift capacity. Shear force 

effects on the behavior of the columns seem to be significant as shear influences the flexural 

behavior of columns and encourages failure mechanisms that are more brittle, especially for 

columns which are shear critical (columns over-reinforced in flexure, short columns). The 

methods that have been developed up until now for the estimation of shear strength vary, but in 

all cases contributions from separate mechanisms of resistance, namely the contribution of 

concrete, web reinforcement and axial load are recognized. In establishing the degradation of 

shear strength under seismic load reversals the decomposition of concrete cover, the diagonal 

strut cracking of the element and the yielding or slip of the longitudinal reinforcement are de-

termined. Another important parameter which must be taken into account in experimental re-

sults for the calibration of previous methods in establishing the rate of strength degradation as 

well as the residual strength is the contribution of axial load to the load-carrying capacity loss, 

with increasing displacement. This phenomenon is shown to be significant and for that reason 

separation from the other mechanisms of degradation will be essential in revision and refine-

ment of design expressions for shear, necessary in assessment procedures. An analytical inves-

tigation of the relationship between shear drift capacity, transverse reinforcement, aspect ratio 

and axial load is presented in the paper. 

Introduction 

Condition assessment of an existing reinforced concrete structure is the first step towards ret-

rofit design and strengthening. Reinforced Concrete (R.C.) columns represent the most critical 

components in this assessment problem, as their possible failure can place at risk the integrity 

of the structure and its ability to support gravity loads. Thus, dependable assessment of columns 

is a prerequisite for the successful redesign of a structure, and requires a good understanding 

and interpretation of the current condition. A critical part of this procedure is the estimation of 

the degraded shear strength of reinforced concrete columns after inelastic reserved cyclic dis-

placements such as those occurring during a severe earthquake. In the context of the following 

investigation, performance assessment makes direct reference to the state of damage attained 
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by the examined member.  Damage is quantified in terms of lateral drift ratio.  To facilitate 

calculations at distinct performance limits, drift capacity is estimated at the point of shear and 

axial failure on the experimental envelope curve.  Current methods used in design codes to 

estimate the extent of degradation of shear strength with increasing displacement demand are 

built on previous researches by Aschheim(1992), Lynn(2001), Sezen(2002) and Elwood(2003).  

However, collective evaluation of the available data identify that certain parameters may have 

a great than what was thought before effect on the overall mechanism of shear strength degra-

dation and on the deformation capacity of the member at performance limit states; such are, the 

aspect ratio, the second order effects generated by axial load, and the effect of transverse rein-

forcement ratio on the value of drift at failure.  For this reason this problem is revisited aiming 

for a better understanding of the relationship between shear strength, P-Δ effects, and the drift 

ratios at shear and axial load failure. 

In particular, evaluation of the residual shear strength of a member after degradation due to 

excessive displacement has set-in is a focal point of this study. While the displacement increases 

well beyond the peak point of the resistance curve of the member, the load-carrying capacity 

decreases owing to a variety of reasons, several of those reflecting implicit shear failure, such 

as diagonal tension cracking in the web of the member, yielding of longitudinal reinforcement, 

excessive compressive strains in the compression zone, loss of bond strength of the longitudinal 

reinforcement and disintegration of the web concrete due to diagonal compression. In some 

situations other effects may be responsible for what is often interpreted as damage-induced 

strength degradation – this refers to the influence of second order effects imparted by the axial 

load while the deformation increases. Especially this phenomenon seems to contribute dramat-

ically to the macroscopically observed loss of lateral resistance, and the confusions caused 

thereof is occasionally passed-on into the calibrated expressions for shear-strength assessment 

of columns (the k(μ) factor, see ASCE/SEI 41, 2007).   Linked with this is the value of drift at 

the onset of shear and axial failure.  To address this problem from the beginning, a data base of 

135 old type R/C columns has been created and an algorithm is followed taking into consider-

ation the second order effects in correcting the experimental resistance envelope curves for 

some of the specimens. Comparison between the existing calibrated models for the evaluation 

of shear strength and the results illustrates the significance of second order effects on shear 

strength degradation.  Experimental values of shear and axial drift ratios at the corresponding 

limit states are compared with values obtained from the proposed models. An investigation of 

how the values of aspect ratio, transverse reinforcement ratio and axial load influence the values 

of drift ratio at the reference limit states is also included in the discussion. 

Figure 1 Schematic representation of the effects of P-Δ on the response curve of a member.  Vertical axis repre-

sents the shear force required to produce a given drift magnitude (horizontal axis coordinate) if axial load is not 

considered (blue line) and after correction for the P- Δ effects (red line). 
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1 SHEAR STRENGTH 

To investigate the behavior of columns under seismic shear, a data base of column tests was 

assembled.  The data base contains columns of different cross sectional shapes, and tested under 

cyclic loading in single and double curvature simulating the action of earthquakes. Most of the 

specimens were observed to exhibit shear failure. Additionally, a small number of spiral col-

umns were selected for study that failed in flexure. Important response parameters selected for 

the data base were the drift ratios at shear and axial failure, depicted in Fig. 1, and denoted as 

(Δ/L)shear and (Δ/L)axial, respectively.  According to the established practice in the field, the drift 

at shear failure is identified as the point where a 20% loss in lateral load carrying capacity is 

observed, whereas the drift at axial failure is associated with loss of axial load carrying capacity 

– i.e. collapse (this point sometimes may be identified as the final point of the envelope curve). 

Parameters used in the investigation were the following: the aspect ratio M/(Vd), the transverse 

reinforcement ratio ρ’’, the average axial load ratio, νd=P/Agfc’, the longitudinal reinforcement 

ratio and the material properties of the specimens. Values of the parameters for all assembled 

specimens are illustrated in the Table 4 in Appendix A . The specimens are categorized accord-

ing to cross-section shape. 

 Rectangular shaped columns

 Circular shaped columns

 L shaped columns.

The nominal shear strength of a reinforced concrete member, Vn , is estimated from the contri-

bution of various strength components, namely, a contribution of the concrete web, VC (com-

prising shear transfer over the compression zone, aggregate interlock and dowel action over the 

tension zone ) and the contribution of transverse (web) reinforcement Vs as illustrated in Figure 

3 (Elwood et al 2003). In most cases of design guidelines around the world the contribution of 

axial load, is either considered separately, or it is embedded in VC. 

sCn VVV      (1) 

 

 

Figure 2 Components of shear force across a diagonal crack near failure (from Elwood 2003).  

Because shear failure is a brittle mode of failure it is generally placed higher in the strength 

hierarchy scheme of capacity design, as compared to flexural failures; in the strength inequality 

flexural strength defines the demand for shear design of new, or the basis of assessment in 

existing members.  As it is desirable to maintain shear demand below shear strength at least 
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within the range of design displacements (i.e. up to a displacement ductility of 5), strength is 

estimated by considering all possible forms of disintegration that may limit its magnitude.  

Strength reduction is effected by multiplying the nominal strength by a multiplier that accounts 

for the various effects that are responsible for shear strength loss, originally proposed by 

Aschheim and Moehle (1992) and later refined by several other researchers. Available pro-

posals to date are listed in the table below:  

Researcher Shear Strength Proposed Models 

Aschheim (1992), 45o truss 

 angle corresponding to the approx-

imate initial angle typically as-

sumed by shear cracks 

sC VVV  ;  bdf5.3bdf)
A2000
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1('aV cc

g

u
C 

For rectangular columns  : s/dfAV tr,yvs 

For spiral columns : s/)d8.0(fA2V str,ysps 

Lynn and Moehle (2001), 45o truss 

angle in this proposal.  

μδ ≤1 k=1 

1≤μδ ≤6 k varies from 1 and 0.7 

μδ ≥6 k=0.7 
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Sezen and Moehle (2002), 45o truss 

(based on calibration of tests, the 
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Table 1 Proposed Models for the evaluation of the degraded shear strength. 
Notation: L=length of the column; b=column section width; h=column section height; d=depth to centerline of 

tension reinforcement; a= shear span; s=tie spacing; ρl=longitudinal reinforcement ratio (Ast/(bs)), ρ’’=trans-

verse reinforcement ratio (Ast/(bs));  fyl=longitudinal steel yield strength; fyt=transverse steel yield strength ; fc’ 

=concrete strength; P/(Ag*fc’)= constant axial load; (M/(Vd))=aspect ratio; Δ/L=drift;  c=neutral axis depth; 

Ac=web cross sectional area; pl

 =plastic part of ductility demand; 
tot =total longitudinal reinforcement ratio; 

Vs=contribution of transverse steel;  VC=concrete web contribution 
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As is shown in Table 1, the shear strength models include coefficients that estimate the reduced 

shear strength.  The strength reduction is attributed to the degradation of the concrete web which 

carries the shear through diagonal compressive struts.  However, shear force measured in col-

umns while conducting tests to lateral displacement (drift) history, undergoes an apparent loss 

of magnitude with increasing displacement, even if no web damage could be detected (e.g. in 

flexural response), and this is due to the second order effects of the column axial load as the 

longitudinal axis of the member is displaced from the reference point.  This apparent reduction 

of column strength, dV, may calculated after consideration of the column in the deformed con-

figuration.  Thus, to maintain constant flexural moment at the column base, Mo, the shear force 

V(Δ) may be estimated from:  V(Δ) =(Mo-P·Δ)/L = Vo-(P·Δ/L), thus dV=-P·Δ/L.  Today with 

the vast number of available column experiments it appears that strength degradation may be 

overestimated, or may be insensitive to some important relevant parameters.  Although behav-

ioral factors such as diagonal cracking of concrete (flexural yielding, splicing of reinforcement 

in critical regions, compression buckling of longitudinal reinforcement) are the prime culprits, 

there is no question that second order effects consume a large fraction of the available strength 

giving the impression that strength loss takes place. It is actually a debated question whether 

the experiments used to calibrate the expressions for the degradation coefficient were corrected 

for dV before estimating the real strength loss with increasing displacement (Fardis et al.(2004), 

EC8, ASCE/SEI 41, Elwood and Moehle (2003), Sezen and Moehle (2002), Lynn and Moehle 

(2001) and Aschheim and Moehle (1992)).   

In this paper this problem is revisited by studying strength loss only once after the data were 

systematically corrected in a uniform manner for the second order effects.  The methodology 

followed in this process is described in detail: In order to understand the degree of influence of 

second order effects on shear strength, the experimental results will be compared with the re-

sults obtained from the proposed models as described in Table 1. As a first step the resistance 

curve was evaluated for each specimen contained in the database using established sectional 

analysis software (Response-2000).   Next the analytical resistance envelope curve is analyzed 

and corrected accounting for second order effects; the corrected curve is subsequently compared 

with the experimental resistance envelope. Any residual difference observed between the ex-

perimental curve and the analytical curve after correction for P-Δ may be attributed to other 

sources of degradation such as compression softening of concrete and disintegration of the web 

of the member. See the figure below: 

Figure  3 Comparison of the analytical envelope curve after considering the second order effects with the experi-

mental envelope curve.   
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The background concept of this procedure is as follows:  Ideally, a reinforced concrete member 

that undergoes flexural yielding without any shear degradation, would exhibit a response curve 

that is either elastoplastic or elastoplastic with hardening. Deviation from this ideal response 

may be owing to both, disintegration and P-Δ effects.  Both of these components increase with 

deflection, however the latter of the two terms is easy to calculate given the lateral displacement 

of the column and the shear span length, Ls.  The objective is therefore, to separate the contri-

butions of these two sources of apparent strength loss by restructuring the total deviation of the 

actual response curve from its undegraded flexural response curve.  Thus, the total lateral force 

reduction, ΔV comprises components as: 

 
 
Figure 4 Difference between the elastoplastic and the experimental envelope curve.  Red is the load carrying ca-

pacity occupied by P-Δ; Green is the load carrying capacity degraded (non-recoverable) due to damage. 
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ΔV= the difference between the elastoplastic and the experimental envelope curve  

P= the axial load  

Δ= the horizontal displacement  

Ls = the span length of the column between the fixed support and the point of zero moment. 

 

Therefore, a relationship is sought between the corrected shear strength degradation term, ΔVred, 

and the drift ductility μθ. Figures 10 in Appendix B  illustrates the graph obtained from the 

experimental results and the results exported from Equation 2. Figure 11 in Appendix B illus-

trates the comparison between  ΔVred/Vmax, ΔV/Vmax with the results for normalized strength 

degradation as obtained from the available shear strength degradation models proposed by, 

Aschheim and Moehle (1992), Elwood and Moehle (2003), and Sezen and Moehle (2002).  Cal-

culation of ΔV estimated by each of the models was done according to the following procedure: 

 

(1) Calculation of Vshear,max  for the minimum value of μn (ductility).     

(2) For the minimum value of drift ductility μ1 it turns out the following relationship :  

 max1 VV   for  
1  is applicable 

max1 VVn 
 

(3)Then 
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2 SHEAR AND AXIAL DRIFT CAPACITY 

Another aspect in the evaluation procedure is deformation capacity.  It is established in the 

literature to refer to deformation capacity at the onset of shear and axial failure.  Expressions 

have been proposed to that effect (Elwood and Moehle, 2003); these were used and the analyt-

ical results were compared with the experimental values.  Expressions are obtained after em-

pirical evaluation of the experimental database assembled by the investigators.  Note that it is 

possible that this model may not be appropriate (applicable) for columns that were not included 

in the author’s Database, as most of the specimens used to calibrate the expressions for the 

milestone drift capacities only come from a single research team. The aim of the present inves-

tigation is to calculate this shear drift capacity model for different types of columns and to 

observe the results.  

The function used by Elwood and Moehle (2003) to estimate the drift ratio at shear 

failure of a column under lateral sway is as follows: 
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    (in psi units)                                                                                               (3) 

A comparison between the experimental and analytical results obtained for the shear drift ca-

pacity was conducted. The experimental shear force is compared with the value of shear force 

obtained from Response 2000 analysis taking into account the influence of second order effects 

and the aspect ratio of the member considered. A parametric investigation between transverse 

reinforcement ratio, axial load ratio, aspect ratio and experimental shear drift values was con-

ducted. 

Another concern is the estimation of the drift ratio at column axial failure.  This is an extreme 

stage where the column is near imminent collapse.  At this stage it is assumed that whatever 

residual shear strength is available to the column, this is owing to the frictional resistance that 

develops along the failure plane which is inclined at an angle θ from the member cross section 

(Fig. 2, see term Vsf).   Based on this frictional concept,  

 

NVsf                                                                                                                                                                      (3) 

The equations representing equilibrium of forces along x and y of the Free-Body Diagram of 

the column model depicted in Fig. 2 are as follows: 

 tancossin
s

df
VVF

cytst

sf


                                                                                                      (4) 

sbarsf PnsinVcosNPFy                                                                                                                   (5) 

Since imminent collapse is considered, the external shear resisted, V is now taken equal to zero.  

Thus, Equation (3) will take the following form: 
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The coefficient of friction and the angle θ of the failure plane are required to perform a calcu-

lation; Elwood and Moehle (2003) using the results from their own database and using constant 

value of shear angle θ= 65ο calculated the coefficient of friction. As a result of this investigation 

proposed the following relationship between the effective coefficient of friction and the drift 

ratio at axial failure for the total capacity model. 

0
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                                                                                                                                  (7) 

Furthermore  the coefficient of friction μ can be calculated from the following equation:      

N

V
                                                                                                                                        (8)                                                                                                   

Calibration between the two equations, i.e., (7) and (8) is used to obtain the following expres-

sion for the drift at axial failure.  
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dfA
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5

5.0                                                                                                                                               (9) 

According to Elwood and Moehle (2003), the precision of such a model is comparable to that 

for the strength, since the longitudinal reinforcement capacity is not controlled when the drift 

ratios in the tests are recorded. The model requires information only about the transverse rein-

forcement and the axial load.  In the present study a comparison is carried out between the 

results from Equation (9) and the independently assembled database of tests, presented herein.  

A next step investigating the performance of the proposed relationship for the axial drift ratio 

at failure is the parametric analysis of the effect of aspect ratio, taking into account the trans-

verse reinforcement ratio and the axial load ratio considering collectively all the tests of the 

database. 

4.0 DISCUSSION OF INVESTIGATION RESULTS   

To investigate the influence of second order effects on shear strength degradation a bar chart 

was prepared to check the results for eight selected column specimens obtained from the data 

base. The specimens are shown  in Table 2 and all the geometrical and mechanical properties 

can be found in Table 4 of Appendix A.The criterion of specimens selection was the  same 

value of displacements ductility μ=4 due to the fact that for high values of  displacements, the 

contribution to shear strength degradation is bigger.Figure 5 compares for a displacement duc-

tility of μ=4 the ratios ΔV/Vmax, ΔVred/Vmax with the corresponding values which are obtained 

from the shear strength models of Table 1. According with the procedure described in section 

2, and as shown in Figure 5, shear strength is decreased with increasing displacement ductility.  

Μore specifically, it may be seen in Fig.  8 which compares the ratios ΔV/Vmax and ΔVred/Vmax 

5471



Anthos I. Ioannou, Stavroula J.Pantazopoulou 

 

for each specimen that a lower strength degradation occurs than previously thought, when the 

second order effects are accounted for; at the same time, the total strength loss expressed by the 

ΔV/Vmax ratio is underestimated. The first of the models (Ashheim and Moehle 1992) is partic-

ularly unconservative. Overall, the model by Elwood and Moehle (2003) gives the closest ap-

proximation to the experimental results, although it appears that this too requires improvement 

(Fig. 8, Table 2) to better match the tests.   

 

 

 

 
Figure 5 Distribution results for the calculations of ΔV,ΔVred,ΔVSez,ΔVΕlw and ΔVAsch for some of the specimens 

from the data base.   
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Specimens maxV

V  

maxV

Vred  

Sez

Sez

V

V

max,

  

Elw

Elw

V

V

max,

  

Asch

Asch

V

V

max,

  

Sezen and Moehle 
0.77 0.70 0.15 0.43 0.07 

 (2002) Specimen 1 

Sezen and Moehle  
0.63 0.55 0.21 0.43 0.08 

(2002) Specimen 4 

Elwood and Moehle  
0.13 0.05 0.17 0.69 0.00 

(2003) Specimen 1 

Lynn and Moehle (2001)   
0.28 0.21 0.15 0.81 0.03 

Specimen 2CLH18 

Lynn and Moehle (2001) 
0.22 0.16 0.12 0.44 0.02 

Specimen 2SLH18 

Lynn and Moehle (2001)   
0.65 0.58 0.19 1.09 0.06 

Specimen 3SLH18 

Pham and Phuong (2013)  

0.95 0.86 0.26 0.62 0.01 L shaped Columns- 

Specimen S1 

Pham and Phuong (2013) 

0.15 0.01 0.14 0.80 0.03 L shaped Columns- 

Specimen S2 

 

Table  2  Results from the calculations for μ=4, and 
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max,

V

V

V

V

Elw
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max

max,

V

V

V

V

Asch

Asch  

Sezen and Moehle 
0.90 0.19 0.56 0.10 

 (2002) Specimen 1 

Sezen and Moehle  
0.71 0.27 0.56 0.10 

(2002) Specimen 4 

Elwood and Moehle  
0.06 0.22 0.90 0.002 

(2003) Specimen 1 

Lynn and Moehle (2001)   
0.27 0.19 1.05 0.04 

Specimen 2CLH18 

Lynn and Moehle (2001) 
0.21 0.15 0.56 0.03 

Specimen 2SLH18 

Lynn and Moehle (2001)   
0.75 0.25 0.14 0.08 

Specimen 3SLH18 

Pham and Phuong (2013)  

1.12 0.34 0.80 0.01 L shaped Columns- Speci-

men S1 

Pham and Phuong (2013) 

0.01 0.18 1.03 0.04 L shaped Columns- Speci-

men S2 
 

Τable 3 Comparison of the proposed models results with the experimental  results, for displacement ductility μ=4 

 

In the following figures, the experimental results of the database specimens are plotted against 

the results of the models listed in Table 1.   
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Figure  6 Comparisons between Elwood & Moehle (2003) proposed relationship for shear drift capacity of col-

umns and the experimental values of the data base.  The diagonal represents the equal value line.  

Figure 7 compares experimental values of shear force with analytical peak lateral force values 

obtained after sectional analysis of the critical column cross section, using Response 2000 

(2001) and considering second order effects; these values corresponding to the onset of shear 

failure (i.e., at Δ/Ls at a residual post peak strength of 80% of peak.) 

 

 

Figure  7 Correlation of Vmax,exp and Vmax,Res- P(Δ/L)80% 

Results of a parametric investigation of the relationship between transverse reinforcement ratio, 

axial ratio, aspect ratio and experimental shear drift values are plotted in the following figures. 

Symbols used in Fig. 8 are color coded to represent the intensity of the axial load ratio (com-

pressive) as follows: 
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0≤ν≤0.15 

0.15≤ν≤0.3 

0.3<ν≤0.6 

Within each group, the rhomboid shape refers to low aspect ratio columns which are pre-

disposed to shear failure; circles correspond to an aspect ratio between 2 and 4, whereas 

very slender members are plotted with triangles.   

 

Figure  8 Influence of axial load ratio, transverse reinforcement ratio and aspect ratio, on drift ratio at shear 

 failure.   

From Figure 8 it is observed that several trends occur simultaneously:  drift capacity at shear 

failure increases with the amount of transverse reinforcement, since better confinement and 

better shear reinforcement amounts postpone the occurrence of shear failure; green red and blue 

points are grouped sequentially in this order on the plot.  Thus for the same amount of transverse 

reinforcement, specimens with higher axial load ratio correspond to lower values of lateral drift 

at shear failure.  Higher drift values are possible as the axial load is reduced.  Moreover for 

values of axial load in the range 0≤ν≤0.15 it may be seen that the drift capacity is proportional 

to transverse reinforcement ratio.  Similar is the effect of the aspect ratio: higher aspect ratios 

lead to higher values of drift capacity at shear failure. This occurs whether as point of reference 

equal transverse reinforcement, or equal axial load ratio is considered.   

Subsequently the  value of drift at axial load failure as calculated by Eq. 9 is compared against 

its experimental counterpart in Figure 9; clearly the equation assesses the drift capacity at fail-

ure quire satisfactorily, however, the scatter is significant.  It is possible that by accounting the 

other two important parameters, namely the aspect ratio and transverse reinforcement ratio the 

scatter may be reduced and correlation be improved.    
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Figure  9 Comparison of experimental values of Δα with Elwood and Moehle (2003) proposed model. 

6.0 CONCLUSIONS  

 The current study aims to recapitulate the current knowledge concerning the estimation 

of the residual shear strength and pattern of strength degradation, taking into consider-

ation the influence of axial load and the occurrence of second order effects during the 

lateral displacement history. Furthermore, drift capacities at the point associated with 

shear and axial load failures were also considered. 

 Taking into account the contribution of axial load in estimating the remaining shear 

strength of a column with increasing displacement, it seems that a large fraction of the 

macroscopically observed lateral strength loss originally attributed to disintegration of 

the shear resistance mechanisms is really owing to the contribution of second order ef-

fects. This important response aspect accounts for a significant part of the lateral re-

sistance of the column and therefore the coefficient of strength reduction with increasing 

ductility which has been introduced in assessment codes is found to overestimate the 

phenomena of strength degradation.  Therefore, all the relevant assessment equations 

need to be reconsidered. 

 Drift capacity at the onset of shear failure is defined at the point on the post peak branch 

associated with 80% residual member strength. After a parametric investigation, the 

results show that there is an agreement between the expressions by Elwood and Moehle 

(2003) and an independently assembled experimental database results in that the shear 

drift value increases almost proportionately with transverse reinforcement ratio, 

whereas it is inversely proportional to axial load ratio.  Higher aspect ratio has the same 

effect; low shear drift values are observed in the case of shear critical columns. 
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Appendix A 

Specimens 
B 

(mm) 

D or h 

(mm) 
L(mm) fc' a/D ρl(%) fyl(Mpa) s(mm) ρt(%) fyt(Mpa) P/Agfc' 

Bechtoula,Kono,Arai and Watanade,2002, 

DIN 2002 250 250 625 37.60 2.5 0.02 461 40 0.01 485 0.30 

Esaki ,1996 

H-2-1/3 200 200 400 23 2 0.03 363 40 0.01 363 0.33 

H-2-1/5 200 200 400 23 2 0.03 363 50 0.01 364 0.20 

HT-2-1/3 200 200 400 20 2 0.03 363 60 0.01 364 0.33 

HT-2-1/5 200 200 400 20 2 0.03 363 75 0.01 364 0.20 

Galeota et al 1996 

AB2 250 250 1,140 80 4.56 0.06 579 150 0.01 579 0.30 

AB3 250 250 1,140 80 4.56 0.06 579 150 0.01 579 0.30 

AB4 250 250 1,140 80 4.56 0.06 579 150 0.01 579 0.20 

Nosho et al 1996 

AB2 279 279 2,134 40.6 7.64 0.01 407 229 0.001 351 0.34 

Ohue et al. 1985 

2D16RS 200 200 400 32 2 0.02 369.00 50 0.005 316 0.14 

4D13RS 200 299 400 30 2 0.03 370.00 50 0.005 316 0.15 

Pujol 2002 

No.10-1-2.25N 152.4 304.8 686 36.5 2.25 0.02 453 57 0.01 411 0.08 

No.10-1-2.25S 152.4 304.8 686 36.5 2.25 0.02 453 57 0.01 411 0.08 

No.10-2-2.25N 152.4 304.8 686 34.9 2.25 0.02 453 57 0.01 411 0.08 

No.10-2-2.25S 152.4 304.8 686 34.9 2.25 0.02 453 57 0.01 411 0.08 

No.10-2-3N 152.4 304.8 686 33.7 2.25 0.02 453 76 0.01 411 0.09 

No.10-2-3S 152.4 304.8 686 33.7 2.25 0.02 453 76 0.01 411 0.09 

No.10-3-2.25N 152.4 304.8 686 27.4 2.25 0.02 453 57 0.01 411 0.10 

No.10-3-2.25S 152.4 304.8 686 27.4 2.25 0.02 453 57 0.01 411 0.10 

No.10-3-3N 152.4 304.8 686 29.9 2.25 0.02 453 76 0.01 411 0.10 

No.10-3-3S 152.4 304.8 686 29.9 2.25 0.02 453 76 0.01 411 0.10 

No.20-3-3N 152.4 304.8 686 36.4 2.25 0.02 453 76 0.01 411 0.16 

No.20-3-3N 152.4 304.8 686 36.4 2.25 0.02 453 76 0.01 411 0.16 

Ramirez and Jirsa , 1980 

00-U 305 305 458 34.5 1.5 0.02 374 65 0 455 - 

Saatcioglu and Oscebe 1989 

U1 350 350 1,000 43.6 2.86 0.03 430 150 0.003 470 - 

U2 350 350 1,000 30.2 2.86 0.03 453 150 0.003 470 0.16 

U3 350 350 1,000 34.8 2.86 0.03 430 75 0.006 470 0.14 

Soesianawati et al. 1986 

No.4 400 400 1,600 40 4 0.02 446 0.003 0.003 0.30 0.32 

Takemura and Kawashima, 1997 
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Test 1 (JSCE-4) 400 400 1,245 35.9 3.11 0.02 363 70 0.002 368 0.30 

Test 2 (JSCE-4) 400 400 1,245 35.7 3.11 0.02 363 70 0.002 368 0.03 

1997, Test 3 

(JSCE-4) 400 400 1,245 34.3 3.11 0.02 363 70 0.002 368 0.03 

1997, Test 4 

(JSCE-4) 400 400 1,245 33.2 3.11 0.02 363 70 0.002 368 0.03 

1997, Test 5 

(JSCE-4) 400 400 1,245 36.8 3.11 0.02 363 70 0.002 368 0.03 

Umehara and Jirsa 1982 

2CUS 230 410 455 42 1.11 0.03 441 89 0.01 414 0.27 

Wehbe et al 1998 

A1 380 610 2,335 27.2 3.83 0.02 448 110 0.003 428 0.10 

A2 380 610 2,335 27.2 3.83 0.02 448 110 0.003 428 0.24 

Wight and Sozen 1973 

No.00.033(East) 152.4 304.8 876.0 32.0 2.88 0.02 496 127 0.003 345 - 

No.00.033(West) 152.4 304.8 876.0 32.0 2.88 0.02 496 127 0.003 345 - 

No.25.033(East) 152.4 304.8 876.0 33.6 2.88 0.02 496 127 0.003 345 0.07 

No.25.033(West) 152.4 304.8 876.0 33.6 2.88 0.02 496 127 0.003 345 0.07 

No.40.048(East) 152.4 304.8 876.0 26.1 2.88 0.02 496 89 0.005 345 0.15 

No.40.048(West) 152.4 304.8 876.0 26.1 2.88 0.02 496 89 0.005 345 0.15 

No.40.067(East) 152.4 304.8 876.0 33.4 2.88 0.02 496 64 0.01 345 0.11 

No.40.067(West) 152.4 304.8 876.0 33.4 2.88 0.02 496 64 0.01 345 0.11 

Xiao and Martyrossyan 1998 

HC4-8L16-T6-0.1P 254 254 508 86 2 0.02 510 51 0.01 449 0.10 

HC4-8L16-T6-0.1P 254 254 508 86 2 0.02 510 51 0.01 449 0.19 

Matchulat (2008) 

Specimen 1 457 457 2946.4 20.68 3.74 0.03 441.26 460 0.00 372.32 0.50 

Specimen 2 457 457 2946.4 23.42 3.74 0.03 441.26 460 0.00 372.32 0.35 

Elwood and Moehle (2003) 

Specimen 1 230 230 1470 25.55 3.69 0.03 689.48 150 0.02 689.48 0.10 

Specimen 2 230 230 1470 23.92 3.69 0.03 689.48 150 0.02 689.48 0.24 

Sezen and Moehle (2002)   

Specimen 1 457 457 2946.4 21.10 3.85 0.03 434.37 305 0.002 476 0.15 

Specimen 2 457 457 2946.4 21.10 3.85 0.03 434.37 305 0.002 476 0.60 

Specimen 4 457 457 2946.4 21.79 3.85 0.03 434.37 305 0.002 476 0.15 

Lynn and Moehle (2001)   

Specimen 3CLH18 
457 457 2946 

 

25.58 3.66 0.03 330.95 460 0.001 400 0.12 

Specimen 2CLH18 
457 457 2946 

 

33.09 3.63 0.02 330.95 460 0.001 400 0.12 

Specimen 3SLH18 
457 457 2946 

 

25.58 3.66 0.03 330.95 460 0.001 400 0.12 

Specimen  2SLH18 
457 457 2946 

 

33.09 3.63 0.02 330.95 460 0.001 400 0.12 

Specimen  

2CMH18 457 457 2946 

 

25.51 3.63 0.02 330.95 460 0.001 400 0.35 

Specimen 3CMH18 
457 457 2946 

 

27.58 3.66 0.03 330.95 460 0.001 400 0.35 

Specimen 3CMD12 
457 457 2946 

 

27.58 3.66 0.03 330.95 460 0.002 400 0.35 

Specimen 3SMD12 457 457 2946.4 25.51 3.63 0.03 330.95 460 0.002 400 0.35 

Phuong and Li (2012) 
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S-2.4-0.3 350 350 1700 49.3 2.77 0.03 409 130 0.001 393 0.30 

SC-2.4-0.2 350 350 1700 22.6 2.75 0.02 409 130 0.001 393 0.20 

SC-2.4-0.5 350 350 1700 24.2 2.75 0.02 409 130 0.001 393 0.50 

SC-1.7-0.2 350 350 1200 27.5 1.94 0.02 409 130 0.001 393 0.20 

SC-1.7-0.5 350 350 1200 26.4 1.94 0.02 409 130 0.001 393 0.50 

M.D. Ludovico et al.(2013) 

S300D-C 300 300 1500 22.71 2.93 0.01 520 150 0.002 520 0.20 

R300D-C 500 300 1500 22.71 1.64 0.01 520 150 0.001 520 0.10 

R500D-C 300 500 900 22.71 1.76 0.01 520 150 0.002 520 0.10 

S300P-C(plain re-

bars) 300 300 1500 22.71 2.93 0.01 330 150 0.002 330 0.20 

R300P-C(plain re-

bars) 500 300 1500 22.71 1.64 0.01 330 150 0.001 330 0.10 

R500P-C(plain re-

bars) 300 500 900 22.71 1.76 0.01 330 150 0.002 330 0.10 

Henkhaus, Pujol and Ramirez  (2013) 

B1 457 457 1473 20.0 1.90 0.02 455 457 0.001 490 0.37 

B2 457 457 1473 19.3 1.90 0.02 455 457 0.001 455 0.38 

B3 457 457 1473 22.1 1.90 0.02 455 457 0.001 490 0.21 

B4 457 457 1473 24.1 1.90 0.03 441 457 0.001 490 0.43 

B5 457 457 746.5 23.4 1.90 0.03 441 457 0.001 490 0.46 

B6 457 457 2947 27.6 3.70 0.03 490 305 0.002 469 0.11 

B7 457 457 2947 28.3 3.70 0.03 490 305 0.002 469 0.11 

B8 457 457 2947 29.0 3.70 0.03 490 305 0.001 490 0.11 

Wood's (2010) 

Specimen 3 457 457 2946 17.31 3.72 0.03 441.26 457 0.0007 372.32 0.50 

Specimen 4 457 457 2946 18.62 3.72 0.03 448.16 305 0.0003 372.32 0.15 

Thanh Phuong Pham and Bing Li 2014 (smooth bars) 

SP1-1.7-0.2 350 350 1200 29.8 1.7 0.02 320 125 0.003 500 0.20 

SP2-1.7-0.35 350 350 1200 29.2 1.7 0.02 320 125 0.003 500 0.35 

SP3-2.4-0.2 350 350 1700 30.6 2.4 0.02 320 125 0.003 500 0.20 

SP4-2.4-0.35 350 350 1700 28.7 2.4 0.02 320 125 0.003 500 0.35 

SR1-1.7-0.35 250 490 1700 23.3 1.7 0.02 320 125 0.002 500 0.35 

SR2-1.7-0.5 250 490 1700 22.5 1.7 0.02 320 125 0.002 500 0.50 

J C M HO  and  H J PAM  (2013) 

8S-60-06-61-S 325 325 1515 56.6 5.00 0.06 525 100 0.002 378 0.54 

8S-60-06-61-C 325 325 1515 60.4 5.03 0.06 525 210 0.002 357 0.53 

)8S-100-03-24-S 325 325 1515 95.1 4.93 0.02 522 100 0.003 357 0.28 

8S-100-03-24-C 325 325 1515 109.5 4.93 0.02 522 150 0.003 357 0.31 

NEW-60-06-61-S 325 325 1515 57.1 5.26 0.06 525 100 0.010 531 0.53 

NEW-60-06-61-C 325 325 1515 62.4 5.26 0.06 525 210 0.002 531 0.53 

NEW-l00-03-24-S 325 325 1515 96.5 5.26 0.02 522 70 0.009 531 0.28 

NEW-l00-03-24-C 325 325 1515 108.4 5.26 0.02 522 90 0.012 531 0.30 

8S'-100-02-15-900 325 325 1515 111.1 5.19 0.02 572 150 0.005 367 0.20 

8S'-100-02-15-45° 325 325 1515 109.4 5.19 0.02 572 150 0.005 367 0.21 

 

Specimens 
D or h 

(mm) 
L(mm) fc' a/D ρl(%) fyl(Mpa) s(mm) ρt(%) fyt(Mpa) 

P/Ag-

fc' 

Kunnath et al.1997 

A2 304.8 1372 29.041 5.6232 0.02 448.2 190.5 0.0043 430.491 0.0944 

A3 304.8 1372 29.041 5.622 0.02 448.2 190.5 0.0043 430.491 0.0944 
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A4 304.8 1372 35.517 5.622 0.02 448.2 190.5 0.0043 430.491 0.0856 

A5 304.8 1372 35.52 5.622 0.02 448.2 190.5 0.0043 430.491 0.0856 

A6 304.8 1372 35.52 5.622 0.02 448.2 190.5 0.0043 430.491 0.0856 

A7 304.8 1372 32.816 5.6232 0.02 448.2 190.5 0.0043 430.491 0.0926 

A8 304.8 1372 32.82 5.6232 0.02 448.2 190.5 0.0043 430.491 0.0926 

A9 304.8 1372 32.516 5.6232 0.02 448.2 190.5 0.0043 430.491 0.0935 

A10 304.8 1372 27.0135 5.6232 0.02 448.2 190.5 0.0043 430.491 0.101 

A11 304.8 1372 27.01 5.6232 0.02 448.2 190.5 0.0043 430.491 0.101 

A12 304.8 1372 27.01 5.6232 0.02 448.2 190.5 0.0043 430.491 0.101 

Arakawa et al. 1987  

UNIT1 275.08 600 28.81 1.36 0.04 366.2 100 0.002 368.18 0 

UNIT2 275.08 600 29.31 1.36 0.04 366.2 50 0.004 368.18 0 

UNIT 4 275.08 600 29.81 1.36 0.04 366.2 100 0.002 368.18 0.12 

UNIT 6 275.08 600 28.61 1.36 0.04 366.2 50 0.004 368.18 0.12 

UNIT 8 275.08 600 31.41 1.36 0.04 366.2 35 0.005 368.18 0.12 

UNIT 9 275.08 600 30.51 1.36 0.05 366.2 50 0.004 368.18 0.12 

UNIT 12 275.08 600 27.81 1.36 0.04 366.2 100 0.002 368.18 0.26 

UNIT 13 275.08 600 30.51 1.36 0.04 366.2 50 0.004 368.18 0.24 

UNIT 14 275.08 600 31.31 1.36 0.04 366.2 35 0.005 368.18 0.23 

UNIT 17 275.08 600 31.31 1.36 0.04 363.2 75 0.003 381.19 0.12 

UNIT 19 275.08 900 31.31 2.04 0.04 363.2 75 0.003 381.19 0.12 

UNIT 22 275.08 900 20.51 2.04 0.04 363.2 75 0.003 381.19 0.18 

UNIT 24 275.08 600 31.11 1.36 0.04 363.2 75 0.003 381.19 0.23 

UNIT 25 275.08 900 29.71 2.04 0.04 363.2 75 0.003 381.19 0.24 

UNIT 27 275.08 900 18.90 2.04 0.04 363.2 75 0.003 381.19 0.38 

UNIT 28 275.08 900 41.32 2.04 0.04 363.2 75 0.003 381.19 0.18 

 

Pham and Phuong  2013 

Speci-

mens b(mm) h(mm) h'(mm) Ls(mm) 

fc' 

(Mpa) 
a/D ρl(%) fyl(Mpa) s(mm) ρt(%) fyt(Mpa) 

P/Ag-

fc' 

S1 170 430 414 1700 29.8 2.05 0.02 465 100 0.003 467 0.2 

S2 170 430 414 1700 29.2 2.05 0.02 465 100 0.003 467 0.35 

S3 170 430 414 1700 29.2 2.05 0.02 465 100 0.003 467 0.2 

S4 170 430 414 1700 29.4 2.05 0.02 465 100 0.003 467 0.35 

S5 170 430 414 1700 29.1 2.05 0.02 465 100 0.003 467 0.2 

S6 170 430 414 1700 29.1 2.05 0.02 465 100 0.003 467 0.35 

S13 170 430 414 1200 27 1.45 0.02 465 150 0.002 467 0.2 

S14 170 430 414 1200 27.4 1.45 0.02 465 150 0.002 467 0.35 

S15 170 430 414 1200 26.8 1.45 0.02 465 150 0.002 467 0.2 

S16 170 430 414 1200 27.2 1.45 0.02 465 150 0.002 467 0.35 

 

Table 4 : Data Base 
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Appendix B 

 

Figure 10  Difference between the experimental and the corrected shear strength degradation with increasing μθ 

 

 

Figure 11 Comparisons between ΔVred ,ΔV from the experimental data base with ΔV according with the models 

by Sezen and Moehle (2002), Aschheim and Moehle (1992) and Elwood and Moehle (2003) . 
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Abstract. The analysis of earth slopes situated in seismic areas has been extensively investi-
gated in literature using deterministic approaches where average values of the soil properties 
were used. In this paper, a probabilistic dynamic approach is presented for the slope stability 
analysis. In this approach, the effect of the soil spatial variability on the dynamic responses 
was investigated. The soil shear modulus G was modeled as an anisotropic non-Gaussian 
random field. The deterministic model was based on numerical simulations using the dynamic 
option of the finite difference code FLAC2D. Notice that when dealing with dynamic problems, 
the deterministic model becomes very time-consuming. For this reason, one needs to keep to a 
minimum the number of calls to the deterministic model when performing the probabilistic 
analyses, the probabilistic method generally employed when considering spatially varying 
soil properties being the Monte Carlo Simulation (MCS) methodology. This method is known 
to be not suitable for the computation of the small failure probabilities encountered in prac-
tice because it becomes very time-expensive in such cases due to the large number of simula-
tions required. In order to overcome the shortcoming related to the excessive number of calls 
of the deterministic model when performing Monte Carlo simulations, Echard et al. (2011) 
proposed an Active learning reliability method (called AK-MCS) combining Kriging and 
Monte Carlo Simulation. The method was shown to be very efficient as the obtained probabil-
ity of failure is very accurate needing only a small number of calls to the deterministic model. 
The probabilistic dynamic analyses presented in this paper were performed using AK-MCS 
methodology by Echard et al. (2011). The failure probability was computed for the point lo-
cated on the toe of the slope. For a given realization of the random field, failure is considered 
to be achieved at the toe if the maximal acceleration Amax at this point, as computed bu 
FLAC2D software, exceeds a prescribed threshold value. Some probabilistic results corre-
sponding to different values of the  maximum threshold value are presented and discussed. 

5483



 Michael Michael1, Tamara Al-Bittar2, and Abdul Hamid Soubra3  

1 INTRODUCTION 

The response of a geotechnical structure subjected to a seismic loading has been extensive-
ly investigated in literature using deterministic approaches where average values of the soil 
properties (shear modulus, angle of internal friction, cohesion, etc.) were used. Notice howev-
er that the spatial variability of the soil properties may affect the behavior of geotechnical 
structures. Consequently, reliable responses of a geotechnical system cannot be predicted us-
ing a deterministic approach; a probabilistic technique seems to be necessary.  

The probabilistic techniques enable the rigorous propagation of the different uncertainties 
from the input parameters to the system responses. It should be emphasized here that few au-
thors have worked on the analysis of the seismic responses using probabilistic approaches [1-
5]. This is because of the significant computation time required per simulation especially 
when using finite element/finite difference dynamic models.  

In this paper, the effect of the soil spatial variability on the seismic response of a geotech-
nical structure is investigated. The case of an elastic slope subjected to a seismic loading was 
considered. The effect of the soil spatial variability on the maximal acceleration at the top 
and/or at the toe of the slope was considered. The objective is the computation of the proba-
bility Pf  of exceeding a tolerable maximum acceleration Amax. The soil shear modulus was 
considered as a two-dimensional lognormally distributed random field where it is assumed to 
vary in both vertical and horizontal directions. The deterministic model was based on numeri-
cal simulations using the dynamic option of the FLAC2D software. Notice that when dealing 
with numerical dynamic problems, the deterministic model becomes very time-consuming. 
For this reason, one needs to keep to a minimum the number of calls to the deterministic 
model when performing the probabilistic analyses, the probabilistic method generally em-
ployed when considering spatially varying soil properties being the Monte Carlo Simulation 
(MCS) methodology. This method is known to be not suitable for the computation of the 
small failure probabilities encountered in practice because it becomes very time-expensive in 
such cases due to the large number of simulations required.  

In order to overcome the shortcoming related to the excessive number of calls of the de-
terministic model when performing Monte Carlo simulations, [6] proposed an Active learning 
reliability method (called AK-MCS) combining Kriging and Monte Carlo Simulation. The 
method was shown to be very efficient as the obtained probability of failure is very accurate 
needing only a small number of calls to the deterministic model. The basic idea of the present 
approach is to construct a kriging metamodel which is a surrogate (or a substitute) of the real 
numerical model based only on a few realizations and then, to obtain an estimation of the fail-
ure probability and the corresponding coefficient of variation based on this metamodel. The 
choice of the realizations used in the construction of the metamodel is made in such a manner 
to focus on the configurations that are close to the limit state surface and that have sufficiently 
high density of probability so that their contribution on the failure probability is significant. 
This leads to an accurate value of the failure probability.  

The paper is organized as follows: one first presents the deterministic numerical modeling 
of the dynamic problem and the corresponding results. Then, the probabilistic analyses and 
the corresponding probabilistic results are presented and discussed. The paper ends by a con-
clusion of the main findings. 

  

2 DETERMINISTIC ANALYSIS 

In this section, the deterministic numerical model is firstly presented. It is followed by the 
corresponding deterministic results. 
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2.1 Numerical modeling  

The deterministic model is based on numerical simulations using the dynamic option of the 
finite difference code FLAC2D. The input seismic signal used in this work is the synthetic sig-
nal of Nice for which the corresponding accelerogram is presented in Figure 1(a). This signal 
is used because it is representative of the French design spectrum [7]. It has a maximum ac-
celeration equal to 0.33g. Its corresponding Fourier amplitude spectrum is shown in Figure 
1(b). 
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Figure 1. (a) Accelerogram of the synthetic signal of Nice and (b) the corresponding Fourier amplitude spectrum 

 
In the finite difference dynamic analysis by FLAC2D, numerical distortions may occur dur-

ing the propagation of the seismic waves if the elements size of the mesh is not convenient. 
The size Δl of an element of the mesh should respect the following condition [8]: 

max10*
sV

l
f

 
      (1) 

where Vs is the shear wave velocity, and fmax is the maximum frequency of the incident 
seismic signal [9]. The shear wave velocity Vs in Equation (1) can be calculated using the val-
ues of the soil shear modulus G and the soil density ρ as follows: 

s

G
V


       (2) 

Even though an elasto-plastic model would be more realistic to model the soil behavior es-
pecially for the cases of medium and high earthquake ground motions GMs, an elastic model 
was used in this work. The aim is to investigate the effect of the soil spatial variability using a 
simple model with a reasonable computation time. Concerning the boundary conditions, 
FLAC2D offers the option of applying absorbing boundary conditions of type "quiet bounda-
ries" or "free field". These boundary conditions absorb the energy of the wave approaching 
these limits and thus avoid the reflection of these waves. In this paper, the boundary condi-
tions applied to the vertical boundaries are of type "free field". This type of boundary condi-
tions is suitable for vertical surfaces, the boundary conditions of type "quiet boundaries" 
being generally convenient in the case of horizontal surfaces. Finally, it should be mentioned 
that in the natural dynamic systems, the internal friction may lead to partial dissipation of the 
energy of vibration. The software FLAC2D provides a damping of type "Rayleigh damping" 
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(among other types of damping) which is based on two parameters (i) the natural frequency of 
the system and (ii) the damping ratio (defined as a percentage of the critical damping).  

2.2 Deterministic results 

For the dynamic analyses, the values of the shear modulus, bulk modulus and density of 
the soil were as follows: G=100MPa, K=250MPa and ρ=1800 kg/m3. In order to avoid the 
numerical distortion that may occur during the propagation of the seismic waves in the model, 
the elements size must satisfy Equation (1). By using Equation (2), the shear wave velocity 
was found to be equal to 235.7m/s. From Figure 1(b), one can see that the maximal frequency 
fmax is equal to 40Hz. Thus, the maximum size of the different elements must be less than or 
equal to 0.59m. In the studied model, the size Δl of the different elements was taken equal to 
0.5m. Concerning the boundary conditions, boundary conditions of type "free field" were ap-
plied along the vertical boundaries of the model. The lower horizontal boundary was subject-
ed to the seismic load (i.e. the synthetic accelerogram of Nice). Concerning the damping 
effect, an undamped system was considered to reduce the number of involved parameters. The 
effect of damping will be the subject of future work.  

The slope geometry considered in the analysis is 10m in height and 45o in inclination angle 
(see Figure 2). In order to obtain accurate results of the maximum acceleration at the top and 
at the toe of the slope, one need to position correctly the vertical boundary conditions. For this 
purpose, the width of the slope L was initially considered to be equal to 60m and was succes-
sively increased by 20m (i.e. 10m from each side) until one obtains convergence of the maxi-
mum acceleration for the profile presented in figure 2 in red color. Figure 3 presents the 
maximum acceleration profiles for L=60m, 80m, 100m, 120m, 140m and 160m. From this 
figure, one can deduce that for L > 140m, all the presented profiles coincide. For this reason, 
a width L=140m was selected for the probabilistic analysis. The corresponding computation 
time is equal to 50 minutes.  

 

Figure 2. Slope geometry 

5486



Michael Michael1, Tamara Al-Bittar2, and Abdul Hamid Soubra3  
 

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

5

10

15

20

25

Maximum acceleration (m/s2)

D
ep

th
 (m

)

 

 
60
80
100
120
140
160

 

Figure 3. Maximum acceleration profiles for L= 60m, 80m, 100m, 120m, 140m and 160m 

3 PROBABILISTIC ANALYSIS 

The aim of this section is to present the probabilistic dynamic analysis. The impact of the 
soil spatial variability on the dynamic response was investigated. It should be noted here that 
the dynamic system response considered in this section involves the maximum acceleration 
(Amax) at the toe of the slope. The objective of the probabilistic analysis is the computation of 
the probability Pf  of exceeding a tolerable maximum acceleration Amax. The soil shear modu-
lus G was modeled as a two-dimensional log-normal random field. The EOLE methodology 
[10] was used to discretize the shear modulus random field (i.e. to obtain realizations of the 
soil shear modulus that respect the correlation structure of this field). For the two-dimensional 
random field used in this paper, the shear modulus was allowed to vary in both the horizontal 
and vertical directions. The deterministic model was based on numerical simulations using the 
finite difference code FLAC2D. As for the probabilistic method used in this paper, the active 
learning reliability method combining kriging and Monte Carlo Simulation (i.e. AK-MCS) 
was employed. This method combines both the classical crude Monte Carlo Simulation (MCS) 
methodology and the Kriging meta-model technique. The performance function used to calcu-
late the probability Pf of exceeding a tolerable maximum acceleration Amax was defined as 
follow: 

  
max

max

1A

A toe
        (3) 

where Amax is a prescribed tolerable maximum acceleration and Amax(toe) is the maximum 
acceleration at the toe of the slope as computed by FLAC2D software due to the applied seis-
mic loading. 

In this section, the EOLE method of discretization of random fields is firstly presented. It 
is followed by a brief presentation of the crude Monte Carlo method, the kriging metamodel-
ing technique and the combined use of the kriging and the Monte Carlo Simulation methodol-
ogy (called AK-MCS) used for the probabilistic analysis. 
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3.1 Discretization of a non-isotropic log-normal random field 

Consider a 2D non-isotropic log-normal random field ZLN described by: (i) a log-normal 
marginal cumulative distribution function FG, and (ii) a square exponential autocorrelation 
function LN

Z [(x, y), (x', y')] which gives the values of the correlation between two arbitrary 
points (x, y) and (x', y'). Notice that this function is given as follows: 

22
' '

[( , ), ( ', ')] exp
Z

LN

x y

x x y y
x y x y

a a


                  

   (4) 

where ax and ay are the autocorrelation distances along x and y respectively. The EOLE 
method proposed by [10] to discretize a random field is used herein. In this method, one 
should first define a stochastic grid composed of s grid points (or nodes) and determine the 
log-normal autocorrelation matrix 

;

LN

 
  which gives the correlation between each grid point of 

the stochastic mesh and the other grid points of this mesh using Equation (4). The number of 
grid points within the stochastic mesh is determined in such a manner that in each direction (x 
or y), there are five grid points within each autocorraltion distance. The log-normal autocorre-
lation matrix 

;

LN

 
  should then be transformed into the Gaussian space using the Nataf trans-

formation [11]. As a result, one obtains a Gaussian autocorrelation matrix ;
G
   that can be 

used to discretize the Gaussian random field Z as follows: 

( , );ln ln
1

( , ) . .
Z x y

N
j

Z Z j
j j

Z x y µ



 



       (5) 

where μlnZ and σlnZ are the mean and standard deviation values of the underlying normal 
distribution (i.e. ln(Z)); ( ,j j  ) are the eigenvalues and eigenvectors of the Gaussian autocor-

relation matrix ;
G
  ; ( , );Z x y   is the correlation vector between the value of the field at an 

arbitrary point (x, y) and its values at the different grid points; j (j=1, …, N) is a vector of 
standard normal random variables; and N is the number of terms (expansion order) retained in 
EOLE method. This number N is obtained (i) by sorting the eigenvalues j  (j=1, …, s) in a 
descending order and (ii) by choosing the number N of eigenmodes that leads to a variance of 
the error which is smaller than a prescribed tolerance ε ( 10%   in this paper). Notice that 
the variance of the error for EOLE is given by [10] as follows: 

  2
2
ln ( , );

1

1( , ) ( , ) 1
N T

Z j Z x y
j j

Var Z x y Z x y  


        
  

    (6) 

where ( , )Z x y and ( , )Z x y are respectively the exact and the approximate values of the 

random field at a given point (x, y) and  Tj is the transpose of the eigenvector j . Once 
the Gaussian random field is obtained, it should be transformed into the log-normal space by 
exponentiating the approximated Gaussian random field ( , )Z x y  given by Equation (5). No-
tice finally that Eq. (5) or rather its equivalence for the log-normal random field will be used 
in this paper to compute the value of the random field at the center of the different elements of 
the numerical dynamic model to assign values of G to the different elements of this numerical 
model.  
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3.2 Monte Carlo method 

The Monte Carlo simulation method consists in generating K samples which respect the 
joint probability density function fX(X) of the M random variables (X1, …, XM) gathered in a 
vector X. For each sample, the system response is calculated. Thus; for the K samples, one 
obtains K values of the system response gathered in a vector     (1) ( ),..., KX X     which 

may be used to determine the failure probability for a prescribed threshold of this system re-
sponse. A very large number of samples (i.e. realizations) is required to obtain a rigorous val-
ue of the failure probability especially when computing small failure probabilities. It should 
be noted herein that the random variables considered in the present paper are the standard 
normal variables j (j=1, …, N) that appear in Eq. (5) for the computation of a given realiza-
tion of the shear modulus random field. 

3.3 Kriging metamodeling technique 

The metamodeling technique aims at replacing the response (or the performance function 
in this paper) of a computationally-expensive mechanical model by a metamodel (i.e. a simple 
analytical equation). The Kriging metamodeling technique is based on the idea that the per-
formance function   x  is seen as a realization of a stochastic field   x  [12]. The first step 
of kriging consists of defining this stochastic field with its parameters according to an Exper-
imental Design (ED) of length k. This stochastic field is given by: 

     ,F Z  x x x      (7) 

Where: 
  ,F x  is the deterministic part which gives an approximation of the mean value 

of the performance function. It corresponds to a regression model that can be writ-
ten as: 

  ( )

1
, ( )

p
i

j j
j

F f 


x x  i=1,…, k   (8) 

Where βT = (βj, j = 1, …, p) is the vector of coefficients to be determined, fT = (fj, j 
= 1, . . . , p) is a collection of regression functions (or regressors) and k is the 
number of observations. The number p of regression functions is assumed to be 
less than or equal to the number k of observations so that the problem is not under-
determined (i.e. it does not lack equations to compute the unknowns). In this pa-
per, ordinary kriging is selected which means that  ,F x is a scalar to be deter-

mined (i.e.  ,F  x ).  
 

  Z x  represents the fluctuation around the mean value. It is given by a Gaussian 
random process (or a random field) with zero mean and covariance between two 
points of space x  and 'x defined by: 

      2, ' , 'ZCOV Z Z  x x x x    (9) 

Where 2
Z  is the process variance and  the correlation function defined by its set 

of parameters θ. Several models exist to define the correlation function. However, 
in this paper, the anisotropic squared-exponential function is selected. It is given by: 
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     2

1

, ' '
N

i i i
i

exp x x 


  x x     (10) 

Where N is the number of random variables, ix  and 'ix are the ith coordinates of the 
points x  and 'x and θi is a scalar which is equal to the inverse of the correlation 
length in the ith direction. 

As mentioned above, in order to completely define the kriging model, one has to compute 
the following parameters: β, Z  and the correlation function parameters θi. Given an initial 
Experimental Design (ED) with k samples,  (1) ( ),..., kx x x  , for which the response values 

have been computed and stored in     (1) ( ),..., k  Γ x x , the scalars β and 2
Z  are estimated 

according to [12] by: 
1 1 1
; ;( )T T   

     1 1 1 Γ


     (11) 

2 1
;

1 ( ) ( )T
Z k

  
    Γ 1 Γ 1

      (12) 

Where 1  is the vector of length k filled with 1 , 
;

1
 

  is the inverse of the correlation matrix 

;   . It should be mentioned that a row i of the correlation matrix gives the values of the cor-
relation between the value of the response at the sampled point  ( )i x  and all the values of 

the response at the sampled points     (1) ( ),..., k  Γ x x as follows: 

   ; ,
,i ji j    x x   i=1,…, k and  j=1,…, k  (13) 

However, as 


 and 2
  in Eqs. (11) and (12) depend on the correlation parameters θi 

through the matrix ;  , it is first required to obtain them using maximum likelihood estima-
tion: 

 
1

2
;arg min det k

Z
         (14) 

The next step consists of predicting the response of   x  in a given unknown point x . At 

such a point, the Best Linear Unbiased Predictor (BLUP)   x


of   x is computed as 
[12]:  

   1

( ); ;
 

   
    x

x Γ 1


     (15) 

Where 
( ); 


x

is the correlation vector whose elements provide the correlation between the 

value of the response at the unsampled point   x and the values of the response at the sam-

pled points gathered in the vector     (1) ( ),..., k  Γ x x  as follows: 

    ; ,i
i

  x x x  i=1,…, k   (16) 

The kriging variance is defined as the minimum of the mean squared error between   x  

and   x


. It can be expressed as the following analytical function: 

            2 2 1 1
; ;; ;

t t T
Z u u   

            x xx 1 x 1 1 x   (17) 

Where: 
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1
; ;

tu 
      xx 1 1      (18) 

Kriging is an exact interpolation method. The prediction of  ( )i x


in a point ( )ix  of the de-

sign of experiments is exact (i.e.    ( ) ( )i i  x x


). Therefore, the kriging variance is null in 
these points and it becomes important in unexplored areas. These properties are interesting in 
reliability studies and metamodels as the Kriging variance represents a good index to improve 
a design of experiments. 

3.4 AK-MCS methodology  

The active learning reliability method called AK-MCS combines both the Kriging meta-
modeling technique and Monte Carlo Simulation. The iterative procedure suggested by [6] for 
computing the probability of failure Pf using this approach can be described as follows: 

1. Generate a population S of nMC (say 1,000,000) realizations of the spatially varying soil 
shear modulus using Monte Carlo Simulation. It should be emphasized here that the 
computation of the performance function for these realizations (as defined in equation 
3 based on the computationally-expensive FLAC2D model) is not required at this stage.  

2. Randomly select from the S population a small number of realizations (called initial 
Design of Experiments DoE) containing N1 realizations (say 20). For those N1 realiza-
tions, one should evaluate the performance function given by equation (3) based on the 
computationally-expensive FLAC2D model. The required initial DoE may be greater 
than 20 for a great number of random variables (i.e. for a spatially varying soil property 
with small values of the autocorrelation distances). This is because for high dimension-
al problems (i.e. when a large number of random variables is needed to discretize the 
shear modulus random field), the kriging model needs more points (i.e. realizations) in 
order to compute correlation parameters θi  given by equation (15). 

3. Compute the kriging model according to the small initial DoE containing the N1 reali-
zations. This kriging model is given by equation (16).  It should be mentioned here that 
this stage was performed using the Matlab toolbox DACE [7]. In this paper, ordinary 
kriging model was used (i.e. the regression model is considered to be constant) and a 
square exponential correlation function was adopted in the analysis.  

4. By using DACE toolbox, compute (for the whole population S containing the nMC real-
izations of the random field) both the kriging predictor values 


of the performance 

function (based on equation 16) and their corresponding kriging variance values 2
  

(based on equation 18). From the obtained values of the kriging predictors 


, obtain an 
estimation of the probability of failure fP


by counting the number of negative predictors 

0N
  and dividing it by the total number of samples in S as follows:  

0
f

MC

N
P

n



      (19) 

Also compute the coefficient of variation of fP


as follows: 

1
( ) f

f
f MC

P
COV P

P n





 

       (20) 

5. Identify the best next realization in S for which one will compute the performance 
function using FLAC2D. This is performed by evaluating a learning function U for each 
realization in S. The learning function U is given by: 
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( )
( )

( )
1,...,

i

i
MCi

U i n



 

x
x

x



    (21) 

The best next candidate realization is the one with minimum value of U. If this mini-
mum value of U is smaller than 2, the performance function based on FLAC2D is evaluated 
for the best candidate and the initial DoE is updated. Thus one should go back to step 3 and 
evaluate a new kriging model based on the updated DoE. Steps 3, 4 and 5 are repeated un-
til the minimum value of U become larger than 2. At this stage the learning stops and the 
metamodel is considered accurate enough based on the nMC realizations. 

6. When the learning stops, one must compute the estimated values of both the 
probability of failure fP


 and the coefficient of variation  fCOV P

 
. The obtained val-

ue of fP


is considered to be accurate if   5%fCOV P 
 

. If the estimated coefficient of 
variation is larger than 5%, one must increase the population S in step 1 and repeat the 
procedure.  

It should be emphasized herein that a small initial DoE is chosen within the present ap-
proach (see step 2) in order to keep to a minimum the number of calls to the deterministic 
model. This initial DoE is successively increased by a single realization at each time (see step 
5). The chosen realization is the one that is improving the most the metamodel because equa-
tion (22) searches for the realization that has a small kriging predictor (i.e. a realization that is 
close to the limit state surface) and/or a high kriging variance (i.e. a high uncertainty in the 
sign of its performance function value). Notice that the realizations with high uncertainties in 
the sign of their performance function values (positive or negative) are those that are close to 
the limit state surface. Finally, notice that the stopping criterion min(U)>2 corresponds to a 
maximal probability of making a mistake on the sign of the performance function of (-
2)=0.023. This means that the stopping criterion is relevant making use of the realizations 
with a small uncertainty in making a mistake in their performance functions’ signs, the proba-
bility of making a mistake in the signs of their performance function values being negligible.  

3.5 Probabilistic dynamic results 

The aim of this section is to present the probabilistic dynamic results of a soil slope exhib-
iting a spatially varying shear modulus. The objective is the computation of the probability Pf  

of exceeding a tolerable maximum acceleration Amax. The shear modulus G was modeled by a 
random field and it was assumed to follow a log-normal probability density function. The 
mean value and the coefficient of variation of G were respectively μG=100MPa and 
COVG=25%. A square exponential autocorrelation function was used in this study to repre-
sent the correlation structure of the random field. The random field was discretized using 
EOLE method. Although an isotropic random field is often assumed in literature [13, 14], the 
vertical autocorrelation length tends to be shorter than the horizontal one due to the geological 
soil formation process for most natural soil deposits [15]. A common ratio of about 1 to 10 for 
these autocorrelation lengths can be used [16]. Notice that in this paper, only one configura-
tion of the autocorrelation distances (ax=50m and ay=5m) was considered. An extension to 
this work may consider other configurations of ax and ay. The present study was performed in 
order to explore some interesting features related to the values of Pf for different values of the 
tolerable maximum acceleration Amax. 
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3.6 AK-MCS results for different values of the tolerable acceleration  

In this section, the results obtained based on AK-MCS methodology are presented and dis-
cussed for the case where ax=50m and ay=5m. It should be mentioned here that a population S 
containing a total number of simulations nMC equal to one million was selected. Then, a small 
initial design of experiment (DoE) of N1=20 realizations among the whole population S was 
randomly selected. The performance function given by equation (3) was evaluated for this 
DoE. Thus, the computationally-expensive dynamic model based on finite difference code 
FLAC2D was only called 20 times before evaluating the kriging model. The Kriging model 
was thus built based on this DoE. A simple analytical equation is then obtained and the per-
formance function can be evaluated for the whole population S with no time: Both the kriging 
predictor and the kriging variance for the whole S population were evaluated based on equa-
tions (15) and (17) of the kriging model using the DACE Matlab toolbox [17]. The probability 
of failure fP


 and the corresponding coefficient of variation ( )fCOV P

 
 were computed using 

equations (19) and (20). Notice finally that several points (realizations) were added based on 
the evaluation of the learning function U given by equation (21) until reaching convergence. 

Table 1 present the evolution of fP


 and ( )fCOV P
 

 as a function of the number of added 
points (realizations) for four different values of the tolerable maximum acceleration Amax 
(Amax=15, 25, 30 and 35m/s2). From this table, one may conclude that for small value of Amax 
(Amax=15m/s2) one obtains a large value of fP


. Figure 4 presents the variation of 

fP
  and 

( )fCOV P
  as function of the number of added points using the AK-MCS algorithm. This figure 

shows that the values of 
fP
  and ( )fCOV P

   stabilized when the algorithm has added 100 extra 
points to the initial DoE containing 20 points. In the present paper extra points were added to 
show the efficiently of the algorithm and to demonstrate that no further modifications on the 
obtained values of  

fP
  and ( )fCOV P

   may occur.  
 

Amax(m/s2) 
fP

  ( )fCOV P

 
 (%)  Number of added 

points 

15  170 x10‐3  0.21% 248 

25  50 x10‐3  0.41%  185 

30  12 x10‐3  0.1%  270 

35  2.5x10‐3  0.1%  248 

Table 1: Variation of 
fP
  and ( )fCOV P

  together with the number of added points for different values of Amax. 
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Figure 4. Variation of 

fP
  and ( )fCOV P

  as function of the number of added points for Amax =15m/s2 

5493



 Michael Michael1, Tamara Al-Bittar2, and Abdul Hamid Soubra3  

 
 

4 CONCLUSION 

The probabilistic dynamic analyses presented in this paper were performed using AK-MCS 
methodology. In a first stage (step 1), a significant number of realizations (about 1 million) of 
the spatially varying soil medium were generated by MCS using EOLE method. In a second 
stage (step 2), an initial design of experiments (DoE) based on a random selection of some 
realizations among the MCS population was determined and employed to compute the 
Kriging model. In a third stage (steps 3-5), a kriging model is constructed and a learning func-
tion U was employed to choose the best next realization to be used for the computation of the 
system response from the original deterministic model and to update the kriging model with 
this new response value. Notice that steps 3-5 were repeated several times until reaching the 
adopted stopping condition. At the end, the surrogate kriging model was considered to be 
enough accurate for the estimation of the failure probability and the corresponding value of 
the coefficient of variation, for the prescribed number of simulations (step 6). The probabilis-
tic results have shown that for small value of the tolerable maximum acceleration Amax one 
obtains a large value of fP


. One the other hand, one can notice that number of realizations 

required by the AK-MCS algorithm (to obtain accurate values of 
fP
  and ( )fCOV P

  ) is relatively 
small. This is very interesting for computationally expensive dynamic problems.  
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Abstract. This paper presents an energy-momentum method for nonlinear dynamics of 2D
Bernoulli corotational beams. It is shown that the time stepping algorithm conserves energy,
linear momentum and angular momentum. To be consistent in the corotational approach, cubic
interpolations of Bernoulli element are employed to derive both inertia and elastic terms. The
shallow arch strain definition is used to get an element which produce accurate results for less
number of elements. To avoid membrane locking, we use a constant and average value of the
axial strains. In addition, the energy-momentum method is used to preserve the conserving
properties, which is able to maintain the stability and accuracy in a non-dissipative system for
a long period. The midpoint velocities of kinematic fields and strains are used to tackle any
non-linear form of strain displacement relations. Finally, two examples including large overall
displacement are presented to illustrate the stability and efficiency of the proposed algorithms.
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1 INTRODUCTION

The corotational method is an attractive approach to derive non-linear finite beam elements
[1, 2, 3, 4, 5, 6, 7, 8] . The idea is to decompose the large motion of the element into rigid
body and pure deformational parts through the use of a local system which continuously rotates
and translates with the element. The deformational response is captured at the level of the local
reference frame, whereas the geometric non-linearity induced by the large rigid-body motion,
is incorporated in the transformation matrices relating local and global quantities. The main
interest is that the pure deformation part can be assumed as small and can be represented by a
linear or a low order non-linear theory.

Regarding corotational dynamic formulations, constant Timoshenko mass matrices [1, 2, 5]
are often used to express the dynamic terms. However, such an approach assumes that the in-
plane local displacements are zero, which is not accurate. For this reason, Le et al. [3] used
the Interpolation Interdependent Element formulation [9], and hence cubic functions, to derive
both the elastic and inertia terms. They show that this formulation is more efficient than using
constant mass matrices.

Implicit time stepping methods are often used together with non-linear finite elements to
study dynamic problems. The Newmark family of algorithms [10] is one of the most commonly
employed. However, these methods present instabilities in non-linear analyses [4, 5]. To avoid
these instabilities, Geradin and Cardona [11] introduced numerical dissipations (Alpha method
[12]) in order to damp the high frequencies. However, by doing that, the energy in the system
is not conserved [13, 14].

A different integration scheme, called Energy-Momentum Method, was developed from the
standard midpoint rule. Simo and Tarnow [14] were the first authors to use this method that
is unconditional stable in non-linear dynamics of three-dimensional elastic bodies. However,
their formulation was only valid for quadratic-nonlinearities in the displacement field. In the
corotational context, Crisfield and Shi [4] used a mid-point configuration combined to average
strains in order to conserve the energy. Galvanetto and Crisfield [5] developed an energy-
conserving time-integration procedure for implicit non-linear dynamic analysis of planar beam
structures. They used the constant Timoshenko mass matrix for the inertia term.

In this paper, an energy-momentum method for corotational 2D Bernoulli beam elements
is proposed. The main advantage of this scheme is that it preserves the total energy and the
linear and angular momenta. Besides, this scheme maintains stability and accuracy in long term
analyses. Regarding the element, Hermitian shape functions are used to derive both the inertia
and elastic terms. A shallow arch strain definition is used for the local formulation. The element
formulation is obtained by applying midpoint velocities to both the kinematic quantities and the
strains.

2 BEAM KINEMATICS AND STRAIN

2.1 Beam kinematics

The kinematic of the beam and all the notations used in this section are shown in Figure 1.
The vector of global displacements is defined by

q =
[
u1 w1 θ1 u2 w2 θ2

]T
(1)

The vector of local displacements is defined by

q̄ =
[
ū θ̄1 θ̄2

]T
(2)
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Figure 1: Beam kinematics.

The components of q̄ are computed according to

ū = l − l0 (3)
θ̄1 = θ1 − α (4)
θ̄2 = θ2 − α (5)

where l0 and l denote the initial and current lengths of the element. The current angle of the
local system with respect to the global system is denoted as β and is given by

c = cosβ =
1

l
(x2 + u2 − x1 − u1) (6)

s = sinβ =
1

l
(z2 + w2 − z1 − w1) (7)

The global position of the centroid G of the cross-section is given by

OG = (x1 + u1) i + (z1 + w1) j +
ln
l0
xa + w b (8)

with

a = cosβ i + sinβ j (9)
b = −sinβ i + cosβ j (10)

and w is the local transversal displacement of G. By using Eqs.(6) and (7), the components of
the global displacements are obtained as

uG = N1(x1 + u1) +N2(x2 + u2)− w sinβ (11)
wG = N1(z1 + w1) +N2(z2 + w2) + w cosβ (12)
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with

N1 = 1− x

l0
(13)

N2 =
x

l0
(14)

The global rotation of the cross-section is given by

θG = ϑ+ α (15)

where ϑ is the local rotation of the cross-section.

2.2 Strain

The Bernoulli assumption is adopted for the local formulation. Hence, a linear interpolation
is taken for the axial displacement u and a cubic one for the vertical displacement w.

The local strain is given by

ε11 = ε− κ z (16)

in which the axial strain ε and the curvature κ are defined by

ε =
1

l0

∫
l0

∂u
∂x

+
1

2

(
∂w

∂x

)2
 dx (17)

κ =
∂2w

∂x2
(18)

In Eq.(17), a shallow arch strain definition is taken. The purpose of introducing a low order of
geometrical non-linearity in the local formulation is to obtain a more efficient formulation com-
pared to a linear strain definition. The same level of accuracy is obtained with fewer elements.
Besides, an average axial strain is taken in order to avoid membrane locking.

3 HAMILTON’S PRINCIPLE AND ENERGY-MOMENTUM METHOD

3.1 Hamilton’s principle

Hamilton’s principle states that the time integral of the Lagrangian at two specified states
between two specified times t1 and t2 of a conservative mechanical system is stationary

δ
∫ t2

t1
L dt = 0 (19)

The integrand L is called Lagrange function

L = K − Uint − Uext (20)

K is the kinetic energy. Uint and Uext are respectively the internal and the external potential
energies. The body is non-conducting linear elastic solid and thermodynamic effects are not
included in the system. The kinetic energy is the sum of the translational and rotational kinetic
energies:

K =
1

2

∫
l0
ρA u̇2G dx+

1

2

∫
l0
ρA ẇ2

G dx+
1

2

∫
l0
ρI θ̇2G dx (21)
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The elastic potential energy is defined as

Uint =
1

2

∫
l0
EAε2dx+

1

2

∫
l0
EI κ2dx (22)

The external potential energy is defined as

Uext = −
∫
l0
pu uG dx−

∫
l0
pw wG dx−

∫
l0
pθ θG dx−

6∑
i=1

Pi qi (23)

E is Young’s modulus of the material, A is the area of the cross-section, I is the inertia moment
of the cross-section, pu and pw are the distributed horizontal and the vertical loads, pθ is the
distributed external moment, Pi is the vector of concentrated forces and moments at the nodes.

By introducing Eqs.(21) to (23), the variation of Eq.(19) can be written as∫ t2

t1

(∫
l0
ρA u̇G δu̇G dx+

∫
l0
ρA ẇG δẇG dx+

∫
l0
ρI θ̇G δθ̇G dx

)
dt

−
∫ t2

t1

(∫
l0
EAε δε dx+

∫
l0
EI κ δκ dx−

∫
l0
pu δuG dx−

∫
l0
pw δwG dx

)
dt

+
∫ t2

t1

(∫
l0
pθ δθG dx+

6∑
i=1

Pi δqi

)
dt = 0 (24)

By using part integration for the first three terms of (24), the previous equation can be reformu-
lated ∫ t2

t1

(∫
l0
ρA üG δuG dx+

∫
l0
ρA ẅG δwG dx+

∫
l0
ρI θ̈G δθG dx

)
dt

+
∫ t2

t1

(∫
l0
EAε δε dx+

∫
l0
EI κ δκ dx−

∫
l0
pu δuG dx−

∫
l0
pw δwG dx

)
dt

+
∫ t2

t1

(
−
∫
l0
pθ δθG dx−

6∑
i=1

Pi δqi

)
dt = 0 (25)

3.2 Energy-momentum integration scheme

The classical midpoint time integration scheme is defined by the following equations:

qn+ 1
2

=
qn+1 + qn

2
= qn +

1

2
∆q (26)

q̇n+ 1
2

=
q̇n+1 + q̇n

2
=

qn+1 − qn
∆t

=
∆q

∆t
(27)

q̈n+ 1
2

=
q̈n+1 + q̈n

2
=

q̇n+1 − q̇n
∆t

=
2

∆t2
∆q − 2

∆t
q̇n (28)

By extension of the classical midpoint rule, the average midpoint strains are developed in the
context of energy-momentum method. This idea has been introduced in [16, 17]. The midpoint
velocities are applied to both the kinematic fields and the strains because the nonlinear terms
arise from both fields. This gives:

∫ tn+1

tn
f(t)dt = f(tn+ 1

2
)∆t = fn+ 1

2
∆t (29)

fn+ 1
2

= fn +
∆t

2
ḟn+ 1

2
(30)
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where the function f can represent both the kinematic (uG, wG, θG) and deformational quantities
(ε, κ).

The application of the midpoint rule (29) to the Hamilton’s principle (25) gives

∆t
(∫

l0
ρA üG,n+ 1

2
δuG,n+ 1

2
dx+

∫
l0
ρA ẅG,n+ 1

2
δwG,n+ 1

2
dx+

∫
l0
ρI θ̈G,n+ 1

2
δθG,n+ 1

2
dx

+
∫
l0
EAεn+ 1

2
δεn+ 1

2
dx+

∫
l0
EI κn+ 1

2
δκn+ 1

2
dx−

∫
l0
pu,n+ 1

2
δuG,n+ 1

2
dx

−
∫
l0
pw,n+ 1

2
δwG,n+ 1

2
dx−

∫
l0
pθ,n+ 1

2
δθG,n+ 1

2
dx−

6∑
i=1

Pi,n+ 1
2
δqi,n+ 1

2

)
= 0 (31)

As the variation δq is arbitrary, the dynamic equilibrium at time n + 1
2

is obtained from the
previous equation

∫
l0
ρA üG,n+ 1

2

∂uG,n+ 1
2

∂qn+ 1
2

dx+
∫
l0
ρA ẅG,n+ 1

2

∂wG,n+ 1
2

∂qn+ 1
2

dx+
∫
l0
ρI θ̈G,n+ 1

2

∂θG,n+ 1
2

∂qn+ 1
2

dx

+
∫
l0
EAεn+ 1

2

∂εn+ 1
2

∂qn+ 1
2

dx+
∫
l0
EI κn+ 1

2

∂κn+ 1
2

∂qn+ 1
2

dx−
∫
l0
pu,n+ 1

2

∂uG,n+ 1
2

∂qn+ 1
2

dx

−
∫
l0
pw,n+ 1

2

∂wG,n+ 1
2

∂qn+ 1
2

dx−
∫
l0
pθ,n+ 1

2

∂θG,n+ 1
2

∂qn+ 1
2

dx− Pi,n+ 1
2

= 0 (32)

4 NUMERICAL EXAMPLES

Two numerical applications are presented in this section. The first purpose of these examples
is to verify numerically that the proposed energy-momentum algorithm conserves the total en-
ergy of the system and remains stable even if a very large number of time steps are applied. The
second purpose is to show that in the absence of applied external loads, the proposed algorithm
conserves the linear and angular momenta.

4.1 Cantilever beam

Example flying spaghetti

Example free fly beam

L

L/2

2P P

Example cantilever beam

P(N)

20×106

0
0.075   0.15 t(s)

L

P

Parameter

L = 3m, A = 100cm2, I = 8330cm4

ρ = 48 831 kg/m3

E = 200 000 MPa,
Number of elements = 4
Δt = 1E-3s, Number of steps = 1E6

Figure 2: Geometry and load history.

The first example, see Figure 2, is a cantilever beam loaded by a triangular force at its end.
The parameters of the problem are:

L = 3 m, A = 1000 cm2, I = 8330 cm4

E = 200 GPa, ρ = 48831 kg/m3

∆t = 10−3 s,Number of elements = 4
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Figure 3: Comparison the displacements at the end of the tip.
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Figure 4: Comparison of mechanical energy from 0s to 30s.

The results obtained with the present energy-momentum formulation are compared to the
ones obtained with the corotational formulation proposed by Le et al. [3]. In this previous for-
mulation, the alpha method is used to solve the equations of motion. Two cases are considered
here, α = 0, which corresponds to the classical average acceleration method and α = −0.01
which gives a small numerical damping that limits the influence of higher modes on the re-
sponse.

The results presented in Figure 3 show that at the beginning the three approaches give exactly
the same results. The results in Figures 4 and 5 show clearly that with the average acceleration
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Figure 5: Comparison of mechanical energy from 0s to 1000s.

method, the mechanical energy (sum of kinetic energy and internal energy) blows up after about
24s and the solution diverges. With the alpha method, the solution does not diverge, but as
expected, there is a loss of the mechanical energy due to the numerical damping. However, with
the present energy-momentum approach, the mechanical energy is constant and the solution
remains stable even if a very large number of steps (one million) is applied.

4.2 Free fly beam

The second example is a free flying beam, see Figure 6. The parameters of the problems are

L = 3 m, A = 200 cm2, I = 66.67 cm4

E = 200 GPa, ρ = 48831 kg/m3

∆t = 10−4 s,Number of elements = 4

The interest of this problem is that after 0.4s, no forces and moments are applied to the
beam. Consequently, this problem is suitable to study the conservation of the linear and angular
momenta. Figures 7, 8 and 9 show the conservation of energy and momenta for one million
time steps. The relative error is about 10−8 for the energy. We present here the two momenta
on two different figures 8 and 9 with appropriate scale. The figures show that all the moments
are constant.

5 CONCLUSION

This paper has presented an energy-momentum dynamic integration scheme in the context
of corotational 2D beam elements. The main idea is to use the classical midpoint rules for both
the kinematic and strain quantities. The advantage of the propose algorithm is that it conserves
the total energy of the system and remains stable and accurate even if a very large number
of time steps are applied. Besides, in the absence of applied external loads, the linear and
angular momenta are constant. These characteristics have been proved numerically by using
two numerical applications.
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Figure 6: Geometry and load history of free fly beam.
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Figure 7: Mechanical energy.
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Abstract. In this paper, the influence of the uncertainty of design parameters on the dynamic 
characteristics of structures with viscoelastic dampers mounted on them is considered. The 
fractional derivatives are used to describe the models of dampers. The uncertainty of their 
design parameters is introduced as an interval value. The lower and upper bounds of objec-
tive dynamic characteristics are obtained using the first- and second-order Taylor series ex-
pansion. Typical calculations are presented and compared with the results obtained using the 
vertex method. 
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c0 
qj qi 

a) 

1 INTRODUCTION 

In many practical situations, design parameters are uncertain. The uncertainty of parame-
ters is caused by the inaccuracy of measurements, assembly errors, defect of material, temper-
ature dependence, etc. The problem of uncertain parameters is widely described in numerous 
research papers. For issues with an unknown variability of the parameters, the interval analy-
sis is often used. In this method, it suffices to know that the parameter values change within 
certain limits. Moore [1] did a pioneering work of interval analysis. In the last two decades, 
many methods which enable this theory to be used in engineering problems have been devel-
oped. In paper [2], the vertex method is presented. The method is based on the theorem of 
“inclusion monotonic”. It assumes that the lower and upper bounds of the objective function 
should be calculated as the end-point combination of the design interval parameters. The me-
thod is also used in [3]. However, when the number of interval design parameters is large, the 
computational cost of the combination of all the parameters is very high. In this approach, the 
number of the required combinations equals 2r, where r denotes the number of the interval 
parameters. 

Alternative methods are required for non-monotonic problems. In papers [4,5], optimiza-
tion-based interval analysis methods are presented. The lower and upper bounds of the objec-
tive function are obtained as the minimization and maximization of calculation using the 
interval parameters as constraints for the optimization problem. 

For dynamic issues with uncertain design parameters, the lower and upper bounds of the 
objective function are often obtained using the Taylor series expansion. The method was ex-
tended in paper [6] and its application to optimization was shown. In [3, 7], the authors im-
proved the method using the second-order Taylor series expansion. In [7], Fujita and 
Takewaki introduced an application of the method to the analysis of structures with passive 
dampers. A similar analysis of the structures with uncertain parameters was presented in [8] 
using the robustness analysis. 

In this paper, the Taylor series expansion of the first- and second-order is used for determi-
nation of the lower and upper bounds of dynamic characteristics, such as natural frequencies, 
non-dimensional damping factors, and eigenvectors. The structure is modeled as a shear 
frame with dampers described by fractional derivatives. In the numerical example, the uncer-
tainties of dampers’ parameters are taken into consideration. The obtained results are com-
pared with the vertex method of which the results are close to the exact solution. Such 
analysis is carried out for structures with dampers described by fractional derivatives for the 
first time. 

2 DESCRIPTION OF STRUCTURES WITH DAMPERS 

2.1 Models of dampers  

Many rheological models of dampers have been proposed in the literature. The most 
frequently used models are the Kelvin and the Maxwell models. The first one consists of a 
spring and a dashpot connected in parallel whereas the second one is built of a serially 
connected spring and dashpot (Fig. 1).  

 
 
 
 
 

Figure 1. Classical models of dampers a) Kelvin model, b) Maxwell model. 

b) 

u u 

k1 c1 

qj qi 
qw 
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In many instances, it is difficult to describe the rheological properties of viscoelastic 
dampers by basic classical models and it is necessary to use the generalized models which 
consist of numerous Kelvin or Maxwell elements. The number of parameters which are 
required for the description of the properties of dampers is rather high and sometimes it is 
more efficient to use the fractional models [9]. A damping element (called “a springpot 
element”) is described by two constants, c and α, where α denotes the order of the fractional 
derivative. The fractional Kelvin and Maxwell models are shown in Fig. 2. 

 
 
 
 
 
 

Figure 2. Fractional models of dampers a) Kelvin model, b) Maxwell model. 

The equation of motion for the fractional Kelvin model can be written in the following way: 

 )()()( 00 tqDctqktu t ∆+∆= α  (1) 

and for the fractional Maxwell model, it could be described as follows: 

 )()()( 1
1

1 tqDctuD
k

c
tu tt ∆=+ αα  (2) 

where 0k  and 1k  denote stiffnesses, 0c  and 1c  denote damping factors, ( ) ( ) ( )tqtqtq ij −=∆  is 

relative displacement of nodes of damper and the symbol α
tD  denotes the Riemann-Liouville 

fractional derivative of the order α with respect to time [10, 11]. 
After taking the Laplace transform, Equations (1) and (2) can be written in the forms: 

 )()()( 00 sqscsqksu ∆+∆= α  (3) 

 )()()( 1
1

1 sqscsus
k

c
su ∆=+ αα  (4) 

where: [ ])()( tqLsq ∆=∆ , [ ])()( tuLsu = , [ ])()( tuDLsus t
αα = , and s  – Laplace variable. 

Finally, it is possible to write the general relationship: 

 )()()( sqsGsu ∆=  (5) 

where: 

 αscksG 00)( +=  (6) 

for the fractional Kelvin model (see Fig. 2a) and 

  α

α

sck

sc
ksG

11

1
1)(

+
=   (7) 

for the fractional Maxwell model (see Fig. 2b). 

u u 

k0 

c0, α 

a) 

qj qi u u 

b) 
k1 c1,α 

qw 
qj qi 
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2.2 Equation of motion for structures with dampers 

The equation of motion for structures with viscoelastic dampers can be written in the fol-
lowing form [12]: 

 )()()()()( ttttt sss fpqKqCqM +=++ &&&  (8) 

where: sM , sC  and sK  denote the mass, the damping and the stiffness matrix of structure, 

respectively. The structure is modeled as a shear frame with mass lumped at the storey level. 

[ ]T
nqqt ...)( 1=q  is the vector of displacements of the structure, [ ]T

nppt ...)( 1=p  is 

the vector of excitation forces, [ ]T
nfft ...)( 1=f  is the vector of the interaction forces 

between the frame and the dampers (see Fig. 3) and n is the number of the degrees of freedom 
of the considered system. 

Vector )(tf  is a sum of the vectors )(tkf . Each of them is formed if damper k only is located 

on the frame, i.e.: 

 ∑
=

=
m

k
k tt

1

)()( ff . (9) 

where m is the number of dampers. 

 

 

 

 

 

 

 

 

 

Figure 3. Diagram of frame with dampers. 

For the damper located between the floors j and j + 1 (see Fig. 3), it is possible to write: 

 ( )tut kkk ef =)( ,     [ ]Tjjk ee 0...11...0 1 −=== +e . (10) 

After taking the Laplace transform, the equation of motion can be written as: 

 ( ) )()()( 2 sssss sss fpqKCM +=++  (11)  

where: [ ])()( tLs qq = , [ ])()( tLs pp =  and [ ])()( tLs ff = .  
The vector )(sf  is in the following form: 

 ( )ssGss k

m

k
k

m

k
k qLff ∑∑

==
==

11

)()()(  (12) 

and T
kkk eeL =  is the matrix of the location of dampers. 

m1 

mj 

mj + 1 

mn 

pn 

pj +1 

pj 

p1 q1 

qj 

qj +1 

qn 

damper 1 

damper k 

damper m 

p1 

m1 

mj 

mj + 1 

mn 

pn 

pj +1 

pj 

u1 

uk 

um 

um 

u1 uk 

p1 

m1 

mj 

mj + 1 

mn 

pn 

pj +1 

pj 

f1 

fk + 1 

fm 

fk 
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After substituting Equation (12) to (11), the equation of the motion of structure with 
viscoelastic dampers is: 

 ( ) ( ) ( )sss pqD =  (13) 

where:  

 ( ) ∑
=

+++=
m

k
ksss sss

1

2 GKCMD ,     kk sGs LG )( )( k= . (14) 

If the vector of external forces equals zero ( 0p =)(s ), then Equation (13) leads to the 
following nonlinear eigenproblem: 

 0qD =)( )( ss . (15) 

Methods to solve a nonlinear eigenproblem for a structure with damping forces described 
using fractional derivatives were proposed in [13-15]. In this paper, the nonlinear 
eigenproblem was solved by the continuation method, described in detail in paper [15]. 

After determination of eigenvalues (si) and eigenvectors (qi), it is possible to calculate 
natural frequencies (ωi) and non-dimensional damping factors (γi) according to the formulae: 

 
iii

iii

ωµγ
ηµω

/

222

−=

+=
 (16) 

where )Re(ii s=µ , )Im( ii s=η . 

3 UNCERTAIN PARAMETERS  

3.1 Interval analysis - definition 

Let us assume some design parameters have changed, though only within a specified range. 
These variations can be written as interval parameters in the form: 

 [ ]ppppp ∆+∆−= ccI   ,  (17) 

or as follows: 

 [ ]ppp  , =I  (18) 

where [ ]I
r

III ppp ,...,, 21=p  denotes the values of interval parameters, r denotes the number of 
interval design parameters, pc denotes middle values of interval parameters: 

 
2

pp
c

+
=p , (19) 

p∆  denotes half of the varied range of interval parameters (radius value): 

 
2

pp −
=∆p , (20) 

p  and p  denote the lower and upper bounds of the interval parameters, respectively. 

Let us consider an objective function ( )pF  which depends on the design parameters. If the 
parameters’ values change within a specified range, the considered function can be written in 
the form ( )IIF p . The interval analysis leads us to find the lower and upper bounds of the ob-
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jective function in a feasible domain of the interval parameters ( )pp ∆∆−  , . The interval prob-
lem can be described as: 

 ( ) ( ) ( )




=

∈∈
ppp

pppp
FFF

II

II max ,min  (21) 

3.2 Interval analysis based on approximation of Taylor series expansion 

An approximation of the objective function ( )pF
~

 using the first-order Taylor series expan-
sion around the middle values of parameters pc is defined in the following form: 

 ( ) ( ) ( )
∑

=

∆
∂

∂+=
r

i
i

i

C
C p

p

F
FF

1

~ p
pp  (22) 

where C
iii ppp −=∆  and ( ) i

C pF ∂∂ p  denotes a first-order differentiation of the function 

( )CF p  at middle values of design parameters with respect to the changing parameter ip . 

From Equation (22), it is possible to write the increment of the objective function calcu-
lated using the first-order Taylor series expansion 

 ( ) ( )
∑

=

∆
∂

∂=∆
r

i
i

i

C

p
p

F
F

1

p
p  (23) 

as a sum of increments of the objective function for each one-dimensional perturbation. 
Hence, the increment of the objective function for the variation of parameter 1p  can be eva-
luated from: 

 ( ) ( )( )C
C

C
n

CI pp
p

F
pppF 11

1
211 ,...,, −

∂
∂=∆ p

. (24) 

According to an interval analysis, the following formula can be written: 

 ( )
( ) ( )[ ]
( ) ( )[ ]









∆∆

∆∆
=∆

C
n

CC
n

C

C
n

CC
n

C

C
n

CII

pppFpppF

pppFpppF
pppF

,...,,,,...,,max

,...,,,,...,,min
,...,,

211211

211211

211  (25) 

It is possible to write a similar relationship for each interval design parameter. Finally, substi-
tuting ( )I

ii pF∆  to Equation (22) leads us to the equation: 

 ( ) ( ) ( ) ( ) ( )






 ∆+∆+= ∑∑
==

r

i

I
ii

C
r

i

I
ii

CII pFFpFFF
11

   , ppp  (26) 

According to formula (26), the lower and upper bounds of the objective interval function, ap-
proximated using the first-order Taylor series expansion, can be written as: 

 

( ) ( ) ( )

( ) ( ) ( )
∑

∑

=

=

∆
∂

∂+=

∆
∂

∂−=

r

i
i

i

C
CI

r

i
i

i

C
CI

p
p

F
FF

p
p

F
FF

1

1

p
pp

p
pp

 (27) 
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Some researchers [3,7] proposed an approximation of the objective function ( )pF
~~

 using the 
second-order Taylor series expansion around the middle values of parameters pc: 

 ( ) ( ) ( ) ( )
ji

r

i

r

j ji

Cr

i
i

i

C
C pp

pp

F
p

p

F
FF ∆∆

∂∂
∂+∆

∂
∂+= ∑∑∑

= == 1 1

2

1 2

1~~ pp
pp  (28) 

where ( ) ( )ji
C ppF ∂∂∂ p2  build the Hessian matrix of the function ( )CF p  with respect to the 

changing parameters ip  and jp . The matrix consists of a second-order differentiation of the 

function ( )CF p  at middle values of the design parameters. The increment of the objective 
function can be written in the following form: 

 ( ) ( ) ( )
ji

r

i

r

j ji

Cr

i
i

i

C

pp
pp

F
p

p

F
F ∆∆

∂∂
∂+∆

∂
∂=∆ ∑∑∑

= == 1 1

2

1 2

1 pp
p . (29) 

Based on inclusion monotonic, in order to find the lower and upper bounds of the objective 

function ( )pF
~~

, it is necessary to calculate all end-point combinations of the interval parame-

ters ip  and jp . The number of combinations is the same as the number of combinations us-

ing the vertex method and it equals 2r. The computational cost in this approach is very high, 
especially for high numbers of the interval parameters. Therefore, a simplification of the 
above method was proposed in [3]. In that paper, the non-diagonal elements of the Hessian 
matrix are neglected.  

An approximation of the objective function ( )pF
~~~

 using the second-order Taylor series ex-
pansion with only the diagonal elements of the Hessian matrix is as follows: 

 ( ) ( ) ( ) ( )
∑

=








∆

∂
∂+∆

∂
∂+=

r

i
i

i

C

i
i

C
C p

p

F
p

p

F
FF

1

2
2

2

2

1~~ pp
pp . (30) 

The increment of the objective function can be written in the following form: 

 ( ) ( ) ( )
∑

=







 ∆
∂

∂+∆
∂

∂=∆
r

i
i

i

C

i
i

C

p
p

F
p

p

F
F

1

2
2

2

2

1 pp
p . (31) 

For variability of parameter 1p , Equation (31) is as follows: 

 ( ) ( )( ) ( )( )2

12
1

2

1
1

1 2

1 C
C

C
C

pp
p

F
pp

p

F
F −

∂
∂+−

∂
∂=∆ pp

p . (32) 

It should be noted that, when using relationship (25) for calculating the lower and upper 
bounds of the objective function, the number of combinations is reduced to 2r.  

3.3 Dynamic characteristics of structures with uncertain design parameters 

In this section, formulae describing the lower and upper bounds of the chosen dynamic 
characteristics are determined. The natural frequency (ω), non-dimensional damping factor (γ), 
and eigenvectors (q) are taken into consideration. According the formula (26), it is possible to 
write: 
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 ( ) ( ) ( ) ( ) ( )
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for the natural frequency, 

 ( ) ( ) ( ) ( ) ( )
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for the non-dimensional damping factor and 

 ( ) ( ) ( ) ( ) ( )
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i
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C
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i

I
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CII pp
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   , qpqqpqpq  (35) 

for the eigenvector.  

When the objective function is approximated using the first-order Taylor series expansion, 
the increments can be written as: 

 ( ) ( )
∑

=

∆
∂

∂=∆
r

i
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i
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p
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p
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ωω , (36) 
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 ( ) ( )
∑

=

∆
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i
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C

p
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pq
pq . (38) 

When the objective function is approximated using the second-order Taylor series expan-
sion, the increments are as follows: 
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And when the objective function is approximated using the second-order Taylor series ex-
pansion with only the diagonal elements of the Hessian matrix, the increments are described 
as: 
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The calculation of the lower and upper bounds of the dynamic characteristics requires the 
sensitivities of the first- and the second-order of the objective function 

( ) ( ) ( )( )ji
C

i
C ppFpF ∂∂∂∂∂ pp 2 ,  with respect to the design parameters. These sensitivities are 

obtained by the direct differentiation method, which is described in detail in [16]. The formu-
lae for sensitivities with respect to the parameters of the Kelvin damper model are shown in Ap-
pendix A. 

4 EXAMPLE 

In the example, an eight-storey frame with three bays is considered (see Fig. 4). The frame 
is designed according to the EC8 Part 1. Construction data, with the exception of the unit 
mass of the floor, were adopted on the basis of [17]. The height of the columns is 3m and the 
span of the beams is 5m. Young's modulus (E) for concrete is 31GPa. Dimensions of columns 
and their replacement stiffnesses are shown in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Diagram of the considered frame. 

 

Storey 
level 

Lateral 
column 
[cm]

Central 
column 
[cm] 

Replacement 
stiffness 
[kN/m] 

1,2 50x50 60x60 441119 
3,4 45x45 53x53 275351 
5,6 40x40 45x45 152948 
7,8 35x35 40x40 93244 

Table 1. Dimensions and replacement stiffness columns. 

The mass per unit length of every floor equals 60000 kg/m. The dampers are attached on the 
fifth, sixth and seventh floors of the structure. Such locations were chosen according to paper 
[17]. A fractional Kelvin model of damper is taken into consideration (see Fig. 2a). The 
dampers‘ parameters were adopted in such a way that the first non-dimensional damping 
factor was 04.01 ≥γ . The following parameters are adopted for the dampers: 

k1 
2 

k4 
2 k3 
2 
k2 
2 

k5 
2 

k6 
2 

k7 
2 

k8 
2 

5m 
2 

5m 
2 

5m 
2 
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kN/m200000 =k , /mkNs27000 α

0 =c  and 6.0=α . The values of first natural frequencies 

1ω  and the non-dimensional damping factor 1γ  for the structure without dampers and for the 
structure with the fractional Kelvin model are shown in Table 2. Damping in the structure is 
neglected. 
The uncertainties of dampers’ parameters are considered. They are shown in Table 3. The 
damper parameters are marked k0i and c0i, where i denotes the damper number. The order of 
the fractional derivative remains constant. 

Structure without 
dampers 

Structure with fractional dampers 

natural frequency   
1ω [rad/s] 

natural frequency  
1ω  [rad/s] 

non-dimensional 
damping factor 1γ  

3.10396 3.34162 0.04045 

Table 2. First natural frequencies and non-dimensional damping factor without and with fractional dampers. 

 
damper 

parameter 
uncertainty 

[%] 
c01 10 
c02 15 
c03 15 
k01 15 
k02 20 
k03 15 

Table 3. Uncertainties of damper parameters. 

The parameters are assumed to vary independently. The interval parameters for dampers are 
listed in Tables 4-5. 
 

bounded value middle value radius value 

[ ]29700 ,2430001 =Ic  2700001 =Cc  270001 =∆c  

[ ]31050 ,2295002 =Ic  2700002 =Cc  405002 =∆c  

[ ]31050 ,2295003 =Ic  2700003 =Cc  405003 =∆c  

Table 4. Interval parameters of damping factor [kNsα/m]. 

bounded value middle value radius value 

[ ]2300 ,1700001 =Ik  2000001 =Ck  200001 =∆k  

[ ]2400 ,1600002 =Ik  2000002 =Ck  100002 =∆k  

[ ]2300 ,1700003 =Ik  2000003 =Ck  200003 =∆k  

Table 5. Interval parameters of stiffness [kN/m]. 

The parameters’ middle values are taken to find the solutions given in Table 2. In Table 6, the 
results of interval analysis are presented. The results obtained by the vertex method, first-
order Taylor series expansion, second-order Taylor series expansion and second-order Taylor 
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series expansion with only the diagonal element of the Hessian matrix are compared. The 
critical combinations of the interval parameters are shown for each case. The solution of the 
vertex method is assumed as a comparative solution and the error is calculated in relation to 
that. 
 

 lower 1ω  upper 1ω  
 value of 

1ω  
[rad/s] 

error 
[%] 

Combination 
of parameters 

value of 

1ω  [rad/s] 
error 
[%] 

Combination 
of parameters 

Vertex 
method 

3.31306 - 
01c , 02c , 03c  

01k , 02k , 03k  
3.36841 - 

01c , 02c , 03c  

01k , 02k , 03k  

First-order 
Taylor series 
expansion 

3.31832 0.16 
01c , 02c , 03c  

01k , 02k , 03k  
3.36493 0.10 

01c , 02c , 03c  

01k , 02k , 03k  

Second-order 
Taylor series 
expansion 

3.31780 0.14 
01c , 02c , 03c  

01k , 02k , 03k  
3.36441 0.12 

01c , 02c , 03c  

01k , 02k , 03k  

Simplified 
second-order 
Taylor series 
expansion 

3.31801 0.15 
01c , 02c , 03c  

01k , 02k , 03k  
3.36462 0.11 

01c , 02c , 03c  

01k , 02k , 03k  

Table 6. Lower and upper bounds of 1ω . 
 

 lower 
1

γ  upper 1γ  

 value of 

1
γ  

error 
[%] 

Combination 
of parameters 

value of 

1γ  
error 
[%] 

Combination 
of parameters 

Vertex 
method 

0.03587 - 
01c , 02c , 03c  

01k , 02k , 03k  
0.04480 - 

01c , 02c , 03c  

01k , 02k , 03k  

First-order 
Taylor series 
expansion 

0.03656 1.92 
01c , 02c , 03c  

01k , 02k , 03k  
0.04435 1.00 

01c , 02c , 03c  

01k , 02k , 03k  

Second-order 
Taylor series 
expansion 

0.03639 1.45 
01c , 02c , 03c  

01k , 02k , 03k  
0.04417 1.41 

01c , 02c , 03c  

01k , 02k , 03k  

Simplified 
second-order 
Taylor series 
expansion 

0.03633 1.28 01c , 02c , 03c  

01k , 02k , 03k  
0.04412 1.52 

01c , 02c , 03c  

01k , 02k , 03k  

Table 7. Lower and upper bounds of 1γ . 

Based on the obtained results, it should be noted that the solutions using the first-order Taylor 
series expansion and the second-order Taylor series expansion are close to the solution 
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calculated with the use of the vertex method. In each of the four cases, the critical 
combination of the interval parameters is the same. 

The lower and upper bounds of the first eigenvector are also calculated. The middle values 
of the eigenvector’s elements are evaluated for the middle values of dampers’ parameters. The 
lower and upper values of the eigenvector obtained by the vertex method ] ,[ 11

qq  are 

calculated for the relevant natural frequencies [ ]11  ,ωω  obtained by this method (solid lines). 
The obtained results are compared with the values calculated using the first-order Taylor 
series expansion (dashed line). The comparison is shown in Figures 6-7. 

0 0.0001 0.0002 0.0003

2

4

6

8

 

Figure 6. Lower and upper bounds of the real part of eigenvector q1. 

-0.0002 -0.00016 -0.00012 -8E-005 -4E-005 0

2

4

6

8

 

Figure 7. Lower and upper bounds of the imaginary part of eigenvector q1. 

Evaluations of the lower and upper bounds of the eigenvector, carried out using the vertex 
method and the first-order Taylor series expansion differ by about 2-3% in the case of the real 
parts and 9-13% in the case of the imaginary parts. 
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5 CONCLUSIONS 

The influence of uncertainties of the design parameters on the dynamic characteristics of 
structures with viscoelastic dampers are investigated. The presented formulae enable determi-
nation of the lower and upper bounds of the objective function. The different methods of 
evaluation of the lower and upper bounds are shown. The bounds are determined using the 
vertex method, first order Taylor series expansion, second-order Taylor series expansion and 
simplified second-order Taylor series expansion. The vertex method was chosen as a compar-
ative solution but it should be noted that the exact solution in the form of a critical combina-
tion of the interval parameters can be obtained for values of parameters between the limit 
values. The methods based on the Taylor series expansion provide results which are close to 
those obtained by the vertex method. Errors of the calculations performed are similar in each 
of the three presented approximating functions but the second-order Taylor series expansion 
requires high computational costs, especially if all the elements of the Hessian matrix are tak-
en into account. 
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APPENDIX A 

In order to calculate the sensitivities of dynamic characteristics with respect to the design pa-
rameter, the following sets of equations can be solved [16]: 
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for the first-order sensitivities and 
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for the second-order sensitivities. 
The right-hand sides of the above equations are as follows: 

 ( ) ( ) )(11 sss qRh −= , (A.3) 
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In the case of the Kelvin model of damper, the matrices ( )s1R  and ( )s2R  which are required 
for solving the first-order sensitivities, are as follows: 
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when the design parameter ip  is ic0  and 
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when the design parameter ip  is ik0 . 

When the second-order sensitivities is of interest, the matrices ( )s31R , ( )s32R , ( )s33R , 
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when the design parameters ip  and jp  are ic0  and jc0 , respectively, and  
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when the design parameters ip  and jp  are ic0  and jk0 , respectively, and  
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when the design parameters ip  and jp  are ik0  and jk0 , respectively. 

The derivatives of matrix ( )sD  with respect to s in the case of the Kelvin model of damper are 
as follows:  
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The derived formulae enable determination of all the elements of the Hessian matrix of dy-
namic characteristics with respect to the chosen design parameters. 
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Abstract. Crack opening is one of the dominant causes of nonlinearity in brittle and quasi-
brittle structures which leads to localized failure and stands out as a serious challenge in nu-
merical modelling. Therefore, a realistic modelling of crack initiation and propagation is one 
of the key factors that affect the reliability of the model for analysing the structures, especially 
those subjected to earthquakes. The largest number of structures in the world’s most populat-
ed seismic areas is made of materials such as reinforced concrete, stone and masonry, in 
which localized failure dominantly influences the structural collapse. Sophisticated numerical 
models based on time dependent and incremental dynamic analysis can play an important 
role in simulating the behaviour of such structures. In this work 2D and 3D numerical model-
ling for analysis of reinforced concrete structures under static and dynamic load is presented. 
The model uses the finite-discrete element method; thus taking into account the discontinuous 
nature of the concrete at the failure stages. This approach considers the structure as a de-
formable continuum until the opening of the cracks. The transition from the continuum to the 
discontinuum is a result of the crack initiations which are modelled through the contact ele-
ments implemented between finite elements. The interaction between discrete elements is con-
sidered through the contact interaction algorithm based on the principle of potential contact 
forces which are computed using penalty function method and the Coulomb friction law. The 
non-linear behaviour of the concrete in tension and shear takes into account strain-hardening, 
strain-softening and cyclic behaviour during dynamic loading. The model for reinforcing bars 
is based on an approximation of the experimental curves for the bar strain in the crack. The 
developed numerical model includes interaction effects between reinforcement and concrete 
as well as cyclic behaviour of concrete and steel during dynamic loading. Thus, it is possible 
to describe the crack initiation and propagation, collapse mechanism, energy dissipation by 
non-linear effects, inertial effects and contact interaction which are very important in the 
analysis of RC structures, especially those subjected to seismic load. 
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1 INTRODUCTION 

The development of the numerical models for simulation of the response of reinforced 
concrete structures under static and dynamic load, taking into consideration non-linear behav-
ior of the concrete and reinforcement, makes possible the results of high accuracy. One of the 
main causes of concrete non-linear behavior is cracking. A reliable model for simulation of 
the opening and closing the cracks is especially important in the structures under dynamic 
load. The most of the models described in literature is based on finite element method where 
the cracking is described with smeared crack models or with embedded models where the 
cracks are modelled as discontinuity within the elements by enriching interpolation function. 
In contrast to the finite elements, in discrete models cracks are simulated as discontinuities of 
displacement between two elements.  

A numerical model for analysis of reinforced concrete structures under static and cyclic 
load developed in this work is based on combined finite-discrete element method [1]. Transi-
tion from continua to discontinua in this method occurs through fracture and fragmentation 
processes. A typical combined finite discrete element method based simulation may start with 
a few discrete elements and finished with very large number of discrete elements. Fracture 
occurs through alteration, damage, yielding or failure of micro structural elements of the ma-
terial.   

There has been a number of fracture models proposed in the context of both discrete ele-
ment methods and combined finite discrete element method. Some of the models are based on 
a global approach applied to each individual body, while others used a local smeared crack 
approach or local single-crack approach. In this work a model for plane and spatial crack ini-
tiation and crack propagation in concrete is used [2]. The model combines standard finite el-
ement formulation for the hardening part of the constitutive law with the single-crack model 
for the softening part of stress-strain curve. Finite elements are used to model behavior of the 
material up to the ultimate tensile strength while a discrete crack model is used for modelling 
of the crack opening and separation along edges of finite elements. 

In this work cracking of the concrete in plane and space are enabled by a combined single 
and smeared crack model. An embedded model of reinforcing bars [3, 4] is implemented in 
finite-discrete element code [1]. The concrete and reinforcing bars are analyzed separately, 
but they are connected by the relation between the size of the concrete crack and strain of the 
reinforcing bar [5, 6]. Cyclic behavior of the steel during the cyclic load is modelled with im-
proved Kato’s model [7]. 

2 MODELLING OF THE REINFORCED CONCRETE STRUCTURE 

The concrete structure in plane is discretized on triangular finite elements, while in the 
space it is discretized by tetrahedron finite elements. Reinforcing bars are modelled with line-
ar one-dimensional elements which can be placed in arbitrary position inside the concrete fi-
nite elements. The model of the reinforced concrete structure with the embedded reinforcing 
bars in 2D and 3D concrete structure is presented in Fig. 1. 

The structure behaves as continuum until opening of the crack. The deformation of the fi-
nite triangular element influence to the deformation of the reinforcing bars. When the crack in 
concrete appears, joint element in concrete as well as joint element in reinforcing bars is oc-
curred. The concrete and reinforcing bars are analyzed separately, but they are connected by 
the relationship between the size of the concrete crack and strain of the reinforcing bar. 
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Figure 1: Discretization of reinforced concrete structure: (a) 2D model; (b) 3D model. 

3 NON-LINEAR MATERIAL MODEL IN JOINT ELEMENTS 

3.1 Concrete model in joint element 

The concrete model is based on crack initiation and crack propagation in tension and shear 
[2]. It is developed on the basis of experimental stress-strain curves for concrete in tension. 

The area under the stress-strain curve consists of two parts (Fig. 2), part for modelling of 
the concrete behavior up to the crack opening [2] and part which represents strain softening 
after the tensile strength is exceeded [8]. The assumption of the discrete crack model is that 
the cracks coincide with the finite element edges. The total number of nodes for each of the 
finite element meshes is doubled and the continuity between elements is realized through the 
penalty method [9]. Separation of the edges induces a bonding stress, which is a function of 
the size separation δ (Fig. 2). 

The area under the stress-displacement curve represents the energy release rate Gf =2γ, 
where γ  is the surface energy, i.e. the energy needed to extend the crack surface by a unit area. 

 

s

ft

dc
dt=dp

G =2f g

 
Figure 2: Strain softening stress-strain and stress-displacement curves. 

No separation of the adjacent elements occurs before the tensile strength is reached, i.e. the 
edges of two adjacent elements are held together by normal and shear springs (Fig. 3). Proce-
dure of the separation of the elements and complete relationship for the normal and shear 
bonding stress are given in [2]. 
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(b) 
Figure 3: Normal and shear springs between the finite elements: (a) 2D model, (b) 3D model. 

3.2 Steel material model in reinforcement joint element 

In this work a model of the relationship between the concrete crack size and strain of the 
reinforcing bar developed by Shima [5] and Shin [6] is applied. The model is based on exper-
imental strain-slip curves and represents well approximation of the behavior of reinforcing bar 
with the expressed plastic strain caused by cyclic loading. 

The steel strain-slip relation before the yielding of reinforcing bar is given by expressions: 

 )35006( sss εε +=  (1) 
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where )( sss ε=  is normalized steel slip, D is bar diameter and cf ′  is concrete strength.  
Normalized slip in the post-yield range is given by expression: 

 epl sss +=
 (3) 

where es  is slip in the elastic region and pls  is slip in the yield region. A strain distribution 

along the reinforcing bar in the post-yield region is shown in Fig. 4, where seε a strain at the 
yield boundary point on the elastic region is and spε  is a strain at the yield boundary point on 

the yield region. 

emax

esesh
esp
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esesteel bar

loading

unloading

distance from crackly

 
Figure 4: Strain distribution along the reinforcing bar in the post-yield range. 
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Normalized plastic steel slip in the yield region is given by an expression [5, 6]: 
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where yσσβ /max=  represents the gradient of the line shown in Figure 4, maxσ  is the maximum 

stress in reinforcing bar under tensile loads, maxs  is a function of maxε  and )35002(*
ssys εε += . 

Non-linear material model for steel is based on experimental stress-strain curve and it is 
shown in Fig. 5a. Cyclic behavior of the steel during the cyclic load (Fig. 5b) is modelled with 
improved Kato’s model [7]. 

 
Figure 5: Material model for steel: (a) Stress-strain relation for steel, (b) Cyclic behavior of steel. 

4 EXAMPLES  

4.1 Sensitivity of the 3D model to the mesh refinement and penalty parameter 

This example was chosen to analyse the sensitivity of the 3D numerical model to the mesh 
refinement and penalty parameter. Analysis was performed on concrete cantilever exposed to 
monotonic increasing tension load. Geometry and cross section of structure are shown in Fig. 
6. Modulus of elasticity of concrete is E=30 GPa. 

F

2.0 m
50 cm

5
0
 c

m

 

Figure 6: Geometry and load of structure. 

The analyses were performed without and with contact elements using two different finite 
elements meshes refinement (mesh A, mesh B) as shown in Fig. 7.  

 

(a) 

 

(b) 
Figure 7: Discretization of structure: (a) mesh A, (a) mesh B. 

Mesh A was comprised of 320, while mesh B was comprised of 3102 finite elements. In 
analyses performed with contact elements, penalty term p was 20 times higher than Ec. 

5527



N. Živaljić, Ž. Nikolić, H.Smoljanović and I. Balić 

Fig. 8 shows the comparison of the analytical and numerical results obtained by the pre-
sented model. It can be seen that for homogeneous state of stress the numerical 3D model is 
not sensitive to the mesh refinement regardless of the presence of the contact elements. It can 
be also seen when analyses were performed without contact elements, the numerical results 
correspond to analytical solution while the introduction of contact elements leads to relative 
error of numerical results in comparison to analytical solution. 
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Figure 8: Force-displacement relations. 

The sensitivity of the numerical model in linear elastic stage to the penalty parameter p 
was performed on concrete cantilever with finite element mesh shown in Fig. 7(a). The anal-
yses were performed for three values of penalty parameter p. The comparison of the analytical 
and numerical results obtained by the presented model is shown in Fig. 9. 
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Figure 9: Force-displacement relations. 

The influence of the penalty parameter p to the relative error is shown in table 1. It can be 
seen that for values of penalty term higher than 100E relative error is less than 2%. Similar 
conclusions have been obtained for 2D analysis [4]. 
 

Penalty parameter  Relative error 
(%) 20Ec 14.1 

60Ec 4.4 

100Ec 1.9 

 

Table 1: Influence of penalty parameter to the solution error. 
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4.2 Seismic analysis of coupled RC wall structure 

The application of the presented finite-discrete numerical model of reinforced concrete 
structures was shown on five-storey reinforced concrete building with coupled wall system. 
The vertical load of the building consists of the own weight of structural elements, an addi-
tional dead load of 2.5 kN/m2 and impose load of 4.0 kN/m2 at floor slabs. 

Material characteristics of concrete and steel used in a numerical analysis are shown in Ta-
ble 1. 

 
Concrete 

Ec / MPa ν  ft / MPa fc / MPa Gf / N/m ρ / kN/m3   
32800 0.2 3.80 38 150 25 

Steel 
Es / MPa fy / MPa  fu / MPa εsh  εu 
210000 500 600 0.02 0.1 

 

Table 2: Material characteristics of the RC wall. 

The application of the presented model in incremental dynamic analysis [10] of RC struc-
ture was performed for the boundary coupled RC wall with geometry, reinforcement and dis-
cretisation shown in Fig. 10. 
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(a) 

 
(b) 

Figure 10: Coupled RC wall: (a) Geometry and reinforcement of the cross-sections, (b) Discretisation. 

Seismic loading is represented by a time function of the horizontal ground acceleration 
recorded during real earthquakes. The earthquake accelerograms were taken from the Europe-
an Strong-Motion Database [11]. The selected earthquakes are Petrovac (Montenegro)-1979, 
South Iceland (Iceland)-2000 and Campano Lucano (Italy)-1980, as shown in Fig. 11. 

The observed five-storey RC wall structure is exposed to the horizontal ground accelera-
tion of selected three earthquakes. The amplitudes were gradually increased until the collapse 
of the structure. The relation between the ratio of peak ground acceleration and gravity con-
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stant a and the ratio of maximum top displacement u and the height of structure H (u/H) ob-
tained by incremental dynamic analysis is shown in Fig. 12. 
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Figure 11: Accelerograms of three real earthquakes: (a) Petrovac (1979.), (b) South Iceland (2000.),  
(c) Campano Lucano (1980.) 
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Figure 12: The ratio between the maximum roof displacement u and the height of structure H for coupled RC 
wall structure in dependence to the peak ground acceleration. 

 
(a) 

 
(b) 

 
(c) 

Figure 13: Crack pattern for the coupled RC wall structure exposed to the failure peak ground acceleration of 
earthquake: (a) Petrovac, (b) South Iceland, (c) Campano Lucano. 
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Finite-discrete numerical model based on discrete cracks presented in this paper can simu-
late opening and closing the cracks as well as realistic crack patterns for different intensity of 
accelerations. Crack pattern for the coupled RC wall structure exposed to the failure peak 
ground acceleration of three earthquakes is shown in Figure 13. 

This example highlights the ability of the developed model based on discrete cracks for 
simulation of opening and closing the cracks during the earthquake loading as well as obtain-
ing of the ultimate acceleration, which is very important in the estimation of the safety of RC 
structures under the seismic loading.  

5 CONCLUSIONS  

• This paper presents numerical model for analysis of reinforced concrete structures under 
static and dynamic load. 

• Simple numerical model of reinforcement which is implemented in combined finite dis-
crete element code is presented. Model based on approximation of the experimental 
curves for behaviour of the concrete and steel in crack, is primarily aimed for monitoring 
of the behaviour of reinforced concrete structure subjected to static and dynamic load up 
to failure. 

• Cracking of the structure is enabled by discrete model of cracks where the cyclic behav-
iour of concrete and steel was successfully implemented.  

• Interaction between reinforcement and concrete was not directly considered, but it was 
taken into consideration by defining the average spacing between the cracks.  

• The model provides quite realistic description of cracking in the reinforced concrete 
structures under the seismic loading until the collapse. 
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Abstract. One of the major problems of modern structural mechanics is sensitivity analysis of 

actual and projected designs to various effects not provided for under normal operating con-

ditions, arising in particular in emergency situations, as a result of wear and damage accu-

mulation, etc. The paper presents a physical and mathematical model of the transient 

dynamical processes initiated in a beam on an elastic foundation with a sudden partial or ful-

ly destruction of the foundation. Mathematical models are the differential equations of the 

static bending of initial and damaged beam, equations of the free and forced vibrations of 

sections beams formed after damage foundation, with the initial and boundary conditions, 

conjugations conditions of the beam’s parts, assumptions and limitations. Exact solution of 

the problem of forced vibrations loaded beam on an elastic foundation (partially or fully de-

stroyed) was obtained, using the Fourier method of separation of variables, the expansion of 

dynamic movements on the modes of free vibrations of the damaged beams and Duhamel in-

tegral. 
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1 INTRODUCTION 

An important problem in structural mechanics is a sensitivity analysis of load-bearing sys-

tems in structural rearrangements under load such as a sudden turn off the links, cracks, par-

tial damage, etc. Obtaining this information for real structures requires the development of 

special methods, because the problem can not be solved by universal methods. From the 

viewpoint of structural mechanics in these problems there is a need for calculating such sys-

tems as a constructively nonlinear with dynamic increments of strain and stress caused by 

sudden impacts beyond design basis. And if the design accidental situations are analyzed and 

regulated by the relevant documents, the situation is not beyond design basis and classified as 

responses to specific impacts on structural elements are insufficiently investigated. Engineer-

ing design and calculation methods that take into account the sudden restructuring and sudden 

damage to the structural systems, are few and far from being perfect. Absence and lack of 

knowledge about deformation and stress state of structural elements during dynamic processes 

initiated by a sudden damage, constrain the development of the theory and design techniques 

that take into account the possibility and potential consequences of beyond design impacts 

and ensure a high level of safety of their maintenance. As an example of work performed in 

the discussed direction, we note a number of publications [1-4] containing the results of the 

modeling of transient dynamic processes that occur in stressed beams at the sudden breakage 

of the support links, formation of transverse and longitudinal cracks, delamination and exfoli-

ation, change conditions interfaces parts construction and others. All these works are made in 

relation to the free beams, that are not supported by solid foundations. It is of theoretical in-

terest and practical importance of the spread of similar approaches to the beams on an elastic 

foundation. 

Beams on elastic foundation, columns, piles, supported by length – widely used building 

blocks are long and detailed study of objects in many fields of mechanics and construction. 

However, despite the abundance of books, articles and reports related to the dynamic prob-

lems of structural elements resting on all sorts of grounds, in the scientific literature insuffi-

ciently investigated cases where structure simply supported partly initially or lost some (or all) 

of the foundation  during  exploitation. The problem of vibration of a homogeneous beam, 

partially supported by the Winkler foundation, first staged by Doyle and Pavlovic in [5], 

which investigated with two cases of symmetrical bearing beam ends: hinges and free ends. 

The authors identified three cases occurring in different ranges of values of the natural vibra-

tion frequencies, associated with the mechanical characteristics of the beam and foundation. 

Solutions are obtained analytically. Numerical results are presented for the first five modes of 

natural vibrations. Further development of the problem was in Eisenberger’s at al work [6], in 

relation to arbitrary boundary conditions. The paper deduced the precise mass and stiffness 

matrix, developed by special finite elements, the displacement functions which are the solu-

tions of the equations for the static beam on an elastic foundation. Dynamic solution produced 

a finite element procedure. These results take the form of generalized frequency dependency 

of rigidity generalized system of "beam-foundation" for the first four forms of eigenfunction. 

Later, the results of [5] extended to partially embedded piles [7]. The paper Kukla [8] investi-

gated the free vibrations of a homogeneous beam, supported by the Winkler foundation with 

areas of piecewise constant stiffness which is given by the Heaviside function. The frequency 

equation was obtained by standard procedure satisfying the boundary conditions and the con-

ditions of conjugation parts. As a special case, one of the numerical examples describes the 

vibration of a cantilever beam, consisting of two sections, one of which is not supported by 

the elastic foundation. It is shown an effect of the partial support on the first four natural fre-

quencies. The paper Motaghian et al [9] provides a method for the analysis of natural vibra-
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tions of the beam, in part supported by the Winkler foundation. The approach is to provide a 

foundation  reactions as a some "external load", distributed along the length and depending on 

the desired deflection. Next eigenfunctions and "load" are expanded in Fourier series. The co-

efficients of the series are calculated by successive approximations by definite integrals, 

which bounds are the coordinates of the beginning and the end of the foundation part. The 

method is illustrated by calculations of natural frequencies of the beams with different bound-

ary conditions, location and length of the supported part. In Cazzani work [10] studied in de-

tail the natural vibrations of the beams, partially supported by an elastic foundation. Presents a 

number of exact solutions of the problem on the eigenvalues, in particular, the transcendental 

equations for the eigenfrequencies and their solutions. Analyzed three types of vibration 

modes, depending on the combination of the stiffness of the beam and the foundation. It is 

shown possibility of transfer of vibrations from one type to another with increasing number of 

forms of natural vibrations. 

Thus, the vast majority of work on the dynamics of interaction between the beam and the 

grounds devoted to the analysis of natural vibrations. Forced vibrations caused by various ex-

ternal forces are considered in cases where the calculated scheme of the system "beam-

foundation" in the process of loading is not changed. 

In this paper, it is assumed that static load applied to the beam, fully supported by the elas-

tic foundation, and only at some point part (or all) of the foundation suddenly collapses and 

the beam is set in motion, in which getting additional dynamic strain and stress. The aim of 

this study is to construct a mathematical model of transient dynamic processes in a loaded 

beam on an elastic foundation with the sudden occurrence of the defect foundation – total or 

partial destruction of it. 

The structure of the paper is as follows: in the first part is given an analysis of the stress-

strain state of the loaded beam with quasi-static fracture supporting its elastic foundation. De-

cisions of static problems are used in the second part to form the initial conditions of dynamic 

tasks and for comparison with the stress-strain state of the beam during the dynamic process 

initiated by the sudden damage to the foundation. 

2 STATIC STRESS – STRAIN STATE OF THE BEAM SUPPORTED ON THE 

ELASTIC FOUNDATION  

2.1 Beam fully supported on the elastic foundation 

Consider the bending of the beam with stiffness EI, resting on the Winkler foundation with 

stiffness k, rigid clamped at both ends, under the action of uniformly distributed load of inten-

sity q (Figure 1 a). The solution of the problem is carried out in Cartesian coordinates related 

to the beam axis. All movements and linear dimensions attributed to the length of the beam L. 

The deflection of the beam of the beam in the dimensionless variables and parameters de-

scribed by the equation 

 ,4 4

4

4

qw
d

wd
ст
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The general solution of the inhomogeneous equation (2.1) in the case of clamped of the 

ends
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Figure 1: Beam on elastic foundation: a) completely simply supported on a foundation,  

b) diagrams of deflections and bending moments, c) simply supported on the part of foundation. 

The function (2.2) is then used as the initial condition of the dynamic process resulting 

from the total or partial destruction of the foundation. 

2.2 Beam partly supported on an elastic base 

It is assumed that the formation of a defect – the removal a part of foundation of the loaded 

beams – was slowly (quasi-statically), i.e. without inertial forces. In this case, there is the 

problem of calculating the beam consisting of two coupled segments one of which is support-

ed by an elastic foundation, the other – free (Figure 1 c). 

Local coordinates are entered for each segment 

 1     and    ,2 v      
1 .

L
v

L
  

Let us consider each segment bend sequence. 

1) 1st segment bend described by the equation 
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the general solution (2.3) has the form 
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We introduce: 

– the vector of state of the 1
st
 segment )( 11 W  

 ;)()()()()( 1111111111  wwwwW   

– the vector of initial parameters 10W  
 ;1010101010 wwwwW   

– functional matrix )( 11 V  
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– load vector )( 11 qVq  
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Then the state in an arbitrary section of the 1st segment describes the matrix equation 

 ).()()( 11101111  qVqWVW   (2.5) 

The state vector of the end 1
st
 segment, with v1  

 ).()()( 11011 vVqWvVvW q  (2.6) 

2) 2nd segment bend described by the equation 
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The general solution of equation (1.7) has the form 
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the initial parameters of the 2nd segment. These 

equations are also conditions of conjugation segments. 

We introduce: 

– the vector of state of the 2nd segment )( 22 W  

 ;)()()()()( 2222222222  wwwwW   

– the vector of initial parameters, the components of which are expressed through the compo-

nents of the vector of initial parameters of the previous one, the 1
st
 segment )(1 vW  

 ).()()( 1101120 vVqWvVvWW q  (2.9) 

– functional matrix )( 22 V  
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– load vector )( 22 qVq  
 .)()()()()( 2322212022  TTTTqVq q   

Then the state of the 2nd segment described by the matrix equation 
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Thus, the state of the beam at both segment is expressed through the initial parameters of 

the 1st segment at 01  . In this case, two parameters known 
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equation (2.10) in expanded form for v12  taking into account the known boundary con-
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From the matrix equation (2.11) we obtain a system of two algebraic equations for the un-
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known 10w 
 
and 10w 
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Now dimensionless deflections and bending moments on the areas determined by depend-

encies 
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Figure 2 shows the relationship (2.13), respectively, the largest deflection maxw  and bend-

ing moments maxw  with the generalized parameter of rigidity of the system "beam-foundation" 

4
44

KL

EI
    for a number of values of the parameter ,1;75,0;5,0;25,0;0v  characteriz-

ing the degree of damage to the foundation: 1v  – fully justified, 0v  – absence of a foun-

dation. The calculations correspond to a single dimensionless load 

 

 

 

 

 

 

 

 

 
 

a)                                                                                      b) 

Figure 2: The dependence:  

a) the largest deflections; b) the largest bending moment in the right clamp – from length damage area. 

 

Figure 3 shows the reduction (as a percentage of the free beam) the largest bending mo-

ment in the beam at the reinforcement of its foundation of varying length and relative stiffness. 
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Figure 3: Effect of the length and rigidity to the foundation on value  

of the largest bending moment in the right clamp of beam. 

3 FREE VIBRATION BEAM SUPPORTED ON AN ELASTIC FOUNDATION 

To date, there are a number of works devoted to the study of dynamic processes caused by 

the sudden formation of defects in beams and plates. In particular, in papers [2-4] considers 

the transition dynamic process caused by the sudden formation of transverse cracks in a load-

ed beam. Beam modeled conjugation of two segments connected by a torsion spring whose 

stiffness is determined by the depth of cracks. One of the initial conditions is the static deflec-

tion of the intact beam. In [5-8] studied the dynamic process in the loaded component beams 

arising during sudden longitudinal stratification, caused break shift links in the seam. In [9-11] 

considered vibrations plates with a sudden change of support conditions, caused by partial 

separation of support links. In [12-14] solved the problem of the vibrations of the beam when 

it is sudden partial destruction. In [4, 6, 11, 16] studied transients dynamical process caused 

by sudden transformation of the internal structure of rod systems: coupling and bearing condi-

tions their elements. In [17] is modeled by a sudden breaking of the reinforcing bar and the 

longitudinal vibrations caused by this defect. Note ,that in all these studies considered forced 

movement of the beam (plates) under the load ,produced by expansion into an infinite series 

of the initial state and the external load on the damaged natural vibration modes of the beam 

(the plate), and using the Duhamel integral. 

It is practically important to develop methods of analysis of transient dynamic processes in 

the beams on an elastic foundation, initiated by the sudden operational damage of foundation: 

in the simplest case of total or partial destruction of it. Manifestations of structural nonlineari-

ty, i.e. changes in the calculation scheme loaded beam on an elastic foundation, and the con-

sequences of them – are not described in the prior literature. 

In this part, an algorithm for determining the forms and frequencies of free vibrations of 

bending beams, in whole or in part simply supported on an elastic Winkler foundation. In its 

construction were used the approaches, the effectiveness of which is shown in the above-cited 

work: method of initial parameters, the vectors of state and the initial parameters, the matrix 

of influence of initial parameters and other. Eigenfunctions and eigenfrequencies of free vi-

brations are important dynamic characteristics of the "beam – foundation" system and used to 

solve inhomogeneous differential equations, describing forced vibrations.  

 

3.1 Free vibration beam partially supported on the elastic foundation 

Consider free transverse vibrations of a continuous beam (Figure 1 c) Deflections of the 

beams in the cross – sections denoted х1 and х2, respectively, v1 and v2. Without reducing the 

generality of the constructions it is supposed to be specific rigid clamping beam ends. Differ-

ential equations of natural vibrations of the beam segments are integrated separately, and in-
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tegration constants are determined from the boundary conditions and the conditions of conju-

gation of segments. 

3.1.1. Free transverse vibrations of the 1st segment 

Natural vibrations of the beam in the area 0 ≤ ξ1 ≤ v described by differential equations of 

the form [10] 

 

4 2
41 1

14 2

1

4 0,
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where we have introduced the dimensionless variables and parameters 
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Putting free harmonic vibrations, we divide the variables in the equation (3.1) the represen-

tation 

 1 1 1 1( , ) ( )sin ,w W     (3.2) 
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    the dimensionless natural frequency of transverse vibration (natural 

frequency parameter); 
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2
 – dimensional frequency. 

Substituting (3.2) into (3.1) gives the equation forms its free vibrations of segment 
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where 
A

k


 0 – parameter having a dimension of frequency [1/c], and called "convention-

al", which compares the vibration frequency ω investigated beams. 

We are looking for the solution of equation (3.3) Euler substitution  

 1

1 ,
n

W Ce


  (3.4) 

where C and n – constants to be determined. 

Substituting (3.4) into (3.3), we obtain the characteristic equation for the differential equa-

tion (3.3)  
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Multiplier in brackets depending on the value 
0


 can be positive (

0


˂ 1), negative (

0


˃ 1) 

and zero (
0


=1). 
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Let 
0


˂ 1. Then the roots of the equation (3.5) can be represented in the form 

  ,1 1 in j    (j=1,2,3,4), 

where .1
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In this case, the natural vibration shape function defined by [10] 
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In this case, the roots of the characteristic equation 
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and forms of natural vibrations determined by the function 

        1 1 10 4 1 1 10 3 1 1 10 2 1 1 10 1 1 1 ,W w K w K w K w K           (3.10) 
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Their properties 
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,21 KK  ,32 KK  ,43 KK  1

4

14 KK    and        ,0000 321  KKK   .104 K  

Finally let
 

1
0





. Then the equation (3.3) takes the form 

 1

1 0VW   (3.11) 

and deflection function  1 1W  obtain the successive integration of the equation (3.11) using 

the initial parameters 
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– the vector of state of the first segment: 1 1( ) :W 
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Then the state of the first segment describes how the matrix equation 

 
1 1 1 10( ) ( ) .W V W   (3.13) 

The vector of state 1 1( )W  at the end of the first segment 

 
1 10( ) ( ) .W V W   (3.14) 

3.1.2  Free transverse vibrations of the 2nd segment. 

Free transverse vibrations of the segment described by the equation [10] 

 .0
2

2

2

4

2

2

4













ww
 (3.15) 

Separating the variables, we obtain 

      sin, 2222 Ww  , (3.16) 
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 2

2 2 2 2( ) ( ) 0,IVW W   
   

2 2

2 ,
r

W Ae


  (3.17) 

where 
24

2 r ; 221 r ; 22 2r   ; 223  ir ; 224 r ; 
2 .   

The general solution of equation (2.17) has the form 

         ,2212022220223202242022  KwKwKwKwW   

where 


20202020 ,,, wwww – the initial parameters of the second segment. 

We introduce: 

– the vector of state of the second section:
 )(W 22   

 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ;W W W W W        

– the vector of initial parameters:
 20W

 

 20 20 20 20 20 ;W w w w w    

– influence function matrix: )(V 22   

4 2 2 3 2 2 2 2 2 1 2 2

4

2 1 2 2 4 2 2 3 2 2 2 2 2

2 2 4 4
4 4 2 2 2 2 2 1 2 2 4 2 2 3 2 2

4 4

2 3 2 2 2 2 2 2 1 2 2 4 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) .

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

K K K K

K K K K
V

K K K K

K K K K

       

        


         

         



 
 
 
 
 
 

 

Then the state of the second segment describes the matrix equation 

 
2 2 2 2 20( ) ( ) .W V W   (3.18) 

From conditions of conjugation of segments areas has  

1 2( ) (0)W W 
  
or  1 10 2 20( ) (0)V W V W  . 

Given that 2 (0)V
 
– the identity matrix, we obtain 20 1 10( )W V W

 
and, consequently, from 

(3.18) we have 2 2 2 2 1 10( ) ( ) ( ) .W V V W    

Those: state at both segments is determined by the parameters of the first segments. 

State at the end of the second segment when
 2 1    determined by the vector 

2(1 )W 
 

 2 2 1 10 21 10(1 ) (1 ) ( ) (1 , ) .W V V W V W          (3.19) 

Here the matrix of influence 21 2 1(1 , ) (1 ) ( ).V V V       

Two initial parameter known .01010  ww  

There are also known two components of the vector of state at the end of the second seg-

ment 

2(1 ) (1 ) 0.W W      

Substituting these values in the matrix equation (3.19), written in block form, we obtain 
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13 1411 12

23 2421 22

1031 32 33 342

1041 42 42 442

0 0

0 0
.

1

1

c cc c

c cc c

wc c c cW v

wc c c cW v

         
         

                                              

 

Whence  

 
13 14 10

23 24 10

0.
c c w

c c w

  
    

  (3.20) 

The frequency equation is obtained by equating to zero the determinant 

 
13 14

23 24

0,
c c

c c
  (3.21) 

where  

4

13 4 2 2 1 3 2 3 1 2 2 4 1 1 1 2 1 1( (1 )) ( ) ( (1 )) ( ) ( (1 )) ( ) ( (1 )) ( ).С K K K K K K K K                     

14 4 2 1 1 3 2 2 1 2 2 3 1 1 2 4 1( (1 )) ( ) ( (1 )) ( ) ( (1 )) ( ) ( (1 )) ( ).С K K K K K K K K                  
 

4 4

23 2 1 2 2 1 4 2 3 1 3 2 4 1 1 2 2 1 1( (1 )) ( ) ( (1 )) ( ) ( (1 )) ( ) ( (1 )) ( ).С K K K K K K K K                      
4

24 2 1 2 1 1 4 2 2 1 3 2 3 1 2 2 4 1( (1 )) ( ) ( (1 )) ( ) ( (1 )) ( ) ( (1 )) ( ).С K K K K K K K K                     

Figure 4 shows the dependence of the two frequencies of the free vibrations of the beam 

from relative stiffness of grounds for different sizes of the damaged area of the foundation 

 

 
a) 

 

 
b) 

Figure 4: The natural frequencies of flexural vibrations damaged beam: a) – first, b) – second. 

4 FORCED VIBRATIONS BEAM  PARTIALLY  SUPPORTED ON THE ELASTIC 

FOUNDATION 

Forced vibrations of the beam consisting of two segments, formed after the partial destruc-

tion of the foundation, described by corresponding non-homogeneous equation 
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а) b) 

 
Figure 5: Forms of free vibration  of the beam: a) – first , b) – second. 

 

Expending movement wi(i,) (i = 1, 2) in the forms of natural vibrations (3.13) and (3.18), 

respectively, with coefficients in the form of well-known functions of time using orthogonal 

forms of natural vibrations, satisfying the initial conditions 

 0), ( = ,0) (
0,

iii

i







 i

cт

w
ww  (4.2) 

obtain function of deflection on segments [11] 
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 (4.3) 

where 1 2, 1 .       

 

5 A NUMERICAL EXAMPLE 

Reinforced concrete beam length L = 6,7 m, rectangular cross-section with sides of width 

b = 0,25 m, height h = 0,18 m, moment of inertia of the cross-section of the 41,215 10I   m
4
, 

Young's modulus of the beam material .1005,3
2

10

m

N
E 

 
Material of foundation – a ballast 

layer of crushed stone with module .751
m

MPa
K   Coefficient of stiffness of foundation 

.1075,18 6 PabKK i   Parameter .104
4


EI

KL
 Setting ends beams are clamped. The beam 

is loaded with a uniformly distributed load of intensity 
m

kN
q 5,13 (brick wall height of 3 m, 

a length of 6.7 m, a thickness of 0.25 m, the proportion of the material 
3

18
m

kN
).  

In the initial (unstrained) state the maximum bending mo-

ment
3

max0 0,099 , , .
ML qL

М q M q
EI EI

  
 
Normal stress .39

2cm

kg
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Table 1 contains the ratios 
.

.

.

st

quasi

quasi
M

M
K   

 

and 
.

.
.

st

dinam
dinam

M

M
K   increasing the maximum 

bending moment in the beam at different degrees, respectively, quasi-static and sudden dam-

age to the base 
 

The degree of damage,1   1 0,75 0,5 0,25 0 

Quasi-static, .quasiK  1 1,41 3,53 6,56 8,33 

Sudden, .dinamK  1 1,57 4,52 11,29 14,53 

Table 1: Splash of max bending moment at the foundation damage. 

6 CONCLUSIONS  

A mathematical model of free transverse vibrations of simply supported beam partially on 

an elastic Winkler foundation. The beam appears conjugation of two segments, one of which 

is fully supported by the foundation, the other is free. The spectrum of the natural frequencies 

of the beam on the foundation of partial damage frequency is determined by the equation ob-

tained procedure similar to that used in the finite element method (FEM) in the construction 

of finite element stiffness matrix. We introduce four component vectors of the state – the di-

mensionless deflection, turn the cross-section, the bending moment and shear force. In matrix 

form obtained according to the state vectors in an arbitrary section of the vector of initial pa-

rameters. Vectors of state presented a set of blocks, including kinematic and power parame-

ters. This matrix is the influence of the initial section of the cell becomes final, always 4×4. 

The frequency equation is obtained by equating the determinant of this matrix is zero. The use 

vectors of state, and the initial parameters of the procedure reduces the influence of the matrix 

to the fourth, with any number of mating parts of the beam, which significantly reduces the 

complexity of the calculations. 

As a result, we obtained the relationship between the natural frequencies, the mechanical 

characteristics of the beam and the foundation and damage parameters: the length of the dam-

aged portion of the foundation and its localization in the overall length of the beam. 
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Abstract. Viscous dampers are energy dissipation devices widely employed for the seismic 

control of structures. The performance of systems equipped with viscous dampers has been 

extensively analyzed by employing deterministic approaches. However, these approaches ne-

glect the response dispersion due to the uncertainties in the input as well as in the structural 

system properties. Some recent works highlighted the important role of these uncertainties in 

the seismic performance of systems with linear or nonlinear viscous dampers. The present 

study focuses on the uncertainty in the damper properties and it aims at evaluating its influ-

ence on the probabilistic response of the damped system. In particular, the variability of the 

damper properties is assumed to be constrained by the tolerances allowed in qualification 

and production control tests. A preliminary study on the damper response is carried out to 

relate the constitutive damper characteristics to the parameters controlled in the experi-

mental tests and to evaluate the consequences of damper parameter variations on the dissipa-

tion properties of the device. In the subsequent part of the study, the response hazard curves, 

providing the relation between the values of the response parameters of interest and the rele-

vant yearly exceedance probability, are evaluated. In the analyses, a simplified structural sys-

tem is considered, and the Subset Simulation (SS) algorithm is employed together with the 

Markov Chain Monte Carlo method to achieve a good estimate of small probabilities of 

exceedance. A sensitivity analysis, considering the expected variations in the damper proper-

ties, is finally carried out by employing the Augmented SS method to study the influence of the 

device acceptance ranges on the hazard curves. 

5550



Andrea Dall'Asta, Laura Ragni, Fabrizio Scozzese, Enrico Tubaldi 

 

1 INTRODUCTION 

Supplemental energy dissipation systems are widely employed for the seismic control of 

new and existing structures. In particular, viscous dampers provide an efficient tool to dissi-

pate the seismic input energy into heat, by reducing both the displacement and force demand 

in the structures [1, 2]. To date, the performance of systems equipped with viscous dampers 

has been extensively analyzed by employing deterministic approaches neglecting the response 

dispersion due to the uncertainties in the input as well as in the structural system properties.  

However, these deterministic approaches provide only an approximate assessment of the 

seismic performance [3]. Some recent works have highlighted the important role of the uncer-

tainties in the seismic performance of structures equipped with viscous dampers [4, 5, 6, 7] 

and the different propagation of ground motion uncertainties in systems equipped with linear 

or nonlinear viscous dampers [8, 9, 10]. The present study focuses on the influence of the un-

certainties in the damper properties. In the approach suggested by codes and followed in prac-

tical design [11, 12, 13, 14], this uncertainty is bounded by the tolerances allowed in the 

qualification and production control tests. Consequently, design procedures usually involve a 

safety check based on the responses obtained by upper and lower bounds of the damper prop-

erties, chosen coherently with the test tolerances. However, the actual level of safety provided 

by the suggested design procedures is a problem requiring further investigation, as pointed out 

in [10], and the relevance of this topic is mainly due to the low robustness inherent to the 

structure-dampers system, where the unexpected dissipative device failure can lead to a pro-

gressive collapse of the potentially non-ductile structure. 

The present paper aims at evaluating the influence of these allowed tolerances in the prob-

abilistic performance of the system, by providing useful information on the exceedance prob-

ability of the response parameters of most interest for the performance assessment (as 

described by response hazard curves) and by using an approach to the problem that is more 

efficient and reliable with respect to those used in previous studies on the same topic.  

A preliminary analysis of the damper response is developed to relate the damper constitu-

tive characteristics to the parameters controlled in the experimental tests and to analyze the 

variation in the dissipation properties of the device.  

In the subsequent part of the study, response hazard curves are developed by employing a 

simplified model of the structural system. These curves provide the relation between the val-

ues of the response parameters of interest and the relevant yearly probability of exceedance. A 

sensitivity analysis, considering the expected variations in the damper properties, is then car-

ried out to assess the influence of the device acceptance ranges on the hazard curves. The re-

sponse measures considered include the maximum values of the deformation, related to the 

damage of the structural system and the damper failure [15], and the maximum values of the 

relative velocity, related to the damper force. The model uncertainties considered in the appli-

cations concern the earthquake scenario parameters and the ground motion characteristics, 

while other uncertainties concerning the structure response are neglected [16, 17]. The numer-

ical applications, involving both linear and nonlinear viscous dampers show that tolerances 

allowed in the tests provide notable differences among the observed values of the response 

parameters of interest. 

It is noteworthy that the probabilistic response of the system was analyzed in the previous 

studies by employing approaches consistent with the PEER framework [18]. This latter is a 

widely employed framework that permits a separation of the tasks related to the seismic haz-

ard, structural vulnerability and expected losses assessment. The application of the framework 

is usually based on a description of the seismic input in terms of a small set of real records.  
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This approach does not permit to achieve an accurate estimate of small failure probabilities. 

For this reasons, in this study the Subset Simulation algorithm with Markov Chain Monte 

Carlo method are employed to obtain a good estimate of small probabilities of exceedance 

[19]. Coherently with this approach, the Augmented SS method is used for the sensitivity 

analysis [20]. This simulation techniques require a seismological stochastic model and the one 

proposed in [21, 22] has been used for the analyses. 

2 DAMPER RESPONSE SENSITIVITY 

The response of viscous damper is usually described by an exponential constitutive law in 

the form [23, 24] 

  vvcFd sgn


  (1) 

where Fd is the measured force and c and are two constitutive parameters: the former is a 

multiplicative factor while the latter describes the nonlinear behaviour (=1for the linear 

case).  

In a sensitivity study aiming at evaluating the consequences of variations of the damper pa-

rameters on the system performance, these two parameters could be assumed to vary freely.  

However, the experimental procedure for the production controls suggest a different ap-

proach to the sensitivity analysis, involving characteristic parameters directly linked to the 

experimental test results, as explained hereafter. In general, the design is based on a target 

value of the maximum velocity v0 attained at a circular frequency 0,test relevant to the seismic 
response, and the production control tests are oriented to check the damper behavior at this 

design condition. More precisely, sinusoidal cycles simulating the design conditions, i.e., the 

displacement histories    tvtu testtest ,0,00 sin/  , are imposed to the damper and the corre-

sponding maximum damper force Fd,test is measured. Some tolerance is allowed in the force 

value and acceptance criteria usually requires that the difference between the measured value 

of the maximum force Fd,test  and the expected (design) value Fd0,test  is lower than +/- pFd0,test 

[11, 12, 13]. The safety check is coherently carried out by considering the worst conditions 

compatible with the acceptance criteria [11, 12, 13], by adopting a lower/upper bound ap-

proach. 

In this context, rather than investigating the system response by considering a free varia-

tion of the constitutive parameters it is more useful to link the variability of the response to 

the outcomes of the acceptance tests. Thus, in this study the response is investigated by as-

suming p, describing the acceptance tolerance pFd0,test, as a system parameter and by introduc-

ing a second parameter   to identify the different pairs (c,) providing the same force 

variation pFd0,test. The pairs (c,) satisfying the equality constraint lie on a curve, whose par-

ametric expression is made explicit. Let c0 and 0  denote the reference values assumed in the 

structural design. A variation  ̂,ĉ  of the constitutive parameters provides the following var-

iation testdF ,0
ˆ  of the maximum force testdF ,0  expected in the sinusoidal test  

   


















 1

ˆ
1ˆ ˆ

0
0

,0,0,,0


v
c

c
FFFF testdtestdtestdtestd  (2) 

The equation clearly shows that both ĉ  and ̂

 

contribute to this variation and the previous 

expression can be rewritten by introducing the tolerance parameter p as 
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p  (3) 

It is evident (Figure 1) that the same variation p can be obtained by different pairs  ̂,ĉ  

and the constraint between these parameters can be described by introducing the parameter   

  
 

1
1

,ˆ

0

0 






v

p
cpc  (4) 

    ,ˆ p  (5)  

so that the pair (p,) provides a representation of the response variability that is alternative to 

the representation provided by  ̂,ĉ . The condition =0 coincides with a force variation due 

only to a variation of the response scale factor ĉ =p, whereas the other values describe a force 

variation p involving a combination of ĉ  and ̂ . 

To complete the preliminary analysis of the damper variability effects, a linearized form of 

the previous relationship between the constitutive parameters is derived. This form can be of 

interest in the sensitivity analysis of problems where eqn(1) is the only source of nonlinear 

behaviour and the local response variation can be conveniently approximated by analytical 

linear operators [25, 26, 27]. The relationships corresponding to eqns(3-5) are 

  ̂ln
ˆ

0
0

v
c

c
p   (6) 

   00 lnˆ vpcc   (7) 

  ˆ  (8) 
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Figure 1: Variations allowed for the damper response. 

Figure 2 shows the parametric curves containing the pairs  ̂,ĉ , evaluated for 3 values of 

the force variation factor p. The 3 cases reported correspond to p = - 0.3, p = 0.0, p = + 0.3.  

These curves are obtained by intersecting the surfaces provided by eqn.(3) (nonlinear ex-

pression) and by eqn.(6) (linear approximation) with horizontal planes identifying the force 

variations. The results concerning the case of linear viscous damper (=1) and nonlinear vis-

cous damper with =0.2 are reported respectively in Figure 2a and Figure 2b. It can be ob-
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served that the differences between the results obtained by using the nonlinear (exact) and the 

linear approximation become negligible in the case of the nonlinear damper. In this latter case, 

a notable percentage variation of   is linked to very small variation of c .  

The energy dissipation properties are analyzed and reported in Figure 3. The energy dissi-

pated in a cycle at the design conditions is denoted by 0dW . The corresponding energy dissi-

pated in the same test by a damper with different properties depend on p  and   and it is 

denoted by dW . Figure 3 shows the values of the ratio 0/ dd WW  obtained by varying the pa-

rameters. The solid lines correspond to the results measured for fixed values of the force fac-

tor p . The cases 30.0,15.0,0,15.0,30.0 p  are reported and the points of these curves 

describe the variations relevant to different pairs  ̂,ĉ . Dashed lines connect the points with 

the same variation of c . Results of Figure 3a refer to a linear viscous damper and Figure 3b 

refers to a nonlinear viscous damper with 2.0 . Given a value of the force factor p , the 

energy dissipated changes significantly by varying the pair  ̂,ĉ . Higher values of    

result in a reduction of the dissipative properties and this trend is more evident in the linear 

case. The discussed trend of the dissipation properties are valid in the neighborhood of the 

design conditions and different trends are observed for cycles with larger (or smaller) ampli-

tudes which can be representative of the response for seismic inputs with intensity levels 

higher (or lower) than the design one.  

  

a b 

Figure 2: Linear/nonlinear p-cd relationships for different p values (-30; 0; +30 %): a) = 1.0;  b) = 0.2. 
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Figure 3. Dissipated energy variation in cyclic paths (amplitude 0.0454m, circular frequency 2) 
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3 SEISMIC RESPONSE SENSITIVITY 

3.1 Seismic performance 

The seismic assessment and design of structures is usually carried out by evaluating via 

structural analysis the statistics of one (or more) response parameter of interest D and by en-

suring that the P[D > d
*
] of exceedance of a fixed threshold d

* 
is lower than an acceptable 

value P
*
. The random variable D can be expressed in terms of the ratio between a perfor-

mance demand and the relevant capacity, so that a unitary threshold implies failure at ultimate 

condition. This way, D accounts for the uncertainties in the loading actions, in the model and 

the capacity. Typical response parameters employed in the context of the performance as-

sessment of buildings with viscous dampers are: inter-storey drifts, absolute accelerations at 

storey, total base shear, forces on dampers, strokes on dampers.  

Code design and assessment procedures aim at satisfying the reliability constraint in an in-

direct way, as they evaluate a conventional demand measure d0 < d
*
 which is obtained from 

loadings of intensity whose exceedance probability P0 is lower than the acceptable probability 

P
* 
[3]. Amplification factors are usually considered to pass from d0 to d

*
. 

In the specific case of the seismic analysis of buildings equipped with dampers, the design 

is carried out by evaluating the response for seismic events with a mean annual frequency of 

occurrence varying from 1·10
-2

 (service limit state) to 2·10
-3

 (ultimate limit state) [11, 28, 29] 

while the safety target requires that the probability of failure is lower than 10
-5

 -10
-6 

[11, 29].  

In order to relate the design condition, described by the pairs (d0, P0),  to the effective sys-

tem reliability, described by the couple (d
*, 

P
*
), it is useful to evaluate the response hazard 

function  

    d>DPdGd   (9) 

associating a generic value of the response parameter threshold d to the corresponding proba-

bility of exceedance. The conventional design value d0 can be linked to the response value 

associated to a given probability of exceedance by introducing the inverse function GD
-1

(P) 

and defining the ratio 

  
 

0

1

d

PG
P d



  (10) 

This ratio can be interpreted as the amplification factor for the design value d0 providing 
 

the response parameter value corresponding to the desired probability of exceedance. 

Design procedures generally do not involve a probabilistic analysis but aim at providing 

the value of d0 by means of a deterministic analysis. For example, the seismic design is usual-

ly based on the description of the seismic input in terms of a pseudo-acceleration response 

spectrum and a reduced set of (artificial or natural) ground motions accounting for the record-

to-record variability effects. The conventional design value of the response d0 is obtained as 

the mean of the maximum response values. This design approach introduces further sources 

of approximation in the evaluation of the system reliability which are not addressed in this 

work. 

3.2 Response hazard curve evaluation 

Let X  be the vector of the random variables of the system lying in the domain  , includ-

ing both the variables describing the ground motion, for which a stochastic model is required, 
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and the structural system uncertainties. The system parameters are described by the vector 

 , collecting the damper parameters p  and  , as discussed in the previous section.  

The failure corresponds to the region of response events such that 

    d>xgxdG dd  |:|  , having denoted with  |xgd  the response function provid-

ing the value of the parameter d , once the sample x  and the parameters  are assigned. The 

response hazard function can be obtained as 

      dxxpxIdG xdd 


||   (11) 

where  xpX  if the probability density function (PDF) of the system variables and  

 |xId  is the indicator function, such that 1dI  if  dGx d  (equivalently   dxgd  ), 

otherwise 0dI . In the following, it is assumed that the  xpX  is not influenced by the pa-

rameters  , although the formulation can be extended to the general case  xpX
 [20]. 

The sensitivity problem is approached by considering the augmented reliability problem 

proposed in [20], i.e., by considering   as a fictitious random variable with arbitrary PDF 

 p . By this approach, the response sensitivity can be estimated with the same simulations 

employed for estimating the reliability, thus significantly reducing the computational effort 

with respect to other approaches. 

The response hazard function can be obtained through the Bayes’ Theorem in the form 

  
 
 

 dG
dp

dG dd







 |
|   (12) 

where 

          
dxdpxpxIdG xx dd |  (13) 

and  

  
   

 dG

dpxI
dp

d

x d 





|
|


  (14) 

In this formulation, both X and   are random variables and the probability of exceeding 

the threshold d is a rare event that can be efficiently evaluated by the Subset Simulation-

Markov chain method [19].  

3.3 Uncertainties description 

The seismic event is described by defining a seismic source characterized in terms of mo-

ment magnitude M and source-to-site (hypocentral) distance R. The description of the uncer-

tainty associated with the seismic input is completed by the specification of a stochastic 

ground motion model, considering the properties of the construction site. The intensity of the 

seismic event is described by the moment magnitude M and its uncertainty is modeled by the 

Gutenberg-Richter law defined on the interval  MAXmm ,min  and corresponding to the fol-

lowing PDF of M given an earthquake event [30]:  

  
MAXmm

m

M
ee

e
mp















min

   MAXmmm ,min  (15) 
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where  b10ln  is a parameter related to the number of the expected earthquakes per an-

num with magnitude exceeding m . More precisely, it is assumed that the occurrence of an 

event with mM   is a Poisson process with exceedance frequency   bmam 10  and no 

event is expected for MAXmM  . It is also assumed that no significant response is observed 

for 
minmM  , so the response hazard function, referred to a time interval one year long, can 

be obtained as       min|1 min m>Md>DPedG
m

d


 by starting from the outcomes of 

the subset procedure  min| m>Md>DP .  

The ground motion is generated by starting from a white noise  tw , described by the N-

dimensional vector w  of values iw  assumed at the instant titi  , where t  is the finite 

time interval assumed for the numerical integration. 

Following the Atkinson-Silva model [21, 22], the ground motion is obtained by modulating 

in time the white noise by means of the function  te , which yields the time-function 

     twtetz  . The amplitude and the frequency content are obtained by multiplying its Fou-

rier transform  fz  (normalized to have a mean square amplitude of unity) by the radiation 

spectra  fAmod , where  fA  is a deterministic function of the frequency f while mod  is a 

random scaling factor describing the amplitude variability [31]. The final ground motion ac-

celeration  ta  is obtained by the inverse Fourier transform of    fAfz  . The time modulat-

ing function  and the radiation spectra A depend on the moment magnitude, the distance and 

the local characteristic of soil. The scaling factor mod  is a random variable with lognormal 

distribution and unit median value. Further details on the ground motion model are reported in 

Appendix 1. 

The set of random variables  w,,, rmx   consists of the three scalar quantities ,, rm  

and the vector-valued quantity w  whose dimension N  depends on the discretization of the 

time interval. 

The uncertainties on the structural system are not considered in this work, given their gen-

erally low influence on the probabilistic response when also the seismic randomness is taken 

into account [16, 17]. 

4 STRUCTURAL RESPONSE 

The structural system considered in the study consists of a linear S-DoF system with period 

sT 0.1  and damping rate 05.0 . Two added dissipative systems are analyzed, the former 

is a linear system with 0.10   and the latter is a nonlinear system with 2.00  .  

For what concerns the seismic scenario, the following values have been assumed for the 

seismic hazard parameters 5.4a , 0.1b , 5min m , 8MAXm . An hypocentral distance 

kmR 20  is assumed and the soil conditions are described by Vs=310 m/s. For the time dis-

cretization, a time-interval st 02.0  is considered, corresponding to N=3750. 

The linear system viscous constant c has been designed to add a damping ratio 3.0d  

whereas the nonlinear system viscous constant has been calibrated to provide similar per-

formances at the design conditions. More precisely, the equivalence has been established by 

considering the value assumed by the maximum displacement mean hazard curve 0( )UG u  at 

0P  as performance indicator. The two systems are characterized by very close values of 0u  

for the probability of exceedance )( 00 uGP U =0.0021 (10% within 50 years); this probability 

value is usually assumed for the seismic design at ultimate limit conditions [11, 28, 29]. 
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Table 1 reports the viscous damper properties ( 0  and the 0c ) and the performances for 

the linear and nonlinear damped system at the design conditions. The response parameters 

considered for the performance comparison are: the maximum relative displacement U (con-

trolling the construction damage and the damper failure), the maximum relative velocity V  

and the maximum force on the damper dF  (controlling the damper failure), and the maximum 

absolute acceleration A  (controlling the damage of acceleration sensitive facilities). 

 

Viscous Properties  1.00 0.20 

c0/m     [g-s

/m


] 3.77 0.94 

Performances u0         [m] 0.037 0.037 

v0         [m/s] 0.276 0.285 

Fd0        [N] 208 146 

a0             [m/s
2
] 1.799 1.896 

 

Table 1: Properties of the damping systems and relevant response at the design conditions. 

Subset simulation analyses are performed to estimate the reliability of the damped systems 

for both the linear and nonlinear viscous dampers case. The first part of the next section com-

pares the reliabilities of the reference systems (corresponding to the nominal damper proper-

ties), whereas the second part shows the effects of the variability of the damper viscous 

properties on the reliability. The probabilistic description of the system response is given in 

terms of hazard curves (complementary cumulative distribution function CCDF), providing 

the annual probability of exceedance for each relevant response parameters.  

4.1 Probabilistic response at the reference conditions 

In evaluating the seismic reliability of the systems at the reference conditions 

( 0,0  p ), the set of uncertain parameters consists of those characterizing the earthquake 

excitation, i.e., magnitude, white-noise components and the model parameter mod. As stated 
before (in Section 3.0), structural system parameters are assumed to be deterministic. 

In order to estimate exceedance probabilities up to 10
-6

, subset simulations are carried out 

using 6 conditional levels (with threshold levels identified by a percentile equal to 10%) with 

600 samples/level and a total number of samples equal to 540x5 + 600 = 3300. The averaged 

result of 10 independent simulations are presented. 

Because of the adopted design criteria, the linearly and nonlinearly-damped systems show 

the same displacement 0u  at the probability of exceedance 0P  while the other response pa-

rameters exhibit different values. The ratios between the demand parameters and the reference 

values corresponding to the design conditions are reported in the Figure 4, so the unit values 

are located at the probability of exceedance P0 and the values reported in the horizontal axis 

coincide with the ratio introduced in eqn.10. The maximum response parameters correspond-

ing to the probability of exceedance 10
-6

 are highlighted in the figure by the coloured dashed 

lines, and relevant numerical values are collected in Table 2. 

The linear and nonlinear damped systems exhibit different probabilistic responses within a 

range of exceedance probabilities up to 10
-6

. In fact, the exceedance probabilities of the 

maximum displacements and velocities are higher for the linear system than for the linear sys-

tem, for values below the design value, and lower for values higher than the design value. An 

opposite trend is observed for the damper force, with the linear system requiring an higher 

strength capacity than the nonlinear one for rare seismic events. The accelerations show also a 
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different trend and the performance required by the nonlinear system are generally higher than 

those required by the linear system both for frequent and rare events. Qualitative trends ob-

served are in agreement with results presented in previous studies obtained by conditional 

based approaches (PEER framework) [8, 10]. 
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Figure 4. Normalized response hazard curves for linear (=1.0) and nonlinear (= 0.2) dampers. 

 

 1.00 0.20  

U(P


) 7.20 14.32  

Fd(P


) 6.93 1.65 

V(P


) 6.64 12.54 

A(P


) 6.86 11.39 

 

Table 2: Numerical values of d at P


. 

4.2 Effect of viscous damper properties variability 

In this section, the influence of the variability of the viscous properties on the hazard 

curves is analyzed. The reference response evaluated in the previous section is compared with 
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the response obtained with the upper and lower bound of variations allowed in control pro-

duction tests, as discussed in Section 2. The two limit values 15.0p  are assumed for the 

force testdF ,0
ˆ  measured in the test at the design conditions, according to the limits suggested in 

[13]. Once p  is assigned, only the parameter   varies and gives the possible pairs of consti-

tutive parameter variations ̂  and ĉ  (see eqns. 4-5).  

The system response sensitivity is carried out by considering an “augmented reliability 

problem” [20] in which the  -variability is added to the seismic uncertainties previously in-

troduced. In order to investigate a realistic field of variation in the damper response, a uniform 

distribution function on [-0.20,+0.20] is assumed for the system parameter,  in this case co-

inciding with the nonlinear exponent variation ̂ . With the aim of increase the accuracy in 

the estimation of the exceedance probabilities a number of conditional samples greater than 

the number used in the previous section and equal to 1500 is used for each simulation level, 

for a total amount of samples equal to 1350x5 + 1500 = 8250. The range of the parameter var-

iation has been discretized in 4 bins Ji  (i=1,..,4), and the hazard curves of the two extreme 

bins, centered at 15.0ˆ  are reported in the following. An average of 50 independent 

simulations is used. 

In Figures 5 the hazard curves of displacements, damper forces and absolute accelerations 

are plotted with a semi-logarithmic representation. Both the linear (left charts) and nonlinear 
(right charts) damped systems are considered, and the response parameters values are normal-

ized by dividing them by the design value obtained in the reference design condition, as in the 

previous section. Each chart shows the reference curve (black solid line), a pair of blue dashed 

curves related to the upper bound 15.0p  and describing the response variation for the two 

extreme bins of the parameter variation 15.0 , a pair of red dashed curve related to the 

lower bound 15.0p  and describing the response variation for the two extreme bins of the 

parameter variation 15.0  

In the linear case, the perturbed condition with p=-0.15 produces (moving towards the 

small probability range) an amplification on both the displacement and acceleration re-

sponses, while the opposite trend is observed for the damper force. The highest displacement 

variations occur when p=-0.15 and  is in the bin centred at the value -0.15. This is a con-
sequence of both the reduction of the damper force due to the negative value of p and the 

nonlinearity introduced by the negative variation of  (<1) in the system behaviour, which 

results in larger displacements for less probable events (see Figure 4 for u parameters). A dif-

ferent trend is observed for the forces, where the worst condition is represented by p=+0.15. 

At the minimum probability of exceedance considered, the increment of the maximum dis-

placement threshold is about 35% and the force threshold is about 20% while lower incre-

ments are observed for the absolute acceleration threshold. 
Similar trends are shown in the nonlinear case where both the displacement and the accel-

eration demands grow for p=-0.15, while the damper forces increase when p=+0.15. How-

ever, in this case results are less sensitive to the parameter expressing the percentile 

variation of the nonlinear exponent  
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Figure 5. Effects on the response hazard curves due to the perturbation on the damper parameters. 
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5 CONCLUSIONS 

The paper analyzes the influence of both the seismic uncertainties and the variability of the 

viscous damper behaviour on the probabilistic response of passively protected systems. The 

probabilistic response is evaluated by means of advanced statistical simulation methods (Sub-

set simulation with Markov chains), able to furnish an accurate estimation of the demand haz-

ard for low values of the exceedance probability.  

The effects of the variability of the viscous damper properties coherent with the tolerance 

range allowed by the codes for device control tests is studied via reliability-sensitivity analy-

sis. This analysis is performed by carrying Subset simulations on an “augmented reliability 

problem”.  

A comparison between the performances of two systems consisting of the same structure 

and of added linear () and nonlinear () viscous dampers is presented. The dampers 
are designed to achieve the same seismic performances (displacement response) at the usual 

design conditions suggested by codes of practice and corresponding to an annual probability 

of exceedance of 0.0021.  

It is observed that the variability expected according to control production tests influences 

differently the response hazard curves for rare events. Considering probability of exceedance 

in the range 10
-5

-10
-6

, it is observed that some response parameters are more sensitive to the 

damper parameter variations than others. Liner and nonlinear cases exhibit similar trends of 

variation but the amount of the response variations are very different in the two cases. 

Current design procedures are based on the estimation of the probabilistic response and 

relevant structural safety by means of amplification factors increasing conventional design 

values of the structural response. The results observed in this study provide a contribution to-

wards a more reliable definition of these amplification factors. 
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8 APPENDIX 1 - DETAILS OF ATKINSON-SILVA MODEL 

The Atkinson-Silva ground motion model [21] used in this work is characterized by the ra-

diation spectrum A(f) and the time modulating function e(t). The radiation spectrum gives a 

spectral representation of the ground motion at the construction site, accounting for several 

physical contributions influencing the wave propagation. Its analytical expression is 

 )()()()()( 0mod fVfPfAfAfA fn   (16) 

The (two corner frequencies) point-source spectrum is represented by  fA0  
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where, 0M  is the seismic moment (expressed in dyne·cm), related to the moment magnitude 

M  by 
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and C is a constant given by   
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where R̂ , V , sF  are respectively the radiation pattern ( 55.0ˆ R ), a factor partitioning the 

total shear-wave energy into 2 horizontal components ( 71.0V ) and the free-surface ampli-

fication factor ( 0.2sF );  and   represent the soil density (
3/8.2 mt ) and wave velocity 

( skm/5.3 ) near the source; the multiplicative factor 10
-20

 is in order to obtain cm as unit 

dimension for the ground motion (cm/s
2  

for accelerations). The two corner frequencies af  

and bf  and the   parameter are related to the magnitude by 

   Mfa  496.0181.2log  (20) 

   Mfb  227.0380.1log  (21) 

   M 670.0223.3log  (22) 

The )( fAn  function, characterizing the path effects of seismic waves, is given by  

 



)(1
)( fQ

fR

n e
R

fA



  (23) 

where the 1/R term represents the geometrical spreading effect. The effect of the waves-

transmission is accounted by the quality factor )( fQ ,, defined as 

 nfQfQ 0)(   (24) 

whit 1800 Q and 45.0n regional parameters. The )( fPf  function accounts for the path-

independent loss of high-frequency in the ground motion and it is defined by  
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Whit k = 0.03 and fmax = 100 Hz. The soil amplification factor V(f) is taken according to 

[32] for generic soil (VS,30 = 310 m/s). The model-error parameter mod  is the adding log-

normal random variable (ln = 0, ln = 0.5) , according to Jalayer and Beck [31], used for 

increasing the record-to-record variability. For which concerns the envelope function  te , it 

is given by 
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with parameters 
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1exp
and =0.05, =0.2, as sug-

gested in [22]. 

The ground-motion total duration is equal to wn TT 2   with  wT  defined as 
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The distance R  from the earthquake source to the site can be defined as follow, in function 

of the epicentral distance r and the moment dependent nominal pseudo-depth h 

(   05.015.0log  Mh ) 

 22 hrR   (28) 
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Abstract. Soil structure interaction (SSI) is an important topic when seismic performance of 

structures is investigated but rarely taken into account in seismic performance evaluation of 

low rise buildings. Seismic performance of structures is generally evaluated with three different 

approaches as equivalent linear earthquake method, modal superposition method and time 

history analysis method. Equivalent linear earthquake method is the most widespread analysis 

method for seismic performance evaluation of low rise buildings. Seismic codes in the world 

generally propose approximate natural period formulas to be used in equivalent linear 

earthquake analysis procedure. Despite that soil properties have a considerable effect on 

natural period of buildings; there is no soil related term in approximate natural period relations 

proposed in the seismic codes. This study aims to introduce the importance of subgrade reaction 

modulus of soil on natural period of buildings and produce a relation between these two 

phenomena. In accordance with this purpose, a number of relations being used over the world 

are examined. Consequently a number of novel approximations are introduced for use of design 

engineers. 
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1 INTRODUCTION 

During earthquakes buildings are exposed to base excitations and gives different responses 

to those excitations. Buildings responds to those excitations with three components: structure, 

foundation and soil underlying the foundation. As these components are combined with each 

other, structure, foundation and soil interacts with each other, this phenomenon is known as 

Soil Foundation Structure Interaction (SFSI) or simply Soil Structure Interaction (SSI) [1]. 

Soil Structure Interaction is rarely taken into account during dynamical analysis of low rise 

buildings. The simplifications and approximations made during dynamical analysis of low rise 

buildings, such as natural period approximations, neglects effect of SSI. ASCE 7 [2] and 

Eurocode 8 [3] are some of the important seismic codes in the world. The natural period 

approximations recommended in these seismic codes do not take SSI into account for low rise 

buildings.  

There is not an exact definition for the terms high rise or low rise buildings, but it may be 

defined as buildings that have few number of storeys or height of the building is under a certain 

value. In ASCE 7 [2] the approximate natural period formula is recommended for buildings that 

have 12 or less number of storeys. In some seismically risky zones in Turkey, buildings are not 

allowed to have more than 3 or 4 storeys. Accordingly, in this study we examined a building 

with 3 storeys. 

The examined building in this study is a typical low rise building with 3 storeys and is 

symmetric in both lateral directions. Also typical cross sections are defined for all beams, all 

columns and all slabs. Since we consider low rise buildings, building is modeled as a reinforced 

concrete structure. Floor plan of the examined generic building is shown in Figure 1. 
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Figure 1 – Floor plan of the investigated building 

The most widespread approach to consider SSI is the well-known Winkler Springs Method. 

In this approach, underlying soil layer is modeled as linear elastic springs in both lateral and 

vertical directions. Stiffness of those springs represents the subgrade reaction modulus of 

underlying soil layer. 

In this study we aim to introduce novel approximations for natural period of low rise 

buildings which takes SSI into account. Accordingly a number of modal analysis are performed 

for a generic low rise building and we introduced a number of new approximations for first 

natural period of low rise buildings. 

2 INVESTIGATION OF SUBGRADE MODULUS EFFECT 

2.1 Properties of Investigated Building 

As stated before, all columns and all beams are modeled with the same cross section. All 

beams are modeled as rectangular frame elements with dimensions of 50 cm depth and 25 cm 

width. All column elements are modeled as rectangular frame elements with 40 cm 40 cm  
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dimensions. All slab elements are modelled as shell elements having a bending thickness of 12 

cm. Also the foundation of the building is modeled as a shell element with a thickness of 100 

cm. 

All structural members are modelled with the same linear elastic material which represents 

reinforced concrete material. Young’s modulus for this material is defined as 
7 23 10  kN/mE    and Poisson’s ratio is defined as 0.2  . For this material mass per unit 

volume is defined as 2 32.5 kNs /m/m  . 

As shown in floor plan given in Figure 1, the investigated structure has 3 bays in X direction 

and Y direction. In both directions bay widths are equal to each other and 4 meters. This 

symmetric floor plan is adopted to simplify the problem and focus only on first natural period 

of the building which is equal to second natural period. As stated before the investigated 

building has 3 storeys and each storeys has the same height as 3 meters. 

With those properties mentioned above, the investigated typical low rise building is defined 

and some modal analysis are performed. 

2.2 SSI Procedure and Analysis 

In this study Winkler springs method is employed to take SSI into account. In Winkler 

springs method, the underlying soil layer modeled as linear elastic springs and stiffness of these 

springs-spring constants- represents the subgrade reaction modulus of the soil layer. Lateral and 

vertical springs are modeled at column ends. Since the soil layer is continuous along the 

foundation or floor area, each spring set at each column end represents an area. Columns at 

inner points represents the area of a bay which can be calculated as 24 4 16 mArea    while 

columns at internal points on edges represents half of that area as 28 mArea   and  columns at 

corners represents quarter of that area as 24 mArea  . Spring constants calculated by using 

those areas and soil subgrade modulus. 

s sK k Area  (1) 

To perform modal analysis OpenSees [4] software is utilized. Firstly, the investigated 

structure is modeled with a fixed base which means neglecting the SSI. Then, the modal 

analysis are performed considering SSI by using Winkler springs. At this step, subgrade 

reaction modulus of the soil layer is increased gradually and modal analysis performed 

repeatedly. To represent the subgrade reaction modulus values encountered generally, subgrade 

modulus values are increased gradually from 500 kN/m3 to 10000 kN/m3. 

The calculated first natural periods are divided by the period value that neglects SSI to 

determine a simple ratio. As subgrade reaction modulus values increases, that ratio decreases 

exponentially. By using this relation two nonlinear regression coefficients are determined 

which relates period of SSI model to period of non-SSI model as a function of subgrade reaction 

modulus. 

First natural period of the building with fixed base is determined as 0.2544 secfixT  . For 

subgrade reaction modulus values from 500 kN/m3 to 10000 kN/m3, first natural period of the 

building is determined as given in Table 1. 
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ks (kN/m3) T (sec) 

500 0,9751 

1000 0,7014 

1500 0,5829 

2000 0,5140 

2500 0,4683 

3000 0,4356 

3500 0,4110 

4000 0,3918 

4500 0,3764 

5000 0,3639 

Table 1 – First natural period and subgrade reaction modulus 

Beside the first natural period values the ratio determined by dividing first natural period 

values of SSI models by first natural period of non-SSI model, can be plotted as shown in Figure 

4. 

  SSI
s

FIX

T
k

T
  (2) 

 .SSI s FIXT k T  (3) 

Figure 4 – First natural period ratio with respect to subgrade reaction modulus 

In Figure 4 the graph shows the first natural period ratio determined by dividing period of 

SSI model by period of non-SSI model. As this plot is obtained by using analytical results, this 

curve is not an approximation. This curve represents the real relation between subgrade reaction 

modulus and  sk . 

ks (kN/m3) T (sec) 

5500 0,3535 

6000 0,3447 

6500 0,3372 

7000 0,3308 

7500 0,3253 

8000 0,3204 

8500 0,3161 

9000 0,3123 

9500 0,3089 

10000 0,3059 
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The curve shown in Figure 4 can be represented by an inverse exponential function or inverse 

parabolic function. While using non-linear regression to determine an appropriate function to 

that curve, an inverse parabolic expression is recommended, regarding physical meaning of the 

problem. 

The recommended relation is in the form shown below; 

  1 2

2
1s

s s

k
k k

 
    (4) 

Suitability of the recommended relation can be evaluated by considering that infinite 

subgrade reaction modulus yields 1, which corresponds to the fixed base condition. At the 

recommended expression, the third term is added to smoothen the expression. 

The determined regression coefficients are as given below; 
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Thus the recommended relation between the periods of SSI model and non-SSI model is 

determined as; 
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In Figure 5 the graph shows the first natural period ratio determined by the recommended 

mathematical expression. 

Figure 5 – Approximation for first natural period ratio with respect to subgrade reaction modulus 

Thus the first natural period of structure while considering SSI, can be approximated by the 

relation given below. 
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3 CONCLUSION 

In this study effect of subgrade reaction modulus on first natural period of low rise buildings 

is investigated. By utilizing nonlinear regression a novel approximation is introduced which 

relates first natural period of buildings determined by neglecting SSI to first natural period 

determined by not neglecting SSI. Then it can be said that the approximations recommended in 

prominent seismic codes to determine first natural period of low rise buildings can be modified. 

The introduced expression may be seen inconsistent since all analysis procedure considers a 

typical building with typical dimensions. However, the expression can give satisfactory results 

for low rise buildings, since aim of this study refers to low rise buildings. Nevertheless, further 

study is going on to introduce novel approximations for buildings with varying dimensions. 
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Abstract.  Following modern design codes, seismically isolated superstructures are designed 

to respond in the elastic response range or to exhibit limited inelastic behavior. However, the 

behavior of seismically isolated structures when the superstructure enters the inelastic re-

sponse range has not been extensively investigated in the past. This paper aims at answering 

the following questions: What is the probability that a (code-compliant) seismically isolated 

structure will yield? Will it develop a ductility demand µ larger than that implied by its design 

strength reduction factor?  

The probabilistic investigation of such a behavior is important for two reasons: First, to esti-

mate the conservativism implied by the existing code provisions for seismically isolated struc-

tures. Second, to account for the case in which the seismic forces acting on an existing 

seismically isolated structure could exceed the design forces due to a ground motion stronger 

than the design ground motion level. The investigation is conducted using a two-degree-of-

freedom model of a seismically isolated structure. The hysteretic behavior of the seismic iso-

lation devices and the isolated superstructure is simulated in Matlab and OpenSees using a 

bilinear elastic-plastic model. The results are obtained by analyzing the responses of the iso-

lated structure to a large number of recorded ground motions.  

Fragility curves to estimate the probability that the structure enters the inelastic range (µ>1), 

if it is designed according to the existing American and European code provisions for seismi-

cally isolated structures are determined through probabilistic seismic demand analysis 

(PSDA). The influence of the isolated structure overstrength and the isolation system harden-

ing is discussed. Additional fragility curves are provided for other values of the engineering 

demand parameter (EDP) that are not allowed in the existing code provisions (e.g. super-

structure displacement ductility µ>2). The effects of seismic isolation and superstructure de-

sign parameters on the fragility curves is quantified through parametric analysis. 
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1 INTRODUCTION 

Base isolation is a seismic response modification technology developed in mid 1970’s to 

control the extent of damage to structures subjected to strong ground motion excitation. How-

ever, the acceptance of the technology increased significantly after the observed response of 

seismically isolated structures in 3 earthquakes: The 1994 Northridge earthquake in the USA, 

the 1995 Hyogoken-Nanbu earthquake in Japan and the 1999 Chi-Chi earthquake in Taiwan. 

Over this period, the number of seismically isolated structures worldwide increased, and the 

building codes have been revised to include design requirements for seismically isolated 

structures [1].  

The elastic design approach, which aims to avoid yielding of the isolated superstructure, is 

embedded in the design codes worldwide. Eurocode [2] allows a maximum behavior factor 

value of 1.5 for base-isolated buildings. US ASCE 7 [3] allows the strength reduction factor 

for a base-isolated superstructure to be 0.375 times the one for a corresponding fixed-base 

structure and no larger than 2. Given that the large majority of ASCE 7 overstrength factors 

are between 2 and 3, the superstructure is very likely to remain elastic for the design-level 

seismic hazard. However, it is still possible for these structures to enter the inelastic range due 

to an extreme seismic demand or unexpectedly low as-built overstrength. 

Constantinou and Quarshie [4], Ordonez et al. [5], Kikuchi et al. [6], Thiravechyan et al. [7] 

and Cardone et al. [8] investigated the response of inelastic seismically isolated structures and 

agreed that allowing base-isolated superstructures to yield requires careful consideration be-

cause of possible occurrence of large ductility demands. Vassiliou et al. [9-11] concluded that 

designing typical seismically isolated structures to behave elastically, as prescribed by current 

seismic design codes, is not overly conservative but a necessity that emerges from the funda-

mental dynamics of such structures.  

This study aims at quantifying the probability that an isolated superstructure designed ac-

cording to the current design codes enters the inelastic behavior range. Additionally, incre-

mental dynamic analysis [12] is performed to determine the behavior of the isolated structure 

for ground motions caused by events of higher seismic hazard than the design hazard level. 

Huang et al [13] have presented fragility curves for the estimation of the probability of failure 

of base-isolated nuclear power plants for a range of spectral acceleration values. Han et al [14] 

used the damped spectral acceleration at the effective period of the isolators Sa (Teff) as an in-

tensity measure to determine similar fragility curves for non-ductile reinforce concrete build-

ings. 

Four assumptions are made in the study. First, the displacement and strength capacities of 

the isolators are assumed to be sufficient to meet any demands. Second, friction-pendulum 

bearings are assumed, unless explicitly stated otherwise. Third, the overstrength, i.e., the dif-

ference between the actual and the yield strength of the isolated superstructure, is not explicit-

ly considered in the model. Fourth, the response of the dynamic model is computed in-plane 

to an earthquake excitation that has a single horizontal component, disregarding the coupled 

bi-directional horizontal and vertical response of the isolators as well as the effect of multi-

directional excitation on the response of isolated superstructure.  

 

2 DYNAMIC MODELLING 

The dynamics of a base-isolated structure, following to the work of Naeim and Kelly [15], 

is investigated using a two-degree-of-freedom (2-DOF) in-plane model, presented in Fig. 1. 

The system consisting of the isolation bearings and the isolation base is defined as the isola-

tion system. The structure above the isolation system is defined as the isolated superstructure. 
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Masses ms and mb represent the mass of the isolated superstructure and the mass of the base 

above the isolation system, respectively. The stiffness and damping are denoted as ks, cs, when 

referring to the superstructure and as kb, cb when referring to the base. The stiffness kb is the 

post-yielding stiffness of the isolators [16], whereas the equivalent stiffness shown in Fig. 1 is 

the effective stiffness keff  of  the isolators. 

us

ub

Tn

Tb

ms ,ks , cs

mb , kb , cb

us

Tnms ,ks , cs

us

uy,s

ks

as , ks

Fs

Fy,s

ub

kb

Fb

Q

keff

Fs

Fs

 

Figure 1:  Parameters of the SDOF model of a fixed-base structure and of a 2-DOF model of a base-isolated 

structure. 

Horizontal displacement us is the relative displacement of the superstructure with respect to 

the base and ub is the horizontal displacement of the isolation bearings with respect to the 

ground. The ground displacement to which the system is subjected is denoted as ug. The nota-

tion used to describe the inelastic response of fixed-base single-degree-of-freedom (SDOF) 

structures is adopted as follows. The vibration period of the SDOF system is Tn. The dis-

placement ductility ratio μ is defined as: 

  

                                                            m

y

u

u
                                                                       (1) 

where um and uy denote the maximum inelastic displacement and the yield displacement of the 

SDOF system, respectively. The strength reduction factor Ry is the ratio of the minimum 

strength required to maintain the SDOF system response in the elastic range, Fel,s to the SDOF 

system yield strength Fy,s: 

                                                                                                                        

                                                                                                                                                  (2) 
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The following quantities are defined for the 2-DOF model of the base-isolated structure: 

 

1. Period and cyclic frequency of the isolated superstructure: 

 2 s

n

s

m
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k
 ,  s

n

s

k

m
  (3) 

2a. Isolation period and cyclic frequency: 
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2b. Effective isolation period and cyclic frequency: 

2π , ω


 


effs b

eff eff

eff s b

km m
T  

k m m
                                           (5) 

3. Non-hysteretic structural and isolation system damping ratios: 
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4. Mass ratio: 
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The strength of the isolation system is defined as Q  (force at zero displacement). 

Dynamic equilibrium of the isolated superstructure and the base isolation system gives:    

       s b b s s b b b b b s b gm m u m u k u Qz t c u t m m u         (8) 

Dynamic equilibrium of the isolated superstructure alone gives: 

  (9)  

Consequently, Equations (8) and (9) become equations of motion of the combined structure-

isolation system. Equations (10) and (11) are derived by dividing equations (8) and (9) by 

(ms+mb). The inelastic displacement demand for the isolation system and the isolated super-

structure can be obtained by solving Equations (10) and (11) using Matlab [17].  

                                     2 2b m s b b b b b b g

s b

Q
u u u z u u

m m
        


                                    (10) 

                                                                                                                                            (11) 

An identical 2-DOF model was developed in OpenSees [18] to compute the inelastic dis-

placement demand of both systems, using bilinear inelastic behavior models as the one shown 

in Fig. 1 for the superstructure and the isolators. This model gives identical results with the 

ones obtained using the Bouc-Wen models presented above in Matlab. The calculation pro-

cess using Bouc-Wen models in Matlab was performed to quantify the fundamental parame-

,( ) (1 ) ( ) ( )s s s b s s s s s y s s s s s gm u m u a k u t a k u z t c u t m u      
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ters of the problem. However, the results presented on this study are computed with bilinear 

models (Fig. 1) using OpenSees for reasons of computational efficiency. 

3 CODE EVALUATION: DESIGN HAZARD LEVEL 

Eurocode 8 [2] allows a maximum strength reduction factor value of 1.5 for base-isolated 

buildings, thus implying the development of limited inelastic behavior in the isolated super-

structure for the design hazard level. A number of recorded ground motions were selected and 

scaled until its acceleration response spectrum matches the design spectrum, as defined in Eu-

rocode 8 [2]. The 2-DOF structure of Fig. 1 was subjected to the scaled ground motion en-

semble. Lognormal probability distributions were fit to the determined displacement ductility 

demand values of the structure for this ground motion ensemble. The probability that the 

structure enters the inelastic range, thus exceeding the values implied by the code, is deter-

mined through the statistical processing of the recorded ductility values. 

3.1 Design of the isolated structure 

The structure that has been investigated in this study is the National Opera of Greece, 

which belongs to the Stavros Niarchos Foundation (SNF) Cultural Center. This structure has 

been chosen as an example of inelastic design of base-isolated structures, as a strength reduc-

tion factor of 1.5 has been used for its seismic design [19]. The design spectrum for the struc-

ture (PGA=0.267g) was based on a microzonation study, conducted due to the importance of 

the project, and is shown in Fig. 2 below. The return period of this spectrum is 475 years, 

which corresponds to 10% probability of exceedance in any 50 year period. 
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Figure 2:  Elastic design acceleration spectrum [19] 

The strength of the isolation system is determined using Equation (12) for friction-

pendulum bearings with the coefficient of friction μf =0.05 (g the acceleration of gravity). The 

mass ratio is γm=0.9. 

                                                            s b fQ m m g                                                       (12) 
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Then, for ms=120000 tons, Q=58860 kN. The effective period of the isolators is Teff=2.6 

sec. The design displacement for the isolators (ξeff=15%, Se=0.141g) is Dd=235*1.5=351 mm. 

Then, the post-yielding stiffness of the isolators kb=(keff Dd-Q)/Dd=303922 kN/m, which leads 

to a period Tb=4 sec. The yield strength of the structure for a behavior factor of q=1.5 is 

Fy=(ms+mb)Sa(Teff)/q=165536 kN.  

3.2 Ground motion excitation  

The ground motion ensemble used to excite the model of the isolated structure presented in 

Fig. 1 was taken from the strong motion database presented by Vassiliou and Makris [20]. 

From the 183 ground motions used that study, 20 motions were chosen for this study, using 

the minimization of the root-mean-squared error (RMSE) between the selected motions’ ac-

celeration response spectrum and the target design spectrum (Fig. 2), as performed by Carlson 

et al [21]. RMSE is defined as follows: 

 

   
n

2

tar i rec i

i 1

ln Sa (T ) ln Sa (T )

RMSE                                (13)
n



  



 

 

where Satar(Ti) and Sarec(Ti) represent the spectral acceleration at the ith period, Ti, for the tar-

get spectrum and recorded ground motion acceleration response spectrum, respectively, and n 

represents the number of spectral points. The median of the selected ground motion ensemble 

spectra and the target spectrum are shown in Fig. 3. 
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Figure 3:  Elastic design acceleration spectrum (Eurocode 8) and median spectrum of the 20 ground motion exci-

tation spectra selected based on their matching with the design spectrum (RMSE factor). 

According to EC8, in the range of periods between 0.2T1 and 2T1, where T1 is the funda-

mental period of the structure in the direction where the accelerogram is applied, no value of 

the mean 5%-damping elastic spectrum, calculated from all time histories, should be less than 

90% of the corresponding value of the 5%-damping elastic response spectrum. 
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3.3 Probabilistic evaluation at the design hazard level  

The structure presented at section 3.1 was excited by the ground motion excitation ensem-

ble shown in Fig. 3. The displacement ductility demand developed in the superstructure was 

calculated for each ground motion excitation and it is shown in Fig. 4. A lognormal probabil-

ity distribution was fit to the displacement ductility data and is presented in Fig. 4. The proba-

bility of exceedance of µ=1 for the given hazard level (Return period: 475 years, Probability 

of exceedance=10% in 50 years) is given by the PEER probabilistic PBEE evaluation meth-

odology shown in Equation (14) [22, 23]:  

0

( ) ( | ) ( ) (14)



 G EDP G EDP IM f IM dIM                                      

where f(IM) is the Probability Distribution Function (PDF) of the Intensity Measure IM and 

G(EDP|IM) is the Probability Distribution Function (PDF) of the Engineering Demand Pa-

rameter EDP given the Intensity Measure IM. The EDP chosen in this study is the displace-

ment ductility µ and the IM is the 5% damped spectral acceleration at the effective period of 

the isolators Sa (Teff) [14]. 
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Figure 4:  Displacement ductility values µ for Ry=1.5 and lognormal distribution fit  

For this lognormal distribution (µ=0, =0.17), the probability of exceedance of µ=1 is 

50% given the exceedance of the intensity measure Sa (2.59 sec)=0.141 g. The probability of 

the exceedance of the intensity measure Sa (2.59 sec)=0.141 g is 10% in 50 years, which cor-

responds to the design hazard return period of 475 years. Then, from Equation (14), the total 

probability that the displacement ductility µ exceeds 1 is 5%. This probability that is associat-

ed with damage in the superstructure is considered relatively high for the importance of this 

structure. Therefore, the choice of a strength reduction factor Ry=1.5 does not guarantee the 

quasi-elastic behavior implied by the code for this structure. However, the consideration of 

overstrength that has not been taken into account in this case study may change this conclu-

sion, as it would reduce the probability of inelastic behavior in the superstructure. 
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4 CODE EVALUATION: BEYOND DESIGN HAZARD LEVEL 

4.1 Incremental Dynamic Analysis 

The evaluation of the existing code provisions for isolated structures for seismic hazard 

levels that are higher than the design hazard level requires the statistical processing of the dy-

namic response of the structure to a large number of strong ground motion excitations. This 

process can be effectively performed for the targeted hazard levels using Incremental Dynam-

ic Analysis (IDA) [12]. The incremental analysis was performed for the fixed-base period of 

the isolated superstructure Tn=0.31 sec. The results of the analysis for a wide range of intensi-

ty measures Sa (Teff) are shown in Fig. 5. 
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Figure 5:  Displacement ductility values µ for different values of spectral acceleration Sa(Teff),  power-law fit to 

the presented displacement ductility values and lognormal distribution fit for each spectral acceleration Sa(Teff )  

The Sa(Teff) values presented are selected from the set {0.1g, 0.2g, 0.3g, 0.4g, 0.5g, 0.6g} 

within a 5% tolerance range. A power-law fit was performed to indicate the general trend of 

the displacement ductility µ results for varying Sa(Teff) values. Lognormal probability distribu-

tions were fit to displacement ductility µ data for each spectral acceleration value Sa(Teff) 

above the yield limit Sa(Teff),yield. According to the results of the power-law fit, the design ac-

celeration of the structure corresponds to a displacement ductility µ=0.5. The yield spectral 

acceleration value, which corresponds to displacement ductility µ=1 is Sa(Teff),yield=0.4 g. This 

spectral acceleration, which can lead to damage in the superstructure, exceeds the design val-

ue by a factor of 3. If higher Sa(Teff) values than this value are considered (e.g. Sa(Teff)=0.5 g 

or Sa(Teff)=0.6 g), extensive damage may occur in the superstructure, as the corresponding 

ductility demand values may exceed µ=7.  

This exceedance of the design spectrum even by a factor as high as 3 over a large range of 

periods has been reported in numerous seismic events (Mexico City 1985, Kobe 1995, Nepal 

2015) in the past. A large number of ground motions recorded on “soft” soils have produced 

response spectra of a sharp rather than flat shape, with well-defined peaks around the site fun-

damental period, as presented by Gazetas et al [24]. Thus, such high demands on isolated 

structures cannot be excluded from consideration.  
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5 CONCLUSIONS  

 Two different ground motion selection procedures have been used in this study to evalu-

ate the inelastic behavior of the National Opera of Greece for different seismic hazard 

levels.  

 The results obtained through a spectral matching procedure based on the RMSE factor 

[21] indicate a 5% probability of inelastic behavior and associated damage in the super-

structure for the design seismic hazard level (return period of 475 years).  

 However, the results obtained through IDA [12] show that the design spectrum must be 

exceeded 3 times for a development of inelastic behavior in the superstructure. This scal-

ing process was performed for selected values of spectral acceleration Sa(Teff), which re-

stricts the ground motion variability, compared to the spectral matching procedure that 

was used for the design hazard level evaluation. 

 The overstrength of the superstructure was not considered in this study. The considera-

tion of overstrength is expected to reduce the probability of inelastic behavior in the su-

perstructure. 
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Abstract. In the last decades, a number of reconnaissance reports have revealed that pound-

ing between adjacent buildings, during strong earthquakes, may induce local and in some ex-

treme cases severe structural damage. The problem of earthquake-induced pounding of 

adjacent buildings has been the subject of great scientific interest, while several recent nu-

merical studies have quantified the effects of seismic pounding of buildings, with the majority 

of researchers simulating the problem in two dimensions (2D). The results from the various 

2D parametric studies have demonstrated the potentially detrimental effects of pounding on 

the dynamic response of multistory buildings and revealed the importance of this problem re-

garding the safety and functionality of colliding structures. Furthermore, most of the numeri-

cal studies have been limited to the utilization of linear elastic structural models to simulate 

the adjacent buildings. The current study parametrically investigates the effect of pounding 

on the inelastic response of base isolated structures, which are simulated as non-linear 3D 

multi-degree of freedom systems subjected to bidirectional earthquake excitations. Specifi-

cally, the influence of certain parameters, such as the angle of the seismic incidence, the 

width of the seismic gap, characteristics of the isolation system and the configuration of the 

adjacent structures on the peak response, is parametrically examined, for various near-fault 

excitations. All numerical simulations are performed using a specially developed software 

that implements an innovative, simple and efficient approach to model impacts in 3D, taking 

into account the arbitrary location of contact points and the geometry at the vicinity of impact. 
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1 INTRODUCTION 

Frequently, neighboring buildings are constructed very close to each other, sometimes 

without any clearance between them. Hence, structural poundings may inadvertently occur 

between adjacent buildings, due to deformations of their stories, during strong seismic excita-

tions. Consequences of such pounding incidences, ranging from local light damage to severe 

structural damage or even collapse, have been observed and reported after severe earthquakes. 

Poundings may also occur even in cases of seismically isolated buildings when the width of 

the available seismic gap around them is relatively limited, due to the large horizontal relative 

displacements that are expected at the isolation level, especially during near-fault, pulse-like 

ground motions. 

Although several research studies have been conducted in order to investigate the problem 

of earthquake-induced poundings of adjacent structures and its consequences, most of them 

have been limited to simplified planar (2D) analyses [1–6], apparently due to the involved 

complexities and the consequently excessive computational cost. However, the effect of cru-

cial factors, such as the consideration of both orthogonal seismic components, friction phe-

nomena that occur during pounding, non eccentric impacts, irregularities, or asymmetries in 

the plan view of the colliding structures, which may excite the torsional vibration of a build-

ing and further increase the possibility of impacts during earthquakes, are essential parameters 

that can be taken into account only through three-dimensional (3D) simulations.  

Recently, some researchers have shown great interest on the exploration of the effects of 

earthquake induced pounding of seismically isolated structures using 3D nonlinear dynamic 

analyses [7–12]. More specifically, Matsagar and Jangid, 2010 [7] investigated the seismic 

response of a single-story asymmetric structure supported on various base isolation systems 

during impact with adjacent structures. The effects of impact were found to be severe for sys-

tems with flexible superstructure, stiffer adjacent structures and increased eccentricities. Pant 

and Wijeyewickrema, 2014 [11] used a three-dimensional finite element model in order to 

investigate the seismic performance of a four-story building under bidirectional far-fault non-

pulse-like and near-fault pulse-like ground motions scaled to represent two levels of shaking. 

Seismic pounding of the building with the retaining walls at its base was simulated using a 

specially developed purpose contact element that accounts for friction. Polycarpou et al., 2015 

[13] considered a new methodology for simulating earthquake induced pounding of seismi-

cally isolated buildings that are modeled as 3D multi-degree-of-freedom (MDOF) systems. 

An example of a 3-story seismically isolated building, pounding against the surrounding moat 

wall, has been presented to demonstrate the advantages of the proposed methodology. 

The current study, utilizing the methodology described in [13, 14], aims to thoroughly in-

vestigate the circumstances under which spatial poundings may occur and assess the effect of 

some important parameters on the peak structural response considering pounding incidences. 

Nonlinear time-history analyses are carried out considering the arbitrary direction of the 

ground motion with respect to the structural axes of the simulated structures. The influence of 

the isolator’s characteristics, the superstructure stiffness and the separation distance between 

the building and the retaining walls at its base is also investigated, while considering different 

geometrical arrangements for the moat walls. 

2 MODEL FOR SIMULATION OF SEISMIC POUNDING  

The numerical simulation of 3D pounding enables the investigation of certain parameters 

that are associated with the spatial movement of the seismically isolated building and cannot 

be explored through planar dynamic analyses. The effects of seismic pounding on the re-

sponse of base-isolated reinforced concrete buildings under bidirectional excitations are 
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hereby investigated. A 3D model of a base isolated building is considered, where a recently 

proposed methodology [13, 14], which takes into account the arbitrary location of impacts and 

the geometry at the point of impact, is used. In particular, a new approach to the numerical 

problem of spatial impact modeling that does not require the a priori determination of the con-

tact points was presented, taking also into account the geometries of the colliding structures at 

the vicinity of an impact. 

More specifically, the simulated base isolated buildings are modeled as 3D-MDOF systems 

with shear-type behavior for their superstructures in the horizontal directions. The slab at each 

floor level of the superstructure is represented by a rigid diaphragm that is mathematically 

simulated as a convex polygon, while the masses are considered to be lumped at the floor lev-

els, having three dynamic degrees of freedom (DOFs), i.e. two translational, parallel to the 

horizontal global axes, and one rotational along the vertical axis. Thus, considering ground 

excitations only in the horizontal directions, which is the most important case, no displace-

ments occur in the vertical direction, since the translational dynamic DOFs of the structure 

refer only to horizontal planes. Consequently, it is assumed that the impact forces occur only 

in horizontal planes. 

The time-history analysis involves the numerical integration of the differential equations of 

motion at each time step and the calculation of the resulting displacements, velocities and ab-

solute accelerations at each DOF of each building. Based on the deformed position of each 

floor diaphragm in the 3D space, an automatic contact detection check is performed to iden-

tify potential contacts between structures, which are subsequently used for the computation of 

appropriate impact forces to be applied at the corresponding DOFs.  

The majority of the force-based impact models that are available in the scientific literature 

calculate the impact force as a function of the interpenetration depth between the colliding 

bodies. However, the usage of the interpenetration depth as the key variable constitutes a sig-

nificant drawback in the case of 3D impact modelling, as it cannot correctly assess the proper 

values of the impact forces. Therefore, in the proposed methodology, the area of the overlap-

ping region, instead of the interpenetration depth, is used as the key variable in the calculation 

of the impact forces. Figure 1 describes, schematically, how the proposed impact model 

works. In particular, when two slabs, which are modelled as polygons, come in contact, they 

form an overlapping region that is either a triangle or a quadrilateral. The algorithm uses the 

geometry of the overlapping area at each time step in order to determine the location of the 

action point of the impact forces, as well as the direction and the magnitude of the impact 

forces. The Coulomb law of friction restricts the magnitude of the tangential impact force be-

low a certain value. 
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Figure 1: Schematic representation of the contact plane, based on the geometry of the indentation region, which 

can be either (a) a triangle, or (b) a quadrilateral. 
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3 DATA ANALYSIS 

A three-storey (three-bay by three-bay), base-isolated reinforced concrete moment-frame 

building is chosen as a typical model structure (Figure 2). The building is symmetric with co-

inciding centers of mass and stiffness. The retaining walls extend from the ground level up to 

the base level of the building. All column sections of the simulated building have square di-

mensions of 45 x 45 cm
2
. The bay width of the building in both directions is 5.5 m while each 

storey height is 3.2 m. The elastic modulus of concrete is assumed to be 30 GPa with a Pois-

son’s ratio of 0.2. A uniformly distributed mass of 250 tons is considered for the roof mass, 

while a 340 tons floor mass is assumed at each other floor level, including the base of the 

building. For the determination of the Rayleigh damping matrix, the viscous damping ratios 

for the first and the fourth eigenfrequencies are taken as 0.05 and 0.02, respectively. Due to 

symmetry, the first two eigenmodes are translational along the two horizontal axes. The fun-

damental eigenperiods of the corresponding conventionally fixed-supported building are: 

x,fixed y,fixed T T 0.311sec= = .  

A coupled plasticity model is used for simulating the bidirectional lateral response of the 

seismic isolators. The aforementioned model is based on the hysteretic behavior proposed by 

Wen, 1976 [15] and Park et al., 1986 [16] and recommended by Nagarajaiah et al., 1991 [17]. 

Here, for each bearing element an isolation period based on the post-yield stiffness of 2.0 sec-

onds, a yield displacement equal to 1.0 cm and a normalized characteristic strength 

W W=
x y

xi yiF F  equal to 0.05 or 0.10 are considered. 
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Figure 2: Configurations considered in the present study. 

Impacts occur at the isolation level when the clearance from the surrounding moat wall, i.e. 

the seismic gap, is exceeded, during very strong seismic excitations. Nevertheless, the meth-

odology provides the ability of considering impacts at all floor levels of the seismically iso-

lated building in case of pounding with other adjacent buildings. The moat wall is modeled as 

a single-mass system, with three dynamic DOF, as in the case of a single-storey structure. The 

moat wall is taken to be 100 cm thick and 100 cm high, resulting in a substantially stiff barrier, 

while it’s mass is assumed to be 5 tons/m, a number that takes into account the contribution of 

the backfill soil. The normal impact stiffness is kimp,N =2.58×10
7
 kN/m

2
, while the correspond-

ing tangential impact stiffness is kimp,T =5.74×10
6
 kN/m. The static and kinetic friction coeffi-

cients are taken as µs = 0.8 and µk =0.6, respectively. 

A set of earthquake ground motions has been selected from the Pacific Earthquake Engi-

neering Research Center database. The selected seismic accelerograms (Table 1) are expected 

to induce large relative displacements to the seismically isolated building, since they are char-

acterized by low-frequency contents, which is one of the most decisive factors for the occur-

rence of pounding in such structures. The response spectra of the five earthquakes’ fault-
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normal (FN) and fault-parallel (FP) components that have been used in this study are plotted 

in Figure 3. 

 

NGA Event Year Station Mw Comp PGA (g) 
PGV 

(cm/s) 

PGD 

(cm) 

FN 0.94 97 62.5 
#779 Loma Prieta 1989 LGPC 6.93 

FP 0.54 72.1 30.5 

FN 0.49 95.4 32.1 
#821 Erzican- Turkey 1992 Erzincan 6.69 

FP 0.42 45.3 16.5 

FN 0.61 81.9 25.5 
#828 Cape Mendocino 1992 Petrolia 7.01 

FP 0.63 60.4 26 

FN 0.59 130.3 54 
#1084 Northridge-01 1994 

Sylmar – 

Converter Sta 
6.69 

FP 0.8 93.3 53.3 

FN 0.52 59.3 9.6 
#2627 Chi-Chi- Taiwan-03 1999 TCU076 6.2 

FP 0.16 19.5 3.6 

Table 1: Summary of the main characteristics of the selected horizontal seismic excitations. 
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Figure 3: Acceleration and displacement response spectra of the (a) fault-normal, and (b) fault-parallel seismic 

components of the 5 earthquake records, considering a viscous damping ratio of 5 %. 

4 INFLUENCING FACTORS IN 3D SIMULATIONS 

The effect of the angle of incidence, on the peak structural response of the previously de-

scribed 3-storey base isolated building, is presented in this section. The simulated structures 

are subjected, simultaneously, to two orthogonal, horizontal seismic excitations of their sup-

porting ground. By rotating each of the 5 seismic record pairs, as presented in Table 1, from 

0° to 180°, with respect to the system’s principle axes of construction, with a 5° interval in the 

clockwise direction, one can consider 37 alternative excitation cases. In order to identify po-

tential differences in the response of a 3-storey building due to the angle of incidence of the 

ground motion, the half polar plots of peak interstorey drifts are plotted in Figure 3, consider-

ing the Loma Prieta and the Northridge earthquakes. Specifically, the peak responses are pre-

sented for different characteristics of the seismic isolation system in Figure 4(a) and (b), for 

both seismic excitations. It is observed that the interstorey drifts tend to decrease with an in-

crease in the normalized characteristic strength of the isolation system, Figure 4(b). 
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The simulation results indicate that the maximum responses occur at different angles. The 

critical angle in the longitudinal (E-W or X) direction is not always at 0 and 90 degrees, but 

occurs in incidental angles that are quite different for each excitation. In the case of seismi-

cally isolated buildings, the maximum relative displacements at the isolation level in the X- 

direction can vary by a factor of 3.9 and 1.4 over the possible angles of interest, for the Loma 

Prieta and the Northridge earthquakes, respectively. This is considered to be a significant 

variation. For both excitations, the critical excitation angle for the interstorey deflections is 

nearly common among all floors. The maximum floor relative displacement in the X- direc-

tion occurs at the complimentary angle of the maximum interstorey drift in the Y- direction. 

Although, the peak interstorey drifts in each direction depend highly on the incidence angle, 

the vector sum of the responses (i.e. the vectorial summation of the peak responses in the Car-

tesian Coordinates X and Y) slightly varies for different angles. As the peak responses of the 

X and Y components occur at different time intervals, although their vectorial summation 

does not have a physically meaning nevertheless it provides a conservative upper bound limit 

that can be used for design purposes. 
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Figure 4: Peak responses of the buildings’ corner column A1 as a function of the angle of incidence considering 

the no pounding” case, for seismic isolation systems with Tb = 2.0 sec, uy = 1.0 cm, Fyi/Wtot equal to (a) 0.05 and 

(b) 0.10; in both directions. 

4.1 Isolator characteristics and configuration 

Peak absolute values of the base drifts and the envelope of interstory deflections of the col-

umn A1, are shown in Figures 5 and 6 for various angles of seismic incidence. For the analy-

ses, both FN/FP components of the five selected near-fault ground motions are 

simultaneously used. The seismic gap is assumed to be 20 cm for the four of the selected exci-
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tations and 10 cm for the remaining (Chi-Chi- Taiwan-03) ground motion. Three configura-

tions are considered (Figure 2), as follow:  

Conf. A:  Base-isolated building with retaining walls in two sides (E-W direction)  

  LRBs: x y x y x y

b b y y yi yiT =T =2.0 sec, u =u =1.0cm,F W = F W =5.0%  

Conf. B:  Base-isolated building with retaining walls in two sides (E-W direction) 

  LRBs: x y x y x y

b b y y yi yiT =T =2.0 sec, u =u =1.0cm,F W = F W =10.0%  

Conf. C:  Base-isolated building with retaining walls in all four sides  

  LRBs: x y x y x y

b b y y yi yiT =T =2.0 sec, u =u =1.0cm,F W = F W =10.0%  

In this section, the response of the base-isolated building in each configuration is dis-

cussed. The results for the “no pounding” case are presented in Figure 5, and, for comparison 

purposes, the restricted base drifts of the corner column are also plotted for each excitation in 

terms of the excitation angle. The variation of the unobstructed base drifts indicate that the 

value of the incidence angles depends on the characteristics of the earthquakes, in combina-

tion with the characteristics of the isolation system. The critical excitation angle of a certain 

response quantity differs among the various earthquakes. 
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Figure 5: Half-polar plots of maximum unobstructed and restricted relative displacements at the isolation level of 

the buildings’ corner columns in terms of the excitation angle for different configurations. 
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The peak responses of the superstructure of the base isolated building considering different 

configurations and the corresponding fixed-supported building without pounding are pre-

sented in Figure 6. It becomes evident from the computed results, that the direction of the 

seismic excitation affects substantially the maximum response of the seismically isolated 

building, especially during pounding with the surrounding moat walls. The increase in drift 

demands due to pounding in Configuration B is less compared to Configuration A for all ex-

amined ground motions (second and third columns of Figure 6). This is mainly because the 

available gap size is more restricted in the first case compared to the corresponding maximum 

unobstructed displacement of the base isolated building, as illustrated in the first two columns 

of Figure 5. 
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Figure 6: Envelope of peak interstorey drifts of the buildings’ corner column A1 in terms of the excitation angle, 

considering the pounding case with the moat wall for various configurations; under five near-fault ground mo-

tions, and the no pounding case of a conventionally fixed-supported building. 

For the configurations A and B, due to poundings with the moat walls at the X-direction, if 

we consider 360
o
, due to the rotational symmetry of the 180° plots, the plots of the peak re-

sponses would resemble 8-shapes, exhibiting a pronounced dependence of the peak response 

on the incidence angle. Furthermore, the change in the response–angle relationship due to 

pounding is not so obvious in the Y-direction, since impacts occur only in the X-direction. For 
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the Configuration C, the peak response depends on the incidence angle, and the maximum 

interstorey drifts tend to exhibit two maxima in orthogonal directions. Furthermore, although 

the retaining walls are placed on each of the four sides of the building, four of the excitations 

resulted in one-direction impact for a range of excitation angles leading to a petal-like shape 

response, with two-orthogonal axes of symmetry. For example, for the Loma Prieta excita-

tions, considering an incidence angle, θ≈ 30-100°, impacts occur only in the Y-direction. 

The maximum interstorey drift over all examined orientations seems to be polarized in the 

direction in which the peak base displacement is observed; this polarization is almost perfect 

for this symmetric-plan building. The value of the maximum inter-storey drift ratio, due to the 

Northridge earthquake, indicates potential collapse of the first storey. Drift demands due to 

other earthquakes are significantly lower for all the cases that have been examined. As already 

discussed, the influence of poundings in the response of the base isolated building can be 

much less detrimental when isolators with normalized characteristic strength equal to 0.10 are 

incorporated, however the peak interstorey drifts due to impacts can become higher than those 

for the corresponding fixed-supported building (as shown in the last column of Figure 6).  

4.2 Available gap size  

In order to examine the effect of the seismic gap size on the response of the seismically 

isolated building during pounding with the moat wall, two of the aforementioned configura-

tions are considered. The structural characteristics of the base isolated buildings, as well as 

the isolation characteristics are kept the same. The width of the seismic gap varies from 15 to 

35 cm, with a step of 2.5 cm. Figures 7 (a) and (b) show the relationship among peak intersto-

rey drifts of the 3-storey seismically building, the incidence angle and the width of the avail-

able seismic gap of the adjacent walls located in the E-W direction under the bidirectional 

excitation of the Loma Prieta and the Northridge earthquakes, respectively. Similarly organ-

ized results are presented in Figure 8, considering impacts with the surroundings walls located 

around all four sides of the simulated building. 
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Figure 7: Envelope of the interstory deflections in the X and Y directions, as well as vector sum for different 

combinations of the excitation angle and the available gap size, considering adjacent walls in the two sides of the 

building (Conf. B) for (a) the Loma Prieta, and (b) the Northridge excitations.  
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It becomes evident from the plots, that the angle for which the maximum response is ob-

served is not the same for the two earthquakes that are considered, while the degree by which 

pounding affects the peak response seems to depend on the ground motion characteristics and 

the available gap size. The influence of the excitation angle is more pronounced in the case of 

pounding in one direction, as shown in Figure 7. Furthermore, it is important to mention that 

although no pounding occurs in the Y-direction the deflections of the column A1 in the Y di-

rection are also considerably affected from pounding in cases with more restricted gap in the 

E-W direction. In general, the vector sum of the superstructure’ drifts increases when the 

separation distance between structures decreases and, then, slightly decreases with further re-

duction in the separation. It is noteworthy that the interstorey drifts in the X and Y directions, 

as shown in the first two columns of Figure 8, respectively, present translational symmetry. 

Furthermore, translational symmetry seems to appear to the vector sum of interstorey drifts 

due to the bilateral symmetry of the building and the adjacent structures. 
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Figure 8: Envelope of the story drifts for various excitation angles and gap sizes for Configuration C under near 

fault ground motions. 

4.3 Stiffness of the superstructure 

In order to study the effects of the superstructure’s flexibility on the overall dynamic re-

sponse, the peak interstorey drifts are obtained for different fundamental eigenperiods of the 

superstructure of the examined three-storey isolated building with impact conditions under the 

Loma Prieta and Northridge earthquakes, as shown in Figure 9. Different superstructure’s 

stiffnesses are obtained considering different cross sections of the columns. The isolation sys-

tem considered consists of lead-rubber bearings (LRBs) with normalized characteristic 

strength x y

yi yiF W = F W  of 0.10 in both directions, with isolation gap distances of 20 cm 

around all four sides of the structure. It should be noted that the results presented in Figure 

9(b) refer to the peak response of the previous section described in Configuration C.  
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Figure 9: Envelope of peak interstorey deflections of the buildings corner columns in terms of the excitation an-

gle considering superstructure stiffness: Tx, fixed = Ty, fixed equal to (a) 0.25 sec, (b) 0.311 sec, (c) 0.394 sec, and (d) 

Tx, fixed = 0.372 sec, Ty, fixed = 0.312 sec. 

These figures show that the superstructure’s deflections undergo an increase when the fun-

damental eigenperiod of the corresponding superstructure increases. This implies that the be-

havior of the base isolated building during impact becomes adverse while increasing the 

flexibility of the superstructure. Furthermore, the stiffness of the superstructure does not seem 

to influence the excitation angle that dominates the response. It is possible to identify a clear 

pattern in the response of the structure. For structures with equal horizontal stiffness along the 

two axes of symmetry X and Y, where Tx, fixed = Ty, fixed, the response shows two separate 

peaks for the Loma Prieta excitation, one associated with θ = 75° and the second around θ = 

165°, leading to a petal-like shape with double symmetry. For the structures with unequal ei-

genperiod, instead, the peak tends to be in a single direction, and the plots assume a shape 

with unequal “petal” length. Furthermore, there is a similar response of the interstorey deflec-

tions in Y-direction in Figure 9(b) and (d), for both excitations, which relates to the almost 

identical superstructure stiffness in Y-direction. 

5 CONCLUSIONS  

The present study demonstrates the importance of implementing an efficient methodology 

with simple structural and impact modelling in three dimensions, in order to investigate the 

seismic pounding on the response of MDOF systems. Seismic response of a 3-storey base iso-

lated building during impact with an adjacent moat wall is investigated. The comparative per-

formance of different isolation systems during various impact conditions is studied under five 

near-fault ground motions. Parametric studies for simulating earthquake induced pounding of 

seismically isolated buildings are conducted in three-dimensions to observe the influence of 

the incidence angle, the width of the seismic gap and the flexibility of the superstructure on 

the peak response of the base isolated building. From the trend of the results presented hereby, 

the following conclusions are drawn: 

• The deflection of the superstructure of a base-isolated building increases significantly 

when impact with a moat wall takes place during an earthquake. The bearing displace-

ment is consequently reduced. 

• The detrimental effects of pounding may become more severe for certain values of the 

excitation angle. The incidence angle, in which the amplification of the superstructure re-

sponse due to pounding with the adjacent building obtains its maximum value, generally 

coincides with the angle in which the peak base displacement occurs. 
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• In general, the degree by which the incidence angle affects the interstory deflections 

seems to be significantly affected by the surrounding wall arrangement. 

• The normalized characteristic strength of the isolators has significant influence on the 

peak response of a base-isolated structure during impact. This can be justified consider-

ing that with an increase of the Fyi/Wtot ratio, the relative displacements at the isolation 

level decrease substantially, in combination to the influence of the width of the available 

seismic gap compared to the corresponding maximum unobstructed displacements under 

those excitations. 

• As the seismic gap between the base-isolated building and the adjacent wall decreases, 

there is an increase in the deflections of the superstructure up to a certain value of the gap 

distance and, then, onwards the deflections of superstructure decrease. 

• Increased flexibility of the superstructure increases significantly the drifts of the super-

structure during impact with the adjacent structure. 
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Abstract.  A non-linear 2-D numerical simulation is presented that can capture the in-plane 

hysteretic behaviour of reinforced concrete (R/C) frames with masonry infills when they are 

subjected to combined vertical and cyclic seismic type horizontal loads. The effectiveness of 

this simulation was validated extensively in the past by comparing numerical predictions with 

results from a series of pseudo-dynamic tests whereby a number of 1:3 scale, one-bay, one-

storey R/C frame specimens, including relatively weak masonry infills, were subjected to 

combined vertical and cyclic horizontal seismic-type loads under controlled laboratory 

conditions.  The numerical modelling of the surrounding R/C frame included its flexural non-

linear behaviour by simulating the development of plastic hinges either at the two ends of the 

R/C beam and/or at the top and toe of the R/C columns. All geometric and mechanical 

characteristics of the concrete and the longitudinal reinforcement of the R/C cross-sections 

were considered in detail. Sufficient shear reinforcement was assumed for both R/C beam and 

columns capable of prohibiting shear mode of failure. However, observations of failure 

modes for R/C infilled frames with columns under-designed in shear have shown that, when 

subjected to earthquake loads, the development of shear failure for the columns is an 

additional realistic scenario. The first part of the work presented here is investigating such an 

interaction of masonry infill with the R/C frame simulating both flexural and shear modes of 

failure for the R/C columns.  This numerical simulation retains the non-linear behaviour of 

the masonry infill itself as well as the non-linear behaviour at the contact area where the 

masonry-infill and the surrounding frame. The second part of the present work examines the 

influence of the foundation deformability for such multi-storey infilled frames having an 

increased in-plane stiffness due to the presence of the masonry infills. 
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1 INTRODUCTION 

     An extensive experimental and numerical study ([3], [4], [5] ,[6], [7]) was carried out at 

the laboratory of Strength of Materials and Structures, Aristotle University, in order to 

examine the in-plane seismic behaviour of infilled R/C frames. This study as well as previous 

studies ([1], [2]) demonstrated that the stiffness and strength of the masonry infilled, single-

storey, R/C frames can be affected by various non-linear mechanisms such as:    

a) The non-linear behaviour of the R/C frame including flexural limit state (plastic hinges) 

and shear limit state. 

b) The non-linear mechanisms that develop at the interface between the R/C frame and the 

masonry infill.   

c) The level of non-linear deformations that develop within the masonry infill itself. 

    In all these cases it was reported that the frames developed plastic hinges at their R/C beam 

and columns.  All these have been simulated successfully, as is shown in section 2. In 

addition, it is also demonstrated that through a certain modification to this numerical approach 

proposed by Soulis [1] the shear limit state of the R/C columns at predefined locations can 

also be simulated. In order to validate this proposed modification the experimental study 

conducted by Sariyiannis is utilized [8]. He subjected a number of one-storey one-bay 1/3 

scaled infilled frames to axial forces at the columns as well as horizontal seismic type cyclic 

forces at the level of the beam. Nine repaired infilled frames and two repaired bare frames 

were examined in this study. These specimens were produced by repairing damaged 1/3 

scaled R/C infilled frames tested previously by Stylianides [3]. These original virgin frames 

had a non-reinforced brick-masonry infill panel which was simply connected to the 

surrounding R/C frame by a continuous mortar joint. After this initial test sequence was 

completed the damaged frames were repaired in order to be tested again [8]. As expected, the 

type of failure of the columns depended on the type of failure of the masonry infills.  In a 

number of specimens tested by Sariyiannis [8] shear sliding of the infill along a horizontal 

mid-height mortar joint or corner crushing of the masonry infill was accompanied by the 

shear failure of the R/C columns. Two of these masonry infilled frame specimens, namely 

F1NR and F8NR [8], failed as a result of corner crushing of the infill and shear failure of the 

column. The masonry infilled frame F8NR is employed in the current paper in an effort to 

validate the proposed modified numerical simulation of masonry infilled R/C frame that can 

also realistically simulate this shear type of failure. 

    Stavridis [9], also carried out an experimental program of quasi-static tests with single-bay, 

single-storey, masonry-infilled, non-ductile RC frames, which were scaled sub-assemblages 

of a prototype structure. These tested specimens were 2/3-scaled models of such frames in a 

prototype building with design details representative of those used in the construction practice 

in California during the 1920’s [9]. Two of these specimens (referred to as CU1 and CU2) 

were single-storey, single bay masonry infilled frames that were tested with quasi-static cyclic 

loads [9]. A third specimen represented a three storey frame with two bays; this was tested on 

a shake table at UCSD [9]. After reaching the peak load, the specimen CU1 developed 

diagonal shear cracks in the concrete columns as an extension of the dominant cracks in the 

masonry infill. The same failure pattern was reported for the CU2 specimen with a window 

opening. Again, one of the columns in the CU2 specimen had a major shear crack which 

developed close to mid-height of the column. Koutromanos et al. [10], demonstrated the 

ability of a proposed nonlinear finite element model to capture the response of masonry-

infilled reinforced concrete frames under cyclic loads. Diffused cracking and crushing in 

concrete and masonry are simulated by a smeared-crack continuum model, while dominant 

cracks as well as masonry mortar joints are modeled with a cohesive crack interface model. 
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The interface model adopts an elasto-plastic formulation to describe the mixed-mode fracture 

of concrete and masonry. This model accounts for cyclic crack opening and closing, 

reversible shear dilatation, and joint compaction due to damage. The constitutive models have 

been validated successfully with experimental data and applied to the dynamic analysis of a 

three-storey, two-bay, masonry-infilled, non-ductile, reinforced concrete frame, which was 

tested on a shake table [9]. The plane-stress smeared-crack model was used for the simulation 

of the continuum elements representing masonry units and concrete elements. The numerical 

simulation presented by Koutromanos et al. [12] can accurately reproduce the load–

displacement response, crack patterns, and failure mechanisms of the infilled frames 

including the shear cracking of infill and the surrounding frame. 

    Valid numerical models of multi-storey infilled frames were investigated in the past by 

many researchers (see relevant review in [3] and [4]). The numerical simulation proposed by 

Soulis [1] was used to simulate the behaviour of three-storey structural formations including 

masonry infills; in particular a multi-storey planar R/C frame structure, which was 

constructed and tested at the University of California, Berkeley by Klingner and Bertero [11] 

was examined. Reasonably good agreement was observed between the numerical results and 

the experimental measurements regarding the hysteretic behaviour of the “bare”, and infilled 

three-storey specimens. In the second part of this paper the numerical simulation of the 

behaviour of a 6-storey masonry infilled R/C frame structure located at the Volvi-Greece 

European Test Site for Earthquake Engineering [12] is examined employing an elastic 

dynamic analysis and a non-linear “push over” analysis. Six basic structural configurations 

are studied including a "Bare" structure (only the R/C frames without any masonry infills) and 

various formations that resulted with the addition of masonry infills for this specimen of a 

simple R/C multi-storey building. These structural formations that were studied numerically 

correspond exactly to this 6-storey 1/3 scaled model building during a period of 10 years, 

from 1994 onwards. A large number of low-amplitude dynamic tests have been conducted in-

situ over an extended period, mainly from 1995 till 2006. By combining this large volume of 

dynamic response measurement data from the various in-situ low-vibration sequences, the 

most important mode shapes and eigen-frequencies were identified. This six-storey masonry 

infilled structure is numerically simulated in section 3. Initially, its dynamic behaviour is 

predicted utilizing the same simulation technique adopted in section 2 assuming, however, 

linear material properties and different foundation conditions. Next, a non-linear “push over” 

numerical analysis is performed in order to identify numerically its bearing capacity and the 

sequential appearance of various failure modes as predicted by this numerical simulation. In 

this “push over” analysis the soil-foundation conditions of the six-storey masonry infilled R/C 

frame structure is examined assuming either rigid or relatively flexible contact interface. 
 

Frame 

Code 

name 

Vertical 

load on 

Columns 

(KN) 

Technical description of 

masonry infill  

Masonry 

Infill 

thickness 

(mm) 

Technical description of 

the interface between 

frame and infill 

Longitudinal 

reinforcement 

ratio (ρ) 

F8NR 

Repaired 
[8] 

80 Infill with mortar O 

reinforced with 

reinforced plaster, 

without transverse 

reinforcement  

83 mortar O thickness 10mm 

The reinforced plaster is in 

contact with the 

surrounding frame  

 1.01% 

CU1[9] 156 Infill with mortar N 95 mortar N thickness 10mm 1.00% 

CU2[9] 156 Infill with mortar N 95 mortar N thickness 10mm 1.00% 

Table 1 Outline of all specimens for the 1
st
 and 2

nd
 group of specimen 
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2 THE NUMERICAL SIMULATION OF THE BEHAVIOUR OF SINGLE-STOREY 

SINGLE-BAY MASONRY-INFILLED R/C FRAMES  

   The present work studies the interaction of masonry infill with the R/C frame including in 

this numerical simulation the development of flexural (plastic hinge)  and/or shear limit state 

for the surrounding R/C frame.  Three scaled R/C infilled frame specimens, one of them, 

namely specimen F8NR, tested by Saryiannis [8] and two of them, namely CU1, CU2, tested 

by Stavridis[9], are utilized for the verification of the proposed numerical simulations. In all 

these cases the numerical response predictions are compared with the corresponding 

experimental results. Brief information on the selected masonry infilled R/C specimens is 

listed in table 1 and figures 1 and 2. The influence exerted by the interface mortar joint 

between the masonry infill and the surrounding frame was also examined here [3], [4], as was 

also done in both studies by Thauampteh [2] and by Soulis[1]. Tables 2, 3 and 4 list the 

mechanical properties of the materials used in the construction of the specimens. 
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Figure 1. Masonry infilled R/C frame F8NR specimen and 

design details [8]. 

Figure 2. Masonry infilled R/C frame CU1 

specimen and design details [9]. 

 

 

Masonry infill  

Compres

sive 

strength 

of 

masonry 

(N/mm
2
) 

Shear 

strength of 

masonry 

diagonal 

compression 

(N/mm
2
) 

Compres. 

strength 

of 

masonry 

units 

(N/mm
2
) 

Compres. 

strength of 

concrete 

(N/mm
2
) 

Compres. 

strength 

of mortar 

cylinders 

(N/mm
2
) 

Compress. 

strength of 

cement 

plaster 

(N/mm
2
) 

Compres. 

strength of 

Injected 

Epoxy 

Resin 

(N/mm
2
) 

Reinforced infill F8NR [8] 

Infill with mortar O, 

reinforced with 

reinforced plaster 

without transverse 

reinforcement 

2.12 0.64 

(corner 

crushing) 

5.50 25.9 2.7 11.3 94 

Virgin infill CU1[9] 

Infill with mortar N 24.3  49 29,5 9.2   

Virgin infill CU2[9] 

Infill with mortar N 24.3  49 29,5 9.2   

Table 2: Strengths of masonry infills and concrete used in the specimens [8],[9] 
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Α/α Yield stress 

fsy (N/mm
2
) 

Ultimate strength 

 fsu   (N/mm
2
) 

Strain at yield 

εsy (%) 

Strain at ultimate 

stress εsu (%) 

Young Modulus 

(N/mm
2
) 

Reinforced infill F8NR [8] 

Φ5.5  348 457 0.174 18.0 2Χ10
5 

Φ2.7stirrups  271 395 0.135 19.0 2Χ10
5
 

Virgin infill CU1[9] 

Φ#5 15.9mm 472 752 - 9.0 
 

Φ#2 6.4mm stirrups  431 472 - 13.0  

Table 3: Tensile strength of the reinforcement used in the specimens [8],[9] 
 
 
A/a Simulation of 

joint interface 

between frame 

and infill 

E  

Young 

Modulus 

(N/mm
2
) 

G  

Shear 

Modulus 

(N/mm
2
) 

fk Measured 

Compressive 

Strength of 

mortar 

(N/mm
2
) 

ftn Assumed 

Tensile Strength 

of mortar 

(N/mm
2
)  

(as % of fc) 

το Local 

bond shear 

strength of 

mortar 

(Ν/mm
2
) 

µ  

friction 

coeffici

ent  

1 O mortar F8NR 540 234 2.70 0.27(10%) 0.31 0.58 

2 N mortar CU1 1350 587 9,00 0.50  0.90 

3 N mortar CU2 810 352  0,40  0.90 

Table 4:  Mechanical properties of the mortar joint located between the infill and the surrounding frame 

 (mortar type H, N) [3], [4] 

 

 
Figure 3. Features of the non-linear numerical simulation of a single-bay single-storey masonry infilled R/C 

frame  

2.1 Simulation of the single storey masonry infilled R/C frame 

   An extensive study of various numerical simulations of the behaviour observed for masonry 

infilled R/C one-bay one-storey frame specimens tested by Thauampteh [2], by Stylianides 

[5], by Valiasis [6], and by Yasin [7] was included in the work by Soulis[1] together with an 

extensive validation process, utilizing the results of all these experimental studies ([2], [5], 

[6], [7]). Here a modified numerical model similar to the one presented before is examined 

that incorporates the simulation of the formation of shear limit state in predefined locations 

along the height of the two columns of such R/C specimens. The features of the numerical 

simulation are presented in figure 3 and in more detail in figures 4 and 5. These features are 

the same as the ones proposed by Manos, Soulis & Thauampteh before ([3], [4]) with the 
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addition of the possibility of shear limit state at predetermined locations along the height of 

the R/C columns of the single storey R/C frame.  In figure 3 these non-linear mechanisms are 

denoted as:  (1) corresponding to the non-linear behaviour of the masonry infill itself, (2) the 

infill-beam interaction at the contact region, (3) the infill-column interaction at the contact 

region (4) the formation of a plastic hinge at the end of a beam, (5) the formation of a plastic 

hinge at the top or bottom of a column and finally (6) the formation of a shear limit state 

along the height of a column. These non-linear mechanisms are also depicted in some detail in 

figure 4 (non-linear mechanisms (1), (2), (3) and (4) and in figure 5 (non-linear mechanisms 

(5) and (6)).  

 

Figure 4. Details of the non-linear numerical simulation  for the infill, the interface between infill and R/C frame 

and for the plastic hinge in the R/C beam. 

 

Figure 5. Details of the non-linear numerical simulation  for the plastic hinge in the R/C  column and for the 

shear limit state also at the column. 
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   All these non-linear mechanisms are numerically simulated with a combination of rigid 

zones and non-linear joint elements (figures 4 and 5) with properties based on the geometric 

data, the material properties of the constituent materials (masonry, mortar, concrete, 

longitudinal steel) and the relevant structural detailing. Each one of the numerical simulations 

of the specific non-linear mechanisms (1) to (5) has been validated separately by Soulis  [1] 

and Manos ([3], [4]) utilising relevant laboratory measurements obtained by Thauampteh [2]. 

Subsequently, this validation was also complemented by including all these non-linear 

mechanisms in the numerical simulation of a number of one-bay one-storey laboratory 

specimens by comparing the predicted cyclic behaviour for these specimens with observed 

performance ([1], [2], [3], [4], [5], [6], [7]). The additional shear limit state non-linear 

mechanism, represented by detail (6) in figure 5, is numerically approximated again by a 

combination of rigid zones and non-linear joint elements with properties based again on the 

geometric data of the column cross section, the material properties of the constituent materials 

(concrete, transverse steel), and the relevant structural detailing. The shear limit state was 

obtained by calculating the shear capacity for a column cross-section as specified by 

equations 1, 2 and 3. The location of these non-linear shear limit state zones is based on 

observed behaviour and accumulated experience for each given case.  For the studied 

specimens three predefined locations along the height of each column were selected capable 

of developing this shear limit state. Two of these locations are at the ends (top and bottom) of 

each column in serial sequence with the non-linear mechanism simulating the flexural plastic 

hinges in these locations. An additional shear limit state mechanism was also placed at mid-

height of each R/C column. Two elasto-plastic non-linear 2-D joint elements are used to 

simulate the shear post-elastic behaviour of a given R/C column cross section by considering 

also the corresponding column transverse reinforcement (figure 2 and detail No 6 in figures 3, 

4 and 5). As per ACI 318:2008 [12] the total shear Vu resisted (107KN) by the column’s cross 

section is carried by two parts; the shear resisted by the concrete and the shear resisted by the 

reinforcement. As already mentioned, the properties of these non-linear 2-D joint elements are 

specified utilizing the given structural details and equations 1 to 3. Independent numerical 

tests were carried out employing simple structural problems in order to verify that this way of 

simulating numerically the shear limit state mechanism responds in the expected way. Next, 

this numerical approach was applied to the infilled frame specimens included in table 2. 

     Vu =Vc +Vs      (1) 

• Shear resisted by the concrete part of the cross section Vc 

• Shear resisted by the transverse steel reinforcement  Vs 

For normal weight concrete,                                             

      (2) 

     (3) 

fc   =cylindrical compressive strength of 

concrete 

b = width of member 

Pu = axial force normal to cross section 

Ag   =gross cross sectional area of concrete 

Asv = area of transverse steel reinforcement 

expected to be effective in resisting the 

expected shear mode of failure 

d = Effective depth of member 

sυ = spacing of stirrups 

fyh= yield stress of stirrups 
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2.2 Validation of the proposed numerical simulation 

   Figures 6a, 6b and 6c depict a comparison between the predicted behaviour, in terms of 

envelope curves resulting from a monotonic type of loading on the adopted numerical 

simulation and the corresponding envelope curves resulting from the relevant experiments 

with the masonry infilled frame specimens F8NR and CU1, CU2. 

Horizontal Load-Horizontal displacement diagram 

reinforced masonry infilled R/C frame F8NR
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Figure 6a: Comparison of envelope curves for masonry 

infilled model frame F8NR 

Horizontal Load-Horizontal displacement diagram 

masonry infilled R/C frame CU1
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Figure 6b: Comparison of envelope curves for 

masonry infilled model frame CU1  

Horizontal Load-Horizontal displacement diagram 

masonry infilled R/C frame CU2
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Figure 6c: Comparison of envelope curves for masonry 

infilled model frame CU2 

 

The deformations to masonry infill 

observed during the tests and the  

numerically-predicted non-linear limit state  

is presented for frames F8NR (figures 7a 

and 7b), CU1 (figures 7c and 7d), CU2 

(figures 7e and 7c). The observed damage 

patterns of the masonry infill were well 

approximated by the proposed numerical 

simulation. The damage pattern of F8NR 

masonry infilled R/C frame reported 

experimentally, consisted of corner crushing 

of the reinforced masonry infill corners in 

the  R/C column and beam joint and a shear 

cracking in top right column(figure 7a).  

   Reasonably good agreement can be seen in the damage pattern predicted numerically except 

that shear limit state is observed both in the top left and the bottom right column (figure 7b). 

The damage pattern that was observed for masonry infilled frame CU1 includes 

diagonal/sliding cracks in the infill panels and shear cracks on the top left column and shear 

cracks in the bottom right column for the experimentally tested specimen (figure 7c). The 

same limit state pattern was predicted numerically as shown in figure 7d.  For the masonry 

infilled panel with one opening in specimen CU2 the sequence of limit states included 

successively (figure 7e) a) Infill to frame separation b)  diagonal cracks of the infill at the 

window corners c) shear crack in top left column , and d) diagonal crack in the right bottom 

X

Y

Z
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masonry pier and shear crack mid-height of the right column. The same limit state pattern was 

predicted numerically (figure 7f). 

 

 

7a) Damage pattern [8] 7b) Limit state numerical simulation (denored with *) 

Figures 7a and 7b) Damage pattern of masonry infill observed experimentally for infilled frame F8NR, b) 

Damage pattern(x) predicted numerically  

 

 

 

7c) Damage pattern [9] 7d) Limit state numerical simulation (denored with *) 

Figures 7c and 7d) Damage pattern of masonry infill observed experimentally for infilled frame CU1, b) Damage 

pattern(x) predicted numerically  

 

 

7e) Damage pattern [9] 7f) Limit state numerical simulation (denored with *) 

Figure 7e and 7f) Damage pattern of masonry infill observed experimentally for infilled frame CU2, b) Damage 

pattern(x) predicted numerically  
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3. VOLVI 6-STOREY MODEL STRUCTURE 

   The numerical investigation briefly reported in section 2 demonstrates that the proposed 

numerical model can successfully simulate a number of non-linear mechanisms that can be 

developed in a single storey masonry infilled frame. In this section it is shown that all these 

non-linear mechanisms (see introduction a, b and c) can be used to simulate the behaviour of 

a 6-storey masonry infilled R/C frame structure. This 6-storey masonry infilled R/C frame 

model structure was constructed and tested at the European Test Site at Volvi, by Manos et al 

[13], [14], [15]. This structure was utilized for the verification of the proposed numerical 

simulation.The investigation included two types of analyses; an initial linear dynamic analysis 

to predict numerically the recorded dynamic response of this structure followed by a non-

linear “push over” step-by-step type of numerical analysis of the same infilled frame 

structure. It must be pointed out that both types of numerical simulations make use of only in-

plane stiffness and strength behaviour of the masonry infills units whereas the out-of-plane 

behaviour and its possible effects, although important, are not addressed here. 

3.1. Description of the model structure 

   This model building was constructed and instrumented at the European Test Site of Volvi in 

order to monitor its dynamic response under prototype earthquake conditions. An extensive 

sequence of low-amplitude dynamic tests has been performed. The model included one-bay in 

each direction, 6-storey, of 1/3-scale with overall external dimensions 1810mm (length) x 

5000mm (height) in the weak direction and 1910mm(length) x 5000mm (height) in the strong 

direction. Its floor level had a height of 1000mm. The cross-section of the columns was 

110mmx110mm and that of the beam 100mmx155mmm. In figures 8 a, b and c the masonry 

infilled, R/C , 6-storey structure is depicted. The basic properties for the concrete and the 

reinforcement have been monitored through samples taken during construction. Different 

structural configurations of the 6-storey structure have been tested at the European Test Site 

of Volvi, in the period of its existence (Manos at al [13], [14], [15]). The structural 

configuration that is utilized here includes apart from the existing added weight of 50KN, an 

extra weight of approximately 30KN on the top of a sixth floor specially constructed for this 

purpose (Masonry scheme 2b, September 1997 – January 2004). 

   

Figure 8 a)Plan view of 6-storey 

masonry infilled frame structure 

in European test site at Volvi 

b)Side view of 6-storey “bare” 

frame structure in European test 

site at Volvi 

c) Side view of 6-storey masonry infilled 

frame structure in European test site at 

Volvi 
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   Brief information on the masonry infill used in this model building is listed in table 5. 

Relevant masonry properties and additional information are given by Thauampteh [2].   
 
Description of  the 6-storey 

structure masonry infill  

Masonry Infill 

thickness (mm) 

Technical description of the 

interface between frame and infill 

Longitudinal 

reinforcement ratio (ρ) 

Initial unreinforced Masonry 

with mortar type V1 

58.5 mortar V1 thickness 10mm 

(without plaster)   

 1.01% 

Table 5: Outline of all specimens for the 1
st
 and 2

nd
 groups of specimens 

   As already mentioned, the influence exerted by the interface between the masonry infill and 

the surrounding frame was also examined in both studies by Thauampteh [2] and by 

Soulis[1]. Tables 6, 7 and 8 list the mechanical properties of the materials used in the 

construction of the specimens. The masonry infill panel was connected to the surrounding 

frame with weak mortar (type V1) similar to the one used in the construction of F2N 

specimen Thauampteh [2]. In this numerical analysis the influence of this interface is 

examined together with three different cases of foundation-soil stiffness conditions.  

Masonry 

infill  

Masonry 

Infill 

thickness 

(mm) 

Compres. 

strength of 

masonry 

(N/mm
2
) 

Shear strength of 

masonry diagonal 

compression 

(N/mm
2
) 

Compres.  

strength of 

masonry 

units 

(N/mm
2
) 

Compres.  

strength of 

concrete 

columns 

(N/mm
2
) 

Compres.  

strength of 

concrete 

slabs 

(N/mm
2
) 

Compres.  

strength of 

mortar 

cylinders 

(N/mm
2
) 

V1 58,5 2,765 0.180 6.50 26 15,6 1.125 

Table 6: Strengths of masonry infills and concrete used in the specimens [10] 

Α/α Yield stress 

fsy (N/mm
2
) 

Ultimate strength 

 fsu   (N/mm
2
) 

Strain at yield 

εsy (%) 

Strain at ultimate 

stress εsu (%) 

Young Modulus 

(N/mm
2
) 

Φ5.5  338 425 0.8 22.0 6.5Χ10
4 

Φ5.5 stirrups  319 542 0.6 20.0 6.5Χ10
4
 

Table 7: Tensile strength of the reinforcement used in the specimens [10] 

A/a Simulation of 

joint interface 

between frame 

and infill 

E  

Young 

Modulus 

(N/mm
2
) 

G  

Shear 

Modulus 

(N/mm
2
) 

fk Measured 

Compressive 

Strength of 

mortar 

(N/mm
2
) 

ftn Assumed Tensile 

Strength of mortar 

(N/mm
2
)  

(as % of fc) 

το Local 

bond shear 

strength of 

mortar 

(Ν/mm
2
) 

µ  

friction 

coefficient  

1 V1 mortar  150 65 1,20 0.12(10%) 0.157 0.20 

Table 8:  Mechanical properties of the mortar joint located between the infill and the surrounding frame (mortar 

type V1) 

3.2. Three dimensional elastic numerical simulation of the dynamic response of the 6-

storey model structure  

   Initially, the results from in-situ tests are presented here dealing with the dynamic response 

of a 6-storey reinforced concrete (R/C) frame structure with masonry infills, which was built 

for this purpose at the Volvi European Test site. Summary results from the measured main 

eigen-frequency values resulting from simple pull-out tests on the 6-storey specimen, with 

masonry infills in all stories, with steel diagonals and extra mass are included in Table 9. A 

numerical simulation of the 6-storey (R/C) frame structure with masonry infills utilizing the 

all the provisions considered in section 2 was built and a dynamic analysis was performed. 

The numerical simulation included a 3-D simulation of the foundation slab, of all the concrete 
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members (slabs, beams, columns), of the masonry infills, the interface between the masonry 

infill and the surrounding frame and finally the 6th storey extension. The simulation of the 

foundation flexibility was approximated by introducing linear springs at the foundation-soil 

interface. Three different numerical analyses were performed assuming three different levels 

of soil-foundation stiffness: a) Infinite stiffness (base fixity), b) Medium stiffness (flexible 

base with foundation-soil interface of E=200Mpa), c) Low stiffness (flexible base with 

foundation-soil interface of E=10Mpa). Table 9, includes the corresponding summary eigen-

frequency results of the numerical simulation studies that were performed assuming these 

three different soil-foundation stiffness types. 

Description of  the Structural 

Configurations for the Volvi Model 

Structure 

1st x-x (Hz) 

Translational 

Eigen-frequency 

1st y-y (Hz) 

Translational 

Eigen-frequency 

1st φ 

(Hz) 

Torsional 

Measuring 

Procedure 

Masonry scheme 2b, June 1998. 6th 

storey extension Infills in all 5 

lower stories (with diagonals) . 

Measured values [14]  

5.005* 

 

4.761* 

 

 

 

Permanent 

& Portable 

Instruments 

Fixed base  

Values of eigen-frequencies 

numerically predicted 

5.40** 5.31** 5.48** 

Flexible base E=200Mpa 
Values of eigen-frequencies 

numerically predicted 

4.75** 4.67** 5.12** 

Flexible base E=10Mpa 
Values of eigen-frequencies 

numerically predicted 

2.58** 2.45** 2.69** 

X Y

Z

3-d Numerical 

simulation 
* Experimental value., ** Numerical simulation results 

Table 9: In-situ measured and numerically predicted vibration frequencies  

3.3.  Push over non-linear analysis of the masonry infilled 6-storey model structure 

   For this non-linear “pushover” analysis of the 6-storey structure, the maximum target 

displacement at the top was set equal to 61mm, with the displacement profile along the height 

of the structure assumed to be triangular. The in-plane displacements resulting in this way 

were imposed at each floor level in a gradual increasing step-by-step fashion. The numerical 

simulation discussed in section 2 for the R/C masonry infilled frames is applied this time for 

all the 16 masonry infilled bays that compose this 6-storey masonry infilled frame structure 

(figure 8c). The horizontal load-horizontal displacement “push-over” response curve resulting 

from this simulation, which as mentioned includes all non-linear mechanisms for the masonry 

infill, the surrounding R/C frame, the interface between the masonry infill and frame, is 

depicted in figure 9. The simulation of the masonry infill, was done utilizing non-linear thick 

shell finite elements. The isotropic nonlinear material law of Modified Von Mises was 

utilized for this purpose. The adopted mechanical properties of the initial and the strengthened 

masonry infill panel are listed in Table 10. 

Young Modulus (N/mm
2
) 1000 

Poisson Ratio 0,20 

Tensile strength (N/mm
2
) 0,30 

Compressive strength (N/mm
2
) 1,2 

Softening Modulus under compression (N/mm
2
) -10 

Softening Modulus under tension(N/mm
2
) -10 

Table 10: Mechanical properties used for the description of Von Mises failure criterion of the masonry infills  
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   The numerical simulation of the interface between the prototype R/C frame and the masonry 

infill is done in the same way as described in section 2.1, utilizing non-linear joint elements in 

the axial and transverse direction. This interface is assumed to have been built with mortar 

type V1 (see Thauampteh 2] and Table 8). The simulation of the surrounding R/C frame was 

also performed utilizing the same simulation technique as described in section 2.1. 

3.4 “Pushover” curves and Predicted damage for the numerical simulation of the 6-

storey frame of Volvi   

   Figure 9 depicts the base shear – top horizontal displacement curve obtained for the fully 

non-linear “pushover” analysis for the 6-storey masonry infilled frame structure assuming 

base fixity. In the same figure the base shear – top horizontal displacement curve is also 

obtained assuming a flexible foundation with a foundation-soil interface of E=10Mpa. The 

target top displacement corresponds to approximately 1% angular deformation of the 6-storey 

masonry infilled frame structure. Figures 10a,b, and 11a,b depict in more detail the predicted 

damage pattern (shown with x signs) of the masonry infills of the 6-storey masonry infilled 

structural formation resulting from this “push over” type of analysis for two levels of angular 

deformation a) 0,41%,  b)0,84%. 

Base Shear vs Top Storey Displacements of the 

6-storey masonry infilled scaled structure
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Figure 9:  Comparison between push over curves obtained for different foundation conditions 

γ=0,0042 

%ο(dx=25mm) 

γ=0,0084 
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a) Fixed  Foundation b) Fixed  Foundation a) flexible foundation b) flexible foundation 

Figure 10:  Masonry infill damage patterns, as 

predicted for top storey target displacement equal to 

a) 4,1%o,  b)8,4%o of the building height with fixed 

foundation 

Figure 11:  Detail of masonry infill damage patterns, as 

predicted for top storey target displacement equal to 

a)4,1%o, b)8,4%o of the building height with flexible 

foundation 
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   As can be seen in figure 9, the level of the soil-foundation stiffness influences significantly 

the non-linear “push-over” response of this 6-storey masonry infilled frame structure. The 

flexibility of the foundation decreases the shear deformation of the masonry infills and the 

predicted damage levels (figures 11a and 11b) more than for the case of rigid foundation 

(figures 10a and 10b).  Instead, the predicted damage patterns of the masonry infills in this 

structure, assuming base fixity, develops as expected at a much lower amplitude of top 

horizontal displacement.  The limit state pattern of the masonry infill predicted in this case is 

along its diagonal (figure 10b). In this sense the flexibility of the foundation acts as a 

protective mechanism, provided it is designed to be able to sustain such deformations without 

any side-effects.  Moreover, as concluded by an additional experimental sequence conducted 

with another model structure at the Volvi European Test Site [15] soil-foundation-structure 

interaction could lead non-embedded foundations to non-linear behaviour resulting in uplift 

and/or soil plastification. Therefore, such non-linear foundation responses if controlled by 

design could be a beneficial source of energy absorption. Otherwise, they may lead to 

excessive displacements of the superstructure and to foundation failure. 

4 CONCLUDING OBSERVATIONS  

1. The strength and the monotonic load-displacement behaviour observed during the 

experiments of single-storey one-bay masonry-infilled R/C frames examined in this 

study is successfully predicted by the proposed numerical simulation. 

2. The proposed numerical simulation represents in a reasonable way the most important 

influences that the interface between masonry infill and the surrounding frame could 

exert on the monotonic behaviour of such structural assemblies in terms of stiffness, 

strength, modes of failure, as demonstrated from the observed behaviour. 

3. The development of a shear limit state at the predetermined positions of columns of the 

surrounding R/C frame observed during the experiments as well as the damage patterns 

for the masonry infill, in terms of crack propagation are also successfully predicted. 

4. This numerical simulation was next validated by a 3-D numerical model for a multi-

storey masonry infilled frame model structure located at the Volvi European Test Site. 

Good agreement could be seen between measured eigen-frequency values and predictions from 
linear dynamic analysis performed assuming different foundation conditions.   

5. Finally, this numerical simulation was successfully applied to the same multi-storey 

masonry infilled frame model structure located at the Volvi European Test Site this 

time employing a non-linear “push over” type of analyses that included all the non-

linear mechanism employed before.  From the obtained results it can be demonstrated 

that the flexibility of the foundation decreases the shear deformation of the masonry 

infills and the predicted damage levels more than for the case of rigid foundation. In 

this sense the flexibility of the foundation acts as a protective mechanism, provided it is 

designed to be able to sustain such deformations without any side-effects.   
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Abstract. This paper presents the results of a numerical study aimed at developing a rational 

approach to assess the degradation of mechanical properties of lead-core bearing devices used 

for passive seismic isolation. The lead-core rubber bearing is modeled as a multiple-component 

system. Appropriate constitutive laws and failure criteria are defined for each component of the 

system. Two alternative constitutive relations are defined for the lead core: bilinear material 

model by assuming isotropic hardening after yielding, and a model formulated in the framework 

of continuum damage mechanics. The numerical procedure used to simulate the mechanical 

response of the device allows the monitoring of accumulated mechanical damage throughout 

the loading history. Preliminary simulation results obtained by finite element analysis are re-

ported. Specifically, these are shear force-displacement hysteresis loops under various loading 

conditions in a typical characterization test. 
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1 INTRODUCTION 

The lead-core bearing device is modeled as a multiple-component system. It consists of the 

following components: lead core, rubber layers, steel shims and thick steel plates. For each 

material, lead, rubber and steel, an appropriate constitutive law is chosen. The constitutive laws 

are defined on the meso-scale. At this point, an analogy between the representative volume 

element in continuum damage mechanics and finite element is postulated. The stress and strain 

fields in the lead-core bearing device are obtained by finite element analysis on the basis of the 

postulated constitutive laws. Important macro-characteristics of the bearing can be evaluated 

throughout the loading history. Such macro-characteristics, if observable, can be employed to 

calibrate the model or to validate the results obtained by finite element analysis. 

2 BEARING DEVICE: SPECIFICATIONS    

The geometry of the bearing being modelled and analysed in this study is shown in Figure 1. 

 

Figure 1: Geometry of the modelled bearing device 

As it can be seen, the lead-core bearing device consists of two thick steel plates at the top and 

at the bottom, rubber layers separated by steel shims, and a lead-core. The thick steel plates are 

182mm (2x76) in diameter and 25mm thick with a central cylindrical opening of 30mm diam-

eter. Twenty rubber layers separated by 19 steel shims are stacked between the top and bottom 

steel plates. The rubber layers and the steel shims are both 182mm in diameter and 3mm thick. 

They also have a central opening of 30mm diameter along which a lead core of 30mm diameter 

is fitted.  
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3 CONSTITUTIVE LAWS 

3.1 Steel 

Steel is modelled as an isotropic and elastic material. This is justified because, in common usage 

conditions of the bearing devices, the steel layers and the top/bottom plates remain elastic while 

yielding occurs in the lead-core and rubber layers. Constitutive law for the steel layers and the 

top/bottom plates is thus completely defined by initial elastic modulus (Young’s Modulus) and 

Poisson’s ratio.  

3.2 Lead-core 

For the lead-core, a bi-linear stress-strain relationship [1][2][3] is assumed. It is assumed that 

the material obeys the von Mises yield criterion. An isotropic hardening rule is used to model 

the post-yielding behavior. As an alternative, a constitutive law based on continuum damage 

mechanics is formulated, specifically by coupling elasto-palsticity and damage [4]. In this for-

mulation, material response is described by state variables. These variables can be derived form 

a dissipation potential P that can be written as: 

  DX PPfP    (1) 

where f is a function prescribing the yield criterion, XP  describes hardening and DP  represents 

damage potential [5]. The yield criterion has the following property. 

 
plasticityf

elasticityf





0

0
  (2) 

If both isotropic and kinematic hardening are considered the yield criterion is given by: 

   
yeqij RXf     (3) 

where 

       
3 3

2 2

D D D D D D

ij ij ij ij ij ij ijeq
X X X X           (4) 

In equation (4), 
D

ijT denotes the deviatoric part of a symmetric second order tensor 
ijT , ij is the 

stress tensor and X is referred to as a back stress (Figure 2).   

 
Figure 2: Kinematic back stress X and isotropic hardening stress R [6]  
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The kinematic back stress X is the locus of the elastic domain center in the stresses space and 

the isotropic hardening stress R  measures the elastic domain increase: 

  XR y     (5) 

The accumulated plastic strain rate is given by the following expression: 

    p

ij

p

ijtp  
3

2
   (6) 

In (6) 
p

ij is the plastic strain rate, obtained after decomposition of the total strain into elastic 

and plastic part. It is assumed that damage begins when the plastic strain reaches the value 

corresponding to the ultimate stress (Figure 2) and its critical value is given by: 

   
pDp

u
c

ES
D 













2

2

  (7) 

where p is the accumulated plastic strain and pD  is the plastic strain corresponding to the 

damage threshold. Damage is accumulated only if pDp   .  

  
0

0





D

D

pDp

pDp








  (8) 

3.3 Rubber 

For rubber, a Neo-Hookean model is used. Strain energy potential is defined by using the fol-

lowing equation. 

   
2

1

μ 1
W= I -3 + J-1

2 d
                                                   (9) 

In Eq. (9) µ stands for the initial shear modulus of the material; d is the material incompressi-

bility parameter, and 
1I  is the first invariant of the isochoric part of the right Cauchy-Green 

deformation tensor. According to [7] and [8], J is the ratio of the deformed elastic volume to 

the undeformed reference volume of the material. J can be evaluated by calculating the deter-

minant of the Lagrangian strain tensor:  

det ijJ F          (10) 

In Eq. (10) Fij denotes the components of the Lagrangian strain tensor. Furthermore, 1I  can 

be obtained as  

2/3

1 1I I J        (11) 

where kI  is the thk  invariant of the right Cauchy-Green deformation tensor, and is given by 

 2 2 2

1 1 2 3I        (12) 

where i  are the principal stretches. The material incompressibility parameter d is related to 

the material bulk modulus K as follows: 
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2
K

d
        (13) 

and the Young's modulus of the material is defined as: 

2 (1 )E           (14) 

Based on experimental data, the following values are chosen for the material parameters µ and 

d [[1]]: µ=0.73MPa and d=0.001mm2/N. 

4 FINITE ELEMENT MODEL 

A detailed 3-D finite element model is created. All elements of the bearing device are explicitly 

modeled in terms of geometry. Volumes are created for the rubber layers, steel shims, the lead-

core and the thick top and bottom steel plates. Advantage is taken of the existing symmetries. 

Only half of the bearing device is modelled. Appropriate symmetry boundary conditions are 

defined on the plane of symmetry (Figure 3). 

 

 

Figure 3: The half-space model and symmetry boundary conditions 

For the finite element mesh 20-nodes 3-D structural solids are used (Figure 4). Components in 

steel are meshed with Solid 95 [9]. The lead-core and the rubber layers are meshed with Solid 

185 [9]. Full integration option is used to avoid spurious stress hardening. 

5617



T. Zhelyazov, R. Rupakhety and S. Ólafsson 

 

 
Figure 4: A 20-node 3-D structural finite element [9] 

 

The finite element mesh is displayed in Figure 5. A total of 10290 Solid185 are employed to 

mesh the volumes of the lead-core, the thick steel plates, the rubber layers and the steel shims. 

All the interfaces are assumed to give have bonds. 

 

Figure 5: Half-space finite element model: finite element mesh 

5 FINITE ELEMENT SIMULATION 

The response of the lead-core bearing device is obtained by performing an explicit dynamic 

transient analysis. The equation of motion has the form: 

          tFuKuDuM  ][][][    (15) 

where [M] is the mass matrix; [D] is the damping matrix; [K] is the stiffness matrix;  u  is the 

nodal acceleration vector;  u is the nodal velocity vector, and  u  is the nodal displacement 

vector, and   tF  is the time- dependent loading vector. All the nodes on the ‘bottom’ surface 

of the bearing device (Z = -25mm) are restrained against all possible displacements (nodal 

translations along X-, Y- and Z-axis). Both constant vertical loads and time-dependent horizon-

tal loads are applied to the nodes on the ‘top’ surface of the bearing device (Z = 142mm). The 

vertical load is applied along the direction parallel to the global Z-axis in the model space. The 

time-dependent horizontal load is simulated by applying displacements to the top-surface-nodes 

in a direction parallel to the global X-axis. The boundary conditions defined for the simulation 
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of the characterization test are shown in Figure 6. In order to obtain the ‘force-displacement’ 

relationship, the evolution of the shear stresses in the lead-core along the global X-direction is 

monitored. 

 

Figure 6:  Schematization of the characterization test simulation 

The shear strain γ in its turn is conventionally defined as the ratio between the relative horizontal 

displacement between the top and bottom surfaces of the bearing device- dh and the total height 

of the rubber Hr (Hr =60 mm). 

  
r

h

H

d
   (16) 

One of the strain loading paths is visualized in Figure 7. 

 
Figure 7: cyclic strain paths 

-1,5

-1

-0,5

0

0,5

1

1,5

0 50 100 150 200

S
h

ea
r 

st
ra

in

Time (s)

5619



T. Zhelyazov, R. Rupakhety and S. Ólafsson 

 

6 RESULTS OBTAINED BY FINITE ELEMENT SIMULATION 

In this section shear strain- displacement curves obtained for different shear strain amplitudes 

and shear strain rates are shown. The numerical procedure reproduces the typical hysteresis 

behavior exhibited by a bearing device in common identification test. All simulations contain 

three full hysteresis loops and the ascending branches of the fourth loop.  It should be noted 

that these results should be further validated through comparison with experimental data.  

 

Figure 8: Shear force-displacement hysteresis loops for maximum shear strain γ=0.835 and shear strain rate 

dγ/dt=0.083 

 

Figure 9: Shear force-displacement hysteresis loops for maximum shear strain γ=0.835 and shear strain rate 

dγ/dt=0.042 
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Figure 10: Shear force-displacement hysteresis loops for maximum shear strain γ=0.835 and shear strain rate 

dγ/dt=0.028 

 

Figure 11: Shear force-displacement hysteresis loops for maximum shear strain γ=0.835 and shear strain rate 

dγ/dt=0.021 
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Figure 12: Shear force-displacement hysteresis loops for maximum shear strain γ=0.835 and shear strain rate 

dγ/dt=0.017 

 

Figure 13: Shear force-displacement hysteresis loops for maximum shear strain γ=1.00 and shear strain rate 

dγ/dt=0.2 
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Figure 14: Shear force-displacement hysteresis loops for maximum shear strain γ=1.00 and shear strain rate 

dγ/dt=0.1 

 

Figure 15: Shear force-displacement hysteresis loops for maximum shear strain γ=1.00 and shear strain rate 

dγ/dt=0.033 
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Figure 16: Shear force-displacement hysteresis loops for maximum shear strain γ=1.165 and shear strain rate 

dγ/dt=0.117 

Qualitative comparison between different ‘displacement-shear force’ curves obtained by finite 

element analysis shows that the shear strain rate decrease results in hardening in the ascending 

branch of each hysteresis loop (compare Figure 8, Figure 9, Figure 10). For further decrease in 

shear strain rate this trend is conserved. Additionally a sharp discontinuity in the transition 

between ascending and descending branches as well as at the ‘zero-shear strain point’ can be 

observed (see Figure 11 and Figure 12). The latter observation should be addressed again when 

relevant experimental data is available. 

 

Figure 17: predicted dissipation capacity for different shear strain rates (0.028; 0.021; 0.017) 

 

Furthermore, comparing numerical results obtained for various shear strain rates, it can be con-

cluded that the model predicts a slight decrease in dissipation capacity with the strain rate de-

crease. This is visualized in Figure 17 which shows an estimate of the dissipation capacity based 

on results of three finite element simulations. For the three simulations the maximum imposed 

shear strain is the same whereas the shear strain rate differs. 
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7 CONCLUSIONS  

 This paper presents preliminary results of the study of mechanical response of bearing 

devices used in passive seismic isolation carried out at the Earthquake Engineering Re-

search Center of the University of Iceland. The study will be further extended by experi-

mental investigation in order to furnish relevant data for model validation.   

 Lead-core bearing is modelled as a multiple component system. Appropriate constitutive 

laws and failure criteria are defined for each material: lead, rubber and steel. 

 An explicit and accurate finite element model of a lead-core bearing device is presented. 

Results obtained by finite element analysis reproduce the hysteresis response of a lead-

core bearing device usually exhibited in a common identification test.  

 Results obtained by finite element simulation can be further used as a basis for tuning of 

an analytical differential equation model (curve fitting) aiming a subsequent implementa-

tion of the calibrated single-degree-of freedom model into a numerical models of a damped 

large-scale structures. 
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Abstract. Structural damage identification is a scientific field that has attracted a lot of interest 

in the scientific community during the recent years. There have been many studies intending to 

find a reliable method to identify damage in structural elements both in location and extent. 

Most damage identification methods are based on the changes of dynamic characteristics and 

static responses, but the incompleteness of the test data is a great obstacle for both. In this 

paper, the performance of different modal correlation criteria in structural damage identifica-

tion is investigated. The structural damage identification problem is treated as an optimization 

problem which is solved using the differential evolution search algorithm. The objective func-

tions used in the optimization process are based on different modal correlation criteria, provid-

ing a measure of consistency and correlation between estimations of modal vectors. The 

performance of each of the objective functions is evaluated by a number of damage scenarios 

for a simply supported beam. Although the results of the various criteria on the different dam-

age scenarios vary, it is clearly shown that some modal correlation criteria exhibit excellent 

performance in detecting the structural damage even in the case of strong incompleteness of 

the modal data. 
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1. INTRODUCTION 

Structural damage identification has drawn increasing academic literature, as witnessed by the 

number of relevant journal and conference papers, during the recent years. There have been 

many studies intending to find a reliable method to identify damage in structural elements both 

in location and extent [1]. Most damage identification techniques are based on the changes of 

dynamic characteristics and static responses, but the incompleteness of the test data is a great 

obstacle for both. 

Generally speaking, the existing methods of damage identification techniques based on 

modal testing can be clarified into two major categories: direct and inverse methods. The direct 

methods utilize the change in modal measurement to instantly detect structural damage without 

the need of iterative computational procedures. In contrast, the second category of damage 

identification techniques poses the whole process as inverse problems [2-9], in which the struc-

tural damage is identified via optimizing the correlation between the theoretical and the exper-

imental modal parametric change, respectively. In order to determine the level of correlation 

between the measured and the predicted natural frequencies or mode shapes modal correlation 

criteria are used as a simple mathematical tools, providing a measure of consistency and corre-

lation between estimations of modal vectors. 

In this paper, the performance of different modal correlation criteria in structural damage 

identification is investigated. The structural damage identification problem is treated as an op-

timization problem which is solved using the differential evolution optimization algorithm. The 

objective functions used in the optimization process are based on different modal correlation 

criteria to identify the location and the extent of structural damage. The performance of each of 

the objective functions is evaluated in a number of damage scenarios for a simply supported 

beam. It is shown that the results of the different modal correlation criteria vary, while certain 

criteria exhibit excellent performance in detecting the structural damage even in the case of 

strong incompleteness of the modal data. 

2. STRUCTURAL DAMAGE IDENTIFICATION 

The problem of damage identification is classified into four levels [10]: (A) detection, (B) lo-

calization, (C) quantification, and (D) prediction of future damage (damage prognosis). At the 

level of damage detection (Level A), the existence of damage can be detected, while its location 

and severity are unknown. Information about location of the damage can be provided by local-

ization techniques at Level B. At the damage quantification level (Level C), both the location 

and severity of damage are estimated. Finally, at the prediction level (Level D), the remaining 

life of the structure is estimated based on the (identified) current damage state and future loads 

and damage propagation. This study reaches the third level of damage identification, which 

means it investigates the ability to detect, localize as well as estimate the severity of damage in 

structures.  

It is proven that changes in the dynamic characteristics of a structure are related to damage 

occurrence. Specifically changes in the modal parameters, namely natural frequencies and mode 

shapes, can provide an accurate indication of damage in a structure. Since modal parameters 

are dependent on the physical properties of the structure, i.e. stiffness and mass, the FEM may 

be used as a tool for locating and quantifying damaged elements in a structure through the 

update of modal parameters, even in large-scale structures. 
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2.1. Damage identification model 

If a structure is properly modeled using the FEM, structural damage mathematically affects its 

stiffness and physically its dynamic properties, such as natural frequencies and mode shapes 

[11]. It can be assumed that the global mass matrix remains the same in both the undamaged 

and the damaged structure. This assumption is considered quite accurate for the majority of real 

applications. The eigenvalue problem of a structure with n active degrees of freedom (DOFs) 

can be written as follows: 

   2 ( )

( ) 0, {1, 2, , }i

i i m  K      (1) 

where K is the global stiffness matrix of the structure ([n×n]), M is the global mass matrix 

([n×n]), {φ(i)} is the i-th natural mode vector of the structure ([n×1]) corresponding to the ω(i) 

natural frequency and m is the total number of natural modes to be obtained (m ≤ n). 

Eq. (1) forms the basis of the damage identification method used in the present study. An 

inverse procedure is used, where the natural frequencies and natural modes of the damaged 

structure are measured and they are supposed to be known quantities (to a certain extent), while 

the damage of the structure is unknown and needs to be calculated through an optimization 

procedure. 

2.2. Modal correlation criteria 

We consider two structures A and B with n active degrees of freedom (DOFs) each, with ei-

genvalues λA(i) = ωA(i)
2 and λB(i) = ωB(i)

2, natural frequencies ωA(i) and ωB(i) (i = 1, 2,…, m), where 

m is the total number of natural modes obtained (m ≤ n). The corresponding mode shape vectors 

are {φ(i)} and {ψ(i)} ([n×1] each), for structures A and B, respectively. 

In order to compare two sets of values for the two structures, the use of modal correlation 

criteria is imperative. The following criteria have been used in this study, as useful mathemati-

cal tools providing a measure of consistency and correlation between estimations of modal vec-

tors: 

1. The Modal Assurance Criterion (MAC) 

2. The Modified Total Modal Assurance Criterion (MTMAC) 

3. The Co-ordinate Modal Assurance Criterion (CoMAC) 

4. The Modal Flexibility Assurance Criterion (MACFLEX) 

 

An example of two structures 

In the next sections we will show the mathematical formulation of each criterion and also pro-

vide numerical values for a given example of two structures, for better comprehension and in 

order to exhibit the different criteria used. We consider two example structures, A and B. Each 

structure has n = 9 active DOFs and up to m = 4 eigenvalues and eigenmodes are taken into 

consideration (are supposed to be known, for both structures A and B). 

Structures A and B correspond to the example which is examined in the numerical results 

section of the present study. Specifically, Structure A is the structure of the example with no 

damage, while Structure B is the same structure but in a damaged state where the damage vector 

is [0.0, 0.0, 0.0, 0.2, 0.3, 0.4, 0.6, 0.6, 0.3, 0.0], i.e. damage 20%, 30%, 40%, 60%, 60%, 30% 

at the 4th, 5th, 6th, 7th, 8th, 9th element, respectively. The eigenproperties of structures A and B 

are shown in Table 1 and Table 2. Figure 1 shows the four eigenmodes of the two structures. 
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  1st Eigenmode 2nd Eigenmode 3rd Eigenmode 4th Eigenmode 

 λ = ω2 (sec-2) 3008.56 48108.77 243219.45 765859.94 

 Eigenperiod T (sec) 0.1146 0.0286 0.0127 0.0072 

N
o

d
a

l 
v

a
lu

es
 

1st DOF 0.505 -0.960 -1.321 -1.553 

2nd DOF 0.960 -1.553 -1.553 -0.960 

3rd DOF 1.322 -1.553 -0.505 0.960 

4th DOF 1.553 -0.959 0.960 1.553 

5th DOF 1.633 0.001 1.633 0.000 

6th DOF 1.553 0.960 0.960 -1.553 

7th DOF 1.321 1.553 -0.505 -0.960 

8th DOF 0.959 1.553 -1.553 0.960 

9th DOF 0.504 0.960 -1.321 1.553 

Table 1. Modal properties (eigenvalues and eigenvectors) of example structure A. 

 

  1st Eigenmode 2nd Eigenmode 3rd Eigenmode 4th Eigenmode 

 λ = ω2 (sec-2) 1762.18 32163.04 174959.58 540463.95 

 Eigenperiod T (sec) 0.1497 0.0350 0.0150 0.0085 

N
o

d
a

l 
v

a
lu

es
 

1st DOF 0.439 -0.854 -1.206 -1.438 

2nd DOF 0.849 -1.442 -1.552 -1.157 

3rd DOF 1.206 -1.585 -0.780 0.543 

4th DOF 1.476 -1.184 0.636 1.611 

5th DOF 1.627 -0.298 1.631 0.488 

6th DOF 1.629 0.787 1.269 -1.489 

7th DOF 1.441 1.576 -0.366 -1.164 

8th DOF 1.053 1.594 -1.582 1.035 

9th DOF 0.546 0.935 -1.245 1.468 

Table 2. Modal properties (eigenvalues and eigenvectors) of example structure B. 
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Figure 1. The four eigenmodes of the two example structures A and B. 

 

2.2.1. The Modal Assurance Criterion (MAC)  

The Modal Assurance Criterion (MAC) [12, 13] is one of the most popular tools for the quan-

titative comparison of modal vectors. The purpose of this criterion is to indicate the correlation 

between two sets of natural modes. Considering two mode shapes vectors {φ(i)} ([n×1]) and 

{ψ(j)} ([n×1]), for structures A and B, respectively, the term MACij of the MAC matrix ([m×m]) 

is given by: 
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i T j
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   (3) 

MACij takes values from zero, representing no consistent correspondence, to one, represent-

ing a consistent correspondence between the two mode shapes vectors. In this manner, if the 

modal vectors under consideration, {φ(i)} and {ψ(j)}, truly exhibit a consistent relationship, the 

modal assurance criterion element MACij approaches unity. By calculating MACij for all i, j = 

{1, 2,…, m} we obtain the MAC matrix. In our example, considering all four eigenmodes, we 

obtain: 
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1 0 0 0

0 1 0 0
(A,A) (B,B)

0 0 1 0

0 0 0 1

 
 
  
 
 
 

MAC MAC  (4) 

 

0.9950 0.0049 0.0001 0.0000

0.0049 0.9853 0.0077 0.0018

0.0000 0.0082 0.9765 0.0107

0.0001 0.0009 0.0121

(A,B) (B

0.9609

,A)T

 
 
  
 
 
 

MAC MAC  (5) 

If we consider a lower number of eigenmodes m, then the size of the MAC matrix decreases 

accordingly but in any case, it corresponds to the upper left part of the above full matrix (which 

corresponds to 4 eigenmodes). In other words, the above matrix contains (as sub-matrices) the 

[1×1], [2×2], [3×3] MAC matrices that would have been calculated for a lower number of 

known eigenmodes (1, 2 or 3, respectively).  

ˆMAC  ([1×m]) is a vector holding the diagonal terms of MAC matrix and it can be easily 

calculated by setting i = j in Eq. (2) or Eq. (3). ˆMAC  is a vector with as many values as the 

number of known eigenmodes (m). In our example, considering all four eigenmodes, we obtain: 

  ˆ ˆ(A,A) (B,B) 1 1 1 1 MAC MAC  (6) 

  ˆ ˆ 0.9950 0(A,B) .9853(B,A) 0.9765 0.9609 MAC MAC  (7) 

By multiplying the m individual values of the ˆMACvector, we obtain the final MAC scalar 

value as follows: 

 
1

ˆMAC
m

i

i

MAC


  (8) 

The table below shows the values of MAC for various values of the number of known 

eigenmodes, for our example. 

 

No of known modes 1 2 3 4 

MAC(A, B) 0.9950 0.9803 0.9573 0.9199 

Table 3. MAC values for 1, 2, 3 or 4 known eigenmodes. 

 

2.2.2. The modified total modal assurance criterion (MTMAC)  

One limitation of the MAC criterion is that it does not take into account the eigenvalues of the 

different mode shapes of the structures. It takes into account only the eigenvectors, but not the 

eigenvalues. This means that in case of uniform damage, the MAC criterion will not be able to 

detect any change, as in this case, the structure becomes more flexible (the eigenperiod in-

creases), but there is no difference in the eigenvectors which remain the same as before. The 

natural frequencies provide global information of the structure and they can be accurately iden-

tified through dynamic measurements. 

5631



Manolis Georgioudakis and Vagelis Plevris 

Another criterion, the modified total modal assurance criterion (MTMAC) [14], is based on 

the MAC criterion but it takes also the eigenvalues into account. The MTMAC vector 

ˆMTMAC  ([1×m]) is defined as follows: 

 
2 2

( ) ( )

2 2

( ) ( )

, {1, 2
ˆM

,
ACˆM , }

1

TMAC i
i

A i B i

A i B i

i m
 

 

 





   (9) 

It should be noted that the MTMAC can be easily defined also as a matrix ([m×m]), whose 

diagonal is again the ˆMTMAC  vector, as was the case with MAC. ˆMTMAC  is a row vector 

with as many values as the number of natural modes considered (m). In our example, consider-

ing all four eigenmodes: 

  ˆ ˆ(A,A) (B,B) 1 1 1 1 MTMAC MTMAC  (10) 

  ˆ ˆ 0.7(A,B) (B,A 889 0.8220 0.8395 0) .8195 MTMAC MTMAC  (11) 

By multiplying the m individual values of the ˆMTMAC  vector, we obtain the MTMAC sca-

lar value as follows: 

 
1

ˆMTMAC
m

i

i

MTMAC


  (12) 

The table below shows the values of MTMAC for various values of the number of known 

eigenmodes, for our example. 

 

No of known modes 1 2 3 4 

MTMAC(A, B) 0.7889 0.6484 0.5444 0.4461 

Table 4. MTMAC values for 1, 2, 3 or 4 known eigenmodes. 

 

2.2.3. The co-ordinate modal assurance criterion (CoMAC)  

In the comparison of two sets of modal vectors, one of the issues of interest is the influence of 

individual DOFs on the vector resemblance. The spatial dependence of the MAC correlation 

criterion can be misleading. The co-ordinate modal assurance criterion (CoMAC) [15] is an 

extension of the modal assurance criterion which is used to detect differences between two 

modal vectors at the DOF level. It is basically a row-wise correlation of two sets of compatible 

vectors, while in MAC this is done column-wise. 

Although we can also define a COMAC matrix ([n×n]), in the same way as we defined 

MAC earlier, this time we will go straight to the definition of the ˆCOMAC  vector ([1×n]) 

which is most relevant and important. The off-diagonal terms of MAC were the ones giving 

the relationship between different mode shape vectors of the two structures, for example the 

element (2, 1) of MAC is the one which gives the relationship between the 2nd eigenmode of 

structure A and the 1st eigenmode of structure B. In the case of COMAC, in a similar manner, 

the off-diagonal terms are the ones giving the relationship between different DOFs of the two 

structures. For example the element (2, 1) of COMAC is the one which gives the relationship 
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between the 2nd DOF of structure A and the 1st DOF of structure B, for the various eigenvectors 

considered. 

Hence, the ˆCOMAC  for the k-th DOF of the structure (k = 1, 2,…, n) is defined as follows: 

 

   

2

( ) ( )

1

2 2
( ) ( )

1 1

ˆCOMA , {1, 2C , , }

m
i i

k k

i

k m m
i i

k k

i i

k n

 

 



 

 
 
  

   
      



 
   (13) 

Unlike the MAC, the COMAC can compare modes that are close in frequency by detecting 

local differences between two sets of modal vectors. It does not identify modeling errors, be-

cause their location can be different from the areas where their consequences are felt. Another 

limitation is the fact that COMAC weights all DOFs equally, irrespective of their magnitude in 

the modal vector.  

By calculating ˆCOMACk  for all k = {1, 2,…, n} we obtain the ˆCOMAC  vector ([1×n]). In 

case of full consistency between {φ(i)} and {ψ(i)} ({φ(i)}={ψ(i)} for all i = {1, 2,…, m}), all 

elements of the ˆCOMAC  vector will be equal to 1. By multiplying the n individual values of 

the ˆCOMAC  vector, we obtain the COMAC scalar value as follows: 

 
1

ˆCOMAC
n

i

i

COMAC


  (14) 

In our example: 

  (A,A) (B,B) 1 1 1 1 1 1 1 1 1ˆ ˆ T
 COMAC COMAC  (15) 

The table below shows the values of the various elements of ˆCOMAC  vector together with 

the corresponding values of COMAC scalar, for various values of the number of known 

eigenmodes, for our example. 

 

No of known modes 1 2 3 4 

1st DOF 1.0000 0.9999 0.9997 0.9997 

2nd DOF 1.0000 0.9995 0.9979 0.9905 

3rd DOF 1.0000 0.9970 0.9804 0.9509 

4th DOF 1.0000 0.9850 0.9623 0.9754 

5th DOF 1.0000 0.9678 0.9837 0.9421 

6th DOF 1.0000 0.9892 0.9760 0.9814 

7th DOF 1.0000 0.9987 0.9934 0.9906 

8th DOF 1.0000 0.9991 0.9993 0.9992 

9th DOF 1.0000 0.9980 0.9983 0.9990 

COMAC 1.0000 0.9356 0.8955 0.8395 

Table 5. ˆCOMAC (A, B) and corresponding COMAC scalar value  

for 1, 2, 3 or 4 known eigenmodes. 
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2.2.4. The modal flexibility assurance criterion (MACFLEX) 

It is well known that damage affects the stiffness matrix of the structure and more specifically 

it reduces the stiffness of the individual damaged elements. A reduction in stiffness is equivalent 

to an increase in the structural flexibility.  

 

Flexibility matrix 

In structural health monitoring it is advantageous to use changes in flexibility as an indicator of 

damage rather than using stiffness perturbations. This is due to the following reasons [16]: 

1. The flexibility matrix is dominated by the lower modes and so good approximations can 

be obtained even when only a few lower modes are employed. 

2. The flexibility matrices are directly attainable through the modes and mode shapes, de-

termined by the system identification process. 

3. Iterative algorithms usually converge the fastest to high eigenvalues. 

4. In flexibility-based methods, these eigenvalues correspond to the dominant low-fre-

quency components in structural vibrations. 

 

Therefore, the dynamically measured flexibility matrix which is calculated from the iden-

tified modal parameters, can be used as a damage identification measure [7]. The flexibility 

matrix FA ([n×n]) for structure A is given by 

 
1 

   F Φ Λ Φ  (16) 

where Φ is a matrix ([n×m]) containing all the m mode shape vectors {φ(i)} ([n×1] each) and 

ΛA is a diagonal matrix ([m×m]) which holds the eigenvalues λA(i) = ωA(i)
2 (i = 1, 2,…, m) on 

its diagonal. The individual elements of matrix FA can also be obtained separately using the 

following formula: 

 ( ) ( )

, 2
1 ( )

1m
i j

A ij k k

k k

F  


  (17) 

The two figures below, show graphical representations of the flexibility matrices FA and FB 

of the two structures of our example, for 1 and for 4 known eigenmodes, respectively. 

 

 

Figure 2. Flexibility matrices for structure A (left) and B (right), for one known eigenmode. 

5634



Manolis Georgioudakis and Vagelis Plevris 

 

Figure 3. Flexibility matrices for structure A (left) and B (right), for 4 known eigenmodes. 

Each column of the flexibility matrix represents the displacement pattern of a structure asso-

ciated with a unit force applied to the associated degree of freedom. As shown in Eq. (17), as 

the value of frequency decreases (i.e. the eigenperiod increases) the modal contribution to the 

flexibility matrix increases also. As a result, a good estimate of the flexibility matrix can be 

calculated with a small number of the first low-frequency modes, which is also evidenced in 

the two figures above. 

 

The MACFLEX criterion definition 

In order to compare the values of the flexibility matrix of the two structures A and B, the modal 

flexibility assurance criterion (MACFLEX) is applied. The individual elements of the 

ˆMACFLEX vector ([1×n]) can be calculated as follows: 
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where 
( )

A
ˆ i
F  and 

( )

B
ˆ i
F  are the i-th column vectors ([n×1]) of the flexibility matrices AF  and BF , 

for structures A and B, respectively. ˆMACFLEX  is a vector with as many values as the num-

ber of columns in the flexibility matrices. Again, we could consider a full MACFLEX matrix 

by taking different vectors into account, instead of the i-th vector for both structures, but there 

is no point in that as again the diagonal terms of the MACFLEX matrix are the important ones. 

By multiplying the n individual values of the ˆMACFLEX  vector, we obtain the MACFLEX 

scalar value as follows: 

 
1

ˆ
n

i

i

MACFLEX


MACFLEX  (19) 

In our example, for any number of known modes (1, 2, 3 or 4), it is: 

  (A,A) (B,B) 1 1 1 1 1 1ˆ ˆ 1 1 1 MACFLEX MACFLEX  (20) 

However, the ˆ ( , ) MACFLEX  = ˆ ( , ) MACFLEX  vector changes depending on the 

number of the known eigenmodes, as shown in the table below (shown as the transpose, in 

column format). 
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No of known modes 1 2 3 4 

1st DOF 0.9950 0.9929 0.9932 0.9933 

2nd DOF 0.9950 0.9936 0.9939 0.9939 

3rd DOF 0.9950 0.9947 0.9948 0.9948 

4th DOF 0.9950 0.9957 0.9956 0.9956 

5th DOF 0.9950 0.9963 0.9962 0.9962 

6th DOF 0.9950 0.9965 0.9965 0.9965 

7th DOF 0.9950 0.9967 0.9967 0.9967 

8th DOF 0.9950 0.9972 0.9973 0.9973 

9th DOF 0.9950 0.9978 0.9980 0.9979 

MACFLEX 0.9557 0.9621 0.9628 0.9629 

Table 6. ˆ (A,B)T
MACFLEX  and corresponding MACFLEX scalar value 

for 1, 2, 3 or 4 known eigenmodes, for our example. 

 

Figure 4 shows the values of MTMAC and MACFLEX criteria for different number of 

known eigenmodes (1, 2, 3 or 4), for our example. 

 

Figure 4. Comparison of MACFLEX and MTMAC scalar values  

for 1, 2, 3, and 4 known eigenmodes. 
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3. DAMAGE IDENTIFICATION AS AN OPTIMIZATION PROBLEM 

3.1. Problem formulation 

Setting-up an objective function, selecting the updating parameters and using robust optimiza-

tion algorithms are three crucial steps in structural identification. They require deep physical 

insight and usually trial-and-error procedures have to be used. In our case, the damage identifi-

cation problem is considered as an unconstrained optimization problem where the design vari-

ables denote the extent of damage of every single element of the structure. In this sense, the 

number of design variables is equal to the number of elements in the structure. Single beam 

elements are used to represent the structure of the numerical example. It has been assumed that 

no alteration occurs before and after damage related to the mass, which is acceptable in most 

real applications. Therefore, the parameterization of the damage has been represented by a re-

duction factor or damage index of the element bending stiffness. This damage index, de, for a 

damaged element e represents the relative variation of the damaged element bending stiffness, 

(EI)e,d to the initial (undamaged) bending stiffness (EI)e, as follows: 

 
,( )

1
( )

e d

e

e

EI
d

EI
   (21) 

This definition of a damage index for each element of the structure allows estimating not 

only the damage extent but also the damage location since the damage identification is carried 

out at the element level. The damage index can take values between 0 (no damage) and 1 (100% 

damage, no stiffness), although for numerical stability purposes, the maximum damage has to 

be limited to a value slightly below 1 (i.e. 0.999) or the structure can become a mechanism that 

cannot be analyzed and numerical instabilities will occur. 

The objective function has to reflect the deviation between the numerical prediction and the 

real behavior of the structure. For this reason, an objective function may be formulated in terms 

of the discrepancy between FE and experimental quantities. The following four objective func-

tions have been considered in this study, corresponding to the four different modal correlation 

criteria (MAC, MTMAC, CoMAC and MACFLEX respectively) between the real damage (ac-

cording to each examined damage scenario) and the damage which is estimated by the finite 

element model: 

 F1 = 1 – MAC 

 F2 = 1 – MTMAC 

 F3 = 1 – COMAC 

 F4 = 1 – MACFLEX 

The minimum value (target value) for each objective function is zero. At this point it has to 

be noted that in real life, the dynamics properties (eigenvalues and eigenmodes) of the real 

damaged structure would have to be determined (measured) by experiment. In our case, these 

properties are also calculated numerically using a FE “real damage” model, which is perfectly 

acceptable for the purposes of the present study and does not cause any problems or limitations 

to the procedure. 

3.2. The differential evolution algorithm 

Choosing the proper search algorithm for solving an optimization problem is not a straightfor-

ward procedure. In the past a number of studies have been published where structural optimi-

zation are solved using the metaheuristic search algorithms and especially those based on 
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adopting Darwinian principles of evolutionary process. These algorithms achieve efficient per-

formance for a wide range of combinatorial optimization problems. Among the plethora of such 

algorithms, the differential evolution (DE) algorithm is adopted in this study to solve the opti-

mization problem of Section 3.1.  

Differential evolution (DE) is a stochastic population-based evolutionary algorithm for 

global optimization, introduced by Storn & Price [17]. It follows the standard evolutionary al-

gorithm flow with some significant differences in mutation and selection process. The simplic-

ity of DE algorithm is based on only three tunable parameters, the mutation factor [0,2]F , 

the crossover probability [0,1]CR  and the total number or particles (population size) NP. The 

fundamental idea behind DE is the use of vector differences by choosing randomly selected 

vectors, and then taking their difference as a means to perturb the parent vector with a special 

kind operator and probe the search space. Several variants of DE have been proposed so far 

[18], but this study is focused on the nominal approach (DE/rand/1/bin). According to this, each 

of the members of the population undergoes mutation and crossover. Once crossover occurs, 

the offspring is compared to the parent, and whichever fitness is better moves to the next gen-

eration (selection process). In more detail: 

We consider an optimization problem with D dimensions. First, all individuals x are initial-

ized at random positions in the search-space. After initialization each member of the population 

x undergoes mutation and a donor vector v is generated such as: 

  = ( )F  v a b c   (22) 

where a, b and c are three individuals from the population at random, which must be distinct 

from each other as well as from individual x (   x a b c ). 

In the next step the crossover operator is applied by generating the trial vector u which is 

defined either from the i-th component (vi) of v or the i-th component (xi) of x, with probability 

CR as follows: 

  
if    or  

            1,2,...,
otherwise

i i

i

i

v r CR i R
u i D

x

 
 


  (23)  

where ri is a random number with uniform distribution, [0,1]ir U , and R is a random integer 

in [1, 2, …, D] which ensures that in any case, after the crossover operation it is u x . The 

last step of the generation procedure is the implementation of the selection operator where the 

target vector x is compared to the trial vector u. If the trial vector u has a better fitness value, 

then the individual x is replaced in the population with the trial vector u as follows: 

 
if  ( ) ( )

otherwise

f f
  



u u x
x

x
  (24) 

where f is the objective function to be minimized and x΄ is the new design vector for the next 

generation. The optimization procedure finished when the maximum number of generations has 

been reached. 

4. NUMERICAL EXAMPLES 

A simply supported beam [19] is analyzed in this section to illustrate the performance of the 

proposed methodology and the different criteria. The geometry, boundary conditions and finite 

element mesh of the beam are shown in Figure 5. The beam has a total length of 6 m and it is 

discretized by 10 equal length beam elements of rectangular cross section b (width) x h (height) 
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= 0.25 m × 0.20 m. The beam is considered to have a Young’s modulus E equal to 30 GPa and 

a density ρ equal to 2500 kg/m3. 

 

 

Figure 5. The beam structure under investigation. 

The parameters of the DE optimization problem are the following: 

 D = 10 (dimension of the problem) 

 NP = 40 (population size) 

 F = 0.6 (mutation factor) 

 CR = 0.9 (crossover probability) 

 MAXGEN = 3000 (maximum numbers of generations) 

 

Four different damage scenarios are considered: (1) A single-element damage scenario 

(Figure 6a); (2) a two-element damage case (Figure 6b); (3) a three-element damage case 

(Figure 6c); and (4) a uniform damage case (Figure 6d). The finite element model of the beam 

is based on Euler–Bernoulli assumption of the planar elements with two degrees of freedom per 

node (the axial deformation is ignored). 

 

(a) Damage 1 

 

(b) Damage 2 

 

(c) Damage 3 

 

(d) Damage 4 

Figure 6. The four different damage scenarios. 

4.1. Results 

The same optimization algorithm has been applied to all damage scenarios. For each damage 

scenario, the four different modal correlation criteria have been used for the formulation of the 

objective function. For each criterion, the number of known eigenmodes varies from 1 to 4. The 

results are presented in bar charts, where the target damage (real damage) is always denoted in 

red color and the other colored bars denoted the damage estimation by the optimization proce-

dure. 
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4.1.1. Damage 1 scenario (single-element damage) 

Figure 7 shows the performance of the four different criteria for the first damage scenario. We 

see that the MTMAC criterion shows very good performance, since it manages to identify the 

damage almost 100% in the cases where 3 or 4 eigenmodes are known, while a good perfor-

mance is also recorded for the difficult cases of 2 or even only 1 known eigenmode. The MAC 

criterion shows also good performance, but again it cannot be compared to the performance of 

the MTMAC criterion. 

 

 

(a) MAC 

 

(b) MTMAC 

 

(c) CoMAC 

 

(d) MACFLEX 

Figure 7. Performance of the four different criteria for the  

single-element damage scenario (Damage 1). 
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4.1.2. Damage 2 scenario (two-element damage) 

Figure 8 shows the performance of the four different criteria for the second damage scenario. 

This damage scenario appears to be more difficult than the first one. Again, we see that the 

MTMAC criterion shows exceptional performance in the cases where 3 or 4 eigenmodes are 

known. The other criteria appear not to exhibit a very good performance, even in the cases 

where 4 eigenmodes are known. 

 

 

(a) MAC 

 

(b) MTMAC 

 

(c) CoMAC 

 

(d) MACFLEX 

Figure 8. Performance of the four different criteria for the  

two-element damage scenario (Damage 2). 
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4.1.3. Damage 3 scenario (three-element damage) 

Figure 9 shows the performance of the four different criteria for the third damage scenario. 

Again the trend is the same. Only the MTMAC shows excellent performance, especially in the 

cases of 3 or 4 known eigenmodes, while the other criteria fail to identify the location and extent 

of damage adequately, even in the cases where 4 eigenmodes are known. 

 

 

(a) MAC 

 

(b) MTMAC 

 

(c) CoMAC 

 

(d) MACFLEX 

Figure 9. Performance of the four different criteria for the  

three-element damage scenario (Damage 3). 
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4.1.4. Damage 4 scenario (uniform damage) 

Figure 10 shows the performance of the four different criteria for the last damage scenario. The 

uniform damage appears to be the most difficult scenario. With the exception of MTMAC, the 

three other criteria completely fail to identify the location or extent of damage and they seem 

to just not be working at all. On the other hand, MTMAC shows very good performance when 

4 eigenmodes are known, while its performance in the case where 3 eigenmodes are known can 

be still considered as acceptable. The overall performance of MTMAC is good but it is not as 

good as in the three other damage scenarios. 

 

(a) MAC 

 

(b) MTMAC 

 

(c) CoMAC 

 

(d) MACFLEX 

Figure 10. Performance of the four different criteria for the  

uniform damage scenario (Damage 4). 

The reason that the other three criteria (MAC, CoMAC and MACFLEX) fail completely is 

that only the MTMAC criterion contains also information about the eigenvalues (or eigenperi-

ods) of the structure. The other criteria take into account only information about the eigenmodes. 

It is known that in the special case of uniform damage, the eigenmodes of the structure them-

selves do not change and the only property that changes is the eigenperiod which becomes 

larger (the structure becomes more flexible). As a result, only the MTMAC criterion manages 

to identify this special kind of damage and can be trustworthy for such damage cases. 
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5. CONCLUSIONS 

 In this paper, the performance of different modal correlation criteria in structural damage 

identification was investigated. The structural damage identification problem was treated as 

an optimization problem which was solved using the differential evolution optimization al-

gorithm. 

 The DE algorithm proved to be very efficient and robust in all cases, while the four correla-

tion criteria exhibited different performances for each damage case. 

 In general, the MTMAC criterion showed excellent performance, managing to identify al-

most 100% the location and extent of damage for all damage cases, when 3 or 4 eigenmodes 

were known. In the cases were limited data were available (1 or 2 known eigenmodes), this 

criterion showed also an acceptable performance which was the best among the different 

criteria.  

 The other criteria showed good performance only in some individual damage cases, but their 

general performance was not reliable, especially when a smaller number of eigenmodes were 

considered (1, 2 or 3). 

 Some damage scenarios were more difficult than others. The most difficult was the uniform 

damage (4th) scenario. Only the MTMAC criterion managed to give a good estimation for 

this damage case and again, the quality of the solution was not perfect, even in the case of 4 

known eigenmodes. 
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Abstract. Flexible structures like tall buildings are often equipped with active control systems
which allow the reduction of structural vibration induced by wind and earthquakes. Wind gusts
and earthquakes are different in terms of intensity level, frequency and duration of the excita-
tion. In particular, wind induced vibrations are usually moderate and require a continuously
operating control system whose main goal is to provide occupants’ comfort in serviceability
conditions. Conversely, earthquakes of significant intensity are rarely experienced by the struc-
ture and may produce structural damage that leads to deterioration in structural stiffness.
The use of Model-Reference Adaptive Control (MRAC) has recently been considered for struc-
tural applications for its capability of dealing with systems’s uncertainties and time dependence
of parameters. The adaptive controller has two loops: the inner loop consists of an ordinary
feedback control process while the outer loop adjusts the controller parameters through an
adaptation rule in order to minimize the difference between measured output and model output.
In this paper the use of MRAC in conjunction with a Lyapunov-based adaptation rule is in-
vestigated for the response mitigation of a tall building equipped on top with an active device
and subjected to both wind and seismic hazards. Since the required structural performances in
case of wind and earthquake-excited vibrations are different, in order to optimize the control
effectiveness, a modified MRAC algorithm based on multiple reference models (M-MRAC) is
proposed in which the switch between the targets is performed based on the measured feed-
back information. The main advantage of the proposed methods is its capability of providing
power saving and limitation of the peak control force. Parametric analyses allow to identify
proper threshold levels for the switching condition and optimal reference models providing a
compromise between safety and economy. Results of the numerical analyses on a benchmark
tall building show the effectiveness of the control strategy for several loading conditions.

5646



Ilaria Venanzi, Laura Ierimonti

1 INTRODUCTION

Active control is an appealing technique, already adopted in many tall buildings for mitiga-
tion of wind- and earthquake-induced vibrations. The effectiveness of active control is closely
linked to the selected control algorithm. The most widespread strategies are those based on
linear optimal control or robust control [1, 2] but they can not fully manage uncertainties in
modal parameters evaluation, loads variability, system’s non-linearities and physical limits of
actuators [3]. For these reasons adaptive control strategies recently have started to be used for
structural control.

Model Reference Adaptive Control is an adaptive algorithm which updates the parameters
of the controller for tracking the response of a reference model. The actual system’s response
is compared to the target response and the control parameters are modified as a function of
the error. While many applications of MRAC are available in the mechanical and aeronautical
fields, still a few studies exist for civil structures [4, 5, 6].

Tall buildings can experience different vibration levels when subjected to earthquake and
wind hazards. Consequently, active control has to allow satisfaction of serviceability require-
ments under wind load and to avoid occurrence of severe damage under seismic load.

In this paper a modified MRAC algorithm based on multiple reference models (M-MRAC) is
proposed, capable of switching between targets depending on the measured feedback informa-
tion. The idea of switching between different models has recently been proposed in literature
[7] but never exploited for civil engineering applications. A preliminary parametric analysis on
a tall building equipped with an AMD on top and subjected to both seismic and wind loads al-
lows to define the characteristics of multiple reference models. Analysis results demonstrate the
effectiveness of the method in optimizing the control performance and in reducing the required
control force.

2 ADAPTIVE CONTROL WITH MRAC

2.1 Dynamics of the structure and the reference model

The considered structure is a tall building modeled as a multi-degrees of freedom dynamic
system, subjected to external excitation f and to a control force u. The equation of motion is:

Msz̈s + Csżs + Kszs = Ēsf + B̄su (1)

where Ms, Cs and Ks are the mass, damping and stiffness matrices of the building, Ēs and
B̄s are the location matrices of the external excitation and the control force, respectively. In
MRAC, a reference model is defined that is subjected to the same external disturbance f whose
dynamic behavior is the target. The equation of motion of the reference system is:

Mrz̈r + Crżr + Krzr = Ērf (2)

where Mr, Cr and Kr are the mass, damping and stiffness matrices of the reference model, Ēr

is the location matrix of the external excitation.
In state-space formulation, the equations of motion become:

ẋs = Asxs + Esf + Bsu (3)
ẋr = Arxr + Erf (4)

where

xs = [zs, żs]T (5)
xr = [zr, żr]T (6)
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As, Ar are the system matrices of the structure and the reference model respectively, Es, Er and
Bs are the location matrices.

A linear feedback control law is adopted for computing the control force:

u = Kxs (7)

where K is the vector collecting the states’ gains.

2.2 Adaptation law

In MRAC control scheme both the structure and the reference model are subjected to the
same external excitation f which is supposed to be measured. To derive the adaptation law, the
error vector e is computed as follows:

e = xs − xr (8)

The knowledge of the states of the structure is considered available and the target response is
computed through the reference model.

A stable adaptation law used to adjust the controller’s parameters is computed based on the
definition of a Lyapunov function as follows:

V = eTPe + φTΓ−1φ (9)

where φ is the parameter error vector, P is a positive definite symmetric matrix, Γ is the positive
definite adaptation gain matrix. In order to obtain an asymptotically stable adaptive system, the
time derivative of the Lyapunov function V̇ , must be negative definite. Differentiating V yields:

V̇ = eT (AT
r P + PAr)e + 2eTPbIφTxs + 2φTΓ−1φPe + φTΓ−1φ (10)

By applying the Lyapunov’s equation (AT
r P+PAr = −Q), positive definite symmetric matrices

P and Q can be found such that the first part of Equation 10 is negative definite. By putting the
last two terms of Equation 10 to zero, the adaptive law is obtained:

φ̇ = −ΓeTPbIxs (11)

K̇ = φ̇M−1
s (12)

The adaptive control gain vector K is obtained by time integration.

3 MULTIPLE-MODEL REFERENCE ADAPTIVE CONTROL (M-MRAC)

Structures subjected to multiple hazards with different levels of excitation exhibit different
performance. In order to guarantee the respect of various limit states under multiple hazard,
it is convenient to define multiple reference models providing different target performance.
The choice of the reference models is important for the determination of the best compromise
between structural performance and power saving.

The reference model is a dynamic system described by the following equation:

ẋr = Ar(σ)xr + Erf (13)
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where the state matrix Arσ is a piecewise continuous function of time depending on the param-
eter characterizing switching conditions σ(t) . The multiple reference models’ state matrix is
defined as follows:

Ar(σ) =


Ar,0 for σ(t) < σ1

Ar,1 for σ1 ≤ σ(t) < σ2

...

Ar,n for σ(t) ≥ σn

(14)

where σ1, ..., σn are switching thresholds. The parameter σ can be a measured state of the
system or a generic response parameter.

In the simplified case of two reference models, the switching rule becomes:

Ar,σ =

{
Ar,0 for σ(t) < σ̄

Ar,1 for σ(t) ≥ σ̄
(15)

where σ̄ is the switching threshold.
In order to obtain good performance of the control system, the switching rule must be prop-

erly selected. Repeated switching may potentially lead to optimized performance but a too
high commutation frequency can lead to improper system’s behavior [8]. Nevertheless, due
to the high natural periods of structures under investigation the critical dwell time is usually
reasonably well below the switching time intervals.

4 THE CASE STUDY

4.1 Description of the tall building

The structure chosen as case study is the 76-story building, 306 meters high, proposed as a
benchmark problem for response control under wind load [9]. It is a reinforced concrete build-
ing consisting of a concrete core, designed to resist lateral loads and concrete frames mainly
devoted to support gravity loads. The building has a square cross section with chamfer at two
corners, constant along the height. A simplified dynamic model of the building with 1DOF for
each floor is considered in the analyses. Damping ratio for all modes is 1% and the first natural
frequency is 0.16 Hz. Figure 1 shows the plan and elevation views of the structure.

4.2 Wind and seismic loads modeling

Wind loads adopted for the analyses were obtained by tests performed in the boundary layer
wind tunnel facility at the Department of Civil Engineering at University of Sidney, Australia
[10]. The rigid model of the building had a length scale of 1:400. Wind pressures were recorded
for 27 seconds, corresponding to about 1 hour in prototype scale. Pressure coefficients were
integrated and converted into across-wind forces at each story. The mean wind velocity at the
top of the building was 47.25 m/s corresponding to a reference wind velocity Vref = 13.5 m/s
at 10 m above ground, representing serviceability conditions at which occupant’s comfort and
motion perception are important design criteria.

In order to consider uncertainties on measurement variability and to characterize statistically
the wind load, 7 sets of time histories each one having a duration of 10 minutes are extracted
from the measured time histories of the lateral wind forces and used to compute the structural
response.
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Figure 1: Plan and elevation views of the building [9].

To characterize the seismic load, 7 accelerograms relative to the Los Angeles area, with
a 10% probability of exceedance in 50 years, are taken from the PEER-NISEE online library
[12]. The accelerograms are preliminary scaled to have the same reference value of peak ground
acceleration PGAref , which is the mean value (among the 7 accelerograms) of the PGA.

5 NUMERICAL RESULTS

5.1 Sensitivity analysis on the choice of the reference models

Tall buildings must satisfy different performance requirements under wind and earthquake.
Therefore control systems have the dual purpose of guaranteeing occupants’ comfort under
ordinary wind conditions and limiting damage under extreme seismic events. The possibility of
adopting multiple reference models is exploited with the aim of reducing costs associated with
elevated power supply.

In order to characterize reference models, a parametric analysis by varying the target system
damping is carried out. Without loss of generality, the investigated reference dynamic systems
have mass and stiffness matrices equal to the corresponding nominal matrices of the real struc-
ture and damping ratio of all modes varying from 1% to 15%.

Proper performance indices are defined in order to have quantitative comparison between the
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results:

J1(%) =
max|IDR|r

max|IDR|lim
(16)

J2(%) =
max|z̈|r

max|z̈|lim
(17)

J3(%) =
max|Mb|r

max|Mb|lim
(18)

where IDR is the interstory drift ratio, z̈ is the structural acceleration, Mb is the bending moment
at the base of the building. Subscript r refers to the reference model and subscript lim refers to
the acceptable threshold levels.

The most important response components to limit in order to ensure comfort and avoid dam-
age to non-structural components are interstory drifts and accelerations. For serviceability,
according to [13], 1/400 of the story height can be set as the limit state threshold for maximum
interstory drift. For the motion perception acceleration threshold, the following relation can be
adopted [14]:

z̈lim =
a0

f0
0.56 (19)

where f0 is the dominant natural frequency, a0 = 6 cm/s2, for office buildings.
Regarding the strength limit state, the threshold value of maximum bending moments at the

base of the internal core is obtained as follows:

Mb,lim = ϕlimEI (20)

where EI is the flexural stiffness and ϕlim is the curvature at the elastic limit of the reinforced
concrete central core. Since the control system is supposed to maintain the central core below
its yielding limit, the hypothesis of linear elastic behavior is justified and the structural response
is computed by linear analysis with time domain integration.

Table 1 shows mean values and standard deviations of the peak response components. Re-
sults are obtained for damping ratio equal to the 1% (the nominal value for the building), under
wind and seismic loads. Results show that interstory drifts and base bending moments due
to wind load are one order of magnitude smaller than those due to seismic load. Moreover,
earthquake-induced accelerations are much higher than wind-induced ones. This results is in
keeping with full scale observations. High accelerations in tall buildings were observed in re-
sponse to the 2011 Tohoku earthquake, and shown to be due to higher mode effects [15].

Wind Earthquake
Mean value Standard deviation Mean value Standard deviation

IDRmax (m) 1.70e-3 0.61e-3 1.72e-2 1.12e-2
z̈max (m/s2) 0.25 0.02 26.19 7.45
Mb,max (Nm) 5.39e6 1.85e6 6.06e7 3.39e7

Table 1: Mean values and standard deviations of peak response components for damping ratio of 1%.

Figure 2 reports the mean values of performance indices (computed adopting the 7 accelero-
grams and the 7 wind load time histories) for different values of damping ratio (1%, 5%, 10%,
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Figure 2: Performance indices as a function of damping ratio computed using wind load (top) and seismic load
(bottom)

and 15%). The three top diagrams show response under wind load and the bottom ones show
response obtained using the set of earthquakes. The grey dotted lines represent the performance
indices obtained by varying PGAref and Vref by the 40% (±20%) to account for randomness
of the seismic intensity and the reference wind speed. Values of performance indices larger
than unity indicate limit state crossing. Results show that index J1 on interstory drifts ratio
is smaller that unity for wind load and higher than unity for earthquake, unless damping ra-
tios higher than 15% are adopted. Index J2 on peak accelerations is significantly higher than
unity for earthquake load, meaning that in seismic conditions limit state on motion perception
is always exceeded and occupants comfort condition cannot be satisfied. In case of wind load,
index J2 can be reduced below unity for values of damping ratio higher than about 5%. Index
J3 related to yielding of the central core is smaller than unity for both wind and seismic load.

In order to ensure occupants’ comfort, a reference model with 5% damping ratio can be used
but to the extent of reducing drift-dependent damage to non-structural elements a reference
model with 15% damping ratio must be adopted. Although the choice of reference models’
damping con not be generalized (as it depends on the building’s dynamic characteristics and the
specific site’s conditions), the sensitivity analyses demonstrate that the optimal target damping
is not unique for different limit states.

5.2 Analysis with M-MRAC

In order to evaluate the effectiveness of the modified MRAC procedure (M-MRAC), several
analysis are carried out on a simplified 1 degree of freedom model having mass equal to the first
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modal mass and natural period equal to the one of the selected tall building.
The two reference models are chosen on the basis of the preliminary analyses presented in

Section 5.1. In particular, in order to ensure occupants’ comfort in serviceability conditions,
an uncontrolled target system with 5% damping ratio is adopted. In order to avoid damage to
drift-sensitive non-structural elements, an uncontrolled target system with 15% damping ratio
is selected.

The response component σ(t) which determines the switching condition is the building’s
peak displacement that is related to drift dependent damage. In the present analyses, without
loss of generality, the switch between different models is activated when the structural displace-
ment is σ̄ = 0.5 m.

Figure 3(a) shows the response of the uncontrolled system (U), the reference model (R)
and the controlled system with M-MRAC to a step loading with a short ramp. The reference
model has no control system and a damping of 15%. In this case the applied load does not
activate the switching condition. Structural responses and load are normalized with respect to
their maximum absolute values. Results show very good matching between the target model
and the real system. Figures 3(b) and (c) show the states errors and control force, normalized
with respect to their maximum absolute values, which tend to zero with time. Figure 4 shows

Figure 3: Controlled response obtained with M-MRAC to a step loading if reference model switching is not
activated.

the performance of M-MRAC to a sinusoidal loading with natural frequency of 0.4 Hz and
amplitude which increases up to its maximum value and after a slight impulsive variation is
kept constant. Figure 4a shows the uncontrolled response (U), the response of the reference
model (R) and the controlled response obtained with M-MRAC. Displacements are normalized
with respect to σ̄, showing that reference model switching is activated repeatedly. It can be
observed that there is a very good matching between responses of the reference model and
the controlled structure and that the system properly reduces peak displacements with respect
to the uncontrolled case. Figure 4(b) compares normalized displacements obtained with the
proposed M-MRAC and traditional MRAC. In this latter case, the reference model that the
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system has to track is unique and has a damping ratio equal to 15%, corresponding to the
damping required in case of seismic events. Figures 4(c) and (d) show the displacement error
and control forces, normalized with respect to their maximum absolute values. It is possible
to observe that state errors are kept limited and have the tendency to decrease with time. The
control force required by M-MRAC is smaller than the one required by traditional MRAC,
demonstrating the advantage of adopting multiple reference models.

Figure 4: Performance of M-MRAC under sinusoidal loading.

In order to investigate the M-MRAC performance to real loading conditions, an erthquake
capable of activating switching condition for several cycles is applied to the structure. Figure
5 shows the performance of M-MRAC to a base seismic accelerogram (represented in Figure
5(a)). Figure 5(b) shows the uncontrolled response and the response of the controlled systems
with the proposed M-MRAC and traditional MRAC. Figures 5(c) and (d) show the displacement
error and control forces, normalized with respect to their maximum absolute values. Also in
case of extreme seismic loading, state errors tend to decrease with time and the control force
required by M-MRAC is smaller than the one required by MRAC.

The effect of excitation frequency on M-MRAC performance is investigated by computing
systems’ responses to harmonic loads with frequency varying between 0.05 Hz and 1.00 Hz.
As system’s maximum response depends on frequency, the displacement threshold establishing
switching condition is set equal to the 80% of the peak uncontrolled value. Figure 6(a) shows
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Figure 5: Performance of M-MRAC under seismic loading.

the peak displacements of the uncontrolled system and the controlled systems with M-MRAC
and MRAC, normalized with respect to the maximum uncontrolled peak response. Figure 6(b)
shows the peak control forces required by M-MRAC and MRAC normalized with respect to
maximum peak control force. Results show that M-MRAC provides a significant reduction of
the maximum required control force at the expense of an increase in structural response. This
limited growth in structural response, which is less important in case of non-harmonic excitation
(Figure 5), can be partially compensated by properly varying the gap between reference models’
dampings.

6 CONCLUSIONS

The paper exploits the possibility of adopting multiple reference models for adaptive control
of tall buildings subjected to multiple hazards. With this aim, the standard Model Reference
Adaptive Control algorithm is modified through the adoption of multiple reference models. The
motivation of the proposed algorithm enhancement is that flexible buildings require various
damping levels to avoid the occurrence of different limit states. This problem is also more
important when the tall building is subjected to multiple hazards, like wind and earthquake,
having different characteristics in terms of frequency, amplitude and duration of load.

A benchmark tall building is chosen as case study to examine the effectiveness of the pro-
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Figure 6: Peak displacements and control forces as a function of the harmonic excitation frequency.

posed control strategy. After preliminary parametric analyses for choosing the optimal reference
systems, several investigations on the performance of M-MRAC are carried out. Results show
the capacity of M-MRAC in tracking the target system and in reducing the structural response.
Comparison between results obtained with traditional MRAC demonstrates that the main ad-
vantage of M-MRAC is the reduction of the required control force, at the expense of a slight
reduction of control effectiveness.

Future developments of the work will deepen the effects of dwell time, reference models’
characteristics, system’s uncertainties and non-linearities.
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Abstract. Periodic anti-tetrachiral materials are strongly characterized by a marked auxeticity,

the unusual and fascinating mechanical property mathematically expressed by negative values

of the Poisson’s ratio. The auxetic behavior is primarily provided by pervasive rolling-up mech-

anisms developed by the doubly-symmetric micro-structure of the periodic cell, composed by a

regular pattern of rigid rings connected by tangent flexible ligaments. Adopting a beam-lattice

model to describe the linear free dynamics of the elementary cell, the planar wave propaga-

tion along the bi-dimensional material domain can be studied according to the Floquet-Bloch

theory. Parametric analyses of the dispersion curves, carried out with numerical or asymptotic

tools, typically reveal a highly-dense spectrum, with persistent absence of total band-gaps in the

low-frequency range. The paper analyses the wave propagation in the meta-material developed

by introducing rigid massive inserts, locally housed by all the rings and working as undamped

linear oscillators with assigned inertia and/or stiffness properties. The elastic coupling between

the cell microstructure and the oscillators, if properly tuned (inertial resonators), is found to

significantly modify the Floquet-Bloch spectrum of the material. The effects of the resonator

parameters (tuning frequency and mass ratio) on the low-frequency band structure of the meta-

material are discussed, with focus on the valuable possibility to (i) open total band gaps, by

either the widening of an existing partial band gap or the avoidance of a crossing point between

adjacent dispersion curves, (ii) finely control the total band-gap amplification, in order to assess

the maximum achievable performance of the meta-material against the vibration propagation.

5658



Marco Lepidi, Andrea Bacigalupo

1 INTRODUCTION

Auxetic materials are characterized by the unconventional and fascinating ability to develop

transversal expansions in response to a longitudinal stretching. This physical peculiarity, which

is described by negative Poisson’s ratios in solid mechanics, is rarely observable in nature, but

can be smoothly obtained by artificial synthesis [1–3]. The recent and increasing interest in

auxetic materials is being strongly catalyzed by the compelling demand for advanced appli-

cations in aerospace, chemical, naval, nuclear, biomedical, sport engineering fields. Indeed,

auxetic sheets and solids are potentially featured by a variety of functional super-capacities, in-

cluding higher fracture toughness and indentation resistance, as well as augmented properties of

acoustic damping and energy absorption, with respect to their conventional counterparts [4–6].

Artificial realizations of auxetic materials include polymeric or metallic foams and laminates,

on the one hand, and micro-structured composites, which typically possess periodic cellular ge-

ometries (namely reticular networks, chiral lattices, re-entrant honeycombs and origami folds),

on the other hand [8–10]. Leveraging their intrinsic periodicity, obeying to the well-established

Floquet-Bloch theory, a promising theoretical and technological research challenge concerns

the employment of chiral auxetic media as versatile elastic guides for planar optical and acous-

tic waves. Indeed, a proper tuning of their mechanical properties may allow the effective design

of such materials as tailor-made signal propagators or – especially – selective passive filters

for noise reduction and vibration mitigation [11–14]. In this respect, the high performance and

versatility ensured by tunable arrays of light and flexible resonant subsystems is a promising

trend coming from a multi-disciplinary cross-fertilization [15–21].

Among different chiral topologies, the anti-tetrachiral material is gaining major attention,

due to its strong auxeticity, accompanied by a marked anisotropy [9, 14, 22–24]. Employing

a linear beam-lattice model of the cell microstructure, the wave propagation properties of this

material have been studied by means of both numerical and asymptotic tools [30]. Paramet-

ric analyses of the dispersion curves typically reveal a highly-dense spectrum, with persistent

absence of band-gaps in the low-frequency range. Such shortcomings, confirmed also by con-

tinuum models and in presence of soft matrices [14] may actually limit the practical efficiency

of the anti-tetrachiral materials as adjustable passive controllers against the free propagation of

vibration waves with target frequencies, wavenumbers, or polarization modes.

The paper explores the possibility to develop a meta-material by introducing rigid massive

inserts, locally housed by all the rings and working as undamped linear oscillators with assigned

inertia and/or stiffness properties. The elastic coupling between the cell microstructure and the

oscillators, if properly tuned (inertial resonators), has the potential to significantly modify the

Floquet-Bloch spectrum of the material [25–28]. A suited design of this purely-mechanical

behavior opens the valuable perspective to passively control the wave propagation by, first,

artificially regulating the tailored opening or closure of one or more frequency band-gaps, and,

second, maximizing their respective amplitudes according to optimal criteria [29].

According to this leading idea, the beam-lattice model of the anti-tetrachiral material is en-

riched by coupling the global dynamics of the periodic cell with the local dynamics of the

resonators (Section 2). Then the coupled eigenproblem governing the wave propagation in the

meta-material is formulated (Section 2.2). The effects of the resonator key-parameters (mass

ratio and frequency tuning) on the dispersion curves and frequency band gaps are discussed

(Section 3). These parametric studies pave the way for the analytical, although approximate,

description of the enriched Floquet-Bloch spectrum by means of asymptotic perturbation tech-

niques, suited to carry out explicit design criteria. Concluding remarks are finally drawn.
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Figure 1: Anti-tetrachiral cellular meta-material: (a) pattern, (b) periodic cell, (c) beam lattice model.

2 BEAM LATTICE MODEL

Focusing on the microscopic scale, a cellular meta-material characterized by a square pe-

riodic cell, fully tiling a two-dimensional infinite domain, is considered (Figure 1a). A beam

lattice model is formulated to describe the linear elasto-dynamic response of the unit cell, fea-

tured by a double geometric symmetry which realizes an anti-tetrachiral topology (Figure 1b).

The internal structure, or microstructure, of the elementary cell is composed by four circular

rings connected by twelve tangent ligaments. The rolling-up mechanism, responsible for the

auxetic behavior, consists in the opposite-sign, iso-amplitude rotations developed by any pair of

adjacent disks in-a-row (or column), when the cell is stretched along one of the symmetry axes.

A rigid body model is assumed for the massive and highly-stiff rings, possessing identical

mean diameter D. The ring centers are located at the four corners of an ideal internal square,

concentric with the external cell boundary. The ring small width S is considered a free param-

eter, allowing the independent assignment of the rigid body mass M and moment of inertia J .

A linear, extensible, unshearable model of massless beam is employed for all the identical light

and flexible ligaments, in the small-deformation range. As long as the beam-ring connections

nominally realize perfectly-rigid joints, the natural length L of the inner horizontal and verti-

cal ligaments coincide with half the side of the square cell. By virtue of the periodicity, the

cell boundary crosses the midspan – and halves the natural length – of all the outer ligaments.

Assuming the same linear elastic material (with Young’s modulus E) and cross-section shape

(with area A and second area moment I) for each ligament, all the beams have identical ex-

tensional EA and flexural rigidity EI . The effects of a homogeneous soft matrix, which may

likely embed the microstructure [14], are neglected as first approximation.

Moving from this structural layout, a novel meta-material can be realized by supplying each

ring with a light soft annular filler, hosting a central heavy circular inclusion, serving as inertial

resonator with adjustable mechanical properties. All the identical inclusions are modelled as

rigid disks, co-centered with the respective housing rings, with body mass Mr and moment

of inertia Jr. As long as the internal coupling provided by the filler can be assumed linearly

elastic, the ring-resonator differential displacements are affected by equivalent translational and

rotational stiffnesses [28]. Therefore, the local (translational and rotational) motion of each

resonator is essentially characterized by two natural frequencies Ωr and Ωθ.
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Introducing a certain circular frequency Ωc of the cellular solid as known dimensional refer-

ence, a suited minimal set of independent nondimensional parameters, sufficient to describe the

inertial, elastic and geometric properties of the square periodic cell, is

δ =
D

L
, %2 =

I

AL2
, ω2

c =
EA

MΩ2
c L

, χ2 =
J

ML2
(1)

where ωc stands for a frequency characterizing the beam lattice. The geometric parameter δ
roughly expresses the material compositeness, measured as the linear density of the circular

rings. The nondimensional form % of the gyration radius of inertia accounts for the (inverse)

slenderness of the ligaments. Finally, χ2 is the rotational-to-translational mass ratio of the disks.

Together with the microstructural parameters, the meta-material is further characterized by

additional nondimensional parameters, describing the properties of the local resonators

γ =
Ωr

ωc Ωc

, α =
Mr

M
, γθ =

Ωθ

ωc Ωc

, χ2
r =

Jr

MrL2

where γ and γθ can be recognized as tuning parameters for the two resonator frequencies, α
accounts for the resonator-to-ring mass ratio and χ2

r is the rotational-to-translational mass ratio

of the resonator.

2.1 Equations of motion

According to the mechanical assumptions, the linear dynamics of the unit cell is governed

by a multi-degrees-of-freedom discrete model, referred to a full set of 16 configurational nodes,

located by the position vectors xi (with i = 1, ..., 16) in the natural configuration. The actual

configuration of the i-th node is described by three time-dependent components of motion,

corresponding to the horizontal displacement Ui(t), the vertical displacement Vi(t) and the in-

plane rotation φi(t). The nondimensional variables can be introduced

ui =
Ui

Lr

, vi =
Vi

Lr

, τ = Ωrt (2)

where Lr stands for a reference length Lr which preserves the smallness of the displacements.

All the nondimensional configuration variables can be collected in the 48-by-one displacement

column-vector q = (q1, ...,qi, ...,q16), where the i-th nodal subvector qi = (ui, vi, φi).
Depending on the position of the lumped masses in the discrete model and with reference to

the labels in Figure 1c, the model nodes can conveniently be distinguished into three subsets

i. four internal nodes located at the ring centroids (red nodes 1©... 4©), whose 12 active

displacements can be collected in the subvector qa = (q1,q4)

ii. eight external nodes located at the outer ligament midspans (gray nodes 5©... 12©), whose

24 passive displacements can be cast in the subvector qp = (q5,q12)

iii. four inner nodes located at the disk centroids (black nodes 13©... 16©), whose 12 resonant

displacements can be collected in the subvector qr = (q13,q16)

The distinction remarks that the internal and inner nodes develop both nondimensional elastic

(σa,σr) and inertial forces (fa, fr), which actively participate in the dynamic cell equilibrium.

On the contrary, the external nodes can develop only elastic forcesσp, which partially depend on

the stiffness coupling with the internal nodes, and quasi-statically balance the reactive forces fp
transferred by the adjacent cells. Due to the geometric assumptions, the positions of the internal

and inner node sets (nodes 1©... 4© and 13©... 16©) coincide in the undeformed configuration.
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According to displacement/force decomposition, the nondimensional equilibrium equation

governing the undamped free oscillations of the discrete model has the matrix form




fr
fa
0



+





σr

σa

σp



 =





0

0

fp



 (3)

or, making explicit the force dependence on the nodal acceleration or displacements








Mr O O

O Ma O

O O O

















q̈r

q̈a

q̈p









+









Kr −Kr O

−Kr Kaa + Kr Kap

O Kpa Kpp

















qr

qa

qp









=









0

0

fp









(4)

where dot indicates differentiation with respect to the τ -time and O stands for empty matrices.

Focusing on the micro-structural matrices, the global mass submatrix Ma is diagonal, as far

as a lumped mass description is assumed. The symmetric submatrices Kaa and Kpp account for

the global stiffness of the internal and external nodes, respectively. The rectangular submatrix

Kap = K>
pa expresses the elastic global coupling among the internal and external nodes. A

parametric expression of these matrices can be found in [30]. Focusing on the resonators, both

the local mass and stiffness submatrices Mr and Kr are diagonal. The submatrix Kr accounts

also for the global-local coupling between the inner and internal nodes.

2.2 Free wave propagation

The free wave propagation along the bi-dimensional cell domain can be studied accord-

ing to the Floquet-Bloch theory [31–33]. Moving in the k-transformed space the active (j =
1...4, 13...16) and passive displacements and passive force vectors assume the representations

qj = q̃j eik·xj , qp = Fpq̃p, fp = Fpf̃p (5)

where i denotes the imaginary unit, k = (k1, k2) is the (dimensional) wavevector and the block

diagonal matrix Fp = diag[ I eik·x5 , ..., I eik·x12 ] with I being the three-by-three unit matrix.

The passive displacement and force vector can be ordered and partitioned as qp = (q−
p ,q+

p ),
fp = (f−p , f+

p ) to separate the variable pairs (q−
p , f−p ) belonging to the left/bottom cell boundary

(composed by the external nodes 5©, 7©, 9©, 10©) from the variable pairs (q+
p , f+

p ) belonging to the

right/top boundary (composed by the external nodes 6©, 8©, 11©, 12©). Extending the same partition

to the respective transformed variables, the equation (5) can be written

q−
p = F−

p q̃−
p , q+

p = F+
p q̃+

p , f−p = F−
p f̃−p , f+

p = F+
p f̃+

p , (6)

where, based on the decomposition, the matrices F−
p = diag[ I eik·x5 , I eik·x7 , I eik·x9 , I eik·x10 ]

and F+
p = diag[ I eik·x6 , I eik·x8 , I eik·x11 , I eik·x12 ].

Imposing the periodicity conditions on the transformed variables (q̃+
p = q̃−

p and f̃+
p = −f̃−p ),

the free wave propagation throughout the cell domain between the two complementary bound-

aries is governed by the quasi-periodicity conditions on the anti-transformed variables

q+
p = Lq−

p , f+
p = −Lf−p (7)

where, following from the equations (6), the block diagonal transfer matrix reads

L = diag
[

eik·d56 I, eik·d78 I, eik·d911 I, eik·d1012 I
]

(8)

and dij = xj − xi represents the vector connecting the i-th and the j-th external nodes.
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Consistently with the passive displacement and force decomposition, and imposing the quasi-

periodicity conditions (8), the lower (quasi-static) part of equation (4) reads

[

K−
pa

K+
pa

]

qa +

[

K=
pp K∓

pp

K±
pp K#

pp

][

I

L

]

q−
p =

[

I

−L

]

f−p (9)

with I being now the twelve-by-twelve unit matrix. This equation can be solved to express the

passive variables as slave functions of the master active displacements, yielding

q−
p = R

(

K+
pa+ LK−

pa

)

qa, f−p =
(

K−
pa +

(

K=
pp + K∓

ppL
)

R
(

K+
pa+ LK−

pa

))

qa (10)

where the k-dependent matrix R = −
(

LK∓
ppL + LK=

pp + K#
ppL + K±

pp

)−1
is diagonal.

Similarly, the imposition of the quasi-periodicity conditions to the upper (dynamic) part of

the equation (4) leads to a coupled equation which, after condensation of the passive variables

by virtue of the enslaving relations (11), depends on the active variables only

[

Mr O

O Ma

](

q̈r

q̈a

)

+

[

Kr −Kr

−Kr Kr + Ka

](

qr

qa

)

=

(

0

0

)

(11)

where the condensed stiffness matrix Ka = Kaa + (K−
ap + K+

apL)R(K+
pa + LK−

pa), with the

symmetries K−
ap = (K−

pa)
> and K+

ap = (K+
pa)

> is known to be Hermitian and is derived in [30].

As brief discussion, the upper part of equation (11) can still be recognized to govern the local

resonator dynamics, whereas the lower part governs the global dynamics of the cell microstruc-

ture. It is worth noting that the passive variable condensation, including the enforcement of the

quasi-periodicity, is not mathematically affected by the resonator presence. Indeed, the con-

densed global stiffness matrix Kg = (Kr + Ka) of the meta-material is not formally different

from the matrix Ka governing the wave propagation in the resonator-free material, apart for the

mere addiction of the local stiffness term Kr. Conversely, the uncoupled global dynamics the

resonator-free material can be restored by simply zeroing the local matrices Mr and Kr. Physi-

cally, this remark can immediately be justified by the absence of any internal coupling between

the resonant active variables qr and the condensed passive variables qp.

Denoting ω the unknown nondimensional frequency, the harmonic monofrequent solution

qa = Faψa eiωτ and qr = Frψr ei ωτ can be imposed in the equation (11). Eliminating the

dependence on time, an eigenproblem in the unknown eigenvalues λ = ω2/ω2
c and eigenvectors

ψ = (ψr,ψa) can be stated in the non-standard form (K− λM) Fψ = 0, or more explicitly

([

Kr −Kr

−Kr Ka

]

− λ

[

Mr O

O Ma

])[

Fr

Fa

]

ψ =

(

0

0

)

(12)

where the diagonal block matrices Fr = Fa = diag[ I eik·x1 , ..., I eik·x4 ].
The eigenproblem solution gives twenty-four real-valued eigenvalues λi (or frequencies ωi),

sorted in ascending order. It is worth remarking that, owing to the Hermitian property, the K-

matrix is certainly non-defective, that is, possesses a complete eigenspace spanned by twenty-

four proper eigenvectors. Therefore, each eigenvalue λi has coincident algebraic and geometric

multiplicity mi and corresponds to a complex-valued eigenvectorψi, collecting the non-passive

eigencomponents ψri and ψai only. The passive eigencomponents depend on the active eigen-

components through the quasi-static relations ψ−
pi = R

(

K+
pa+ LK−

pa

)

ψai and ψ+
pi = Lψ−

pi.
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Figure 2: Stationary translational (red) or rotational (blue) modes ψai of

the anti-tetrachiral material (a omitted).

3 FLOQUET-BLOCH SPECTRUM

Fixed certain parameter values for the beam-lattice model and the resonators, the twenty-

four eigenvalues (or frequencies) and the corresponding eigenvectors can be determined under

variation of the nondimensional wavevector b = (β1, β2), composed of the wavenumbers

β1 = k · d56 = k · d78, β2 = k · d911 = k · d1012 (13)

in the square Brillouin domain D = [−π, π ]× [−π, π ]. According to the Floquet-Bloch theory

[31–33], this investigation can be focused on the two edges

B1 = {β1 ∈ [ 0, π ], β2 = 0}, B12 = {β1 = β2 ∈ [ 0, π] } (14)

which bound the irreducible triangular zone of the D-domain and are spanned by the abscissae

β1 and β12 = (β2
1 + β2

2)
1/2, respectively. The corresponding ω-frequent vibration waves propa-

gate through the periodic material along the horizontal direction (with β1-wavenumber ranging

in [ 0, π ]) and diagonal direction (with β12-wavenumber ranging in [ 0,
√

2π ]).
The frequency loci versus the variable wavenumber constitute the Floquet-Bloch spectrum,

composed of twenty-four dispersion curves for the meta-material or twelve dispersion curves

for the resonator-free material (as can be carried out by setting Mr = Kr = O). The curve

roots, located at the D-origin (β1 = β2 = 0), correspond to the quasi-periodicity conditions (7)

degenerating into conditions of standard periodicity. Therefore, the corresponding eigenpairs

(λ◦,ϕ◦) can be interpreted as the natural frequencies, possibly null, and (real-valued) vibration

modes of the single elementary cell in the free stationary harmonic oscillation of the periodic

system. In the absence of resonators, these modes are participated only by an homogeneous

subset of active displacements (Figure 2). so that they can be classified as translational modes,

if contributed by the four horizontal or the four vertical components, or rotational modes, if

contributed by the four rotation components. With minor abuse of nomenclature, the same

classification can be extended to the b-dependent eigenvectors, which can be interpreted as

polarization modes of the propagating wave, characterized by a certain (not null) wavenumber.
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Figure 3: Floquet-Bloch spectrum (ω∗ = ω/ωc) of the anti-tetrachiral material (without resonators):

(a) horizontal and (b) diagonal direction of wave propagation (β∗
1 = β1/π, β∗

12 = β12/(
√

2π)).

3.1 Parametric analysis

In the absence of resonators, the Floquet-Bloch spectrum is presented in Figure 3 for a set

of parameter values (χ2 = 1/81, δ = 1/10, %2 = 1/100). For both the propagation directions,

the low-frequency (namely ω1-ω8) and high-frequency (namely ω9-ω12) ranges are separated

from each other by the total band gap BGT , and the respective polarizations are systematically

dominated by translational and rotational modes, respectively. Some parametric analyses show

that, as long as the two frequency ranges remains well-separated, the translational frequency

curves (rigorously, the curves related to the frequencies of translational modes) undergo only

minor qualitative and quantitative changes for slight variations of the parameter set (%2, χ2, δ).
On the contrary, the rotational frequencies (rigorously, the curves related to the frequencies of

rotational modes) strongly depend on the δ and χ parameters, with an approximately linear

law of direct and inverse proportionality, respectively. Physically, this remark states that the

amplitude of the total band gap BGT can be amplified/reduced by modifying the ring density

(higher/lower δ-values) or their rotational-to-translational mass ratio (lower/higher χ2-values).

For instance, the band gap can be verified to close (null amplitude) for χ2 ≥ 1/36.

As major remark, the material does not present low-frequency total band gaps, neither they

can be obtained for a different, generic parameter set. This persistent scenario is a direct con-

sequence of the high spectral density characterizing the translational frequencies, together with

the large number of crossing points between their dispersion curves. Looking at waves propa-

gating along the diagonal direction (Figure 3b), the small-amplitude partial band-gap BGP can

be found at low-frequencies, ranging between two translational-translation curves. It can be

verified that this gap occurs in the direction of minimum auxeticity of the material, consistently

with the findings of [14]. Fixed the other parameter, the gap amplitude A12 can be moderately

increased by an increment of the δ-parameter, up to A12 ' 0.250.
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Figure 4: Low-frequency Floquet-Bloch spectrum (ω∗ = ω/ωc) of the meta-material (γ = 148/100):

(a) horizontal and (b) diagonal direction of wave propagation (β∗
1 = β1/π, β∗

12 = β12/(
√

2π)).

3.2 Effects of the local resonators

The strong potential recognized to micro-oscillator arrays in preventing the wave propaga-

tion through periodic lattices can be explained by the effective negative values of mass density

achievable in the equivalent elastic continua [25, 26]. Inter-oscillator distances lower than the

typical wavelengths let the meta-material internally resonate in the low-frequency range, where

band gaps may open in the Floquet-Bloch spectrum, in correspondence with the tunable natural

frequencies of the oscillators (resonators). The present study is focused on two different tasks

i. check whether a proper tuning of the meta-material resonators (through the γ-parameter)

allow the opening of total band gaps, by either the widening of an existing partial band

gap or the transformation of a crossing point into a veering between adjacent curves,

ii. verify the possibility to finely control (through the α-parameter) the total band-gap am-

plification/deamplification, in order to quantitatively evaluate the meta-material potential

in terms of achievable performance range against undesired wave propagation.

To the former task, the oscillator-to-ring mass can be tentatively assigned to the reference

value α = 1/2, which optimizes the resonator performance in similar chiral meta-materials

[29]. First, the partial-to-total widening of the low-frequency band gap BGP is challenged.

The crossing CP between the forth and fifth dispersion curves, which closes the band gap in

the horizontal propagation direction, is pointed as target frequency by tuning γ = 148/100
(corresponding to the upper dashed line in Figure 3). The efficiency of the resonator action

is confirmed by the low-frequency Floquet-Bloch spectrum of the meta-material (Figure 4).

Indeed, a new total band BG∗
P , with almost b-independent amplitude A1 = A12 ' 0.300,

rises up and lies just across the tuned frequency. The original crossing point is removed by a

strong softening/hardening effect, consisting in the downward/upward frequency shifting of the

previously intersecting curves (gray lines). The band gap opening is not compromised by the

local densification of the spectrum owing to the doubled dimension of the meta-material model.
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Figure 5: Low-frequency Floquet-Bloch spectrum of the anti-tetrachiral meta-material (γ = 62/100):

(a) horizontal and (b) diagonal direction of wave propagation (β∗
1 = β1/π, β∗

12 = β12/(
√

2π)).

Second, the crossing CT between the second and third dispersion curves, which characterizes

the horizontal propagation direction, is pointed as target frequency by tuning γ = 62/100
(corresponding to the lower dashed line in Figure 3). Again, the resonator action successes in

opening a low-frequency total band BG∗
P , with almost b-independent amplitude A1 = A12 '

0.037, lying across the tuned frequency (Figure 5). The band gap is provided by a strong linear

interaction among the new spectrum curves and the previously intersecting curves (gray lines),

which are forced to veer away form their original crossing point.

To the latter task, a few parametric analyses have been carried out under variation of the

resonator-to-ring mass, without changes in the tuning parameters (Table 1). The results tend to

confirm that the total band gap amplitudes are b-independent (A1 = A12) and that – fixed the

resonator mass – larger band gap are achievable at higher tuning frequencies. Finally, the band

gap amplitudes are found to grow up with the increments of the resonator mass. In this respect,

the trend of the mass-to-amplitude ratios suggests an underlying quadratic relationship which

could be investigated by means of local analyses based on perturbation methods.

Table 1: Amplitudes of the low-frequency band-gaps obtainable in the anti-tetrachiral meta-material.

PERIODIC MATERIAL (ω∗ ' 148/100) PERIODIC MATERIAL (ω∗ ' 62/100)
A1 A12 Description A1 A12 Description

− 0.114 Partial − − Absent

META-MATERIAL (γ = 148/100) META-MATERIAL (γ = 62/100)
α A1 A12 Description A1 A12 Description

1/4 0.086 0.086 Total 0.021 0.021 Total

1/3 0.148 0.148 Total 0.037 0.037 Total

1/2 0.307 0.307 Total 0.080 0.080 Total

2/3 0.501 0.501 Total 0.138 0.138 Total
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4 CONCLUSIONS

A parametric beam-lattice model has been formulated to describe the linear planar dynamics

of the unit cell which characterizes the periodic microstructure of the auxetic anti-tetrachiral

material. The persistent absence of low-frequency band gaps in the Floquet-Bloch spectrum

has been verified. This lack limits the smart functionalities of passive noise suppression and vi-

bration filtering of the material, when it is used as elastic waveguide. The transformation into a

meta-material, by introducing local undamped resonators with flexible properties of tunable fre-

quency and selectable mass ratio, has demonstrated its potential in strongly modifying the orig-

inal low-frequency band structure. In particular, a tailor-made design of the resonator parame-

ters has allowed the widening of an existing partial band gap, as well as the opening of a new

band gap across the tuned frequency, with adjustable amplitude depending on the selected mass.
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Keywords: flexible model, vibration complex system, extreme moving load, closed-form so-
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Abstract. In this paper the dynamic response of a complex double-string system traversed by 
extreme moving load is considered. The paper includes the study of a dynamic behavior of a 
finite, simply supported double-string flexible complex system subject to moving forces with a 
constant velocity on the top string. The strings are identical, parallel one upon the other and 
continuously coupled by a linear Winkler elastic element. The moving loads are around an 
extreme position of the shear wave velocity of the strings. The classical solution of the  
response of complex systems subjected to forces moving with a constant velocity has a form of 
an infinite series. But also it is possible to show that in the considered case part of the  
solution can be presented in a closed, analytical form instead of an infinite series. The pre-
sented method to search for a solution in a closed, analytical form is based on the observation 
that the solution of the system of partial differential equations in the form of an infinite series 
is also a solution of an appropriate system of ordinary differential equations. The closed solu-
tions take different forms depending if the velocity of a moving force is smaller, equal or lar-
ger than the shear wave velocity of the strings. This follows from the fact that in string wave 
phenomena may occur. The solution for the dynamic response of the composite strings under 
moving force is important because it can be used also in order to find the solution for other 
types of moving loads. The double string connected in parallel by linear elastic elements can 
be studied as a theoretical model of composite system or prestressed structure in which cou-
pling effects and transverse wave effects are taken into account. 
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1 INTRODUCTION 
Flexible complex systems have a wide range of applications to civil, military, mechanical, 

transport, naval, aeronautical and aircraft as structural members with high strength to weight 
ratios. One of the most important issues in the dynamics of structures is moving load prob-
lems witch have been studied by many authors for many years [2-22]. Modeling of movement 
is very difficult in its complications and generates many mathematical problems [1,3,7,21]. 
Even simply models give very complex and unpredicted solutions of structural in dynamical 
and stability meaning. Thusly different types of structures and girders like beams, plates, 
shells, and frames also membranes, strings and cables have been considered. As well different 
models of moving loads have been assumed [3]. The paper includes the study of a dynamic 
behavior of a finite, simply supported double-string flexible complex system subject to mov-
ing force with a constant velocity on the top string. The strings are identical, parallel one upon 
the other and continuously coupled by a linear Winkler elastic element. The most critical 
situation is when moving loads are around an extreme position of the shear wave velocity of 
the strings. Responses of structures to extreme speed of load are often complex and difficult 
to understand, especially because of the complex nature of vibration repeatedly complicated 
systems. For instance, it is possible to observe some anomalies while the aircraft reaching 
speed of sound. The Prandtl–Glauert singularity [Fig.1] is the prediction by the Prandtl–
Glauert transformation that infinite pressures would be experienced by an aircraft as it ap-
proaches the speed of sound. A certain similarity can be expected in the solid body, which can 
be proved by a closed-form solution of a string with a load moving at the speed of the trans-
verse wave propagating in the string. 

 
Figure 1: A F/A-18 Hornet during transonic flight, a Prandtl–Glauert singularity [NASA]. 

A string as a simple model of a one-dimensional continuous system resistant to tension but 
not to bending is often used in analysis of numerous engineering structures and has been a 
subject of great scientific interest for a considerable time. This follows from the fact that the 
vibrations of a string are described by the wave differential equation. This allows one to see 
the wave effect in a string, contrary to many more complex systems for example structural 
elements where it might be either not present or not clearly visible. The analogies between a 
string and the beams have been considered in papers [5,6,11]. Various aspects of the dynam-
ics response of a string under a moving load have been considered, among others, in the pa-
pers [2,4,8,10,12-15,18-20,22]. The classical solution of the response of complex systems 
subjected to forces moving with a constant velocity has a form of an infinite series. But also it 
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is possible to show that in the considered case part of the solution can be presented in a closed, 
analytical form instead of an infinite series. Using the method, of superposed deflections 
Kączkowski [9] has shown for a simply supported Euler-Bernoulli beam that, in the case of 
undamped vibration, the aperiodic part of the solution can be presented in a closed-form. Next, 
Reipert obtained a closed form solutions for a beam with arbitrary boundary conditions [16] 
and for a frame [17]. In this paper, we use a different method to obtain the solutions in a 
closed form. The presented method to search for a solution in a closed, analytical form is 
based on the observation that the solution of the system of partial differential equations in the 
form of an infinite series is also a solution of an appropriate system of ordinary differential 
equations. The closed solutions take different forms depending if the velocity of a moving 
force is smaller, equal or larger than the shear wave velocity of the strings. This follows from 
the fact that in string wave phenomena may occur. The presented solutions can be also used in 
axial and torsional vibration of the rod. Using this method, the closed solutions for undamped 
vibration of string and beam due to moving force have been obtained in the papers [18-21]. 
The solution for the dynamic response of the composite strings under moving force is impor-
tant because it can be used also in order to find the solution for other types of moving loads. 
The double string connected in parallel by linear elastic elements can be studied as a theoreti-
cal model of composite system or prestressed structure in which coupling effects and trans-
verse wave effects are taken into account. 
2 MATHEMATICAL MODEL AND GOVERNING EQUATION 

Consider the problem of a dynamic behavior of flexible complex system consist of a finite, 
simply supported double-string. The strings are identical, parallel one upon the other and con-
tinuously interfaced by a linear Winkler elastic element with k coefficient. The strings are un-
der axial compression N and the system are excited by a load p(x,t) moving with a constant 
velocity v on a top string as on Fig.2. 

N

 txp ,
N

N

N

L  txw ,2

 txw ,1

x

kk

v
mEA,

mEA,
 

Figure 2: Double-string system under a moving force. 
Vibrations describe functions w1(x,t) and w2(x,t) which solution in the classical-forms and 

closed-form is investigated. Hence an equation of motion of double-string system is governed 
by two conjugate partial differential equations: 
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where m is the mass per unit length ρA of each string, k denotes the stiffness modulus of a 
springs system, and furthermore, EA is the axial rigidity of the strings, E denotes Young’s 
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modulus of elasticity and A is the area of the cross-section of the strings. The load function in 
expression (1) and from figure 2 has a form: 
    ,, vtxPtxp    (3) 
where P is the intensity value of the load and δ(.) denotes Dirac delta. After introducing the 
dimensionless variables:  
    ,1,0,1,0,,  TLtvTLx   (4) 
the differential equations of motion of the string-string system have the form:  
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The parameters from equations (5) and (6) have the following designations: 
 .,,, 2 NLPPNLkkvvmNv ooss    (7) 
The quantity vs represents velocity of the transverse wave in the system of double-string. On 
the other hand the boundary conditions for both Eq. (5) and Eq. (6) take the form:  
      2,1,0,1,0,0  jTwTw jj  (8) 
whereas the initial conditions are the following:  
      .2,1,0,,00,
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It is easy to see that if you add together the equations (5) and (6) and introduce a new function 
as wI(ξ,T) we get:  
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  (10) 
which describes vibrations of a single string. But then again, when we take the difference of 
these equations and differences of deflection functions take as a new function wII(ξ,T), that 
can be saved:  
        .,2,,
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  (11) 
In turn, this one describes vibrations of a single string resting on an elastic Winkler support 
with double parameter k (2ko). So the solution (10) and (11) is also a solution of expressions 
(5) and (6), after appropriate transformation function wI(ξ,T) and wII(ξ,T) into w1(ξ,T) and 
w2(ξ,T). In addition, the solutions of equations (5), (6), (10) and (11) for boundary conditions 
(8) and initial conditions (9) are assumed to be in the form of sine series:  
    .,,2,1,sin,

1
IIIknyTw

n
knk    (12) 
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By substituting expression (10) into equations (5), (6), (10) or (11) and using the orthogonali-
zation method one obtains set of uncoupled ordinary differential equations. Eventually, the 
solution of the above differential equations are sums of the particular integrals wkA(ξ,T) and 
general integrals wkS(ξ,T). We know that the angle of inclination of the tangent to the 
deflection function wk(ξ,T) can be presented: 
       ,,1,, 
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additionally the dynamic component of the tension in the strings is given by:  
      .,,, 

 


 Tw
L

EA
x

txwEATN kkk  (14) 

3 THE CLASSICAL SOLUTIONS 
The classical solution has a form of an infinite series, so classical part of the particular 

and general solution of the first string presents itself as:  
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and the second string:  
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Figure 3: Deflection of the strings system depending on the number of approximation functions. 
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Analysis of functions (15) and (16) at the critical speed is difficult, even impossible, for ex-
ample when v = vs (η = 1). On the one hand, the accuracy of the solution depends on respec-
tively large number of approximation functions. 

  
Figure 4: Overlap transverse waves in time of the double-string system under a moving force. 

4 THE CLOSED-FORM SOLUTIONS  
The classical solution of the response of complex systems subjected to forces moving 

with a constant velocity has a form of an infinite series, expressions (15) and (16). But also it 
is possible to show that in the considered case part of the solution can be presented in a closed, 
analytical form instead of an infinite series. The presented method to search for a solution in a 
closed, analytical form is based on the observation that the solution of the system of partial 
differential equations in the form of an infinite series is also a solution of an appropriate sys-
tem of ordinary differential equations. For instance, let's take into consideration the particular 
solution Eq. (10) in the form of a series that is:  
     .sinsin
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1 22 
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I n

nTnPTw 


  (17) 
It can be proved that the expression (17) is also integral ordinary differential equation:  
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d

Twd o
A
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where T is only a parameter of time. Solving formula (18), by a finite Fourier sine transform, 
we get:  
     ,sin1, 2

2 TnPTnwn oA
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where 
     ,sin,,

1

0
  dnTwTnw A

I
A

I  (20) 
and thus we return to the expression (17), which proves our assumption. Therefore if the func-
tion (17) satisfies the equation (18), it can be represented as closed-solution: 
         ,11, 2 THTTPTw oA

I    (21) 
where H(.) denotes the Heaviside step function, or the unit step function. 

5675



J. Rusin 

 TwI ,

P 1 v

v

 TwI ,

)1(  svv

)1(  svv )1(  svv

 TwI ,

 TwI ,

 TwI ,

P

P

P

v

v

v







11

1

1

P

 
Figure 5: Deflection of string depending on velocity of moving force v and velocity of propagation  

transverse wave in string vs. 

  

  

  
Figure 6: Deflection wi(ξ,T) and rotation φi(ξ,T) of double-string system under a moving force. 
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The general integral wIS(ξ,T) can be represented as closed-form solution, too. In a period of 
time i η ≤ T ≤ (i+1) η ≤ 1, where i = 0, 2, 4,…, 2n, it satisfies the differential relationship: 
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with the closed-form solution: 
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For example, assuming i = 0 and consider the cases when the velocity of a moving force is 
smaller, equal or larger than the shear wave velocity of the strings. In a situation where η < 1 
(v < vs) and η > 1 (v > vs) we get the formulas: 
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Whereas when η = 1 (v = vs):  
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The closed-form solutions take different forms depending on the velocity of a moving force in 
relation to shear wave velocity of the strings. The graphic interpretation of this relationship is 
shown in Figure 5. And Figure 6 shows graphs in a period of time i η ≤ T ≤ (i+1) η ≤ 1, where 
i = 1, 3, 5,…, 2n–1. More examples of closed-form solutions can be found [8,18-21]. 
5 SOME NUMERICAL RESULTS  

In Figures 3-6, we presented deflections wk(ξ,T) and rotations φk(ξ,T) of double-string 
complex system under the concentrated moving force. And the following dimensionless val-
ues of the parameters are used in the numerical calculations: n = {10, 1000}, Po = 10, ko = 200, 
i = {1, 3, 5}, η = {0.10, 0.13, 0.15, 0.20, 1.00} and T = {0.25, 0.50, 0.75}. The results for dif-
ferent location of the moving force are presented in graphical form in Figs. 3-6. The continu-
ous line represents the functions of the loaded string. The dashed line shows the functions of 
the second string for which the load is transferred with the coupling. 
6 CONCLUSIONS  
 The solution of the response of string-string complex systems subjected to forces moving 

with a constant velocity has a form of an infinite series, but also it is possible to show 
that in the considered case part of the solution can be presented in a closed, analytical 
form. 
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 A system of partial differential equations with solution in the form of an infinite series 
can be also a solution of an appropriate system of ordinary differential equations where a 
variable of time becomes only a parameter of time. 

 The closed solutions take different forms depending if the velocity of a moving force is 
smaller, equal or larger than the shear wave velocity of the strings. 

 The wave phenomena may occur in a complex system of double-string under moving 
forces. 

 It is predicted a nonlinear solution in solid under load moving at a speed of transverse 
wave propagating in a solid. 

 It is easier to observe the wave effect in a string, contrary to many more complex systems 
where it might be either not present or not clearly visible. 

 The accuracy of solution gives the locate position of a transverse wave’s front and a  
soliton which is a self-reinforcing solitary wave that maintains its shape while it propa-
gates at a constant velocity. 

 The double string connected in parallel by linear elastic elements can be studied as a 
theoretical model of composite system or prestressed structure in which coupling effects 
and transverse wave effects are taken into account. 
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Abstract. A new formulation is presented to model the hysteretic bending behaviour of metal-
lic strands. The interaction between the wires of the strand is modeled through a frictional 
contact model based on the Amontons-Coulomb law and accounts for the effects of the tan-
gential compliance mechanism. The new model is presented with reference to a single-layered 
mono-metallic strand and is applied to the study of the energy dissipation in cyclic bending. 
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1 INTRODUCTION 

Overhead electrical lines and, more in general, suspended cable structures subjected to 
wind forces are typically subjected to aeolian vibration, due to the alternate shedding of Von 
Karman’s vortices. These vibrations can strongly affect the service life of cable structures, by 
inducing alternate bending stresses leading to wear damage and fretting fatigue of the strands 
and of the connected support equipment [3]. The assessment of the aeolian vibration level, 
therefore, is a crucial issue in the design and maintenance of cable supported structural sys-
tems. 

During aeolian vibration, a relevant fraction of the power transmitted by the wind to the 
structure is dissipated through frictional dissipation phenomena, which occur within the vi-
brating cable (also referred to as cable self-damping) [3]. Stranded cables, in fact, are made of 
wires, which tend to slip relatively one to each other during the bending of the element.  

An upper bound of the aeolian vibration amplitude can be found by imposing the balance 
between the input power, provided by the wind, and the total dissipation in the cable structure 
(Energy Balance Principle, see e.g. [1, 3]). Within this context, the most common approach to 
estimate the self-damping of the cables is based on experimental measurements on indoor 
laboratory test spans [4] and empirical or semi-empirical (e.g. [13]) expressions.  

Focusing on overhead electrical lines, the following power law is commonly adopted to 
evaluate the power per unit-length, Pd, dissipated when the conductor vibrates according to a 
flexural natural mode with amplitude A [m] (single-peak antinode vibration amplitude) and 
frequency f [Hz]:  

 
l m

d n

A f
P k

T
=  (1) 

where: T [kN] is the axial load of the cable (assumed constant over the span) and k is a pro-
portionality factor, depending in general on the mechanical and geometrical properties of the 
strand (see e.g. [2, 3]). The exponents (l, m, n) of the power law are determined by fitting the 
experimental data from laboratory forced vibration tests. 

The approach based on the empirical power law (1) for the definition of the cable self-
damping has two major drawbacks: (a) firstly, it relies on expensive and time consuming 
laboratory tests, and (b) secondly, it is subjected to quite relevant uncertainties since even 
small variations in the values of the exponents (l, m, n) can lead to a large scatter in the results 
of equation (1) (see e.g. [1]). 

On the other hand, mechanical models starting from a description of the cable internal 
structure and of the interaction between wires to determine cable self-damping, up to date are 
still at the research stage (see e.g. the recent review by Spak et al. [14]).  

Recently, the authors proposed a new approach to define the self damping of metallic ca-
bles [11], starting from the description of the hysteretic bending behaviour of metallic strands 
provided in [5, 8, 9]. The relative sliding between wires of a strand is first studied, by model-
ing each wire as a curved thin rod, according to the classic Kirchhoff-Clebsh-Love structural 
theory. A kinematic model is defined to relate the generalized strains of the wires to those of 
the strand and the internal contact conditions are analyzed by neglecting the deformation of 
the contact surfaces and assuming the classic Amontons-Coulomb friction law. The cross sec-
tional response of the strand under cyclic bending is then studied, to obtain a closed-form ex-
pression for the dissipated energy per cycle. The latter turns out to be a non-linear function of 
the maximum bending curvature reached during the cycle. Furthermore, the dissipated energy 
depends also on the axial load of the strand and on the friction coefficient of the internal con-
tact surfaces. Finally, once the cross sectional hysteretic bending behaviour is fully character-
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ized, the cable self-damping can be easily evaluated through a straightforward analytical pro-
cedure. 

The application of this new approach to overhead electrical lines has shown (see [11] for 
details) that it allows to recover the same structure of the empirical power law introduced in 
equation (1), while providing a full mechanical interpretation of the exponents (l, m, n) and of 
the proportionality factor k. The proposed approach has been successfully compared with ex-
perimental data from vibration tests on 20-60 m length laboratory test spans. Within this con-
text, it has been shown that the proposed model delivers an upper-bound estimate of the cable 
self-damping. The latter finding has been recognized as a consequence of the assumption of 
non-deformable contact surfaces adopted to describe the hysteretic cross sectional behaviour 
of the strand. Neglecting the tangential compliance of the internal contact surfaces, indeed, 
can lead to an overestimate both of the dissipated energy per cycle as well as of the maximum 
bending stiffness of the strand cross section. 

The aim of the present paper is to investigate the effect of the tangential compliance 
mechanism of the internal contact surfaces on the hysteretic bending behaviour of metallic 
strands. Accordingly, the mechanical model of the strand originally proposed in [5] is ex-
tended to account for the effects of the internal relative displacements due to the tangential 
contact compliance (see also [6]) and applied to evaluate the energy dissipated under cyclic 
bending loading. 

The new mechanical model is presented in this paper with reference to the special case of a 
single-layered mono-metallic strand, in order to avoid cumbersome calculations stemming 
from a more complex internal geometry. 

2 INTERNAL STRUCTURE OF THE STRAND 

A typical structural steel strand is considered in this work. The strand is made of six circular 
round wires (diameter d1) wrapped around a straight round core wire (diameter d0), as it is 
sketched in Figure 1.  

 

 
Figure 1: Cross section of the strand. 

The external wires are in contact with the core, but not among them. Their centerline can 
be described as a circular helix in a reference system attached to the strand centerline, with 
axes {xi} ( i=1, 2, 3). The axes x2 and x3 are defined on the cross section of the strand, as it is 
shown in Figure 1, while x1 identifies the strand centerline. By denoting {ei} the unit vectors 
of the axes {xi}, the position vector of generic wire centerline can be defined as: 
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 ( ) ( ) ( ) ( ) ( )0 1 2 3cos sin
tan

R
R Rθ θ θ θ θ

α
= − + +x e e e  (2) 

where: R is the helix radius, which can be simply evaluated as R=0.5(d0+d1), α is the lay an-
gle, i.e. the constant angle which the tangent vector to the helix defines with the strand center-
line (axis x1), θ is the swept angle defined in Figure 1, and θ0 denotes the value of the swept 
angle on the strand cross section identified by the coordinate: x1=0. 

3 MODELING OF THE HYSTERETIC BENDING BEHAVIOUR OF THE 
STRAND 

The cross-sectional behaviour of a strand subjected to a combination of axial load Fs and 
bending moment Ms (herein assumed acting in the plane (x1, x3), without loss of generality) 
can be described through the following constitutive equations (see [5, 6, 8, 9] for details):  

 
( )min ,

s s s

add
s s s s s

F EA

M EI M

ε
χ ε χ

=
 = +

 (3a, b) 

where εs and χs are the axial strain and bending curvature of the strand, respectively. 
The axial behaviour of the strand (equation (3a)) is linear and independent of the bending 

curvature. By denoting as EA0 and EA1 the axial stiffness of the core and of the external wires, 
the axial stiffness EAs can be evaluated (see also [6]) as:  

 ( )3
0 16 cossEA EA EA α= +  (4) 

On the other hand, two contributions can be recognized in the expression of the bending 
moment Ms (equation (3b)). The first one is linear, independent on the axial strain of the 
strand and accounts for the individual bending of the wires with respect to a diameter parallel 
to the axis x2 (see e.g. [8] for details). This term can be evaluated by assuming that the strand 
behaves as a bundle of individually bent elastic curved thin rods, i.e. by neglecting interaction 
between the wires of the strand. Under this limit kinematic assumption, the cross sectional 
bending stiffness attains its minimum value [8]:  

 ( )3
min 0 16cosEI EI EIα= +  (5) 

where EI0 and EI1 are the bending stiffness of the core and of the external wires, respectively. 
The additional term Ms

add in equation (3b), instead, is non-linear and accounts for the con-
tribution to the total bending moment of the cross section due to the axial force acting in the 
individual wires: Fw1. The latter, can be decomposed (see also [6]) into a first contribution, 
Fw1,a, due to the axial load Fs, and a second one, Fw1,b, due to the bending of the strand, i.e.: 
Fw1 = Fw1,a + Fw1,b. Due to the axial symmetry of the strand, the term Fw1,a doesn’t depend on 
the swept angle θ and the additional bending moment in (3b) can be expressed as a function 
of the components Fw1,b. The following expression can be easily obtained through equilibrium: 

 ( ) ( ) ( )
6

1,
1

cos sinadd
s w b i i

i

M R Fα θ θ
=

=∑  (6) 

As long as the friction forces on the internal contact surfaces are large enough to prevent 
relative displacements (gross-sliding) between the wires and the core, i.e. in the no-sliding 
regime, the force Fw1,b can be evaluated as:  
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 ( ) ( )
( ) ( ) ( )

2
1

1, 2
1
2

cos   
sin

sin
1

sno sliding
w b

Ti

R EA
F

C P EA

R

α χ
θ θ

α
− =

+
 (7) 

The above expression accounts for the effect of the internal relative displacements due to 
the tangential contact compliance mechanism and has been first derived by one of the authors 
in [6] by extending the mechanical model previously developed in [5] under the assumption 
of non-deformable contact surfaces. 

The variable CTi in equation (7) is the initial value of the tangential compliance between 
the external wires and the core, evaluated in the straight configuration of the strand (i.e. for 
χs=0), which depends on the normal force per unit length P exerted from the external wires on 
the core. The latter, in turn, depends on the axial force acting on the strand and introduces a 
coupling between the axial problem and the bending of the strand, as already highlighted in 
equation (3b). Closed-form expressions for the normal contact force P and for the tangential 
compliance CTi, here omitted for the sake of conciseness, can be found in [6]. 

The gradient of the wire axial force Fw1,b, which can be easily derived from (7), gives the 
wires the trend to slip with respect to the underlying core. The gross-sliding of the wires, 
however, is contrasted by the tangential contact forces which act on the internal contact sur-
faces and are bounded by the Amontons-Coulomb friction law. To study the non-linear transi-
tion between the no-sliding and gross-sliding regime, a numerical strategy has been developed 
by the authors (see e.g.: [5, 9]) and is adopted also in this work. The numerical procedure is 
based on a classic Return-Map algorithm, based on a no-sliding prediction and a gross-sliding 
correction. The algorithm delivers the value of the gradient of the wire axial force which satis-
fies the Amontons-Coulomb friction law, over a discrete set of control points defined along 
the pitch of the wire. Then, the wire axial force Fw1,b is obtained through numerical integration 
along the wire length. 

Once the axial force Fw1,b is known, the additional bending moment Ms
add can be evaluated 

from equation (6). Finally, by assuming that the strand is subjected to a bending curvature χs 
cyclically variable in the range ± χmax, the dissipated energy per cycle can be simply evaluated 
as the area Ac enclosed in the hysteretic moment-curvature diagrams, i.e.:  

 ( )
max

c s s sA M d
χ

χ χ
±

= ∫�  (7) 

A more detailed discussion on the cross sectional model can be found e.g. in [6] where the 
results of the implementation into a corotational beam finite element [7, 10] are also presented. 
The relation between Ac and the dissipated power Pd per unit length of the cable (self-
damping), instead, is extensively discussed in [11]. 

4 NUMERICAL APPLICATION 

The proposed model is applied to study the cross sectional hysteretic behaviour of a well-
documented steel strand (see e.g. [12, 15]), already studied by the authors under the action of 
axial load and planar bending in [6, 9]. The geometric and material properties of the element 
are listed in Table 1. 

 
d0 (mm)  d1 (mm) α α α α (deg) E (GPa)  ν ν ν ν (-)  
3.94 3.73  11.8  188  0.3  

 

Table 1: Geometric and material parameters from [12]. 
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The results obtained with the new formulation proposed in this paper are systematically 
compared with the predictions of the previous authors’ model [5], which neglects the effect of 
the tangential compliance mechanism (i.e. CTi=0 in equation (7)). The initial behaviour of the 
latter model, will be referred to, in the following, as the full-stick initial behaviour, to empha-
size the fact that in this case the cross section of the strand is initially considered to behave as 
an ideal rigid body.  

Figures 2(a, b, c) show the cross sectional hysteresis loops evaluated for several values of 
the maximum curvature χmax. The results have been evaluated for different values of the in-
terwire friction coefficient µ and of the non-dimensional axial load parameter η, defined as 
the ratio between the axial force Fs and the Rated Tensile Strength of the strand (here 137 kN 
– see [15]).  

From Figures 2(a) and 2(b), it can be easily appreciated that by increasing the strand axial 
load, the area of the hysteresis loop can be remarkably enlarged. A similar effect is obtained 
by increasing the value of the friction coefficient (see Figures 2(a) and 2(c)).  

 

  

Figure 2: Cross sectional hysteretic behaviour. Hysteresis loops evaluated for: (a) η=0.1 and µ=0.5, (b) η=0.2 
and µ=0.5, (c) η=0.1 and µ=0.7. Figure 2(d) shows the non-dimensional initial bending stiffness vs. the axial 

loading parameter η. 
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The results of the two models are very similar, for the special case considered in this appli-
cation. As a matter of fact, the main effect of the tangential compliance mechanism can be 
recognized in a reduction of about 10% of the value of the initial stiffness of the moment-
curvature relation (i.e. the maximum bending stiffness of the strand section: EImax). This ef-
fect can be clearly appreciated from Figure 2(d), where the non-dimensional initial bending 
stiffness EImax/(Ed0

4) is plotted against the loading parameter η. As a reference, the corre-
sponding constant value evaluated under the full-stick assumption is also plotted with a grey 
dashed line.  

On the other hand, both the area as well as the shape of the hysteresis loops are very 
slightly affected by the presence of the tangential compliance mechanism. The latter findings 
can be further appreciated from Figures (3) and (4), where the secant stiffness of the hystere-
sis loops and the dissipated energy per cycle (see equation (7)), respectively, are plotted 
against the maximum curvature of the cycles. It’s worth noting that, as expected, the dissi-
pated energy per cycle predicted by the new model is always slightly lower than the one 
evaluated by neglecting the tangential compliance between the external wires and the core. 

5 CONCLUSIONS  

A new formulation to model the hysteretic bending behaviour of metallic strands has been 
developed and presented for the special case of single-layered mono-metallic elements. Each 
wire of the strand is individually modeled as an elastic curved thin rod, in linear contact with 
the underlying core. A contact model is then introduced to describe the interaction among the 
external wires and the core. Friction is modeled through the Amontons-Coulomb law and the 
effects of the tangential contact compliance are accounted for, aiming at extending a previous 
authors’ model taking into account the gross sliding only. 

The proposed model, then, has been applied to study the energy dissipation of a steel 
strand subjected to cyclic bending loading. For the particular strand considered in this work, it 
is found that the tangential contact compliance mainly influence the initial bending stiffness 
of the strand, while it has only a small effect on the secant stiffness and area of the hysteresis 
loops. Ongoing research is devoted to the extension of the proposed formulation to other 
strand geometries, including the case of multi-layer elements, for which the effects of the tan-
gential compliance are expected to be more pronounced. 

  
Figure 3: Secant stiffness EIsec of the hysteresis loops vs. the maximum curvature of the cycles χmax. (a) Friction 

coefficient µ=0.5, different values of η. (b) Axial loading parameter η=0.1, different values of µ. 
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Figure 4: Dissipated energy per cycle Ac vs. the maximum curvature of the cycles χmax. (a) Friction coefficient 

µ=0.5, different values of η. (b) Axial loading parameter η=0.1, different values of µ.  
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Abstract. Distributed control systems for vibration control of large structures involve a large

number of actuation devices and sensors that work coordinately to produce the desired con-

trol actions. Design strategies based on linear matrix inequality (LMI) formulations allow

obtaining controllers for these complex control problems, which are characterized by large di-

mensionality, high computational cost and severe information constraints. In this paper, we

conduct a comparative study of the computational effectiveness of three different LMI-based

controller design strategies: H∞, energy-to-peak and energy-to-componentwise-peak. The H∞

approach is a well-known design methodology and has been widely used in the literature. The

energy-to-peak approach is a particular case of generalized H2 design that is gaining a grow-

ing relevance in structural vibration control. Finally, the energy-to-componentwise-peak ap-

proach is a less common case of generalized H2 design that produces promising results among

the three considered approaches. These controller design strategies are applied to synthesize

active state-feedback controllers for the seismic protection of a five-story building and a twenty-

story building both equipped with complete systems of interstory actuation devices. To evaluate

the computational effectiveness of the proposed LMI design methodologies, the corresponding

computation times are compared and a suitable set of numerical simulations is carried out to

assess the performance of the obtained controllers. As positive results, two main facts can

be highlighted: the computational effectiveness of the energy-to-peak control design strategy

and the particularly well-balanced behavior exhibited by the energy-to-componentwise-peak

controllers. On the negative side, it has to be mentioned the computational inefficiency of the

considered LMI design methodologies to properly deal with very-large-scale control problems.
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1 INTRODUCTION

Over the last years, controller design strategies based on linear matrix inequality (LMI) for-

mulations have been attracting increasing interest [1]. In the field of vibration control of large

structures, these design strategies allow obtaining optimal controllers for complex control prob-

lems that involve a large number of actuation devices and sensors, and are typically character-

ized by large dimensionality, high computational cost and severe information constraints [2–7].

An important family of controller design methodologies for linear systems is based on the

idea of minimizing the worst-case gain from the disturbance-input w(t) to the closed-loop

controlled-output z(t), which can be modeled as the value

sup
‖w‖w 6=0

‖z‖z
‖w‖w

, (1)

where ‖ · ‖z and ‖ · ‖w denote particular signal norms defined on the controlled-output and

disturbance-input sets, respectively. Broadly speaking, an optimal controller is computed by

minimizing the worst-case gain and, simultaneously, demanding asymptotic stability of the

closed-loop system. From a computational point of view, an important fact is that some of

these optimization problems can be formulated in terms of LMIs and solved using the existing

LMI solvers [8]. Following this approach, different control design strategies can be obtained

by selecting different signal norms in the controlled-output and disturbance-input spaces. In the

present work, three different signal norms are considered: (i) the continuous 2-norm

‖f‖2 =

[∫

∞

0

fT (t)f(t)dt

]1/2

, (2)

which is commonly understood as the signal energy content, (ii) the usual continuous peak-

norm

‖f‖∞ = sup
0≤t<+∞

[

fT (t)f(t)
]1/2

(3)

and (iii) the componentwise-peak-norm

‖f‖∞,cw = sup
0≤t<+∞

max
i

|fi(t)| = max
i

sup
0≤t<+∞

|fi(t)|, (4)

where f(t) = [f1(t), . . . , fn(t)]
T is a real vector of dimension n. The objective of the paper

is to conduct a comparative study of the computational effectiveness of three different LMI-

based controller design strategies: H∞, energy-to-peak and energy-to-componentwise-peak.

The H∞ approach is a well-known design methodology that uses the 2-norm to measure both

the controlled-output and the disturbance-input [9–15]. The energy-to-peak approach is a par-

ticular case of generalized H2 design [16] that is gaining a growing relevance in structural

vibration control [17–20]. This second case uses the 2-norm for the disturbance-input and the

peak-norm for the controlled-output. Finally, the energy-to-componentwise-peak approach is a

less common case of generalized H2 design, which uses the 2-norm for the disturbance input

and the componentwise-peak-norm for the controlled-output [21]. These three controller design

strategies are applied to synthesize active state-feedback controllers for the seismic protection

of a five-story building and a twenty-story building equipped with complete systems of inter-

story actuation devices. To assess the performance of the obtained controllers, a proper set of

numerical simulations is conducted and the computational effectiveness of the proposed LMI

design methodologies is evaluated by comparing the corresponding computation times.
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The rest of the paper is organized as follows: In Section 2, a brief summary of the LMI for-

mulations corresponding to the H∞, energy-to-peak and energy-to-componentwise-peak con-

troller design strategies is presented. In Section 3, a mathematical model for a n-story building

is provided. In Section 4, the controllers corresponding to the three proposed design strategies

are computed, the computation times are compared and the results of the numerical simulations

are discussed. Finally, some conclusions are presented in Section 5.

2 LMI CONTROLLER DESIGN STRATEGIES

Let us consider the system
{

ẋ(t) = Ax(t) +Bu(t) + Ew(t)

z(t) = Cx(t) +Du(t)
(5)

where x(t) ∈ R
nx is the state, u(t) ∈ R

nu is the control input, w(t) ∈ R
nw is the disturbance

input, z(t) ∈ R
nz is the controlled output and A, B, E, C, D are constant real matrices with

appropriate dimensions. Given a state-feedback controller

u(t) = Gx(t), (6)

with state gain matrix G ∈ R
nu×nx , we obtain the closed-loop system

{

ẋ(t) = AGx(t) + Ew(t)

z(t) = CGx(t)
(7)

where

AG = A+BG, CG = C +DG. (8)

The worst-case gain from the disturbance-input to the closed-loop controlled-output associated

to the control gain matrix G can be modeled by the system norm

γ(G) = sup
‖w‖w 6=0

‖z‖z
‖w‖w

, (9)

where ‖ · ‖z and ‖ · ‖w denote particular signal norms defined on the controlled-output and

disturbance-input spaces, respectively. An optimal state-feedback controller

u(t) = ˜Gx(t) (10)

can then be obtained by solving the following optimization problem:

min
G

{γ(G) : AG asymptotically stable}. (11)

The H∞ controller design considers the system norm

γ∞(G) = sup
‖w‖2 6=0

‖z‖2
‖w‖2

, (12)

where ‖ · ‖2 is the continuous 2-norm in (2). The optimization problem (11) corresponding to

this case can be formulated as the following LMI optimization problem [1]:

P∞ :

{

maximize η

subject to X > 0, η > 0 and the LMI in (14)
(13)

5691
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[

AX +XAT +BY + Y TBT + ηEET (CX +DY )T

CX +DY −Inz

]

< 0, (14)

where X = XT ∈ R
nx×nx and Y ∈ R

nu×nx are the optimization variables and In is the identity

matrix of order n . If an optimal value η̃∞ is attained in P∞ for the pair
(

˜X∞, ˜Y∞

)

, then the

state gain matrix
˜G∞ = ˜Y∞

˜X−1

∞
(15)

is an optimal solution to the H∞ controller synthesis problem and the corresponding γ-value

can be computed as

γ̃∞ = γ∞
(

˜G∞

)

=
(

η̃∞
)

−1/2
. (16)

The energy-to-peak controller design uses the system norm

γp(G) = sup
‖w‖2 6=0

‖z‖∞
‖w‖2

, (17)

where ‖ · ‖2 is the 2-norm in (2) and ‖ · ‖∞ is the peak-norm given in (3). The optimization

problem (11) associated to this second case admits the following LMI formulation [16]:

Pp :

{

minimize η

subject to the LMIs in (19) and (20)
(18)

AX +XAT +BY + Y TBT + EET < 0, (19)

[

X (CX +DY )T

CX +DY ηInz

]

> 0, (20)

with LMI variables X = XT ∈ R
nx×nx , Y ∈ R

nu×nx . If an optimal value η̃p is attained in Pp

for the pair
(

˜Xp, ˜Yp

)

, then the state gain matrix

˜Gp = ˜Yp
˜X−1

p (21)

is an optimal solution to the energy-to-peak controller synthesis problem with an associated

γ-value

γ̃p = γp

(

˜Gp

)

=
(

η̃p

)1/2
. (22)

Finally, the energy-to-componentwise-peak controller design considers the system norm

γcwp(G) = sup
‖w‖2 6=0

‖z‖∞,cw

‖w‖2
, (23)

where ‖ · ‖2 is the usual 2-norm and ‖ · ‖∞,cw is the componentwise-peak-norm defined in (4).

The optimization problem corresponding to this third case

min
G

{γcwp(G) : AG asymptotically stable} (24)

can be formulated as follows [16]:

Pcwp :

{

minimize η

subject to the LMIs in (26) and (27)
(25)
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Figure 1: Building structure equipped with interstory actuation devices.

AX +XAT +BY + Y TBT + EET < 0, (26)

[

X (CiX +DiY )T

CiX +DiY η

]

> 0, for 1 ≤ i ≤ nz, (27)

where Ci and Di denote the ith row of the matrices C and D, respectively, and X = XT ∈
R

nx×nx , Y ∈ R
nu×nx are the LMI variables. As it happened in the previous designs, if an

optimal value η̃cwp is attained in Pcwp for the pair
(

˜Xcwp, ˜Ycwp

)

, then the state gain matrix

˜Gcwp = ˜Ycwp
˜X−1

cwp (28)

is an optimal solution to the energy-to-componentwise-peak controller synthesis problem with

an associated γ-value

γ̃cwp =
(

η̃cwp

)1/2
. (29)

3 BUILDING MODEL

Let us consider the n-story building structure schematically depicted in Figure 1, where ai,
i = 1, . . . , n, represents an interstory actuation device implemented between the stories si−1

and si, w(t) denotes the seismic ground acceleration and ui(t) is the control action exerted by
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the actuator ai, which produces a pair of opposite structural forces as indicated in the figure. By

considering the vector of displacements

q(t) =
[

q1(t), . . . , qn(t)
]T
, (30)

where qi(t) is the lateral displacement of the story si with respect to the ground level s0, the

lateral motion of the structure can be described by the differential equation

M q̈(t) + Cd q̇(t) +K q(t) = Tuu(t) + Tww(t), (31)

where

u(t) =
[

u1(t), . . . , un(t)
]T

(32)

is the vector of control actions, M , Cd and K are the mass, damping and stiffness matrices,

respectively, Tu is the control location matrix and Tw is the excitation input matrix. The mass

matrix is a diagonal matrix

M =









m1

· · ·
· · ·

mn









(33)

and the stiffness matrix has the following tridiagonal structure:

K =

















k1 + k2 −k2
−k2 k2 + k3 −k3

· · · · · · · · ·
· · · · · · · · ·

−kn−1 kn−1 + kn −kn
−kn kn

















, (34)

where mi and ki, i = 1, . . . , n denote the mass and stiffness coefficients of the i-th story,

respectively. The damping matrix Cd can be computed from M and K by setting a proper

damping ratio on the building modes [22], the control location matrix is a square matrix of size

n with the following upper-diagonal band form:

Tu =

















1 −1
1 −1

· · · · · ·
· · · · · ·

1 −1
1

















, (35)

and the excitation input matrix has the form

Tw = −M [1]n×1, (36)

where [1]n×1 denotes a vector of dimension n with all its entries equal to 1. By introducing the

interstory drifts
{

r1(t) = q1(t)

ri(t) = qi(t)− qi−1(t) for i = 2, . . . , n,
(37)
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story 1 2 3 4 5

mass (×105 Kg) 2.152 2.092 2.070 2.048 2.661

stiffness (×108 N/m) 1.470 1.130 0.990 0.890 0.840

relative damping 5%

Table 1: Parameter values corresponding to the five-story building model.

and the augmented state vector

x(t) =

[

r(t)
ṙ(t)

]

, (38)

we obtain the following first-order state-space model:

ẋ(t) = Ax(t) +B u(t) + E w(t), (39)

with

A = P ̂AP−1, B = P ̂B, E = P ̂E, (40)

̂A =

[

[0]n×n In

−M−1K −M−1Cd

]

, ̂B =

[

[0]n×n

M−1Tu

]

, ̂E =

[

[0]n×1

−[1]n×1

]

, (41)

where [0]n×m represents a zero-matrix of the indicated dimensions and P is the change-of-basis

matrix corresponding to the state transformation
[

r(t)
ṙ(t)

]

= P

[

q(t)
q̇(t)

]

. (42)

Assuming that the control objective is to reduce the interstory drift values in the seismically

excited building by means of moderate control actions, we also consider the controlled-output

vector

z(t) = Cx(t) +Du(t), (43)

defined by the matrices

C =

[

In [0]n×n

[0]n×n [0]n×n

]

, D = α

[

[0]n×n

In

]

, (44)

where α is a scaling factor that compensates the different magnitude of interstory drifts and

control forces.

4 NUMERICAL RESULTS

Let us consider the particular five-story building model [23] corresponding to the mass, stiff-

ness and damping parameters presented in Table 1. For this small-building problem, we first

solve the LMI optimization problem P∞ in (13) with the matrices A, B and E in (40) and the

controlled-output matrices in (44) with n= 5 and the scaling factor α = 10−7.3, obtaining the H∞

control gain matrix

˜G∞ =106×





−1.7423 0.8569 −0.2631 −0.1886 −0.1406 −1.6424 −1.4244 −1.1155 −0.7819 −0.4437
−0.2858 −2.3937 1.0316 −0.2427 −0.1045 −1.8366 −1.7286 −1.4129 −1.0100 −0.5778
0.9696 −0.7657 −2.7917 0.9250 −0.1450 −1.6440 −1.6154 −1.4853 −1.1130 −0.6484
0.6555 0.7633 −0.7879 −3.2342 0.5932 −1.2969 −1.2853 −1.2396 −1.0883 −0.6678
0.4777 0.3678 0.4047 −0.6065 −3.5459 −0.7887 −0.7835 −0.7630 −0.7086 −0.5564



.

(45)
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Figure 2: North-South El Centro 1940 seismic record scaled to 1m/s2.

controller H∞ ETP ETCWP

computation time (s) 0.6724 0.2105 0.3209

Table 2: Computation time (in seconds) corresponding to the H∞, energy-to-peak (ETP) and energy-to-

componentwise-peak (ETCWP) control gain matrices obtained for the five-story building.

Next, we solve the optimization problem Pp in (18) with the same matrices A, B, E , and C
used in the previous design, and the matrix D corresponding to the values n= 5 and α = 10−7.55.

As a result, we obtain the following energy-to-peak control gain matrix:

˜Gp =107×





2.0601 −0.0664 −0.6853 −0.9248 −0.6478 −0.2957 −0.1719 −0.1008 −0.0544 −0.0253
1.5023 −0.1639 −0.4423 −0.6833 −0.4994 −0.1944 −0.2417 −0.1429 −0.0877 −0.0453

−0.5285 0.2894 −0.2447 0.2835 0.1484 −0.1126 −0.1279 −0.1886 −0.0995 −0.0532
−1.8625 0.0735 0.8007 0.3661 0.6780 −0.0563 −0.0626 −0.0846 −0.1506 −0.0606
−1.7561 −0.0616 0.7355 0.9459 0.0174 −0.0237 −0.0239 −0.0341 −0.0533 −0.1178



.

(46)

Finally, by solving the optimization problem Pcwp in (25) with the same matrices A, B, E , C
and D used in the energy-to-peak design, we obtain the energy-to-componentwise-peak control

gain matrix

˜Gcwp =106×





−3.2275 4.1177 −0.9820 −0.7206 −0.6506 −2.2112 −1.3045 −0.9855 −0.7097 −0.3988
−6.1129 −9.5642 −2.3243 −1.1240 −0.3647 −1.1163 −1.5038 −0.9947 −0.6253 −0.3360
1.7722 0.1933 −7.6837 −5.2039 −0.9188 −1.3303 −1.3716 −1.5983 −1.0710 −0.5912
1.7341 2.9811 5.6210 −4.0119 −6.3957 −1.3482 −1.2888 −1.3998 −1.5583 −0.9837
2.0888 1.3659 1.4997 8.0527 1.5823 −0.9926 −1.0051 −1.0788 −1.2018 −1.0811



.

(47)

All the controllers in this section have been computed with the LMI solver included in the

MATLAB Robust Control Toolbox [8] and using a personal computer with a two-core Intel i5

processor. The computation times corresponding to the control gain matrices ˜G∞, ˜Gp and ˜Gcwp

are collected in Table 2.

To demonstrate the performance of the proposed controllers, a suitable set of numerical sim-

ulations has been carried out using the scaled North-South El Centro 1940 seismic record as

a ground acceleration input (see Figure 2). The obtained absolute interstory-drift peak-values

are displayed in Figure 3(a), where the black line with squares represents the uncontrolled re-

sponse, the blue line with circles corresponds to the H∞ controller u(t)= ˜G∞ x(t), the green

line with triangles presents the response of the energy-to-peak controller u(t)= ˜Gp x(t) and the

red line with asterisks describes the energy-to-componentwise-peak controller u(t)= ˜Gcwp x(t).
The corresponding absolute control-effort peak-values are displayed in Figure 3(b) using the
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Figure 3: Response of the five-story building model corresponding to the scaled North-South El Centro 1940

seismic record for the uncontrolled configuration (black line with squares), the H∞ controller (blue line with

circles), the energy-to-peak controller (green line with triangles) and the energy-to-componentwise-peak controller

(red line with asterisks). (a) Maximum absolute interstory drifts. (b) Maximum absolute control efforts.

story 1–5 6–11 12–14 15–17 18–19 20

mass (×106 Kg) 1.10 1.10 1.10 1.10 1.10 1.10

stiffness (×108 N/m) 8.62 5.54 4.54 2.91 2.56 1.72

relative damping 5%

Table 3: Parameter values corresponding to the twenty-story building model.

same colors and symbols.

Looking at the matrices in (45), (46) and (47) it can be appreciated that the proposed design

methods certainly produce different results. A quick inspection of the plots in Figure 3 reveals

two clear facts: (i) the three controllers provide a good level of seismic protection with similar

levels of control effort and (ii) the energy-to-componentwise-peak controller exhibits a partic-

ularly well-balanced behavior. The computation times in Table 2 also indicate two facts: (i)

all the proposed design strategies demand very small computation times and, consequently, are

suitable for control problems involving small-size building models and (ii) the shortest compu-

tation time is attained by the energy-to-peak controller.

Now we consider the twenty-story building model [10] corresponding to the mass, stiffness

and damping parameters presented in Table 3. For this large-building problem, we compute an

H∞ controller by solving the LMI optimization problem P∞ in (13) with the matrices A, B and

E corresponding to the values in Table 3 and the controlled-output matrices in (44) with n= 20
and the scaling factor α = 10−8.0. We also design an energy-to-peak controller and an energy-

to-componentwise-peak controller by solving the optimization problems Pp in (18) and Pcwp in

(25), respectively, with the same matrices A, B, E and C used in the H∞ design and the matrix

D defined by n= 20 and the scaling factor α = 10−8.2. The computation times corresponding to

this second set of controllers are collected in Table 4. To illustrate the seismic performance of

the proposed design strategies in this harder control problem, the twenty-story building vibra-

tion response has been numerically simulated using also the scaled North-South El Centro 1940
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Figure 4: Response of the twenty-story building model corresponding to the scaled North-South El Centro 1940

seismic record for the uncontrolled configuration (black line with squares), the H∞ controller (blue line with

circles), the energy-to-peak controller (green line with triangles) and the energy-to-componentwise-peak controller

(red line with asterisks). (a) Maximum absolute interstory drifts. (b) Maximum absolute control efforts.

controller H∞ ETP ETCWP

computation time (s) 169.25 60.63 458.24

Table 4: Computation time (in seconds) corresponding to the H∞, energy-to-peak (ETP) and energy-to-

componentwise-peak (ETCWP) controllers designed for the twenty-story building model.

seismic record as ground acceleration input. The corresponding absolute interstory-drift and

absolute control-effort peak-values are displayed in Figure 4(a) and Figure 4(b), respectively,

using the same colors and symbols: black line with squares for the uncontrolled response, blue

line with circles for the H∞ controller, green line with triangles for the energy-to-peak controller

and red line with asterisks for the energy-to-componentwise-peak controller.

The inspection of the plots in Figure 4 indicates that the same two facts observed in the

five-story building problem still hold in the present case: (i) the three controllers provide a

good level of seismic protection with similar levels of control effort and (ii) a particularly well-

balanced behavior is exhibited by the energy-to-componentwise-peak controller. Looking at the
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computation times in Table 4 and comparing with the data in Table 2, three main facts can be

appreciated: (i) the best results are still attained by the energy-to-peak controller, (ii) all compu-

tation times are significantly larger and, (iii) a particularly larger computation time is required

by the energy-to-componentwise-peak controller. The good computational performance of the

energy-to-peak design strategy is a remarkable fact that converts this design methodology in

an interesting option for vibration control of large structures. The observed increment of the

computation times can be partially explained by the increase in the number of LMI variables. It

should be observed that, in the general case of a n-story building with n actuation devices, the

dimensions of the LMI variable matrices X and Y are 2n×2n and n×2n, respectively, and the

total number of variables in the considered LMI optimization problems is 4n2 + n. This means

that a controller design for a five-story building involves 105 LMI variables while a twenty-

story building design requires 1620 LMI variables. Additionally, the larger computation time

required by the energy-to-componentwise-peak design in the twenty-story building problem is

consistent with the higher complexity of the corresponding LMI formulation.

5 CONCLUSIONS

In this paper, we have conducted a comparative study of three LMI-based controller design

strategies for structural vibration control, paying special attention to the computational effec-

tiveness in large-dimension problems. Together with the well-known H∞ approach, the study

includes the energy-to-peak and energy-to-componentwise-peak methodologies, which are par-

ticular cases of generalized H2 designs. These three controller design strategies have been

applied to synthesize active state-feedback controllers for the seismic protection of a five-story

building and a twenty-story building, both equipped with a complete system of interstory actu-

ation devices. The corresponding computation times have been considered to evaluate the com-

putational effectiveness of the proposed design strategies and a proper set of numerical simula-

tions has been carried out to assess the performance of the obtained controllers. In the five-story

building problem, all the proposed design strategies have demanded computation times inferior

to one second and the obtained controllers provide a good level of seismic protection with simi-

lar levels of control effort. In the twenty-story building problem, a good level of performance is

also attained by all the controllers but an important increment of the computation times has been

observed and significant differences can be appreciated in the computational effectiveness of the

different design strategies. Overall, the following three main facts can be highlighted: (i) signif-

icantly shorter computation times are required by the synthesis of energy-to-peak controllers,

(ii) a particularly well-balanced behavior is exhibited by the energy-to-componentwise-peak

controllers and (iii) important computational difficulties should be expected when applying the

considered controller design strategies to very-large-scale control problems.
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Abstract. Concerns in the last decades of the negative impact of the use of fossil fuels on the
environment has lead to a boom in the production of wind turbines. To take advantage of the
smoother stronger winds at height, wind turbine heights are progressively increasing. This
has led to an increased demand to control tower forces. The application of a semi-active (SA)
control system is herein proposed and discussed. Its aim is to limit bending moment demand
at the base of a wind turbine by relaxing the base restraint of the turbine’s tower, without in-
creasing the top displacement. This is done thanks to the sharp increase of the dissipated en-
ergy in selected intervals of time and an adaptive change in tower dynamic properties. This
SA control system reproduces a variable restraint at the base that changes in real time its me-
chanical properties according to the instantaneous response of the turbine’s tower. This
smart restraint is made of a central smooth hinge, elastic springs and SA magnetorheological
dampers driven by a control algorithm properly designed for the specific application. A com-
mercial 105 m tall wind turbine has been assumed as a case study. Several numerical simula-
tions have been performed with reference to an extreme load, aimed at establishing a
procedure for the optimal calibration of the control algorithm according to the specific case,
finally proving the actual potential of the proposed control technique in reducing the struc-
tural demand with respect to the “fixed base” structure.
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1 INTRODUCTION

Wind turbine manufacturers have become ever more interested in methods for reducing or
limiting tower base moments for turbines of increasing height. There are two main reasons for
this. First, the tower diameters at the base are increasing beyond the point where they can be
fabricated off-site and shipped to the location of installation. This significantly increases con-
struction costs and complexity. Second, the tower diameters and associated base moments of
newer wind turbines far exceed those of existing wind turbines that the newer ones hope to
replace. Therefore, existing foundations cannot be utilized and new or strengthened founda-
tions need to be constructed.

The maximum base moments of a wind-turbine are generated by few very specific, and in
some cases improbable, load cases. These include the load cases which involve extreme gusts
of wind combined with emergency shut-down procedures and extreme wind loading in a
parked configuration. All of the extreme load cases generate maximum expected tower base
moments via short duration impulse loading – something which cannot be combated using
traditional damping devices. Damping is generally considered ineffective for impact type
loading. Instead, a variable tower stiffness and damping approach needs to be followed.
Therefore, in this paper, the concept of an adaptive wind turbine tower is examined, where the
adaptation is realized through the implementation of a semi-active (SA) control system.

Chen and Georgakis [1] performed an experimental analysis of a 1/20-scale wind tower
model equipped with a passive rolling-ball damper to reduce vibrations. Such damper consists
of a glass container placed at the top of the model and having one or more steel balls inside.
Different configurations have been tested, changing the geometry of the container (one or two
layers) and the number of balls (one to six) placed inside, showing a significant reduction of
the peak value and standard deviation of top displacement and base bending moment. The
same authors [2] tested the same model using water rather than steel balls inside the glass
container, i.e. realizing a spherical tuned liquid damper. The optimal degree of filling with
water (1-2% of the total generalized mass of the system) has been found as leading to the
maximum reduction of structural demand.

About active/semi-active control strategies from literature related to wind turbines, Karimi
et al. [3] and Luo et al. [4] propose a SA control technique for floating wind turbines with
TLCD. This device, generally used as a passive damper, turns into a SA device using a con-
trollable valve. The orifice opening is real time adapted according to the structure response
and loading conditions, with a control logic based on a H∞ feedback methodology. Lackner
and Rotea [5] investigate the effectiveness of an optimal passive TMD and of a hybrid mass
damper (HMD, i.e. a TMD improved with the addition of a controlled force actuator) in re-
ducing fatigue loads due to bending moment at the base of the tower, showing a percentage
reduction of about 10% and 30% respectively due to each of the two proposed systems.
Kirkegaard et al. [6] have been the first to explore the use of magnetorheological (MR) damp-
ers to control a wind turbine, assuming such type of smart device to be installed, in a vertical
position, between the base and the top of the tower. Even hard to be implemented in a real
case, the numerical simulations show good results. Experimental results are also made availa-
ble by the authors, unfortunately referred to the passive use (constant voltage fed to the MR
damper) of the device only.

The authors recently proposed a SA control system based on the application of MR devices
to realize a time-variant base restraint whose ‘stiffness’ can be driven in real time by a proper-
ly written control logic [7]. The high promptness of response of the SA control chain based on
the use of MR dampers and of an appropriate electronic and power equipment has been exper-
imentally demonstrated [8], showing that unavoidable delays however are always less than 10
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ms, thus negligible compared to the long period of the flexible structures under examination.
This is one of the aspects strongly encourage the use of such technology for the application in
question. The controller has to be programmed to instantaneously calibrate the MR devices
installed at the base of the tower in order to reduce the base bending moment, relaxing in se-
lected intervals of time the base restraint. Again, the control logic has to hold the top dis-
placement within acceptable values so as to avoid significant, detrimental second order effects.
At the laboratory of the Denmark Technical University (DTU) in Copenaghen, some shaking
table tests of a wind turbine tower model semi-actively controlled as above has been recently
performed by the authors. After the formulation of the above idea, a finite element model of
the structure has been calibrated so as to develop several numerical simulations addressed to
optimally calibrate the control logic properly designed for such kind of applications.

2 A VARIABLE BASE RESTRAINT FOR WIND TURBINE TOWERS: CONTROL
ALGORITHM

A smart restraint at the base of high-rise wind turbine towers is proposed with the aim of
reducing wind induced structural demand by exploiting magnetorheological devices. This is
schematically shown in Figure 1, where the uncontrolled wind turbine, fully restrained at the
base, is modeled as a single degree of freedom dynamic system (Figure 1(a)), having top mass
m, stiffness kT and inherent damping cT. In order to control the structural demand, the authors
proposed to replace the perfectly rigid base restraint with a controllable one that is able to in-
stantaneously become more or less “stiff”, during the motion. Figure 1(b) just sketches the ma-
terialization of this idea by a smooth hinge, with a rotational spring (of stiffness k) and a
rotational variable damper whose damping constant c can be driven in real time by a control
algorithm. The same result can be obtained in practice by mounting two vertical linear springs
(ks) placed at a certain distance (ls) from the hinge and two vertical SA dampers (cd) at a dis-
tance ld from the central hinge (Figure 1(c)).

SA MR dampers were considered as smart devices within the proposed control system:
when a low value is imposed to the base damping, the base restraint is less ‘stiff’, so that the
structure’s restraint is able to relax by converting its potential energy into kinetic energy, and
the bending moment at the base is reduced. A direct consequence of controlling the demand
of base bending stress could be an increase of top displacement demand; therefore, the SA
base control system was thought to reduce base stress, by restraining the increase of top dis-
placements within certain limits to control second order effects. A specific bang-bang control
algorithm has been formulated by the authors [7] to instantaneously decide the system’s base
configuration: it switches back and forth from an “OFF” state (intensity of current i = imin, i.e.
the minimum current set to be given to the dampers) to an “ON” state (i = imax, i.e. the maxi-
mum assumed value for the current) according to a logic aiming to control both the base stress
and the top displacement. Therefore, the control algorithm was so formulated:
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(1)

where (t), x(t) and ẋ(t) are respectively the value of stress at the base, top displacement and
top velocity at the instant of time t. In other words, the controller keeps ‘stiffer’ the base re-
straint until the stress exceeds the limit value lim (expression 1) of Eq. (1)), whereas ‘relaxes’
it (“OFF” state of the dampers) when this limit is overpassed and the displacement falls within
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the limit of acceptability xlim (expression 2) of Eq. (1)). When both stress and displacement are
beyond the respective threshold values, the controller switches “ON” the dampers if the dis-
placement is going towards a larger value (so trying to damp or invert the displacement’s
trend; expression 3) of Eq. (1)), otherwise it switches “OFF” the MR devices to make them
collaborating to both stress and displacement reduction. Figure 2 schematically describes the
above defined logic: the decision of the controller (switch “ON” or switch “OFF”) depends on
the occurrence of each of the four possible combinations regarding the value of base stress and
top displacement. The application of the proposed control algorithm requires the definition of
rational criteria to optimally calibrate the parameters involved in (imin, imax, lim and xlim). A
large numerical campaign has been performed with reference to a case study structure, aiming
to investigate the role each parameter has regarding the structural response, and to learn a pos-
sible procedure to calibrate them aiming at achieving the maximum reduction of stresses and
displacements.
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Figure 1: Basic idea of SA control of a wind turbine via MR dampers.
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Figure 2: The logic behind the controller (symbols refer to Eq. (1)).

3 CALIBRATION OF THE SA CONTROLLER: A CASE STUDY

A possible calibration procedure is herein proposed to provide the optimal choice of values
to be assigned to the parameters involved in the control algorithm. The first step is generating
a finite element model of the structure to be examined, able to reproduce both fixed base (FB)
and SA controlled configurations. With reference to a given wind load, the structural response
in the FB case has to be determined. Then a wide number of SA numerical simulations has to
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be designed and performed. Analyzing the results using a constrained optimization approach
allows to single out the optimal configuration of the controller able to achieve the maximum
reduction of base stress while not causing increasing of top displacement in respect to the FB
case. This procedure is practically applied in the following with reference to a specific case
study.

3.1 Case Study

The case study structure is a 1/20-scale structural model of a prototype real wind turbine.
The reference real structure is a 3 MW wind turbine with horizontal power transmission axle,
102.4 m tall, with a variable hollow circular cross section whose external diameter is variable
from 2.30 m (top) to 4.15 m (bottom). Chen and Georgakis [1] demonstrated its dynamic
equivalence (in terms of equivalent flexural stiffness) with a single degree of freedom (SDOF)
structural system made up of a tapered tubular cantilever beam with a concentrated mass at
the top. The scaled mock-up structure is characterized by a 5.12 m high vertical tube with uni-
form cross section Φ133/4 (133 mm is the external diameter, 4 mm the thickness), and a
lumped mass of 280 kg placed at the top (Figure 3).

Figure 3: Case study model and experimental setup at the DTU laboratory.

The base of the model is highly stiff and is supported in the middle by a cylindrical steel
hinge. On both sides of the base, one cylindrical spring (89 kN/m stiff) and one MR damper
are installed. The assembly “elastic springs + SA MR dampers”, placed in parallel at the base
of the tower, just represents the smart base restraint herein proposed to control the dynamic
behavior of the structure. An extreme operating gust loading has been considered in the fol-
lowing as reference wind action: a sharp increase, then decrease in wind speed within a short
period of time. Chen and Georgakis [1] defined an equivalent base acceleration time history
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(Figure 4), that is the base input that would provide the same top mass response of the real
fixed base structure subjected to the wind action.
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Figure 4: Equivalent base acceleration time history for the wind load case.

3.2 Numerical model

A finite element model has been generated in Matlab environment to simulate the dynamic
behavior of the case study structure. It consists in 37 elements: 36 elements simulate the tower
with uniform diameter (133 mm) and thickness (4 mm) along the height, while the last ele-
ment (37th) is more rigid and represents the connection of the top of the tower to the bary-
center of the nacelle. The rotor and the aerodynamics have not been included in the model due
to its complexity, and the nacelle and its internal components are represented by a concentrat-
ed mass at the top of the structure, with no dynamic interaction considered. Such mass is add-
ed in the global mass matrix at the translational degree of freedom at the top of the tower.

The base support has been modeled as in Figure 5, that is by a rotational spring kspring and a
Maxwell element (representing the MR dampers) working in parallel. The value for kspring

(7.5e4 Nm/rad) has been easily derived known the stiffness of the two linear springs and their
distance from the center of rotation (hinge).

The Maxwell element, as known, consists of a spring kMaxwell and a linear viscous damper
cMaxwell in series. The controllable part of this device is represented by the constant cMaxwell,
while kMaxwell has been simply assumed high enough (1.5e6 Nm/rad) so as to behave like a rig-
id link. Two different values of cMaxwell (con, coff) have been determined so as to reproduce the
dissipative capability of MR dampers respectively in the “ON” and “OFF” states. These two
opposite configurations of the MR dampers are assumed to be those of the experimental cam-
paign cited above, respectively corresponding to i=imin=0 A and i=imax=1 A. The MR dampers
considered to calibrate the Maxwell device properties are those adopted for the test at DTU
also [9]. Suitable numerical models for such devices are described in [10]. The values of con,
coff have been experimentally calibrated and resulted to be con=1e7 Nms/rad and coff=2e3
Nms/rad.
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kspring

kMaxwell

cMaxwell

Figure 5: Representation of the base restraint within the FE model of the SA controlled structure.

3.3 Numerical simulations

A number of 100 numerical tests have been performed with reference to the above FEM
model in SA configuration. This is the total number of different combinations of stress (lim)
and displacement (xlim) limits that have been tested, chosen within the ranges [5, 50] MPa and
[5, 50] mm with a step of 5 MPa and 5 mm, respectively. Performance indices have been as-
sumed to quantitatively summarize the structural response in the examined cases.

These allow to compare the effectiveness of the SA control strategy for each of the above
settings for the controller, then to select the optimal calibration of the latter. They are:

- ratio of maximum bending stress max to limit value lim assumed to calibrate the con-
troller (max / lim);

- ratio of maximum bending stress in SA to fixed base (FB) conditions (max / max,FB);
- ratio of maximum top displacement in SA to FB conditions (xmax / xmax,FB).
Moreover, to better interpret the results, the following two additional information have

been gathered from each simulation performed:
- total amount of time in which the MR damper has been switched off by the controller

(toff);
- total number of switches (onoff and vice versa) commanded to the variable device

(nsw).
The ratio max / lim is assumed so as to check if and how the controller has been able to

limit the bending stress to the desired value lim, while the ratio xmax / xlim has not been as-
sumed as parameter for comparison because it is not significant to the same extent given that
xlim has a reduced impact on the controller operation. The indices max / max,FB and xmax /
xmax,FB express the effectiveness of the controller in reducing the structural response with re-
spect to the FB conditions. Values less than one are desired, in fact they reflect the main pur-
pose of the control strategy. The indices toff and nsw give a quantitative idea about the activity
of the MR damper during each test. When the smart device is set to “ON”, it is not very far
from acting as a rigid link. Therefore, the above toff gives also a measure of the overall dura-
tion of the dissipation phase.

4 DISCUSSION ABOUT RESULTS AND CONCLUSIONS

The constrained optimization of the controller is performed according to the condition:

 FBmax,maxmin  subject to 1max,max FBxx (2)
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that is, aiming to achieve the greatest reduction of the base stress (objective function) and, at
the same time, a top displacement (constraint function) no higher than that in uncontrolled FB
conditions.

Analyzing diagrams (a) in Figure 6, it emerges that the SA control of the case study wind
turbine is always beneficial in terms of reduction of base stress with respect to the fixed base
scheme. Considered the whole set of examined cases, the maximum base stress reduction re-
sults to be around 80%, and corresponds to the case (lim, xlim)=(5 MPa, 25 mm). The maxi-
mum top displacement reduction is about 35%, for (lim, xlim)=(10 MPa, 15 mm). The worst
case, i.e. that corresponding to the maximum amplification of x (+40%) with respect to the FB
case is (lim, xlim)=(35 MPa, 50 mm).

Higher operation of the SA controller for smaller value of lim, as expected, can be de-
duced from Figure 6(d). Figure 6(c) instead highlights that response values in terms of maxi-
mum base stress max are practically always included in the interval [lim, 2lim], with the
exception of those cases where both very small values are fixed both for lim and xlim.

Actually, about half (53%) of the examined configurations of the controller leaded to unde-
sired response in top displacement, i.e. values of xmax larger than xmax,FB. Figure 7 helps to un-
derstand better which are the combinations of limit values lim and xlim that give undesired
response in displacement. It results that, when values of lim greater than 30 MPa are adopted
(i.e. roughly greater than half of the max,FB value), there is no chance to reduce displacements
in respect to the FB case. The reason is related to the fact that in such cases the SA operations
are really limited, as from Figure 6(d) clearly emerges. Therefore, the dissipation phases are
concentrated in much small intervals of time, not effective in reducing significantly the re-
sponse in displacement. Vice versa, when smaller values of lim are used (i.e. less than 30
MPa), the reduction or amplification of xmax in respect to xmax,FB also depends on the assumed
value for xlim. Also in this case, it seems that selecting values for xlim less than 0.5xmax,FB leads
always to good results in terms of displacement response.

According to the criterion defined in the condition above, the optimal configuration of the
control algorithm corresponds to the case (lim, xlim)=(5 MPa, 25 mm) since it leads to the
maximum response reduction (about 80%) in base stress, and also to a reduction (about 30%)
of displacement in respect to the FB case.

Therefore, preliminary conclusions about a possible way to optimally calibrate the control-
ler could be drawn suggesting to assume, for lim and xlim, values respectively around
0.1max,FB and 0.5xmax,FB. Moderately low values of lim (25-50% of max,FB) leaded to in-
creased top displacements, even higher than the reference value xmax,FB. A trend reversal for
values of lim even more smaller (10-20% of max,FB) has been registered, leading them to sig-
nificant reduction of both base stress and top displacement, as said above, due to the higher
operation of the controller and, consequently, to the sharp increase of dissipated energy due to
the larger rocking of the base.

The above results cannot be directly generalized, since clearly dependent on the specific
wind load case and turbine model assumed for the analyses. On the contrary, the conceptual
findings they allowed to gather are always valid and will be exploited by the authors to pro-
gram further investigations aimed at consolidating those outcomes and to finally determine
the practical implications they could have. Future further research about this topic will have to
consider a larger set of wind load cases, different for magnitude, duration and frequency con-
tent, to understand if and how the optimal calibration of the control algorithm depends on the
characteristics of the external action.
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Figure 6: Performance indices for the 100 configurations of the SA controller.
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Abstract. In spite of the fact that avant-garde sliding bearings have been proposed, the ap-

plication of the single friction pendulum (FP) bearing is increasing due to its conceptual sim-

plicity; yet there are still important aspects of its behaviour that need further attention. More 

specifically, the FP system presents spatial variation of friction coefficient, depending on the 

sliding velocity of the FP bearings. Moreover, the frictional force and restoring stiffness dur-

ing the sliding phase are proportional to the axial load. Long duration intense velocity pulses 

in the horizontal direction and high values of the ratio between vertical and horizontal peak 

ground acceleration are expected for near-fault earthquakes. Torsion with residual displace-

ment and uplift of the FP system need to be better understood for base-isolated structures lo-

cated in near-fault areas. To this end, a numerical investigation is carried out with reference 

to a six-storey reinforced concrete (r.c.) framed building, characterized by an L-shaped plan 

with wings of different length and setbacks at different heights along the main in-plan direc-

tions. Twelve base-isolated test structures are designed in line with the Italian seismic code, 

considering (besides the gravity loads) the horizontal seismic loads acting alone or in combi-

nation with the vertical ones. Three design values of the radius of curvature for the FP system 

and two in-plan distributions of dynamic-fast friction coefficient for the FP bearings, ranging 

from a constant value for all isolators to a different value for each, are assumed. A nonlinear 

force-displacement law of the FP bearings in the horizontal direction, depending on sliding 

velocity and axial load, is considered, while a gap model takes into account the vertical uplift 

of the FP bearings. The nonlinear seismic analysis is performed on two sets of seven near-

fault earthquakes, both sets with significant horizontal or vertical components selected and 

normalized on the basis of the design hypotheses adopted for the test structure. 
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1 INTRODUCTION 

The friction pendulum (FP) system is one of the most in-demand techniques for the seismic 

isolation of buildings [1], where the geometry and gravity allow a minimization of torsion and 

a self-centring of the base-isolation FP system for a wide range of frequency inputs [2]. How-

ever, the (low) constant isolation frequency, proportional to the curvature of the sliding sur-

face, may induce resonance of base-isolated structures if it is close to the predominant 

vibration period of near-fault ground motions [3]. Specifically, fling-step and forward-

directivity in near-fault areas can produce long duration pulses of intense velocity in the hori-

zontal direction [4, 5], amplifying the displacement and inducing torsional and re-centring 

problems [6, 7]. On the other hand, since the response of the FP system during the sliding 

phase is strongly influenced by the axial load, amplification of torsional demand and residual 

displacement and uplift of the FP bearings may also be induced by the high frequency vertical 

component of near-fault earthquakes [8-10]. This vertical motion is characterized by peak 

ground acceleration higher than the horizontal one and closer in time for decreasing values of  

distance from the fault [11, 12]. 

In order to verify the occurrence of torsion with residual displacement and uplift of the FP 

system for base-isolation of structures located in near-fault areas, this study aims to investi-

gate the following two effects in FP bearings: friction variability, as a function sliding veloci-

ty; friction force and restoring stiffness during the sliding phase, proportional to the axial load 

variation. To this end, a six-storey reinforced concrete (r.c.) framed building, characterized by 

an L-shaped plan with wings of different length and setbacks at different heights along the in-

plan X (i.e. one setback, at the third-storey) and Y (i.e. two setbacks, at the second- and 

fourth-storey) principal directions is considered. In detail, twelve base-isolated structures are 

designed in line with the Italian seismic code (NTC08, [13]), with the horizontal seismic loads 

acting alone or in combination with the vertical ones. Furthermore, two in-plan distributions 

of low-type friction properties, ranging from a constant value for all isolators to a different 

value for each, are designed for three low-to-medium design values of the radius of curvature 

of the FP bearings. Two sets of seven near-fault earthquakes, each with significant compo-

nents in the horizontal or vertical direction, are selected from the Pacific Earthquake Engi-

neering Research center database (PEER, [14]) and normalized with the design hypotheses 

adopted for the test structure (i.e. medium-risk seismic region and stiff site). 

2 LAYOUT AND DESIGN OF THE BASE-ISOLATED BUILDINGS 

A six-storey r.c. office building base-isolated with the FP system, characterized by an L-

shaped plan with wings of different length (Figure 1a) and setbacks at different heights (Fig-

ure 1b), is considered as test structure. It is designed in line with NTC08 [13] and besides the 

gravity loads, the horizontal seismic loads are assumed to act alone or in combination with the 

vertical ones. The following design assumptions are considered: elastic response of the super-

structure (i.e. behaviour factor for the horizontal seismic loads, qH=1; behaviour factor for the 

vertical seismic loads, qV=1); stiff site (i.e. subsoil class B); medium-risk seismic region (i.e. 

peak ground accelerations: PGAH,LS=0.16gx1.2=0.19g and PGAV,LS= 0.08g, at the life-safety 

limit state for the superstructure; PGAH,CP=0.21gx1.2=0.25g and PGAV,CP=0.13g, at the col-

lapse prevention limit state for the base-isolation system). The gravity loads used in the de-

sign are represented by a dead load of 6.7 kN/m2 and a live load of 2.0 kN/m2, on all floors, 

and a perimeter masonry-infills of 2.7 kN/m2, on the first five floors. A cylindrical compres-

sive strength of 25 N/mm2 for the concrete and a yield strength of 450 N/mm2 for the steel are 

assumed for the r.c. frame members, whose cross sections are reported in Tables 1 and 2. 
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(a) Plan. (b) Elevations. 

Figure 1: Base-isolated test structure (units in m). 

Floor level 

Beam 1 2 3 4 5 6 

1x 30×60 30×60 30×60 30×60 30×60 30×60 

2x 50×21 50×21 50×21 50×21 50×21 50×21 

3x 30×55 30×55 30×55 30×55 30×55 30×55 

4x 40×65 40×65 40×65 40×65 - - 

1y 30×60 30×60 30×60 30×60 30×60 30×60 

2y 40×65 40×65 40×65 40×65 40×65 40×65 

3y 50×21 50×21 50×21 50×21 50×21 50×21 

Table 1: Cross-sections of r.c. beams (units in cm). 

Storey 

Column 1 2 3 4 5 6 

1 40×60 35×55 30×50 30×45 30×40 30×35 

2 60×40 50×35 50×30 40×30 30×30 30×30 

3 60×40 50×35 50×30 40×30 30×30 30×30 

4 40×60 35×55 30×50 30×45 30×40 30×35 

5 40×60 35×50 35×40 30×40 30×30 30×30 

6 70×70 65×65 60×60 50×50 40×40 30×30 

7 70×70 65×65 60×60 50×50 40×40 30×30 

8 60×60 55×55 50×50 45×40 40×30 35×30 

9 40×60 35×50 30×50 30×40 30×30 30×30 

10 70×70 65×65 60×60 50×50 40×40 30×30 

11 55×70 50×65 45×60 40×50 35×40 30×30 

12 40×60 35×55 30×50 30×45 30×40 30×35 

13 40×50 35×50 30×40 30×35 30×30 30×30 

14 65×65 60×60 50×50 45×45 35×40 30×35 

15 40×50 35×45 30×40 30×35 30×30 30×30 

16 30×40 30×35 30×30 30×30 - - 

17 50×50 45×45 35×40 30×35 - - 

18 30×40 30×35 30×30 30×30 - - 

19 30×30 30×30 30×30 - - - 

20 30×40 30×35 30×30 - - - 

21 30×30 30×30 30×30 - - - 

22 30×30 30×30 - - - - 

23 35×30 30×30 - - - - 

24 30×30 30×30 - - - - 

Table 2: Cross-sections of r.c. columns (units in cm). 
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The FP system is designed at the CP limit state, requiring the fulfilment of the provisions 

imposed by NTC08: i.e. maximum compression axial load of the FP bearing less than its  ca-

pacity; maximum horizontal displacements less than the spectral value; absence of tensile axi-

al loads at the level of the FP system.  

Three values of the effective fundamental vibration period of the isolation system 
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The nonlinear system based on Equations (1) and (3) returns the values of the radius of 

curvature (R) and dynamic-fast friction coefficient (fast) of the FP bearings, which 

correspond to the spectral displacement (uH,d). Then, the maximum axial load capacity of the 

FP bearings (NEd) is evaluated by Equations (4a) and (4b), as function of the assigned value of 

the quasi-permanent gravity loads (NSd) transmitted from the superstructure [15] 
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Moreover, two in-plan distributions of NEd are assumed for the FP bearings: case A in Fig-

ure 2a, with fifteen types of FP bearings (i.e. fast equal for all isolators); case B in Figure 2b, 

with only three types of FP bearings (i.e. fast different for each isolator), which are selected 

with reference to the maximum value of NEd from those of the isolators corresponding to three 

ranges of =NSd/NSd,max (i.e. ≤0.4; 0.4<≤0.7; >0.7). It is worth noting that the final values 

of fast take into account the fact that the FP bearings need the fulfilment of the CP limit state 

imposed by NTC08. For all the examined cases, design parameters of the FP systems are re-

ported in Tables 3 and 4 where horizontal seismic loads act alone (i.e. H) or in combination 

with the vertical ones (i.e. HV), respectively. 

BI.AH1 BI.AH2 BI.AH3 BI.BH1 BI.BH2 BI.BH3 

TeI (s) 1.95 2.33 2.62 1.97 2.33 2.61 

eI (%) 22.0 25.8 30.2 21.0 25.3 30.2 

R (m) 1.45 2.26 3.26 1.45 2.26 3.26 

Table 3: Dynamic and geometric parameters of Friction Pendulum (FP) systems 

designed for horizontal seismic loads. 
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 BI.AHV1 BI.AHV2 BI.AHV3 BI.BHV1 BI.BHV2 BI.BHV3 

TeI (s) 1.90 2.21 2.49 1.95 2.26 2.54 

eI (%) 24.0 29.3 33.5 22.0 27.4 32.0 

R (m) 1.45 2.26 3.26 1.45 2.26 3.26 

Table 4: Dynamic and geometric parameters of Friction Pendulum (FP) systems  

designed for horizontal and vertical seismic loads. 

 

  

(a) BI.A structures: n.15 FP. (b) BI.B structures: n.3 FP. 

Figure 2: In-plan distributions of axial load capacity for the Friction Pendulum (FP) bearings. 

3 NONLINEAR MODELLING OF THE FP BEARINGS 

The single FP bearing consists of a spherical concave sliding surface of polished stainless 

steel, with a radius of curvature R and a centre of curvature C, and an articulated slider coated 

with a layer of low friction composite material. The frictional force and stiffness during the 

sliding phase are proportional to the axial load. Moreover, an exponential analytical law can 

describe the velocity dependence of the dynamic friction coefficient [16]  

   Hu
fast fast slow e

    
     (5) 

where fast and slow are the friction coefficients at fast and slow sliding velocities Hu , respec-
tively, and  is a rate parameter which depends on the contact pressure and condition of the 
interface. The experimental results indicate that slow can be assumed to be 2.5 times lower 
than μfast [17], while  can be considered approximately equal to 0.0055 s/mm [18].  

The friction force for horizontal (bidirectional) motion is equal to [19] 
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where N is the axial load on the FP bearing. Finally, the restoring force can be evaluated as  

[20] 
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containing a pendular component, directed toward the centre of the bearing, and a friction 

component, acting in the opposite direction to the velocity. For constant values of axial load 

and friction coefficient, the force-displacement behaviour of the FP bearing in the horizontal 
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direction (FH-uH) can be idealized by a bilinear law with lateral restoring stiffness 

 r

N
K

R
   (8) 

However, due to high values of vertical ground acceleration and global overturning mo-

ment produced by the horizontal seismic loads, the axial load variation on the FP bearing 

leads to changes in , Ff and Kr. In particular, at any given moment during an earthquake, the 

weight (W) of the superstructure acting on a FP bearing can be modified in accordance with 

the following expression [9] 

 
,

1
g V OM

u N
N W

g W

 
   

 
  (9) 

where üg,V is the vertical ground acceleration (positive when the direction is downwards) and 

NOM is the additional axial load due to overturning (positive when compressive). It is worth 

noting that the fluctuation in the bearing axial load can be large enough to produce reversal of 

the axial load from compression to tension. A gap element is considered in the vertical direc-

tion, to take into account the fact that the FP bearing does not resist tensile axial loads and 

thus is free to uplift, assuming infinite rigidity in compression. 

Maximum floor rotation at the level of the FP system, during the total duration (ttot) of each 

ground motion, is evaluated as 

  ,1 ,22 ,1 ,19tan max ( ) ( ) ( ) ( ) , =0-max X X Y Y Y X totu t u t L u t u t L t t       (10) 

referring to the horizontal displacement of three FP bearings at the corners of the building 

plan (i.e. FPi, i=1, 19 and 22 in Figure 1a), being LX=20m and LY=25m the maximum length 

along the X and Y directions. Moreover, the maximum residual displacement of the FP bear-

ings is obtained as the vector sum of the residual displacement along the local axes  

  2 2 2
, , , ,max ( ) ( ) ( ) ,  i=1-24res max resx i resy i resz iu u u u     (11) 

while the maximum vertical uplift  

 
,

,

( )
max ( ) 1 ,  i=1-24

H i
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u t
u u t R cos arcsin

R

    
     

    

  (12) 

is obtained as function of vertical and horizontal displacements on their spherical surface. 

4 UNSCALED AND SCALED NEAR-FAULT GROUND MOTIONS  

Ground motions recorded at near-fault sites may be characterized by strong long-duration 

velocity pulses in the horizontal direction, which may affect the friction coefficient of the FP 

bearings and their axial load variation due to overturning. To study torsional and re-centring 

problems of base-isolated structures with the FP system subjected to near-fault ground mo-

tions, seven recordings with significant horizontal components are selected from the Pacific 

Earthquake Engineering Research center database [14] on the basis of the design hypotheses 

adopted for the test structures. In Table 5a their main data are shown: i.e. year; recording sta-

tion; closest distance from the fault (); magnitude (Mw); peak ground acceleration for the two 

horizontal (i.e. PGAH1 and PGAH2) and the vertical component (i.e. PGAV); orientation of the 

strongest observed pulse (sp), clockwise from North [21]. 
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Earthquake (EQ) Station  (km) Mw PGAH,1 PGAH,2 PGAV sp
Chi-Chi, 1999 TCU068 0.3 7.6 0.566g 0.462g 0.486g 144° 

Imperial Valley, 1979 El Centro D.A. 5.1 6.5 0.353g 0.481g 0.770g 253° 

Kobe, 1995 Takatori 1.5 6.9 0.618g 0.671g 0.284g 318° 

Loma Prieta, 1989 Gilroy A#3 12.8 6.9 0.559g 0.368g 0.342g 277° 

Northridge, 1994 Rinaldi R.S. 6.5 6.7 0.874g 0.472g 0.958g 209° 

Parkfield, 2004 Fault Zone 1 2.5 6.0 0.605g 0.833g 0.255g 13° 

Superstition Hills, 1987 Parachute T.S. 1.0 6.5 0.432g 0.384g - 242° 

Table 5a: Characteristics of the selected near-fault ground motions with significant horizontal components. 

 

On the other hand, near-fault ground motions may be characterized by high values of the 

acceleration ratio PGA(=PGAV /PGAH), which may influence the friction force and lateral 

stiffness of the FP bearings during the sliding phase and produce uplift of the FP bearings. To 

study the nonlinear response of base-isolated structures with the FP system subjected to near-

fault ground motions with significant vertical component, seven recordings are selected from 

the PEER database. Table 5b shows their main data: i.e. year; recording station; closest dis-

tance from the fault (); magnitude (Mw); peak ground accelerations (i.e. PGAH1, PGAH2 and 

PGAV); maximum value of the acceleration ratio (i.e. PGA,max).  

 
Earthquake (EQ) Station  (km) Mw PGAH,1 PGAH,2 PGAV PGA,max 

Nahanni, 1985 Station I 6.0 6.76 1.108g 1.201g 2.281g 2.059 

Imperial Valley, 1979 El Centro D.A. 5.1 6.50 0.353g 0.481g 0.770g 2.181 

Imperial Valley, 1979 El Centro A#7 0.6 6.50 0.341g 0.469g 0.579g 1.698 

Morgan Hill, 1984 Gilroy A#3 10.3 6.19 0.195g 0.201g 0.403g 2.067 

Coyote Lake. 1979 Gilroy A#4 5.7 5.70 0.233g 0.252g 0.422g 1.811 

Whittier Narrows, 1987 Arcadia Campus 17.4 5.9 0.293g 0.176g 0.223g 1.267 

Westmorland, 1981 Westmorland F.S. 6.5 5.9 0.377g 0.498g 0.812g 2.154 

Table 5b: Characteristics of the selected near-fault ground motions with significant vertical component. 
 

To account for the potential structural damage of near-fault earthquakes, maximum value 

of spectral acceleration is assumed as a seismic intensity measure. In detail, horizontal com-

ponents corresponding to the effective fundamental vibration period (i.e. TeI) and equivalent 

viscous damping (i.e. eI) of the base-isolated structures reported in Tables 3 and 4 (i.e. 

S(NF)
aH,1 and S(NF)

aH,2) are considered. Then, the scale factor (SF), whereby the selected accel-

erograms are normalized with respect to the NTC08 spectrum, is evaluated as 
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Finally, normalization of the selected near-fault ground motions is carried out by scaling their 

PGA values with reference to SF values reported in Tables 6a and 6b. 
 

 SF 

Earthquake (EQ) BI.AH1 BI.AH2 BI.AH3 BI.BH1 BI.BH2 BI.BH3 

Chi-Chi, 1999 0.28 0.25 0.21 0.28 0.25 0.21 

Imperial Valley, 1979 0.64 0.52 0.47 0.64 0.52 0.47 

Kobe, 1995 0.17 0.22 0.28 0.17 0.22 0.27 

Loma Prieta, 1989 0.61 0.62 0.62 0.62 0.62 0.62 

Northridge, 1994 0.27 0.32 0.32 0.27 0.32 0.32 

Parkfield, 2004 0.59 0.75 0.82 0.60 0.75 0.82 

Superstition Hills, 1987 0.21 0.23 0.22 0.21 0.23 0.22 

Table 6a: Scale factors of the selected near-fault ground motions with significant horizontal components. 
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 Earthquake (EQ) BI.AHV1 BI.AHV2 BI.AHV3 BI.BHV1 BI.BHV2 BI.BHV3 

Nahanni, 1985 1.08 1.05 1.04 1.07 1.11 1.04 

Imperial Valley, 1979 0.67 0.54 0.50 0.64 0.53 0.49 

Imperial Valley, 1979 0.37 0.34 0.32 0.36 0.34 0.32 

Morgan Hill, 1984 2.06 2.33 2.16 2.04 2.32 2.12 

Coyote Lake. 1979 1.64 1.89 2.14 1.70 1.94 2.15 

Whittier Narrows, 1987 3.08 3.24 3.30 3.22 3.26 3.27 

Westmorland, 1981 0.69 0.89 1.00 0.71 0.94 1.02 

Table 6b: Scale factors of the selected near-fault ground motions with significant vertical component. 

5 NUMERICAL RESULTS  

A numerical study is carried out to analyze torsional response, re-centring capability and 

uplift of base-isolated structures subjected to near-fault ground motions. In detail, maximum 

effects are evaluated for the orientation of the strongest pulse (i.e. =sp) in the case of earth-

quakes with significant horizontal components, while accelerograms applied in line with the 

direction of the recording station (i.e. =rs) are considered for earthquakes with significant 

vertical component. A computer code is adopted for the nonlinear dynamic analysis of the test 

structures [22-25], considering an elastic-linear behaviour of the superstructure and a nonline-

ar force-displacement law of the FP bearings in the horizontal direction depending on sliding 

velocity and axial load. A gap model is also assumed to capture the uplift of the FP bearings 

in the vertical direction. Moreover, a stiffness-proportional damping matrix of the superstruc-

ture is considered, by applying a viscous damping ratio S=1% to the fundamental vibration 

period of the base-isolated structures [26]. To take into account the uncertainty in the selec-

tion of the seismic intensity measure [27] and code-mandated damping modification factor 

[28] to be adopted for base-isolated structures subjected to near-fault earthquakes, two series 

of analyses are carried out on the selected ground motions applied with and without the scal-

ing factor described in Section 4. 

Firstly, maximum values of floor rotation (tanmax) and residual displacement (ures,max) at 

the level of the FP system are reported in Figures 3a-4a and 3b-4b, respectively, for base-

isolated structures subjected to the unscaled Chi-Chi and Nahanni near-fault earthquakes 

(EQs). Two in-plan distributions of dynamic-fast friction coefficient for the FP system (i.e. 

BI.A and BI.B structures) are compared for three low-to-medium values of the radius of cur-

vature for the FP bearings (i.e. R=1.45m, 2.26m and 3.26m). 
 

  

(a) Floor rotation. (b) Residual displacement. 

Figure 3: Effects of the radius of curvature of the FP bearings on the nonlinear response  

of base-isolated structures subjected to the unscaled Chi-Chi EQ. 
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(a) Floor rotation. (b) Residual displacement. 

Figure 4: Effects of the radius of curvature of the FP bearings on the nonlinear response  

of base-isolated structures subjected to the unscaled Nahanni EQ. 

 

The BI.AH and BI.BH structures are designed considering the horizontal seismic loads act-

ing alone and thus they are subjected to the Chi-Chi EQ (Figure 3), in which significant hori-

zontal components are dominant; on the other hand, the Nahanni EQ (Figure 4), with a 

significant vertical component, is considered for the BI.AHV and BI.BHV structures designed 

also considering the vertical seismic loads. As can be noted, torsional effects are found to be 

important for the Chi-Chi EQ (Figure 3a), while in the case of the Nahanni EQ the effect is 

minor (Figure 4a). On the other hand, the residual displacement is generally more marked for 

the base-isolated structures subjected to the Nahanni EQ (Figure 4b) than the Chi-Chi EQ 

(Figure 3b). This behaviour can be interpreted by observing that higher spectral values of ac-

celeration in the vertical direction are obtained for the Nahanni EQ, at least for rather low val-

ues of the vibration periods, thereby increasing the friction threshold of the FP bearings. As 

expected, the concave spherical surface of the FP bearing ensures a reduction of the residual 

displacement for decreasing values of the radius of curvature (Figures 3b and 4b). The BI.BH 

and BI.BHV structures respond in a similar way to the corresponding BI.AH and BI.AHV 

structures, but the former are less expensive because they require only three typologies of iso-

lators in accordance with the maximum axial load capacity of the FP bearings. 

Similar graphs in Figure 5 refer to minimum and maximum percentage of re-centring dis-

placement (urec,%) compared to maximum horizontal displacement.  
 

  
(a) (b) 

Figure 5: Percentage of re-centring displacement for base-isolated structures  

subjected to the unscaled Chi-Chi and Nahanni EQs. 
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The BI.AHV structures subjected to the unscaled Nahanni EQ (Figure 5b) highlight values 

of urec,% lower than those obtained for the BI.AH structures under the Chi-Chi EQ (Figure 5a). 

Moreover, it is worth noting that the BI.AHV structures subjected to the Nahanni EQ exhibit 

different minimum and maximum values of urec,%, highlighting the possibility of residual floor 

rotation at the level of the FP system. 

Next, maximum values of uplift (uup,max) for the BI.AHV and BI.BHV structures subjected 

to the unscaled Nahanni EQ are compared in Figure 6. More specifically, uplift of the six FP 

bearings at the corners of the building plan (i.e. FPi, i=1, 11, 19, 21, 22 and 24 shown in Fig-

ure 1a) are reported. Note that uplift takes place in all the examined cases although the pres-

ence of tensile axial loads at the level of the FP system was prevented when designed for the 

horizontal seismic loads acting in combination with the vertical seismic ones. As can be ob-

served, the variability of the in-plan distribution of friction coefficient and the choice of dif-

ferent radii of curvature for the FP bearings are not able to prevent uplift. Further results, 

omitted for brevity, confirm the absence of uplift due to overturning produced by the horizon-

tal components of the unscaled Chi-Chi EQ. 
 

 
Figure 6: Effects of the radius of curvature of the FP bearings on the uplift  

of base-isolated structures subjected to the unscaled Nahanni EQ. 

 

Afterwards, in order to evaluate the effects of the modelling assumptions related to veloci-

ty dependence of the friction coefficient of the FP bearings, maximum values of the floor ro-

tation and residual displacement are reported in Figures 7 and 8.  

 

  
(a) Floor rotation. (b) Residual displacement. 

Figure 7: Effects of modelling of the friction coefficient on the nonlinear response  

of base-isolated structures subjected to the unscaled Chi-Chi EQ. 
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(a) Floor rotation. (b) Residual displacement. 

Figure 8: Effects of modelling of the friction coefficient on the nonlinear response  

of base-isolated structures subjected to the unscaled Nahanni EQ. 

 

Only results for base-isolated structures exhibiting maximum effects are examined for the 

unscaled Chi-Chi (i.e. BI.AH3 and BI.BH3 structures) and Nahanni (i.e. BI.AHV3 and 

BI.BHV3 structures) EQs. Three cases are compared: (a) friction coefficient variability as a 

function of the sliding velocity (i.e. =var); (b) constant friction coefficient, at fast sliding 

velocity (i.e. =fast); (c) constant friction coefficient, at slow sliding velocity (i.e. =slow). 

As can be observed, maximum floor rotation is obtained for the BI.AH3 and BI.BH3 struc-

tures subjected to the Chi-Chi EQ (Figure 7a). This is evident when the minimum friction co-

efficient is assumed (i.e. slow), while comparable results are found for the maximum (i.e. fast) 

and variable (i.e. var) friction coefficients. On the other hand, maximum values of residual 

displacement are obtained for the BI.AHV3 and BI.BHV3 structures under the Nahanni EQ 

(Figure 8b) and correspond to maximum friction coefficient (fast); lower values are obtained 

for the minimum (slow) and variable (var) friction coefficients. In all the examined cases, 

comparable results are obtained for the base-isolated structures designed to consider the two 

in-plan distributions of the FP bearings (i.e. cases A and B shown in Figure 2). 

Finally, maximum (tanmax) and mean (tanmean) floor rotations along the building height 

are plotted for base-isolated structures subjected to two sets of seven scaled near-fault ground 

motions with significant horizontal (Figure 9) and vertical (Figure 10) components.  
 

  
(a) (b) 

Figure 9: Maximum and mean floor rotations of the superstructure  

for scaled near-fault EQs with significant horizontal components. 
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(a) (b) 

Figure 10: Maximum and mean floor rotations of the superstructure  

for scaled near-fault EQs with significant vertical component. 

 

Note the highest values of floor rotation at the top level, with variability of torsional effects 

at the floor levels of the superstructure which are more evident in terms of tanmax (Figures 9a 

and 10a) than tanmean (Figures 9b and 10b). However, limited torsional effects are highlight-

ed for all the examined structures subjected to scaled near-fault EQs, which are normalized in 

accordance with a medium risk seismic region. Further results, omitted for the sake of brevity, 

highlight low values of maximum and mean residual displacement and uplift of the FP system. 

6 CONCLUSIONS  

The nonlinear seismic analysis of base-isolated structures with the FP system is carried out 

under near-fault ground motions, considering three low-to-medium design values of the radius 

of curvature of the FP bearings and two in-plan distributions of their dynamic-fast friction co-

efficient. Torsional effects are found to be more evident for unscaled earthquakes with signif-

icant horizontal components (e.g. the Chi-Chi EQ). On the other hand, residual displacement 

are generally more marked for base-isolated structures subjected to unscaled earthquakes with 

significant vertical component (e.g. the Nahanni EQ). Torsional and residual effects of the 

BI.BH and BI.BHV structures are similar to those of the corresponding BI.AH and BI.AHV 

structures, but the former are less expensive because they require only three typologies of iso-

lators. As expected, a reduction of the residual displacement is obtained for decreasing values 

of the radius of curvature of the FP bearings. It is interesting to note that the BI.AHV struc-

tures subjected to the Nahanni EQ exhibit different minimum and maximum values of the 

percentage of re-centring displacement, highlighting the possibility of residual floor rotation 

at the level of the FP system. Moreover, the BI.AHV and BI.BHV structures exhibit uplift 

when subjected to the Nahanni EQ. The modelling of the friction coefficient highlights max-

imum floor rotation under the Chi-Chi EQ, when the minimum (constant) friction coefficient 

is assumed, while comparable results are found for maximum (constant) and variable friction 

coefficients. Maximum values of residual displacement are obtained under the Nahanni EQ, 

corresponding to maximum (constant) friction coefficient, while lower values are obtained for 

the minimum (constant) and variable friction coefficients. Finally, the highest values of mean 

floor rotation are found at the top level of the superstructure. However, torsional effect and 

residual displacement and uplift are less evident for scaled near-fault earthquakes, confirming 

the crucial importance of selecting suitable seismic intensity measure and code-mandated 

damping modification factor. 
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Abstract. In the paper a novel method of finite elements in absolute coordinates is presented. 
The flexible elements and their node coordinate systems are considered free objects in space 
which motion is restricted by the elastic forces of the adjacent flexible elements. So, no kine-
matic restrictions, respectively algebraic equations, are imposed to the dynamic equations 
and the dynamic model is presented as Ordinary Differential Equations. Incremental ap-
proach for definition of system configuration during its global motion is applied, which 
avoids singularity of the large rotations. The proposed numerical procedure defines the ele-
ment nodes as moving coordinate systems that makes possible their motion coordinates to be 
compared to rigid bodies and the large rotations to be taken into account. External excita-
tions as wave propagation and earthquakes are subjects of the investigations. 

Generalized Newton – Euler dynamic equations for rigid and flexible bodies are applied 
for precise definition of the velocity dependent inertia forces in the dynamic equations. The 
seismic excitations are presented as reonomic constraints. Examples of large spatial flexible 
deflections of complex flexible structure verify the effectiveness of the method proposed.  
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1 INTRODUCTION 

Multibody system methodology is a recently developing field in the theoretical and applied 
mechanics. Multibody dynamics as independent branch of mechanics was agreed to and es-
tablished in 1977 at an IUTAM Symposium held in Munich, Germany and chaired by Mag-
nus [1]. The first steps of the new discipline started with the dynamic analysis of rigid and 
flexible body systems striving to solve complicated nonlinear problems that the analytical 
methods cannon cover.  In particular, elastic or flexible multibody systems, respectively, con-
tact and impact problems where key issues for researchers worldwide. Multibody dynamics 
depends on computational dynamics and is closely related to control design and vibration the-
ory. 

Recently the multibody system methodology experienced huge progress including real 
time simulation, contact and impact problems, extension to electronics and mechatronics, dy-
namic strength analysis, optimization of design and control devices, integration codes in par-
ticular for differential algebraic systems, challenging applications in biomechanics, robotics 
and vehicle dynamics, manufacturing science and molecular dynamics and etc. Multibody dy-
namics is an excellent foundation for multivariable vibration analysis and sophisticated con-
trol design. The natural relations between the motion behavior of the mechanical systems with 
the sensors and the control devices make the mechatronic systems a basic subject for the Mul-
tibody system methodology. The precise analysis, simulation and planning of the system mo-
tion and design could be done deriving the dynamic equations including the control inputs and 
the information coming from the sensors. Obviously, the higher level of the mechatronic de-
vices is the intelligent multibody systems which include all the characteristics of the mecha-
tronics, as well as, the precise dynamics simulation and motion planning and control [2, 3].  

Example of such mechatronic (intelligent) multibody systems are autonomous vehicles, 
space structures, structures imposed on external and seismic excitations, large flexible struc-
tures and wind generators. Solution of these tasks requires up-to-date methods for dynamics 
analysis and simulation, novel methods for numerical solution of ODE and DAE, real time 
simulation, passive, semi-passive and active control algorithms taking into account the control 
system and the feedback information.  

The methods of the finite element theory (FET) [4] have been constantly developing to 
successfully solve the up-to-date tasks in structural statics. The problem of deriving the dy-
namics equations of flexible bodies using finite element discretization is really topical. Many 
books and papers [5, 6] discuss the problems that could arise using the finite element method-
ology and commercially available software (NASTRAN, ANSYS, ABAQUS) for simulation 
of nonlinear phenomena. It was pointed out that the FET approach cannot effectively simulate 
nonlinear effects of high velocity global motion in space and large flexible deformations.  

The finite element theory proposed the theoretical basis for profound numerical analysis of 
complex flexible structures. The methodology for discretization of the continuum and the the-
ory for polynomial approximation of the form of the deformations and on this basis computa-
tion and distribution of the mass and stiffness properties of the materials of flexible elements 
to discrete objects (nodes), actually, have been used afterward for development of various 
methods for static and dynamic analysis, even in the multibody system dynamics (MDS) 
simulation of rigid and flexible bodies. Attempts had been made for direct application of FET 
for dynamics simulation of systems that undergo global motion in space superimposed by 
large flexible deflections. In the recent decades the scientists successfully developed up-to-
date methods for dynamics analysis of rigid and flexible mechanical systems setting the basis 
of multibody system methodology. Actually, the scientists use the theoretical rules of the FET 
for deriving the basic properties of the discretized elastic bodies but, on the other hand, they 

5727



Evtim V. Zahariev 

strive to escape from the motion parameters of the FET in order to catch the nonlinear effects 
of the large displacements and deformations. It was proven [7 – 9] that using the FET ap-
proach the dynamic equations are free of centrifugal and Coriolis accelerations and the corre-
sponding inertia forces.  

Khan and Anderson [10] proposed the most recent classification of the methods for MBS 
dynamics. Tthey applied the Floating Frame of Reference (FFR) and Absolute Nodal Coordi-
nate Formulation (ANCF) approaches for realization of their numerical procedure.   

The FFR approach was developed [7, 11, 12] and has been successfully applied for dynam-
ics simulation of large spatial motion and rotation of flexible multibody systems. This ap-
proach is also used for application of the modal coordinates and significant decreasing of the 
flexible coordinates.  

Recently a novel method of ANCF has been developed [13, 14]. It is based on the theory 
of the curvilinear coordinates. The slopes of the nodes in the tangential line or plane of the 
space curve or shell are applied as coordinates. The method proposes important advantages 
mainly in large rotation simulation and mass matrices formulation. Review on the ANCF 
method for large deformation dynamics simulation of flexible multibody systems was pre-
sented by Gerstmayr et al. [15]. The paper provided a comprehensive review of the advan-
tages and further developments of the ANCF method.  

As it was said above the dynamic equations derived on basis of the FET do not include the 
Coriolis and the centrifugal accelerations. Shabana [16] and Meijard [17] derived generalized 
Newton – Euler dynamic equations for the case of FFR formulation. The equations represent 
the inertia forces as function of the velocities and accelerations of the global and flexible co-
ordinates. Zahariev [18] derived generalized Newto-Euler dynamics equations for the rigid 
and flexible bodies for which the kinetic energy is quadratic form of the velocities. The equa-
tions are applicable for the flexible elements of the FET. The inertia forces are with respect to 
the quasi velocities and accelerations and are invariant to the kind of the coordinates. 

In [19] a method of Finite Elements in Relative Coordinates (FERC) based on the FET was 
proposed for dynamic simulation of large flexible structures. Using the generalized Newton-
Euler dynamic equations nonlinear effects and velocity dependent terms are successfully 
simulated. But using this approach for complex structures with many mutually connected ad-
jacent flexible bodies one could experience a lot of difficulties that mainly consists in its pro-
gram system realization and complex pre-processor procedures. 

A method of Finite Elements in Absolute Coordinates (FEAC) is discussed in the paper. It 
was recently presented in [18] and further developed for different applications. FEAC are 
proposed here for simulation of structures subject to seismic excitations. Acceleration and 
force methods are used in practice for dynamics simulation of the earthquake structure re-
sponse. Acceleration approach consists in registration of the motion of a structure foundation 
by accelerographs and normally consists in three orthogonal components of the ground accel-
eration. The velocity and displacement of the ground are obtained integrating the data of the 
accelerograms. The statistical data for the specific regions are than applied as input data for 
the dynamic simulation. In [20] the accelerations of the foundation are reonomic constraints 
for the dynamic equations which are transformed with respect to the parameters that consists 
of structure displacement and the forces, applied to the foundation. 

Investigation of the forces loading the basement is a natural way for simulation of the 
structure response because of earthquakes [21]. This task is implemented analyzing the soil-
structure interaction. Computation of the forces loading the foundation as a function of the 
relative motion ground – basement is the first stage for the numerical simulation process using 
the multibody system methodology. 

5728



Evtim V. Zahariev 

The problems related to the subjects of the large scale flexible structures are discussed in 
[22]. Problem oriented articles devoted to the structures subject to seismic excitation were 
collected in [23]. The up-to-date methods and devices for prevention of structure damages and 
collapse are based manly of passive, semi-active and active structure basement suspension. 
Mainly spring, dampers and rubber isolators are used for passive suppression of the structure 
deflections. Shock absorbers or dampers are added to the structure to dissipate the seismic 
shocks. Active Tuned Mass Dampers use a computer controlled counter moving weight to 
actively move against the building sway. Active large scale springs and dampers together with 
computer controlled motion of large masses ensure calculated action against the building de-
flections. The article of Yao [24] seems to be the cornerstone in the structural control in civil 
engineering. An early review article of active control in structural engineering was published 
by Soong  [25]. Latest surveys in 2003 [26] and another recent one in 2012 [27] emphasize on 
the semi-active and active control of structures subject to earthquake excitations and discuss 
theoretical backgrounds of different control schemes. 

Dynamics simulation is extremely important for the design process of slender and large 
scale flexible systems as skyscrapers, bridges, wind power generators and many others. The 
devices for deviation suppression including passive, semi-active or active, although being de-
signed on the basis of the eigenvalue analysis, should be simulated and analyzed for long time 
operational time and different kind of external excitations. This process includes development 
of reliable dynamic model and deriving precise dynamic equations. For efficient dynamic and 
motion simulation of complex structures that implement spatial motion and experience exter-
nal excitations an important thing is to provide numerical procedure that ensures long lasting 
operational time of simulation and convergence of the numerical integration. Keeping in mind 
that such structures are with tremendously high nodes and degree of freedom with many com-
plicated relations and geometrical constraints the following requirements to the program sys-
tems for dynamic simulation are stated: 

a) Simple and straight forward algorithm for pre-processor development of the input data
compliant with the dynamic model.  

b) An approach to presentation of the rotational parameters keeping in mind that the sys-
tems could implement large rotations and translations. 

c) Efficient dynamic model for simulation of rigid and flexible systems taking into account
nonlinear effects as geometrical stiffening, velocity dependent terms and external excitations; 

d) Reliable methods for node, respectively, degree of freedom reduction.
e) Efficient program procedures for numerical integration of Ordinary Differential Equa-

tions (ODE) and Differential Algebraic Equations with proven convergence. 
The efficient simulation procedure based on a precise dynamic model and efficient nu-

merical solution significantly improves the design process making him more reliable and in-
expensive. In the paper the main attention is paid to first three items (a, b, c). The numerical 
procedure proposed here defines the element nodes as moving coordinate systems that makes 
possible their motion coordinates to be compared to rigid bodies, respectively, the large rota-
tions to be taken into account. In the paper a novel method of finite elements in absolute co-
ordinates of modified finite elements is presented. External excitations as wave propagation 
and earthquakes are subjects of the investigations. The flexible elements and their node coor-
dinate systems are considered free objects in space which motion is restricted by the elastic 
forces of the adjacent flexible elements. So, no kinematic restrictions, respectively algebraic 
equations, are imposed to the dynamic equations and the dynamic model is presented as ODE. 
Incremental approach for definition of system configuration during its global motion is ap-
plied, which avoids singularity of the large rotations.  
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Generalized Newton – Euler dynamic equations for rigid and flexible bodies are applied 
for precise definition of the velocity dependent inertia forces. Wave propagations and seismic 
excitation are presented as reonomic constraints. Examples of large spatial and flexible de-
flections of complex rigid and flexible body structure verify the effectiveness of the method 
proposed. 

2 KINEMATICS OF LARGE SPATIAL ROTATIONS OF FLEXIBLE ELEMENTS 

2.1 Relative node position of a flexible element 

To understand the difference between the classical FET and the method of the finite ele-
ments in absolute nodal coordinates using multibody system methodology some explanations 
about the kinematics of flexible nodes will be presented here. Since the basic relations and 
deductions as discretization of the flexible elements, the forms of the deformations, as well as, 
the methods for computation of the mass and stiffness matrices are well known for the readers 
[4, 28] no special attention will be paid to that procedures.  

In Figure 1 a non-isoparametric space beam element (with index i) is presented. This finite 
element is relatively simple for explanation but, at the same time, presents the most common 
six degree of freedom (dof) space deflections of the nodes. In the figure the beam and small 

translations and rotations, respectively [ ]\k,ik,ik,ik,i zyx ∆∆∆=∆∆∆∆ , [ ]\k,ik,ik,ik,i zyx θθθ=θθθθ , 

21,i =  of its nodes (indices i,1 and i,2 – the first and second nodes of element i) with respect 
to the initial not deformable element coordinate system iii ZYX  are depicted [4].  

With the superscript “\” a matrix transpose is denoted. The underlined notations denote ini-
tial configurations. With bold characters matrices are pointed out. For scalars and objects, for 
example points, bodies, coordinate systems, italic notations are used.  

It should be said that in FET these deflections are with respect to the element reference 
frame in its initial position (not deformed position) and no rotation of the element coordinate 
system is taken into account. Of course, coordinate system transformation with respect to the 
absolute reference frame 000 ZYX  of mass and stiffness matrices is considered but for the 

structure initial configuration only. As a result of the node deflections the element coordinate 
system iii ZYX , respectively the node i,1 coordinate system 111 ,i,i,i ZYX , moves to a new posi-

tion defined by the  radius – vector 1,iρρρρ  that could be easily estimated adding the initial  

  
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1: Small flexible node deflections of space non-isoparametric beam finite element 
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position of element coordinate system origin, radius – vector 1,ii ρρρρρρρρ ≡ , and the node i,1  de-

flections 1,i∆∆∆∆ . The same holds for the radius –vector 2,iρρρρ , taking into account the initial posi-

tion of node i,2 coordinate system origin - radius – vector 2,iρρρρ , and the node i,2 deflections 

2,i∆∆∆∆ . The node deflections of the i-th beam element are set in a 12×1 matrix – column 

[ ] [ ]\\
\\ \

,i
\
,i

\
,i

\
,i,i,ii 221121 θθθθ∆∆∆∆θθθθ∆∆∆∆ΘΘΘΘΘΘΘΘΘΘΘΘ == . 

In Figure 2 the element i is not drawn but only the coordinate systems i,1 and i,2 of its 
nodes are shown in their initial and final configurations. The nodes are actually free objects, 
respectively coordinate systems that implement free motion in space restricted by the elastic 
forces only. Six possible deflections of the nodes are assumed (translations and rotations). 
The elastic forces 1,iF  and torques 1,iL  in the first node, as well as, 2,iF , 2,iL  in the second 

node, which are 3 × 1 matrix – vectors, are set in a 12 × 1 matrix – column  

[ ]\\
i,

\
i,

\
i,

\
i,i 2211 LFLF=ΞΞΞΞ  arranged in the same order as the corresponding elements of iΘΘΘΘ . 

Actually, the position of the element coordinate system iii ZYX  in the deformed configura-
tion coincides with the coordinate system 111 ,i,i,i ZYX  of node i,1. So, the deflections of the 

flexible element could be considered as free motion of the element coordinate system and the 
flexible deflections of the second node with respect to it. These are the flexible deflections 
relative to the element coordinate system.  

In Figure 3 the beam element in the configuration as this of Figure 1 is depicted including 
the length iL  of the beam (along axis X) and the small deflections i,i 〉2∆∆∆∆  of node i,2 relative to 

the beam coordinate system i. In the right subscript i,i 〉2∆∆∆∆  the symbol “〉 ” serves as an arrow 

pointing out that the coordinate system with index i,2 is with respect to coordinate system i.  
The right symbol of the subscript could be omitted if it points the absolute reference frame 

with index “0” – zero. Obviously, the beam configuration is quite the same and the fact that 
the flexible deflections are read relative to the moving element coordinate system does not 
change the regulations for FET discretization and for computation of the mass and stiffness 
matrices. The position of node i,2 coordinate system relative to the coordinate system of the 
moving beam is presented by 4×4 homogeneous transformation matrix i,i 〉2T , i.e.: 
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Figure 2: Presentation of the nodes as moving coordinate systems 
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(1) 

which for small rotational deflections does not include trigonometric functions. With this as-
sumption that the homogeneous transformation matrix is linear for the relative coordinates 

621 ,...,j,q
ji =  of element i that include the small translational and rotational flexible deflec-

tions. i,i, 〉233 ττττ  is 3×3 rotational matrix; the left superscripts point out (used if needed) the ma-

trix dimensions (rows, columns). 
Since the beam coordinate system is moving the flexible deflections of node i,1 relative to 

the element coordinate system are zero and the matrix vector of the beam relative coordinates 

iq  is [ ] [ ]\\

iiii
\

i,i
\

i,iii qqq
62122 K=== 〉〉〉 qθθθθ∆∆∆∆ΘΘΘΘ (see Equation 1), as well as, the beam 

mass and stiffness matrices are constant.  

2.2 Finite elements in absolute coordinates  

In Figure 4 the coordinate systems of the beam element and its nodes are depicted without 
the beam shape and configuration. As we said above the beam coordinate system and that of 
node i,1 coincide and their relative position does not change during the beam motion. That is 
why we shall regard the motion of node coordinate systems taking into account which one is 
of the beam. Loading the nodes with the inertia, elastic and external forces, just like free rigid 
bodies they will implement, for a small increment of time, small increments of the motion pa-
rameters. Six are the minimal number of the coordinates that define the position as of a rigid 
body, so of a node. When a flexible element implements global motion in space overlapped 
by flexible deflections even small increments of the node coordinates with respect to their ini-
tial position do not present the real deformation of the flexible element.  

The solution of the problem how to use the FET in case of global motion and large flexible deflec-
tions consists in: 

a) definition of proper node reference frame coordinates for the case of small increments of time, 
respectively, for small increments of that coordinates; 

b) estimation of the magnitudes of the elastic deformations.  
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Figure 3: Finite beam element in relative coordinates 
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The solution of problem (a) consists in selection of node reference frame coordinates compatible 
with the coordinates used in FET. The solution of problem (b) consists in separation of the flexible 
deflections from the global motion of the node coordinate systems.  

In Figure 4, similar to Figure 2, the coordinate systems of nodes i,1 and i,2, k,ik,ik,i ZYX ; 21,i = , 

are located in their final configuration. The initial positions of the node coordinate systems are pre-
sented by the same but underlined notations. FET claims for the small deflections to be read with re-
spect to the system initial configuration.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 4 (a) these deflections are presented by arrows and in Figure 4 (b) they are pre-

sented by virtual translational and rotational joints. These presentations are one and the same 
but give proper comparison to the free moving objects, constraint kinematics, joint coordi-
nates, as well as, reveal the generality of the methodology proposed in the paper.  

The homogeneous transformation matrices01〉,iT , 02〉,iT of the absolute position of the node 

coordinate systems i,1 and i,2, respectively, are expressed by the matrices 01〉,iT  and 02〉,iT  of 

their initial configuration and the transformation matrix because of the small node deflections. 
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where [ ] [ ]\\

k,ik,ik,i
\

k,i
\

k,ik,i qqq
62100 K== 〉〉 θθθθ∆∆∆∆q , 21,k =  are the deflections of node 

k from element i with respect to the absolute reference frame (index 0), which are also the co-
ordinates of the free moving nodes. To apply Equation (2) the deflections are to be small al-

Figure 4: Nodes as free coordinate systems and corresponding motion coordinates 
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though they do not present the flexible deformations only. The deflections 
nk,iq , 

6121 ,n;,k ==  include also the global motion of the nodes. To define the flexible deforma-
tions of the element i the relative position of node i,2 with respect to node i,1 that coincides 
with the element coordinate system i, should be defined, i.e.: 

[ ] =⋅⋅⋅=⋅= 〉〉〉〉〉
−−

202101020112
11

,i,i,i,i,i,i,i,i ∆∆∆∆∆∆∆∆ TTTTTTT  
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−

〉
−

 

 

(3) 

The matrix elements i,i,i,i 〉〉 = 212 TT  are actually the flexible deformations (rotations and 

translations) and, since they are to be small, the rotations could be presented without trigono-
metric functions, i.e.: 

i,i 〉2T



















θθ−
∆θ−θ

∆+θθ−

=
〉〉〉

〉〉〉

〉〉〉

1000

0

0

0

222

222

222

i,ii,ii,i

i,ii,ii,i

i,iii,ii,i

zyxy

yxz

xLyz
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Taking into account that the relative deformations of node 1 are zero, the flexible deforma-

tions of the element i relative to its own reference frame are as follows [ ]\
\

i,i
\

i,iii 〉〉〉 = 22 θθθθ∆∆∆∆ΘΘΘΘ  

and appear explicitly in matrix i,i 〉2T  without trigonometric functions. 

To realize the numerical algorithm with the proposed coordinates the integration process 
should be realized with small increments of time, respectively, with small increments of the 
nodal coordinates. For this purpose on every step of the time increment the new configuration 
of the system is the initial configuration for the next iteration and the absolute nodal coordi-
nates start again with zero values. That process is not disadvantage since during the numerical 
integration of the dynamic equations the new positions of the coordinate systems are to be re-
calculated and the new mass and stiffness properties of the bodies are to be computed. De-
tailed statements of the procedures are presented in [29]. 

3 FORCES LOADING THE NODES OF FLEXIBLE ELEMENTS 

The forces loading the nodes are internal elastic forces, external forces and, during the 
global motion, the inertia forces. Regarding static structures the internal elastic and external 
forces are in equilibrium. The external forces could be included in the dynamic equations us-
ing the principle of the virtual work and here we will not discuss this matter. The main sub-
jects related to the dynamics in FET these are the internal elastic and inertia forces. The 
stiffness matrices play the major role in computation of the elastic forces, while the mass ma-
trices are used for computation of the inertia force.  Since the nodes of the flexible elements 
are considered coordinate systems implementing free motion in space they are kinematical 
independent, which means that the coordinates of a node do not depend on the coordinates of 
the adjacent ones. Unfortunately the static and dynamic equations cannot be solved separately 
for the nodes since deflections of a node give rise of elastic forces added to the adjacent nodes. 
The same holds for the velocities and accelerations and the resulting inertia forces.  
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3.1 Elastic and inertia forces of flexible elements 

In the paper special attention is paid to the elastic and inertia forces loading the nodes of 
flexible elements. As it could be seen above the relative flexible deformations of nodes with 
respect to the element coordinate system, ii〉ΘΘΘΘ  play significant role for FEAC. The relative 

flexible deformations for the first node, in which the moving coordinate system of the element 
is located, are equal zero. The matrix-vector ii〉ΘΘΘΘ  is compiled without the deformations in the 

first node and is used for computation of the elastic forces loading both element nodes, i.e.: 

iiiiii 〉〉〉 ⋅−= ΘΘΘΘΞΞΞΞ K , (5) 

where for a beam element ii〉K  is 12×6 matrix compiled from the last six columns of the con-

ventional FET stiff matrix of element i relative to its own beam coordinate system. The first 
six elements of  ii〉ΞΞΞΞ  are the forces and torques loading the coordinate system of node i,1 and 

the last six elements are the forces and torques loading node i,2.  
Taking into account that the nodes are coordinate systems and summarizing the results for 

FEAC methodologies one concludes that the dynamics analysis of multibody systems of rigid 
and flexible bodies could be analyzed by a common methodology. As it was discussed above 
one of the major problems for application of the FET in dynamics of rigid and flexible muti-
body systems it is definition of the node accelerations, respectively, the inertia forces. In [18] 
generalized Newton-Euler dynamic equations for rigid and flexible bodies discretized using 
the FET are derived. The inertia forces in the nodes of the flexible elements are expressed 
with respect to the quasi velocities and accelerations and are independent of the kind of coor-
dinates. The notations for the quasi-velocities and accelerations of node i,k are 

[ ]\\\
k,ik,ik,i ωωωωΘΘΘΘ v=& , [ ]\\\

k,ik,ik,i εεεεΘΘΘΘ a=&&  where \
k,iv  and \

k,ia , respectively, \
k,iωωωω  and \

k,iεεεε , are 

the node linear and angular velocities. For a flexible element i with two nodes (indices 1 and 
2), and  12×12 mass matrix M the inertia forces and torques, 12×1 matrix vector  

[ ]\
\
i,

\
i,

\
i,

\
i,i 2211 ΦΦΦΦΦΦΦΦ PPF = , is  as follows: 
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(6) 

where the notation “×” means skew-symmetric matrix. In Equations (8) all vectors and matri-
ces are to be with respect to one and the same coordinate system. For elements with more than 
two nodes, for examples plates and shells, their elements are to be arranged in a similar order. 
The forces of elements in the common nodes are to be summarized.   

The general Newton – Euler dynamic equations are applicable as for rigid, so for flexible 
systems and provide the basis for effective general recursive algorithms and program systems 
for multibody system dynamics analysis. The elements of the homogeneous transformation 
matrices are explicitly defined with respect to the deflections and computational expenses are 
low. The numerical procedure uses constant relative mass and stiffness matrices for definition 
of the elastic and inertia forces. Here we do not discuss the methodology for application of the 
principle of virtual work for reduction of forces to the system coordinates and deriving the 
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dynamic equations since that is well known procedure. Possible kinematic constraints are to 
be expressed in the same way as in the case of rigid bodies.  

4 DYNAMICS OF STRUCTURES SUBJECT TO SEISMIC EXCITATIONS 

The methodology based on the FEAC has been successfully applied for large structures 
with many flexible elements and nodes that compose closed chains with many dependent co-
ordinates. The approach is successfully applied for simulation of complex structures subject to 
external disturbances like seismic excitations.  

Two methods are used for simulation of seismic excitation, ground – structure force inter-
action method and the basement acceleration method. The first one uses data from simulation 
of ground structure interaction and the output data so obtained, the forces loading the base-
ment, are input data for the dynamics analysis of the structure. This approach is the easiest for 
dynamics simulation of the structures and is fully compatible with the methods discussed 
above.  

The acceleration based approach uses statistical data for the accelerograms for specific 
regions and the motion characteristics of the basement are input data for the dynamics simula-
tion process. Actually, the basement acceleration and the integrated velocities and displace-
ments are reonomic constraints for the dynamic equations. Further down an approach for 
solution of the dynamic equations subject to reonomic constraints and on application of  
FEAC is presented. 

Using the principle of the virtual work the forces are reduced to the system coordinates to 
derive the dynamic equations  

( ) Sqq,BqM =+⋅ &&&  (7) 

where S is  n×1 matrix-vector of the generalized forces, ( )qq,B &  is velocity depend term.  
Earthquake shaking affects forced motion of the structure basement. For a region using 

statistical data the accelerograms for the space displacements are as follows:  

( ) 321 ,,i,tqq ii == &&&&  (8) 

These are reonomic constraints that depend on time. For a multibody system with dof n 
which motion is described by ODE, Equation (7), subject to m reonomic constraints, Equation 
(8), the dynamic equations are presented as follows: 

[ ] ( ) [ ]\\
nmkknmkk SSSSqqqq LLL&&&L&&L&&L&& ++++ =+⋅ 1111 qq,BM  (9) 

In Equation (9) the coordinates ( ) mk,..,k,ki,tqq ii +++== 21&&&&  are known, while the gen-

eralized forces ( ) mkkkitSS ii +++== ...,2,1,  are unknown. The dynamic equations, Equa-

tion (9), are transformed as follows: 

[ ] ( ) [ ] SMqq,BM +⋅−=+⋅ ++++
\\

mkknmkk qqqSSq &&L&&&&&LLL&& 111  (10) 

where the matrices S , M , M  are compiled according to the indices of the coordinates. 

The well know beam of Kane et al. [30] is an example of the dynamic analysis subject to a 
reonomic constraint. It is a horizontal cantilever beam that rotates around a vertical axis. The 
rotation is prescribed by its angular velocity and this example is a test for many researchers 
analyzing their methods. Here the same example is used to present FEAC method in case of 
reonomic constraints differentiating the velocity function to obtain the angular acceleration as 
inpt data. In Figure 5 the results of the simulation are presented. The angular velocity of the 
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beam input shaft (coordinate 1q ) are presented in the Figure 5 (a). The mass and inertia char-

acteristics of the beam are: (all measures are in SI UNIT): modulus of elasticity 10107⋅=E ; 
shear modulus G= 101082 ⋅. ; length L=10.; density 3000=ρ ; cross section area S = 4104 −⋅ ; 

cross-section moments of inertia 7102
2
1 −=== .III czx . The beam discretization is of three 

elements. In Figure 5 (b) the experimental results are presented while in Figure 4 (c) the re-
sults of the simulation using FEAC are depicted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 EXAMPLE  

In Figure 6 an example of space flexible structure compiled of rigidly connected beams 
that build many closed contours is presented. The flexible beams are consequently numbered, 
as well as the nodes are also numbered by numbers in ellipses. The structure is mounted on a 
basement imposed on external excitation – one dimensional motion 1q  in the horizontal plane 

and rotational excitation 2q  along the vertical axes. Because of the external excitations the 
basement implements two dimensional motion which functions of the accelerations are also 
shown in the figure. In the function of 1q&&  G is the earth acceleration. The structure will be 
simulated using the method of FEAC proposed in the paper. 

In Figure 7 the nodes of the beams are shown as a moving coordinate system. The nodes 
connected to the basement are assumed connected to a rigid body (the basement). The nodes 
are loaded by internal elastic forces 1621,...,,,iF   and torques 1621,...,,,iL   caused as a result of 

the flexible deflections. The nodes are loaded by inertia forces and torques (not shown on the 
figure) exaggerated because of forced motion of the basement and the resulting space motion 
of the whole structure. The nodes 1 – 4 are connected to the basement and are considered part 
of the basement as a rigid body, i.e.: their motion characteristics coincide with that of the 
basement 1q  and 2q . 

The size, the mass and the stiffness properties of the vertical beams are the same as these 
of the beam of Figure 5. The lengths of the horizontal beams are 0.7 of the lengths of the ver-
tical beams. 
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The dynamic model of Figure 7 is derived using the method proposed in the paper and the 

incremental approach for numerical integration of the dynamic equations [29, 31]. In Figure 8 
the configuration of the structure for three instants of time are depicted.  
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6 CONCLUSIONS  

• A method of Finite Elements in Absolute Coordinates is applied for dynamic simulation 
of large flexible structures subject to external excitations.   

• The method is applicable for structures with many flexible elements and degrees of free-
dom. It is realized using simple and straight forward procedure with no kinematic con-
straints, as well as, algebraic constraint to the dynamic equations. 

• Since the kinematic constraints are substituted by internal elastic forces of the elements 
large amplitudes of these forces are observed that could decrease the precision of the 
numerical algorithm and increase the time of simulation. This effect could be observed in 
the test example of Figure 5. 

• The next step in application of the method will consist in development of a numerical 
procedure for solution of ordinary differential equations that truncate the high amplitudes 
of the elastic forces.  
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Abstract.  

The paper reports the first results of an experimental campaign aimed at the validation of a 

procedure, proposed in previous theoretical works by one of the writers, for the structural 

identification in frequency domain of linear structural systems subjected to base seismic exci-

tation. Differently from the classical identification techniques based on the transfer-function 

processing, that require to measure the excitation (input-output problem), such procedure al-

lows the solution of the identification problem also in case of unknown input (output-only 

problem) if the responses of at least three degrees-of-freedom are available for the system.  

An experimental campaign has been carried out on a three storeys shear-type frame, carefully 

designed in order to minimize the uncertainties and errors. 

After validating the model setup and the measuring chain by means of a classical input-output 

procedure, the paper discusses the first results of the output-only identification. The outcomes 

show a fair agreement with the results obtained by including the input knowledge.  
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1 INTRODUCTION 

Modal identification of frame structures is a widely acknowledged and effective technique 

for the Structural Health Monitoring (SHM) and the calibration of retrofitting interventions on 

existing structures. However, in many cases the practical applications of classical input-output 

procedures are limited by the need of a complete knowledge of both the excitation and the 

structural response. This happens especially in the case of existing structures subjected to 

seismic motion; in fact, in this instance, the records of the input can be often unavailable or 

not sufficiently accurate.  

A possible solution to these limitations has been already given, among the others, in a pre-

vious paper of one of the writers [1], where an extension of the classical structural identifica-

tion procedure in frequency domain (e.g. Goyder [2]) has been provided in the case of spatial 

frames subjected to unknown (time contents and direction) seismic input. The identification 

procedure is based on the analysis of only the structural response at the floor levels. More 

specifically, the uniqueness of the solution is demonstrated in the case in which the structural 

response is known for at least three different floors of the framed structure.  

The present study is part of a research, still in progress, aimed at providing a comprehen-

sive experimental validation of the above procedure, following a previous pilot work [3] 

where the original procedure was improved through a more refined minimization algorithm in 

the complex field.  

An experimental campaign was carried out on a three storeys shear-type frame model sub-

jected to unmeasured base displacements, simulating the effect of seismic excitation. The ac-

curacy of the algorithms for numerical data treatment was preliminarily checked and 

optimized in the classical case of measured non-stationary base motion. 

2 DYNAMIC IDENTIFICATION IN FREQUENCY DOMAIN 

Classically, dynamic identification is aimed at deriving the modal properties of structural 

systems, namely natural frequencies, modal damping and modal shapes, by means of the pro-

cessing of time-histories describing both the excitation and the structural response.  

For what regards the nature of the excitation, a distinction has to be made between station-

ary random processes, including ambient excitations such as wind, traffic and so on, and non-

stationary processes, as in the case of earthquakes.  

However, in many civil applications it can be not possible or really arduous the recording 

of the loading forces; the structural identification should be consequently carried out by pro-

cessing only the structural response of the system.  

Two cases can therefore be distinguished: 

 Input-output problem, where measures of the structural response at different degrees-of-

freedom (dofs) of the system (e.g. time-history of displacements, velocities or accelera-

tions of the floors) and of the loading actions (e.g. time-history of the base acceleration) 

are simultaneously available; 

 Output-only problem, where only measures of the structural response at different dofs of 

the system are available, without any data about the loading actions [4]. 

In this paper the attention is focused on the dynamic identification of linear structural sys-

tems submitted to non-stationary input, by means of a numerical formulation developed in the 

frequency domain by one of the writers [1] in case of unknown input. It is based on the inde-

pendence by the input measure of the ratio between the Fourier transforms (FT) of the re-

sponses measured at different dofs of the structure. The procedure has been numerically 

validated in [1] and checked by the writers in a preliminary experimental campaign [3]. 
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A short descriptions is provided in the following for both the input-output and the output-

only problems, to give a general overview of the theoretical basis of the procedure.  

2.1 Input-output problem 

In the case of structures subjected to a base motion, the structural identification can be car-

ried out in the frequency domain by using the inertance transfer function Hi() [5], expressed 

as follows with reference to a N-dofs system 
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  (1) 

where Yi() is the Fourier Transform (FT) of the relative acceleration measured at i-th dof, 

while A() is the FT of the imposed base acceleration. 

The inertance Hi() depends on the unknown modal parameters (natural frequencies, mod-

al shapes and damping) of the system under consideration [5][6]: 
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where i denotes the degree of freedom, k is referred to the mode, j is the imaginary unit, k 

and ξk are the frequency and the damping coefficients corresponding to the k-th mode of the 

structure, respectively, while ik is the modal shape component for the k-th mode at the i-th 

degree of freedom of the structure. 

The identification problem can be solved by searching those modal parameters that allow 

to minimize the error (in the least square sense) between the theoretical expression of the 

transfer functions and its measured counterpart.  

2.2 Output only problem 

In many civil applications it can be necessary or simply useful to solve the identification 

problem by only referring to the measured response. Accessibility limitations or other tech-

nical and economic obstacles can make not possible the complete definition of the spatial and 

time distribution of the external actions on the structure; also when the spatial distribution is 

known (e.g. seismic input simulated by a unidirectional base motion, as considered here), the 

time-history of the external action can be difficult to measure. In this case, however, the iden-

tification problem can be solved [1] by evaluating the ratio between the FT of the output 

measured at two degrees of freedom i and j of the structure, that does not depend on the input: 
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As well as the transfer function introduced by the equations (1) and (2), the ratio Rij() in 

equation (3) depends only on the unknown modal parameters of the system, but does not re-

quire any information about the input excitation. The identification problem can be therefore 

solved, by minimizing the error between the theoretical expression of Rij() and its measured 

counterpart, that only depends on the measured response. As already demonstrated in [1], the 

problem thus defined admits only one solution if the measures of the structural response in at 

least three different dofs are available. 
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2.3 Numerical procedure for the dynamic identification  

In both cases of input-output and output-only problems, the unknown modal parameters are 

found by minimizing the least-square error E(x) between the theoretical expressions govern-

ing each type of identification problem, i.e. the equation (2) for Hi() in the input-output 

problem and the equation (3) for Rij() in the output-only problem, and their measured coun-

terparts.  

The solution of the identification problem will correspond to the minimum of the error 

function, i.e. to the set of modal parameters minimizing such function, defined by means of a 

non-linear curve fitting algorithm expressed as follows: 

    
i

ii
xx

ydataxdataxFxE
2

,min)(min  (4) 

where x represents the vector collecting all the unknown modal parameters of the structure, 

F(x, xdata) is the vector collecting the values obtained by the curve fitting procedure, while 

ydata represents the vector of the data (Hi() or Rij()) corresponding to a suitable range of 

the angular frequencies , collected in xdata. 

With the aim to guarantee the convergence of the error minimization procedure, the real 

and the imaginary parts of both the analytical functions and the components of the solution 

vector have been treated separately. Once defined the problem by changing the variables from 

complex to real, lower and upper bounds can be fixed to the unknown parameters, based on 

reliable information about their range of variation. The introduction of physical bounds to the 

range of variation of the unknown parameters can help to find the solution of the identifica-

tion problem and is of course possible only in case of real variables. On the other hand, the 

modification of the unknown parameters from complex to real values is not in contrast with 

their actual nature; the modal parameters are in fact real values from a physical point of view, 

but become complex for their inclusion in complex-valued functions. Details of the procedure 

can be found in [3]. 

3 EXPERIMENTAL TESTS 

3.1 Model details  

In order to validate the proposed procedure, dynamic tests have been carried out on an ex-

perimental prototype, properly designed to ensure a typical behavior of shear-type frame. A 

particular attention has been given to all the details necessary to guarantee the shear-type be-

havior. The rotation of beam-column joints has therefore been prevented and a rigid floor dis-

placement has been obtained by means of a large out-of-plane stiffness of the floor 

diaphragms. The tested model is a spatial frame with three floors and one span; the columns 

have been made with a much higher stiffness in one direction than the other, so as to get a 

plane frame behavior. 

Several preliminary solutions have been studied with respect to the selection of the materi-

als, the beam-column connections, the possibility to modify the mass and stiffness of the 

model, the excitation system to simulate both an applied force and the effect of a seismic in-

put. 

Some sketches of the final solution are reported in Figure 1, while in Table 1 the geomet-

rical properties are resumed. 
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(a)      (b) 
  

(c)              (d) 

Figure 1: Details of the tested model: (a) axonometric, (b) front, (c) lateral view, (d) picture. 

 

Element Material 
Width Length Thickness 

mm mm mm 

Column Polycarbonate 100 846 3 - 6 

Floor Corian® 300 400 24 

Table 1: Geometrical characteristic of the tested 3 dofs shear-type model. 

Polycarbonate and Corian® have been used for the model, both of them with high heat re-

sistance, excellent workability and lightness.  

 

The model is composed by four columns made of polycarbonate with cross-section 100 x 

846 mm and a thickness variable from 3 to 6 mm. The inter-storey height is 250 mm.  

To guarantee the out-of-plane floor stiffness, three rectangular decks made in Corian® 

have been used, having dimensions 300x400x24 mm. Each floor is anchored to the polycar-
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bonate columns through a bolted system that allows to modify the mass and stiffness of the 

model.  

A further panel of identical dimensions as decks has been used for the basement, that is an-

chored to a larger panel, also made in Corian®, with dimensions 650x650x24 mm, that can be 

fixed to the floor.  

The base panel is equipped with two steel C-shaped profiles, which allow the sliding of the 

frame model through four nylon wheels with ball bearings. In this configuration the model 

can be excited by a time-varying base displacement, at the moment applied by hand, to simu-

late seismic actions. The sliding system can also be locked, obtaining in this way a fixed-base 

model to be used for free vibration tests or forcing time-histories at floor levels. 

The mechanical properties of the materials used for the model are listed in Table 2. 

 

Corian® 

Properties Norm/Standard 
Plate 

Unit 
t= 6 mm 

Density DIN ISO 1183 1.73 - 1.76 [g/cm3] 

Flexural Modulus DIN EN ISO 178 8920 - 9770 [MPa] 

Flexural Strength  DIN EN ISO 178 49.1 - 76.4 [MPa] 

Compressive Strength EN ISO 604 178 - 179 [MPa] 

Elongation DIN EN ISO 178 0.58 - 0.94 [%] 
 

Polycarbonate 

Properties Norm/Standard Typical Values Unit 

Density ISO 1183 1.20 [g/cm3] 

Flexural Modulus ISO 178 2300 [MPa] 

Flexural Strength  ISO 178 90 [MPa] 

Ultimate Tensile Strength ISO 527 70 [MPa] 

Ultimate Tensile Strain ISO 527 120 [%]  

Table 2: Mechanical properties of Corian® and Polycarbonate  

3.2 Test Setup 

In order to work with different values of mass and stiffness of the model, modifications to 

the initial configuration have been considered.  

In the first case, the floor mass has been increased by adding steel plates at each deck level, 

paying specific attention to keep unchanged the centroid position. The Figure 2 shows the 

three mass configurations available:  

 configuration m0: mass of each floor = 5.78 kg; 

 configuration m1: two steel plates added at each floor, with mass 2x0.57 kg = 1.14 kg; 

 configuration m2: four steel plates added at each floor, with mass 4x0.57 kg = 2.28 kg. 
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(a) configuration m0 (b) configuration m1 (c) configuration m2 

Figure 2: Experimental model: (a) m0=5.78 kg for each floor; (b) m1=6.92 kg for each floor; (c) m2=8.06 kg for 

each floor; mass of columns depending on their thickness.  

Total mass of floors and columns is reported in Table 3 for each mass-thickness combination. 

Also the stiffness of the columns has been changed. Four different values, i.e. 3, 4, 5 and 6 

mm have been considered for the thickness of columns.  

The natural frequencies for the different mass and stiffness combinations are shown in  Ta-

ble 3. 

 

 

m0 

initial configuration 

m1 

3.42 kg added mass 

m2 

6.84 kg added mass 

Mf
*
 = 17.34 kg Mf 

*= 20.76 kg Mf
*
 = 24.18 kg 

t3 

t= 3 mm 
Mc

**
 = 1.22 kg 

f1= 1.10 Hz 

f2= 3.09 Hz 

f3= 4.44 Hz 

f1= 1.01 Hz 

f2= 2.82 Hz 

f3= 4.07 Hz 

f1= 0.94 Hz 

f2= 2.62 Hz 

f3= 3.78 Hz 

t4 

t= 4 mm 
Mc 

**= 1.63 kg 

f1= 1.69 Hz 

f2= 4.71 Hz 

f3= 6.77 Hz 

f1= 1.54 Hz 

f2= 4.32Hz 

f3= 6.21 Hz 

f1= 1.43 Hz 

f2= 4.01Hz 

f3= 5.77 Hz 

t5 

t= 5 mm 
Mc 

**= 2.03 kg 

f1= 2.34 Hz 

f2= 6.52 Hz 

f3= 9.37 Hz 

f1= 2.14 Hz 

f2= 5.99 Hz 

f3= 8.61 Hz 

f1= 1.99 Hz 

f2= 5.57 Hz 

f3= 8.01 Hz 

t6 

t= 6 mm 
Mc 

**= 2.44 kg 

f1= 3.05 Hz 

f2= 8.50 Hz 

f3= 12.20 Hz 

f1= 2.80 Hz 

f2= 7.82 Hz 

f3= 11.22 Hz 

f1= 2.60 Hz 

f2= 7.27 Hz 

f3= 10.45 Hz 

Mf
*= Total mass of the floors - Mc

**
 = Total mass of the columns 

Table 3: Frequencies of the 3dofs model for the different configurations, as obtained by FE 

models. 

 

3.3 Testing program 

The experimental campaign has been carried out by submitting the model to three types of 

dynamic tests: 

 free oscillations (FO); 
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 forced vibrations (FV) induced by a rotating eccentric mass driven by an electric equip-

ment, allowing sinusoidal force (vibrodyne); 

 base motion (BM) simulating the effect of seismic excitation. 

Figure 3 shows the different experimental configurations available for the tested frame, i.e. 

fixed during a forced vibration (left) and allowed to slide (right) for time-varying base dis-

placement. 

 (a)  (b) 

Figure 3: Experimental configuration of the tested frame: (a) fixed base; (b) sliding base   

Each test has been performed and repeated several times, as reported in Table 4. 

Test  Intensity or Type Repetitions Total  No. Tests 

free vibration - m0, m1, m2 3 

forced vibration 1st – 2nd – 3rd * m0, m1, m2 9 

base motion L – H – V ** m0, m1, m2 9 

* 1st  = at first floor, 2nd = at second floor, 3rd = at third floor 

** L= low intensity, H = high intensity, V= variable intensity during the time-interval 

Table 4: Dynamic tests for thickness of columns t = 5 mm 

3.4 Response measurement 

The dynamic response has been recorded using four unidirectional piezoelectric accel-

erometers with a full scale, resolution and linearity range, equal to ± 2 g, 10 µg and 0.3-4000 

Hz, respectively. The accelerometers have been installed at each floor to record the accelera-

tion response in the horizontal direction. A fourth accelerometer has been fixed at the base-

ment to record the imposed input in the BM cases. The tests were performed using a sampling 

rate of 250 Hz. The acquisition was provided by a multichannel analyzer equipped with 24-bit 

A/D card. The equipment used is shown in Figure 4. 
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 (a)   (b) 

 
(c) 

 
(d) 

Figure 4: Experimental equipment: (a) – (b) measurement stations, (c) detail of the accelerometer at third floor, 

(d) detail of the accelerometer at the basement (sliding panel). 

4 RESULTS AND DISCUSSION     

In order to verify the effectiveness of the identification procedure described in Section 2, 

an experimental validation has been carried out by using the data obtained from the dynamic 

tests performed with the shear-type model of Section 3.  

As already explained, the model can be excited by impressing, at the moment by hand, 

time-varying base displacements to the sliding-base configuration, to simulate the effects of 

seismic actions. 

The data for the identification procedure are given by records of the absolute acceleration, 

reported in Figure 5 for a sample case (m0t5, in Table 3). . 

time

time

time

time  

Figure 5: Input and output records of the 3 dofs frame model m0t5 of Table 3.   
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Table 5 lists the identified modal parameters obtained by means of the classical input-

output Goyder procedure [2]. 

 

Mode 

frequency 

Hz 

damping 

ratio 

[%] 

modal displacements 

1st floor 2nd floor 3rd floor 

1 2.63 1.61 -0.605 -0.880 -1.377 

2 6.79 1.63 -0.285 -0.177  0.283 

3 9.63 2.40 -0.088  0.139 -0.048 

Table 5: Modal parameters identified by the Goyder procedure for the case m0t5 of Table 3.  

 

Based on the same experimental data of case m0t5, Table 6 reports the modal parameters 

identified by means of the output-only procedure described in Section 2; as a starting point of 

the error minimization, natural frequencies, damping ratios and modal constants fairly distant 

from those identified with the input-output technique have been assumed (30 % difference), in 

order to test the robustness of the procedure; the output-only solution has been found with the 

minimization algorithm described in Section 2.3, within the boundaries ± 30 % with respect to 

the reference solution, i.e. the solution identified with the Goyder procedure.   

As shown by comparison between modal parameters in Table 5 and Table 6, the output-

only procedure, introduced in [1] and modified in [3] with an improved minimization algo-

rithm, provides, for the sample case described here, a good agreement with the classical input-

output procedure, as also shown by the comparison of modal shapes in Figure 6. 

 

Mode 

frequency 

[Hz] 

damping 

ratio 

[%] 

modal displacements 

1st floor 2nd floor 3rd floor 

1 2.64 1.57 -0.664 -0.956 -1.590 

2 6.79 1.52 -0.306 -0.194  0.330 

3 9.64 2.36 -0.078  0.157 -0.054 

Table 6: Modal parameters identified by the output-only procedure for the case m0t5 of Table 3. 

 

Figure 6: Comparison between modal shapes identified via the Goyder procedure (red line, values of Table 5) 

and via the output-only procedure (blue line, values of Table 6). 
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5 CONCLUSIONS 

This paper describes the first results of an experimental campaign on a 3-dofs shear-type 

frame model, carried out to validate the output-only procedure proposed by one of the writers 

[1] to identify the modal parameters of a structure subjected to unmeasured base motion. 

The modal parameters are identified by means of a minimisation algorithm, improved from 

the computational point of view as described in [3]. The error function to be minimised com-

pares, in the least square sense, the analytical relationships of the dynamic response and their 

experimental counterparts. 

As shown by the results reported, the output-only procedure provides a good agreement 

with a classical input-output procedure. 

A larger experimental campaign is currently in progress for the validation of the proce-

dure. A particular attention will be given to all the uncertainties emerged in the present work, 

as for example the dependence of the identified modal parameters on their initial estimate and 

the boundaries, and on the intensity and the time-length of the imposed base motion. 
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Abstract. Concave Surface Slider (CSS) devices represent an effective solution for base-
isolation design problems. In such isolators the energy dissipation capability is induced by 
the sliding motions which occur at one or more sliding interfaces. The spherical shape of the 
sliding surfaces provides a significant recentering behavior, by means of the stepwise projec-
tion of the applied vertical load with respect to both horizontal directions. One of the most 
important assumptions states that the lateral response of a CSS device can be considered as 
the direct summation of the recentering force and the frictional force. For two-components 
earthquake excitations, the recentering force is computed as a linear spring with respect to 
displacements along the main directions of motion; whereas, the frictional response is re-
turned by the stepwise projection of the total frictional force, which is aligned with respect to 
the trajectory of the device: thus, a bi-axial interaction of the directions of motion has to be 
accounted for, when a friction-based device is modelled. However, available commercial 
software which can capture such a behavior are limited. In this work an analytical procedure 
is defined, for the computation of an “equivalent uniaxial accelerogram” for the seismic as-
sessment of a base-isolated structure, subjected to a bi-directional earthquake. Thanks to the 
proposed theory, it is possible to compute a single ground acceleration time-history, related 
to a proper direction angle, which can reproduce the same effects of a two-components seis-
mic event on a base-isolated structural system: the analogy between the equivalent uniaxial 
and the bi-directional events has been studied in terms of acceleration, velocity and dis-
placement spectra respectively. Results for the base-isolated structure have been analyzed in 
terms of displacement, absolute acceleration and interstorey shear responses. 
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1 INTRODUCTION 

Concave Surface Slider (CSS) devices are widely used in real applications for seismic vul-
nerability mitigation all over the world. Thanks to the easy geometric and mechanical defini-
tion of such isolators, it is possible to achieve high values of dissipated energy and, 
consequently, lower internal forces are induced into the superstructure during the seismic 
event [10]. Nonetheless, a lot of research, both numerical and experimental, has been devel-
oped in last years, aiming at getting a better understanding of the lateral response characteris-
tics of friction-based devices [3, 6]. One of the key points of the behavior of CSS isolators is 
represented by the frictional response under bi-directional seismic events [4, 6, 8]. Generally, 
the force response of a CSS device can be considered as the direct summation of a recentering 
force and a frictional force. The recentering contribution can be modelled as a linear spring 
with respect to displacements along both x and y directions, whereas the frictional force is a 
complicated function of vertical load, sliding velocity and cyclic effects, and it is parallel to 
the trajectory of the device [1]. Thus, the main frictional force has to be stepwise projected 
along the main directions of the reference system, and a bi-axial interaction has to be consid-
ered. This aspect has been noticed in experimental results as well as in analytical simulations 
[3, 5]. In Figure 1 the analytical hysteretic responses along x and y directions of a single de-
vice subjected to a cloverleaf displacement trajectory are shown (friction coefficient: 7% ; 
Equivalent radius of curvature: 3.1m ).  
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Figure 1: Analytical simulation the CSS hysteretic response under a cloverleaf trajectory. 

It can be noted that by accounting for bi-axial interaction of the directions of motion, the 
maximum force value decreases along both x and y directions, due to the changing in orienta-
tion of the main frictional force during motion, in comparison to the unidirectional model, 
which considers the frictional force parallel to the recentering one at each time step. Hence, 
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the seismic response of a base-isolated structure can be strongly affected by the bi-axial inter-
action of the directions of motion. However, most of the design and verification procedures 
are based on simplified unidirectional approaches [9]; moreover, testing protocols for such a 
kind of devices mainly consist of unidirectional tests, according to UNI:EN15129 standard 
code [7], and bidirectional tests can be substituted by a unidirectional motion along an or-
thogonal direction. Furthermore, only recent versions of commercial softwares can model 
such behavior, and significantly high run times may be experienced. 

In this work an analytical procedure is presented, which can return an equivalent uniaxial 
accelerogram representative of a bi-directional seismic event. Thanks to the present theory, it 
is possible to apply a uni-directional radial motion to the structure, for the evaluation of struc-
tural internal forces and displacements under a general bi-directional earthquake. Results of a 
base-isolated building structure have shown a good agreement of the response under the 
equivalent uniaxial event in comparison to the bi-axial one, in terms of displacement, absolute 
acceleration and interstorey shear values. 

 
 

2 EQUIVALENT UNIAXIAL EVENT 

In this section the presented procedure for the computation of the equivalent uniaxial event 
of a bidirectional earthquake is reported.  

Generally, a bidirectional seismic event is represented by two individual ground accelera-
tion time-series along x and y directions respectively, where x and y are plan orthogonal di-
rections of the reference system of the analyzed structure. Since there are a lot of aspects 
which influence the propagation of seismic waves during an earthquake (such as rupture 
mechanism, soil mechanical characteristics, topographic and stratigraphic distributions, etc…), 
the resulting diagram which represents both the ground acceleration time series together, that 
is gy&&  vs. gx&& , consists of a scatter plot of acceleration points, and no preferential direction of 

motion can be immediately detected. In Figure 2 the ground acceleration diagram related to 
the Irpinia earthquake 1980 is reported. 
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Figure 2: Irpinia earthquake 1980 – Ground acceleration diagram. 

Thus, the response spectrum of the seismic event has to be considered. A response spec-
trum of the bi-directional event has been defined, by means of the direct integration of the 
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equations of motion along both x and y directions of a linear single oscillator with different 
values of structural periods T and for a given damping ratio ξ: 
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Hence, the maximum vectorial displacement and absolute acceleration are detected. 

 
( )

( ) ( ) 




 +++=

+=
222

222

max),(

max),(

gg
D

a

D
d

yyxxTS

yxTS

&&&&&&&&ξ

ξ
 (2) 

By considering several period values, the reference response spectrum related to the bidi-
rectional earthquake is finally obtained. Therefore, for a given direction angle, the projection 
of each acceleration point shown in Figure 2 is obtained, in order to compute a single ground 
acceleration component along the considered direction. In Figure 3 the projection procedure is 
reported. 

P (xg(t) , yg(t))

ag(t)

x

y

x'

 
Figure 3: Equivalent uniaxial event – Projection procedure. 

According to the aforementioned scheme, the uniaxial projection of the bidirectional earth-
quake )(tag  is defined for the given orientation α as follows: 

 ( ) ( )αα sin)(cos)()( tytxta ggg &&&& +=  (3) 

Consequently, the ordinary 1D acceleration and displacement response spectra associated 
to )(tag  can be obtained, by assuming the same damping ratio of the reference 2D response 

spectrum. Then, a parameter which describes the discrepancies between the reference 2D and 
the 1D response spectra is defined, by computing the square root of the Mean Squared Error: 

α 

5756



M. Furinghetti, A. Pavese 

such a parameter can be computed by considering either the acceleration or the displacement 
response spectrum; both the approaches have been evaluated for sake of comparison. 
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Where nT is the total number of structural periods, considered for the computation of the 
response spectra. Finally, by considering the direction angle α within a range between 0° and 
180°, the optimum direction angle which returns the minimum error parameter can be ob-
tained. In Figure 4 and Figure 5 the aforementioned procedure has been applied to the Irpinia 
earthquake 1980, by considering a damping ratio equal to 5% and acceleration and displace-
ment spectra respectively. 
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Figure 4: Equivalent uniaxial event – Irpinia earthquake – acceleration-based procedure. 
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Figure 5: Equivalent uniaxial event – Irpinia earthquake – displacement-based procedure. 

In what follows results for three different bidirectional earthquakes are reported, by vary-
ing the damping ratio; the analyzed seismic events are listed in Table 1.  
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Event # Location Year Mw PGAx [m/s2] PGAy [m/s2] 
1 Irpinia 1980 6.9 1.718 1.550 
2 Emilia 2012 6.1 2.574 2.591 
3 L’Aquila 2009 6.3 6.442 5.352 

 

Table 1: Equivalent uniaxial event – seismic events characteristics. 

Results are shown in terms of both optimum direction angle and error parameter values as 
a function of the damping ratio. In Figure 6 and Figure 7 results are shown, by considering 
acceleration and displacement error respectively. 
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Figure 6: Equivalent uniaxial event – damping analysis – acceleration-based procedure. 
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Figure 7: Equivalent uniaxial event – damping analysis – displacement-based procedure. 

It can be noted that the acceleration spectrum approach leads to more stable results, in 
terms of optimum direction angle value, which can be considered approximately constant with 
respect to increasing values of damping ratio; in addition, as the damping ratio increases, the 
acceleration error parameter significantly decreases, and a similar decay trend of the accelera-
tion error has been found among the considered earthquakes. On the other hand, the dis-
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placement-based procedure returns more irregular results: the optimum variation angle value 
can be affected by the damping ratio and, decreasing trend of the displacement error parame-
ter is found at high values of damping ratio as well as for the acceleration procedure. 

 
 
 

3 ANALYTICAL MODEL DEFINITION 

In this endeavor the structural model presented in Furinghetti and Pavese 2015 has been 
used [4], which consists of a Multi Degrees Of Freedom (MDOF) scheme, base-isolated by 
means of an equivalent CSS device, which is representative of the entire isolation system 
(Figure 8). 
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Figure 8: Dynamic model of the isolated structure. 

This assumption can be adopted when a building with a large plan development is consid-
ered. Thus, all the isolators have averagely the same vertical load, directly equal to the total 
weight of the isolated structure divided by the number of devices. Hence, the horizontal force 
along both x and y directions of the isolation system can be computed as follows: 
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Where MB is the total mass of the building, and MP is the mass of the isolated plate. Finally, 

the normalized dynamic system of the isolated structure is consequently defined for direction  
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i = x, y. The contribution of the isolation system has to be added in the first equation only for 
both directions, which represents the translational dynamic equilibrium of the isolated slab.  
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The damping matrix is obtained by accounting for Rayleigh damping, with a target damp-
ing ratio equal to 5% [11].  

 
 
 

4 CASE STUDY STRUCTURE AND SEISMIC INPUT 

The case study building consists of a three storey R.C. frame structure, with a total mass 
equal to 2048 tons [2], which is base-isolated by means of CSS devices, and a R.C. isolated 
slab with a thickness of 0.5m, as shown in Figure 9.  
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Figure 9: Case study structure. 

The isolated plate has a total mass equal to 1496 tons: thus, according to the aforemen-
tioned analytical model, the ratio between the masses of the building and the isolated plate is 
equal to 1,37. The first mode period is equal to 0,48s and a target damping ratio of 5% has 
been set for all the modes. CSS devices have been modelled with a an equivalent radius of 
curvature equal to 3,1m; furthermore, in this work the friction coefficient has been considered 
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as a constant function of vertical load, sliding velocity and dissipated energy: the numerical 
value is equal to 7% [3, 4]. 

For what concerns the input signals, all the previously analyzed earthquakes have been ap-
plied to the case study structure. Since the displacement demand and the associated hysteretic 
damping ratio is not a priori known, for all the bi-directional earthquakes the optimum direc-
tion angle of the equivalent uniaxial event  has been computed with a damping ratio equal to 
5% and both acceleration and displacement approaches have been processed. In Table 2 the 
characteristics of the seismic events are listed. 

 

Event # Location Scale factor 
1D angle [°] 

acc. approach 
1D angle [°]  

displ. approach 
1 Irpinia 1.5 140.5 118.0 
2 Emilia 1.5 128.0 94.5 
3 L’Aquila 1.5 21.0 179.5 

 

Table 2: Case study– seismic events characteristics. 

A scale factor for both x and y components equal to 1.5 has been used for all the consid-
ered seismic events, in order to achieve a maximum displacement demand comparable to the 
design displacement capacity of the devices. 
 

 
5 ANALYSES RESULTS 

In the followings the results are shown in terms of displacement, absolute acceleration and 
interstorey shear profiles of the case study structure, subjected to the bidirectional event in 
comparison to the equivalent uniaxial cases. 

In Figure 10 , Figure 11 and Figure 12 displacement results are reported for earthquake #1, 
#2 and #3 respectively, and by accounting for acceleration (left) rather than displacement 
(right) approach. 
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Figure 10: Results – Eqk#1 – displacement profiles. 
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Figure 11: Results – Eqk#2 – displacement profiles. 

-0.05 0 0.05 0.1 0.15 0.2 0.25

0

1

2

3

Max. Displ. [m]

F
lo

o
r 

[#
]

  T
s
 = 0.48s - Spectral acceleration error

 

 

Equivalent Uni-directional Bi-directional event

-0.05 0 0.05 0.1 0.15 0.2 0.25

0

1

2

3

Max. Displ. [m]

F
lo

o
r 

[#
]

  T
s
 = 0.48s - Spectral displacement error

 

 

Equivalent Uni-directional Bi-directional event

 
Figure 12: Results – Eqk#3 – displacement profiles. 

In Table 3 the variation percentages at all levels of the displacement demand related to the 
equivalent uniaxial earthquake in comparison to the biaxial seismic event. 

 
 Eqrthquake #1 Eqrthquake #2 Eqrthquake #3 

Level # 
Acc. 

approach 
Displ. ap-

proach 
Acc. 

approach 
Displ. ap-

proach 
Acc. 

approach 
Displ. ap-

proach 
0 11.9% -6.3% -10.7% -17.0% -29.6% -6.0% 
1 12.4% -5.8% -10.8% -16.8% -28.7% -5.8% 
2 13.0% -5.3% -11.1% -16.8% -28.2% -5.7% 
3 13.3% -5.0% -11.4% -16.8% -28.1% -5.6% 

Table 3: Results – Variation percentages – displacement response. 
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As can be noted, for earthquake #1 and #3 the best agreement is achieved by using the dis-
placement spectrum approach, whereas for the second earthquake the direction angle returned 
by the acceleration procedure leads to better results. Generally, the displacement demand de-
creases at all levels, if the equivalent uniaxial event is considered; only for earthquake #1 with 
acceleration approach opposite evidences have been found. 

In Figure 13 , Figure 14 and Figure 15 absolute acceleration results are reported for earth-
quake #1, #2 and #3 respectively, and by accounting for acceleration (left) rather than dis-
placement (right) approach. 
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Figure 13: Results – Eqk#1 – absolute acceleration profiles. 
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Figure 14: Results – Eqk#2 – absolute acceleration profiles. 
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Figure 15: Results – Eqk#3 – absolute acceleration profiles. 

In Table 4 the variation percentages at all levels of the absolute acceleration demand relat-
ed to the equivalent uniaxial earthquake in comparison to the biaxial seismic event.  

 
 

 Eqrthquake #1 Eqrthquake #2 Eqrthquake #3 

Level # 
Acc.  

approach 
Displ. ap-

proach 
Acc.  

approach 
Displ. ap-

proach 
Acc.  

approach 
Displ. ap-

proach 
0 4.8% 0.0% 0.3% -13.1% 7.5% 0.9% 
1 7.9% 9.0% 6.0% -22.5% 17.6% 2.3% 
2 3.9% 4.3% -10.1% -7.9% -12.2% 2.6% 
3 0.7% -4.8% 0.1% -19.1% 28.2% -1.4% 

 

Table 4: Results – Variation percentages – absolute acceleration response. 

In all cases acceleration profiles relative to the biaxial seismic event are almost overlapped 
to the ones associated to the equivalent uniaxial earthquake: thus, even though 5% damping is 
assumed for the computation of the optimum direction angle for both displacement and accel-
eration approaches, the acceleration response can be properly captured by applying an equiva-
lent radial motion. For eqk#1 and #2 the best comparison is obtained by accounting for the 
acceleration procedure, whereas for eqk#3 the displacement approach provides a better esti-
mates of the bidirectional acceleration profile. 

In Figure 16 , Figure 17 and Figure 18 interstorey shear results are reported for earthquake 
#1, #2 and #3 respectively, and by accounting for acceleration (left) rather than displacement 
(right) approach. 
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Figure 16: Results – Eqk#1 – interstorey shear profiles. 
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Figure 17: Results – Eqk#2 – interstorey shear profiles. 
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Figure 18: Results – Eqk#3 – interstorey shear profiles. 
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In Table 5 the variation percentages at all levels of the interstorey shear demand related to 
the equivalent uniaxial earthquake in comparison to the biaxial seismic event.  

 
 Eqrthquake #1 Eqrthquake #2 Eqrthquake #3 

Level # 
Acc.  

approach 
Displ. ap-

proach 
Acc.  

approach 
Displ. ap-

proach 
Acc.  

approach 
Displ. ap-

proach 
0 5.1% -1.6% 6.8% 3.3% -11.1% -1.7% 
1 2.2% -4.3% 8.8% -4.9% 6.5% 7.7% 
2 2.1% -4.1% 1.4% -13.4% 25.0% 16.6% 
3 1.9% -2.9% -1.1% -19.2% 26.4% -1.1% 

 

Table 5: Results – Variation percentages – interstorey shear response. 

Also concerning shear profiles, the equivalent unidirectional event provides a good esti-
mate of the bidirectional response at all levels. Again, the acceleration procedure leads to bet-
ter results for eqk#1 and #2. 

 
 

6 CONCLUSIONS AND FUTURE DEVELOPMENTS 

In this work an analytical procedure for the computation of an equivalent uniaxial seismic 
event for a bidirectional earthquake is presented. Such a procedure allows to compute the op-
timum direction angle of the equivalent radial motion, by projecting along several directions 
all the acceleration points of the bidirectional earthquake and evaluating the associated error 
parameter between the biaxial and the uniaxial response spectrum; both acceleration and dis-
placement response spectra have been considered. Three different bidirectional seismic events 
have been studied and then applied to a case study base-isolated structure, in order to under-
line differences between the biaxial and the equivalent uniaxial responses, in terms of dis-
placement, absolute acceleration and interstorey shear demands. 

For the analyzed earthquakes it has been noticed that the optimum direction angle can be 
approximately considered constant with respect to the damping ratio and the error parameter 
significantly decreases with increasing values of damping ratio, if the acceleration spectrum 
approach is used; on the other hand the displacement approach leads to more irregular results. 

Concerning structural responses, displacement demands at all levels are underestimated 
when the equivalent  uniaxial earthquake is applied, exception made for earthquake #1, with 
acceleration approach. The best approximation is returned by the acceleration approach, 
which leads to variations in the range between 5% and 15%, whereas higher variations can be 
experienced with displacement approach. Regarding absolute acceleration responses, a good 
agreement between biaxial and equivalent uniaxial events is reached with both the approaches, 
even though in most of the cases the lowest variations can be found with the acceleration-
based procedure (less than 10%). Similar conclusions can be drawn also for interstorey shear 
responses. 

Future developments of the present work will consist of a wide numerical study on a real 
application, modelled with a commonly used commercial software, in order to underline in-
fluences in the main response parameters of the effective horizontal and vertical spatial distri-
bution of the structural elements, by accounting for both biaxial and equivalent uniaxial 
earthquakes; furthermore, a wider set of seismic events will be analyzed, aiming at generaliz-
ing all the previously discussed aspects.   
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Abstract. The reasons of the better performances of mixed, stress–displacements, 3D solid
finite elements in the analysis of slender elastic structures are explained. It will be shown
that mixed or compatible description, also when derived from the same finite element and then
completely equivalent from the discretization point of view, behave very differently when im-
plemented in both asymptotic and path–following solution strategies due to the occurrence of
a pathological locking phenomenon in the compatible formulation. The notable advantages of
the used of a 3D mixed solid finite element in Koiter asymptotic analysis are also highlighted.
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1 INTRODUCTION

In recent years an increasing amount of research has aimed at developing new efficient solid
finite elements [1] for the linear and nonlinear analysis of thin structures. This is due to the
advantages of solid elements in comparison to classical shell elements. In particular in the elas-
tic nonlinear analysis of slender structures they allow the use of the 3D continuum strain and
stress measures employing translational degrees of freedom only [1, 2, 3, 4]. In this way it is
possible to avoid the use of complicated and expensive rules for updating the rotations and, by
using the Green-Lagrange strain measure, to coherently describe the structural behavior through
a low order dependence on the displacement field. Moreover in this context, solid elements al-
low: a simpler expression of the strain energy and its variations with a gain in computational
efficiency; the recovery of the complete 3D stress state and the application of nonlinear consti-
tutive laws; simpler geometric and kinetic descriptions; the simple discretization of structures
with both solid and shell-like regions. Furthermore the independence of the model from rigid
body motion or change in the observer (objectivity) is automatically fulfilled without the need to
employ complex, geometrically exact formulations, which are not always available or accurate
[5, 6, 7].

However, formulating robust solid-shell elements is more demanding than shell elements. To
maintain an acceptable number of degrees of freedom, the elements proposed are usually based
on a low order displacement interpolation. Consequently they have the disadvantages of inter-
polation lockings: the shear and membrane locking also present in classical shell elements and
trapezoidal and thickness locking, typical of low order solid-shell elements [8]. Interpolation
lockings are usually sanitized by means of Assumed Natural Strain, Enhanced Assumed Strain
[9, 10, 11, 12] and mixed (hybrid) formulations [1, 4, 13, 14]. In this way solid-shell elements
have now reached a high level of efficiency and accuracy and have also been used to model
composites or laminated beams [11, 15, 13, 16] and shell structures in both the linear [9, 3] and
nonlinear [12, 2, 1] range. Among the most effective and interesting proposals we refer to are
the mixed solid-shell elements of Sze and coauthors [1, 13, 17, 18, 19, 20, 21, 16, 22, 23] which
extend the initial PT18β hybrid element of Pian and Tong to thin shell.

When comparing mixed and compatible finite elements many authors (see for example [1]
and [2]) observe that the mixed ones are more robust and allow larger steps in path–following
geometrically nonlinear analyses. However the reasons for these better performances are, in
our opinion, not clear, as they are often wrongly attributed to the properties of the finite element
interpolation. One of the goals of this paper is therefore to clarify the true reason and the origin
of this phenomenon, extending the results presented some years ago [24, 25] in the context of
path-following and Koiter [26, 27, 28] asymptotic analyses of 2D framed structures.

Mixed and compatible description, while completely equivalent at the continumm level, be-
have very differently when implemented in path-following and asymptotic solution strategies
even when they are based on the same finite element interpolations, that is when they are equiv-
alent also at the discrete level. This is an important, even if frequently misunderstood, point
in developing numerical algorithms and it has been discussed in [24, 25, 29] to which we refer
readers for more details. To represent the strain energy in a smooth enough way in order to
make the truncation error of its Taylor expansion up to a given order as small as possible is
crucial: in path-following analysis, this ensures a fast convergence of the Newton (Riks) itera-
tive process; in asymptotic analysis, which is based on Taylor series the expansion of the strain
energy [26, 28] implies an accurate recovery of the equilibrium path. Since the smoothness of a
nonlinear function strictly depends on the set of variables used for its description, a key point to
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be considered when approaching the solution of a nonlinear problem is the selection of the most
appropriate set of variables. In fact mixed and compatible descriptions are characterized by a
different smoothness of the strain energy and so they behave very differently when used within a
numerical solution process. In particular representing the strain energy by using displacements
only (compatible description) as variables has to be considered the least suitable choice as, in
this case the truncation error of a Taylor expansion depends, pathologically, on the presence of
directions with very different stiffness, while this is not the case in a mixed format. For shells
or beams, in the presence of large displacements (rigid rotations) and high membranal/flexural
stiffness ratios, the truncation error of the compatible description becomes large and causes a
very slow convergence rate in path-following analysis and an unreliable estimate of the bifur-
cation point and of the post–critical coefficients in the asymptotic analysis. As will be shown,
using solid elements means the mixed description is unaffected by this kind of locking, that we
call extrapolation locking.

In this paper a mixed and a compatible description are derived for the same finite element,
so obtaining two completely equivalent discrete problems, in order to show that their different
behavior is not due to the interpolation fields and that the extrapolation locking occurs for any
compatible finite element. This is an important aspect not taken into account by the scientific
community because, usually, lockings are attributed to the interpolation only.

Moreover, note that the solid element based on the quadratic Green-Lagrange strain measure,
minimizes the strain energy dependence on the finite element (FE) discrete variables: the fourth
order dependence on displacement variables in the compatible formulation and the third order
in stress and displacement variables in the mixed case. Although this does not produce any real
important benefit with respect to the extrapolation locking it does however have a significant
effect on the efficiency, robustness and coherence of the asymptotic analysis when the mixed
description is used. It allows, in fact, the zeroing of all the strain energy variations of an order
greater than the third and, consequently, permits light numerical formulations and an improve-
ment in accuracy. In this way it is possible to develop new asymptotic algorithms well suited
to the imperfection sensitivity analysis of structures presenting coincident or almost coincident
buckling loads, which are more accurate and computationally efficient than those based on clas-
sical shell elements. This advantage holds in standard path-following analysis where however
it only allows simpler expressions of the tangent stiffness matrix and the structural response.

Finally it is worth mentioning that the use of both displacement and stress variables increases
the dimension of the problem, but generally the computational extra–cost, with respect to a com-
patible analysis, is very low. This is because the global operations involve displacement dofs by
performing a static condensation of the stress variables, when locally defined at element level.
This small computational extra-cost is largely compensated for: in path-following analysis by
larger steps and fewer iterations with respect to the compatible case; in asymptotic analysis by
the zeroing of the computationally expensive fourth order strain energy variations. We will also
show how the small nonlinearity that the equilibrium path assumes when represented in mixed
variables allows, in path following analyses, an efficient use of the modified Newton method
with a further significant reduction in the computational cost.

2 MIXED AND COMPATIBLE DESCRIPTIONS

In this section, two equivalent descriptions, one in stresses and displacements called mixed
description and another in displacement parameters only, called compatible description, are
derived. We refer to [29, 28, 7, 6] for a description of the asymptotic method.
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2.1 The discrete nonlinear equations

We consider a slender hyperelastic structure subject to conservative loads p[λ] proportionally
increasing with the amplifier factor λ. The equilibrium is expressed by the virtual work equation

Φ[u]′ δu − λp̂ δu = 0 , u ∈ U , δu ∈ T (1)

where u ∈ U is the field of configuration variables, Φ[u] denotes the strain energy, T is the
tangent space of U at u and a prime is used to express the Frechèt derivative with respect to u.
We assume that U will be a linear manifold so that its tangent space T will be independent of
u. When a mixed format is adopted the configuration variables u collect both displacement and
stress fields.

The element strain energy can, as usual in a FE context, be expressed as a sum of element
contributions that, using a mixed interpolation for the displacement and the stress field σ and
letting with Ωe the element domain, becomes

Φ[u] ≡
∑
e

Φe[u] =
∑
e

∫
Ωe

(
σTε− 1

2
σTC−1σ

)
dVe

= βT (L +
1

2
Q[d])d− 1

2
βTHβ

Φe[u] = βT
e (Le +

1

2
Qe[de])de −

1

2
βT

e Heβe

(2)

where ε is the Green-Lagrange strain measure L and Q[d] are the linear and quadratic discrete
compatibility matrices, d is the vector collecting all the finite element displacement variables
while β is the vector collecting all the stress parameters, C and H are the continuum and
discrete elastic matrices and a subscript ’e’ denotes the corresponding finite element quantities.
It is worth to note as, by using the Green strain measure, the mixed strain energy (2) has a third
order nonlinearity with respect to the configuration variable vector u = {β,d}.

The element can also be described in a compatible format by requiring that the discrete form
of the constitutive laws is ”a priori” satisfied. As in the present FE model the stress variables
are locally defined at the element level we have

βe[de] = H−1
e (Le +

1

2
Qe[de])de (3)

where, to highlight that in the compatible format the stresses are not independent variables, we
explicitly report the dependence of de.

Substituting Eq.(3) in Eq.(2) we obtain the compatible description of the element strain
energy

Φe =
1

2

{
dT
e (Le +

1

2
Qe[de])

TH−1
e (Le +

1

2
Qe[de])de

}
(4)

that has a 4th order dependence on the displacement variables only.
Similarly a fourth order dependence of the strain energy from the displacements parameters,

is obtained with any compatible finite element interpolation when a 3D solid formulation is
employed. In this paper we intentionally use the compatible description derived from the mixed
finite element in order to have the same discrete approximation for both the description, i.e.
the finite element is the same but the format of the problem changes. This allows us to focus
of the way as the problem description affects its solution in large deformation problems (see
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also [24, 25]) and then to show the reasons of the better performance of the use of a mixed
description. The conclusions are general and hold for any other compatible or mixed finite
element. In the numerical experiments the Pian and Tong PT18 element [50] will be used.

2.2 Tangent stiffness matrix for mixed and compatible descriptions

Eq.(2) allows the expression of the strain energy as an algebraic nonlinear function of the
element vector

ue :=

[
βe

de

]
(5)

related to the vector u, collecting all the parameters of the FE assemblage, through the relation

ue = Aeu (6)

where matrix Ae contains the link between the elements. Furthermore we denote with δuei =
{δβei, δdei} the element vector corresponding to the variation δui.

Exploiting the linear dependence of Qe[de] from de and its symmetry we have

Qe[de1]de2 = Qe[de2]de1, ∀de1,de2

βT
e Qe[de]de = dT

e Γe[βe]de

(7)

and the second strain energy variation on the mixed element is obtained as

Φ′′eδu1δu2 =

[
δβe1

δde1

]T [ −He Be[de]
Be[de]

T Γe[βe]

] [
δβe2

δde2

]
= δuT

e1(K0e + K1e[ue])δue2

(8)

where δui are generic variations of the configuration field u and δui the corresponding FE
vectors. Eq.(8) provides the element tangent stiffness matrix Ke[ue] = K0e + K1e[ue] as a sum
of the linear elastic contribution K0e and the geometric matrix K1e[ue] implicitly defined in
Eq.(8).

For the compatible description we have

Φ′′eδu1δu2 = δdT
e1

{
BT

e [de]H
−1
e Be[de] + Γ[βe[de]]

}
δde2 (9)

where the tangent stiffness matrix has a second order dependence on de. To emphasize this we
write

Ke = K0e + K1e[de] + K2e[de,de] (10)

Finally the evaluation the whole matrix is obtained by standard asseblage as

K =
∑
e

AT
e KeAe. (11)

2.3 Advantages of mixed solid finite elements in path-following and asymptotic analysis
of slender structures

FE models directly derived from the 3D continuum using the Green strain measure have a
low order dependence on the strain energy from the discrete FE parameters: 3rd and 4th order
for mixed and compatible respectively. On the contrary geometrically exact shell and beam
models [5, 6] or those based on corotational approaches [26, 47, 51], explicitly make use of
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the rotation tensor and its highly nonlinear representation. This implies that the strain energy
is infinitely differentiable with respect to its parameters and leads to very complex expressions
for the energy variations with a high computational burden of path following and much more
of asymptotic analyses. In this last case the high order strain energy variations become so
complex that often ”ad hoc” assumptions are required to make the solution process effective
(see section 4.3 of [26]). The consequence is that the fewer global degrees of freedom that
could be employed using a shell FE model do not necessarily imply a lesser computational cost
as it depends, from the others, on the cost of evaluation of the strain energy variations. On the
contrary for solid finite elements the strain energy, in both compatible and mixed form, has the
lowest polynomial dependence on the corresponding discrete parameters and in particular in
the mixed format of Eq.(2) has just one order more than in the linear elastic case. It implies
the zeroing of all the fourth order strain energy variations required by the Koiter analysis with
important advantages in terms of both computations and coherence of the method.

3 THE EXTRAPOLATION LOCKING AND ITS CURE USING MIXED SOLID ELE-
MENT

In this section the better performances of the mixed description in geometrically nonlinear
analysis, in terms of robustness, efficiency and, relative to Koiter formulation, also in terms
of accuracy, are shown and explained. In this context the compatible description of the prob-
lem, whatever the FE and the structural model used, is affected by a pathological extrapolation
locking phenomenon investigated for the first time for 2D frames in [24, 25].

3.1 Mixed versus compatible description in path-following analysis

The convergence of the Riks scheme is as fast as the iteration stiffness matrix K̃ is near to Ks

and then, as slow K[u] changes with u. The similarity of the stiffness matrices in two different
points Kj ≡ K[uj] and Kj+1 ≡ K[uj+1] is evaluated by the difference (see [24])

∆k[u] ≡ uT (Kj+1 −Kj)u = Φ′′j+1u
2 − Φ′′ju

2 (12)

For the mixed description we have

∆kM [u] = Φ′′′j (uj − ui)u2 = dTΓ[βj+1 − βj]d + 2βTQ[d](dj+1 − dj) (13)

while for the compatible description the same quantity becomes

∆kC [u] = Φ′′′j (uj − ui)u2 +
1

2
Φ′′′′j (uj − ui)2u2

= qT
j+1H

−1qj+1 − qT
j H−1qj + dT (Γ[β[dj+1]− β[dj]])d

(14)

where qj+1 = B[dj+1]d and qj = B[dj]d .
For slender structures it occurs that βj+1 ≈ βj undergoing large rigid element deformations

and very small stress and strain increments and then

∆kM ≈ 2βT (qj+1 − qj) (15)

and
∆kC ≈ f [qj+1]− f [qj] with f [q] = qTH−1q (16)

5773



D. Magisano, L. Leonetti and G. Garcea

When, as is usual for slender structures, the condition number of H is high due to very different
stiffness ratios (i.e. membranal/flexural) the ellipsoids associated to H

E ≡ {q : qTHq = 1}

are very stretched. As f [q] is related to the radius r[q] of E in the direction q by the following
expression

f [q] = r[q]2(qTq)

∆kc becomes
∆kC ≈ r2[qj+1]qT

j+1qj+1 − r2[qj]q
T
j qj

In this case even small differences in the direction of qj+1 and qj may produce a large ∆kC
growing with the condition number of H even when the Euclidean norm of the two vectors is
similar (see Fig.1). This produces, in path following analyses a pathological reduction in the

Figure 1: Graphical interpretation of ∆k for the compatible description

step length, an increase in the total number of the iterations and, sometimes, the loss of con-
vergence. This phenomenon is called extrapolation locking from which the mixed models are
free because they are unaffected by the ”hard terms” in H−1 and ∆kM is proportional to the
difference qj+1 − qj . As expressions like those in Eqs.(13) and (14) are obtainable using any
mixed or compatible finite element the conclusions reported here can be generalized. In partic-
ular note that for any structural model the strain energy can be expressed as a quadratic function
of the stress variables through the Hellinger-Reissner principle and so its higher order variations
are not influenced by H. On the contrary all the compatible strain energy variations always in-
volve terms in H−1. This means that extrapolation locking heavily affects any compatible finite
element/description while it does not occur in mixed formulation.

We show the occurrence of the locking in the simple case of the Euler beam, for which the
geometry and load conditions are reported in fig. 2.

In tab.2 the number of steps and iterations (loops) to obtain the equilibrium path, directly
related to the CPU time, are presented. The results of the mixed formulation, denoted byM , are
unaffected by the coefficient k = (t/`)2 while the compatible ones (C) pathologically depend
on it.

Finally in Fig.3 we report the minimum ρmin and maximum ρmax absolute value of the eigen-
values of the matrix Kn+1K

−1
n for both descriptions, where n+ 1 and n denote two equilibrium

points. The set of points in which the ρs are evaluated belongs on the equilibrium path ob-
tained by the mixed description. It is important to observe how the mixed description ρmax is
independent of k and has almost the optimal value 1.0 while for the compatible description it
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Compatible Mixed
k 104 105 106 107 (all k)

steps 38 43 67 failed 27
loops 133 166 328 failed 75

Figure 2: Eulero beam: analysis evolution for increasing k, mesh 1× 1× 40
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Figure 3: Minimum and maximum eigenvalues of matrix Kn+1K
−1
n for the simple tests

increases with the step length. Also note that is the extrapolation locking that heavily affects
also the convergence of the arc-length solution while the singular direction is filtered by the
Riks constraint. We refer readers to [24, 25] for further details.

3.2 Mixed vs compatible description in Koiter analysis using 3D solid elements

As the Koiter method is based on Taylor expansion of the strain energy the use of a mixed
description has a tremendous impact not only in terms of efficiency but also of accuracy. For
any finite element (see [25, 35, 6] ) the mixed description makes the truncation independent of
H−1 and small with respect to the retained terms.

Using compatible format in Koiter analysis the locking already occurs in the evaluation of
the buckling loads (see [25]). To avoid extrapolation locking usually the compatible bifurcation
analysis is performed by zeroing the quadratic displacements terms into the tangent stiffness
matrix (direct extrapolation hypothesis) or by evaluating the geometric terms using zeroed dis-
placements (frozen configuration hypothesis). In both cases the bifurcation search reduces to a
linear eigenvalue problem.

In Tab.1 the buckling loads obtained from the various descriptions and locking cures are pre-
sented for the Euler beam of Fig. 2 by changing both the aspect ratio k and the imperfection
load amplitude ε. In particular we denote with (C) and (M) the results obtained respectively
with the compatible and mixed description and by (F) and (D) those of the frozen configuration
and direct extrapolation respectively. For this case which has small precritical nonlinearities it
is worth noting that: i) the frozen configuration hyphothesis sanitizes the locking effect and fur-
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Table 1: Bifurcation locking for the Euler beam/(exact value for the elastica)

k ε = 0.01 ε = 0.005 ε = 0.001 for all ε
C D C D C D F M

104 failed 0.673 1.112 0.865 1.004 0.994 1.001 1.001
105 failed 0.309 failed 0.517 1.040 0.937 1.001 1.001
106 failed 0.111 failed 0.209 failed 0.673 1.001 1.001
107 failed 0.033 failed 0.071 failed 0.308 0.999 0.999

Figure 4: Equilibrium path for the Euler beam for ε = 0.001 and k = 104

nishes accurate results; ii) the compatible description misses the bifurcation point and the direct
extrapolation furnishes an inaccurate solution, getting worse with the precritical nonlinearity
due to the transversal force. Inaccuracy on the bifurcation points obviously leads to completely
wrong equilibrium path evaluation.

The zeroing of all the precritical displacements could, however, lead to inaccuracy when the
precritical displacements are not negligible as in the shallow arc reported in Fig.5. In this case
the frozen configuration is not capable of producing the correct bifurcation load and mode as
reported in Tab.2. The buckling point is used to evaluate the energy terms also reported in Tab.2,
so the equilibrium path obtained with the frozen configuration hyphothesis is very inaccurate.
In Fig.6 the equilibrium path of the Koiter mixed formulation is presented and compared with
the frozen one and path following solution.

However the great advantage in adopting mixed solid elements in Koiter analysis is in the
evaluation of all the fourth order coefficients required by the formulation (see [29]) that, for
mixed solid elements, requires only second variations for their evaluation since the usually very
complex fourth order strain energy variations are automatically zero.

Figure 5: Geometry and material properties of the shallow arc
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Figure 6: Equilibrium path for the shallow arc

M F
λ1 22.0202 30.6526
λ2 30.6671 47.0652
A001 0.0196 0.0190
A111 47.9305 182.3644
B0011 -6.32 10−4 0
B1111 8.2117 207.3178

Table 2: Shallow arc: comparison of relevant energy asymptotic quantities
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Mixed Frozen
λ1 1266.8 1291.5
λ2 1828.1 1719.0
λ3 3092.3 2949.7
λ4 3114.7 2970.6

Table 3: Channel section: first 4 buckling loads.

4 NUMERICAL RESULTS

In this section the effectiveness and reliability of both methods of analysis are tested in a
series of benchmark problems. In particular for the path-following analysis the efficiency of
the mixed description, which allows very large steps in comparison with the compatible one,
is highlighted. For the asymptotic formulation we show the accuracy given by the mixed solid
element.

For all the tests only one element in the thickness is used while the same convergence condi-
tions and arc-length parameters are adopted for mixed and compatible path-following analyses.
The label Riks denotes the equilibrium paths obtained by the arc-length scheme (the same for
both the description), while labels Mixed and Frozen denote the asymptotic paths using mixed
and compatible frozen descriptions.

4.1 Simply supported C-shaped beam

The first test, with geometry and material reported in figure 7, consists in a simply supported
compressed beam with a C shaped section. It presents a nonlinear prebuckling behavior due to
two forces (torsional imperfections) at the mid-span and coupled instability. For this reason it
is a good benchmark to test the accuracy of the asymptotic analysis. A similar test was studied

Figure 7: Channel section: geometry and loads.

in [35] using shell elements and in [52] using a generalized beam model. The buckling values,
obtained by using a mesh of (8+8+18)×50 elements are reported in Table 3 and compared with
those computed using the compatible description with the frozen configuration hyphothesis.
The Koiter analysis uses the first four buckling modes plotted in Fig.8. It is possible to see how
the first two modes are global, essentially flexural and torsional respectively, while the others
are local modes.

The accuracy of the mixed asymptotic strategy in the evaluation of the limit load and of the
initial postcritical behavior is shown in Fig.9. It is also possible to observe the poor accuracy
of the frozen configuration analysis in estimating both the limit load and equilibrium path. In
Fig.10 the equilibrium path of Koiter method, in terms of the modal contributions ξk, is plotted.

5778



D. Magisano, L. Leonetti and G. Garcea

Figure 8: Channel section: Buckling modes

Figure 9: Channel section: Equilibrium paths λ− wA, λ− wB
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Mixed Compatible Mixed MN
steps 24 74 45
loops 73 175 233

Table 4: Channel section: steps and iterations for path–following analysis.

The strong effect of modal interaction between the third (local) mode and the first two flexural–
torsional (global) modes is shown.

Figure 10: Channel section: Equilibrium paths in ξk space.

The results of the mixed asymptotic analysis are in good agreement with the path-following
ones. In Tab.4 the steps and iterations of the mixed and compatible descriptions are compared.
Obviously the equilibrium path is exactly the same but the better performances of the mixed
description are evident even when a modified Newton-Raphson method (MN) is adopted.

4.2 A T beam

The second test regards the beam with data reported in Fig. 11. It consists in a simply
supported beam with a T shaped section loaded by a shear force acting at the mid-span and by
a small imperfection (ε = 1/1000) load as reported in the same figure. The precritical behavior
exhibits a strong nonlinearity and coupled bucklings are also present in this case. A mesh of
(9 + 9 + 18)× 100 elements has been used.

In Fig.12 the first 4 buckling modes, considered in the multimodal Koiter analysis, are plot-
ted.

In Fig.13 the equilibrium paths recovered by using both asymptotic and path-following anal-
ysis are reported and compared. The solution is accurately recovered by the asymptotic strategy
up to quite large displacements and the occurrence of a secondary bifurcation.

Figure 11: T section beam: geometry and loads
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Figure 12: Channel section: First 4 Buckling modes

Figure 13: T section beam: Equilibrium paths λ− wA, λ− vA
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Mixed Frozen
λ1 1092.1 936.8
λ2 1869.1 1860.4
λ3 1993.5 1989.6
λ4 2258.9 2252.1

Table 5: T section beam: first 4 buckling loads.

Mixed Compatible Mixed MN
steps 20 42 55
loops 60 169 252

Table 6: T section beam: steps and iterations for path–following analysis.

Also in this case (see Fig.14) the equilibrium path is plotted in terms of the modes amplitudes
ξk showing a strong interaction among modes 1, 2 and 4.

Figure 14: T section beam: Equilibrium paths in ξk space.

In Tab.6 the steps and iterations of the mixed, using both full o modified Newton (MN)
methods, and compatible descriptions are compared. This example highlights the excellent
performances of the mixed description even more than the previous test.

4.3 A simple frame

Finally Fig. 15 reports the geometry and the material properties of a simple portal frame,
similar to that analyzed in [52]. It consists of two beams with a C shaped section loaded as
depicted in the same figure. Coupled instability is present also in this case. Both the beams are
discretized using a mesh of (6+12+6)×40 elements. The node discretization is automatically
defined from those of the two beams.

In Fig.16 the first 3 buckling modes considered in the multimodal Koiter analysis are re-
ported.

Also in this case the equilibrium paths recovered using both the asymptotic and path-following
analysis are reported and compared in Fig.17. The frozen configuration asymptotic analysis fur-
nishes a similar equilibrium path to the mixed one but an overestimate in the limit load. The
mixed Koiter analysis accurately recovers the solution up to quite large displacements.

In Fig.18 the equilibrium path is plotted in terms of the modes amplitudes ξk showing a
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Figure 15: T section beam

Figure 16: Simple frame: First 3 Buckling modes

Figure 17: Simple frame: Equilibrium paths λ− wA
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Figure 18: Simple frame: deformed shape at the limit point and equilibrium paths in ξk space

Mixed Frozen
λ1 588.92 641.01
λ2 683.50 684.59
λ3 1025.90 993.66

Table 7: Simple frame: first 3 buckling loads.

strong interaction among modes 1, 2. In the same figure the deformed configuration at the limit
point is also reported.

Finally in Tab.8 the steps and iterations required by the mixed, using full and modified New-
ton method, and compatible descriptions are compared.

5 Conclusions

In this paper the better performances of mixed elements in the nonlinear analysis of slender
structures have been shown and explained. To focus on the origin of this behavior, which is
independent of the finite element interpolation, a compatible description of a mixed 3D solid
finite element has been derived. In this way it has been possible to show how the compatible
description, and so any compatible finite element, is affected by an underhand and neglected
extrapolation locking phenomenon that produces slow or lack of convergence for the path–
following analyses and inaccurate solutions for the Koiter method. The occurence of the locking
has been theoretically investigated and it has been indicated that it is due to the presence of
directions with different stiffness as typically occurs for slender structures which are usually
characterized by a high membranal/flexural stiffness ratio. These conclusions are general and
hold for any nonlinear structural model and finite element.

Many advantages of solid elements in geometrically nonlinear analysis are already known in
literature. In this paper we show further important properties of mixed solid FE within the Koiter
asymptotic formulation. In fact, due to the simple 3rd order dependence of the strain energy on

Mixed Compatible Mixed MN
steps 24 51 51
loops 73 196 198

Table 8: Simple Frame: steps and iterations for path–following analysis.
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its FE parameters, all the higher order energy variations are null and so it is possible to have:
i) an exact linear bifurcation analysis with improvements in its computational efficiency and
accuracy for non near buckling loads; ii) simplification and greater accuracy in the evaluation
of the energy variations required to recover the equilibrium path with a gain in terms of the
computational cost; iii) a more simple and effective numerical method which is easy to include
in FE packages.
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Abstract. The present paper is focused on the development of an accurate computational 
method, based on the Finite Element (FE) approximation, for predicting the collapse behav-
ior of thin-walled polygonal steel beams subject to bending. The numerical model has been 
created using the software ABAQUS, and has been validated with experimental data obtained 
from the literature, concerning rectangular hollow section (RHS) in the four-point-bending 
situation. The model has been improved by means of a thorough study of material hardening, 
imperfections and residual stresses. The computational results of the analyses have been 
compared with the design procedures provided by Eurocode 3 (effective cross-section method 
and reduced stress method), in order to check their suitability. 
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1 INTRODUCTION 

This paper describes the realization of a computational model for studying the flexural be-
haviour of polygonal, thin-walled sections at the ultimate limit state. This type of section is 
widely used as support of antennas in telecommunications, for lighting facilities and, in some 
cases, for small-scale wind turbines, see Figure 1. 

 

 (a)                                  (b) 
Figure 1: Examples of application of beams with thin-walled polygonal cross-section: (a) lighting tower; (b) 

mast for small-scale wind turbines.  
 
The main goal is to evaluate the flexural strength of the examined sections. Because of the 

high slenderness, these structures are subjected to local buckling phenomenon, which compli-
cates the determination of the load-carrying capacity. After a literature survey, we realized 
that many Authors have considered the load-carrying capacity of polygonal section, even 
though in most cases the reference problem was represented by axial load only (see e.g. [1], 
[2], [3]). The basic formulation for local buckling due to bending can be retrieved in the clas-
sical textbook [4], which reports the stability assessment for elastic plates rigidly jointed 
along their edges, in order to obtain open and closed thin-walled profiles. An attempt for the 
numerical simulation of local buckling can be found in [5], which reports also some results of 
an experimental campaign. The load carrying capacity of such structures is widely influenced 
by the presence of imperfections: some relevant information on residual stresses and geomet-
ric information can be retrieved in [6], [7] and [8], whereas the effect of metalworking process 
has been considered in [9]. 

In this paper, a computational model has been devised and the results of the analyses are 
compared to the expeditious procedures provided by Eurocode 3 (effective cross-section 
method and reduced stress method), checking their suitability. The numerical model has been 
created using the software ABAQUS [10], and has been validated with experimental data ob-
tained from the literature, concerning rectangular hollow section (RHS) [11]. The model was 
developed, improving on it with the addition of material hardening, imperfections and residu-
al stresses. The relevant data have been taken from Eurocode 3, literature or by experimental 
tests. The critical comparison with respect to experimental data has been used in order to as-
sess the validity of the model in terms of load-curvature response. 
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The analyses allowed us to understand the mechanisms by which the resistance develops in 
this type of sections. The comparison of the results of the numerical models with the Euro-
code 3 ones has shown that often the legislation does not estimate accurately the resistance 
values. Moreover, in cases of tapered sections or lightened ones, the legislation proves to be 
deficient if not entirely inapplicable.  

2 PROBLEM FORMULATION 

The safety of slender steel beams can be endangered by the lack of stability in many differ-
ent ways: global buckling refers to the overall collapse due to axial, bending, torsional or 
combined loads; distortional buckling is specially related to thin walled profiles, in terms of 
distortion of the cross-section with relative displacement of the nodes; local buckling, which 
is specifically treated in this paper, can be defined as the unstable behaviour of each single 
panel that constitute the cross-section, in the absence of global buckling and of relative dis-
placement of the profile’s nodes (which are basically fixed).  

A simple treatment of local buckling is obtained by considering each panel as a plate sub-
ject to membrane loading and suitably constrained in order to account for the effect of adja-
cent plates. The axial compressive stress, which eventually lead to buckling, can be provided, 
for instance, by the overall bending moment, as shown in Figure 2. 

 

 
Figure 2: Local buckling of a thin-walled polygonal beam subject to bending moment M.  
 
The simplistic approach is represented by the computation of the Eulerian critical load for 

elastic behaviour, in the case of simply supported rectangular plate (see [4]). In that way, one 
finds that the critical stress can be computed as: 

  
 

22

212 1



      

E
E

N E t
k

t b
    (1) 

where: b is the minimum width of the plate; t is its thickness; E and ν are the Young’s modu-
lus and the Poisson’s ratio, respectively; kσ is the load factor, which depends on the elastic 
distribution of axial stress. For instance, in the case of uniform compression (as it happens in 
the upper flange in Figure 2), one finds kσ = 4; other values are reported in [4] for various 
non-uniform distributions. 

A more reliable approach, which accounts for the post-critical behaviour, has been devel-
oped by Von Kármán on the basis of the concept of effective width [4]. Roughly speaking, the 
non-uniform stress distribution at plastic collapse is replaced by a piecewise constant distribu-
tion, with null value in the zone around the plate centre (which is assumed to be in the buck-
led configuration) whereas the lateral zones are subject to the yield stress for the given 
material. By enforcing the equivalence of the yield stress with the buckling tension of the ef-
fective zone, one finds: 
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where beff is the sum of the length of the lateral zones subject to the yield stress. 
This approach does not take into account the effect of imperfections, which play a para-

mount role in the evaluation of critical load. Imperfections in steel structures may have differ-
ent nature but they can be divided into a couple of categories: mechanical imperfections and 
geometrical imperfections. The former include the presence of residual stresses, due to the 
specific metalworking procedure (e.g. hot rolling or cold forming), and the non-uniform dis-
tribution of pristine yield limit, due e.g. to the folding process. An example of this kind of im-
perfection, which is quite important for polygonal sections, is reported in Figure 3. 

 

 
Figure 3: Typical distribution of the material properties on a cold-formed profile.  
 
Geometric imperfections can be further divided into global defects (e.g. overall bow of the 

beam) and local defects (e.g. non-uniform thickness, lack of orthogonality, etc.). In the case of 
local buckling, the latter are by far more important. According to Eurocode 3 part 5, Annex C 
[12], the geometric imperfections can be modeled on the basis of the buckling modes (such as 
the one represented in Figure 2), with a recommended amplitude equal to 80% of the fabrica-
tion tolerances. 

One theoretical approach, which accounts for the presence of imperfections, has been for-
mulated by Winter [4]. The evaluation of the effective width is based on the dimensionless 
slenderness parameter λp: 

     


 y
p

E

f
      (3) 

where the critical stress is referred to the whole width, see Equation (1). Winter proposed the 
following expression, which is assumed in the current code provisions [12]: 

       0.22 11 1
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b
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     (4) 

A graphical comparison of the abovementioned approaches, in terms of the average col-
lapse stress σL, is reported in Figure 4. 

In the present paper, a computational approach is preferred in order to capture the collapse 
load for the whole cross-section. A 3D Finite Element (FE) model has been devised, as better 
specified in the next section, and a set of non-linear static analyses have been carried out, en-
compassing the non-linear geometric effects and the elastic-plastic behaviour. In any case, a 
preliminary step has been represented by linear buckling analyses, in order to evaluate the 
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buckling modes which are used to model the geometric imperfections. The final load-
curvature response has been obtained by applying an incremental (step-by-step) analysis with 
arc-length control. Such a provision is necessary in order to account for strongly unstable be-
haviour, such as snap-back or snap-through phenomena, that are likely to occur in the present 
structural case, dominated by imperfections. The analyses have been repeated for different 
width-to thickness ratios, with the purpose of evaluating the collapse behaviour in various 
cases. It is worth noting that the width-to-thickness ratio represent the basic parameter used to 
decide whether the considered section is prone to local buckling. 
 

 
Figure 4: Stability curves for a simply supported plate (representative of a panel in thin-walled cross-sections) 

with reference to different theoretical approaches.  

3 RESULTS  

3.1 Finite Element model 

The computational model has been tested with reference to experimental data, obtained at 
the University of Sidney, Australia, by Wilkinson and Hancock [11]. Those Authors have car-
ried out a set of four-point bending tests on steel beams with rectangular hollow section 
(RHS). Several specimens with different thickness of the flanges have been tested, more spe-
cifically RHS 150x50x4, RHS 150x50x3 and RHS 150x50x2.3 (all the measurements are in 
millimeters); in that way, it was possible to evaluate the increasing sensitivity to imperfection 
for decreasing thickness. The scheme of the experiments is depicted in Figure 5a; conversely, 
Figure 5b shows a simplified model of a beam subject to pure bending. In the following, both 
models will be considered, since the experiment model (Figure 5a) was used for a direct com-
parison with the tests and the simplified model (Figure 5b) could be adopted for further gener-
alization and application to cross-sections of different shapes. The main outcome of the 
experimental campaign was a set of moment-curvature plots, which are normalized with re-
spect to the elastic limit moment (Mp, namely the moment that corresponds to the first attain-
ment of yield stress in the worst point on the cross-section) and to the corresponding 
curvature (χp, given by the elastic limit moment Mp divided by the elastic stiffness EI). 

The Finite Element model was represented by a fine discretization of the RHS beams, us-
ing quadrilateral shell elements. In view of the very small thickness of the flanges, we chose a 
formulation which is suitable for thin shells, thus neglecting the shear deformation. Linear, 4-
node, elements have been used, with 5 degrees of freedom per node and reduced integration 
with hourglass mode control. The FE mesh has been chosen after the convergence analyses 
and is more refined in the central zone, as shown in Figure 6. The experiment model included 
also the discretization of the load posts and of the bearing devices.  
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(a) (b) 
Figure 5: Scheme of the models considered in the computational analyses: (a) experiment model, which 

shares the geometric features with the tests in [11]; (b) simplified model, used for further generalization.  

 
Figure 6: Typical FE model adopted in the non-linear analyses until collapse.  
 
The preliminary step was represented by linear buckling analyses. In that way, it was pos-

sible to have an idea of the different buckling modes, shown in Figure 7: (a) local buckling 
due to compression on the upper flange; (b) local buckling due to bending on the vertical 
flanges; (c) local buckling due to shear on the lateral bays; (d) overall buckling. The 
knowledge of buckling modes was also necessary in order to include geometric imperfection 
in the subsequent non-linear analyses.  

The collapse analyses, based on the arc-length method, included non-linearity from the ge-
ometric point of view and for material behavior. An elastic-plastic model, based on the Mises’ 
yield function, has been adopted. Non-linear hardening was included, with the main purpose 
of simulating the actual behavior of steel specimens extracted from the tested structure [11]. It 
is worth noting that the material law was not uniform in space: indeed, due to fabrication pro-
cess, the material close to the corners is more resistant and more brittle than the material in 
other locations. More specifically, three different zones have been considered: corners, hori-
zontal flanges, vertical flanges (see Figure 8). 

The optimal version of the FE model has been obtained after several parametric analyses. 
First, the effect of imperfections, both in terms of amplitude and in terms of shape, was con-
sidered. Nice results have been obtained by considering the imperfection as proportional to 
the first local buckling mode (see Figure 7a), with a typical amplitude equal to 1/250 ÷ 1/500 
of the beam’s height. The effect of residual stresses was included as well: we finally adopted 
the typical values proposed by [6] and [7] (ranging between 0.08 fy and 0.17 fy, in correspond-
ence of the longitudinal weld and of other locations, respectively). 
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(a) (b) 

(c) (d) 
Figure 7: Results of the preliminary buckling analyses: (a), (b) local buckling for bending; (c) local buckling 

for shear; (d) overall buckling.  

 
Figure 8: Uniaxial elastic-plastic material behavior for different zones of the RHS cross-sections.  
 

3.2 Comparison of load-curvature responses 

The optimal FE model, which did not include any fitting parameter, provided us the col-
lapse load (see Figure 9 for the final deformed shape) and (after some post-processing) the 
load-curvature response (see Figure 10-12).  

Generally speaking, satisfactory agreement between experimental and numerical data was 
obtained. The ultimate bending moment was captured with a reasonable relative error in all 
the considered cases; the ultimate curvature (as well as the initial stiffness) was very well 
simulated; also the deviation from linearity, owing to second-order geometric effects, was at-
tained at the same load level with respect to the experimental outcomes. 
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 (a)  (b) 
Figure 9: Deformed shape at collapse: (a) experiment model; (b) simplified model.  

 
Figure 10: Load-curvature response for RHS 150x50x2.3.  

 
Figure 11: Load-curvature response for RHS 150x50x3.  

 
Figure 12: Load-curvature response for RHS 150x50x4.  
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Some differences between the curves could be due to the spatial discontinuities of the con-
stitutive law. In the real case, the stress-strain model is smoothly changing between the vari-
ous parts of the section highlighted in Figure 8, conversely the FE model includes piecewise 
constant material laws. Another cause of discrepancies could be represented by the stochastic 
nature of imperfections, which turned out to play a paramount role in the definition of the col-
lapse load. 

All the analyses have been repeated by adopting the simplified model: as a matter of fact, 
some differences arose with respect to the experiment model. Even though the curves shared 
the same shape, the simplified model involved slightly larger ultimate loads. The difference 
could be explained by considering the effect of the loading posts, which have been completely 
modeled in the experiment model and are totally absent in the simplified model. However, 
both model revealed to be adequate to catch, with sufficient accuracy, the experimental re-
sponse. This provided a sound validation of the computational models. 

4 CONCLUSIONS  

An optimized FE model for the collapse analyses of polygonal steel beams has been pro-
posed and validated against reliable experimental data. Satisfactory agreement between the 
computational outcomes and the experimental data has been achieved, so that the computa-
tional model is basically ready to be used in other cases. As an example, the case of hexagonal 
or octagonal profiles could be considered, in order to execute the safety assessment of struc-
tures with practical interest. 

The presence of a computational tool for that kind of structures is specifically important, 
since the application of simplified formulas, which can be retrieved in the Eurocode (EC) [15], 
is rather questionable for polygonal cross-section with six sides or more. As an example, we 
considered the theoretical computation of ultimate moment for three cases of RHS: the results 
are summarized in Table 1. One can easily realize that the formula proposed by the EC, 
though very simple to be used, finally yields poorly approximate results, which are not on the 
safe side (the ultimate moment is overestimated by the EC procedure). Some current research, 
which will be reported in a forthcoming paper, shows that the inaccuracy of EC formulas is 
even larger for sections with six sides or more  

 

Section  Class 
Mu (EC) 
[kN∙m] 

Mu (FE) 
[kN∙m] 

∆ 
[%] 

RHS 150x50x2  3  12.36  11.91  + 3.73 

RHS 150x50x3  1  23.05  20.51  + 12.38 

RHS 150x50x4  1  29.95  28.69  + 4.38 
 
Table 1: Comparison between the ultimate moment obtained via the numerical procedure (FE) and the for-

mula proposed by the Eurocode (EC).  
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Abstract. In this paper, the influence of several elastic constitutive laws upon the stability 

analyses of plane trusses is discussed. The chosen laws are connected to the engineering 

strain, Green’s strain and logarithmic strain concepts. A geometrically exact nonlinear for-

mulation for a truss bar element is developed for each of them and the correspondent tangent 

stiffness matrices are obtained. 

The stability analyses of some sample plane trusses are performed by finding the conditions 

when the determinant of their respective global tangent stiffness matrices is found to be zero. 

The first example is a symmetric two-bar structure and both limit loads and buckling loads 

are plotted for the full range of possible initial inclination angles of the bars, for the three 

chosen constitutive laws. A similar truss with an extra vertical bar is studied to discuss possi-

ble material instability if Green’s strain concept is adopted. 
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1 INTRODUCTION 

The presented direct formulation of the geometrically exact nonlinear theory of elastic 

trusses is of great simplicity and elegance and has already been obtained, for plane trusses and 

adopting the engineering strain concept, in a pioneer paper by Turner et al (1960) [5]. 

 

The central idea of this approach can be abstracted as follows, following Levy and Spill-

ers (1995) [2]. Let the equation of equilibrium of a system be written as 

 CNP   (1) 

where P represents the applied loads, N the internal forcers or stresses and C an appropriate 

equilibrium operator. Under a load perturbation dP, the system responds as 

 NCNCP ddd   (2) 

For discrete systems such as trussed structures it turns out to be relatively simple matter to 

convert this equation into the usual 

 qKP T dd   (3) 

where qd represents the system’s incremental generalized displacements and TK is the tangent 

stiffness matrix containing the usual elastic and geometric stiffness matrices. With this ap-

proach, which is followed throughout this paper, nonlinear structural analysis becomes simply 

an application of Newton-Raphson’s method of nonlinear equations solution. 

 

2 GENERAL THEORY 

In the geometrically exact theory for trusses, no restrictions are made to the amplitude of 

angular deflections. Let us consider the plane truss bar of Fig. 1. Its initial length is L. The 

relationships between the vector of nodal displacements q of a plane truss bar and the values 

of   and L  (the angle between the displaced position of the bar and its original position and 

the deformed length of the bar, respectively) are 

 qc LL  (4) 

where 

   sincossincos c  (5) 

  tqqqq 4321q  (6) 

To compute the strain i  (with i= 1 for engineering strain, i = 2 for Green’s strain and   i = 3 

for logarithmic or natural strain) the following expressions are used, according to Argyris et al 

(1960) [1], 

 11    (7) 

 
2

12

2





  (8) 

  ln1   (9) 

where LL / . 
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Figure 1: Reference and actual configuration of a truss element 

 

The exact values of the components of nodal forces, as depicted in Fig. 1, are 

 
tN cQ   (10) 

where 

  tQQQQ 4321Q  (11) 

and N is the normal force in the bar. The constitutive laws render the actual normal stress i  

by the following expressions 

 111  E  (12) 

 222  E  (13) 

 



 3

33 E  (14) 

where iE  is the elastic modulus correspondent to the chosen strain concept. 

Thus, the normal force is given, for each constitutive law, by 

 AN ii   (15) 

where A is the area of the cross section of the bar. 

To obtain the expression of the tangent stiffness matrix Tk , one must differentiate Eq. 10 

to get 

 dNdNd tt
scQ   (16) 
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where 

   cossincossin s  (17) 

Next, one must establish relationships between the differentials d and dN and the dis-

placement increments qd . To that end, Eqs. 4 and 15 are used, to obtain 

 qs d
L

d
1

  (18) 

 qc dAD
L

dN i

1
  (19) 

where 

 11 ED   (20) 

  13
2

22
2  

E
D  (21) 

  


ln1
2

3
3 

E
D  (22) 

It is now necessary to introduce into Eq. 16 the values of d and dN  given by Eqs. 18 

and 19, to obtain 

 qssccQ
tt d

L

N

L

AD
d ii











  (23) 

the equation that renders the tangent stiffness matrix of the exact theory for each of the elastic 

constitutive laws adopted: 

 sscck
tt

T
L

N

L

AD ii


  (24) 

As in the usual matrix analysis of structures, once the tangent stiffness matrix of the bar in 

the local reference frame is known, its counterpart in the global one is easily obtained by the 

rotation formula, given, by example, by Meek (1991)[3], 

 TkTk T

t

T   (25) 

where 

 
































cossin00

sincos00

00cossin

00sincos

T  (26) 

and is the angle between the original direction of the bar and the x axis of the global refer-

ence frame, as shown in Fig. 1. 

As a more practical alternative, one can introduce the new matrices 

   sincossincos c  (27) 

   cossincossin s  (28) 
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where   , which are related to Eqs. 5 and 17 by 

 cTc   (29) 

 sTs   (30) 

Thus, a new form of the tangent stiffness matrix of the truss member in the global refer-

ence frame is 

 sscck
tt

T
L

N

L

AD ii


  (31) 

which is formally identical to Eq. 24. 

To obtain the tangent stiffness matrix of the structure as a whole, the following summa-

tion process is extended to all members of the system 

 AkAK T

t

T   (32) 

where A is the usual incidence matrix of each bar. 

 

3 THE FIRST EXAMPLE 

The first chosen example is the classic two bars truss whose stability was studied by 

Ratzersdorfer (1936) [4], also known as von Mises truss, depicted in Fig. 2. 

 

 
Figure 2. The first example 

As it is well known, depending to the initial geometry, either bifurcation or limit point in-

stabilities may happen. The original length of the bars is L and their original inclination . 

After a vertical load P is applied to the central node the length of the bars becomes L  and 

their inclination . 

If the exact theory is applied, the tangent stiffness matrix associated to the two degrees of 

freedom of the central node is 
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2
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0sin2
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AD ii
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where the constant iD and the normal force iN  depend on the particular constitutive law cho-

sen. 

The instability criterion is that the determinant of this matrix must be zero. 
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3.1 Engineering Stain  

For the engineering strain constitutive law, the instability criterion is 

    0coscoscoscossin 32    (34) 

The condition for lateral buckling of the structure is given by 

  coscossin2   (35) 

and the corresponding buckling load is 

  sincos2 2

1AEPb   (36) 

Limit point instability (snap-through) may be reached according to the condition 

  coscos3   (37) 

and the corresponding buckling load is 

 3

1 sin2 AEPl   (38) 

In Fig. 3, both bucking and limit loads are plotted for the full range of possible initial in-

clination angles of the bars. One should note that for  > 68.898o bifurcation instability (lat-

eral buckling) will prevail with bucking loads given by the lower branch of the respective 

curve. For  bellow that value the structure may undergo snap through instability. It is im-

portant to see that this value, denoted as point A in the figure, is slightly different from that of 

the tangential point between the limit point and buckling curves, where = 45o and  = 

69.295o. 

 
Figure 3: Instability loads, First Example, Engineering Strain 
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3.2 Green’s Strain  

For this strain definition, the condition for lateral buckling of the structure is given by 

 2tantan 22    (39) 

and the corresponding buckling loads are 

 2tancos2 23

2  AEPb  (40) 

For Green’s strain, limit point instability (snap-through) may be reached according to the 

condition 

  tan
3

3
tan   (41) 

and the limit load is 

 3

2 sin
9

32
AEPl   (42) 

In Fig. 4, both bucking and limit loads are plotted for the full range of possible initial in-

clination angles of the bars. One should note that for  > 60o bifurcation instability (lateral 

buckling) will prevail with bucking loads given by the right branch of the respective curve. 

For  bellow that value the structure may undergo snap through instability. It is important to 

see that this value is exactly that of the tangential point between the limit point and buckling 

curves. 

 
Figure 4: Instability loads, First Example, Green's Strain 
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3.3 Logarithmic Strain 

For this strain definition, the condition for lateral buckling of the structure is given by 

 0cos)ln21(ln 22    (43) 

For natural strain, limit point instability (snap-through) may be reached according to the 

condition 

 0cos)ln21()ln1( 22    (44) 

Instability loads for both cases are given by 

 

 .cosln
2 22

2

3 



AE

P  (45) 

In Fig. 5, both bucking and limit loads are plotted for the full range of possible initial in-

clination angles of the bars. It is important to see that the two curves never touch each other 

and for  >71.278o bifurcation instability (lateral buckling) will prevail with bucking loads 

given by the lower branch of the respective curve. For  bellow that value the structure may 

undergo snap through instability. 

 
Figure 5: Instability loads, First Example, Natural or Logarithmic Strain 
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4 THE SECOND EXAMPLE 

 
Figure 6: The Second Example 

 

The structure of Fig. 6, similar to the first example except for an extra vertical bar under 

the upper node, is now analyzed using Green’s strain constitutive law. The starting point is Eq. 

32 which gives the contribution of the two inclined bars to the tangent stiffness matrix of the 

structure. 

 

By adding to this equation the new term: 
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where 
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is the stretching of the vertical bar, the complete TK is found to be 
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In Eq. 47,  
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)1( 2
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AE
N  (49) 

and 

 
2

)1(
2

2 
 VVAE

V


 (50) 

according to the assumed constitutive law. 

 

The instability criterion requires the determinant of this matrix to be zero. The first condition, 

corresponds to the lateral buckling of the structure and leads to the buckling load: 
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  tancos2 3

2 AEPb   (51) 

The second condition corresponds to a null value of the stiffness coefficient related to the 

vertical displacement of the upper node. However, this is not an indication of a genuine snap 

snap-through phenomenon, but is a consequence of the material instability inextricably pre-

sent in the constitutive law. 

This assertion can be easily proven from Eqs. 13 and 21 and: 

 )1(
2

22
222  

E
E  (52) 

The zero value of its derivative is 

 013 2   (53) 

which gives the limit value: 

 
3

3
l  (54) 

This is the very value that is obtained combining the definition of V given by Eq. 46 with 

the condition of Eq. 53: 

 
3

3

tan

tan





V

 (55) 

In Fig. 7, both bucking and limit loads are plotted for the full range of possible initial in-

clination angles of the bars. It is important to see that limit point and buckling curves touch 

each other in two points. One should note that for  < 10o bifurcation instability (lateral buck-

ling) will prevail with bucking loads given by the left branch of the respective curve. For 

10o<<50othe structure may undergo snap through instability. For larger values of the 

structure may experience bifurcation (lateral buckling) instability, with buckling loads given 

by the right branch of the respective curve. 

 
Figure 7: Instability loads, Second Example, Green's Strain 
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5 CONCLUSIONS  

In this paper, the influence of several elastic constitutive laws upon the stability analyses 

of plane trusses is discussed. The chosen laws are connected to the engineering strain, Green’s 

strain and logarithmic strain concepts. A geometrically exact nonlinear formulation for a truss 

bar element is developed for each of them and the correspondent tangent stiffness matrices are 

obtained.  

The stability analyses of some sample plane trusses are performed by finding the condi-

tions when the determinant of their respective global tangent stiffness matrices is found to be 

zero. The first example is a symmetric two-bar structure and both limit loads and buckling 

loads are plotted for the full range of possible initial inclination angles of the bars, for the 

three chosen constitutive laws. A similar truss with an extra vertical bar is studied to discuss 

possible material instability if Green’s strain concept is adopted. 
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Abstract. Ultimate strength of stiffened panels of Ship Structures can evaluate the bearing 

capacity of stiffened plate structure more accurately, and it provides a way to evaluate the 
safety and reliability of the hull structure. A lot of studies on ultimate strength of the hull 
structure are basically focused on stiffened panels under uniaxial compression, without con-

sidering combined load acting on the hull structure.But in the voyage, the hull structure is 
subjected to combined effect involved with various type of external loads at the same time. 

These external loads will inevitably have some impact on the ultimate strength of the hull 
structure. So it is necessary to study the ultimate strength of the stiffened panels under com-
bined load. The nonlinear finite element method was introduced based on the assessment re-

quirements of buckling and ultimate strength of stiffened panels in IACS Common Structural 
Rules for Double Hull Oil Tankers. Some important factors of influence such as the structural 

dimensions, element size, boundary conditions, initial imperfections and loading types are 
studied. To check the accuracy of the analysis performed in this method.Numerical results 
were compared with data in the Background Document of buckling strength assessment in 

CSR and results calculated by empirical formulations performed by other researchers. This 
paper focuses on investigating the effect of combined load on the ultimate strength of stiffened 

plates by calculating the ultimate strength of stiffened plates under combined biaxial com-
pression and lateral pressure loads, by means of the famous nonlinear finite element software 
Ansys. The different influence on the ultimate strength of the stiffened plates are analyzed.  
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1 INTRODUCTION 

The traditional checking method of ship structure strength checking based on linear elastic 

rationale. The impact of material nonlinearity and geometric nonlinearity caused by other fac-
tors not be considered,therefore it can not accurately assess the true strength reserve hull 
structure. "Common Structural Rules for Double Hull Oil Tankers" (herein after referred to as 

CSR-OT) introduced the concept of the ultimate strength of stiffened panels what can evalu-
ate the bearing capacity of stiffened plate structure [1]. A lot of studies on ultimate strength of 

the hull structure are basically focused on stiffened panels under uniaxial compression, with-
out considering combined load acting on the hull structure. But in the voyage, the hull struc-
ture is subjected to combined effect involved with various type of external loads at the same 

time. These external loads will inevitably have some impact on the ultimate strength of the 
hull structure. So it is necessary to study the ultimate strength of the stiffened panels under 

combined load. The nonlinear finite element method was introduced based on the assessment 
requirements of buckling and ultimate strength of stiffened panels in IACS Common Struc-
tural Rules for Double Hull Oil Tankers. This paper focuses on investigating the effect of 

combined load on the ultimate strength of stiffened plates by calculating the ultimate strength 
of stiffened plates under combined biaxial compression and lateral pressure loads. 

2 NON-LINEAR FINITE ELEMENT ANALYSIS 

Ultimate strength can be performed using the element analysis software ANSYS. The pa-
per adopts ANSYS nonlinear finite element method for ultimate limit state assessment. 

2.1 Geometric and Material Properties  

For the current research a VLCC double hull oil tanker structure designed by CSR method 
is studied. The deck panel is chosen for the analysis purposes. Geometrical properties of the 

stiffened panel of the deck of the object ship are tabulated as follows: 
The length of the panel is L=5640 mm. The longitudinal stiffener spacing is w=850 mm, 

because the number of longitudinal stiffeners with the type of Tee bar is 6. Therefore, the total 
breadth of the stiffened panel is W=5100mm.The plate thickness is t=21mm. The stiffener 
height (dw) is 393 mm and the stiffener webthickness (tw) is 13 mm. The stiffener flange 

breadth (df) is 172 mm and the stiffener flange thickness (tf) is 17mm. Young's modulus of 
the material is E=205.8 GPa, and Poisson's ratio is v=0.3. The yield stress is σy =315 MPa for 

both plating and stiffeners. A plastic tangent modulus of 1000MPa is acceptable for higher 
strength steel. 

2.2 Structural Modeling.  

The extent of the model used in the ultimate strength assessment is to be sufficient to ac-
count for the structure that is surrounding the panel of interest, and to reduce the uncertainties 

introduced through the boundary conditions. 
In general, the model is to include more than one stiffener span in the stiffener direction 

and the portion between two primary support members in the direction normal to the stiffen-

ers [2]. 
The structural model and assessment method applicable for deck is to be taken as:  

(a) parallel to the stiffener direction: at least two frame bays, in order to model imperfec-
tions between adjacent panels. 

(b) normal to the stiffener direction: between primary support members, b ut maybe limited 

to six stiffener spacings. 
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Figure 1: Stiffened plate geometry. 

For the present nonlinear FEA, a half+one+half-bay model (1/2+1+1/2-bay model) in the 
length (x) direction is applied to accurately take into account the effect of rotational restraints 

along transverse floors, as described in Fig. 1. The meshing of the 3-D FE model of hull struc-
ture is to be carried out considering both calculation accuracy and computing time. The mesh-

es are to be as square as possible. 
The element type chosen for analysis is ‘Shell181’. This element is most suitable for ulti-

mate strength analysis [3]. Stiffened plate plate and stiffener (including panels and web) are 

modeled with ‘Shell181’. The element size is to be small enough to describe the deflections 
accurately. A mesh size of 141 is chosen to mesh the area. 

The coordinate system used within these Rules is shown in Figure 1. Motions and dis-
placements are considered positive in the forward, up and to port direction. Angular motions 
are considered positive in the clockwise direction about the x, y or z axis. 

2.3 Boundary Conditions  

The boundary conditions are to represent the actual response of the stiffened panel. the 

simply supported boundary condition is often adopted in maritime industry . The edges of 
model may be taken as free to move in-plane, but forced to remain straight[4]. The panels can 
be taken as supported in the vertical direction at the primary support members. The stiffeners 

should be taken as horizontally supported at the crossing of primary support members. In this 
model, the transverse floor is not modeled. Instead appropriate boundary conditions are ap-

plied along the length of the transverse floor attached with plating and longitudinal stiffeners 
to account for the effects of the transverse floor [5]. The following are the boundary condi-
tions of the nonlinear finite element model, namely 

Longitudinal edges Y=0 and Y=W: UZ=0,ROTY=O,ROTZ=0.  
At X=2L all nodes to have equal X-displacement.  

At X=0 edge UX=0.  
At Y=0 and Y=W: ROTY=0, ROTZ=0.  
At Y=0 and Y=W all nodes to have equal y-displacement.  

At transverse frame: All plate nodes UZ=0. 
All stiffener web nodes all nodes to have equal Y displacement. 

The boundary conditions for nonlinear analysis is shown in Figure 2. 
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Figure 2: Boundary conditions of stiffened plate. 

2.4 Initial Distortions  

Initial distortions make significant impact on the result of the ultimate strength behavior of 

stiffened plate structures. Therefore, it is important to model the shape and magnitude of ini-
tial imperfections in a relevant way [6]. The imperfections may be divided into local imper-

fections (plate out-of- flatness and stiffener sideways out-of-straightness), and global 
imperfections of the stiffeners(stiffener lateral/vertical out-of-straightness). No residual stress 
is supposed to exist for this research study. 

For performing a nonlinear finite element computations, the pattern of initial imperfections 
that are required to be generated for initiation of the buckling eigenvalue analysis is assumed 

to be the buckling mode of the structure that provides the minimum resistance against the ac-
tions. 

2.5 Comparison of the Method.  

To check the accuracy of the analysis performed in this method,Numerical results were 
compared with data in the Background Document of buckling strength assessment in CSR 

and results calculated by empirical formulations performed by other researchers. 
In 2009, Shengming Zhang [7] calculated the ultimate strength of 132 Ship Common stiff-

ened plate, and summed up the following empirical formula: 

The following example is a single line equation: 

 ,  (1) 

The following example is a single line equation: 

    (2) 

The following example is a single line equation: 

  (3) 

Where B = (n + 1) b, n = the number of ribs, B = stiffened plate width, r = the radius of in-
ertia ribs.  
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Background document lists the ultimate strength of stiffened plate[8], A quick comparison 
among the background document results, the non- linear FE results and empirical formula re-

sults for the six stiffened panels in Table 1 and 2 were carried out.  
 

No. L(mm) w(mm) t(mm) dw(mm) tw(mm) df(mm) tf(mm) 

T-1 6 850 15 613 10 200 13 
T-2 4.5 850 25 613 10 200 13 

T-3 6 850 20 613 10 200 13 
T-4 4.5 850 20 613 10 200 13 

T-5 5 850 19 462 9 150 12 
T-6 3.5 850 19 462 9 150 12 

 

Table 1: Basic characteristics of stiffened panels .  

 

No. background document  
results(Mpa) 

empirical formula  
results(Mpa) 

non-linear FE  
results(Mpa) 

T-1 254 249.11 248.95 

T-2 289 289.12 294.29 
T-3 273 269.48 261.01 

T-4 280 271.81 281.97 
T-5 264 263.17 259.54 
T-6 273 267.66 256.14 

 

Table 2: Comparison of ultimate strength. 

Contrast to results in this paper, the calculation method is right.  The paper will analyze the 

ultimate strength of stiffened plates under combined loads using the above method. 

3 ULTIMATE STRENGTH OF STIFFENED PANEL  

3.1 Different Proportions of Axis Pressure  

The ultimate strength of stiffened panels under different proportions of axis pressure is 
studied, include: σx: σy = 1.0: 0,0.79: 0.21,0.4: 0.6,0: 1.0, where σx: σy = 1.0: 0 the corre-

sponding longitudinal uniaxial compression, σx: σy = 0: 1.0 corresponds to transverse uniaxi-
al compression, the following table shows the strength of stiffened panels under different 
proportions of axis pressure.  

 

σx:σy σxu（MPa） σyu（MPa） 

1.0:0 246.38 - 

0.79:0.21 236.37 62.83 
0.4:0.6 63.31 94.96 
0:1.0 - 96.89 

 

Table 3: Ultimate strength of stiffened panels under different proportions of axis pressure. 
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3.2 Combined Biaxial Compression and Lateral Pressure Loads 

The ultimate strength of stiffened plates under combined biaxial compression and lateral 

pressure loads is studied.All calculations lateral pressure is added in 2.1, and remains constant 
lateral pressure, namely p = 0.16MPa throughout the calculation process [9]. Before the finite 
element calculation process, the lateral pressure is applied on the stiffened plates, and obtain 

the the ultimate strength of stiffened plates. The following table shows the ultimate strength 
of stiffened plates under combined biaxial compression and lateral pressure loads.  

 

σx:σy σxu（MPa） σyu（MPa） 

1.1:0 209.40 - 
0.79:0.21 210.91 56.06 

0.4:0.6 64.90 97.35 
0:1.0 - 98.19 

 

Table 4: Ultimate strength of stiffened plates under combined biaxial compression and lateral pressure loads . 
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Figure 3: stress-strain curves of stiffened plates under combined biaxial compression and lateral pressure loads . 
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4 CONCLUSIONS  

 A FEA method of ultimate strength was put forward based on the analysis of the influ-

ence of different factors and the study on the CSR. Some important factors of influence 
such as the structural dimensions, element size, boundary conditions, initial imperfec-
tions and loading types are studied. A comparison among the background document re-

sults， the non- linear FE results and empirical formula results was provided to verify the 

method. 

 By the calculation and analysis of stiffened plates under axial compressio n and lateral 

pressure, the results showed that lateral pressure make a negative impact on the ultimate 
strength of stiffened panels when t the proportion of Uni-axial compression in the direc-
tion of the stiffener is greater, and lateral pressure make a negligible impact on the ulti-

mate strength of stiffened panels when the proportion of Uni-axial compression in the 
direction of the transverse is greater. 
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Abstract. The seismic design of structures generally considers a fixed base assumption, thus 

neglecting interaction with the supporting soil. The main structural property considered is 

usually the fundamental period. However, when the influence of soil-foundation-structure 

interaction (SFSI) is taken into account, other parameters such as structural slenderness, may 

play an important role in the response. Current design codes, (e.g. FEMA-440 and FEMA-

450), assume that SFSI always has beneficial effects in the form of a reduction in the 

fundamental period spectral acceleration or base shear. This assumption has been studied 

and discussed by several authors. Additionally, in major urban areas structures are generally 

closely adjacent, and this situation is more complex than that of a structure whose response 

may be considered independent of all others. This study sets-out to improve the understanding 

of the behaviour of a clustered structure-soil-structure system. A 2D numerical model is used 

to simulate the behaviour of single and multiple structures on sand considering a range of  

slenderness ratios. Linear single degree-of-freedom (SDOF) structures and nonlinear soil are 

considered. The role of key parameters, e.g. effective building period and slenderness ratio of 

the structure-foundation system, will be elucidated. 
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1 INTRODUCTION 

A common practice in structural design is to neglect the influence of foundation soil by 

assuming a fixed base condition. Also, the natural period of the fixed base structure, T, is 

usually considered as the main design parameter. Furthermore, when soil-foundation-structure 

interaction (SFSI) is considered, the possible effects are generally assumed beneficial (e.g. 

reducing the spectral acceleration or the base shear). The effects of SFSI have been discussed 

by e.g. Mylonakis and Gazetas [1] who presented a study showing an increase of seismic 

demand due to SFSI for certain soil conditions. The influence of structural slenderness has 

also been highlighted when SFSI is considered in the structural response [2]. Karaca and 

Turkeli [3] identified the relevance of the slenderness on the response of reinforced concrete 

chimneys. The increasing lack of space, especially in dense urban areas, has made the 

interaction between adjacent structures an active research field in the last decades. The 

concept of structure-soil-structure interaction (SSSI) was introduced e.g by Luco and 

Contesse [4] and Chouw and Schmid [5,6]. A literature review about SSSI was presented e.g 

by Lou, et al. [7]. However, most of the advances in SSSI are achieved with analytical 

solutions for simplified  problems based on an assumption of linearity for the different 

components of the system (i.e. soil and structure). It is well known that an assumption of 

linear behaviour for soil is valid only for  a very small range of deformation, which is clearly 

not the case in the seismic response.. 

The National Earthquake Hazards Reduction program (NEHRP) [8] developed guidelines 

to consider the influence of SFSI on structural design. This NEHRP publication highlights the 

limited application of SFSI and describes the effects in common engineering practice, while 

also summarising several methods presented in other codes and guidelines.  

One of the methodologies is presented by FEMA-440 [9]. This guideline divides SFSI into 

the effects of the fundamental period (�̃�) and the damping of the soil-structure system. Based 

on the foundation damping (𝛽f) a modified damping ratio (𝛽0) is proposed for the 

computation of the response spectrum. The design response spectrum is calculated with the 

damping ratio 𝛽0. Other approach is presented by FEMA-450 [10]. This methodology 

considers a reduction of the base shear. The final outcome as to beneficial or detrimental 

effect of SFSI depends of the combined effect of the two factors: (1) increase in damping due 

to SFSI system and (2) period elongation of the SFSI system (Figure 1). It is possible for a 

structure with a fundamental fixed-base period on the ascending branch of the response 

spectrum to have an increase system spectral acceleration. This can be seen in the left most 

part of Figure 1. The opposite can be seen, an overall decrease of the spectral acceleration, for 

a structure with a fixed-base period on the descending branch. 

 

Figure 1: SFSI effects on spectral acceleration and base shear [5] 
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In previous studies the incorporation of the site-specific frequency content of the ground 

excitation, structural slenderness and the presence of the adjacent structures is hardly 

considered. This paper presents the results of the preliminary work to elucidate the 

consequence of structural slenderness  and closely adjacent structures.  is the ratio of the 

structural height (see Table 2) to the footing width of 6 m. 

2 METHODOLOGY 

2.1 FEM model 

The finite element (FE) software GEFDyn [11,12] was used for all the studies performed. 

A 2D model and a plane-strain approach were utilised. A 30 m height soil profile was 

considered. Beneath the soil a 5 m thick layer of bedrock was assumed. Paraxial elements [13] 

were used at the lateral boundaries of each model. Those elements allow entry  of the incident 

wave and, at the same time, satisfies radiation damping. The width of each model was 

selected to minimise the influence of the lateral boundaries. Figure 2 shows the FE model for 

2 closely adjacent structures. When a single structure is considered it is located at the centre 

of the model to avoid asymmetry effects. 

  

Figure 2: FE model considering adjacent structures 

2.2 Soil parameters  

The elasto-plastic multi-mechanism model developed at Ecole Centrale Paris (ECP) also 

known as Hujeux or ECP’s model was used to represent the soil behaviour. 

The following are the main hypotheses of the soil model: 

 The model considers small deformations. The total deformation can be divided into 

elastic and plastic contributions. 

 The formulation is based on the principle of effective stress. 

 Isotropic behaviour is assumed for the elastic response. 

 Shear behaviour is represented by three bi-dimensional mechanisms, each using a 

Mohr-Coulomb failure criterion.  

 

Table 1shows some of the selected soil parameters. Refer to Aubry et al. [11] and Hujeux 

[12] for further information about the ECP’s constitutive model. 

 

Elasticity Critical state and plasticity 

𝐾𝑟𝑒𝑓  [MPa]  444 𝜙𝑝𝑝
′  [

o
] 31 

𝐺𝑟𝑒𝑓  [MPa] 222 𝛽 [
o
] 43 

𝑛𝑒  0.40 𝑑  3.5 
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  𝑏  0.20 

  𝑝𝑐𝑜
′  [MPa] −1.8 

Flow rule and isotropic hardening Threshold domains 

𝜓 [
o
] 31 𝑟𝑒𝑙𝑎  5.0 × 10−3 

𝑎𝑐𝑦𝑐   1.0 × 10−4 𝑟𝑖𝑠𝑜
𝑒𝑙𝑎  1.0 × 10−3 

𝑎𝑚  4.0 × 10−3 𝑟ℎ𝑦𝑠  3.0 × 10−2 

𝑐  6.0 × 10−2 𝑟𝑚𝑜𝑏   0.80 

𝑐𝑐𝑦𝑐  3.0 × 10−2   

𝑚  1.0   

Table 1: Soil parameters 

The soil parameters utilised represent Toyoura sand with a relative density Dr = 37%. 

 

A preliminary linear analysis was conducted for a soil column in the free field. A natural 

period of 0.46 s was obtained for the soil based on the ratio of the acceleration at the top to the 

acceleration at the base of the column in the frequency domain. A small amplitude input was 

used to guarantee linear behaviour of the soil. Considering the approximate expression 

presented in Equation (1) the shear wave velocity is 𝑉𝑠 = 260 𝑚/𝑠. Thus, the soil can be 

considered as medium-dense. 

 𝑇𝑠 ≈ 4𝐻/𝑉𝑠 (1) 

2.3 Structural models 

The structures studied were single degree-of-freedom (SDOF) systems represented in 2D 

by elastic frame elements (2 m span) with two columns and a top beam. Three natural periods 

were selected. For each natural period a 3 m and 7.5 m high model was considered. All the 

seismic mass was concentrated in the top beam. To avoid differences in the confining stress in 

the foundation sand under the structure, the same mass (50 tonne) was considered for all   

models. The foundation was considered to be a massless beam of 6 m length. No uplift of the 

structural foundation was allowed at the soil-foundation interface. Table 2 shows some of the 

selected parameters for the SDOF structural models. 

 

Structure 
Height 

(m) 

Columns 

(cm x cm) 

Beam 

(cm x cm) 

Natural period 

(s) 

Tlong – L1 3.0 22 × 22 20 × 30 0.78 

Tlong – L2 7.5 52 × 52 20 × 30 0.78 

Tmid – L1 3.0 28 × 28 30 × 45 0.44 

Tmid – L2 7.5 67 × 67 30 × 45 0.44 

Tshort – L1 3.0 33 × 33 35 × 52.5 0.32 

Tshort – L2 7.5 78 × 78 35 × 52.5 0.32 

Table 2: Structural models parameters 
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2.4 Ground motion 

Local site effects were directly included in the numerical model. The ground motion 

recorded on bedrock was used as the input motion. For all the analyses the strong motion 

recorded at the  Gilroy station during the 1989 Loma Prieta Earthquake was utilised. A total 

duration of 10 s of the main shock was used (Figure 3). 

 

Figure 3: Ground motion (Loma Prieta, 1989) 

 

3 RESULTS AND DISCUSSION 

3.1 Stand-alone structures  

The acceleration and displacement at the top of each model was calculated and the ratios of 

the maximum value to the maximum obtained for a free-field condition are presented for 

acceleration and displacement in Figure 4 and Figure 5, respectively as a function of the ratio 

of the natural period (Tstr) of the SDOF to the natural period (Tsite) of a 1D column of soil. 

 

Tstr/Tsite 

Figure 4: Ratio of maximum acceleration beneath the structure to the maximum on free-field 

Regarding the maximum acceleration, the effect of slenderness is shown to be of minimal 

importance over the period range employed in this study. A higher slenderness ratio tends to 

give a marginally lower maximum acceleration for the same period. 
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Figure 5: Ratio of maximum displacement beneath the structure to the maximum on free-field 

The effects of slenderness on the maximum horizontal displacement are shown to be small 

for structures with a natural period close to the natural period of the site. Otherwise, 

slenderness has very little effect for the three structures considered. 

 

The settlement beneath the structure was also studied. Figure 6 shows the results for the 

different single structures . 

  

a. Lower slenderness models (𝜆 = 0.5) b. Higher slenderness models (𝜆 = 1.5) 

Figure 6: Settlement beneath the structure (alone on soil) 

A similar trend is shown in Figure 6 for the settlement for both slenderness ratios. 

However, the lower period structures encountered higher  settlement. The slenderness ratio 

has almost no effect. Thus, in the cases considered the natural period of the structure is more 

important than the slenderness ratio. 

 

The influence of the structural slenderness and period on the response spectra of the 

acceleration beneath the structure are shown in Figure 7. 

Tlong  
Tmid  
Tshort 

Tlong  
Tmid  
Tshort 
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a. Lower slenderness models (𝜆 = 0.5) b. Higher slenderness models (𝜆 = 1.5) 

Figure 7: Response spectra for acceleration beneath the structure 

The obtained spectra were compared with the spectrum from free-field (black solid line). 

When stand-alone structures were tested the slenderness has very little influence. 

3.2 Adjacent structures on soil 

Each pair of structures with the same natural period but a different slenderness were tested 

with a one meter separation distance. In this case different response spectrum have been 

obtained beneath each structure (Figure 8). Again, the spectrum from free-field condition is 

also presented (black solid line). 

  

a. High period structure (Tlong) b. Intermediate period structure (Tmid) 

 

c. Low period structure (Tshort) 

Figure 8: Effect of slenderness, structural period and an adjacent structure on the acceleration beneath the 

structure (1 = 0.5 and 2 = 1.5) 

Tlong 

Tmid 

Tshort 

Tlong 

Tmid 

Tshort 

            Free field 

- - -   Tlong (1) 
 

…….  Tlong (2) 

            Free field 

- - -   Tmid (1) 
 

…….  Tmid (2) 

            Free field 

- - -   Tshort (1) 
 

…….  Tshort (2) 
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Even though, no clear trends have been observed to define the influence of an adjacent 

structure there are significant differences between the spectra of the free field and the spectra 

beneath the structures. Differences can also be observed between the spectra of the soil 

beneath the two buildings. Further work is needed to clearify the observations. 

4 CONCLUSIONS  

FE models based on a 2D plain-strain approach were used to study the influence of 

slenderness on the structural response. The elasto-plastic multi-mechanism ECP constitutive 

model was used to represent the soil behaviour. Stand-alone structures and closely adjacent 

structures were considered. The influence of natural period, slenderness and an adjacent 

structure were studied. 

 

In the cases considered the results for stand-alone structures show: 

 The maximum displacement at the top of the structure increases with the natural period 

of the structure. 

 Slenderness has marginal effect.  

 Structures with the shortest period experienced the largest settlement. In contrast, for the 

highest slenderer ratio the permanent settlement was slightly bigger. 

 

In the case of closely adjacent structures of equal period: 

 Slenderness significantly effects the spectral acceleration for periods below 0.5 s. 

 The natural period of the structures has a significant influence on SSSI. 

 The free-field ground motions should not be used as a design structural excitation. 
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Abstract. To calculate the response of a multi-storey structure (MDOF model) with struc-

ture-foundation-soil interaction (SFSI), for simplicity the structure is often assumed as a 

SDOF model corresponding to the fundamental mode. However, depending on the distribu-

tion of mass and stiffness of the structure, the contribution of the fundamental mode may vary. 

The contribution of the higher modes to the response of the structure could become more sig-

nificant. This study reveals the effect of higher modes on the response of structure including 

SFSI. The response of a multi-storey structure and the response associate with the fundamen-

tal mode of the structure are compared. To calculate the response of structures with SFSI, a 

macro element model is used to simulate the plastic soil deformation. The consequence of us-

ing a SDOF model for the structural response including nonlinear SFSI is discussed. 
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1 INTRODUCTION 

For structures with a shallow footing, seismic forces induced by a ground excitation may 

cause a moment at the footing to exceed the elastic limit of the foundation soil. Consequently, 

soil bearing failure may occur. It is commonly accepted that nonlinear soil behaviour should 

be avoided in seismic design by providing more than sufficient foundation bearing strength. 

However, it has been observed that although the footing has been properly designed, the 

structure can still experience plastic deformation of foundation soil during earthquake [1-6]. 

Examples can be found in almost all major earthquakes, e.g. Valdivia Earthquake 1960 [2], 

Michoacan Earthquake 1985 [3], Kobe Earthquake in 1995 [4], Izmit Earthquake 1999 [5, 6], 

and the 2010 Darfield and 2011 Christchurch earthquakes [7]. Study of the response of struc-

ture with nonlinear SFSI is thus relevant. 

Observations of buildings following major earthquakes e.g. Housner [2] and Gazetas et al. 

[5] showed that structures experiencing minor nonlinear SFSI, in fact, performed better than 

expected. These observations triggered a number of analytical and numerical investigations. 

Yim and Chopra [8] developed one of the first SFSI models using a Winkler foundation. The 

flexibility and damping of the supporting soil were represented by independent spring-damper 

elements distributed over the width of the foundation. Psycharis and Jennings [9] extended the 

study by simplifying the Winkler foundation model using a two-spring foundation model. 

Psycharis [10] used the Winkler foundation model to conduct a parametric study. The influ-

ence of damping ratio, aspect ratio and stiffness ratio between the structure and the supporting 

spring on the structural response was investigated. Based on the results obtained from these 

analytical models [8-10], a series of response spectra were proposed to determine the seismic 

response of structures on flexible supporting ground. Recently, numerical methods were also 

developed to incorporate the nonlinearity of soil. The response of a structure with SFSI calcu-

lated using finite-element approach was discussed by Wolf [11]. Nova and Montrasio [12] 

proposed an equation to calculate the movement of the footing during soil plastic deformation. 

This equation was incorporated in a macro element model so that the response of structure 

with nonlinear SFSI can be calculated [13]. Chouw and Hao [14] also numerically studied and 

showed that SFSI can affect the pounding force between adjacent bridge structures.  

For simplicity, most numerical studies of structures with SFSI use a single-degree-of-

freedom (SDOF) system to represents the structure. The contribution of higher modes to the 

total response of the structure with SFSI was neglected. Depending on the distribution of 

mass and stiffness of the structure, the contribution of the higher modes to the response of the 

structure could be significant. This study reveals the effect of higher modes on the response of 

a structure with SFSI. The response of a two storey structure with SFSI was numerically cal-

culated by representing the structure using a SDOF system and a 2-degree-of-freedom (2DOF) 

system. To include the effect of nonlinear SFSI, a macro element model is used.   

 

2 NUMERICAL SIMULATION 

2.1 Higher mode of structure 

The structure used for this study was a two storey steel building. The structure had a storey 

height of 3 m and floor area of 25 m
2
. For the 1

st
 floor and the roof, the seismic mass was 

42000 kg and 21000 kg, respectively. The columns of the structure were 250UC72.9 steel 

section. The footing mass (mo) was 42000 kg. The beams and foundation were assumed rigid. 

The structure can be described using a 2DOF system. Each DOF represented the horizontal 
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movement at the floor level. The lateral bending stiffness of each floor can be calculated us-

ing the total bending stiffness of the columns.  

The structure can also be represented using a SDOF system. An equivalent base shear 

method was used to obtained the effective mass (m
*
) and height (h

*
). The procedure is de-

scribed e.g. by Chopra [15]. The effective mass and height of the SDOF system was deter-

mined to be 61000 kg and 4.3 m, respectively. The effective mass represented 96.8% of the 

total mass of the structure. The fundamental frequency of the SDOF system was defined to be 

the same as that of the two storey structure. Figure 1 shows the parameters of the 2DOF sys-

tem and the SDOF system. The footing mass and size of the SDOF system were identical to 

that of the 2DOF system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The 2DOF system and the equivalent SDOF system. 

2.2 Macro element model  

The response of a structure with nonlinear SFSI was calculated with the help of a macro 

element model. The concept of the model is to simplify the response of a foundation-soil sys-

tem using three degrees of freedom. They are the vertical, horizontal displacements and rota-

tion of the center of the foundation. With these additional DOFs at the footing location, the 

effect of footing response under the deformation of foundation soil can be included. Figure 2 

shows the macro element model. The elastic stiffness of the 3DOF footing system can be cal-

culated using the formulation described in Chouw and Hao [14].  
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Figure 2: The macro element model. 

2.3 Nonlinearity of the foundation system  

The nonlinearity of the structure-foundation-soil system is described at the 3DOF of the 

foundation system. The nonlinearity will be initiated when a bearing failure of soil is intitiated. 

To determine the initiation of the bearing failure, a bearing strength surface was considered. 

Nova and Montrasio [12] have proposed an equation for determining the initiation of a bear-

ing failure of a strip footing on sand (Eq. (2)). The equation was developed and improved 

though a number of experimental and numerical studies (e.g. [16]). 
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where B is the width of the foundation; Vmax is the ultimate bearing capacity of foundation soil 

under vertical centered load; ψ, μ and ξ are the parameters of the bearing strength surface and 

suggested to be 0.43, 0.9 and 0.95, respectively [16]; F is a vector which contains the horizon-

tal, vertical actions and moment at the foundation (H, V and M in Figure 2).  

 

With F calculated using the product of the stiffness matrix (kF) and the displacement vec-

tor (uF) of the foundation. Eq. (2) can be evaluated. If f(F) < 0, the combined action of a shal-

low foundation is below the bearing capacity of foundation soil. Bearing failure of the 

foundation soil does not occur. In contrast, a value of f(F) = 0 indicates that the foundation 

action will cause bearing failure. Theoretically, it is impossible to have a value of f(F) > 0, 

since the soil cannot sustain any actions greater than the bearing capacity. 

 

Once the indication of bearing failure was confirmed, a non-associated flow rule (Eq. (3)) 

was applied to calculate the unrecoverable displacement and rotation of the foundation due to 

soil plastic deformation. 
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where B is the width of the foundation; λ and χ are two non-dimensional parameters, and Vmax 

is the maximum bearing capacity of soil under vertical loading. 

 

This flow rule was originally developed by conducting a large scale shake table test to 

quantify the non-dimensional parameters of Eq. (3) [13, 16 and 17]. For sand, the values of λ 

and χ were suggested to be 2.5 and 3, respectively. In this study, the supporting soil was de-

fined to be sand and had a shear wave velocity of 400 m/s. The Poisson’s ratio and density 

were assumed to be 0.33 and of 1560 kg/m
3
, respectively. It is assumed that the structure be-

haves elastically during the earthquake loading.  
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2.4 Earthquake excitation 

The ground excitation for the nonlinear time history analysis was simulated based on a 

Japanese design spectrum [18]. In this study, medium soil category was considered. This is 

because in general, loose soil is of no practical interest for shallow foundation design. An al-

ternative foundation scheme, such as foundation through piles, is usually preferred. On the 

other hand with dense or very-dense soil condition significant settlements are not likely to oc-

cur [19]. The applied ground acceleration is shown in Figure 3. 

 

 

Figure 3: Ground acceleration. 

 

3 RESPONSE OF STRUCTURE WITH SFSI  

3.1 SFSI with elastic soil  

Figure 4 shows the horizontal displacement (u) at the top of the structure relative to the 

ground. The structure was represented using the SDOF (dashed line) and 2DOF (solid line) 

system, respectively. Considering elastic soil, the horizontal displacement calculated using the 

SDOF system was larger than that using the 2DOF system. Using the SDOF system, the max-

imum top horizontal displacement was 66.4 mm. When considering the 2DOF system, the 

maximum top horizontal displacement was 59.1 mm. The maximum horizontal displacement 

of structure estimated using the SDOF system was 12.4% larger than that calculated using 

2DOF system. It is shown that without considering the higher modes, horizontal displacement 

of structure can be overestimated. 

 

 

-8

-4

0

4

8

0 5 10 15 20

Time (s) 

-80

-40

0

40

80

2 4 6 8 10 12 14 16 18 20 22

u
 (

m
m

) 

Time (s) 

a 
(m

/s
2
) 

SDOF 

2DOF 

5830



X. Qin, N. Chouw and T. Larkin 

Figure 4: Influence of MDOF system on the structural response with linear SFSI 

3.2 Response of structure with nonlinear SFSI 

Figure 5 shows the horizontal relative displacement (u) at the top of the structure with non-

linear SFSI. While the dashed line represents the result calculated using the SDOF, the solid 

line illustrates that obtained considering the 2DOF system. A residual horizontal displacement 

was found at the end of the excitation due to soil plastic deformation. When using the SDOF 

and 2DOF system, the residual horizontal displacement was 4.9 mm and 1.4 mm, respectively. 

Including the structural higher mode, the residual displacement of the structure was smaller. 

The maximum horizontal displacement at the top of the 2DOF system was also smaller than 

that of the SDOF system. The maximum horizontal relative displacement considering the 

SDOF and the 2DOF systems was 62.6 mm and 57.5 mm, respectively. 

 

 

Figure 5: Influence of MDOF system on the structural response with nonlinear SFSI 

 

Using the SDOF and 2DOF systems, the calculated footing rotation (θ) of the structure was 

also different. As shown in Figure 6, the maximum footing rotation calculated using the 

SDOF system was 0.17
o
. Using the 2DOF system, the maximum footing rotation was -0.06

o
. 

At the end of the excitation, the residual rotation of the footing was 0.06
o
 and -0.02

o
 for the 

case of the SDOF and 2DOF, respectively. 

 

 

 

Figure 6: Effect of nonlinear SFSI and 2DOF system on footing rotation   
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4 CONCLUSIONS  

This study focused on the effect of a higher mode on the response of a structure with SFSI. 

The response of a two storey structure was numerically calculated by representing the struc-

ture using a SDOF system and a 2DOF system. The effect of foundation soil deformation was 

included using a macro element model. Both elastic and nonlinear SFSI were considered. The 

mass of the SDOF system represented 96.8% of the total mass of the structure. 

 Despite the mass of the SDOF system represents a large portion of the structural mass, 

the responses of the structure with SFSI calculated using the SDOF and the 2DOF system 

were different. 

 With an elastic soil , the horizontal displacement of the structure calculated without in-

cluding the higher mode was larger. 

 Considering nonlinear soil, the maximum and residual horizontal displacement of the 

structure calculated using the SDOF system was also larger than the corresponding 

2DOF system. 

 Without considering the higher mode, the maximum and residual footing rotation of 

structures during earthquake can be overestimated. 
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Abstract. Recent earthquakes, as the one that hit Fukushima in Japan in 2011 or the one that 

produced extensive damage in Turkish petrochemical facilities during the Kocaeli earthquake 

of 1999 or, more recently, the seismic events in May 2012 in Emilia (Italy), highlighted the 

increasing need of providing adequate protection to industrial installations. Industrial facili-

ties often store a large amount of hazardous material and, in case of seismic event, there is a 

high probability that accidental scenarios as fire, explosion, toxic or radioactive dispersion 

may occur. In these cases, the ensuing disaster certainly harms the people working in the in-

stallation and it may endanger the population living in the neighborhood or in the urban area 

where the industrial installation is located. The consequences of such accidental scenarios 

can be disastrous in terms of casualties, economic losses and environmental damage. Within 

this work, the seismic behavior of an industrial structure is studied through several Incremen-

tal Dynamic Analyses, IDA, and particular attention is given to the selection of suitable per-

formance criteria and the modelling of non linear phenomena (II order effects, buckling, 

mechanical non-linearity, etc.). The seismic behavior is then enhanced applying to the struc-

ture an innovative typology of self-centering hysteretic damper, whose mechanical character-

istics are optimized through the execution of IDAs on the retrofitted structures. A final 

comparison between the seismic behavior of the original structure and of the retrofitted one 

highlights the advantages of the innovative self-centering hysteretic dampers.
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1 INTRODUCTION 

Recent earthquakes, as the one that hit Fukushima in Japan in 2011, the one that produced 

extensive damage in Turkish petrochemical facilities during the Kocaeli earthquake of 1999 

or, more recently, the seismic events in May 2012 in Emilia (Italy), highlighted the increasing 

need of providing adequate protection to industrial installations.  

Industrial facilities often store a large amount of hazardous material and, in case of seismic 

event, there is a high probability that accidental scenarios as fire, explosion, toxic or radioac-

tive dispersion may occur. In these cases, the ensuing disaster certainly harms the people 

working in the installation and it may endanger the population living in the neighbourhood or 

in the urban area where the industrial installation is located. The consequences of such acci-

dental scenarios can be disastrous in terms of casualties, economic losses and environmental 

damage.  

Even in the cases in which the content does not represent a direct threat to human lives or 

to the environment, damage to structural and/or non structural elements can result in huge in-

direct economic losses, as testified from the numerous studies [1] [2] devoted to the speedup 

of community recovery after the 2012 Emilia (Italy) earthquakes. From his point of view, for 

industrial buildings, it should be more appropriate to speak about "seismic resilience"  than 

"seismic risk", that is more appropriate for civil building [3], meaning that it is necessary to 

take into account also the time necessary for the recovery of the production activities.  

In this field, a parameter strictly correlated to the post-earthquake recovery is represented 

by the re-centering capability of the structure, defined as the capacity of minimizing the resid-

ual displacement after the end of the seismic action. 

In this contest, a particular attention for the retrofit of existing industrial plants is given to 

the use of passive dissipation systems, such as Isolation Systems (IS) or Energy Dissipation 

Systems (EDS). The initial higher cost associate to a retrofit using an IS or EDS, comprised 

the ones consequent to the adaptation of the non-structural elements (e.g. pipelines), will be 

likely compensate by the avoided losses in case of moderate-to-strong earthquakes. This is 

especially true for industrial steel structures, where the substitution of the existing bracing el-

ements with dissipative ones can be accomplished using simple operations. Modern codes  [4] 

and guidelines [5] lists the recentering capability of the anti-seismic device as one of the fun-

damental capacities. In [5] it is evaluated, for linear analysis and seismically isolated struc-

tures, comparing the energy dissipated by the isolation device, EH, with the reversibly stored 

(elastic strain and potential) energy, ES : 

0.25
S H

E E≥   (1) 

Traditional hysteretic devices, however, does not provide a real "active" recentering force, 

resulting in the presence of residual forces within the devices at the end of the earthquake also 

in the case of negligible residual displacement and in the consequent complication of the sub-

stitution operations.  

In order to mitigate such problems, re-centering devices have been the object of ever in-

creasing research study ([6], [7], [8], [9], [10], [11], [12]). This type of dissipative device is 

characterized by the presence of a re-centering force that mitigates, and may even eliminate, 

the residual deformations in buildings and residual forces in the dissipative devices after 

earthquakes. 

In the present paper, the influence, in terms of maximum displacement, interstorey drift, 

acceleration and dissipated energy, of the retrofit of an existing industrial steel building using 

the  steel self-centering device (SSCD) developed in [13] is studied. The industrial building, 

selected within one of the most important Italian industrial plant, the ILVA S.p.A. plant, can 
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be considered as representative of the industrial structure sensitive to the seismic action, being 

characterized by an important mass placed at high altitude.  

The case study building analysis is carried out indentifying, in the first phase, the structural 

and non-structural limit states, considering both the national and international standards and 

the peculiarity of the building itself. Given the need of simplifying, as much as possible, the 

structural scheme to obtain a reliable and time-saving nonlinear model, a preliminary compar-

ison between a full-comprehensive linear model and the geometrically-simplified one is car-

ried out, studying also the effect of the infill material modelling on the overall behavior. 

Several IDA are then carried out in order to identify the main seismic vulnerabilities, to define 

the seismic retrofit intervention and evaluate their effects on the structural behavior.  

2 CASE STUDY DESCRIPTION: MODELLING, ANALYSIS AND SEISMIC 

VULNERABILITY 

The selected case study, shown in Figure 1, has the function of filtering the gasses coming 

from the steelwork and can be schematized as made up of a supporting structure, the silos 

containing the filtering material  and the  roof.  

   

Figure 1. Front and lateral view of the Filter Building 

The building has a regular plan, with overall dimensions 37.80 m x 16.94 m and total 

height 29.64m.  The supporting structure, with a total height of about 10.80 m, has six bays in 

the longitudinal direction and three in the transversal one. Different horizontal resisting sys-

tems can be individuated such as moment resisting frames, inverted V bracings, diagonal 

bracings, as shown in Figure 2 . 

 

Figure 2. 3D view of the supporting system 
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The silos are realized with thin (4 mm) walls stiffened with a close series of horizontal 

UPN and vertical HEA profiles. The total mass of the silo (23700 kN), considering structural 

elements and infill material,  represent the  86% of the total mass (27650 kN). 

The roof is connected directly to the filter walls and its contribution is considered only in 

terms of vertical load and mass.  

2.1 Linear and non linear modelling 

To develop a suitable nonlinear model of the building for the execution of Incremental Dy-

namic Analyses, IDAs, in reasonable amount of time, it is necessary to simplify the structural 

scheme. In order to have, however, a model able to well represent the structural behavior, it is 

initially studied a "complete" linear model, see Figure 3a),  in which  the contribution of prac-

tically almost all the structural and non-structural elements  is taken into account.  

a)                 b)  

Figure 3. "Complete" linear model: a) globall view; b) modelling of the infill-silo interaction. 

The dynamic interaction between the silos wall-infill material can sensibly vary the global 

response of the building. Given the high level of uncertainty associated to the infill material 

behavior, similar to dust, a refined non-linear interaction model would lead to non-reliable 

results. For this reason, different infill material modelling solutions are studied and compared 

and a parametric study is carried out to study the sensitivity of the global behavior to the vari-

ation of the characteristics of the schematization assumed.  

Three different types of modelling are compared: i) the attribution of the infill material 

mass directly to the silos walls; ii) the concentration of the infill material total mass of each 

silo in a single point placed in the baricenter of the silo and connected to the silos walls by 

linear springs; iii) subdivision of the infill material total mass in 5 points, see Figure 3b), each 

one of them connected to the silos walls by linear springs. Models i) and ii) highlighted sever-

al drawbacks, such as, for the former, the unrealistic high number of the silos walls local vi-

bration modes and the problem of overestimating the rotational inertia, while, for the latter, 

the high force concentration on the silos wall. The model iii) is then assumed and a parametric 

analysis varying the spring stiffness is carried out and the results, in terms of period of vibra-

tion and participating mass is reported in Figure 4.   

It can been noticed that for infill material edometric modulus higher than 25000 kN/m
2
, the 

period and the participating mass associated to the first period can be considered practically 

constant. Given that the edometric modulus of the dust varies, approximately, between   

30000 to 80000 kN/m
2
, the response of the model can be assumed to be not influenced by the 

uncertainties related to the infill material mechanical behavior.  
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Figure 4. Period of  vibration and participanting mass associate to the first vibration period varying the stiffness 

of the connecting spring in model iii) 

The linear model described highlights a structural behavior similar to the one of a single 

degree of freedom (SDOF), where the great part of the displacement demand is located in the 

supporting structure. The silos and the roof behave such as a rigid body and the resultant  

stresses are far below the yielding or buckling threshold. For this reason the structural behav-

ior can be represented by the simplified model shown in Figure 5, where the roof is consid-

ered simply as dead load and mass, while the silos are substituted by a trusses system, whose 

characteristics are evaluated to obtain the same first period and modal shape of the "complete" 

model.  

The simplified model is used to perform the nonlinear IDAs. Each element is modelled us-

ing a fiber element and the material is assumed to be elasto-plastic. The global second-order 

effects are explicitly taken into account, while, in order to consider the post-critic behavior of 

the bracings in compression, they are modelled introducing the initial imperfection as fore-

seen by Eurocode 3 [14]. The viscous damping is taken into account introducing an damping 

ratio associated to the first and second vibrating modes equal to 2% and setting the damping 

matrix proportional to the mass and initial stiffness matrix.  

                   

Figure 5. Case study building simplified model 

5838



F. Morelli, A. Piscini, W. Salvatore 

2.2 Limit states and performance parameters 

The Ultimate Limit State considered during the structural analysis are resumed, together 

with the reference standard, in following table . 

 
ULTIMATE LIMIT 

STATE 
ELEMENT CHECK STANDARD 

Shear resistance Column VEd / Vpl,Rd ≤ 0.50 EN 1998-1:2013 [15] 

Plastic rotation capacity Columns ϕ < ϕu EN 1998-3:2005 

Plastic rotation capacity Beams ϕ < ϕu EN 1998-3:2005 

Axial deformation capacity 

in tension and compression 

Dissipators/ 

Bracings 

∆L < ∆Lc (compression/buckling) 

∆L < ∆Ly (tension) 
EN 1998-3:2005 

Check of sensibility coeffi-

cient Theta 
Global ϑ < 0.3 EN 1998-1:2013 [15] 

Maximum displacement Global 

dr < 0.50m 

Due to the interaction with non 

structural elements  

-- 

Table 1. Main limit state considered 

To evaluate the building performance, four different parameters are evaluated during the IDA 

analysis: 

1. maximum displacement. Related to the non structural elements (such as external clad-

ding) damage; 

2. maximum acceleration. Related to the acceleration-sensitive systems damage; 

3. residual deformation. Related to the structural damage and resilience; 

4. seismic energy. The different components of the energy supply important information 

on the structural damage and on the retrofit choices.  

In particular, four type of seismic energy are analyzed: input energy, defined as the energy 

transmitted by the ground movement to the structure; kinetic energy, related to the building 

movements; adsorbed (strain + dissipated) energy, related to the damaging of the structure; 

viscous energy. 

2.3 Selection of ground motions 

In order to achieve the worst damage scenarios with a robust and reliable procedure, an 

Uniform Hazard Spectrum -coherent method is adopted for the ground motions. The complete 

procedure, together with all the background and motivations, is described in the paper pre-

sented by Faggella et al. at the 2016 ECCOMAS conference "Performance-based Nonlinear 

Response History Analysis Framework for the “PROINDUSTRY” Project Case Studies".  

A major drawback of using unscaled GMs is that a higher number of records need to be 

used. At least 7 GMs are needed but, considered their high variation, a higher number is pre-

ferred, at least equal to 11. The selected ground motions are listed in  Table 2. The IDAs are 

executed applying simultaneously the three components (2 horizontal and 1 vertical) of each 

ground motion and using 9 scale factors, SFs, see Figure 6. A total of 198 nonlinear time-

history analyses are carried out for the case study (11 GMs x 9 SFs x 2 directional combina-

tions).  
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DB  ID  Earthquake Name  Mw  Fault Mec.  R(kM)  Site 

Class  Date  
ED  6349  South Iceland  6,4  Strike slip  5  A  21/06/2000  
ED  196  Montenegro  6,9  Thrust  25  B  14/04/1979  
ED  535  Erzincan  6,6  Strike slip  13  B  13/03/1992  
ED  74  Gazli  6,7  Thrust  11  D  17/05/1976  
ED  1257  Izmit  7,6  Strike slip  20  C  17/08/1999  
IN  113  South Iceland  6,5  Strike slip  5,25  A  17/06/2000  
IN  466  Duzce  7,1  Strike slip  5,27  C  12/11/1999  
IN  331  Darfield  7,1  Strike slip  17,82  C  03/09/2010  
IN  445  Imperial Valley  6,5  Strike slip  27,03  C  15/10/1979  
IN  451  Loma Prieta  6,9  Oblique  7,1  B  18/10/1989  
IN  461  Northridge  6,7  Reverse  20,25  C  17/01/1994  

Table 2. Ground motions selected for the execution of IDAs 

Vr P
vr

λ Tr ag S.F.

yrs % 1/yrs yrs g \

0 100 4% 0.0004 2475 0.512 1.43

1 100 5% 0.0005 1950 0.4687 1.307

2 100 10% 0.0011 949 0.3586 1.000

3 100 22% 0.0025 402 0.2502 0.698

4 100 30% 0.0036 280 0.2122 0.592

5 100 39% 0.0049 202 0.1829 0.510

6 100 50% 0.0069 144 0.1552 0.433

7 100 63% 0.0099 101 0.1292 0.360

8 100 81% 0.0166 60 0.0987 0.275
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Figure 6. Selected ground motions response spectrum and Scale Factor, S.F., used 

2.4 Seismic vulnerability of the case study current state 

The seismic vulnerability of the case study is studied through the IDAs and represented 

through the IDA curves, in terms of maximum displacement, maximum acceleration, residual 

displacement and seismic energy (elastically stored or dissipated by the structure). All the 

parameters are registered at three different levels of the structure, see Figure 7. 

LEVEL 1 – h=4.65m

LEVEL 2 – h=11.80m

LEVEL 3 – h=27.575m

 

Figure 7. Individuation of recorded levels 
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In Figure 8 and Figure 9, the IDA curves more representative of the strucruarl behavior are 

shown, while in Figure 10 the maximum displacements versus the maximum shear force 

plotted.  
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a)       b) 

Figure 8. Maximum displacements (mean values) at different level in the a) X and b) Y directions 
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a)       b) 

Figure 9. Residual displacements (mean values) at different level in the a) X and b) Y directions 

  
a)         b) 

Figure 10. Maximum base shear vs maximum displacement at level 2 graph in the a) X direction and b) Y 

direction 
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From the analysis of Figure 8 and Figure 9 it can be seen that, in the X direction the dis-

placement demand is equally distributed between the ground and first floor. This is mainly 

due to the low number of bracing in the first floor. In the Y direction,  the displacement de-

mand is concentrated at the ground floor, highlighting an early plasticization of the inverted V 

bracings with respect to the first floor diagonal bracings. In both directions, important residual 

displacements are registered at the end of each time-history analysis. The presence of such 

residual displacements lower considerably the resilience of the building, given the great diffi-

culties in repairing a deformed and unstable structure.  

Interesting information on the building behavior, especially in view of the retrofitting study 

and optimization, are supplied by the analysis of the input seismic energy transmitted by the 

earthquake to the structure and the stored and/or dissipated one. In Figure 11 an example of 

the energy time-histories recorded for the ground motion IN113A (the final A means that the 

main horizontal component is applied in the X direction) are reported for two different scale 

factors. It can be observed that, for low SCs, the energy dissipation takes place mainly for vis-

cous damping, while, increasing the seismic action, the energy adsorbed by the structure, 

strictly related to the structural damage, represent the main component of the input energy.  

a)  b)  

Figure 11. Energy time-histories for the IN113A GM recording: a) SF = 0.275; b) SF= 1.430. 

Interesting results can be obtained comparing the ratio between the adsorbed or the viscous 

energy and the input one for all the GMs and SFs considered, as shown in Figure 12. It can be 

noticed, in fact, that for all the GMs the ratio with the input energy tends to a certain value, 

respectively equal to 0.83 for the adsorbed and 0.17 for the viscous energy. This means that, 

for SFs higher than 0.592 the structure develops the complete collapse mechanism.  
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Figure 12. Ratios between: a) the adsorbed and input energies; b) viscous and input energies 
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3 SEISMIC RETROFIT 

The IDAs on the current state evidenced several structural problems, such as: 

• the building is characterized by a low stiffness in the X direction, both at ground 

and first floor. The seismic energy dissipation in this direction is mainly obtained 

through the formation of plastic hinges in the beams and columns; 

• in the Y direction, the initial stiffness is sufficient to avoid excessive displace-

ments, but the high slenderness of the bracings implies a insufficiently ductile dis-

sipating mechanism; 

• the eccentricity between the bracings and the column in the X direction causes ex-

cessive shear forces in the column; 

• the structure is characterized by important residual displacements in both direc-

tions at the end of the earthquakes (mean values greater than 100 mm for the 

higher scale factor considered). 

On the base of the aforementioned results, a seismic retrofit intervention, using the Steel 

Self-Centering Device described in [13] is proposed. In the following, after a short description 

of the device, the pre-sizing of the retrofit is described and its effectiveness is assessed 

through IDAs. Finally, the influence of the re-centering capability of the SSCD inserted with-

in the structure is investigated trough a parametric analysis. 

3.1 The steel self-centering device (SSCD) 

The SSCD, a complete description of which is available in [13], is made up of three groups 

of elements, each with specific functions: the Skeleton, the Dissipative Elements and the Pre-

tension Elements. The Skeleton serves to transmit and distribute any external forces between 

the Dissipative Elements and the Pretension Elements. Figure 13 shows the main Skeleton 

elements (External Carter, Internal Sliding Frame and Endplates), the Dissipative Elements 

and the Pretension Elements. The Internal Sliding Frame is positioned within the External 

Carter. 

 

Figure 13. Main elements of the SSCD [13] 
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The Carter has guide elements that allow the Internal Sliding Frame to move only in the 

axial direction and, at the same time, serve as stops for the Endplates in the longitudinal direc-

tion. The endplates are located in correspondence to the ends of the Internal Sliding Frame. 

The Dissipative Elements, located within the skeleton, are made up of dog bone shaped steel 

elements linked to the Internal Carter and the Endplates. They are equipped with a lateral 

buckling restraining system. The Pretension Elements, made with Prestressing Cables, are lo-

cated within the Skeleton and linked at both their extremities to the Endplates. 

The elements are positioned and connected to each other in order to ensure the same global 

behavior of the SSCD device under both tension and compression external forces.  

Thus, the cyclic behavior of the SSCD is characterized by a flag-shaped hysteretic curve 

with a residual displacement of zero. 

The experimental results carried out in [13] showed the very good capacity of the system 

in minimizing the residual deformations when the external force drops to zero, see Figure 14.  

     

Figure 14. Force-displacement curve of the SSCD with dissipative elements, a) test 1 and b) test 2 [13] 

Depending mainly on the value of the ratio between the initial pretension force and the 

yield strength of the Dissipative Elements, the hysteretic curve of the SSCD may present dif-

ferent shapes, each characterized by different values of the dissipated energy, residual dis-

placement and residual re-centering force, as shown in Figure 15. 
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Figure 15. Idealized flag-shaped hysteretic curve normalized by the initial stiffness ko: a) β = 0, b) 0 < β < 1 and 

c) β > 1 

The shape of the hysteretic curve can be represented determined by two parameters, α and 

β, where α is the ratio between the hardening and the initial stiffness, while β reflects the en-

ergy dissipation and the system’s re-centering capacity [9], which, as mentioned, can be as-

sumed equal to the ratio between the yield strength of the Dissipative Elements and the initial 

pretension force. A hysteretic curve with β = 0 can be obtained by using the SSCD without 
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any Dissipative Element, in which case the device exhibits nonlinear elastic behavior with 

great re-centering capacity, but no energy dissipation. On the other hand, values of β >1 lead 

to residual displacements (when the external force drops to zero) but also to an higher energy 

dissipation.   

3.2 Pre-dimensioning of the SSCD bracings 

The SSCD position is assumed limiting, as much as possible, the interferences with the 

functionality of the building. The SSCD are so introduced, substituting, in the Y direction and 

at the first floor of the X direction, the existing bracings. To protect also the ground floor ele-

ments in the X direction, supplemental SSCD bracings are introduced as schematically shown 

in Figure 16.  

 

Figure 16. SSCD bracings disposition in the X direction 

 

Figure 17. Figure 16. SSCD bracings disposition in the Y direction 

The retrofit pre-design is carried out evaluating the characteristics of the SSCD bracings to 

limit the gravity structure (beams and columns) damage as much as possible. For this reason, 

the yielding force of the SSCDs are evaluated taking into account the elements resistance to 

which they are connected. The initial stiffness is estimated imposing a maximum displace-

ment of the gravity structure equal to the one corresponding to the 0.2% of the residual dis-

placement, see Figure 18. The mechanical characteristics of the resulting SSCD are resumed 

in Table 3. 

Level - direction Number of SSCD 
ko 

[kN/mm] 

Fy 

[kN] 
α β 

Ground floor - X 8 72 529 0.26 0.85 

First floor - X 8 88 848 0.26 0.85 

Ground floor - Y 28 112 332 0.16 0.85 

First floor - Y 14 77 556 0.20 0.85 

Table 3. Mechanical characteristics of the SSCDs 
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Figure 18. Evaluation of the gravity structure displacement corresponding to the 0.2% of residual displacement 

in the X direction 

3.3 IDA results for the retrofitted case 

With reference to the levels definition of Figure 7, in the following are reported the main 

results, in terms of IDA curves.  
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a)       b) 

Figure 19. Maximum displacements (mean values) at different level in the a) X and b) Y directions 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.0 0.5 1.0 1.5 2.0 2.5 3.0

S
.F
.

RESIDUAL DISPLACEMENT  IN X DIRECTION [mm] 

RETROFITTED STRUCTURE

LEVEL 1 LEVEL 2 LEVEL 3

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 5 10 15 20

S
.F
.

RESIDUAL DISPLACEMENT  IN Y DIRECTION [mm] 

RETROFITTED STRUCTURE

LEVEL 1 LEVEL 2 LEVEL 3

 
a)       b) 

Figure 20. Residual displacements (mean values) at different level in the a) X and b) Y directions 
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     a)                                b) 

Figure 21.  Maximum base shear vs maximum displacement at level 2 graph in the a) X direction and b) Y direc-

tion 

From the analysis of Figure 19 it can be seen that, in both directions, the displacement de-

mand is now equally distributed between the first and second floor. Figure 20 testifies the op-

timum re-centering capability of the retrofitting solutions: the residual displacements are 

lower than 3 mm in the X direction and 15 mm in the Y one. In Figure 22 the displacement 

time-histories for the  Ground motion IN445A, SF=1.430, in both the main directions high-

lights, together with the global hysteretic curves, the differences in terms of maximum and 

residual displacements in the case of un-retrofitted and retrofitted structure.  

 

a)   b)  
 

c)   d)  

Figure 22. Ground motion IN445A, SF=1.430: level 2 mean displacement time history in a) X and c) Y direc-

tions; level 2 mean displacement vs total base shear in b) X and d) direction. 
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Figure 23 shows, for clarification purpose, the energy time-histories for the IN113A GM 

for the minimum and maximum scale factor adopted, respectively equal to 0.275 and 1.430. 

For low value of the seismic action, the gravity structure remains in the elastic field and the 

energy adsorbed by it is practically equal to zero and all the input energy is dissipated by vis-

cous phenomena, contrarily to the case of the un-retrofitted  structure, see Figure 11. When 

the seismic action and, consequently, the input energy increase, the ratio of energy dissipated 

by viscous phenomena decreases and the input energy is mainly dissipated by the SSCDs. A 

low ratio (about 1/5 with respect to the un-retrofitted case) is absorbed by the  gravity frame, 

evidencing so a good level of structural protection.  

  
a)       b) 

Figure 23. Energy time-histories for the IN113A GM recording: a) SF = 0.275 ; b) SF= 1.430. 

The effectiveness of the retrofit can be appreciated analyzing Figure 24 where the energies 

adsorbed by the gravity structure, representative of the structural damage, and the one dissi-

pated by the SSCDs, both normalized by the input energy, are represented. The structural pro-

tection is optimized for values equal to about 0.6, while, for higher values, also the gravity 

structure dissipates energy, accumulating so damages.  
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Figure 24. Ratios between: a) the energy adsorbed by the gravity structure and the input one; b) energy dissipat-

ed by the SSCDs and input one 
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4 CONCLUSIONS 

In the present paper the seismic retrofit of an industrial structure through an innovative 

self-centering hysteretic dampers is proposed. The need of performing several Incremental 

Dynamic Analyses required a preliminary simplification phase of the nonlinear model. It re-

sulted that, even for the linear model, the uncertainties related to the missing of a precise 

knowledge of the infill material mechanical characteristics, does not influence sensibly the 

dynamic behavior of the whole model. Moreover, for the specific case study analyzed, where 

the main structural problems are located in the supporting structure, the modelling of the sup-

ported silos as elements with equivalent stiffness and mass, provides results, in terms of dy-

namic responses, very close to one supplied by a refined model.  

The execution of IDAs on the nonlinear model of the building in the current state, high-

lighted several structural problems, even for low value of the seismic action, especially in 

terms of excessive maximum displacements demand and of residual displacements.   

To solve these problems, a retrofit solution using an innovative Steel Self-Centering De-

vice (SSCD) is proposed. The execution of IDAs also in the retrofitted state, highlighted that: 

• the dampers minimize, in a very effective way, both the maximum and residual 

displacements of the structure; 

• the gravity structure is completely protected for low-to-mid value of the seismic ac-

tion, as highlighted by the analysis of the seismic energy components; 

• the proposed retrofit solution is optimized for a scale factor, associated to the de-

sign spectrum adopted, equal to 0.60. For higher values of scale factors, the build-

ing is however able to sustain the seismic action, but some damage is accumulated 

also in the gravity structure.  

Supplemental studies are currently ongoing to evaluate the sensitivity of the building re-

sponse to the SSCD mechanical characteristics and to compare the efficacy of the innovative 

damper adopted with respect to the one of a "classical" solution, such as a buckling restrained 

brace (BRB), not characterized by the presence of a re-centering force, but with an increased 

energy dissipation capacity [16] [17]. 
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Abstract. This paper deals with a real-world silo structure and the assessment of its seismic 

performance and possible retrofitting measures by using seismic protection devices. Firstly, the 

silo structure is shortly described followed by a simplified numerical modelling approach with 

the aim to save computational effort as much as possible but still achieve a reliable response 

of demands and failure modes. A comparison between the complex and simplified model is done, 

showing a very good match in terms of its dynamic properties, which are Eigenfrequencies, 

modal shapes and effective modal masses. With this simplified model incremental dynamic 

analyses are conducted to assess the current performance of the structure as-built. Strengths 

and weaknesses are highlighted by the simulation outcomes. Following, two possible retrofit-

ting strategies using torsion-based hysteretic dampers are discussed. Hereby it is shown, how 

the seismic device can be modelled in any finite element software by using rheological models. 

In one strategy of seismic retrofit an innovative torsional device is inserted at single bays of the 

structural frame. In the second strategy the steel torsional hysteretic damper is applied at the 

base of the steel columns, such that the structure is separated from the ground. The first retrofit 

approach proves to be effective in prohibiting a severe sides-way collapse which occurred for 

some earthquakes. The second shows to be greatly effective in preventing failure and also de-

creases deformation demands on the structure efficiently.

5851



M. Pinkawa, B. Hoffmeister and M. Feldmann 

1 INTRODUCTION 

Seismic events may have disastrous effects on industrial sites; for example the Duzce earth-

quake in Turkey 1999,  the L’Aquilla earthquake 2009 in Italy or the more recent Tohoku earth-

quake in Japan 2011 caused huge financial losses, as they all affected important industrial areas. 

One reason for the high losses are the high financial investment costs gathered on industrial 

sites which are at risk due to direct damage of industrial components and facilities. However, 

also more frequent smaller seismic events can lead to impairment of the functionality of key 

components and thus cause costly business interruptions. A further special characteristic of in-

dustrial facilities is the usual high risk potential of environmental damage as well as potentially 

threats to health and life of employees. For these reasons industrial structures are ideally suited 

for seismic design and retrofit by using special seismic protection systems. 

The European project “PROINDUSTRY – Seismic PROtection of INDUSTRial plants by 

enhanced steel based sYstems” aims at developing such enhanced seismic protection devices 

applicable to new and already existing industrial structures. One of the several case studies 

investigated in the scope of the project is a large silo structure located in a steel plant. This silo 

is a very important member of the supply chain and its loss of functionality may lead to business 

disruption of the whole plant. 

In this paper this realistic silo structure is firstly investigated as-built and further on different 

seismic retrofit strategies are applied. To assess on the effectiveness of the seismic retrofitting 

measure incremental dynamic analyses are the most detailed tools available. Due to the scatter 

in the characteristics of natural earthquakes a big amount of analyses needs to be conducted to 

obtain reliable results. As especially industrial facilities are often large and of complex nature, 

computational effort might be unmanageable. Therefore, usually a simplified model of the com-

plex structure is sought after, which preserves characteristic dynamic behavior by being feasible 

to handle. Moreover, in order to obtain a reliable structural response not only the structure itself 

needs to be modelled realistically, also the applied seismic device needs to be represented ap-

propriately. If the used finite element software does not provide special elements to model the 

behavior, which is often the case for new innovative seismic devices, it will be needed to use 

more or less complex rheological models or to implement ones own algorithm in the analysis 

core of the used software. 

After a short description of the case study, a simplified modelling approach for the complex 

structure as well as the seismic device is presented. With these models first the as-built seismic 

performance is assessed and secondly two retrofitting strategies are investigated and its out-

comes are compared to the initial stage. 

2 SILO STRUCTURE CASE STUDY 

2.1 Description of the case study 

The case study investigated herein is an elevated silo structure with several rectangular silos 

constructed in the early 70s. The silo is part of a huge steel plant and stores iron ore, limestone 

and sinter. Thus, the structure has a key role in the storage and supply chain of the whole in-

dustrial facility. When the silo is out of function, this will lead to a costly downtime of several 

other operations within the industrial site. An assessment of the seismic performance and a 

potential seismic upgrade is therefore highly advantageous. 
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Figure 1: Silo steel structure. Complete model (left) and single subassemblies of silo structure (right). 

The building has dimensions of W x H x D equal to 78 x 40 x 11 m. The structural layout 

and main characteristics can be seen in Figure 1. The most significant single subassemblies of 

the structure are shown on the right of Figure 1. The top is made of a roof beam structure, which 

is based on vertically stiffened shells and horizontal beams. The level below is formed by the 

silo shaft composed of shells with vertical stiffeners and an upper ring beam. Adjoining are the 

silo hopper shells stiffened by horizontal beams. Below is the hopper skirt support, which is 

also strengthened with vertical stiffener plates. Finally, at the lowest level the steel supporting 

structure is visible, which is made of heavy built-up columns and braced frames, whereby in-

verted V-bracings are used. It can be seen that 6 braces are built in the short Y-direction which 

will be named transversal direction in the following, and 2 braces in the long X-direction, la-

beled as longitudinal direction. Probably, the unbalanced number of braces in the two directions 

is attributed to the fact that wind forces were the essential considerations for the design of the 

bracing system, thus more braces are needed in transversal direction due to the big area where 

wind forces can act on. The calculated mass of stored material equals approximately 25,000 t 

and the self-weight of the steel structure equals to 2,400 t. The structure is made of S275 struc-

tural steel. 

2.2 Description of the simplified model 

The complete finite element model shown in Figure 1 is very complex and has a large num-

ber of degrees of freedom. The total number of dynamic simulations equals to 198, which re-

sults from two sets of ground motions (low-to-medium and high seismicity) with each eleven 

ground motion time histories times nine scaling factors. Taking into account that both the orig-

inal and the retrofitted have to be simulated the number already rises to 396 dynamic time his-

tory simulations. Moreover this number is the absolute minimum. It does not consider repeated 

simulations due to different retrofitting strategies and varying parameters of the used seismic 

protection device and does not take into account several runs due to debugging . Thus, in total 

several hundred analyses will be needed to be conducted. Not only the computational time, but 

also the limited storage for simulation output may show up to be problematic. Therefore, due 
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to the huge amount of dynamic simulations which need to be conducted during the 

PROINDUSTRY project a computationally more efficient model was sought after. 

The approach in simplifying the numerical model was to concentrate on the supporting struc-

ture and neglect the silo structure. This assumption was based on several reasons: Firstly, the 

silo shells are quite thick and massively stiffened, such that global failure of the structure is 

assumed to take place in the steel supporting structure rather than in the steel silos. Secondly, 

the dynamic modelling of the bulk material inside the silo would be needed to obtain reliably 

local failure of the silo shell. However, complex interaction models would be needed which 

further need several input parameters afflicted with a high level of uncertainties. Thus, on the 

one hand the reliability of the sophisticated approach would be still questionable and on the 

other hand the complexity excludes practically the simulation of several hundreds of analyses. 

However, with the simplified approach just demands on the supporting structure and the 

mass points representing the silos are determined, without giving information about demands 

on the silo shells. However, peak forces and differential displacements obtained by the simpli-

fied model might be statically applied to the bottom or center of gravity of the silos bins. In a 

more complex approach, for bypassing this lack of information acceleration time history of the 

supporting structure may be applied to the bottom of the silo structure in a separate analysis, 

i.e. a cascaded approach similar to the floor response spectrum method used for SDOF systems. 

In this case the most detrimental excitation cases could be applied, to avoid extensive simula-

tions but still to obtain reliable performance of the superstructure. 

     

1st transversal 
mode in x-dir. 

1st transversal 
mode in y-dir. 

1st torsional mode 
2nd transversal 
mode in y-dir. 

3rd transversal 
mode in y-dir. 

Figure 2: First five global mode shapes of complex structure. 

Summarizing a simplified model is sought after, where the supporting structure is modelled 

explicitly by beam elements and the superstructure is taken into account by equivalent mass 

and stiffness properties applied to the supporting structure. Considering the Eigenmodes of the 

complex model shown in Figure 2, it is obvious that the superstructure cannot be modelled as 

rigid. Thus, a simplified model needs to capture the flexible behavior of the superstructure with-

out explicitly modelling it. The flexibility needs to be modelled at the connection of the columns 

to the silos, representing the joint details shown in Figure 4 left. Finally, the simplified model 

shown in Figure 3 has been found to be appropriate. The silos are represented by mass points, 

which are located at the center of gravity of the full silo bins. A configuration of all silo bins 

totally filled has been investigated in this research work, which is in general the most critical 
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situation. Torsional response due to extreme misbalanced filling configurations might be also 

critical, however this issue was not investigated further herein. The silo mass points are con-

nected to each other by several constraints. The cross sections are modelled as fibre elements, 

where the stress strain law is intergrated at every interpolation point. Conservatively, an almost 

elastic – ideal plastic stress strain curve with a yield point of 27.5 kN/cm² has been assumed. 

The connection of the silo mass assembly with the column tops was the key point and is dis-

cussed in the following. 

 

 

Figure 3: Simplified model with explicitly modelled supporting structure made of columns and frame braces 

with equivalent springs and couplings in order to take the flexible superstructure into account. 

Figure 4: Connection detail between supporting 

and superstructure at columns. 

 

Figure 5: Schematical drawing of spring subassembly. 

In order to obtain a reliable response of the simplified model, in total four spring or flexural 

stiffness properties respectively have been applied to the model. A schematical drawing of these 

springs can be found in Figure 5. A short description of each spring characteristic is given in 

the following Table 1.  

The spring parameters were calibrated by a trial-and-error procedure until three aspects in 

the simplified model matched the complex model’s ones for the relevant modes: 

 Eigenfrequencies 

 Modal shapes 

 Effective modal masses 
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Spring No. 1  

 Rotational spring about global Y-axis 

 Connecting column top nodes and node of longitudinal beam 

 Dominant spring for fundamental mode, not affecting higher relevant modes 

Spring No. 2 

 Rotational spring about global X-axis 

 Connecting column top nodes and node of longitudinal beam 

 Influencing higher relevant modes 

Spring No. 3 

 Rather a smeared stiffness property than a spring 

 Flexural stiffness about local z-Axis of longitudinal beams (i.e. also global Z-Axis) 

 Influencing higher modes, is needed to achieve transversal flexible behavior 

Spring No. 4 

 Rotational spring about global Z-axis 

 Connecting longitudinal beam and transversal rigid T-type beam nodes. Influencing 

higher modes, is needed for the transversal flexible behavior to distribute transversal 

deflection from the higher displacement value at the middle to both ends in the longi-

tudinal dimension, or in other words to form a more smooth transition from the mid-

dle bulge to the outer frames (see e.g. Figure 2: 1st transversal mode in y-dir.) 

Table 1: Spring characteristics used in simplified beam model. 

The final spring values which yielded the best match of the dynamic properties are given in 

Table 2. Whereby the rotational springs No. 1, 2 and 4 can be specified directly, the flexural 

stiffness of the longitudinal beams (spring No. 3) is achieved by defining a cross section with 

dimensions of 70 x 400 cm and an elastic modulus of 21000 kN/cm². 

 

Spring No. Label Value Units 

1 K1, 610 000 kNm/rad 

2 K2, 5 500  kNm/rad 

3 K3,EI 24 010 000 kNm² 

4 K4, 10 000 000 kNm/rad 

Table 2: Spring parameters used for the simplified model. 

In the following the achieved match of dynamic properties between the simplified beam 

model and the full structure model is shown. Modal frequencies of the first five modes are 

shown in Table 3. Effective modal masses in both horiziontal directions are listed in Table 4. 

The total mass of the system is 27 400 t. Corresponding modal shapes of the simplified and the 

full complex model are shown in Figure 6 to Figure 10 for comparison. It can be stated that for 

the most relevant modes no. 1, 2 and 4, the dynamic properties of the complex model are well 

represented with the simplified beam model.  
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Figure 6: 1st global transversal mode (Mode 1). Figure 7: 1st global transversal mode (Mode 2). 

  

 

  

  

 

  

Figure 8: 1st global torsional mode (Mode 3). Figure 9: 2nd global transversal mode (Mode 4). 

  

 

 

Figure 10: 3rd global transversal mode (Mode 5). 

Mode 

No. 

Modal period [s] Ratio 

simplified / 

complex 
Complex 

model 

Simplified 

model 

1 1.69 1.69 100% 

2 1.24 1.24 100% 

3 0.94 0.90 95% 

4 0.76 0.72 95% 

5 0.62 0.59 94% 

Table 3: Comparison of modal periods of complex 

and simplified model. 

 

Mode 

No. 

Effective modal mass [t] 

Longitudinal direction Ratio 

simpl. / 

complex 

 
Mode 

No. 

Effective modal mass [t] 

Transversal direction Ratio 

simpl. / 

complex Complex 

model 

Simplified 

model 
 

Complex 

model 

Simplified 

model 

1 27 299 27 285 100%  1 0 0 - 

2 0 0 -  2 22 661 22 311 98% 

3 0 0 -  3 3 4 133% 

4 0 0 -  4 4 345 4 630 107% 

5 0 0 -  5 72 185 257% 

Table 4: Comparison of effective modal masses in longitudinal (left) and transversal (right) direction. 
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2.3 Seismic input 

As input for the Incremental Dynamic Analyses recorded ground motion time histories have 

been used. A detailed description on the selection criteria and characteristics of the accelero-

grams can be found in [1]. Two sets with each eleven ground motions have been assembled: 

One set representative for low-medium seismicity regions and one representative for high seis-

micity regions (see Table 5 and 6 respectively). For the matching of the target spectrum the 

geometrical mean of both horizontal components has been used. Figure 1 and Figure 12 show 

the individual spectra of the selected accelerograms along with the mean and target spectrum. 

All three components – two horizontal and one vertical – were taken from the same recording. 

Also the vertical component has been applied in the simulations, because it might be critical 

due to the very high gravity loads present in the silo structures.  

For the incremental dynamic analyses in total nine scale factors – different ones for the low-

medium seismicity and high seismicity ground motion sets – have been used. The scale factors 

were chosen such that different return periods have been covered, starting from rather frequent 

earthquakes (return period of 60 years) to extreme rare earthquakes (return period of 2475 

years). 

 

 
 

 

Label Event location MW R 

[km] 

LM - 1 Friuli 6 14 
LM - 2 Friuli 6 9 

LM - 3 Lazio Abruzzo 5.9 16 

LM - 4 Umbria Marche 6 22 
LM - 5 Tabas 7.3 68 

LM - 6 Manjil 7.4 81 

LM - 7 Komilion 5.4 15 
LM - 8 Izmit 7.6 96 

LM - 9 Izmit 5.8 25 

LM - 10 Emilia 6 19 
LM - 11 Christchurch 5.3 17 

 

Figure 11: Low-medium seismicity acceleration spectra Table 5: Low-medium seismicity set 

 

 

Label Event location MW R 

[km] 

H - 1 South Iceland 6.4 5 
H - 2 Montenegro 6.9 25 

H - 3 Erzincan 6.6 13 

H - 4 Gazli 6.7 11 
H - 5 Izmit 7.6 20 

H - 6 South Iceland 6.5 5 

H - 7 Duzce  7.1 5 

H - 8 Darfield 7.1 18 

H - 9 Imperial Valley 6.5 27 

H - 10 Loma Prieta 6.9 7 
H - 11 Northridge 6.7 20 

 

Figure 12: High seismicity acceleration spectra Table 6: High seismicity set 
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3 SEISMIC PERFORMANCE OF AS-BUILT STRUCTURE  

First the as-built structure has been subjected to all earthquake time histories and scale fac-

tors. The most important outcomes are discussed in the following sections separated for the 

low-medium and the high seismicity ground motion sets. In general all simulations have been 

conducted geometrically fully nonlinear (large displacement theory). 

3.1 Low-medium seismicity ground motion set 

The incremental dynamic analyses with the low-medium seismicity accelerograms showed 

no larger convergence problems. Figure 14 shows the displacement at the top of the supporting 

structure in longitudinal and transversal direction as function of peak ground acceleration PGA. 

At the lowest scale factors the structure behaved almost elastic. For lower scale factors braces 

buckled in compression and yielded in tension. For the highest scale factors strong yielding and 

buckling occurred in almost all braces. Also all columns yielded at their base. However, no 

failure of the structure occurred for all of the earthquakes even at the highest scale factor. 

 

Figure 13: Low-medium seismicity IDA curves in longitudinal X- (left) and transversal Y-direction (right) 

3.2 High seismicity ground motion set 

As expected the high seismicity ground motion set provided much higher demands on the 

structure. Strong yielding patterns (yielding and buckling of braced frames, yielding of columns 

at base and top) occurred already for low scale factors. Figure 14 shows the corresponding IDA 

curves. At higher scale factors convergence difficulties occurred, thus, the IDA curves are not 

complete, as just fully completed simulations are shown in the diagram. The premature abortion 

of simulations mainly arrived due to collapse of the structure or excessive deformations of 

braces. The performance of the structure for each earthquake is summarized in Table 7. 
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Figure 14: High seismicity IDA curves in longitudinal X- (left) and transversal Y-direction (right). 

Ground motion Comment 

H – 1 Excessive deformation of one brace causes convergence problems 

H – 2 Full range of scale factors finished 

H – 3 Global sidesway collapse in longitudinal direction 

H – 4 Five braces exhibit excessive deformations leading to abortion of the simulation 

H – 5 Excessive deformation of one brace causes convergence problems 

H – 6 Full range of scale factors finished 

H – 7 Three braces deform extensively and cause abortion of the simulation 

H – 8 Global sidesway collapse in longitudinal direction 

H – 9 Five braces exhibit excessive deformations leading to abortion of the simulation 

H – 10 Three braces deform extensively and cause abortion of the simulation 

H – 11 Global sidesway collapse in longitudinal direction 

Table 7: Comments on performance of IDA simulations. 

Three of eleven earthquakes triggered a clear sides-way collapse in longitudinal direction. 

This highlights one of the weakness of the structural layout. Whereby in the transversal direc-

tion the structure is stiffened by in total 6 braced frames just two braced frames exist in the 

longitudinal direction. Obviously wind forces have governed the brace layout, where due to a 

much larger influence area the resulting lateral force is high in transversal direction and is rel-

atively low in longitudinal direction. The evolution of the typical sides-way collapse is illus-

trated in Figure 15. Yielding at the bottom of columns is followed by yielding and buckling of 

the two frame braces and yielding of column tops and finally the structure collapses due to P-

Delta-effects. In six of the eleven earthquakes the simulation aborted prematurely either due to 

torsional buckling of the columns, which was triggered by out of plane displacements of the 

bracing frames, or due to or excessive deformations of the braces. See Figure 16 for an impres-

sion. Two of the eleven earthquakes finished without signs of global collapse. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400 450 500

P
G

A
 [

g]

Peak displacement X-dir. [mm]

Longitudinal direction

H - 1
H - 2
H - 3
H - 4
H - 5
H - 6
H - 7
H - 8
H - 9
H - 10
H - 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400 450 500

P
G

A
 [

g]

Peak displacement Y-dir. [mm]

Transversal direction H - 1
H - 2
H - 3
H - 4
H - 5
H - 6
H - 7
H - 8
H - 9
H - 10
H - 11

5860



M. Pinkawa, B. Hoffmeister and M. Feldmann 

 

 

 

 

 

 

8.98 s – Yielding of some column foots 8.99 s – Additional yielding of column tops and brace 

  

9.00 s – Yielding at all column foots and tops 12.00 s – Strong yielding of all columns and braces 

 

13.77 s – Sides-way collapse of structure 

Figure 15: Chronological evolution of sides-way collapse which occurred for earthquakes no. 3, 8 and 11, 

deformation scale factor 1. 

 

Figure 16: Failure mode torsional buckling of columns triggered by out of plane displacement of brace layer, 

deformation scale factor 1. 

4 SEISMIC RETROFITTING STRATEGIES  

The principle of torsional yielding of steel rods shall be used in the phenomenologically 

modelled applied seismic devices. Such devices exist for example as Multi-Directional Hyster-

etic Devices explained in [2]. After a short introduction into the hysteretic behavior of such 

devices two generic retrofitting strategies will be investigated: As first retrofitting strategy a 

torsional damping device is applied inside the braced frames and as second strategy it is used 

as base isolation layer inserted between ground and structure at each column base. 

4.1 Torsional energy dissipation devices 

The seismic device hysteresis loop is shown in Figure 17. The most important aspects are 

the beneficial stiffening effect for higher displacements and the isotropic hardening of the yield 

surface. The stiffening effect is accomplished by the kinematics of the system. Two numerical 
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models have been tested to simulate the hysteresis loop of the seismic device, which are sche-

matically sketched in Figure 18. Basically a plastic spring is put in parallel with either contact 

elements which are themselves put in series with additional elastic springs or just one multilin-

ear elastic spring. The plastic spring accounts for the yielding and the isotropic hardening effect, 

which is accomplished by choosing appropriate isotropic hardening parameters. The stiffening 

effect is modelled by the contact element and elastic spring series or the multilinear elastic 

spring. The more contact spring combinations or data points for the multilinear spring are used, 

the more smooth the post yielding curve will look like. Both systems are able to reproduce the 

same hysteresis curve shown in Figure 17. The fit between test and simulation seems to be 

acceptable taking into account the simplified modelling approach. Although both modelling 

approaches yield the same results, the second one proves to be more robust and computational 

efficient, mainly due to the lack of highly discontinuous contact elements. In general, no con-

vergence issues could be observed for the second approach and runtime of simulations com-

pared to the unretrofitted simulations just slightly increased. 

 

 

Figure 17: Typical force displacement hysteresis for torsional devices obtained by experimental tests (prototype 

with one default yielding core) [provided by MAURER SÖHNE] and results of numerical representation. 

(a) Complex approach (b) Simplified approach 

 
EP

 
 

nonlin. E

EP

 

Figure 18: Rheological models to simulate the hysteresis of the torsional seismic device: approach with contact 

elements (a) and approach with multilinear elastic spring (b). 
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4.2 Retrofitting approach I: Energy dissipation in braced frames 

The torsional hysteretic device inserted between an added V-brace and the bottom of the 

superstructure has been modelled phenomenologically by inserting the rheological model dis-

cussed aboved at this spot. Figure 19 ashows a schematical sketch of this approach. The diago-

nals in the V-brace need to act both in tension as well as in compression. In order to prevent 

buckling the braces need to be sufficiently squat. In the simulations the flexibility of the V-

brace was assumed to be negligible compared to the flexibility of the device and thus was mod-

elled as rigid. 

The analysis conducted is considered as demand identification, i.e. how much torsional rods 

of the characteristic shown in Figure 17 are needed to improve the structural response signifi-

cantly. The main purpose was to prevent the global sides-way collapse which happened in three 

of eleven earthquakes for the original structure. By an iterative procedure it was find out that in 

total 48 of torsional yield cores used for the whole structure would achieve this aim. Using 

thicker yielding cores the total amount would decrease accordingly. Number of cores per bay 

and number of bays need to be adapted to constructive and practicability boundary conditions. 

For example Figure 19 shows a device equipped with four yielding cores. 

 

  

Figure 19: Schematical drawing of applied torsional hysteretic device into frame bay (left) and detail of proto-

type torsional device equipped with four yielding cores (right, [3]). 

The applied retrofitting strategy adds additional amount of damping to the structure but also 

increases the stiffness of the longitudinal sway mode. Thus, this mode shifts to a higher accel-

eration value in the response spectrum which might cause an increase in demands. The modal 

periods of the structure after application of one of the discussed retrofitting strategies are listed 

in Table 8 while the mode numbering is in accordance to the mode shapes shown in Figure 6 

to Figure 10. 

 

 Modal period T [s] 

 As-built Retrofit I Retrofit II 

Mode 1 1.69 1.18   (  70%) 2.50   (150%) 

Mode 2 1.24 1.24   (100%) 2.09   (169%) 

Mode 3 0.90 0.89   (100%) 1.71   (190%) 

Mode 4 0.72 0.72   (100%) 0.89   (124%) 

Mode 5 0.59 0.59   (100%) 0.65   (110%) 

Table 8: Modal periods after application of retrofitting. 
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A comparison between the as-built structural performance and the retrofitted structure shows 

that with the determined amount of steel cores the failure mode of sides-way collapse could be 

completely excluded. Figure 20 shows the corresponding IDA curves. Whereby for the H – 8 

peak displacement are still high – but without collapse taking place – the peak displacement for 

the other two earthquakes H – 3 and H – 11 are siginificantly reduced. Figure 21 shows a com-

parison for the no failure earthquakes. In general peak displacements are in most cases equal or 

lower, especially at the highest peak ground acceleration yielding a reduction of at least 20% 

can be obtained. The same holds true for the other earthquakes. Due to the period shift in some 

cases peak displacements may also be higher. The ratio of peak displacements of as-built to 

retrofitted behaviour is shown in Figure 22. Otherwise than the sides-way collapse failure mode, 

the other premature abortion reasons due to excessive brace deformations still occur. The be-

havior in transversal direction was essential the same, because the braced bays act in general 

just in longitudinal direction. 

 

 

Figure 20: Comparison between as-built and retrofit-

ted structure performance for sides-way collapse trig-

gering earthquakes. 

 

Figure 21: Comparison between as-built and retrofit-

ted structure performance for no global failure earth-

quakes. 

  

Figure 22: Ratio of as-built structure peak displacements in longitudinal X-direction to that ones of retrofitted 

structure for low to medium (left) and high (right ) seismicity ground motion sets. 
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4.3 Retrofitting Approach II: Base isolation with torsional hysteretic dampers 

For the base isolation retrofitting strategy every column base has been separated from ground 

in both horizontal directions and the numerical model of the seismic device has been applied in 

both orthogonal directions. The hysteretic curve looks similar as that one shown in Figure 17 

with the modification that the initial stiffness has been tuned in such a way to yield an increase 

in the period in longitudinal direction of 50%, which yields a fundamental period of 2.5 seconds. 

The impact on the other modes is listed in Table 8. 

 

 

 

Figure 23: Schematical drawing of applied torsional hysteretic device as base isolation (left) and detail of multi-

directional torsional hysteretic device (right, according to [4]) 

The retrofitted structure performed very well, as also for the high seismicity conditions no 

structural failure occurred. Figure 24 shows the relation between the peak displacements in the 

structure for both low to medium seismicity and high seismicity ground motions in longitudinal 

and transversal direction. For the retrofitted structure these are the displacements related to the 

top of the seismic device, which itself has to perform additional displacements. At higher peak 

ground accelerations for some high seismicity earthquakes the ratio was set to zero, in these 

cases when the as-built structure did not converge due to failure or excessive deformations. 

Otherwise the ratio is computed just for fully completed simulations. As can be seen for all of 

the ground motions deformation demand in the structure is efficiently decreased, for some even 

to 20% of its initial values. 

The relative displacements inside the seismic device have been evaluated and are listed in 

Table 9. Demands have to be lower than capacity of the seismic device, otherwise the obtained 

results are not achievable in reality. For all of the low to medium seismicity earthquakes the 

displacements are well within the range of feasible displacements as can be compared to Figure 

17. For some of the higher seismicity ground motions the demand on the seismic device is quite 

high for peak ground accelerations in the range of 0.25g to 0.5g. However, up to a peak ground 

acceleration of 0.2 g also for all of the high seismicity ground motions the peak relative dis-

placement is below 400 mm, which is a well achievable capacity for this type of device. 
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Figure 24: Ratio of structural relative displacements between as-built structure and retrofitted structure. 

 

 Peak relative displacements in seismic device urel [mm] 

LM- 1 2 3 4 5 6 7 8 9 10 11 

X 91 150 141 53 95 143 150 216 205 109 49 

Y 122 163 240 55 53 91 263 156 138 97 85 

H- 1 2 3 4 5 6 7 8 9 10 11 

X 364 163 431 128 345 512 665 1212 258 320 1282 

Y 375 50 346 589 659 605 966 347 257 812 1016 

Table 9: Peak displacements in seismic device at highest scale factor for low to medium (LM) seismicity and 

high (H) seismicity ground motions in longitudinal (X-) and transversal (Y-) direction. 
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5 CONCLUSIONS 

This paper has shown how a complex finite element model may be transferred into a simpli-

fied model to save computational effort and storage need by maintaining its most important 

dynamic properties. Such simplifications are needed to be able to handle the huge amount of 

seismic analyses which need to be conducted for the purpose of Incremental Dynamic Analyses. 

With this simplified model Incremental Dynamic Analyses have been conducted to assess 

on the current performance. Further on, two retrofitting strategies have been applied in a generic 

way: Additional stiffness and energy dissipation with additional bracings equipped with seismic 

devices and a base isolation layer between column footings and ground. The simple modelling 

of the characteristic hysteresis by help of a rheological model has been discussed. While the 

first retrofitting strategy showed to be effective in preventing the global sides-way collapse 

failure mode, the second one moreover could drastically reduce displacement demands in all 

the earthquakes. 

 In these analyses the seismic devices have been applied in a generic way. In future the mod-

elling strategies and used parameters for the seismic device will be investigated more deeply 

regarding practicability and economic issues. Moreover, further limit states have to be incorpo-

rated as solely the displacement or occurrence of global failure. The demand on the seismic 

device has to be compared in detail with its realistic capacity. 
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Abstract. Silos are industrial facilities used for storing a huge range of different materials. In 

the last decades, many silos were damaged by natural events, among which the seismic events 

are the most significant. Indeed many plants are located in territories in which seismic risk is 

not negligible. Furthermore, most of these plants have been designed, and built before the 

latest updates of the seismic design codes took place, and most of them are prone to earth-

quakes. In this study, seismic behaviour of an existing industrial steel silo system in Italy has 

been investigated, and a retrofit solution has been proposed making use of seismic isolation 

technology. Curved surface single sliding pendulums have been designed as a base isola-

tion retrofitting solution. Incremental dynamic analysis method has been used in order to 

evaluate the seismic performance of both the non-isolated and isolated cases. Structural 

benefits of the seismic isolation retrofitting solution has been quantified in terms of inelastic 

deformations, base shear, floor drifts, isolator displacements, and residual drifts, and com-

parisons between the original and retofitted solutions are presented. The impact of vertical 

ground accelerations on the global behaivour of seismic isolated silos has been highlighted, 

which showed that a fully elastic superstructure behaviour can be achieved only when the 

vertical component of earthquake is not significant. Uplift has been investigated and stated as 

a limiting parameter for the design of seismically isolated silos. The study has been realized 

thanks to EU-RFCS research fund for PROINDUSTRY project [1].  
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1 SILOS CASE STUDY 

The case study is composed of three silos, elevated on a     steel structure, constructed next 

to another 2 elevated silos. It’s a silo system from SOLVAY Italy (Figure 1). 

 

Figure 1 Case study 

Main characteristics of the system are the following: 

Internal radius of silos:    1.75 m 

Total height of silos:   13.356 m 

Thickness of silo body:  Changes along height from 12 to 8 mm. 

Steel:     Fe360b 

Silo content:    Sodium percarbonate 

E =      210000 MPa 

ν =      0,3 

ϒsteel =    7850 kg/m3 

ϒcontent =    1200 kg/m3 (sodium percarbonate) 
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Layout of the system can be seen in Figure 2. The stairs and connection structure between 

three silos are neglected for simplicity, since the rigidity and the mass of the silos probably 

will lead the global behaviour, without an important effect of the connecting structures and 

stairs.  

 

 

 

 

 

a. Transversal view b. Longitudinal view 

Figure 2 System layout 

The silos are connected to the support structure by means of stiffener plates (Figure 3). 24 

stiffener plates are welded to the silo wall, equally spaced around its perimeter. These stiffen-

er plates are then welded to the ring beam with 150x30 mm cross section. The ring beam is 

bolted to the support structure beams.  

 

 

 

 

 

  

Figure 3 Ring beam-silo connection detail 
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Three main levels are considered in the numerical model: 

Level +0 mm: The columns are fixed at this level, which corresponds to “-650.00 mm” 

level of the drawings (Figure 4.a) 

Level +4850 mm: First beam level (Figure 4.c) 

Level +8934 mm: Second beam level (Figure 4.d) 

Level +20580 mm: Top point of silos (Figure 4.b) 

 

 

 

 

 

 

 

 

a. Ground level b. Section view c. +4850 mm  plan 
view 

d. +8934 mm 
plan view 

Figure 4 Different levels of the system 

The supporting structure is an asymmetric steel frame braced only in longitudinal direction, 

with different bracing layouts in two sides (Figure 5). 

  

a. V-braced side b. X-braced side 

Figure 5 Two sides of the structure 
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2 NUMERICAL MODEL 

Numerical model is composed of silo bodies made of shell elements, steel structure made 

of beam elements formulated by fiber-based distributed plasticity approach [2], steel plate el-

ements and rigid links that connect silo bodies and steel structure. Bracing elements are given 

initial imperfections according to EC3, as shown in Table 1. 

S235 Steel e0 [mm] 

HE240B [m] 35,9 

HE160B [m] 15,9 

HE240B [m] 16,0 

UPN200 [m] 19,1 

Table 1 Initial imperfections for bracing elements 

The supporting structure has different bracing configurations in two sides of the frame 

(Figure 6.a.b). Lumped dynamic masses simulate the silo content, distributed at 7 levels in-

side silo, connected to silo walls by rigid links (Figure 6.c). 

   
a. Model view 1 (X-braced side) b. Model view 2 (V-braced side) c. Lumped masses  

Figure 6 Numerical model 

The connection between HE500B longitudinal beams and silo are simulated with rigid 

links in the model. The connection between silo and ring beam is composed of 24 steel plates, 

which are simulated with shell elements in the model. 

Figure 7 Reinforcement of the joints 
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As shown in Figure 7, the reinforcements of nodes are simulated by an ideal section with a 

doubled thickness of the core between the two reinforcement plates: stiffening the joint in this 

way, its behaviour is almost the same that the real one with the stiffening due only to the two 

reinforcement plates. The main areas where the joints are stiffened are contact points between 

the silos and the frame, and the joint between the two composite columns HE500B+IPE360 

and the beams at the first floor. 

Total mass of the system is 453,9 tons with following components: 

Silo content:   391,1 tons 

Silo body steel weight:  31,37 tons 

Structural steel:   31,43 tons 

Stress-strain relationship of the steel material has been defined with the following parame-

ters: 

Yield strength fy = 235 MPa 

Ultimate strength fu = 360 MPa 

Kinematic strain hardening: 1 % 

Ultimate strain = 0.06 

In Table 2 Modal analysis results, modal analysis results are reported. Mode shapes are 

shown in Figure 8 Mode shapes. 

 Period Mass participation 

1st global mode in y direction (transversal) 1.2 sec 97.96% 

2nd global mode in x direction (longitudinal) 1.05 sec 90.177% 

3rd global mode in z direction (vertical) 0.13 sec 95.541% 

1st global torsional mode  0.84 sec 9.4% 

Table 2 Modal analysis results 

  
1st global mode 2nd global mode 

  
3rd global mode (vertical) 1st global torsional mode 

Figure 8 Mode shapes 
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3 FAILURE MECHANISMS OBSERVED IN THE ORIGINAL STRUCTURE 

Results of Incremental Dynamic Analysis performed on the original structure have been 

presented in deliverable 2.3. In this report, only failure mechanisms of the original structure 

are presented, in order to provide the degree of improvement by means of seismic isolation 

devices.  

In the original structure, yield takes places at column bases even in the analysis with low 

scale factors. Increasing the intensity, the plastic behaviour is redistributed to the column ends, 

bracings, and connections between silo and supporting structure (Figure 9). 

  

a. X-braced side b. V-braced side 

Figure 9 Failure mechanisms of the original structure 

Figure 10 shows that the numerically obtained failure mechanisms represent common 

structural damages that can be observed after strong earthquakes, such as Van Earthquake. 

Therefore, the seismic retrofitting solution should address these criticalities. 

  

a. Failure mechanisms obtained from numerical 

analysis 

b. Damages observed on the support structure 

of elevated silos after Van Earthquake (2011) 

Figure 10 Structural damages observed in Van Earthquake and numerically obtained failure mechanisms [3] 
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4 DESIGN OF SEISMIC ISOLATION SOLUTION 

To retrofit the structure, a single sliding pendulum isolator has been designed in coopera-

tion with project partner MAURER [4]. A static diagram of the forces acting in a sliding pen-

dulum isolator used for the retrofitting is shown in Figure 11, while the force - displacement 

relationship is displayed in Figure 12. 

 

Figure 11 Forces acting in a sliding pendulum isolator 

 

Figure 12 Force - displacement relationship in a sliding pendulum isolator  
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The equations governing the behaviour of a single isolators are the following: 

Response period of the Isolator    

Horizontal resisting force     

Horizontal stiffness due to the vertical load   

Effective stiffness      

Effective response period     

Damping due to friction     

Vertical displacement      

Re-centering criterion      

Where W is the vertical load acting on the isolator agent, μ is the dynamic friction factor, d 

is the horizontal displacement, D is the horizontal speed and R is the radius of curvature. Note 

that the horizontal stiffness is linked to the load acting on the isolators: in an optimal design 

should therefore a different isolator should be adopted for each design vertical load. 

In particular an isolator can be modelled by placing in parallel the two following elements, 

as shown in Figure 13. 

1) Point Contact element: by means of an element of this type it is possible to define the 

friction factor and the vertical stiffness of the isolator. You can also define the yield surface of 

the isolator (rectangular or elliptical) and the friction model (elastic or plastic). Using an ellip-

tical surface we ensure that the point at which the isolator begins to flow is the same in all di-

rections, while the plastic friction model governs the hysteretic behaviour of the isolator. 

2) Connection element: using an element of this type the stiffness of the isolator to sliding in 

horizontal directions can be defined. 

 

Figure 13 Modelling of the isolator in Straus7 

It should be noticed that in Strand7 the length of the two elements of the isolator is not in-

fluencing the isolator behaviour, which is completely defined by the intrinsic properties of the 
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two elements. Assuming a fictitious length of the isolators equal to 500 mm, to each column 

of the previously modelled structure are added a Point Contact and a Connection element. The 

modelled isolators are shown by Strand7 as lines, whose lower point is stuck to the ground 

and whose upper end is connected to the column, as shown in Figure 14. 

 

 

Figure 14 modelling the isolators in Straus7 

To verify the correctness of the isolation system modelling, a non-linear static analysis was 

carried out, gradually applying a hypothetical design displacement of ± 300mm to the isola-

tors as shown in Figure 15. A period of 4 seconds hence a sliding stiffness ks equal to 0.187 

kN / mm) and 4 % friction factor was assumed for all the isolators. 

 

Figure 15 Displacements imposed to the isolators 
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With reference to the nodes numbering shown in Figure 3.50, let’s consider, for example, 

the isolator in the node 5, on which acts a vertical load of 777.8 kN. The force-displacement 

response of the isolator in the node 5, obtained by the nonlinear static analysis is shown in 

Figure 16, where the displacements are dimensionless for a better understanding. 

 

Figure 16 Constitutive law of the isolator in node 5 in terms force-displacement (period 4 seconds and friction 

factor 4%) 

From the constitutive law obtained by the nonlinear static analysis, the initial stiffness ki 

and the sliding stiffness ks of the isolator are: 

 

 

As the constitutive law of the isolator has been plotted by normalizing the displacements, 

the stiffness must also be calculated scaled to the hypothetical design displacement for the 

isolators, assumed equal to 300 mm: 

 

 

 

It can be noticed that the sliding stiffness ks coincides with that initially assumed, that is: 
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Where μ is the friction factor, Dy is conventionally assumed as 0.01 and W is the load ap-

plied on the isolator. It is observed that also in this case ki,def , obtained by means of the theo-

retical definition , is approximated to ki obtained from the actual constitutive law of the 

isolator. Finally, the effective stiffness related to the dimensionless displacement Keff,ad and to 

the design displacement Keff are: 

 

 

With reference to the definition of effective stiffness, it is: 

 

Also the effective stiffness obtained from the constitutive law reflects the one obtained 

with reference to the theoretical definition, unless of some negligible differences due to the 

approximation of the values assumed for the various parameters. 

The numerical modelling is therefore correctly defined as the constitutive law in Figure 16 

reflects the theoretical response of the isolators. To characterize an isolator, it is then neces-

sary to identify optimal values for the friction factor and the horizontal stiffness. 

As a starting hypothesis, it was assumed to have isolators of equal stiffness, assuming dif-

ferent values of the period of the isolation system and of the friction factor. The three most 

significant cases of this initial phase are reported in Table 3, in which the results in terms of 

displacement of the isolators have been obtained from the analyses carried out adopting the 

high seismic intensity accelerogram ED74. 

Case 

Modelling assumptions Max displacements 

Friction 

[%] 

Tis 

[s] 
k [kN/mm] |sx,max| [cm] |sy,max| [cm] 

1 3 4 0,187 22,8 27,3 

2 4 3 0,332 22 20,6 

3 4 2,5 0,478 17,9 16,7 

Table 3 First iterative phases 

In general it can be observed that, by increasing the stiffness of the isolators and thus de-

creasing their period, the maximum displacements of the isolators in the two directions de-

crease. 

One disadvantage when allowing high displacements in the devices is that this might easily 

result in increments of the displacements incompatible with the maximum allowable dis-
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placements of the isolators. This is the most dangerous condition since exceeding the limit 

displacement might cause failure of the isolators and furthermore a sudden stop of the struc-

ture with high impact forces, a sort of hammering at the base of the structure. 

On the other hand, limiting the displacements has the primary disadvantage that in this way 

smaller displacements are allowed. The dissipated seismic energy will also be lower and 

therefore the isolation system may not be sufficient to completely protect the structure. High 

stress concentrations might occur, although locally, which might lead to plasticization or ex-

treme loading conditions in the connections. 

Even considering an isolation system with period equal to 4 seconds, plasticisation of col-

umns occurs in the first floor, as shown in Figure 17. For the cases 2 and 3, the stresses in the 

structure increase even more and not negligible plasticization occurs also in the top of the col-

umns. 

 

a. Case 1 – Side with X bracing 

 

b. Case 1 – Side with chevron bracing 

Figure 17 Inelastic behaviour observed with isolators placed at the column bases 

This effect is due to additional torsional effects, caused by different displacement time his-

tories experienced by the isolators, which cause rotations of the structure in the x - y plane 

(Figure 18). 

 

Figure 18 Torsional effects in the structure. 
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For example, in case 1 with isolators having a period of 4 seconds and a friction factor 3 %, 

it can be noticed that the isolator displacements in the x-direction (Figure 19) and in the y-

direction (Figure 20) are not uniform, since the isolators are not connected with each other. 

Approximately after 12 seconds, the maximum difference between the displacement of the 

two isolators along x is approximately about 15 cm. 

 

Figure 19 Isolator displacements along x-direction of the isolated structure for case 1 

 

Figure 20 Isolator displacements along y-direction of the isolated structure for case 1 

Such a solution is not optimal. To force the isolators to have the same displacement, and 

then get a translational motion in the x - y plane, different alternatives can be considered. 

Several solutions have been analysed to solve this asymmetry problem (Figure 21) 
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Figure 21 Different Retrofit strategies tried to solve asymmetry issue 

After several iterations, the best solution has been obtained by using 6 seismic isolators 

connected by a rigid diaphragm made of as a horizontal steel frame with beams and horizontal 

bracing elements at ground level as shown in Figure 22. Solutions without a rigid diaphragm 

did not provide a feasible solution because of excessive global torsional behaviour.  

 

Figure 22 Retrofitted silo system 

Horizontal stiffness and friction parameters have been iterated to find an optimal balance 

between best structural performance and acceptable maximum displacements. Inelastic de-

formations on the steel structure have been avoided (Figure 23). 
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Figure 23 Comparison of retrofit solution 4 and 8: In case 4, full elastic behaviour can be obtained 

Table 4 shows the most suitable isolator properties obtained after several iterations. Please 

note that different horizontal stiffness values have been used for different supports, which are 

calibrated according to the vertical reaction force under full-silo gravity loading condition. 

 

Isolator properties 

Friction 4% 

Tis 4 seconds 

k1,7 0,09 kN/mm 

k5,6 0,2 kN/mm 

k20,21 0,274 kN/mm 

kv 3000 kN/mm 
 

a. Isolator properties b. Nodal reaction of structure supports 

Table 4 Isolator properties and nodal reactions 

Modal shapes and values are shown in Figure 24 and Table 5. 
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Figure 24 Modal shapes of retrofitted solution 

 

 

 

 

 

 

Table 5 Modal analysis results 

To quantify the performance of the selected isolators, 7 nonlinear time history analysis 

have been performed. Max/min values of isolator displacements and residual displacements 

obtained from each accelerogram, and as an average of 7 accelerograms are shown in Table 6 

and Figure 25. 

Mod T [s] Direction 

1 4,35 y (transversal) 

2 4,17 x (longitudinal) 

3 3,45 Torsional 

16 0,13 z (vertical) 
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Seismic Input 

Max displacement of 

isolators [cm] 

Max residual displace-

ment of isolators [cm] 

x y x y 

ED74 14,0 24,5 3,72 4,21 

ED196 3,8 2,6 1,14 1,64 

ED535 34,5 29,0 0,84 1,13 

ED6349 5,6 29,0 1,43 1,45 

IN113 21,2 11,9 3,23 2,21 

IN331 29,3 41,2 1,58 2,31 

IN461 21,3 33,9 0,79 2,06 

Avg 18,5 24,2 1,86 2,12 

Table 6 Max/Min displacements 

 

Figure 25 Max/Min displacements 

Max/min values of base shear and relative displacements of the structure’s mass center ob-

tained from each accelegoram, and as an average of 7 accelerograms are shown in Table 7 and 

Figure 26.  

Seismic Input 
Base shear [kN] 

Relative displacements of struc-

ture mass center [cm] 

x y x y 

ED74 374,5 287,3 5,1 9,4 

ED196 272,0 138,4 3,8 5,2 

ED535 538,7 303,3 8,8 9,3 

ED6349 165,1 419,0 2,2 11,1 

IN113 487,1 167,4 7,1 5,8 

IN331 607,8 513,3 11,6 17,4 

IN461 480,1 448,2 7,4 14,4 

Average 417,9 325,3 6,6 10,4 

Table 7 Max/Min displacements and base shear 
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Figure 26 Max/Min base shear 

Reductions in mean relative displacements of the two storeys are shown in Figure 27 for x 

and y directions. 

 

Figure 27 Reductions in mean relative displacements 

Comparisons in terms of floor drifts are shown in Figure 28, Figure 29, and Table 8. The 

weak floor in the longitudinal direction of the structure is the first one, as the second floor is 

braced. The bracing was effective already in the case of a fixed base structure, wherein the 

average relative movement in the x direction of the second floor was equal to about 0.1%. In 

the isolated-base structure, the average relative movement of the second floor in the x direc-

tion is of 0.05% and is then maintained almost in the same order of magnitude as the previous 

case. In any case, the mean relative movement of the second plane in the direction x is negli-

gible, and the reduction of 50% is relative and has just a minor impact on the structural re-

sponse. 

On the contrary, the first floor benefits from the isolation system. In particular in the x-

direction (braced), in which the first floor is weak, the reduction is significant (approximately 

64%) and the average relative displacement falls from a critical value equal to 3.49% in a 

fixed base structure to a value 1.24%. 

In transverse y-direction (non-braced) a reduction of 35% for the first floor and 53% for 

the second floor can be observed. Also in this direction the structure takes advantage of the 
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isolation system, with limited mean relative displacements for both floors, unlike the fixed-

base system in which values larger than 1.5% could be observed. 

 

Figure 28 Drift comparison in x direction 

 

Figure 29 Drift comparison in y direction 

Average interstorey drift 

Floor Direction Fixed-base structure Isolated structure Reduction 

1 
x 3,49 % 1,24 % 64 % 

y 1,86 % 1,20 % 35 % 

2 
x 0,10 % 0,05 % 50 % 

y 1,98 % 0,94 % 53 % 

Table 8 Comparisons in terms of floor drifts 
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Figure 30 Yield index of the original structure 

 

 

Figure 31 Yield index of the retrofitted structure 

The yield index of the original and retrofitted structure can be compared from Figure 30 

and Figure 31, with reference to the ED74 accelerogram. The retrofitted structure remains ful-

ly elastic. 
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5 IDA RESULTS IN HIGH SEISMICITY 

Results of the IDA analysis based on high seismicity accelerograms are shown in terms of 

peak displacements and total base shear. For peak displacements, the control node is taken as 

the center of gravity of whole system. (x direction: longitudinal, y direction: transversal, z di-

rection: vertical). 

From Figure 32, it is seen that in general, retroffited structure responses in a linear manner 

to the increase in global base shear forces with increasing scale factors, while a global elasto-

plastic behaviour is evident in case of the original structure.  

  

  

a. Original Structure b. Retrofitted structure 

Figure 32 IDA results in terms of global displacement vs base shear 

Figure 33 shows and Figure 34 show that drifts of both floors have been decreased signifi-

cantly in case of retrofitted structure. Most importantly, the soft-storey behavior observed in 

the original structure has been eliminated thanks to the seismic retrofitting, as can be observed 

from the very low drift ratios of floor 1.  
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a. Original Structure b. Retrofitted structure 

Figure 33 IDA results in terms of drift 1st floor 
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a. Original Structure b. Retrofitted structure 

Figure 34 IDA results in terms of drift 2nd floor 

Although the global behavior of the structure is very satisfactory, in some cases, especially 

with high vertical earthquake component, uplift occurs (Figure 35). It could be avoided either 

with the introduction of proper ropes that prevent the uplifting of the isolation devices.  

  

a. Retrofitted structure b. Uplift instants during ED74 time-history (without vertical 

accelerations) 

Figure 35 Uplift problem 

In the cases with high vertical acceleration content (Figure 36), uplift is inevitable with the 

seismic isolation solution. 
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a. Three components of the ED74 time-acceleration 

history 

b. Uplift instants during ED74 time-history (with 

vertical accelerations) 

Figure 36 Uplift problem 

To reduce the rocking effect and overturning moments which are the main causes of uplift, 

2 other retrofitting strategies have been analysed: 

i. Seismic isolators placed at the second floor level, under the silos 

ii. Seismic isolators placed at the first floor level  

The first approach resulted in global collapse of the system, causing high stresses in the 

beams which caused also a column loss and eventually the global collapse occurred (Figure 

37). With the second approach, column bases suffer yielding due to second order effects 

caused by large displacements of isolated silos (Figure 38). Further analysis to investigate the 

performance of the structure with second retrofitting strategy is underway. 

   

t= 6 sec t=8 sec (beam yielding starts) t=11 sec (column collapse) 

Figure 37 Isolators placed at the second floor level, under the silos 
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t= 6 sec t=11 sec (column base yielding) 

Figure 38 Isolators placed at the first floor level 

It has also been noted that, vertical component of the earthquakes impact significantly the 

global behavior of the retrofitted structure. This can be seen from Figure 39, Figure 40, and 

Figure 41 where the red colored curves represents the global behavior with vertical compo-

nent of the ED74 earthquake. When they are compared with the blue curves representing the 

global behavior without considering the vertical acceleration component, it is seen that 

achievement of the full elastic behavior will not be possible. In these cases, retrofitted solu-

tion can be seen as an improvement rather than a total rehabilitation solution.  
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Figure 39 Impact of vertical component of ED74 earthquake in terms of base shear 

  

Figure 40 Impact of vertical component of ED74 earthquake in terms of displacement-base shear 
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Figure 41 Impact of vertical component of ED74 earthquake in terms of floor drifts 

6 CONCLUSIONS 

The best seismic retrofit solution has been obtained by using 6 seismic isolators connected 

by a rigid diaphragm realized as a horizontal steel frame composed of beam and horizontal 

bracing elements at ground level. Global base shear values have been reduced significantly. 

Residual displacements of the retrofitted structure are very small, and much smaller than the 

residual displacements of the original structure. With the seismic retrofit, floor drifts are re-

duced, and the soft-storey behavior observed in the original structure has been eliminated. 

Vertical component of the earthquakes impact significantly the global behavior of the retrofit-

ted structure. A fully elastic superstructure behaviour can be achieved only when the vertical 

component of earthquake is not significant. In summary, this retrofit solution improves signif-

icantly the seismic behaviour of the elevated silo system. In the final design of the isolators, 

uplift issue should be addressed.   
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Abstract. Recent earthquakes such as the one in Fukushima in Japan in 2011 highlighted the 
need of providing adequate protection to industrial installations. To answer this need, the on-
going RFCS research project PROINDUSTRY is addressing the question of the development of 
innovative seismic protection systems, both for the design of new industrial plants and for the 
retrofit of existing ones. This paper presents a specific aspect of the ongoing investigations 
within the referred project, namely a case study considering a Gas Tank. The protection systems 
under development contemplate both seismic isolation and energy dissipation techniques. For 
the presented case study, the base isolation system under development was finally chosen to 
improve the seismic performance of the Tank structure. In order to characterize the behavior 
of the Gas Tank structure, several numerical simulations were performed comprising modal 
analyses, push-over analyses and time-history nonlinear analyses. For the time-history nonlin-
ear analysis ground motions were generated on the basis of available information on ground 
motion histories from national, European and Mediterranean Strong Motion Data-bases. Fi-
nally, the efficiency of the base isolation used in the Gas Tank structure is investigated by com-
paring the results of the time-history nonlinear analysis on the protected and the non-protected 
structure. 
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1 INTRODUCTION 

Recent earthquakes such as the one in Fukushima in Japan in 2011 highlighted the need of 
providing adequate protection to industrial installations storing a large amount of hazardous 
material. In the event of an earthquake, and following accidental scenario, the consequences 
may be severe for the neighborhood population, for the economy and for the environment [1]. 
In particular process plants, like process units, storage units and piping systems are character-
ized by high level of seismic risk [2]. The consequences of an earthquake may be the total 
collapse (Fig. 1-a) or a partial damage (Fig. 1-b) of the industrial unit. Consequently, providing 
adequate seismic protection to industrial installations is imperative to this construction sector. 
In order to answer to this problematic, the on-going RFCS research project PROINDUSTRY 
[3] is addressing the question by developing innovative seismic protection systems, both for the 
design of new industrial plants and for the retrofit of existing ones. The seismic protection sys-
tems considered in the project programme are the Base Isolation (IS) and the Energy Dissipa-
tion (EDS) types. Emphasis is given to the self-centering capability of these systems, since it is 
an essential feature that allows the industrial facility not to discontinue its operations even after 
a strong earthquake and that makes eventual repair work easier. The work programme considers 
experimental tests on the developed devices, including application in substructures, and numer-
ical modelling of real industrial structures used as study cases to investigate and calibrate the 
seismic protection systems developed. The cases studies of real industrial buildings consider 
process and storage units which the superstructure is made of steel [4]. 

a) Tank collapse (Edgecumbe Earthquake, New Zeeland) b) Local shell buckling (Emilia earthquake, Italy) 

Figure 1: Earthquake impact on industrial units 

This paper presents a specific aspect of the on-going investigations within the referred project, 
namely a case study considering a gas tank. For this structure, a base isolation system was 
chosen to improve its seismic performance. In order to characterize the behavior of the Gas 
Tank structure, several numerical simulations were performed comprising modal, push-over 
and time-history nonlinear analysis. For the latter, the Ground Motions generated within the 
project tasks have been used. The calibration of the foreseen base isolation system is under 
investigation and the preliminary results of the time-history nonlinear analysis on the protected 
structure are compared with the response of the non-protected structure. 
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2 SEISMIC PROTECTION OF INDUSTRIAL PLANTS 

2.1 General 

In the case of seismic event, the prevention of the collapse of buildings may rely in two strate-
gies: i) capacity design; ii) seismic isolation and/or energy dissipation (seismic protection). The 
PROINDUSTRY research project is focus on the latter. Accordingly, base isolation systems 
and energy dissipation systems are under development for the retrofit intervention of existing 
industrial structures or the design of new ones. In the case study presented in this paper, the 
base isolation system has been selected to improve the seismic performance of the structure 
under analysis. Herein, only a brief description of the base isolation system is given. More 
detailed information on the base isolation and on the dissipation devices subject of the 
PROINDUSTRY investigations may be found in [4]. 
The aim of the base isolation system is to mitigate the impact of seismic action on the structure 
by decoupling the structure from the shaking ground. The principle of seismic base isolation is 
to increase the fundamental period of the structure and modify the mode shape leading to 
smaller rigid mass displacements, and consequently reduce the loads due to inertia effects. An 
isolator shall provide a combination of vertical-load carrying capability with one or more of the 
following functions: i) lateral flexibility; ii) energy dissipation; iii) re-centering capability. The 
base isolation system implemented in the numerical simulation is the Curved Surface Slider 
(CSS) which may present different versions: single CSS, double CSS and triple CSS. Within 
the project, an innovative version of this device is under development [4].  

2.2 Base Isolation System: Curved Surface Slider 

The simple version of the CSS was proposed in [5] and consisted in a single curved surface 
slider (Figure 2-a). In concept, the single surface slider is derived from the regular spherical 
bearing in which the flat surface accommodating the translation movements is substituted by a 
curved concave surface (Figure 2-b). The spherical sliding isolators are consisting of three main 
steel parts with inner sliding surfaces. The shape of the internal part is always spherical and 
allowing rotation and horizontal sliding displacements. The device transmits vertical loads, pro-
vides horizontal flexibility and dissipates energy simultaneously. The concave surface intro-
duces the re-centering capability into the isolator: the slide moves up the concave surface (under 
the seismic excitation), increasing the potential energy, inducing in the bearing a restoring force, 
as the building should return to its stable equilibrium point. The theoretical behavior of the 
device is characterized by hysteretic bilinear relationship between horizontal force – horizontal 
displacement (Figure 3). From the single CSS, a double and triple CSS were developed (Figure 
2-c). These modified versions of the single CSS improve its capacity to accommodate substan-
tially larger displacements and allows the adaptation of device to the earthquake intensity. 

   

Figure 2: Flat and curved surface sliding isolators [4] 
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Figure 3: Hysteretic force – displacement relationship of the CSS [4] 

3 CASE STUDY: GAS TANK 

3.1 Geometric and mechanical properties 

The present case study consists in a Gasometer which is used to store Gas AFO (Figure 4) and 
was constructed by Ilva s. p. a. in the early eighties. The gas tank is a steel cylinder where the 
walls are made with curved steel plates reinforced with circular steel rings (UNP 100) and with 
vertical steel columns (IPB 180). The roof is composed by a steel structure using a steel circular 
grid made of IPE, L and UNP steel profiles and steel plates. The tank works with a piston-
fender system and a rubber sealing system which allows the variation of the sealed volume. In 
Table 1 the main geometric characteristics are summarized and in Table 2 are given the material 
properties of the main structural components. The self-weight of the different structural com-
ponents is given in Table 3. Finally, the working pressure in this gas tank is 400mmH2O, and 
the volume between the roof and the sealed reservoir is full of air at atmospheric pressure. 
Detailed information on the tank properties is given in [4]. 

 

Table 1: Main Geometric Properties 

Height 70m 
Diameter 44m 
Volume 75000m3 
Wall Shell Thickness 5mm 
Roff Shell Thickness 3mm 
Columns IPB180 
Ring Stiffeners UNP 100 
  

Table 2:  Material Properties 

Wall Shell S275 JR 
Roof Shell S275 JR 
Profiles S235JR 
  

Table 3: Structural Mass 

Cylinder 519ton 
Roof 153ton 
Piston 712ton 

Figure 4: Gasometer Auxiliary Structure 43ton 
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3.2 Finite element model 

The finite element (FE) numerical model developed considered some simplifications, as only 
the main structural components of the tank were modeled. These parts are: i) wall shell; ii) 
columns; iii) wall stiffening rings; iv) roof shell; v) roof structure. In Figure 5 is illustrated the 
FE model developed. According to the parts modeled, the following types of finite elements 
were used: 
 Wall shell and roof shell: the element used is the S4R. This is a 4-node doubly curved 

thin or thick shell, reduced integration hourglass control, finite membrane strains. Five 
integration points through thickness. 

 Columns, stiffening rings and roof structure: the element used is B31. This is a 2-node 
linear beam in space. 

 

Figure 5: FE model developed 

In order to consider the total mass of the tank, as the non-structural elements were neglected in 
the modelling, additional masses were introduced as non-structural masses. In Table 4 are de-
scribed the additional masses considered. The total mass of the tank model, including structural 
and non-structural elements, is 1427ton. The connections between the different structural mem-
bers have been considered continuous, even in the case of the wall shell-column. These two 
members are connected using rivets along the total height of the columns, as depicted in Figure 
6. In what concerns to the supports, connection to the ground, the column base were modeled 
as pinned connections. For the material mechanical behavior, an elasto-plastic with hardening 
constitutive law was used. Finally, it should be noticed the following: 
 In the non-linear analyses, both material and geometrical nonlinearities are considered. 
 As the working pressure (400mmH2O ≈ 0,039atm ≈ 3,92kPa) is relatively low; the 

mass of the gas was neglected. 
 No geometrical imperfections and residual stresses were considered (analysis on perfect 

structure). 
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Table 4: List of non-structural masses considered in the FE model 

Member Additional Mass [ton] Comments 

Columns 

0.25 

Mass of the non-structural 
elements distributed along 
the total height of the col-

umns. 
 

713.0 

Piston mass applied at high-
est possible position. The 

mass is distributed amongst 
all columns and along ≈6m 
of the column length so that 
the resultant is at the highest 

working position. 
 

Roof Structure 2.52 

Additional mass due to non-
structural elements and dis-

tributed along the total 
length of the roof structure 

members. 

 

 
 

 

 

  
a) Connection detail b) FE model detail 

Figure 6: Connection between Column and Wall 
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3.3 FE model failure criteria 

In order to identify a possible failure of the structure during the analysis, the failure criteria in 
Table 5 have been specified.  

Table 5: List of failure criteria 

Criterion Description 
1 – Limit of plastic strains ɛu = 0.2 

2 – Global or local instability 

 
Global loss of stability of the structure or lo-

cal instability of parts of the structure. 
 

3 – Resistance of the column bases connec-
tion 

Exceedance of the resistance of the column 
bases connection to uplift loads. 

 
In order to avoid the complexities related to the modelling of the column bases connection, the 
third criterion is verified in the post-processing of the numerical results, comparing the uplift 
forces with the column base resistance. The resistance of the column bases was determined 
according to the design rules given in [6] and [7]. For the present case study, the resistance is 
315kN.  
In what concerns the wall shell of the gas tank, though at first one may regarded the tank struc-
ture as a shell structure reinforced by the columns (usually called stringers in shell structures), 
their resistance to buckling is barely inexistent. The resistance of the shell was estimated ac-
cording to [8] and [9]. The tank structure stability is then guaranteed by a “classic” structure 
composed of columns and beams, being the main function of the wall and roof shells the re-
sistance to the internal and external pressures, and consequently distribute these pressures to 
the main structural members. The second function of the wall shell is to contribute to the global 
lateral stiffness of the structure.  

4 SEISMIC PERFOMANCE OF NON-ISOLATED STRUCTURE 

4.1 General 

In a first stage, the performance of the original gas tank structure to seismic actions was evalu-
ated. Several numerical simulations were conducted in order to characterize the structure re-
sponse to dynamic actions, developing inertia forces on the structure, and to evaluate the 
seismic performance of the non-isolated structure. The performed simulations considered the 
following types: 
 Modal Analysis 
 Push-over Analysis 
 Time-History Nonlinear Analysis  Incremental Dynamic Analysis 

For the Time-History Nonlinear Analysis, and Incremental Dynamic Analysis, and within the 
scope of the PROINDUSTRY project [4], two sets of 11 Ground Motions (GM) have been 
generated on the basis of available information on ground motion histories from national, Eu-
ropean and Mediterranean Strong Motion Data-bases. One set is representative of areas with 
low-medium seismicity and another set is representative of areas with high seismicity. ground 
motions were  
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4.2 Modal analysis 

In order to obtain the natural vibration modes, a modal analysis was executed. The procedure 
used consists in the Lanczos method. The range of frequencies in the calculation was limited to 
20Hz. Within the range of frequencies between 0Hz and 20Hz, only two global modes were 
observed and these correspond to the same mode though, for each orthogonal direction. Many 
local modes (percentage of mass participation is almost zero) were obtained. The first natural 
frequency is 2,64Hz with a total mass participation of 88,65% in the main direction and nearly 
0% in the other orthogonal direction. Figure 7-a) presents the shape of the 1st natural frequency. 
The local deformation at approximately 2/3 of the height is due to the consideration of the piston 
mass at this position (highest position possible). Figure 7-b) presents the first mode obtained in 
the calculations which represents a local mode. 

  
a) 1st global mode b) 1st local mode 

Figure 7: Natural vibration modes of the gas tank structure 

4.3 Push-over analysis 

The push-over analysis consisted in applying a horizontal force at the center of mass of the tank. 
Given the magnitude of the piston mass, the position considered was the highest working height 
of the piston, approximately 2/3 of the gas tank height (see Figure 8). The load was applied 
directly to the columns, as these members are the vertical support of the piston. The load was 
distributed within a length which approximates the length of the piston structure inside the tank. 
The load was increased until one of the following failure criteria was achieved: i) plastic limit 
strain attained; ii) local or global instability detected by the numerical calculation. In this anal-
ysis the column bases connections resistance was disregarded. 
In Figure 9 is presented the force-displacement curve obtained from the push-over analysis. 
The force corresponds to the base shear and the displacement is the displacement measure at 
the top of the gas tank structure (at the top of the columns). The maximum load is identified by 
a peak in the force-displacement curve. A sudden loss of resistance after this peak load is ob-
served which is due to loss of stability of the gas tank structure. Then, there is an increase of 
resistance after equilibrium is recovered. The ultimate strain is attained in the tank structure 
members later for a significant lateral displacement. 
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Figure 8: Location of the 
loading in the push-over 

analysis  

Figure 9: Force-displacement curve obtained from the push-over analysis 

4.4 Incremental dynamic analysis 

The nonlinear time-history analysis, basis of the incremental dynamic analysis (IDA), were 
performed using the general nonlinear dynamic analysis available using implicit time integra-
tion to calculate the transient dynamic or quasi-static response of a system. 
The procedure used consisted in imposing base acceleration at the support nodes of the gas 
tanks structures. The base acceleration applied represent the ground motions generated within 
the project and referred above. These ground-motions are characterized by a time-history ac-
celeration for each orthogonal direction (X, Y and Z). In the performed calculations, the ground 
motions (base accelerations) for each orthogonal direction were applied simultaneously. Two 
sets of ground motions were considered; one representative of low-medium seismicity areas, 
and one representative of high seismicity areas. In Table 6 are listed the spectral accelerations 
and the corresponding scale factors considered in IDA analyses. 

 Table 6: List of spectral accelerations used in the IDA 

Low Seismicity Areas High Seismicity Areas 
Pvr Tr ag S. F. Pvr Tr ag S. F. 
% Yrs g \ % Yrs g \ 
4 2475 0.199 2.78 4 2475 0.512 1.43 
5 1950 0.1854 2.592 5 1950 0.4687 1.307 

10 949 0.1501 2.098 10 949 0.3586 1.000 
22 402 0.1140 1.593 22 402 0.2502 0.698 
30 280 0.1016 1.420 30 280 0.2122 0.592 
39 202 0.0916 1.280 39 202 0.1829 0.510 
50 144 0.0812 1.135 50 144 0.1552 0.433 
63 101 0.0715 1.0 63 101 0.1292 0.360 

 
In all executed calculations, the time-history was completed. Consequently, the two first failure 
criteria specified in Table 5 were not violated. In order to evaluate the global deformation of 
the structure, the relative displacement of the roof was computed. In Figure 10 are presented 
the results for both sets of GMs, High and Low-Medium seismicity areas, and for one of the 
orthogonal directions in the ground plane. The values represent the maximum values obtained 
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through the time-history simulation. For almost all cases the structure is on the linear range. 
Local yielding is observed however; this is not reflected on the global response. The maximum 
value is 150mm. Taken into account the height of the gas tank and that in the vicinity, at least 
2m separate this gas tank from other structure, the values is barely insignificant. 

  
a) High seismicity areas b) Low seismicity areas 

Figure 10: Gas tank roof relative displacements result of IDA calculations on non-isolated structure 

In Figure 11 is plotted the parameter which expresses the plastic strains, the equivalent plastic 
strain (PEEQ). These plastic deformations are located in the members, mainly in columns and 
ring stiffeners, in the region of the piston mass and consequently, the region were the inertia 
forces are greater. In Figure 11 only the maximum values are shown, for each time-history 
simulation of the IDA analysis. Since for Low-Medium Seismicity GMs these are barely inex-
istent, only the values for the High Seismicity GMs are presented. In the chart is included the 
limit strain considered in the numerical models (0.2). It can be observed that not only this limit 
was not exceeded, but the maximum equivalent plastic strain is approximately half of this limit. 
Up to a scale factor of 1.0, an almost linear relation between the peak ground acceleration char-
acterizing the GMs and this parameter is obtained. For higher scale factors, for some cases this 
linearity is lost. This may be due to the damping effects when the plasticity becomes higher. 
However, in general this is not significantly reflected in the global response, as discussed above.  

 
Figure 11: Maximum PEEQ result of IDA calculations on non-isolated structure (only High Seismicity areas 

GMs) 

In order to verify the third failure criterion, the uplift forces on the column bases and the re-
spective resistance were compared in Figure 12. These forces are due to the tank overturning 
and the vertical component of the seismic action. It can be seen that this is clearly a critical 
point of the structure. Only for few cases, amongst all GMs representing both seismicity’s areas, 
and for the lowest scale factors, this resistance was not exceeded. In the case of the High Seis-
micity areas, the maximum values are considerably high, approximately 10 times greater, and 
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almost impossible to overcome with improvement of the connection and therefore, seismic pro-
tection is required. 

  
a) High seismicity areas b) Low seismicity areas 

Figure 12: Column bases uplift forces results of IDA calculations on the non-isolated structure 

5 EFFICIENCY OF THE SEISMIC PROTECTION SYSTEM: BASE ISOLATION 
SYSTEM 

5.1 Model of the base isolation system 

For the base isolation system of the gas tank structure 28 units (isolators), one under each col-
umn, are foreseen. Note, that this should be placed in the same vertical position of the columns, 
not directly under the columns, but between a “Support” slab and the foundation (isolation 
interface), as illustrated in Figure 13. The incorporation of the isolators on the FE model con-
sisted in a system that combines a spring element and an elastio-plastic element (or friction 
element) working in parallel. The spring element has a pure elastic linear behavior which rep-
resents the isolator stiffness to slip (dynamic friction). The friction element, incorporates the 
friction force (static friction) developed between the slider and the concave surfaces. The fric-
tion force is proportional to the superstructure mass (M). It is usually assumed that the behavior 
of this element is rigid until the static friction is exceeded. Then, free deformation of this ele-
ment is considered.  

 
Figure 13: FE model of the base isolated gas tank structure 
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To model the behavior of the isolation system, the following parameters are determined: 
 The total weight (W) and mass (M) of the superstructure and of the “Support” slab above 

the isolation system. 
 The friction coefficient (µ) between the slider and the concave surfaces. 
 The fundamental period of the device. This values are usually between 3,5s and 4s (T).  
 The stiffness of the Isolator which may be approximated by the following equation: 

    ( 1) 

In Table 7 are presented the values of the parameters described above and assumed in the pre-
sent case study. In Figure 14 is illustrated the force-displacement response of the isolation sys-
tem. 

Table 7: Properties of the base isolation system of gas tank structure 

M 
[ton] 

W 
[kN] 

µ 
[-] 

T 
[s] 

Kiso,system 
[kN/m] 

1581.1 15495.3 0.3 3.5 5095.6 
 
The determination of the properties of each isolator unit is obtained through “decomposition” 
of the equivalent isolation system properties described above. Remember, that in this case 28 
individual isolators are considered. Given the symmetry of the structure, these 28 isolators have 
equal properties. Thus, the equivalent isolation system reproduces the behavior of 28 parallel 
isolators and accordingly the properties of each isolator unit are obtained: the elastic spring 
stiffness and friction element maximum force are divided by 28. In Figure 15, the properties of 
these two elements representing an isolator unit are shown. 
 

  

Figure 14: Force-displacement behavior of the base 
isolation system  

Figure 15: Behavior of the spring and friction element 
representing an isolator 

5.2 Impact on the structure response 

The purpose of the base isolation system is to reduce the horizontal (soil plane) base displace-
ment of the superstructure. This is achieved through the seismic energy dissipated by the isola-
tion system. At this stage, the isolators properties are in a process of calibration and therefore, 
only the time-history nonlinear analysis using the GMs, representing the high seismicity areas, 
were used. Furthermore, the simulations only considered the scale factor equal 1. In Figure 16 
is shown the time-history tank roof relative displacement for one of the orthogonal direction on 
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the base (ground) plane for GM ED74. The chart includes the results for both cases, non-iso-
lated and isolated structure. The impact of the base isolation system is evident. The tank roof 
relative displacement on the isolated structure is 26% of the value obtained in the non-isolated 
structure. In Figure 17 are presented the maximum tank roof relative displacement, for one of 
the orthogonal directions (ground plane) achieved during the time-history nonlinear simulation. 
The chart includes all GMs representative of the high seismicity areas. The reduction on the gas 
tank roof relative displacement is a constant for all GMs. The results of the different GMs show 
that the most demanding GM for the non-isolated structure do not correspond to those for the 
isolated structure. This is expected as the isolated structure has a different response due to the 
modification on the fundamental period, which corresponds to that of the isolation system. 

  

Figure 16: Time-history gas tank roof relative dis-
placements comparing non-isolated and isolated 

structure 

Figure 17: Maximum gas tank roof relative displace-
ments comparing non-isolated and isolated structure 

(all GMs) 

In Figure 18 are presented the results of the uplift forces on the columns. Remember that, ac-
cording to the simulations on the non-isolated structure, column bases resistance to uplift forces 
are the critical parts of the present structure. A comparison with the results of the simulations 
on the non-isolated structure and the theoretical resistance of the column bases to uplift forces 
is included. Again, it is evident the impact of the base isolation system. It possible to see that 
for the isolated structure only GM ED74 exceeds the theoretical resistance of the column bases. 
In the case of the non-isolated structure, all GMs exceeded this value. Though, in the case of 
the GM ED74 the uplift forces, on the isolated structure, are greater than the column base re-
sistance, the values are now closer (of the same order). Thus, an improvement of the column 
base may solve the problem. The values on the non-isolated structure were impossible to bear 
with reasonable modifications. As explained above, the uplift forces arise from two sources: 
the vertical component of the seismic action and the structure overturning due the inertia forces. 
The base isolation system is capable of mitigate the impact of the latter, but not of the first. In 
Figure 19 this is demonstrated. In one simulation, the vertical component of the seismic action 
was considered, and in the other neglected. The simulations were performed on the isolated 
structure. One can observe that when the vertical component of the seismic action is removed, 
the uplift loads are barely inexistent. It also clear that the base isolation system manages to 
eliminate almost 2000kN of uplift load showing clearly its efficiency. On the other hand, it 
must be noted that the vertical component of the seismic action is real and cannot be neglected. 
Therefore, together with the base isolation system, an auxiliary system has to be considered to 
transfer these forces. 
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Figure 18: Maximum uplift loads on column bases 
(all GMs) and theoretical resistance 

Figure 19: Effect of the vertical component of the seis-
mic action (GM ED74) 

5.3 Performance of the base isolation system 

In order to evaluate the isolators performance demands, the results of the numerical simulations, 
on the elements of reproducing the devices behavior, are herein discussed. In Figure 20 are 
shown the force-deformation curves obtained for two GMs. Remember that the deformation 
represents the distance between the superstructure base and the foundation. This has to be ac-
complished through movement of the slider on bottom and upper sliding surfaces. The force 
represents the inertia forces developed in the superstructure which have to be transferred to the 
supports through the isolators. The two GMs shown represent the extreme cases: the one with 
smaller deformations and the one with higher deformations. The values measured are consid-
erably different. In the case of GM ED196 the maximum deformation is approximately 125mm, 
while in the case of ED1257, the maximum is of approximately 1500mm. If in the first, the 
value is perfectly within the deformation capacity of the isolator, the second overcomes this 
limit excessively. The reason for such differences is on the fundamental period of the base 
isolation system and on the period at which the ground displacement spectrum attains its max-
imum. As it can be seen in Figure 21, the latter occurs at approximately 3,5s which corresponds 
to the fundamental period of the isolators. Thus, a calibration of the isolator properties is re-
quired in order to have an isolator that can also perform in the case of seismic actions as GM 
ED1257.  This issue is under investigation at the current stage. 

  
a) ED196 b) ED1257 

Figure 20: Force-deformation curve on isolators 
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Figure 21: Ground displacement spectrum for GM ED1257 in the X direction (in soil plane) 

Figure 20 shows that several cycles are accomplished. A quantification of the number was per-
formed and is shown in Figure 22. The chart presents the number of cycles for different ranges 
of cycles amplitude. Intervals of 50mm of amplitude were defined. In the chart are included all 
GMs representative of the high seismicity areas. The following observations highlight from 
these results: i) the majority of the cycles have a small amplitude; ii) only for few GMs high 
amplitude of cycles occur; iii) the maximum amplitude of the cycles is smaller than the maxi-
mum displacement shown in Figure 20-b) for GM ED1257. The latter shows that cycles may 
occur with minimum deformations of the isolators greater than zero (considerably in some 
cases).  In Figure 23 are quantified the total number of cycles the isolators undergo, inde-
pendently of the cycles amplitude. The maximum number is 35 and this occurs for the GM 
ED1257. The minimum is 7 for ED6349.  

Figure 22: Isolator number of cycles for different cycles 
amplitude (all GMs) 

Figure 23: Total number of cycles on isolator (all 
GMs) 

6 CONCLUSIONS 

This paper presented the work in progress within the RFCS research project PROINDUSTRY 
dedicated to the seismic protection of industrial plants. In particular, a case study of a gas tank 
was discussed. The behavior of the tank structure was characterized based on several numerical 
simulations considering: modal, push-over and time-history nonlinear analysis (in an incremen-
tal dynamic analysis procedure). From the latter, the column bases resistance to uplift loads 
have been identified has the critical part of the structure. Subsequently, the investigation con-
sidered the implementation a base isolation system to provide seismic protection to the structure. 
The base isolation system considered is the double curved surface slider (CSS). From the nu-
merical simulations, on the isolated structure, has been observed that the seismic impact on the 
structure is mitigated using this device. However, for some ground motions, the deformation 
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required on the isolation system, to dissipate the seismic energy, is excessive. This happens 
because, for some ground motions, the fundamental period of the seismic device is very close 
to the peak ground response spectrum. Consequently, a calibration of the base isolation system 
is under investigation.  
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Abstract.Within the PROINDUSTRY project a Performance-based analysis framework is de-
fined for seismic assessment of industrial structures, based on Nonlinear Response History 
Analysis (NL RHA) using in particular the Incremental Dynamic Analysis (IDA) method. This 
paper describes the choice of the PBEE and IDA analysis methods starting from an overview 
of state-of-the-art methods. The choice is analyzed in relation to: analysis goals for the se-
lected case studies (design-based vs. risk-based), availability of databases/tools for hazard 
analysis and GMs selection, accuracy of criteria to scale and match GMs to a target spectrum 
(UHS, CMS, etc.) and treatment of record components. Three possible approaches of GMs 
selection are described and analyzed: (1) UHS-coherent Unscaled (Design), (2) UHS-
coherent GMs scaled to Sa(T1) (Risk/Loss), (3) CMS-coherent GMs scaled to Sa(T1), 
(Risk/Loss). Within the scopes of PROINDUSTRY, the approach (1) is proposed, as a trade-
off between simplicity of conventional PBEE design methods and probabilistic robustness for 
a heterogeneous portfolio of structures/facilities. 
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1 INTRODUCTION 
Recent seismic events in Europe have pointed out the importance of assessing, managing 

and mitigating the seismic risk of industrial plants [1], [2]. The"Seismic PROtection of IN-
DUSTRial plants by enhanced steel based sYstems" (PROINDUSTRY) project aims at de-
veloping enhanced seismic protection systems for process plants, process units, storage units, 
pipeline and pipe systems, through innovative antiseismic techniques: seismic isolation and 
energy dissipation systems (such as the one described in [3]). The project includesthe defini-
tion of a framework for seismic assessment of industrial structures, based on Nonlinear Re-
sponse History Analysis (NL RHA) using in particular the Incremental Dynamic Analysis 
(IDA) method. The framework shall be defined to allow not only the assessment of the cur-
rent case studies seismic vulnerability, but also the comparison between the seismic behavior 
before and after the application of the anti-seismic systems.  

Seismic design provisions for industrial plant structures can be found under the ASCE/SEI 
7-10 provisions [1], particularly for the structure types of ‘non-buildings similar to buildings’, 
and ‘non buildings not-similar to buildings’. Design codes classify structures types and be-
havior based on q, R factors for use in force-based linear analysis and design. Correspondence 
between US codes and Eurocode 8 [5] and capacity design rules are described in [6] and [7]. 
A comprehensive review of NL RHA code procedures for different types of structures is car-
ried out in the NIST GCR 11-917-15 document ‘Selecting and Scaling Earthquake Ground 
Motions for Performing Response-History Analyses’, [8]. In general, the different seismic 
design codes prescribe a reference spectrum and indicate the number of Ground Motions 
(GMs) needed to perform NL RHA. The general requirement is to use 7 different GMs and 
process results in terms of best estimates, or use 3 different GMs and the max response values. 

A review of current Performance-Based Earthquake Engineering (PBEE) code provisions 
for NL RHA in terms of their evolution and underlying vision is useful to analyze what is the 
most appropriate context, what are the objectives of the prescriptions, and what should be the 
expectations of a chosen protocol of analysis. Two main types of PBEE design and assess-
ment are identified and discussed: (A) 1st Generation PBEE approach, described in the most 
commonly used codes of practice; and (B) a Next generation PBEE approach, with new per-
formance metrics and a broader vision in terms of risk analysis. 

1.1 First Generaton PBEE (Design-based) 
1st Generation reference codes/guidelines for design/assessment prescribe force-based line-

ar methods of analysis/design classifying structures based on type (new/existing buildings, 
bridges, seismically isolated structures, nuclear plants, liquefied natural gas tanks), and define 
structural performance matching limit states (identification of component damage level) with 
a probability of exceedance of the seismic intensity (FEMA356/ASCE41). These codes pre-
scribe also methods of NL analysis, both static and dynamic, and rules for RHA and GM se-
lection. The objective of these code provisions is the performance assessment at the 
component level, checking/comparing member demand with capacity. Assessment/design of 
industrial structures and their retrofit using innovative devices are covered by the following 
documents: 

• Eurocodes:

- UNI EN 1998-1 (New Buildings)
- UNI EN 1998-3 (Assessment and retrofit of buildings)
- UNI EN 1998-4 (Silos, tanks and pipelines)
- UNI EN 1998-6 (Towers, piles and chimneys)
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• US codes and guidelines:
- New buildings, ASCE/SEI 7-05 (2005), ASCE/SEI 7-10 (2010)
- Existing buildings, ASCE/SEI 41-06 (2007)
- Isolated and conventional bridges (AASHTO, 2010 a, b)
- Nuclearfacilities, ASCE/SEI 43-05, (2005)
- Liquefied natural gas facilities (FERC, 2007)
- Dams, FEMA 65, (2005)
- Civil works, EC1110-2-600 (U.S. Army Corps of Engineers, 2009)
- Department of Defense facilities, UFC 3-310-04, (Dept. of Def., 2004, 2007, and 2010)
- Storage tanks, API Standard 650 (2007), API Standard 620 (2009)

Whether used with linear force-based analyses or nonlinear procedures, design methods of 
the first generation contain a number of limitations regarding in particular: 

• Discrete limit states: the definition of performance, with respect tosingle components
or to the structure as a whole, related to the achievement of a certain limit state is still
coarse and often involves questionable margins of conservatism.

• Accuracy and reliability of procedures.

• Performance measures: Engineering parameters used for definition of performances,
such as drift, accelerations, stresses, strains etc., are not understood by entrepreneurs,
investors, lenders, and decision makers.

• Deterministic approach: the assessment of performance is purely deterministic, only
the intensity of the seismic action is modeled in a probabilistic way.

Figure 1. PROINDUSTRY project: someof the industrial case study structures. 

1.2 Next-Generation PBEE (Risk/loss-based) 
To address these limitations the Pacific Earthquake Engineering Research center developed 

a Performance Based Earthquake Engineering methodology (PEER PBEE, [12]) and tested it 
on a number of benchmark structures. For building structures these efforts culminated in the 
release of the FEMA P-58guidelines, which is a fully probabilistic new paradigm for risk/loss 
based PBEE [13], [14], and of its companion tool for damage-based accumulation of mone-
tary performance/loss at the global level (PACT tool, [15]). Uncertainties are explicitly con-
sidered in terms of: human losses (loss of lives, injuries, etc.), direct economic losses (cost of 
repairs, replacements, etc.), and indirect economic losses (downtimes, Unsafe placarding, etc.). 
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The methodology incorporates the components of the PEER PBEE approach, namely the 
Probabilistic Seismic Hazard Analysis (PSHA), the Structural Analysis, the Damage and Loss 
analyses. The seismic hazard is defined in terms of Uniform Hazard Spectrum (UHS), or al-
ternatively in terms of Conditional Mean Spectrum (CMS) [16] and Conditional Spectrum 
(CS) [17]. Three main types of assessment are considered: a) Intensity-based, b) Scenario-
based and c) Risk/Time-based. At the core of the methodology is the structural analysis mod-
ule, based on NL RHA with sets of natural GMs. 

Analysis of these documents is important to define a protocol for PROINDUSTRY, giving 
due consideration to the fact that the FEMA P-58 methodology is developed specifically for 
building structures, and there is no codified reference document on application of complete 
PBEE risk/loss framework for industrial structures in general. It is also very important to re-
mark that a comprehensive risk-based approach is beyond the scopes of PROINDUSTRY, 
which foresees a 1st-gen design/assessment approach. Therefore an appropriate, sufficient, and 
closer reference document for the analysis approach to develop in WP2 is the NIST GCR 11-
917-15. This document is intended for practicing engineers and structural analysts, and con-
tains recommendations on NL RHA analysis protocols and ground motions selec-
tion/scaling/matching to target spectra. 

An important aspect to consider is that the analysis protocol should be aimed at comparing 
the structural performance and behavior before and after retrofit with innovative protective 
devices. Since isolation and energy dissipation devices change drastically the structural sys-
tem and properties, and in particular the parameter Sa(T1), and modify the system response as 
a whole as well as the nonlinear interaction with the superstructure [18], it is desirable that the 
analysis method and the inherent scaling criterion of the input GMs is as much as possible 
independent on the properties of the structure.  

The FEMA P-58 and NIST guidelines would be easy to follow selecting GMs from the 
PEER NGA database [19], and scaling to the UHS or CMS provided by USGS, using the ex-
tensive database and interactive online tools. However this approach may not be consistent 
with this EU project. On the other hand some difficulties may arise using the currently availa-
ble interactive tools (INGV-ESSE project, [20], [21], [22], [23], [24], [25]) or those under de-
velopment [26] from the Italian/EU databases and PSHA. Some limitations may persist if the 
CMS is used as target spectrum, and if the GMs are to be scaled to this CMS, particularly due 
to the inherent type of the local seismicity, both related to the intensity and to the causative 
sources, [16]. 

2 OVERVIEW OF NL RHA AND IDA 
A key component of modern codes for PBEE design and assessment is the simulation of 

the structural behavior through realistic nonlinear models, and appropriate analysis protocols. 
For few cases of very simple and regular structures (1st mode dominated response) the analy-
sis protocol can be of the static type (NL Pushover). In all other cases a dynamic type (NL 
RHA) is needed to simulate the realistic response due to multi-mode contributions, velocity-
dependent effects, randomness of the input, etc.Although many traditional performance-based 
codes and guidelines describe methods for performing RHA, it must be noted that most of 
these documents contain rules that were developed in the 80s and were intended for perform-
ing analyses of structures with nonlinearseismic isolation and energy dissipation devices [8], 
with less evidence from application to structures with NL behavior due to plastic hinging, 
buckling, or structural damage in general. 
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A crucial point for the selection of the method for NL RHA analysis is to identify the pro-
ject’s goals in terms of analysis, and the key Engineering Demand Parameters (EDP) repre-
sentative of the structural response/behavior. 

This choice is reflected in the two types of approaches that can be found in traditional and 
more recent PBEE codes/guidelines: 
- DESIGN approach: the analysis goal is to compute mean values of response (few GMs are 
needed, codes prescribe 7 or 3 GMs). 
- FRAGILITY/RISK approach: the analysis goal is to compute mean and distribution of re-
sponse and evaluate collapse probabilities. (Many more GMs are needed, normally 30+, or 11 
if conditioning to an IM, less if particular spectra are used). 

The Incremental Dynamic Analyses (IDA is a parametric extension of the NL RHA used to 
estimate performance under seismic loads subjecting a structural model to one (or more) GM 
records [27]. It consists in a sequence of Monte Carlo analyses, and performs an intensity 
sweep for each GM by scaling the records to an increasing reference IM until collapse occurs. 

IDA has been proposed as 1) a dynamic protocol capable of describing the structural be-
havior over a number of intensity/response levels and ranges, (to capture the changing in the 
dynamic structural behavior increasing the seismic intensity, conceptually similar to static 
pushover), and 2) a probabilistic analysis protocol that incorporates the randomness inherent 
to the detail of the GM input record, and the randomness in the seismic hazard intensity, 
through scaling/conditioning the GMs to an appropriate Intensity Measures (IM). Usual 
choices for IM have been the PGA and the spectral acceleration at the fundamental period 
Sa(T1).  

IDA can be used for different types of assessment, depending on what kind of information 
is sought, whether the interest is on structural performance and component checks, or on fra-
gility and decision-oriented information. It may be useful to note that in some cases, the in-
herent computational burden of performing a large number of Monte Carlo simulation runs, 
which can be typical of IDA, can be overcome by running parallel parametric probabilistic 
simulations of a same FEM model, [28]. This approach is feasible with FEM software with 
capabilities to run relatively simple models on parallel supercomputers [29]. 

2.1 GMs SELECTION 
The first step to perform NL RHA or IDA is the selection of appropriate sets of GMs. The 

NIST guidelines [8] present a comprehensive overview of codes provisions for NL RHA and 
provide guidance on methods for selection/modification of input GMs.  

2.2 ASCE/SEI 7-05 
Rules for selecting and scaling GMs provided by ASCE/SEI 7-05(§16.1.3) [1] can be 

summarized as follows: 
- A GM shall consist of a horizontal acceleration history, selected from an actual rec-

orded event having magnitudes, fault distance, and source mechanisms that are con-
sistent with those that control the maximum considered earthquake. 

- The GMs shall be scaled such that the average value of the 5 percent damped response 
spectra for the suite of motions is not less than the design response spectrum for the 
site for periods ranging from 0.2T to 1.5T where T is the fundamental period of the 
structure in the fundamental mode for the direction of response being analyzed 

- For 3D analysis GMs shall consist of pairs of appropriate horizontal ground motions 
components. 
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- For each pair of horizontal GM components, a square root of the sum of the squares 
(SRSS) spectrum shall be constructed by taking the SRSS of the 5% damped response 
spectra for the scaled components (where an identical scale factor is applied to both 
components of a pair). Each pair of motions shall bescaled such that for a period be-
tween 0.2T and 1.5T, the average of the SRSSspectra from all horizontal component 
pairs does not fall below 1.3 times thecorresponding ordinate of the design response 
spectrum by more than 10 percent. 

- If 3sets (or more) of GMs are selected, the component checking must be done with the 
maximum values that come from the analysis. 

- If 7 sets (or more) of GMs are selected, the component checking must be done using 
the average values that come from the analysis. 

It must be noted that the SRSS method for spectrum matching has no solid technical basis, 
and the use of Geomean Spectrum is suggested by NIST for spectrum matching [8].  These 
guidelines point out clearly that the use of a certain number of sets of GMs (in this case 3 or 
seven are suggested) has no sound technical basis too. As mentioned above, these rules were 
developed mostly in the 80s in the context of NL RHA of structures with nonlinear base isola-
tion and energy dissipation devices. The correct number of GMs needed depends on many 
factors such as the goodness of fit of the scaled motion to the target spectral shape, the ex-
pecteddispersion in the response, the required degree of confidence, and the required level of 
accuracy. Some formulations are available which permit to estimate the correct number of 
GMs needed independentonthe spectral shape [30]. In general more than seven GMs are 
needed to obtain a reliable and accurate evaluation of the mean response and, as a conse-
quence many tens of GMs are needed to obtain correct evaluations of the dispersions. 

2.3 ASCE/SEI 7-10 

Rules defined in ASCE/SEI 7-10 [31] are similar to those defined in ASCE/SEI 7-05, the 
main difference being that the design spectrum definition is done using the maximum rotated 
component spectrum instead of the geomean spectrum, and so the SRSS method for spectrum 
matching of 3D components should be preferred to have more reliable results. 

2.4 FERC 2007 
The US Federal Energy Regulatory Commission drafted the Seismic Design Guidelines 

andData Submittal Requirements for LNG Facilities (FERC, [32]), whichidentify the perfor-
mance criteria to be met for this type of structures and refer to ASCE/SEI 7-05 for the proce-
dures for GMs selection. 

2.5 Eurocode8 (buildings) 

UNI EN 1998-1defines the methods for representing the seismic action through GMs in 
§3.2.3.1 and prescribes that:

- Recorded GMs may be used, provided that thesamples used are adequately qualified 
with regard to the seismogenic features of thesources and to the soil conditions appro-
priate to the site, and their values are scaled tothe value of ag*S for the zone under 
consideration. 

- A minimum of 3 GMs should be used. 
- The mean of the zero period spectral response acceleration values (calculated from 

singleGMs) should not be smaller than the value of ag*S for the site inquestion. 
- In the range of periods between 0,2T1 and 2T1, where T1 is the fundamental period of 
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the structure in the direction where the GM will be applied; no value of themean 5% 
damping elastic spectrum, calculated from all time histories, should be lessthan 90% 
of the corresponding value of the 5% damping elastic response spectrum. 

In §4.3.3.4.3 EC8 defines the required number of GMs: 
- If the response is obtained from at least 7 nonlinear time-history analyses with GMs in 

accordance with 3.2.3.1, the average of the response quantities fromall of these anal-
yses should be used as the design value of the action effect Ed in therelevant verifica-
tions of 4.4.2.2. Otherwise, the most unfavorable value of the responsequantity among 
the analyses should be used as Ed. 

2.6 Eurocode8 part 4 (silos, tanks, pipelines) 

For the definition of the seismic action UNI EN 1998-4 refers to UNI EN 1998-1. 

2.7 Eurocode8 part 6 (towers, pile, chimneys) 

For the definition of the seismic action the UNI EN 1998-6 in §3.4 refers to UNI EN 1998-
1 in general and allow the use of rotational components of ground motion. These provisions 
also suggest paying specific attention to the long period components of the time-histories 
which affect in a critical way the response of this type of structures. 

2.8 FEMA P-58 (Next generation PBEE methodology. Buildings) 
As noted above the prescriptions of FEMA P-58 could apply to industrial structures in 

those particular cases where the structural type is similar to buildings. The same hazard and 
analysis modules would apply in this case, however the exposure and loss modules would 
have to be made consistent to the particular case studies. We already discussed how exposure 
and risk/loss are beyond the scopes of PROINDUSTRY. As far as the NL RHA and IDA 
analysis module is concerned, the FEMA P-58 guidelines are in agreement with the NIST 
2011 guidelines.  

FEMA P-58 dedicates the entire third chapter to the definition of the seismic hazard, and to 
themethodsfor selection and scaling of GMs, with the following recommendations: 

- Three different kind of spectrum are defined: UHS (Uniform Hazard spectrum), CMS 
(Conditional Mean Spectrum), and CS (Conditional Spectrum). 

- Regardless of the type of selected spectrum, the selected ground motions must match 
(without specific limitation), on average, the selected spectrum over the period range 
Tmin to Tmax, where Tmaxis taken as twice the period of the fundamental translational 
mode (the larger of Tx, Ty if a 3D analysis is performed) and Tmin is taken as 0.2 times 
the fundamental period (the smaller of Tx, Ty if a 3D analysis is performed).  

- Selected records should have faulting mechanisms, earthquake magnitudes, site-to 
source distances, and local geology that are similar to those thatdominate the seismic 
hazard at the particular intensity level. 

- At least 7 pairs of GMs should be used, but when fit with spectral shape is poor eleven 
or more pairs of motions are needed to correctly capture the median response. 

3 POSSIBLE APPROACHES 

Inthe scientific literature and in building codes it is difficult to identify a general ruleNL 
RHA and IDA method, and the protocols are strictly dependent upon what is the goal of the 
analysis, in terms of what is the type of assessment sought, and in terms ofwhat are the critical 
mechanisms and the relevant Engineering Demand Parameters (EDPs) and response indica-
tors (drift-governed structural damage, force-controlled mechanisms, floor acceleration-
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governed component vibrations, anticipated relevance of higher modes, etc.), and what is the 
level of confidence requested. 

Based on the building codes and guidelinesalready described, three different approaches 
for selecting and scaling GMs are analyzed. For each approach advantages and disadvantage 
are discussed, with respect tothe specific goals and challenges of the PROINDUSTRY project, 
and of the specific case-study structures.  

In general, the possible methods comprise the following steps: 
1) Definition of facilities and locations;
2) Identification of the analysis needs;
3) Identification of the Ground Motions Intensity Measure (PGA or IM=Sa(T*), etc.) for

a specific Hazard Level (HL);
4) Development of the Probabilistic Seismic Hazard Analysis (PSHA) in terms of IM,

(Attention to how the local PSHA is derived, one horizontal component, maximum, or
geomean, etc.);

5) Definition of the Target Spectrum (UHS, CMS, or CS);
6) Selecting horizontal GMs for coherence/scaling to the target spectrum;

The three approaches suggested herein differ in how point 6) is developed, based on which 
of different kinds of target spectra and on the use of scaled vs. unscaled GMs.  

The criteria to perform the spectrum matching are similar in most guidelines/codes, and re-
quire that the average spectrum of the set does not differ from the reference spectrum with a 
tolerance of +30% / -10%. The period range where it is necessary to ensure this tolerance is 
between 0.2T*(to account for higher modes) and 2T*(to consider inelastic response with rela-
tive loss in stiffness and shift of period, as per UNI EN 1998-1). If the structurehas identifia-
blemodes associated with translational response along two orthogonal axes, X and Y, the 
corresponding fundamental translational periods associated witheach axis are denoted with 
T*

X andT*
Y, respectively. The reference period T* to use for spectrum matching/anchoring can 

be the mean of the two periods T*
X andT*

Y. For the particular case of this project, and due to 
the difficulty of defining a reference period, it would be desirable to enlarge the period range 
used for coherence as much as possible. 

Table 1. NL RHA and IDA GM selection/scaling approaches as per ASCE-7, NIST 2011, FEMA P-58. 

APPROACH Reference Spectrum Scaling Goal(s) Coherence GMs 

1. UHS, Un-
scaled 

Uniform Hazard Spectrum 
(UHS) 

Design Spectrum (DS) 
Unscaled 

Median Y 7+ 

Median and 
STD Y 30+ 

2. UHS, Scaled
Uniform Hazard Spectrum 

(UHS) 
Design Spectrum (DS) 

Scaled to 
IM=Sa(T*) 

Median and 
STD 

Y 7+ 

N 11+ 

3. CMS, Scaled Conditional Mean Spectrum 
(CMS) 

Scaled to 
IM=Sa(T*) 

Median Y 7+ 

Confidence on 
median Y <11 
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With reference to spectral matching and scaling, specific attention deserves the choice of 
the directional GM components. A common method suggested by several guidelines (FEMA 
P-58) performs the spectrum matching or in general the coherence assessment based on the 
geomean of the X and Y components. Other reference codes, in particular building codes pro-
visions, may consider the two components separately, their maximum or a different combina-
tion, such as the SRSS. The consistency of the methods is strictly related to the hazard 
definition, whether the reference spectra and the underlying PSHA are derived based on the 
geomean, or on a single GM component. The consistency should be checked on a case-by-
case basis, particularly for those case study structures where the directional effect can be sig-
nificant due to different behavior in two orthogonal directions.The three candidate approaches 
for the WP2 of the PROINDUSTRY project are summarized in Table 1, in terms of number 
of GMs needed, of scaling/unscaling criterion, of spectral coherence, and goal in statistic con-
fidence. 

3.1 APPROACH 1 (UHS-coherent Unscaled GMs, Design). 

IDA with unscaled GMs, consistent with a design spectrum (UHS), referred to PGA of HL. 
 

The first approach is a ‘design’ approach, in line with 1st generation PBEE 
codes/guidelines. It is based on unscaled recorded GMs coherent with the UHS or with the 
Design Spectrum. In this method the PGA is used as reference IM, therefore the definition of 
the input is independent on the structure. 

 
Figure 2.Example of relatively unscaledGMs sets, uniformintensity-scalingto different HLs based on PGA. 

Unscaled natural GMs will have a fairly uniform dispersion of spectral ordinates over the 
range of periods of interest. This type of input is not specific to a particular structure or be-
havior and is intended to give the same importance to first mode, higher modes, and period-
elongated/damaged fundamental modes. This will be reflected in the estimates of the different 
response parameters (drifts, accelerations, etc.). As a consequence of this dispersion, a greater 
number of GMs will be required to capture the median response and dispersion, normally 7+ 
GMs to capture the median, and 30+ GMs to capture a distribution. Given the design/check-
oriented objectives of PROINDUSTRY, the suggested number of GMs is 11.  
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3.2 APPROACH 2 (UHS-coherent GMs scaled to Sa(T1)). 
IDA with scaled GMs conditioning/anchoring to Sa(T1) of HL on the UHS. 
 

This approach uses as reference IM the spectral acceleration at a defined conditioning pe-
riod IM=Sa(T*). Usually, for structures that are 1st mode dominated Sa(T1) is a good predictor 
of the response, and is well correlated with nonlinear response at increasing intensity levels. 
However, in general T* could differ from the 1st mode period and should be selected on a 
case-by-case basis as the period whose spectral ordinate more influences the EDP that gov-
erns the seismic behavior and the design/assessment process.  

 
Figure 3. Example of GMs sets with different intensity, scaled to Sa(T*) values. 

Scaling/anchoring the GMs to a given IM allows obtaining sets with less variability around 
the selected spectral ordinate, resulting in a reduced number of GMs needed to capture the 
distribution of the response. On the other hand, scaling to a specific IM can result in overly 
inflated ordinates and increased dispersion at other frequencies (Figure 3). For this reason this 
method could introduce inconsistencies if the analyzed structures and the selected response 
parameters are not well correlated to Sa(T*), since this IM can be not sufficient nor efficient 
[34] for many structures. For the PROINDUSTRY case studies, and in particular for those 
sensitive to acceleration spectra [35], [36], this method could result in too conservative and 
not realistic IDA estimates of forces as well as of displacements/damage. 

3.3 APPROACH 3 (CMS-coherent GMs scaled to Sa(T1)). 

IDA with scaled GMs conditioning/anchoring to Sa(T1) of HL on the CMS. 
 

Recent studies proposed the so-called Conditional Mean Spectrum (CMS), [16], to over-
come the limitationsof UHS.In a single event it is very unlikely that the spectral ordinates of 
the UHS are observed at all periods, especially for rare events and so coherence of GMs with 
UHS is not realistic. The CMS refers to a scenario event for a given HL and conditioning pe-
riod T* based on disaggregation data (M, R); the spectral ordinate at this period is maximized 
(through the parameter ε) and should reach the value given by the UHS for the HL selected. 
The spectral ordinates at other periods are then related to the Sa(T*) through conditional prob-
ability and correlation factors, and their values are less than those of the UHS. In this way it is 
possible to reduce the seismic demand for periods away from the conditioning period (reduc-

5921



M. Faggella, R. Laguardia, R. Gigliotti, F. Morelli, F. Braga, W. Salvatore. 

ing overestimates of high-mode response for example) while retaining consistency with the 
seismic hazard derivation in terms of a primary IM at a given HL. 

The CMS provides the expected (mean) response spectrum, conditioned on occurrence of a 
target spectral acceleration value at the period of interest. This is a better tool for GMs selec-
tion because it is very unlikelyfor a single event to containall the spectral ordinates with the 
same probability of exceedance. It is more realistic to correlate the different spectral ordinates 
through conditional probability. The limitations of this method are similar to those of for the 
approach n.2, and are due to the definition of a specific spectral ordinate for scaling. In addi-
tion, computing the CMS could be difficult due to limited disaggregation data for Europe [37], 
and due to the multi-modal hazard scenarios in most cases, [16], particularly for the sites 
where the case-study facilities are located.  

  
Figure 4.Reggio Calabria site, (a) determination of the median Spectrumusing M, R values, (b)determination of 

the CMS. 

4 CONCLUSIONS AND RECOMMENDATIONS 
The three methods illustrated herein can produce different results. It is therefore necessary 

to identify a reference method that would lead to consistent results for the different project 
case studies. It is also desirable to compare analysis results among partners working on differ-
ent case studies. As requested by the project, in order to achieve the worst damage scenarios 
with a robust and reliable procedure, the first method suggested should be preferred. 

The approach n.1 is based on unscaled GMs and is consistent with 1st gen. PBEE de-
sign/assessment. This would decouple the definition of the action from the evaluation of the 
response, and render the seismic input not strictly structure-specific. A major drawback of us-
ing unscaled GMs is that a higher number of records need to be used.The project focus is on 
the assessment of the structural behavior [38] and on proposing retrofit solutions [39], and the 
interest is on capturing the mean response. To achieve this goal at least 7 GMs are needed but, 
considered the high variation of the selected GMs (Approach n.1) a higher number of GMs is 
to be preferred, at least 11 GMs. The results will be processed in terms of best estimates and 
where necessary also in terms of distribution. This would allow, in a subsequent phase, to 
compare results and performance assessment based on 2nd gen. risk-based PBEE approaches, 
by introducing scaling criteria to key IMs, and perform more accurate probabilistic analyses, 
as well as loss-based comparisons of retrofit solutions [40], [41], 0. 
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Abstract. Recent seismic events pointed out the high vulnerability of existing industrial facili-

ties, stressing on safety and high losses inherent to interruption of economic activities and re-

lease of environmentally hazardous materials. These structures often have irregular geometry 

and structural configuration, are subject to aging and corrosion, and are designed without spe-

cific performance-based or seismic design criteria. Due to these inherent complexities, retrofit 

using friction isolators can be a viable and practical solution for performance improvements. 

This work presents a case study of irregular industrial storage plant structure consisting of a 

group of six elevated silos resting on a steel frame on one side and connected to a vaulted RC 

structure on the other. A computational model is built incorporating nonlinearities from the 

components (braces, beams, columns, etc.) and from the mitigation devices. Retrofit using fric-

tion isolators is analyzed and evaluated through linear and nonlinear dynamic analyses under a 

set of natural ground motions. Results show the effectiveness of the mitigation strategy in terms 

of performance improvement. 
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1 INTRODUCTION 

Recent seismic events (Bam 2003, Chile 2010, Fukushima 2011, Emilia 2012, etc.) [1–4] 

pointed out the high vulnerability of industrial plants both in life threatening, economical losses 

and environmental contamination terms. Damages were observed both in structural and non-

structural components such as mechanical equipment, piping systems and storage racks. The 

consequences of such damages ranged from the complete collapse of the structure to interrup-

tion of the activities, including the triggering of fires and the release of hazardous content. 

Within the framework of the Seismic PROtection of INDUSTRial plants by enhanced steel 

based sYstems (PROINDUSTRY) project, a group of case studies has been selected. Each case 

study is representative of a particular category of structures, depending on the geometry, the 

activity of the plant and the type of material processed. This paper presents a retrofit solution 

of a storage structure consisting of a group of elevated silos containing sodium percarbonate. 

The main cause of damage observed on elevated steel silos during earthquakes lies in the failure 

of the support structure, which generally results in the collapse of the structure [6]. The shell 

structure of the silo can be considered safe since the acceleration needed to cause buckling 

phenomena of the wall is generally several times higher than the one causing damage to the 

substructure or the anchorage [6– 8]. 

The retrofit solution proposed for the structure object of this study focuses on the reduction of 

the action transmitted to the substructure. 

2 CASE STUDY STRUCTURE 

The case study industrial structure consists of a group of six elevated silos supported by a 

steel structure and connected on one side to a concrete vaulted industrial building. The silos, 

located approximately 7m above ground, have a cylindrical shape with a diameter of 3.1m, a 

height of 6.77m and a wall thickness of 5mm. The content is sodium percarbonate, a typical 

product used in the cleaning industry, characterized by a weight per unit volume of 1200kg/m3. 

A single silo can contain up to 16.3m3 of material. The silos rest on a steel structure composed 

of a deck and two slender columns. The two columns are HEA360 profiles with an S235 steel 

grade. The deck is composed a series of main beams realized through HSU profiles, several 

secondary beams (IPE profiles) with the function of transferring the weight of the silos to the 

main beams and two horizontal bracing systems, located at the top and at the bottom of the 

HSU profiles, mainly composed of L or double L profiles. The connection to the RC structure 

is made via two spherical hinges. The concrete structure is composed of four hollow pillars with 

a dimension of 1400x900mm and a central hole of 800x300mm and a 30mm thick vault an-

chored to the pillars at a height of 6m and with a maximum rise of 2.5m. 

 

Figure 1: Case study silos structure 3D and plan view. 

The actual performance was established through an assessment study of the structure. A pre-

liminary analysis on the components has shown how a traditional or simplified model may lead 
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to large errors. In particular the attention was focused on the main beams, the silos and the RC 

vault. On the first two components the comparison has been carried out between a frame and a 

shell model. The last one was investigated in terms of actions transmitted to the steel structure 

and of stiffness. Comparisons are reported in Figure 2. The numerical model was built using 

SAP2000. The main beams have been modeled through linear elastic shell elements with con-

nection only on the web. The secondary beams have been modeled as frame elements with fiber 

plastic hinges while the braces have been modeled using multi-linear plastic links incorporating 

a phenomenological model for their buckling hysteresis cycle. The steel columns are modeled 

with frame elements and fiber plastic hinges. The concrete structure is linear elastic; the pillars 

are modeled with frame elements while the vault is made with shell elements. The foundations 

blocks are modeled with rigid shell elements to simulate the soil-structure interaction with lin-

ear springs. The silos are modelled through elastic shell elements with distributed mass so to 

correctly account for their deformability. 

 

 

 
Figure 2: Influence of the different models in the numerical response of the structure. 

 

Static and dynamic analyses, which considered the variability of the action through through a 

suite of earthquake records [9], were used to establish the main damage causes, which were due 

to a fragile failure of the steel columns, caused by buckling effects, resulting in a complete 

collapse of the system. The silos remained fully elastic, consistent with observation found in 

the literature [6–8]. The braces suffered extensive yielding without however triggering any brit-

tle behavior. The consequences of the damage were mainly economic (collapse of part of the 

plant, interruption of activities, loss of content) and environmental (dispersion of polluting ma-

terial). As a reference performance objective for the retrofit solution, prescription of the Euro-

codes were adopted [10]. It is worth noting that different performances were evaluated using 
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nonlinear static and response spectrum dynamic analyses, as it is reported in Figure 3. Although 

the pushover curve shows a qualitative representation of the behavior under horizontal forces, 

it fails to correctly estimate the actual performance of the structure since it does not take into 

account the vertical component. Vertical actions in combination with relative high displace-

ments due to a torsional behavior, produce a collapse mechanism governed by buckling in the 

column, which can correctly be detected only using nonlinear dynamic analysis. 

 

 

 
 

3 NONLINEAR ANALYSES AND RETROFIT 

The retrofit solution chosen consists of isolation of the main mass (i.e. the silos) of the system. 

Curved surface sliders have been introduced between the vertical elements (pillars and columns) 

and the deck, thus limiting the horizontal action transmitted to the substructure and decoupling 

the behavior of the system. The steel columns have been connected to the pillars introducing 

three beams positioned below the isolation plane. The substructure in this configuration was, 

however, too flexible, thus reducing the effectiveness of the isolation solution (Figure 4). A 

vertical bracing has been introduced between the two steel columns in order to stiffen the sub-

structure, which has been considered to remain elastic and thus has been modeled with linear 

elastic truss elements. The friction devices have been modeled with nonlinear link elements 

with parameters reported in Table 1. 

 
 

Figure 4: Retrofit scheme: Isolation and bracing of the substructure.  

 

. 

Figure 3: Structure assessment using nonlinear static analysis (left) and response spectrum dynamic analysis (right). 

5929



Edoardo Rossi, Michelangelo Ventrella, Marco Faggella, Rosario Gigliotti, Franco Braga 

 

Parameter Value 

μ 3,6% 

R 3000mm 

dmax 350mm 

NEd 1000kN 

A 580mm 

H 135mm 
 

Table 1: Friction Isolator Device parameters. 

 

The seismic action has been modeled with a set of unscaled Ground Motions (Figure 5) [9] and 

various scale factors calculated dividing the probabilistic hazard curve in regular steps. The 

hazard curve has been calculated from the hazard definition of the Italian Code NTC08 [11-12]. 

The resulting limit states however were different from Eurocodes prescriptions, for this reason 

other two scale factors were introduced: 0.86, corresponding to an Ultimate Limit State with an 

importance factor of 1.2, and 0.41, corresponding to a Serviceability Limit State with an im-

portance factor of 1.2 (Figure 5) [10]. 

 

 

Figure 5: Action definition. Left: Probabilistic Hazard Curve. Right: Ground Motions spectra matching to the 

target spectrum. 

 

The linear analyses were done using the response spectra of the set of selected ground mo-

tions. CQC was used as modal combination and CQC3 as directional combination. 

Since the only source of nonlinearities, in the retrofitted structure, were the links used to model 

the isolation devices it has been possible to perform Fast Nonlinear which were more compu-

tationally efficient than Direct Integration method (D.I.) both in terms of time and accuracy of 

results, due to the issue of damping leakage [13]. Results of the modal analysis show how the 

introduction of the isolation devices just below the deck is effective in decoupling the structure 

response. Figure 6 clearly shows the differences in the modal response of the structure before 

and after the retrofit intervention and how the retrofit solution strongly reduces the torsional 

behavior of the structure. The increment in period can be found in Table 2 
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Existing Isolated 

Period [s] Mass Period [s] Mass 

0.87 74% 3.02 60% 

0.65 81% 3.07 60% 

0.37 35% 1.61 12% 
 

Table 2: Modal Periods and Masses. 

 

Results of the non-linear dynamic analyses presented in Figure 7 show the improvement of the 

structural behavior after the introduction of the isolation devices. In particular in the pre-retrofit 

situation, the structure exhibited a critical behavior, due to the collapse of the columns for buck-

ling phenomena, triggering a complete collapse of the structure. The introduction of the isola-

tion devices proves to be an effective strategy since, due to the reduction of the displacement 

of the substructure, the vulnerability of the steel columns is greatly reduced, both in terms of 

critical load and moment at the base, especially in the y direction. 

 

 
Figure 7: Comparison of the behavior of the structure at ULS. 

 

4 CONCLUSIONS 

Performance based assessment of an existing steel silo structure was carried out through 

linear, nonlinear static and incremental dynamic analyses, both in the existing and retrofit so-

lution using sliding devices. Results have shown that: 

 The complex geometry of most industrial structures needs a thorough study of the single 

components. Using traditional models may lead to important errors in describing cor-

rectly the behavior of the system; 

 Static nonlinear analyses neglect the effect of the vertical component and may thus lead 

to inaccurate results;  

 

 

Figure 6: Comparison of the behavior of the structure at ULS. 
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 The use of isolation devices regularizes the structure behavior, eliminating the torsional 

effects; 

 The use of Direct Integration nonlinear dynamic analyses on very deformable or isolated 

structures, due to damping leakage phenomena, can cause a strong reduction of the dis-

placement, thus providing nonrealistic results as compared to Fast Nonlinear Analyses; 

 Placing the isolation plane just below the stock units, and thus just below the main mass, 

can significantly increase the performance of the sub structure, both in terms of reduc-

tion of the horizontal component and in the protection against buckling phenomena in-

duced by the vertical component; 

 The strong reduction of the stiffness of the superstructure enables the designer to have 

a wider range of choices in terms of stiffening the substructure, being thus able to find 

an optimum solution, which can take into consideration the processing activities.  
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Abstract. In recent years, many studies were been carried out in order to understanding and 
later mitigate the seismic risk. Several important projects have been funded, different meth-
odologies have been developed; in particular, for emergencies management several applica-
tion have been carried out with good results. On the contrary, mitigation and prevention of 
seismic risk could be more efficient by setting a careful assessment, maintenance and retrofit-
ting of the built. In this sense, it to be noted that the seismic capacities of existing RC build-
ings have shown a key role in recent seismic events (e.g. Southern Italy 1980, Turkey 1999, 
L’Aquila 2009, Lorca, 2011, Emilia plan 2012). In particular, old RC buildings have often 
shown a poor and brittle behavior. Moreover, the low seismic performances of these build-
ings are the main reason of significant earthquake losses (in terms of economic, social and 
political activities) that can been considered generally as a direct consequence of physical 
damages on the buildings. About these important topics, it is the opinion of the authors, that 
quantitative models of fragility, referring to the most common types of buildings, have a key 
role in the evaluation process of risk and should been continuously improved. Therefore, in 
the seismic risk studies, a fundamental step is the development and use of fragility curves rep-
resentative of the behavior of existing RC buildings. A significant number of proposals are 
currently available in the scientific literature. In this study, a critical review of existing differ-
ent procedures for RC with Moment Resisting Frames (MRF) has carried out in order to 
highlight advantages and weakness of each proposal. A great variability in terms of geomet-
rical, mechanical and structural characterization, structural modeling, method of analysis, 
scale of damage, parameters of seismic intensity and statistical procedure has been highlight-
ed, and finally an optimal procedure of fragility analysis has been outlined. 
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1 INTRODUCTION 

Recent European earthquakes have shown that the economic loss and urban resilience are 
closely related to the seismic performance of existing buildings, designed without seismic cri-
teria or with old codes, that showed an unsatisfactory behavior [1]. For this reason, in order to 
mitigate the seismic risk and increase resilience in urban areas, reduction strategies risk 
should be developed.  

In seismic risk mitigation polices, with regard to the most common types of existing build-
ings the quantitative fragility models have a key role. Exist different approaches for the con-
struction of fragility models: analytical approaches, empirical approaches, approaches based 
on expert opinion and hybrid method. In this paper, only analytical methods have been con-
sidered; they are based on damage distributions simulated from the numerical analyses. Due 
to the importance of the topic, a significant number of studies were developed and published 
in the last years. In first part of the paper, a short critical review of different methods and pro-
cedures has been performed. In this way, the difference due to choices about analysis method, 
idealization, seismic hazard, and the damage model, have been highlighted. In particular, fol-
lowing a careful literature review, six studies have been selected, with the same analysis ob-
ject and purpose. In fact, the selected seismic risk studies , have investigated the existing 
Reinforced Concrete (RC) with Moment Resisting Frame (MRF). These typologies represent 
the highest percentage of building stock in several European areas with high seismicity, and 
they have similar properties. 

For each study the main advantages and weakness have been pointed out. Then, the paper 
focuses on the importance of an adequate damage model; damage model should be able to 
take in to account the different damage state, as structural and non structural damage. The 
main topics of different damage models considered have been highlighted. 

2 CRITICAL REVIEW OF METHODS 

A wide literature review have been carried and six studies have been selected; they are fo-
cused on the construction of fragility curves and resulting FCs have been defined for similar 
structural typologies of existing Reinforced Concrete with Moment Resisting Frame struc-
tures (RC-MRF). 

The selected studies are following listed and in the following they will be called with rela-
tive acronym: Masi et Vona 2012 [2] (MV12), Vona 2014 [3] (V14), Kyriakides et al. 2015 [4] 
(K15), Polese et al. 2008 [5] (P08), Erberik 2008 [6] (E08) and Silva et al. 2014 [7] (S14). In 
this studies, different methodologies have been defined in order to obtain fragility curves. In 
table 1 are reported the main characteristics of each study. 

Several main steps can be identified in all studies: 
• Selection of the structural types most vulnerable and widespread in region under ex-

amination; 
• Geometrical, structural and mechanical characterization of selected structural class;  
• Generation of adequate sample of structural models able to represent the real geomet-

rical, structural and mechanical variability; 
• Selection of ground motion; 
• Structural modeling and evaluation of the seismic response;  
• Definition of damage model; 
• Construction of fragility curves. 

In each step, a probabilistic approach should be used, because a high degree of uncertainty 
involved each of them. The structural models for numerical simulation should be able to rep-
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resent the real probabilistic variability (for example material and geometric-structural, proper-
ties of structural, ect). 

In several cases, it is excessive consider probabilistic some topics, especially when their 
variation is negligible, and not affect substantially the structural behavior. Farther, a probabil-
istic approach requires an accurate and extensive investigation in order to obtain reliable 
probability distributions. Actually, the highest computational power and the available numeri-
cal method allow a significant diffusion of the probabilistic approaches.  

 
Framework V14 K15 P08 E08 S14 

Selection and characteri-
zation of reference struc-

tural class  

Building type studied RC-MRF 

Area surveyed 
Italy and Medi-
terranean coun-

tries 

Limassol                  
(Cyprus)  

Arenella district 
Naples 

Dṻzce  (Tur-
key) 

Marmara region       
(Turkey)  

Approach used in geo-
metrical-mechanical-

structural characteriza-
tion of sample                   

RC-MRF                
D=Deterministic 
P=Probabilistic 

Form in plan D D D D D 

Dimension plan D D P D D 

Interstorey height  D D D D P 

Number of storey D D D D D 

Beam length  D D P D P 

Column depth D D D D P 

Concrete strength D P P D P 

Steel yield strength D P P D P 

Evaluation of seismic 
response 

Analysis Method NLDA NLDA NLSA NLDA 
NLSA and 

NLDA 

Structural modeling 
2D lumped 
plasticity 

2D fiber 
element  

3D lumped 
plasticity 

SDOF 
2D fiber               
element  

Type of seismic action  
natural  accele-

rogram 

accelero-
gram base on 

spectrum  

accelerogram 
base on code 

spectrum  

natural accele-
rogram 

natural accelero-
gram 

Construction of FC 
Intensity parameter IH Sd Sd PGV Sa 

Probability distribution lognormal lognormal lognormal lognormal lognormal 
 

Table 1: Main characteristics of frameworks selected. 

In any cases, the trivial uses of probabilistic approaches carry out to unnecessary or incor-
rect choice about structural models or unrepresentative characteristics (for example, for beam 
length and column depth). Therefore, several simplified approaches (for example 
MV12/V14/E08) that consider any probabilistic variables as deterministic are more reliable. 
In other words, RC-MRF structural models are able to reproduce the behavior of real build-
ings also choices several deterministic values. For example, in MV12, V14 and E08, the role 
of infill masonry walls have been considered; they have been investigated with deterministic 
approach. 

Generally, reliable FCs should be defined on the based of more accurate NonLinear Dy-
namic Analyses result (as in MV12, V14, K15, S14). On the contrary, FCs based on NonLin-
ear Static Analyses (P08/S14) could be less able to simulate the real behavior of buildings. In 
E08, FCs have been defined on NLDAs; nevertheless the global response of buildings have 
been investigated using SDOF equivalent analytical models that have been characterized from 
structural non linear static analysis. 

The seismic input plays a key role in FS definition. In order to obtained a realistic evalua-
tion of structural performance, the accelerograms recorded during real earthquakes should be 
considered further less appropriate synthetic events. In V14, S14, E08 natural accelerograms 
extracted from different data-base have been used; in K15, time-history have been derived 
from response spectrum; finally, in P08, EC8 [10] spectrum has been used. 
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Equally relevant, the seismic intensity should be able to represent the damage potential of 
ground motion. Integral seismic parameters, such as Arias Intensity IA and Housner Intensity 
IH seem more effective with regard to peak or spectral parameters [11]. 

2.1 Characterization of Damage Models 

In FCs definition, the Damage Model plays a key role. Damage Model should be defined 
from limit states that define the thresholds between different damage conditions. The limit 
states should be able to take into account the structural e nonstructural damage and their eval-
uation. Further, for each limit state should be associate an analytical characterization using a 
Damage Measure.  

The main distinction in terms of Damage Measure (DM) is local or global DM. The first is 
structural response parameters due to single structural members; the second is referred to 
whole structure. The choice of local or global DM is strongly linked with modeling and anal-
ysis methods choices. For example, if the equivalent SDOF are considered, the limit states 
cannot be defined in a detailed way (e.g. based on member behavior, local strains or hinge 
mechanisms, ecc). In these cases, the global DM will be defined in terms of simplified global 
parameters. In addition, for each limit state a qualitative description of non-structural e struc-
tural damage should be considered (for example, using a typical damage scale as EMS98 [8] 
or specific defined scale). In the tables 2-3-4, the damage models used in the investigated 
studies are reported. 
 

Damage model (V14) Damage model (MV12) 

EMS98 Damage Level Limit condition Limit condition 
0 SD=None; NSD=None IDR ≤ 0,05% IDR≤ 0,1% 
1 SD=None; NSD=Weak Ry≤1 and 0,05%<IDR≤0,1% 0,1% < IDR≤ 0,25% 
2 SD=Low; NSD=Moderate 0<Rp≤0,25 or IDR>0,1% and Ry≤1 0,25% < IDR  ≤ 0,5% 
3 SD=Medium; NSD=Significant 0,25< Rp≤0,75 0,5% < IDR≤1% 

4(5) Near Collapse/Collapse 0,75 < Rp≤ 1 IDR>1% 
SD=Structural Damage; NSD=NoStructural Damage Ry=ф/фy ; Ry=ф-фy/фu-фy   

Table 2: Damage Model in V14 and MV12. 

 
Damage model (E08) Damage model (S14) 

Limit state  Limit condition  Limit state  Limit condition  

Serviceability LS SI=0.2 
Limit state 1 IDR(%)→∆roof→75% Vbase,max 

Damage Control LS  IDR(%)→∆roof,DC=75% ∆roof,CP Limit state 2 IDR(%)→∆roof→Vbase,max 
Collapse Prevention LS IDR(%)→∆roof,CP=75% ∆roof,max  Limit state 3 IDR(%)→∆roof→Vbase,max descrease of 20% 

SI=Softening index 
 

Table 3: Damage Model in E08 and S14. 

Damage model (K15) 
Limit state  Limit condition  

Damage Limitation θcolumn < θy 

Significant Damage  θcolumn < 3/4θu 

Near Collapse θcolumn =θu and V=VR 

Building Collapse all columns of floor 
reach L.S.3 or IDR=4% 

 

Table 4: Damage Model in K15. 
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Generally, the interstorey drift is considered as Damage Measure. The interstorey drift is a 

good damage index for RC-MRC structures but reliable specific values should be defined. In 
this way, some results could be used: real test building during several earthquakes; laboratory 
experimental dynamic and pseudo-dynamic tests on models in scale or in full-scale; virtual 
experimental tests using numerical simulation. 

Experimental calibration and validation of interstory drift limit is an hard work [9]. Gener-
ally, specific values should be defined in each studies and projects. In S14 and E08 each limit 
state has been defined through specific interstorey drift value; these values are corresponding 
to limit state in terms of base shear and roof displacement. 

In order to verify the representativeness of these condition, these values have been com-
pared with the interstory drift as defined in V14. The interstory drift limit values for each 
classes in according to E08 and S14 are reported in Table 5 and Table 6. 

 
DM S14 IDR%(BF 2storey Pre71) IDR%(IF 2storey Pre71) IDR%(PF 2storey Pre71) 

LS1 0,48 0,07 0,32 
LS2 0,80 0,33 0,71 

IDR%(BF 4storey Pre71) IDR%(IF 4storey Pre71) IDR%(PF 4storey Pre71) 
LS1 0,66 0,08 0,26 
LS2 0,89 0,41 0,58 

IDR%(BF 8storey Pre71) IDR%(IF 8storey Pre71) IDR%(PF 8storey Pre71) 
LS1 0,32 0,11 0,11 
LS2 0,83 0,49 0,52 

 

Table 5: Inter-story drift values for LS1 and LS2 of DM S14. 

 
E08 IDR% (BF 2storey Pre71) IDR% (IF 2storey Pre71) IDR% (PF 2storey Pre71) 

Serviceability LS 0,32 0,20 0,44 
Damage Control LS 0,84 0,50 0,74 

Prevention Collapse LS 1,17 0,67 1,01 
  IDR% (BF 4storey Pre71) IDR% (IF 4storey Pre71) IDR% (PF 4storey Pre71) 

Serviceability LS 0,22 0,11 0,19 
Damage Control LS 0,75 0,50 0,60 

Prevention Collapse LS 0,94 0,67 0,77 
  IDR% (BF 8storey Pre71) IDR% (IF 8storey Pre71) IDR% (PF 8storey Pre71) 

Serviceability LS 0,53 0,15 0,22 
Damage Control LS 1,19 0,70 0,66 

Prevention Collapse LS 1,57 0,93 0,91 
 

Table 6: Inter-story drift values for Limit States of DM E08 

On the basis of the values reported in Table 5 and 6, it must highlighted that LS and LS2 is 
generally equal, except for structures high-rise types buildings. Generally, the limit LS3 is not 
able to represent the limit between extensive damage and structural collapse. The values re-
ported in Table 5-6 have been compared with interstory drift (IDR) values defined from V14. 
In this work, the comparison between frameworks reported described in table 1 has been car-
ried out in a graphic way (figures 1 - 6) for 2 storey Bare Frame Pre71 type buildings. 

As main results, the global limit condition used by S14 and E08 are not consistent with lo-
cal condition of V14; in particular, it to be highlighted that the base shear not are able to take 
into account the ductile capacity of the structures. 

However, the Damage Model in E08 is able to bring into account the deformation capacity 
of structure; a better correspondence with the local limit condition (V14) is realizable consid-
ering the ultimate deformation, not the 75%. 

The quantitative characterization of limit states must take into account of real capacities of 
structural class. In addition, if the definition of a single interstory drift value for each limit 
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states, of a certain sub-class, is reductive because an extreme variability was been found, and 
the probabilistic approach is more complex, an alternative is the approach used in V14. 

In fact in V14 the Damage Model has been characterized for each limit states; on the basis 
on the NLDAs results, an accurate assessment of repair cost is possible. 

 

 
 

Figure 1: Comparison between the limit values IDR 
DL2-3-4 (V14) and LS1-LS2 (S14). 

Figure 2: Comparison between the limit values IDR 
DL2-3-4 (V14) and LS1-LS2-LS3 (E08). 

 

  
Figure 3: Comparison between the limit values IDR 

DL2-3-4 (V14) and LS1-LS2 (S14). 
Figure 4: Comparison between the limit values IDR 

DL2-3-4 (V14) and LS1-LS2-LS3 (E08) 

 

  

Figure 5: Comparison between the limit values IDR 
DL2-3-4 (V14) and LS1-LS2 (S14). 

Figure 6: Comparison between the limit values IDR 
DL2-3-4 (V14) and LS1-LS2-LS3 (E08) 
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3 CONSIDERATION AND IMPROVEMENT ABOUT THE GENERATION A 
FRAGILITY MODEL 

The accuracy of the FCs and consequent seismic risk studies (economic loss, cost-
effectiveness of repairing damage and seismic retrofit) are mainly linked to structural model-
ing and analysis, structural performance and Damage Model. Therefore, a different efforts are 
need to define these topics. 

The critical review of different procedures, models, choices in the construction process for 
fragility curves definition is carried out. A great variability in terms of geometrical, mechani-
cal and structural characterization, structural modeling, method of analysis, scale of damage, 
parameters of seismic intensity and statistical procedure has been highlighted, and finally an 
optimal procedure of fragility analysis has been outlined. 

An optimal procedure of FCs construction must be based on numerical simulations per-
formed through NLDAs; the seismic action must been modeled by natural accelerograms. The 
Damage Model must been defined considering a representative limit states; they should be 
able to describe the different damage conditions. At each limit state must been associated a 
clear description of structural and nonstructural damage. 
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Abstract. The conservation of structures mainly relies on our ability to monitor their aging 

and to promptly detect relevant damage. Dynamic characterization is considered a powerful 

technique for testing the conservation status of buildings as their natural frequencies, damp-

ing and modal shapes are directly related to their stiffness and structural integrity. In this 

work a dynamic monitoring based on ambient vibrations measurements has been performed 

on a case-study, i.e. a RC 4-storey Hospital building. An identification procedure based on 

the Enhanced Frequency Domain Decomposition has been performed to evaluate the modal 

parameters of the building. The dynamic information provided by the experimental analysis 

have been compared to the one found by performing the analytical modal analysis. To this 

purpose a structural model has been built, by representing all the major geometrical and me-

chanical properties of the building, through  the Seismostruct software. The comparison has 

pointed out the role of the non-structural component and of the interaction between the moni-

tored structure and the adjacent buildings on the dynamic response of the case-study. 

… 
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1 INTRODUCTION 

The seismic assessment of existing buildings can be performed by different alternative 

procedures. In all cases the dynamic properties of the building, i.e. the vibrational periods, the 

amount of damping and the waves propagation within the building, play a crucial role in the 

evaluation of its seismic response. In these years, the improvement of data acquisition and 

processing capabilities, has increased the diffusion of experimental campaign based on the 

dynamic monitoring of the buildings [1, 2].  

Dynamic characterization is considered a powerful technique for testing the conservation 

status of structures as their natural frequency, damping ratio and modal shapes are directly 

related to their stiffness and integrity [3]. The dynamic monitoring of a sample building re-

quires a wave propagation motion, and, consequently, an accelerations source. The accelera-

tion sources consist in forced vibrations, weak earthquakes and ambient vibrations. The 

ambient vibrations have been extensively used in these last years [4, 5, 6, 7], since they are 

always available without requiring any specific effort. They are characterized by low intensi-

ties, and therefore the dynamic response of the monitored building can be investigated in the 

elastic range only. Furthermore, for RC buildings, such response can be even more rigid than 

the theoretical elastic one, since the cracking limit is hardly achieved [8].  

In this work the dynamic monitoring based on ambient vibrations has been applied to an 

Hospital building located in Sansepolcro (Italy), with a medium seismic hazard (PGA equal to 

0.227g for the Severe Damage, SD, limit state), i.e. the highest seismicity in Tuscany [9]. The 

building has been built before the current seismic legislation, so requiring a special attention 

in terms of seismic reliability, and it has been object of careful investigations. The building, 4 

storey height, has rectangular shape and a framed RC structure. Two stations at each level, 

one at the foundation, and further three ones at the top of the three adjacent buildings have 

been adopted in the analysis, for a global number of 9 stations. The location of the stations at 

each storey has been carefully evaluated, in order collect meaningful data, and to check the 

possible interaction between the examined structure and the next ones. The recording phase 

had a duration of about 20 hours; the long time recording interval has allowed to check the 

stability of the vibrations and to get robust average values of the frequency response. An au-

tomatic identification procedure via Enhanced Frequency Domain Decomposition (EFDD) 

[10, 11, 12] has been used to evaluate the modal parameters and to remove any user interac-

tion.  

The dynamic information provided by the experimental monitoring analysis have been 

compared to the one found by performing an analytical analysis. To this purpose a structural 

model has been built, by representing all the major geometrical and mechanical properties of 

the building, by using the Seismostruct [13] software. A modal analysis has been performed, 

and the elastic vibrational periods, together with the corresponding modal shapes, have been 

found.  

The comparison between experimental and analytical data have evidenced some differ-

ences between the two analyses. The first one is about the stiffness found for the building: the 

experimental campaign provides a n higher estimation of the building stiffness, since it is 

based on a completely elastic response, due to the low intensity of the adopted acceleration 

source, and to the contribution of some non-structural components, like partitions, and archi-

tectural finishing, not included in the analytical model. The second difference is about some 

of the modal shapes, which are conditioned by the buildings adjacent to the checked one, 

which are not included in the analytical model.  
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2 THE CASE STUDY 

The Hospital complex, shown in Fig. 1, is made by 18 independent buildings, differing for 

age, material and number of storeys. The buildings shown in Fig. 1 have been classified dur-

ing the assessment analysis made in the jointed agreement between the University of Florence 

and the Regional Government [14]. The examined building, named 07 in Fig. 1b, adjoins 

three other ones, along three of its sides, as can be seen even by views shown in Fig. 2. It has 

a rectangular plan, of sides of 30.15 m and 18.90 m respectively. The RC structure is made by 

10 transversal frames along the E-W direction, and by three RC frames along the N-S direc-

tion. Figs 3 and 4 show, respectively, the standard plan and two 3D views and cross sections 

of the building.  

 

  
 

Figure 1: Hospital complex of Sansepolcro a) Air view b) General plan 

 

   
 

Figure 2: The examined building. 

  

 

   

 

 

 

 
 

Figure 3: Plan of the building 
 

 

Figure 4: 3D views and sections of the building 
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The columns have different sections at each storey, ranging between 30x50 cm at the first 

level, and 30x35 cm at the top one. The transversal beams (EW direction), which sustain the 

floors, have a section of 30x60 cm, with the exception of some beams on the external wall, 

which have a special S shape to sustain the infill panels. The longitudinal beams (NS direction) 

have a lower depth at the first level, whilst they have the same dimensions of the transversal 

ones (30x60cm) at the upper storeys. The ceiling is made of two different floors, next each 

other, while the flat roofs includes 1m long cantilever along the entire perimeter. More details 

about the building can be found in [14]. 

3 THE DYNAMIC MONITORING 

Ambient vibration measurements were performed for 20 hours from 23 to 24 April 2015 

with 9 seismic stations (Fig. 5). Each seismic station was equipped with 3-component seis-

mometers; more precisely, six stations were made by Lennartz 3D/5s (sensitivity 400 V/m/s 

and flat transfer function up to 5 s); one station by Guralp CMG-6T seismometer (sensitivity 

2400 V/m/s and flat transfer function up to 10 s), one station by Guralp CMG-40T seismome-

ter (sensitivity 800 V/m/s and flat transfer function up to 30 s) and one station by Trilium 

Compact 120s model (sensitivity 750 V/m/s and flat transfer function up to 120 s). All the 

seismometers were digitized by with a 24 bit Guralp CMG24 Digitizer at 100 Hz, and the 

time synchronization between stations was achieved using GPS. 

The F01 station, located on the foundations of the building, has been used as reference sta-

tion, while two stations were installed at each floor in the opposite corner (Fig. 5).  
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Figure 5: Position of the nine stations used to measure the effects of the ambient motion. 

 

In order to apply the operational modal analysis, the 20 hours long record has been divided 

into times windows of 300 s and the data have been first deconvolved for the instrument re-

sponse function and then filtered to frequencies above 0.1 Hz. The time window of 300 s is 

long enough with respect to the Brincker criterion [10], which requires time series ~1000 

times longer than the fundamental oscillation period (~0.3 s in our case). An automatic identi-

fication procedure via Enhanced Frequency Domain Decomposition (EFDD) [15] has been 

used to calculate the modal parameters (frequency, damping and modal shape). 

The EFDD is a frequency domain technique for operational modal analysis of structures, 

whose theoretical background is described in numerous papers [15, 16, 17]. The EFDD is an 
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extension of the Basic Frequency Domain technique (BFD), often called Peak-picking method, 

which is based on the Singular Value Decomposition (SVD) of the Power Spectral Density 

(PSD) matrix Gyy (), where i are the single angular frequency. The modal shapes are auto-

matically found within the modal domain (or modal bandwidth) using the modal coherence 

[14, 16, 12]. The latter is evaluated between each frequency line of two first singular vectors 

calculated for two consecutive records 300 s length.  

The modal coherence is equal to 1 for stationary signals and allows to define the modal 

domain due to the structural modes. A mean value over 0.96 (Fig. 6a) and a standard devia-

tion below 0.01 (Fig. 6b), calculated for a set of 10 consecutive modal coherences, are used to 

reduce the noise and to identify the modal domain. This procedure is repeated for the entire 

record every 300 s. Within each modal bandwidth, the maximum amplitude of the first singu-

lar value indicates the modal frequency. For such frequency peak, the corresponding first sin-

gular vector provides the modal shape every 300 s long data set. The application of the EFDD 

method has allowed to automatically identify the first five bandwidth modes of the checked 

building (Fig. 6c).  

 

 
a) mean of modal coherence evaluated during the observation time on 10 consecutive records, the white line on 

the color bar indicates the threshold (>0.96) used for the identification of the mode bandwidth; 

b) standard deviation of the modal coherence evaluated on 10 consecutive records, the white line on the color 

bar indicates the threshold (<0.01) used for identification of the mode bandwidth;  

c) 240 first singular values calculated for all the observation time (20 hours). 
 

Figure 6: Modal coherence found by the analysis. 

 

An example of the five modal shapes calculated following the EFDD procedure during 300 

s time window relative to the 15:00 to 15:05 interval is illustrated in Fig 7, which shows the 

first five modal shapes found from the analysis. As can be seen by the plots, the first mode is 

translational and occurs along the X direction (Fig. 7a), with a frequency of 3.71 Hz (T1 = 

0,27 s) and a damping ratio of  1.3 %, whereas the second mode shape is still translational, but 

along the Y direction (Fig. 7b) with a frequency of 4.32 Hz (T2 = 0,23 s) and damping ration 

of 1.4 %. The third mode has a torsional modal shape with a frequency of 5.08 Hz (T3 = 0,20 s) 

and damping ratio of 1.61%, while the fourth and fifth modes have a frequency of  7.12 Hz 

(T4 = 0,14 s) and 8.54 Hz (T4 = 0,12 s) and a damping ratios of  0.5% and 0.7% respectively. 
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a) first shape mode, T1 = 0,27 s 

b) second shape mode, T2 = 0,23 s 

c) third shape mode, T3 = 0,20 s 

d) fourth shape mode, T4 = 0,14 s 

e) fifth shape mode, T5 = 0,12 s 

 

Figure 7: Tri-dimensional representation of the first five modes. 

4 THE MODAL ANALYSIS   

An analytical model has been made through the computer code Seismostruct [13] to 

achieve an analytical representation of the seismic response of the building. A detailed repre-

sentation of the building geometry has been achieved, by tracing the original architectural and 

structural drawings. The mechanical properties of the materials have been carefully checked 

during the knowledge process, but in the current analysis only the concrete Young modulus is 

adopted, which is assumed to be equal to 27000 MPa. 

A fiber model has been adopted to describe the cross sections; the Mander et al. model [18] 

has been assumed for the core concrete, a three-linear model has been assumed for the uncon-

fined concrete, and a bilinear model has been assumed for the reinforcement steel. Contribu-

tion of floor slabs has been considered by introducing a rigid diaphragm. The model only 

represents the structural system of the building, neglecting the non-structural components, 

like the internal partitions and the architectural accessories. In the same way, in this first ap-

proach to the numerical representation of the seismic response of the building, the possible 

interaction with the adjacent buildings has been neglected. Fig. 8 shows two views of the 

model adopted in the analysis.  

 

  
 

Figure 8. Views of the structural model. 
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The modal analysis has been performed by assuming an elastic behavior of the structure. 

Tab. 1 shows the main information (period and percentage of the total mass activate by each 

motion) of the first modal shapes, while Fig. 9 shows the corresponding modal shapes.  

 

Table 1. Modal shapes found by the numerical analysis 

 

Mode 
Period 

(sec) 

% of participation mass 

Ux Uy Rz 

1 0.462 80.23%   0.16%   2.30% 

2 0.377   0.33% 78.14%   2.90% 

3 0.333   1.94%   1.91% 73.07% 

4 0.179   5.81%   0.00%   0.26% 

5 0.128   0.51%   8.02%   0.03% 
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Figure 9.  Modal shape found through the modal analysis. 

 

5 COMPARISON BETWEEN EXPERIMENTAL AND ANALYTICAL 

DYNAMICAL RESPONSE  

Before proceeding to the comparison between the numerical results and those provided by 

the experimental campaign, some observations should be made. The dynamic response of 

buildings related to ambient vibrations is largely affected by all the non-structural components 

that, at the increasing of the dynamic intensity, lose their entirety, and, consequently, their in-

fluence on the building response. The checked building is separated by the adjacent ones 

through seismic joints: at the occurring of an earthquake, therefore, it should experience an 

independent dynamic response, resulting not affected by their behavior. Under ambient vibra-

tion, instead, the seismic joints have not lost their entirety, and therefore the dynamic response 

of the case- study found through the experimental test is affected by the dynamic properties of 

the next buildings. Moreover, the internal partition and the perimeter infill walls are known to 

largely affect the initial stiffness of the building, before they become ineffective due to the 

amount of the experienced stress.  

The analytical model used in this work is very simple: it only considers the structural ele-

ments of the building and the mass distribution, and therefore it can be assumed to be a first 

attempt to represent the dynamic response of the case-study. The effects of the adjacent build-

ings is not taken into account, and the non-structural components have been neglected. There-

fore, a more deformable system should be foreseen, and only the first shapes can be expected 

to be comparable, since the torsional behavior of the building is certainly affected by the con-

tribution of the neglected aspects. In the following, therefore, only the first two modes, which 

represent the translational response of the building along the two main directions, have been 

discussed. 
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As regards the elastic periods of the first two modes, it should be noted that the numerical 

model provides values about 40% larger than the ones obtained by the experimental campaign. 

The amount of this increase is compatible to more general studies [19] referred to the contri-

bution of the non-structural components on the dynamic response of RC structures.  

Fig. 10 shows the comparison of the modal shape found for the first (translational) two 

modes through the two approaches. The shapes have been normalized to the maximum re-

sponse along the main direction.  
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Figure 10: comparison between the first two modes of the dynamic response of the case-study. 

 

6 CONCLUSIONS  

In this work a dynamic monitoring based on ambient vibrations has been applied to an 

Hospital building located in Sansepolcro (Italy). Nine seismic stations, consisting in 3-

component seismometers, have been placed in the building, checking every floor, included the 

foundation level. The recording phase had a duration of about 20 hours, and an automatic 

identification procedure via Enhanced Frequency Domain Decomposition (EFDD) has been 

performed on the obtained data to evaluate the modal parameters, i.e. frequency, damping and 

corresponding modal shape.  

The dynamic response found through the experimental campaign has been numerically 

simulated  by representing the building by means of a simplified model. The model represents 

a first attempt to describe the dynamic response of the building, since it does not take into ac-

count the non-structural components, or the possible interaction between the building itself 

and the adjacent structures. It has been prepared through the platform Seismostruct, and takes 

into account the effective geometry of the building, and its main dynamical properties, like 

the mass and the stiffness distribution.  

The fundamental periods provided by the numerical model for the building are about 40% 

larger than the ones provided by the experimental campaign, whilst the two first (translational) 

modal shapes are very similar with each other. A more detailed model of the building should 

be made in order to check the effects related to the experimental campaign, like the continuity 

between the case-study and the adjacent buildings and the effects of the non-structural com-

ponents.  
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Abstract. This work deals with the evaluation of the seismic vulnerability of urban areas. The 

city of Florence has been selected to be the case-study of the analysis. The work is organized 

in two main parts. The first one consists of the representation of the area hazard. Starting 

from the PGA of the area, a map of the amplification factors and of the fundamental frequen-

cies has been made, by performing an extensive experimental campaign. The second step is 

focused on the buildings properties, and on the increase in the seismic hazard – and the con-

sequent vulnerability – due to the possible occurrence of resonance. A large data-bank of the 

buildings has been collected, and they have been classified after their structural material 

(masonry versus reinforced concrete) and height. As a result of the collected information, a 

map of the fundamental period of vibration of the buildings has been obtained, by adopting 

the expressions provided by the current International Codes. The comparison between the pe-

riod of each building and the one of its foundation soil has provided the resonance index (RI), 

which can be considered as an hazard parameter related to each building. 
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1 INTRODUCTION 

The evaluation of the safety of urban areas is one of the most important challenges that the 

Community is facing in these decades. The increase of the scientific and technical knowledg-

es, together with the outstanding development of the capacity to collect and to manage data-

bases, let the territory protection more affordable than it never was in the past. Many different 

retrofitting techniques [1, 2, 3] have been developed, suitable to be applied to all types of ex-

isting buildings. Nevertheless, the achievement of a satisfactory safety level of the building 

population is totally impossible, at the current time. If the inadequacy of the economical 

sources is certainly the first reason of this impossibility, also the lack of an intervention plan 

plays an important role. In many Italian towns, in fact, the buildings population is made most-

ly by ancient or, anyway, pre-normative structures. If the historical buildings, made in the past 

centuries, have been made without any anti-seismic criteria, even the pre-normative ones pre-

sent, in many cases, an unsatisfactory safety level. The Italian country, indeed, experienced an 

economic boom in the 1960s, which was characterized by a great expansion, and by the con-

struction of many buildings. Many of them have been made with poor materials [4], which 

did not comply with the technical requirements of the time. As a consequence of these obser-

vations, the Italian towns are, in most cases, vulnerable, i.e. they have an unsatisfactory seis-

mic capacity. In the last decades, many procedures have been developed to check the seismic 

vulnerability of urban areas [5, 6, 7, 8, 9], which can be divided into three main groups: the 

empiric, the analytical and the hybrid methods. The vulnerability analyses are focused on the 

reliability of the buildings with regard to the seismic actions expectable for the area.  

The current work deals with the urban vulnerability of the city of Florence, (Italy), which 

is an example of complexity, both for the outstanding architectural heritage and the for multi-

level dimensions. The work develops a previous research [10], aimed at evaluating the urban 

vulnerability of Florence through an empirical approach based on a simplified vulnerability 

index. The analysis was based on the database available at the time, consisting in the infor-

mation collected by GIS, which was very basic, providing only the total height and the age of 

the building population.  

This work is focused on the seismic hazard of the buildings located in the area of Florence. 

The maximum seismic acceleration expected for each point of the urban area has been defined 

by assuming a PGA equal to 0.13g over the entire urban area, according to the Code [11] clas-

sification, and determining the amplification factor map, which is a function of the specific 

geological features of each micro-zone of the area.  

A further development has been achieved, by determining the maximum acceleration 

which each building of the Florence area can experience as an effect of the relationship be-

tween its own dynamical properties and the ones of the foundation soil. To obtain this infor-

mation, the maps of the fundamental period both of the soil and of the buildings would be 

needed. The map of the fundamental period of the soil has been found after an extensive  ex-

perimental campaign made on the Florence area. The map of the fundamental periods of the 

buildings, in turn, has been found by applying a simplified approach to the buildings popula-

tion. To this purpose, further information has been achieved on the buildings population, like 

their structural system and material. As a consequence of the more detailed classification, a 

reliable evaluation of the main frequencies of the building population has been made. The 

comparison between the maps of the fundamental periods of the area and of the buildings 

pointed out the probability of the buildings to experience resonance phenomena during seis-

mic events. A “resonance index” (RI) has been defined to measure the sensitiveness of the 

buildings to this phenomenon, and a RI map of the area has been consequently drawn. 

5953



G. Lacanna,
,
P. Deguy, M. Ripepe, M. Coli,

 
B. Paoletti, S. Barducci, M. Tanganelli, S. Viti, M. De Stefano 

 

2 THE CASE-STUDY: FLORENCE 

Florence is a city of about 353,000 inhabitants, with a larger number of people (supposed 

to almost achieve 700,000 units), living in the whole urban area. This work is focused on the 

vulnerability of the buildings population of the urban area of Florence, made by about 55,000 

units. The area has been historically subjected to earthquakes, with local magnitude ML until 

5, and maximum intensity equal to VIII MCS (Mercalli-Cancani Sieberg scale).  

Despite the high density of population and the not negligible seismicity, the buildings of 

the area do not present any anti-seismic criteria, since most of them are ancient or – anyway – 

built before the seismic regulations have been introduced.  

In this study each building is ranked by the Florence municipality database through few 

main parameters, i.e. the total height and the range of the construction year. This research 

does not include the area of the historical center (UNESCO protected area), since it is object 

of another survey. The current investigation, therefore, has been applied over about 40,000 

buildings. The town lies in a valley (about 50 m a.s.l.) crossed by Arno river and surrounded 

by hills. Many investigations [12, 13] have been made on the soil of the Florence area, 

providing a detailed knowledge of the lithostratigraphic subsurface, of the lithoid substrate 

profile and of the geotechnical properties of its soils. In these years all the available drilling 

data have been collected and implemented into a GIS. Each data has been expressed in terms 

of unconformable boundary stratigraphic units [14] and unified soil classification system 

(USCS), and then transcribed into a geodatabase (UBSU).  

The Florence basin had been developing since late pliocene thanks to the role played by 

the Fiesole faults on its NE border; these faults have no any sign of tectonic activity in the last 

200ky. This geological evolution led to the filling of the basin by plio-pleistocene palustrine 

and alluvial deposits, followed by two sedimentary cycles related to the paleo-Arno river and 

the holocene geomorphic evolution, respectively (Fig. 1). 

 

 

 
B (shadowed grey) = bedrock  

P = Plio-Pleistocene palustrine and alluvial deposits  

A = recent alluvial deposits of the Arno River and its tributaries  

Aa = ancient channel deposits of the Arno River.  

red lines (plain and dotted): faults.  

blue line (dotted): 14th century city-walls ring  

black line: Florence Municipality area 

 

Figure 1: Geological sketch map and cross-section of the Florence area (from: [12]). 

3 HAZARD MAPS OF THE SOIL 

The seismic hazard of the area of Florence has been checked by performing an extensive 

experimental investigation [12], consisting in a 1,850 drillings, whose location has been 

shown in Figure 2, enhanced by 32 downhole proofs. For each test the maximum peak of the 

transfer function has been found, which has been combined with information provided by the 

downhole proofs about the stratigraphy of the area. A seismic-stratigraphic analysis has been 

performed, which provided the transfer function of the area. By integrating the transfer func-

tion found over a range of periods between 0,1s and 0,5s (the range of major interest as re-
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gards the buildings interaction), the amplification factor of each test has been found. Figure 2 

shows the map of the amplification factor obtained after the experimental investigation [12]. 

In the map the values below the unity have not be evidenced, while the red area represents the 

points with the highest amplification. 

 

 
 

Figure 2: Map of the amplification factor (from: [10]) 

 

 
 

Figure 3: Map of the proper period (in seconds) of the soil. 

drilling 
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The same experimental campaign has provided the map of the fundamental periods of the 

area, shown in Figure 3.  

Even in this case the information provided by the two types of investigation have been in-

tegrated, i.e. the strathigraphies found through the drilling proofs have been represented by 

the mechanical properties and the shear velocity (vs) values provided by the downhole inves-

tigations. For each drilling the filtering process through the soil columns has provided the 

fundamental frequency of the soil. The map of the fundamental periods of the soil cannot be 

considered as an hazard map; nevertheless it has a crucial role in the evaluation of the build-

ings vulnerability, since it affects the intensity of the seismic acceleration which each building 

will face at the occurring of an earthquake.  

As can be observed in Fig. 3, only a relatively small area, represented in green, presents a 

period compatible to the buildings ones (0.20s - 0.60s). The amount of the seismic accelera-

tion expectable by each building as an effect of its position can be related both to the relation-

ship between the fundamental period of the building and the one of its foundation soil, and to 

the amplification factor. The maps shown in Figs 2 and 3, therefore, should be compared to 

the map of the fundamental period of the buildings, shown in the next section.  

 

4 HAZARD MAPS OF THE BUILDINGS 

4.1 The buildings population 

The buildings population consists of about 55,000 unities. No distinctions are made about 

their use: residential, scholastic, commercial and industrial buildings have been considered as 

well. Each unity has been classified through an ID, and the parameters adopted in the database 

are the total height, the surface, the volume and the age range. Fig. 4 shows the classification 

of the buildings population of the entire city referred to the age of construction and to the total 

height.  

 

  

 

Figure 4: Database referred to the entire city of Florence. 

 

In this work, a more detailed classification has been made on the residential buildings of 

the city, external to the most historical center - which is the object of another research - i.e. 

about 40000 buildings. In this database, the number of information has been upgraded, by the 

introduction of the type of structure. The buildings, indeed, have been classified after their 

main technology/material. The considered classes are: masonry (M), reinforced concrete (RC) 

and other structures (OS). The OS class comprehends buildings below 3.5m, and the struc-

tures not belonging to any of the previous classes. The buildings population of the area basi-

cally does not present any steel unities, which, anyway, would belong to the NC class. Fig. 5 

shows the classification of this more specific database. The total height of the buildings, to-

gether with their material, leads to achieve an evaluation of their fundamental period of vibra-
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tion. It should be noted that only few buildings exceed the height of 30 m. This evidence de-

pends on an ancient law, passed in the XIII century, still in force, which topped the height of 

the civil buildings to 50 “florentine braccia” (about 30 m). 

 

  

 

Figure 5: Upgraded database referred to the residential building of the city of Florence (with the exclusion of the 

historical center) 

4.2 The dynamic characterization  

The fundamental period (T0) of the buildings population is a derivative information provid-

ed for the database, as a function of the total height of each building and its type class, as ex-

plained in the previous section. The vibrational properties of the buildings can be evaluated by 

performing an eigenvalue analysis on a mechanical model representing the structural behav-

ior, or by calibrating approximate expressions, based on the observation of experimental data 

[15]. The empirical approach is the most largely adopted so far, and it is followed even by the 

main International Codes [16, 17, 18, 19]. In this work the simplified relationships proposed 

by the Italian [10] and European [20] technical Codes, which are identical each other, have 

been adopted:  

 

masonry buildings:    Te = 0.050 h
0.75

   (1) 
 

RC framed buildings:    Te = 0.075 h
0.75

   (2) 

 

where h is the building eight (in meters). The provided period depends only on the total 

height of the building and on its constructive system (masonry vs framed structure). The reli-

ability of (1) and (2) could be argued. It is well known, in fact, that the dynamic response of 

buildings depends on their stiffness, which experiences a considerable decrease during the 

seismic excitation; depending on the level of assumed damage, a different amount of stiffness 

- and consequently of the period - can be assumed [21]. In most cases, the period values pro-

vided by the most recent empirical expressions [15] [22] are larger than the ones found by fol-

lowing the Code approach. The most accurate expressions which evaluate the period of 

buildings, however, require a large number of information, like the amount of walls in the two 

main directions (wall systems), or the presence and quantity of infilled walls inside the struc-

ture (framed systems). Therefore, at the current time, the adopted Code expressions seem to 

be suitable to the work purpose, and compatible to the collected information.  

The obtained T0 values, however, should be considered as a lower limit for the buildings 

period. Fig. 6 shows the map of the Period found for the buildings population (the map has 

been slightly cut, to lead a larger size of the plot). In the same figure, the percentage of the 

period ranges of the database has been shown.   
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Figure 6. Map of the fundamental periods (T0) of the buildings population. 

 

4.3 The “resonance index” map 

The maps representing the period distribution found for the buildings (Fig. 6) and for the 

soil (Fig. 3) have been compared, in order to find the “resonance map”, which express how 

much the fundamental period of each building differs by the one of its foundation soil. The 

resonance index (RI) has been expressed as the ratio between the period of the building and 

the one of the soil (equation 3):  

 

RI = Tbuilding / Tsoil         (3) 

 

The obtained RI values have been classified in five different classes, listed in Table 1, 

which express the vulnerability of the buildings population regard the resonance phenomena. 

Since the periods found for the buildings can easily lengthen, due to the occurring of structur-

al damage, the RI values over the unity are supposed to represent absence of resonance. 

 
Table 1: Assumed ranges for the resonance index (RI) 

 

RI range Expected resonance phenomenon 

0.0 - 0.3 No resonance 

0.3 - 0.6 Low resonance probability 

0.6 - 0.9 Possible resonance for moderate/strong earthquakes 

0.9 – 1.1 Elastic resonance 

> 1.1 No resonance 

0.0s - 0.2s

0.2s - 0.4s

0.4s - 0.6s

0.6s - 0.8s

0. s - 1.0s

> 1.0 s
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With reference to the introduced RI classification, the most “dangerous” ranges, i.e. the 

ones of the maximum resonance, are the one around the unity (0.9-1.1) and the one between 

0.6 and 0.9, which represents the building with a fundamental period slightly lower than the 

one of their foundation soil. This last RI range can be dangerous at the occurring of moderate 

or strong earthquakes, which could induce a large increase of the elastic period of the build-

ings. The RI values below 0.3, instead, can be assumed to represent a low probability of reso-

nance. The classification proposed in Tab. 1 should be assumed as a simplified instrument to 

evaluate the resonance problems; to achieve a more affordable classification, a more detailed 

description should be needed about the buildings, and more accurate expressions should be 

adopted to estimate the fundamental period of the buildings. Moreover, especially for isolated 

buildings, the two first periods, along the two main directions, should be considered, to avoid 

that the second vibrational mode could have resonance problems with the soil. 

 

 
 

Figure 7. Resonance map. 
 
 

5 CONCLUSIVE REMARKS 

In this work an evaluation of the seismic vulnerability has been made on the area of Flor-

ence. To this purpose the dynamic properties both of the soil and of the buildings population 

of the urban area have been checked.  

The hazard of the area has been achieved by performing an extensive experimental cam-

paign over the area soil, consisting of 1,850 drillings and 32 downhole tests. The information 

provided by the two types of testing have been combined, returning a mapping of the funda-

0,0-0,3

0,3-0,6

0,6-0,9

0,9-1,1

>1,1
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mental frequency of the soil all over the Florence area. The same investigation has provided 

the distribution of the amplification factor over the selected area.  

The existing database referred to the buildings population has been upgraded, by introduc-

ing further information about the constructive system and the materials of all buildings, and 

by determining their vibrational period by means of the conventional expressions provided by 

the Technical Codes. A vulnerability index, RI, has been introduced to express the probability 

of the buildings to experience resonance phenomena. RI has been defined as the ratio between 

the period of the buildings and the one of their foundation soil, and a classification has been 

introduced to evaluate the resonance probability of each building. A further map, expressing 

the RI classification, has been provided for the urban area of Florence.  

The obtained RI map should be improved, by introducing further information about the 

buildings geometric and mechanical properties, and by evaluating the buildings fundamental 

periods through more accurate expressions.  
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Abstract. This article presents SPO2FRAG V1.0, the first (beta) version of the Static PushOver 
to FRAGility software. The SPO2FRAG software is an interactive and user-friendly tool that 
can be used for approximate, computer-aided calculation of building seismic fragility functions, 
based on static pushover analysis. It is coded in MATLAB® environment and is currently under 
development at the Department of Structures for Engineering and Architecture of the University 
of Naples Federico II. At the core of the SPO2FRAG tool lies the SPO2IDA algorithm, which 
permits analytical predictions for incremental dynamic analysis summary fractiles at the sin-
gle-degree-of-freedom system level. By effectively interfacing SPO2IDA with a series of oper-
ations, intended to link the results of static pushover analysis with the variability that typically 
characterizes non-linear dynamic structural response, SPO2FRAG provides an expedient so-
lution to the computationally demanding task of analytically evaluating seismic building fra-
gility, which would otherwise require a large number of non-linear dynamic analyses.
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1 INTRODUCTION 

Seismic risk and loss estimation studies performed within a probabilistic framework employ 
structural fragility (or vulnerability) functions, which provide the probability of exceeding some 
predefined performance limit state in a single seismic event, given a certain level of seismic 
intensity. In the case of structure-specific studies, the trend is to rely increasingly on analytical 
derivation for these fragility functions. State-of-the-art in analytical fragility estimation is the 
use of non-linear dynamic analyses – for example, incremental dynamic analysis (IDA, [1]), 
the cloud method [2] or multi-stripe analysis [3]. However, despite the advantages of the ana-
lytical approaches over the damage probability matrices and empirical fragility curves em-
ployed earlier, their chief disadvantage remains the computational burden involved [4], which 
may include the selection and manipulation of hazard-consistent ground motion records.1 

In order to sidestep the computationally demanding methods of seismic structural assessment 
that involve non-linear dynamic analysis, engineers have long relied on approximate methods, 
such as static non-linear procedures, which estimate seismic demand of the structure by making 
recourse to an equivalent single-degree-of-freedom (SDOF) oscillator [6]. A simple and effec-
tive link between IDA and static non-linear analysis has been provided by the SPO2IDA algo-
rithm [7], which acts as a predictive equation of the fractile IDA curves for SDOF systems with 
multi-linear pushover curves. The SPO2IDA algorithm forms the backbone around which the 
SPO2FRAG (Static Pushover to Fragility) tool, a MATLAB® coded software whose presenta-
tion is the objective of the present paper, is built. SPO2FRAG offers an expedient solution to 
the analytical derivation of seismic fragility for buildings and can provide support to previously 
developed seismic risk assessment software such as the one described in [8]. 

The remainder of this article is structured in the following manner: first a brief presentation 
of past research most relevant to the development of the SPO2FRAG tool is provided. This is 
followed by an operational description of the software itself, complete with a flowchart and 
graphical user interface (GUI) description. Subsequently, an example application is provided, 
accompanied by a comparison of the SPO2FRAG output with a  set of fragility functions de-
rived by means of IDA. Finally, some commentary and discussion on development concludes 
the article. 

2 BACKGROUND 

2.1 Static pushover to IDA  

The most fundamental concept behind SPO2FRAG is the ability to predict efficiently IDA 
results of a given SDOF system without having to actually run any analysis, a prediction 
achieved thanks to SPO2IDA. On any monotonic static pushover curve (SPO), some character-
istic regions can be typically identified: an elastic portion leading up to the yield point, a post-
yield region characterized by positive stiffness (hardening) extending up to the capping point, 
a descending branch exhibiting negative stiffness (softening) and sometimes even a final resid-
ual strength segment (Fig. 1a). Based on the observation that the 16%, 50% and 84% fractile 
IDA curves of SDOF systems also exhibit distinctive characteristics within the ductility inter-
vals that delimit these SPO segments, the SPO2IDA algorithm was developed. SPO2IDA com-
prises a set of equations that can directly predict the three summary fractile IDA curves for any 

                                                 
1 It is appropriate to recall at this point that, in principle, fragility curves are site-specific. This is because the 
records employed to run non-linear dynamic analyses should be selected based on the joint and conditional distri-
butions of hazard variables (e.g., magnitude, source-to-site distance, and accelerations) specific for the site. To 
overcome issues of this nature, the software discussed in the paper assumes conditional independence of first-
mode spectral acceleration with respect to other hazard variables; see also [5]. 
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SDOF system, with a given quadrilinear backbone geometry; this introduces an approximation 
but has the advantage of eschewing the need for laborious computations. An example of 
SPO2IDA-predicted fractile IDA curves is given in Fig. 1b, where the predictions are compared 
against the corresponding fractiles of explicitly calculated IDAs. 

 
Figure 1: (a) Generic SDOF oscillator’s quadri-linear backbone curve plotted in reduction factor (R, ratio of 

maximum to yield force) – ductility (μ, ratio of maximum to yield displacement) coordinates and (b) an example 
of SPO2IDA-predicted 16%, 50%, 84% fractile IDA curves, super-imposed over the fractile and individual IDAs 

calculated analytically for the same SDOF system using the FEMA P695 [9] far-field set of forty-four records. 
Backbone geometry is defined by the parameters αh (post-yield to elastic stiffness ratio), μc (ductility at capping 
point marking the beginning of the descending branch), ac (post-capping to elastic stiffness ratio) and μf (fracture 

ductility.) 

2.2 Multi-linear fit of the monotonic backbone curve 

Another important part of the SPO2FRAG algorithm is the automatization of obtaining a 
multi-linear backbone for the equivalent SDOF oscillator.  As recently as – roughly – a decade 
ago, the norm for the implementation of static non-linear procedures (e.g., [10]) used to be a 
combination of simple elastic-perfectly-plastic or bi-linear hardening approximations of SPO 
backbones coupled with R-μ-T relationships (e.g., [11]) that only consider some central value 
of inelastic response. Under these circumstances, empirical “rules of thumb” for the multi-linear 
fit chosen for the SPO may have been good enough, but this may no longer be the case. 

Advances in computing power and the sophistication of numerical modelling, for the non-
linear aspects of structural behavior, have gradually led to SPO curves containing appreciable 
initial curvature (in cases where cracking is a factor) and descending post-peak-strength 
branches. In order to exploit the capabilities of more powerful R-μ-T relationships, such as 
SPO2IDA, there is a need for an efficient fully quadrilinear fitting scheme of such elaborate 
SPO backbones. A set of rules to that effect was proposed in [12], based on a study that em-
ployed IDA of SDOF systems with curvilinear and piece-wise-linear backbones. 

2.3 SDOF to MDOF conversion of the fractile IDA curves 

SPO2IDA can provide (an estimate of) the 16%, 50% and 84% fractile IDA curves of an 
equivalent SDOF system, processing a piecewise-linear backbone curve derived from the SPO 
of a given structure. The SDOF IDAs naturally come in reduction factor-ductility terms and 
therefore, in order to relate these IDA curves back to the original MDOF system, a series of 
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conversion operations are necessary (see Fig. 2). These conversions entail passage from non-
dimensional coordinates R - μ to spectral acceleration – roof drift format, the possibility of 
adding the response variability at the nominal yield point that the MDOF system experiences 
due to the effect of higher modes (but is lost on its SDOF counterpart, [13]) and possibly a roof 
drift to inter-storey drift conversion, since the latter is oftentimes better suited for the definition 
of limit-state thresholds. 

2.4 IM-based parametric fragility functions  

The final output and stated objective of SPO2FRAG is the estimation of fragility functions 
for building-type structures. A fragility function provides the conditional probability that a 
structure will exceed a limit-state threshold (“fail”) in a single seismic event, given a certain 
ground motion intensity measure (IM) level. If it is assumed that the level of seismic intensity 
causing failure (or, equivalently, the capacity of the structure per limit-state in IM terms, 

C,LSIM  ) is a random variable that follows some specific model, for example the log-normal 
distribution, determining the fragility function boils down to estimating the mean-of-the-loga-
rithm of capacity per limit-state,  , and the logarithmic standard deviation,  . This can be 
seen in Eq. 1, where     denotes the Gauss function.  

 ,
ln 

    
 

C LS

im
P IM im




 (1) 

When the median and 16%, 84% fractile IDA curves are provided for the structure, one may 
estimate these two parameters by adopting a threshold engineering demand parameter (EDP) 
value (or probability distribution thereof) for each limit state – see for example Fig. 2c. 

 

 
Figure 2: (a) Example of SPO2IDA-predicted 16%, 50% and 84% fractile SDOF IDA curves in terms of reduc-
tion factor – ductility, (b)conversion to first mode spectral acceleration – inter-storey drift ratio, (c) estimation of 
fragility function parameters assuming a log-normal distribution for the seismic intensity level causing exceed-

ance of each limit-state threshold, C,LSIM . 
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2.5 Model uncertainty in seismic structural response  

SPO2FRAG simulates non-linear dynamic analysis via the SPO2IDA algorithm. Actual IDA, 
using a deterministic numerical model of the structure, can provide an estimate of record-to-
record (aleatory) variability characterizing structural response. However, modelling parameters 
(such as material properties, member geometry, mass distribution, etc.) may also exhibit their 
own uncertainty, which will necessarily affect the distribution of C,LSIM . Furthermore, some 
specific cases may violate some of the assumptions behind IDA to a certain extent, which can 
also result in additional uncertainty infiltrating the results. One, very simple, approach towards 
accounting for this additional uncertainty is to consider that the mean logarithmic capacity   
is itself a random variable, assumed, for example, normally distributed with a standard devia-
tion U (e.g., [14]). This additional parameter can be either obtained directly from relevant stud-
ies in the literature or estimated still via SPO2IDA [15]. 

 

3 SPO2FRAG, OPERATIONAL OUTLINE  

3.1 Graphical user interface and flowchart  

The SPO2FRAG software revolves around a GUI that allows the user prompt visualization 
of all intermediate results produced by the various modules and sub-routines. The individual 
modules that comprise the operational part of the software are the input interfaces, automatic 
multi-linearization module, dynamic characteristics toolbox, SPO2IDA module, interfaces for 
definition of limit states, their corresponding thresholds and any additional sources of uncer-
tainty, the fragility function module and the output post-processing module. A flowchart of 
SPO2FRAG’s operation is presented in Fig. 3 and a more detailed description of the same is 
given in the following paragraphs. 

3.2 Data input, pre-processing and multi-linear fit 

SPO2FRAG operates on the premise that the user performs the necessary SPO analysis using 
outside structural analysis code. Thus, the entry-level part of the tool is the data input interface, 
which reads SPO force-displacement results from either a text or a spreadsheet file. Preferen-
tially, SPO displacements at all stories are requested; this lateral deformation profile can then 
be used by the program to internally calculate modal characteristics and convert maximum roof 
drift to maximum inter-storey drift. In cases where only roof displacement - base shear results 
are available in terms of SPO, the subsequent Dynamic Characteristics Input window will re-
quire vibration period, modal participation factor and participating mass ratio to be input by the 
user, along with floor masses and storey heights. 

Subsequently, user input is subjected to some rudimentary checks for consistency and/or 
obvious errors and the roof displacement – base shear curve is then fed to the automated piece-
wise linear fitting algorithm. This algorithm allows for a full quadrilinear fit (elastic, hardening, 
softening and residual plateau segments) based on [12], but the user may also request bilinear 
or elastic-perfectly plastic fits (e.g., in cases where strength degradation was not included in the 
numerical model of the SPO). The GUI windows and dialogue boxes relevant to this input 
procedure can be seen in Figs. 4, 5.  
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Figure 3: SPO2FRAG V1.0 flowchart. 
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Figure 4: SPO data input from file window (upper panel) and GUI excerpt after piece-wise linear fit of the SPO 

curve (lower panel). 

 
Figure 5: Dialogue box reporting the backbone parameters resulting from implementation of the multilinear fit 

algorithm (center) and input of dynamic characteristics window (lower part). 
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3.3 SPO2IDA and SDOF to MDOF conversions 

Once data input is completed and a multi-linear fit of the SPO curve has been obtained, the 
SPO2IDA algorithm is launched, providing the 16%, 50% and 84% fractile SDOF IDA curve 
predictions in R-μ terms. The SPO2IDA output is automatically converted into spectral accel-
eration – drift format, using the dynamic characteristics of the structure. In cases where the SPO 
displacements at all storeys have been provided, the IDAs are converted in  maximum intersto-
rey drift ratio (IDR) terms by default; otherwise, EDP is set to roof drift. Even in the latter case, 
the user may still choose to convert to IDR, by selecting an appropriate approximation for the 
lateral post-yield deformation profile. 

After this operation, an issue pertaining to the MDOF IDA curves that remains to be ad-
dressed is the fact that the MDOF system should exhibit greater record-to-record variability 
than its equivalent SDOF, due to the effect of higher modes of vibration. This additional varia-
bility is estimated by means of in-built empirical rules, injected at the nominal yield point and 
propagated along the IDA 16% and 84% fractiles. 

 

 
Figure 6. GUI excerpt showing the approximate (predicted) fractile IDA curves after completion of SDOF to 

MDOF conversion (upper panel) and window for the definition of limit states and limit-state-thresholds in terms 
of EDP (lower panel). 

3.4 Limit-states and handling additional uncertainty 

By default, the SPO2FRAG tool recognizes four limit states: fully operational, immediate 
occupancy, life safety and collapse prevention (see [16] for definitions). In cases where the SPO 
exhibits a negative-stiffness, softening branch a fifth limit state, dynamic instability will appear, 
corresponding to the IDA flat-lines. The user may also define more limit states via the GUI. In 
all cases, the user must define thresholds in terms of EDP, which determine exceedance of each 
limit state. Such thresholds need not be deterministic; the user has the option to treat them in a 
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probabilistic manner, by assuming that some thresholds follow a lognormal distribution, 
whereas the median and log-standard deviation of said distribution must be defined (Fig. 6).2 

In cases where the user wishes to include (additional) modelling uncertainty into the calcu-
lation, two alternative options are available in the relevant GUI panel. First option is to define 
a logarithmic standard deviation U  for mean logarithmic capacity   at one of the predefined 
limit states. This additional uncertainty is then propagated along the IDA curves. The second 
option is to consider some of the parameters that define the SDOF multi-linear backbone curve 
as random variables. In this second case, it is possible for the user to define the variance of the 
backbone parameters one wishes to treat probabilistically (log-normal distribution is assumed 
where the median is by default taken as the value initially provided by the automated fitting 
algorithm). Subsequently, Monte Carlo simulation is performed internally, where SPO2IDA 
realizations are created by sampling from within the user-defined parameter distributions and 
the IDA fractiles are updated accordingly. 

3.5 Estimation of fragility curve parameters 

Once the series of operations described above have been concluded, the fragility function 
parameters per limit state can be estimated based on the resulting approximated IDA curves of 
the structure. In the case of deterministic definition for the limit state EDP thresholds the loga-
rithmic mean   is taken simply as the logarithm of the median IDA value at each threshold 
EDP level. The standard deviation  can be estimated as either the distance (in log-space) be-
tween the median and 84% fractile IDA or half the distance between the 16% and 84% fractile 
IDAs, at the discretion of the user (the latter being the default option, Eq. 2). 
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84% 16%
,  ,

ln

ln  , or alternatively
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In cases where the user has defined a probability distribution for the EDP threshold, rather 
than a deterministic value thereof, the parameter estimation procedure remains conceptually the 
same. The difference lies in the fact that Eq. 2 is applied for a number of EDP threshold reali-
zations per limit state, sampled from the user-defined distribution and the final parameter esti-
mates are provided by Monte Carlo simulation. 

  

4 EXAMPLE APPLICATION  

4.1 Four-storey “modern code” RC frame 

In order to provide a fully-worked example of SPO2FRAG usage, a four-storey, bare, rein-
forced concrete (RC), plane frame was employed. This frame belongs to a symmetrical building 
designed under EN 1998-1 provisions in the context of a previous study (see [17] for more 
details) and was modelled numerically using the OpenSees open-code, structural analysis soft-
ware [18]. Overall dimensions, member cross-sections, floor masses, shapes and periods of the 
first and second vibration modes and the SPO curve resulting from a first-mode-proportional 

                                                 
2 Note that, for the sake of consistency limit state ranking (from milder to more severe) is adjusted automatically 
by the software, based on the corresponding user-defined (median or deterministic) thresholds.  

5970



Iunio Iervolino, Georgios Baltzopoulos, Dimitrios Vamvatsikos and Roberto Baraschino 

lateral load profile are reported in Fig. 7. Inelasticity in the RC members was modelled follow-
ing the concentrated plasticity approach, with plastic hinges at members’ ends represented by 
rotational springs featuring trilinear backbones and hysteresis loops exhibiting mild pinching 
[19]. Concrete cracking was accounted for via the smeared crack approach of reducing the elas-
tic pre-cracking stiffness of each member according to axial load [20].  

 
Figure 7: Dimensions, member cross-sections, floor masses, first two modes of natural vibration and first-mode 

SPO curve of the code-conforming four-storey RC frame used in the SPO2FRAG example application. 

4.2 Example – fragility function calculation through SPO2FRAG 

The SPO curve of the four-storey RC frame presented in the preceding paragraph is used as 
input for SPO2FRAG; displacements at all four diaphragms are provided via the input interface.  

 
Figure 8: GUI view after implementation of the SPO2FRAG tool for an eight-storey “high-code” bare RC frame. 
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The roof displacement – base shear SPO is then subjected to a multilinear fit by the algorithm 
based on [12] (resulting fit is visible in Figs. 7, 8 and the corresponding backbone parameters 
in Fig. 4). Due to the availability of SPO results at all storeys, the only further input required, 
prior to obtaining the SPO2IDA approximate IDA fractiles, are the storey heights and masses 
(vibration period, modal participation factor and participating mass ratio are all calculated in-
ternally).  

For this particular example, deterministic EDP thresholds (in terms of IDR) were assumed 
for the calculation. Indicative IDR thresholds for each limit state were calculated based on the 
acceptance criteria plastic rotation values for RC members found in [16]. A snapshot of the 
GUI display at the conclusion of this SPO2FRAG run can be seen in Fig. 8. 

5 SPO2FRAG VS. IDA  

It is only natural that the reference solution for the SPO2FRAG software should be the rig-
orous IDA procedure, i.e., the very same computational result that the tool is meant to emulate. 
Therefore, the same four-storey RC frame model that formed the basis of the preceding example 
application was also subjected to IDA using a set of forty-four records (far-field set in [9]; 
acceleration recordings from twenty-two stations, both horizontal components used separately). 
The resulting individual and fractile IDA curves can be seen in Fig. 9, in terms of both roof 
drift ratio (RDR) and IDR. The corresponding SPO2FRAG output is superimposed for com-
parison. 

 
Figure 9: Comparison of SPO2FRAG approximated IDA fractiles with actual IDA results for a four-storey, high-

code, bare RC frame using as EDP (a) roof drift ratio and (b) inter-storey drift ratio. 

It can be observed that the adherence of the approximate SPO2FRAG result to its analytical 
counterpart is equally good for both cases of RDR and IDR, where the 50% and 84% fractile 
IDAs are concerned, but less so for the 16% curve. One of the reasons behind this is the fact 
that the shape of the SPO employed in this example (first-mode proportional lateral load profile) 
was able to capture one of the more unfavorable failure mechanisms (see also [13]). A compar-
ison between the fragility functions resulting as SPO2FRAG output and those calculated by 
means of IDA can be found in Fig. 10. 

Another meaningful comparison that can be made between the IDA and SPO2FRAG results, 
is between the annual rates of exceeding each limit state, LS , as calculated by integrating the 
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fragility functions from the two procedures with the hazard curve for a given site, according to 
Eq. 3. 

 ,    LS C LS im

IM

P IM im d   (3) 

In Eq. 3 the notation im  is used to signify the rate of exceeding a given IM value while for the 
fragility function the notation introduced in Eq. 1 is followed. For this example in particular, 
the seismic hazard curve for the site of Caivano in southern Italy (in terms of 5% damped spec-
tral acceleration at a period of 0.53s) was employed – Fig. 11. This hazard curve was calculated 
using the software REASSESS [21]. For this calculation the seismic source zones model of [22] 
was considered; Gutenberg-Richter [23] seismicity parameters for these zones were provided 
by [24], [25] and the ground motion prediction model used was that of [26]. 

 
Figure 10: Comparison of fragility functions generated by SPO2FRAG and the same fragility functions esti-

mated by means of IDA (see also Fig. 9). In both cases, the parameters of a log-normal (LN) distribution were 
estimated (see Table 1).  

The results of these calculations can be found in Table 1, along with the estimators of the pa-
rameters corresponding to the curves appearing in Fig. 10. The estimators of the log-mean ca-
pacity per limit-state,  , correspond to taking the logarithm of the median IDA value for both 
of the IDA and SPO2FRAG cases. The estimator for the standard deviation of the logs, , in 
the case of SPO2FRAG was the distance between the median and 16% fractile IM (see Eq. 2). 
In the case of IDA   was taken as the sample moment estimator of the standard deviation. It 
can be seen that the results display a reasonably good agreement between the approximate and 
rigorous procedure on all accounts. 
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 Figure 11: Hazard curve for an Italian site: annual rate of exceedance of 5% damped spectral acceleration at a 
period of 0.53s (period of equivalent SDOF of the four-storey frame in the example application). 

Limit state  exp   
(IDA) 

 exp   
(SPO2FRAG)

  
(IDA)

  
(SPO2FRAG)

LS  
(IDA)

LS   
(SPO2FRAG) 

Fully  
Operational 0.456 g 0.442 g 0.294 0.187 44.9 10  44.5 10  

Immediate  
Occupancy 0.631 g 0.599 g 0.318 0.269 42.0 10  42.1 10  

Life Safety 0.988 g  0.972 g 0.362 0.401 55.3 10  56.6 10  

Collapse  
Prevention 1.260 g 1.308 g 0.410 0.484 52.8 10  53.5 10  

Global Dynamic 
Instability 1.590 g 1.584 g 0.571 0.534 51.7 10  52.4 10  

Table 1: Parameter estimators for the log-normal fragility functions of the illustrative example (see also Fig. 10) 
and corresponding calculated annual rates of exceeding each limit state at a site in Southern Italy. 

6 CONCLUSIONS  

This article dealt with the introduction of the SPO2FRAG V1.0 software. It is an interactive 
tool, coded in MATLAB® , that can be used for approximate, computer-aided calculation of 
building seismic fragility functions, based on static pushover analysis. It was shown that 
SPO2FRAG can provide a convenient and expeditious solution to the problem of analytical 
calculation of building fragility functions, at least in cases where the basic assumptions behind 
SPO analysis and IDA hold. 

 In a future, second version of the SPO2FRAG tool, whose development is currently under-
way, additional options are expected to be available. These additional features will include, 
among others the possibility to manage input consisting of more than one SPO curve per struc-
ture (corresponding to either loads applied in two principal directions of a three-dimensional 
structure, or different load patterns applied in the same direction – or both) and an in-built 
library of deformation limits per limit state from the literature. 
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Abstract. Disaster risk reduction has become a global urgent need. Similarly to other natural 

hazards, earthquakes may cause significant damages on a large scale. In Europe, seismic 

events mainly affect historical city centers, which are characterized by dense urban structure, 

usually constituted by ancient masonry and pre-code R.C. buildings, often in aggregate se-

quence. Historical city centers are very much part of the European cultural heritage and their 

preservation is considered a strategic issue for the EC due to their tangible and intangible 

values. Furthermore, it is an undisputable fact that natural disasters may have severe nega-

tive short-term economic impacts on the built environment and adverse longer-term conse-

quences for economic growth and development. For this reason, the development of an 

efficient digital tool for urban seismic risk assessment and resilience enhancement becomes 

essential. With this aim, an original numerical procedure is proposed in this paper, based on 

multidisciplinary concepts combined in an innovative way. First of all, the concept of Limit 

States for the Minimum Urban Structure is introduced and described by means of simple me-

chanically based models. Then, elliptically distributed vulnerability indices are worked out by 

considering multidirectional seismic hazard, and 2D seismic risk assessment computation is 

performed. The results are implemented within the GIS software, where they are easily shown 

and discussed thanks to the graphical mapping tool. The proposed approach allows the defi-

nition and evaluation of a global intervention plan for resilience enhancement at the urban 

scale. Finally the proposed numerical procedure is applied for validation to the Italian city-

center of Concordia Sulla Secchia (Italy), damaged by the 2012 Pianura Padana Earthquake 

(PPE). The predicted damage scenarios are compared with the actual post-seismic damage 

scenarios in order to evaluate the accuracy of the proposed evaluation procedure.
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1 INTRODUCTION 

Disaster risk reduction is one of the biggest global challenge, as attested by the U.N. [1]. 

The first step to achieve disaster resilience enhancement is to propose unified guidelines for 

disaster management. Among all natural events, earthquakes produce most damage on a vast 

scale. They cause high number of casualties, severe economic damages and are a major threat 

for cultural heritage sites. In Europe, historical city centers represent an essential part of the 

cultural heritage. This immeasurable asset is a “strategic resource for a sustainable Europe” 

that need to be preserved [2]. Among all European countries, Italy holds the highest number 

of listed heritage sites as confirmed by UNESCO (whc.ujnesco.org). Seismic risk assessment 

and urban risk management improvement is the only way to avoid casualties, damages, and 

consequent settlements abandonment. 

2 PROBLEM DEFINITION 

Most authors express seismic risk, R, as the relationship between hazard, vulnerability and 

exposure, as reported in Eq. (1): 
 

                                                                                                                               (1) 
 

where H is the hazard, i.e. the probability of exceedance of the seismic activity level of inten-

sity i, during a specified recurrence period T; V is the vulnerability, i.e. the intrinsic predispo-

sition of the e-th exposed element to suffer damage, resulting from a seismic event of 

intensity i;  E is the exposure of all the e-th exposed elements. H and E are directly linked to 

the site geological properties and the social and economical value of buildings respectively. V, 

on the contrary can be determined with different methods [3]. Detailed approaches, highly 

efficient for individual buildings, become ineffective while moving to urban scale analysis. In 

fact, the use of less sophisticated but more practical methods is required by such complex task.  

Currently, one of the main assessment methods used by researchers is the combined ap-

proach of the Vulnerability Index method [4, 5, 6] and the Macroseismic method [7, 8]. The 

first method determines the vulnerability of buildings as a weighted sum of 11 parameters, 

which represents the main features that influence the buildings’ response to a seismic event. 

To determine the vulnerability index, a detailed inspection of buildings is required, regarding 

both geometrical and structural aspects.   , have always to fall within the range      . The 

Macroseismic method derives from the definition of the European Macroseismic Scale, EMS-

98 [9] and related mean damage grades,         , and Damage Probability Matrixes 

(DPMs). Buildings are ranged into 6 vulnerability classes with an assigned Vulnerability pa-

rameter,  , which can be correlated with the    parameter of the aforementioned method, us-

ing Eq. (2). Then, using a probabilistic approach, it is possible to determine the damage level 

the constructions will undergo after an earthquake as well as the number of collapsed or unus-

able buildings and the seismic effect on the population. 
 

                                                                                                                            (2) 
 

This approach presents some main limitations:  
 

a) it considers only masonry constructions;  

b) it does not take into account the effects of buildings in aggregate sequence; 

c) it considers the overall vulnerability as the simple sum of buildings’ vulnerabilities.  
 

Therefore, a complete methodology for seismic risk assessment and management at urban 

scale is still lacking. 
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3 MULTIDIRECTIONAL URBAN RELIABILITY ASSESSMENT (MURA-SH) 

METHOD 

In this work, a new methodology is presented as “Multidirectional Urban Reliability As-

sessment - Seismic Hazard (MURA-SH)” method [10], based on the improvement of the pre-

viously described method. 

3.1 Vulnerability index integration for masonry aggregates 

A modified approach to the aggregate evaluation proposed by [11] is used: 5 additional pa-

rameters (see Tab. 1) are considered together with the 11 ones of the original Vulnerability 

Index Method [4, 5, 6]. The additional parameters take into account the building’s behaviour 

when inserted into an aggregate sequence. It is important to remark that contiguity of build-

ings can either increase or reduce the seismic vulnerability within the range of 30% of the 

detached building vulnerability. 

 
Parameters Class     Weight 

  A B C D    

P12 Interactions in elevation 0 15 25 45 1.25 

P13 Floor plans interactions 0 5 15 45 1.75 

P14 Presence of offset ceilings 0 25 35 45 0.75 

P15 Structural of typological heterogeneity 0 10 20 45 1.50 

P16 Percentage difference within facade openings 0 15 35 45 1.25 

Table 1: Vulnerability Index IV additional parameters for masonry buildings in aggregate sequence 

3.2 Proposed    –    correlation for R.C. buildings  

Historical city centers often present an heterogeneous mix of masonry and R.C. construc-

tions. In this work, a mathematical correlation between the Vulnerability Index method and 

the Macroseismic approach for R.C. building is proposed, as reported by Eq. (3).  
 

                                                                      
                                       (3) 

 

The proposed correlation is determined following the same analytical steps described in [3] 

but, unlike the linear correlation used for masonry buildings, a quadratic correlation is adopt-

ed for R.C. constructions. 

3.3 Vulnerability ellipses for directional risk assessment 

Buildings have usually a non regular plant shape and present different structural properties 

in each direction. Vulnerability is considered as the sum of isotropic and anisotropic factors 

[12]. The isotropic factor consists of all features not related to the input direction, like build-

ing’s material quality and age. The anisotropic one includes all features dependant on the in-

put direction, like the structural strength and stiffness as well as the boundary conditions. For 

this reason, each building vulnerability can be geometrically represented by an ellipse. Since 

buildings are arranged in a city according to different orientations, seismic events of similar 

intensities but different directions can produce different effects. In the current work, a direc-

tional risk assessment is proposed, following 3 subsequent steps: 

 

a) Main directions x and y of the building under assessment are found out (Fig. 1a). Vul-

nerability indexes    and    are then determined in both directions, by considering the 

different resistant areas in x and y direction.    and    are now the semi-axes of the 
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vulnerability ellipses (Fig. 1b); 

 

b) An external reference system is fixed (for example, in this case, cardinal axes E-N). 

The angle between the x main direction and the cardinal axes E is called  , (Fig. 1c). 

By considering    = a and    = b, the vulnerability ellipse is determined through Eq. 

(4): 
 

                

  
 
                

  
   

 

c) Given a possible earthquake direction, α, vulnerability ellipses return the correspond-

ing vulnerability value    for each building.  

 

 

 

 

 

 

 
 

 

 

Figure 1: (a) Main directions of a building; (b) vulnerability indexes    and    along main directions and 
(c) θ angle definition. 

3.4 Definition of urban system reliability 

The overall vulnerability of a city is not the simple sum of all buildings’ vulnerability. Dif-

ferent constructions have different roles, which make them more or less relevant for the set-

tlement, and their overall functioning is possible thanks to the accessibility of connection 

elements (routes, bridges, public open spaces, ecc). Furthermore, urban management policies 

must deal with the emergency phase after an earthquake, as well as with the minimum urban 

structure [13] preservation, in order to prevent the settlement abandonment. In this work, a 

performance-based approach for the urban system has been introduced, by adopting the defi-

nition of the limit conditions for settlements [14, 15]. Following this approach, the probability 

of the e-th building to undergo a certain damage level        , is accounted in a model that 

represents the overall city behavior with reference to the most significant limit conditions, ex-

pressed as CLE (emergency), CLV (life-saving) and CLD (damage). 

 

 CLE condition - Only essential activities for the emergency phase are considered and 

the majority of the buildings can undertake even severe damages. The CLE is repre-

sented by a series of emergency sub-systems (see Fig. 2).  

 

 

 

 

 
 

 
 

Figure 2: Urban system behaviour of the emergency limit condition (CLE) 

(4) 
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(5) 

 

 

 

 

 

 
 

(6) 

 

 

 

 

 

 

 

 

 

 

 
 

(7) 

Each emergency sub-system includes a strategic building, whose operation is essential 

in the emergency phase, and all “interfering” buildings related to it. An interfering 

building is an ordinary building that faces a strategic connection route (from/towards a 

strategic building or an emergency area). The CLE survival probability (urban relia-

bility) is evaluated using Eq. (5). 
 

                          

 

   

 

 

The component’s failure probability    is defined according to the importance class    

of buildings [16]. In particular, only the collapse, even partial, has to be prevented for 

interfering buildings (  = I, II), while any activity has to continue without interruption 

for strategic buildings (  = III, IV), see Eq. (6). 
 

                                                     
 

                                                
 

 CLV condition - The whole settlement is considered. The complete functionality of 

all strategic buildings is guaranteed, and only modest-to-long interruption of ordinary 

urban functions is accepted. The behaviour of the city is represented by a series-

parallel combination of strategic and ordinary sub-systems (see Fig. 3). Each strategic 

sub-system includes an emergency system (see CLE) along with their “redundancy”, 

i.e. other strategic systems of similar functions but not essential during the emergency 

phase. Ordinary sub-systems are considered in order to recover the settlement pre-

seismic standard, including residential and economic activities. The CLV probability 

is evaluated using Eq. (7). 
 

                         

 

   

 

 

   

 

 

where     accounts the interaction of the considered sub-systems and is defined by Eq. 

(6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Urban system behaviour of the life-saving limit condition (CLV) 
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 CLD condition - Conceptually similar to the CLV, the only short-to-modest or partial 

interruption of ordinary urban functions is accepted. The behaviour of the city is still 

represented by a series-parallel system (see Fig. 3), and the urban reliability is evalu-

ated using Eq. (7) where     is defined by Eq. (8). The CLD represents the possibility 

for the settlement to undergo limited damage after an earthquake in order to guarantee 

the shorter recovery time targeted by the urban management policy. 
 

                                                            
 

                                                

4 COMPUTER-AIDED RISK ASSESSMENT 

The MURA-SH method application can be time-consuming even for small settlements, 

mainly due to the complexity of the urban system reliability model and the multi-directional 

damage scenarios evaluation. The development of a computer-aided procedure for the 

MURA-SH numerical implementation becomes highly efficient from the computational point 

of view by using the MATLAB® software. The proposed numerical procedure is presented in 

herein. 

The preliminary phase of the procedure consist on the definition of a .txt input file listing 

all the required data of the MURA-SH method. The input files format holds seven columns 

and as many rows as the number of buildings under assessment. The columns data contain the 

following information: 

 

 Vulnerability index along x-main direction,   ; 

 Vulnerability index along y-main direction,   ; 

   angle, see Eq. (4); 

 Structure Identifier (ID = 0 for masonry buildings, ID = 1 for R.C. buildings and ID = 2 

for other structural types); 

 Local soil amplification factor related to each building,   , 

 Importance class,    [16]; 

 Occupants’ number. 
 

All data are loaded from the input file and vulnerability ellipses are created for every build-

ing using Eq. (4). Then, a coordinates transformation from the local to the global reference 

system is arranged. Finally, oriented vulnerability indexes    are evaluated. 

Indexes    have to be converted into vulnerability values    using Eq. (2) and (3) depend-

ing on the structural type. Mean damage grades,   , are evaluated for increasing intensities in 

the range              with the equations of the Macroseismic method [8], but assuming 

the ductility factor,  , equal to 2.1 for masonry buildings and 3 for other buildings. This as-

sumption is introduced to consider that masonry structures can undergo local failure modes 

with limited ductility, when the global behavior is not guaranteed by the structural features. 

Then, damage distributions histograms are defined making use of the      probability 

density function (PDF), already included in the MATLAB® library as “betapdf”. Numerical 

integration is made within defined intervals with the MATLAB® “trapz” function. Evaluated 
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damage probabilities are listed in matrixes for increasing intensities in the range         
    .  

Total damage occurrence probability is used for losses evaluations, assessing the number 

of damaged or unusable buildings as well as the number of casualties and severed injured or 

homelessness. Equations to evaluate these data can be found in [3]. 

Finally, computed probabilities are combined to determine the reliability of the urban sys-

tem, using equations introduced in §3.4, depending on the considered limit condition (CLE, 

CLV, CLD). The overall settlement reliability is evaluated for every direction   and for in-

creasing intensities             . The proposed method application allows to easily pre-

dict which earthquake direction will cause the worst damage scenario, and the evolution of the 

settlement performance from moderate to strong earthquake intensity. 

The overall MURA-SH numerical procedure is summarized in flowchart of Fig. 4. 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: The MURA-SH method flowchart. 
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5 MODEL VALIDATION ON A CASE STUDY 

Italy has recently experienced a seismic event (PPE, 2012). Among all the affected settle-

ments, the city of Concordia sulla Secchia has a peculiar historical city center, constituted by 

an heterogeneous mix of masonry and R.C. constructions, built in different periods of time 

and mostly in aggregate sequence. The Municipal authorities of Concordia commissioned a 

post-earthquake survey, regarding its CLE sub-system, to the University of Ferrara, gathering 

geometrical and structural features of the majority of the buildings. Thanks to the available 

information, the MURA-SH method has been applied to the CLE sub-system of Concordia 

and    values have been obtained for the PPE event. The PPE registered intensity that hit he 

city was within the range             (source: INGV) and the spatial distribution of 

seismic waves had the WNW-ESE predominant direction, i.e. 22° East (source: Italian Civil 

Protection). 

Predicted damages were subsequently compared to the observed ones [10]. The compari-

son shows that, for          , the predicted damage matches the observed damage on 15 of 

the 42 total number of buildings, with a positive feedback on the 36% of cases; for         
 , the predicted damage matches the observed damage on 19 of the 42 total number of build-

ings, with a positive feedback on the 45% of cases. Maximum         registered during the 

PPE was equal to 8, and Concordia Sulla Secchia was the second most affected city. There-

fore, it is reasonable to deduce that the actual intensity event that hit the settlement was closer 

to the upper bound of the measured range. The MURA-SH procedure needs to undergo more 

validations to improve the results accuracy. However, recognizing the task complexity, the 

obtained results are considered promising. 

Some numerical results obtained with the MATLAB® procedure are shown in Fig. 5, 

where the collapse probability is represented along with the survival probability (reliability) 

of the CLE sub-system. Starting from intensity          , the collapse probability assumes 

positive values and rapidly increases while the reliability drops to zero, accordingly with the 

CLE series system definition. 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

Figure 5: Collapse probability and survival probability of Concordia sulla Secchia CLE sub-system  

for increasing seismic intensities. 

 

Furthermore, assessment output values can be reported directly on a city map (see Fig. 6), 

using the geospatial processing program ArcMap, of the Esri’s ArcGIS suite 

(http://desktop.arcgis.com/en/arcmap/). With this representation it is possible to have an im-

mediate overview of the earthquake effects for different directions and increasing seismic in-
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tensities. A unique “feature identifier”, also called FID, has to be assigned to every building in 

order to correctly refer corresponding output results. Assessment output values need to be 

previously organized in Excel files, using different sheets for increasing seismic intensities. 

Different colour maps can be used to represent the effects of increasing seismic intensities, 

and to identify most vulnerable areas. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)                                                                                 b) 
 

Figure 6: Mapping results of the collapse probability for the Concordia sulla Secchia CLE sub-system for  

(a)           and (b)          . 

6 CONCLUSIONS 

In this work, a new methodology for the risk assessment at urban scale called MURA-SH 

method has been proposed. The MURA-SH method includes R.C. buildings in the evaluation, 

takes into account the effect of buildings aggregate sequence and performs multi-directional 

assessments, using the vulnerability ellipses. The MURA-SH method applies a performance-

based approach to the settlement, with the definition of the urban system reliability. Thanks to 

its features, this method can predict whether the settlement will be able to withstand an earth-

quake, and what performance loss it will endure. The MURA-SH method has been imple-

mented in a computer-aided procedure using the MATLAB® software. The obtained output 

results can be easily visualized with simple curves and GIS maps. 

The proposed MURA-SH method has been applied on the case study of the historical city 

centre of Concordia sulla Secchia (Italy). The settlement experienced the PPE (2012) and a 

post-seismic survey of the CLE sub-system was carried out. The possibility to compare pre-

dicted damage scenarios to the observed ones has been extremely important to test the 

MURA-SH method accuracy. From the comparison, a matching rate of 45% (         ) 

was found. The procedure needs to undergo more validations to improve the results accuracy. 

However, recognizing the task complexity, the MURA-SH method results are considered 

promising. 

5985



A. Basaglia, A. Aprile, F. Pilla and E. Spacone 

REFERENCES  

[1] Sendai Framework for Disaster Risk Reduction 2015-2030, Third UN World Confer-

ence in Sendai, Japan, March 18, 2015. 

[2] Council conclusions on participatory governance of cultural heritage. Council of the Eu-

ropean Union, Brussels, 13 November 2014 

[3] R. Vicente, S. Parodi, S. Lagomarsino, H. Varum, J. A. R. Mendes Silva, Seismic vul-

nerability and risk assessment: case study of the historic city centre of Coimbra, Portu-

gal. Bull Earthquake Eng (2011) 9:1067–1096, 2011. 

[4] D. Benedetti, V. Petrini, On seismic vulnerability of masonry buildings: proposal of an 

evaluation procedure. Ind. Constr. 18:66–78, 1984. 

[5] Gruppo Nazionale per la Difesa dai Terremoti – GNDT-SSN, Scheda di esposizione e 

vulnerabilità e di rilevamento danni di primo livello e secondo livello (muratura e ce-

mento armato). Gruppo Nazionale per la Difesa dai Terremoti: Roma, 1994. 

[6] M. Bezzazi, A. Khamlichi, J. R. A. González, Vulnérabilité sismique des constructions 

de type béton armé au Nord du Maroc. Canadian Journal Of Civil Engineering 

35(6):600-608 · June, 2008. 

[7] S. Giovinazzi, S. Lagomarsino, A macroseismic model for the vulnerability assessment 

of buildings. In: Proceedings of 13th world conference on earthquake engineering. 

Vancouver, Canada, 2004. 

[8] A. Bernardini, S. Giovinazzi, S. Lagomarsino, S. Parodi, Matrici di probabilità di danno 

implicite nella scala EMS-98. XII Convegno ANIDIS “L’ingegneria sismica in Italia”, 

Pisa, 2007. 

[9] G. Grünthal, European Macroseismic Scale 1998. Cahiers du Centre Européen de Géo-

dynamique et de Séismologie, 15: p. 1-97, 1998. 

[10] A. Basaglia, Seismic risk assessment and resilience enhancement at urban scale. The 

historical city center of Concordia sulla Secchia (MO) – Italy.  MSc Dissertation, Uni-

versity of Ferrara – Trinity College Dublin, October 14, 2015. 

[11] A. Formisano, F. M. Mazzolani, G. Florio, R. Landolfo, Un metodo per la valutazione 

su larga scala della vulnerabilità sismica degli aggregati storici. STADATA, 2011. 

[12] S. Grimaz, Valutazione della vulnerabilità sismica di edifici in muratura appartenenti ad 

aggregate strutturali sulla base di analisi a posteriori. Ingegneria sismica, Anno X – N. 3 

– Settembre-Dicembre, 1993 

[13] W. Fabietti, Vulnerabilità e trasformazione dello spazio urbano. Alinea, Firenze, 1999. 

[14] S. Staniscia, Definizione e valutazione di condizioni limite urbane a supporto della pia-

nificazione urbanistica preventiva del rischio sismico. PhD in Progettazione ed Inge-

gneria del Sottosuolo e dell'Ambiente Costruito, ciclo XXVI. Università degli Studi “G. 

d’Annunzio”, Chieti-Pescara, 2013. 

[15] M. Olivieri, et al., Rischio sismico urbano: indicazioni di metodo e sperimentazioni per 

l’analisi della Condizione limite per l’emergenza e la Struttura urbana minima. DGR n. 

793 del 18/7/2011 – Determinazione dirigenziale n. 3928 23 Maggio, 2012. 

[16] Eurocode 8: Design of structures for earthquake resistance. EN 1998-1 Part 1: General 

rules, seismic actions and rules for buildings. CEN, December, 2004. 

5986



ECCOMAS Congress 2016 
 VII European Congress on Computational Methods in Applied Sciences and Engineering 

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) 
Crete Island, Greece, 5–10 June 2016 

TOWARDS INTEGRATED SEISMIC RISK ASSESSMENT IN 
PALESTINE – APPLICATION TO THE CITY OF NABLUS 

Ricardo Monteiro1, Paola Ceresa1, Vania Cerchiello1, Jamal Dabeek1, Antonella Di Meo2 
and Barbara Borzi2 

1 Institute for Advanced Study (IUSS) of Pavia 
Piazza della Vittoria 15, Pavia, 27100, Italy 

e-mail: name.surname@iusspavia.it 

2 European Centre for Training and Research in Earthquake Engineering (EUCENTRE) 
Via Ferrata 1, Pavia, 27100, Italy 

e-mail: name.surname@eucentre.it 

Keywords: Seismic Risk, Hazard, Vulnerability, Exposure, Palestine. 

Abstract. Using large-scale seismic risk assessment studies for reduction of potential losses 
is becoming an evermore popular trend around the globe. Accordingly, a number of different 
models and techniques for the characterization of the different risk variables have prolifer-
ated in the recent years. Furthermore, the quality, or accuracy, of risk estimates will be cer-
tainly higher when a truly integrative model is employed, characterizing hazard, (physical 
and social) vulnerability and exposure in the most complete as possible manner. Regions with 
a large percentage of non-seismically designed buildings are particularly vulnerable to seis-
mic events and are those that can benefit the most from risk assessment studies for decision 
making. As such, the main purpose of this study is to propose a framework for integrated 
seismic risk assessment in Palestine, where earthquake induced risk awareness is still at an 
early stage. A methodology to combine an existing state-of-the-art hazard model with new 
vulnerability and exposure models, specifically built upon local field surveys and national 
data collection, is proposed. The outcome of the study will enable the identification of the re-
gions that are more vulnerable to earthquakes and future rapid loss assessment at regional 
scale. 
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1 INTRODUCTION 

The seismic activity in Palestine is not negligible and is largely affected and controlled by 
geodynamic processes acting along the Dead Sea Transform (DST). The DST is a north-south 
striking left-lateral shear zone extending from the incipient oceanic ridge (Red Sea) in the 
south to the Taurus plate collision in the north (Turkey). About 105-110 km of left-lateral dis-
placement between the African and Arabian tectonic plates took place along this fault system 
during the last 15 million years. Historically, estimated events reached up to IX in the Modi-
fied Mercalli Scale in the Dead Sea region. In the same area, the determinable magnitudes of 
the recorded earthquakes range between 1.0 and 7.0 on the local magnitude Richter scale. 

Together with observed seismicity, the Palestinian region faces important issues related to 
structural and societal factors. First, a high vulnerability, as a direct result of a high percent-
age of weak buildings not complying with seismic design requirements, thus with high poten-
tial for damage and losses. Secondly, measures of seismic risk mitigation are not enforced 
with national and public policies, which results in an absence of effective control of design 
and construction practice. The two aforementioned elements are exacerbated by the weakness 
in the general institutional capacity in disaster management, by insufficient professional capa-
bilities of both engineers and decision makers and by a lack of awareness of citizens on seis-
mic risk matters. 

In the light of such facts, strategic directions were devised for the implementation of seis-
mic disaster risk reduction. Recently, the population of Palestine has become more aware of 
the concept of seismic risk, significantly due to the results of the FP7-SASPARM (Support 
Action for Strengthening Palestinian-administrated Areas capabilities for Seismic Risk Miti-
gation) project, held during 2013 and 2014. SASPARM activities were focus on the strength-
ening of the research capabilities of An-Najah National University through the development 
of a comprehensive database of existing research data, the promotion of training for scientists 
and students in the field of seismic risk with the collaboration of European partners – 
EUCENTRE (European Centre for Training and Research in Earthquake Engineering) and 
IUSS (Institute for Advanced Study). Subsequently, new activities proposed within the DG-
ECHO SASPARM 2.0 (2015-2016) project are further raising such awareness and strengthen-
ing their capabilities to cope with seismic risk. Engagement in training courses and workshops 
takes place not only at the local community level but also even Palestinian stakeholders, gov-
ernmental (GO) and non-governmental (NGO) institutions, students and practitioners are ef-
fectively involved. One of the major goals of the SASPARM 2.0 initiative is the development 
of an integrated seismic risk model for Palestine, based on a state-of-the-art hazard model and 
in-field collected vulnerability and exposure data. The city of Nablus, the first Palestinian city 
to join the UNISDR’s Making city resilient campaign, constitutes the case study area for the 
implementation and calibration of the model. In this paper, the framework for the achieve-
ment of the integrated model for the challenging Palestinian region is described, together with 
the main assumptions and assessment of options for the different risk components. 

2 CONTEXT – THE SASPARM 2.0 PROJECT 

The activities of SASPARM 2.0 (Support Action for Strengthening Palestine capabilities 
for seismic Risk Mitigation) are organised into eight main operative tasks, comprising the col-
lection of vulnerability data and implementation of vulnerability models; training for targeted 
groups; development of self-assessment tools to understand potential unsafe situations and the 
related mitigation measures (retrofitting and insurance coverage). The project is managed by 
the same consortium of SASPARM and is creating a Web-Based Platform (WBP) for seismic 
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risk mitigation, which integrates a database of vulnerability data on buildings, collected on 
field. 

The awareness of the community is a fundamental step in the resilience process, since the 
citizens have to monitor their individual properties and be able to understand, with and, when 
feasible, without the advice of an expert, if their house can withstand an earthquake or if ret-
rofit is required, applying seismic standards. On the other hand, practitioners as well as gov-
ernmental (GO) and non-governmental (NGO) stakeholders have to be made aware of the 
importance of the right application and implementation of the new Seismic Building Code. 
The outcomes and tools released during SASPARM 2.0 will put together all the available in-
formation on the different risk components for a better management and mitigation of seismic 
risk in Palestine. An overview of the framework defined for the development of an integrated 
risk model for Palestine, together with the description of choices and assumptions for the 
main risk components is given in the following sections. 

3 SEISMIC HAZARD 

The Eastern Mediterranean region, due to its geological structure that is characterized by 
the junction of major tectonic plates (African, Arabian and Eurasian) results in very high tec-
tonic activity. Over the time, the region has indeed frequently witnessed natural hazard phe-
nomena, resulting in great losses of life and property. Field studies and investigations indicate 
that large portions of the land surface, population and infrastructure of the region have been 
subjected to earthquakes in the past or will be subjected to earthquakes in the future [1]. 

Seismicity information including historic and prehistoric data indicates that major destruc-
tive earthquakes have occurred in the Jordan – Dead Sea region (Fig.1). The most recent 
earthquake (ML 5.2) took place on February 11th, 2004 [2]. 

 

 
Figure 1. Seismic Activity in the Dead Sea Transform Region for the period 1000 - 2007. 

Currently, in Palestine the in-use seismic hazard map dates back to 1997 [3]. It is defined 
in terms of peak ground acceleration, which is assessed for 10% of exceedance in 50 years for 
generic rock (Fig.2). Based on such hazard map, Palestine has been divided in four seismic 
zones: 1, 2A, 2B and 3. Adopting the American Uniform Building Code (UBC97), a seismic 
zone factor (Z) has been associated to each of them (Fig.3). 
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Figure 2. Hazard Map with 10% probability of ex-
ceedance in 50 years [2] 

Figure 3. Seismic Zone Factors in Palestine according 
to Hazard Map and UBC 97. 

Additional initiatives have been undertaken to improve such hazard map, aiming to im-
prove the global and regional seismic hazard evaluation in the Eastern Mediterranean region. 
Specifically, three projects up to the early 2000s are worth mentioning: 

i. GSHAP (Global Seismic Hazard Assessment);  
ii. SESAME (Seismotectonic and Seismic Hazard Assessment of Mediterranean Ba-

sin); and  
iii. ESC/WG-SHA (European Seismological Commission Working Group on Seismic 

Hazard Assessment). 
The first regional seismic hazard map developed for the European – Mediterranean region 

in terms of peak ground acceleration was GSHAP (1992-1999) and was compiled based on 
the integration of independent hazard results of a number of different test areas and regional 
and national programs [4]. During the GSHAP project, no attempts were made to harmonize 
the individual regional or national seismogenic models in the Mediterranean. 

For such reason, a further endeavour for the regional hazard assessment in the Mediterra-
nean was carried out within SESAME (1996-2000). By considering a new geometry imple-
mentation to avoid the lack of data between different regional sources or gaps at border areas, 
SESAME succeeded in the final unified seismogenic source model for the Mediterranean re-
gion, which consists of 346 sources. Each source was characterized by the corresponding 
seismicity parameters in terms of minimum and maximum magnitude and earthquake occur-
rence rates, as illustrated in Fig. 4 [5]. 

The third project, ESC/WG-SHA, was completed in 2002, and resulted in a unified seismic 
hazard modelling for Europe and the Mediterranean, integrating the GSHAP Central Northern 
Europe results with those from SESAME for the Mediterranean (Fig. 5). This comprehensive 
model for seismic hazard assessment allows, for the first time, the generation of hazard maps, 
expressing ground motion in different parameters, for different soil conditions and probability 
levels [6]. 
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Figure 4. SESAME map with 10% probability of ex-
ceedance in 50 years for stiff soil condition [5] 

Figure 5. ESC/WG-SHA map with 10% probability 
of exceedance in 50 years for stiff soil condition [5] 

For the development of the integrated risk model of the study herein presented, the use of a 
further updated hazard model is planned. The updated model is part of the outcomes of the 
EMME (Earthquake Model of the Middle East Region) project, which aimed at the assess-
ment of seismic hazard, the associated risk in terms of structural damages, casualties and eco-
nomic losses and also at the evaluation of the effects of relevant mitigation measures in the 
Middle East region. EMME was carried out between 2010 and 2013 and the final products 
have just been publicly released [7]. 

The model for Palestine will thus make use of the most up-to-date hazard data from the 
EMME initiative. The hazard model will be further employed to selection of real records for 
fragility analysis (input for Section 4 – Vulnerability), through disaggregation and PSHA cal-
culations (using OpenQuake [8]) for the Nablus municipality. 

4 VULNERABILITY 

The vulnerability model will foresee two components: physical, calculated for a number of 
building classes that constitute the taxonomy for Nablus and social, taking into account the 
feedback provided by the population through specifically developed questionnaires. 

4.1 Physical vulnerability 

Physical vulnerability is a measure of how prone a building is to damage for a given sever-
ity of the ground shaking. The aim of most research works dedicated to this subject is to give 
a mathematical formulation to vulnerability. The two widely used formulations to describe the 
vulnerability are: damage probability matrices and fragility curves. The latter describe the 
conditional probability of exceeding a certain damage limit state in terms of the selected in-
tensity measure of the ground motion. The same probability in discrete terms is a component 
of a damage probability matrix. In the technical literature, damage probability matrices have 
been produced when the vulnerability studies are based on observations: data from post-
earthquake surveys are treated probabilistically to identify the conditional probability of dam-
age and hence the terms of the damage probability matrices. On the other hand, fragility 
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curves are calculated when the vulnerability studies are mechanics-based, i.e. the seismic be-
haviour of structures is modelled. The model can be more or less simplified as a function of 
the level of knowledge of the building stock. The option of quantifying the vulnerability 
through damage probability matrices is not feasible in Palestine, since databases of damages 
occurred after past earthquakes are not available. Therefore, sets of fragility curves will be 
defined for the as built structural typologies identified in Nablus first and then in other Pales-
tinian municipalities. 

The case study of Nablus foresees a web database to gather physical vulnerability data on 
buildings. The definition of a catalogue of building typologies is the first step for large scale 
vulnerability assessment. Recognition of structural types in Nablus was undertaken by a se-
lected group of practitioners already trained during SASPARM. As it will be described with 
more detail in [9], the as-built in Nablus can be classified according four main building types: 
reinforced concrete frame buildings; shear walls buildings; masonry buildings; buildings with 
soft storey (Fig. 7). Once the building types have been identified the seismic vulnerability of 
each type is assessed. 

Citizens, practitioners and university students are the main groups involved in the in-situ 
collection of building data through specially designed forms. The collection forms, one de-
tailed for practitioners and one more simple for citizens, aim to detect the structural character-
istics of Palestinian buildings and it is a self-assessment tool to understand how their own 
buildings are made up of (Fig. 6). The forms allow a quick evaluation as a first cataloguing of 
the building stock, since they are made of typological and metrical data of the structures. The 
practitioners’ form is composed of six sections, while the citizens’ one of four. The sections 
of the forms are summarised in Table 1. 

 
Section Practitioners Citizens 
1 Identification of the Building Identification of the Building 
2 Description of the Building Description of the Building 
3 Structural Data Main material of the Building’s Vertical Structure 
4 Regularity Notes 
5 Geomorphological Data  
6 Notes  

Table 1. Sections of the collection forms for practitioners and citizens. 

Before collecting structural data, training activities were fundamental for the three main 
local stakeholders – university students, citizens, and practitioners. Both forms were intro-
duced to the students of the An-Najah National University because their support to both the 
citizens in filling in the forms related to their properties and the practitioners during their field 
surveys is of fundamental importance. Then, practitioners were trained on the content of the 
forms and for increasing their knowledge on seismic design and seismic risk prevention. Then, 
citizens were trained in understanding the type of information required in the form. Practical 
examples were used for supporting the training. Direct engagement of GO and NGO stake-
holders is carried out with the organisation of seminars, workshops, lectures in a collaborative 
effort between the partners of the Consortium. 

Survey data will not just be stored in the on-line georeferenced platform and grouped ac-
cording to their structural typology, but a specific vulnerability assessment will be performed. 
Sets of fragility curves will be identified according to their structural types, first in Nablus and, 
then, in other Palestinian municipalities, hence providing a collection of vulnerability func-
tions that best fit the Palestinian region. 
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Figure 6. Collection Forms. 

Nonlinear static analysis [10; 11] will be used for the estimation of the structural demand 
in the buildings, through a refinement of the SP-BELA (Simplified Pushover – Based Earth-
quake Loss Assessment) procedure [12; 13]. The method defines the nonlinear behaviour of a 
random population of buildings through a simplified pushover and displacement-based proce-
dure. The application of the simplified pushover methodology leads to the assessment of a 
large number of buildings with reasonable computational effort [14; 15], as in the real case 
study. 

  

 

Figure 7. RC Building, Building with Soft Storey failure mode, Shear Wall Building and Masonry Building 
(Clockwise Order). 
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With the aim of extending the applicability of SP-BELA to the Palestinian context, special 
attention has to be given to the structural typologies that mainly characterise the building tax-
onomy, such as frame systems with dominant torsional response and/or vertical/horizontal 
irregularities [16]. For this reason, SP-BELA procedure will take into consideration suitable 
correction factors derived from Incremental Dynamic Analysis of a selected groups of differ-
ent irregular RC building typologies. Finally, the vulnerability curves will be generated com-
paring the displacement capacity limits identified on the pushover curve and the displacement 
demand, defined from a response spectrum, for each building in the random population. 

4.2  Social vulnerability 

Beside the assessment of fragility curves for physical assets, a non-negligible aspect in 
terms of vulnerability comes from society with its own knowledge, conditions and cultural 
context. In order to build indicators, able to capture the social characteristics, publically avail-
able databases (e.g. national census) are not satisfactory, and a specific tool needs to be de-
fined, as the “Scorecard approach” based on a participatory assessment process [17]. 

In detail, this approach will measure the concept of city resilience to crisis and disasters. 
As established in the Hyogo Framework for Action (HFA) and more recently in the United 
Nations campaign for urban disaster reduction [18], the resilience is “the capacity of an indi-
vidual, community, organization, city and nation to respond, cope and recover from disaster”. 
Further, UN-ISDR established a set of indicators for measuring resiliency and these were im-
plemented in six key areas in the Scorecard (Table 2). 

 
Theme General Question 

Awareness and advocacy  
What is the level of awareness and knowl-
edge of earthquake disaster risk? 

Social Capacity 
What are the capacities of the population to 
efficiently prepare, respond and recover from 
a damaging earthquake? 

Legal and institutional arrangements 
 

How effective are mechanisms to advocate 
earthquake risk reduction in your quarter? 

Planning, regulation and mainstreaming risk 
mitigation 

What is the perceived level of commitment 
and mainstreaming of disaster risk reduction 
through regulatory planning tools? 

Emergency preparedness, response and re-
covery 

What is the level of effectiveness and compe-
tency of disaster management including 
mechanisms for response and recovery? 

Critical services and public infrastructure re-
siliency  

What is the level of resilience of critical ser-
vices to disasters? 

Table 2. Scorecard themes. 

The Scorecard is built with specific questions and answer schemes for each key areas and 
has been adapted to Nablus background to meet peculiarities. To really measure resiliency, 
questionnaire will be spread among population and the municipal representatives and an 
evaluation of potential gaps will be assessed especially for critical areas where further analy-
sis are needed. 
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5 EXPOSURE 

The other relevant factor in the general risk assessment is exposure. The model would like 
to take into account people, property, systems and other elements present in the case-study 
area that are thereby subject to potential losses. It is developed to be comprehensive and in 
agreement with both vulnerability and hazard models, also considering the latest available 
area to produce up to date estimates. 

Data used to build the exposure model can be prepared using two approaches: 
i. Using data available to the general public and coming from an official source; 

ii. Collecting data directly on the site through the forms already employed for the col-
lection of fragility data. This is a more accurate version but is also strongly depend-
ent on the effective participation of the involved citizens.  

A hybrid approach will most likely be employed, in which the exposure model will be ini-
tially set up using census and/or national databases data. This version will then be updated 
and/or validated with real data collected in-situ. 

As far as the first approach is concerned, the Palestinian Central Bureau of Statistics [19] 
has been used to collect databases, statistical data and key indicators (e.g. Housing condition, 
Population, Price Indices). Some difficulties arise due to the unavailability of some informa-
tion at the same geographical level. For example, the distribution of the population is avail-
able at all levels from Country to Municipality but the number of house units is not. A 
possible solution to overcome this issue is to disaggregate the number of house units from the 
national level into the municipality level using the population as proxy. The proposed model 
takes into account indicators that best describe the exposed asset, such as relative percentages 
of buildings, floor area, building type and replacement cost. The final aim at this level is to 
come up with an updated model that could be applied at different levels of resolution. 

5.1 Preliminary exposure data 

Regarding the types of residential buildings, there are three main typologies: individual 
houses, apartments (multi-storey buildings) and villas. Respectively, the percentages of distri-
bution of the typologies are 44%, 54% and 2%. 

As far as the floor area is concerned, preliminary data for Nablus shows that most of the 
housing units, around 36%, have an average area of 139.5 m2, followed by 25% with an aver-
age area of 100 m2 (Fig. 8). 

 

 
Figure 8. Distribution of housing units by floor area in Nablus. 
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Finally, with respect to the replacement cost, two methodologies were adopted to obtain 
the best results accounting for the wide variety in the region in terms of lack of homogeneity 
due to consecutive changes in the local law and variation in the construction materials and 
building techniques. 

The first procedure takes into account data available on the governmental statistics web-
site. The replacement cost is calculated by knowing the yearly expenditure on new buildings 
with specific materials (e.g. stone, masonry), adding the number of squares meter licensed in 
that specific year for that specific class. Table 3 illustrates an example of such data processing 
for stone buildings.  

 
Year of 
survey  

Construction material 
of external wall 

Licensed area in 
1,000 m2  

Expenditure 
in 1,000$ 

2014  Stone 2,719.9  249,897.3 

Table 3. Example of calculation for replacement cost. 

Taking into account the figures presented in Table 3, the final replacement cost comes as 
91$/m2. 

On the other hand, the second procedure is based on expert opinion, using feedback from 
practitioners, engineers, engineering associations, etc. The replacement cost varies according 
to the building types: 550-600$/m2 for apartments in multi-storey buildings, 750$/m2 for indi-
vidual houses and at least 900$/m2 in case of villas. When comparing with the data from the 
official website, a large gap is observed with the reality of construction for the Nablus case 
study. 

6 LEGAL AND REGULATORY FRAMEWORK 

Finally, the development of an integrated risk model in Palestine will also enable the 
elaboration of guidelines and recommendations to promote local risk governance and man-
agement. Such task will include and redefine, if needed, the respective inputs of various GO 
and NGO Institutions by suggesting roles and possible forms of partnership between the three 
main stakeholders: government, private sector, including the (re)insurance and finance sectors, 
and the civil society (scientific/academic institutions, civil society organizations, media, the 
general public). Guidelines focusing on common procedural frameworks for encouraging and, 
whenever feasible, setting-up new partnerships and a set of methods and tools for cooperation 
between the different actors or stakeholders will be released at the end of the project. In this 
way, tailor-made recommendations will be available for the various institutional (policy, leg-
islative and organizational) frameworks and cultures in Palestine. Therefore, the guidelines to 
be developed will be useful to quantify and assess physical, environmental and social resil-
ience also from the risk governance point of view. In particular, to reach this aim, a question-
naire has been developed on the basis of the Self-Assessment Guiding Tool annexed to the 
G20/OECD Methodological Framework on Disaster Risk Assessment and Risk Financing 
(http://www.oecd.org/gov/risk). The questionnaire has been spread among the three main 
stakeholders in Palestine. The outcomes of the questionnaire will be processed suggesting 
roles and possible forms of partnership between the three main actors for a better management 
of seismic risk. 
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7 CONCLUSIONS  

This paper intended to provide a general overview of the construction of a first-hand inte-
grated seismic risk model for the Palestinian territory, using the municipality of Nablus as pi-
lot study. A detailed framework including considerations around the different risk 
components – hazard, vulnerability and exposure – was presented. 

The hazard model is established essentially on the basis of the recent EMME project that 
covered the entire Middle East region with significant detail and up-to-date tools (Open-
Quake). The model will be further exploited to select real records to accurately develop a 
building fragility model. 

The vulnerability model is largely comprehensive, as it includes both physical and social 
vulnerability components. Furthermore, both are modelled with different levels of detail, us-
ing census/database data and in-situ collected information. Indeed, the latter aspect, fulfilled 
through the use of specifically developed survey forms, constitutes one of the major novelties 
of this study. Fragility curves for a predefined building taxonomy are built using expedite 
nonlinear static analyses, adapted to the Palestinian in-built. On the other hand, social vulner-
ability indices are identified and established based on tailored questionnaires distributed to the 
general population and stakeholders in Nablus. 

Finally, the exposure model builds upon extensive public data collection and feedback 
from several experts in the field. The entire model relies significantly on the cooperation with 
local bodies, entities and universities, yielding a double effect: sharing information and in-
creasing awareness. 

The general framework is seen as a pilot study, starting from the area of Nablus city, char-
acterized by a difficult political context. Ultimately, the goal is to extend it to other regions in 
Palestine as well as to neighbour countries that features similar in-built environment. The 
achievements of risk assessment and loss estimation results in this case study, particularly the 
ones based on crowdsourcing data, also represent an enrichment for Europe. 
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Abstract. A stand-alone software for the probabilistic assessment of seismic hazard is devel-
oping. In its final version, it shall be structured in three modules for: (i) site-specific, (ii) sce-
nario-based and (iii) multi-site (regional) analyses. This paper focuses on (i), which is 
devoted to single-site probabilistic seismic hazard analysis (PSHA).  
Seismic sources can be either zones or individual faults. The algorithm to compute PSHA is 
implemented assuming, classically, that the process of occurrence of earthquakes on each 
seismic source follows a homogeneous Poisson process; the processes for different sources 
are independent.  
The required input data are: (1) the source(s) geometry and the annual rate(s) of occurrence 
of earthquakes in the magnitude interval of interest; (2) the distribution of magnitude given 
the occurrence of one earthquake; (3) the ground motion propagation model (GMPM); (4) 
the soil classification at the site for which hazard is evaluated. Regarding (1-3), the user is 
aided by some library implemented in the software. 
REASSESS also is able to account for model uncertainty, in fact, logic trees can be built 
based on alternatives for the source’s annual rate of earthquake occurrence, magnitude dis-
tribution and GMPM.  
The strength of REASSESS, beyond the user-friendly interface, stays in the PSHA computation 
algorithms. These have been coded in MATLAB®, targeting accuracy and reduced computing 
time. Its potential for earthquake engineering and engineering seismology applications is il-
lustrated by a few applications discussed in the paper. 
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1 INTRODUCTION 

The case of probabilistic seismic hazard assessment for a specific site is consolidated [1, 2] 
and acknowledged by the most advanced national and international seismic codes (e.g., [3, 4]). 
Indeed, there are several computer programs for site-specific probabilistic seismic hazard 
analysis (PSHA) publicly available or produced as proprietary codes. On the other hand, the 
attention toward the seismic hazard assessment for multiple sites is growing recently (e.g., [5, 
6, 7]) and the developed knowledge has not found yet its direct application in the engineering 
practice.  

The aim of the work partially presented in this study is to develop a user-friendly software 
for both site-specific and multi-site PSHA. The name of the tool is REgionAl, Site-SpEcific 
and Scenario-based Seismic hazard analysis (REASSESS) and, as the name suggests, it will 
be divided in three modules. The one preliminarily presented in this contribution is about site-
specific PSHA, while the others are under-development.  

The flow chart in Figure 1 schematically summarizes the main features of the site-specific 
module. Input parameters, defined by the user or selected from embedded databases, are the 
geographical coordinates and soil condition of the site of interest, the seismic sources, the 
magnitude distributions and the annual rates of earthquake occurrence (within the magnitude 
limits of interest) for each source, and the models of ground motion propagation (parameters 
and GMPMs can be multiple if a logic tree is adopted [8]). The primary outputs are the hazard 
curves for the selected intensity measures, which, along fragility curves (e.g., [9]), can be the 
input for seismic risk assessment software (e.g., [10]). Additionally, the software is able to 
provide the disaggregation of seismic hazard [11] and, according to the latter, the distribution 
of conditional hazard [12] (i.e., the distribution of a secondary intensity measure conditional 
to the occurrence or exceedance of a primary one). Moreover, when spectral ordinates are 
chosen as intensity measures, REASSESS provides the uniform hazard spectrum (UHS) [2] 
for a given return period and the conditional mean spectrum (CMS) [13] (in which disaggre-
gation is also involved).  

Each of these issues is analyzed in the following sections providing the essential basics of 
PSHA and the details about the software implementation. In the final part, the main features 
of the graphical interface and some results of illustrative analyses are shown. 
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Figure 1. Flow chart of the first module of REASSESS 
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2 PROBABILISTIC SEISMIC HAZARD ANALYSIS 

PSHA aims at computing the rate  im  of seismic events exceeding a ground motion in-
tensity measure (IM) threshold  im  at a specific site. When more than one seismic source 
affects the site, the rate is due to superposition of the contributions from each source, as illus-
trated in Equation 1 where sn  is the number of sources. In the equation, M is the event magni-
tude, R is the source-to-site distance, i  is the mean annual rate of earthquakes within a 
magnitude range of interest at source i, , ,R M if  is the joint probability density function (pdf) of 
R and M for the i-th source. The exceedance probability of an intensity measure threshold, 
given a magnitude and distance pair, ,P IM im r m   , is the complementary cumulative dis-
tribution function of the IM, which is provided by a ground motion propagation model.  

  , ,, ,
sn

im i R M i
i r m

P IM im r m f r m dr dm            (1) 

Equation 1 accounts for the uncertainties related to seismic hazard. In some cases, however, 
the choice for models and distributions to be used in PSHA may not be straightforward. In 
these cases, the use of a logic tree, which is also implemented in REASSESS, allows to deal 
with model uncertainty [8]. Indeed, according to the logic tree, im  is computed as a weighted 
average of alternative models; the weight assigned to each model is the probability of that 
model being correct (see Section 2.4 for further details). 

Plotting im  as a function of im  provides the hazard curve. In the following section, it is 
described how computation of hazard curves has been coded in REASSESS, targeting accura-
cy and reduced computing time. 

2.1 Calculation of PSHA via matrix algebra  

The algorithms of REASSESS have been developed in MATLAB® [14] and the hazard in-
tegral is approximated by matrix operations, for which MATLAB® is especially effective 
[15]. Such operations are described in this section referring to the case of a single source, for 
the sake of simplicity. Moreover, it has to be clarified that in the algorithms of REASSESS 
the joint magnitude-distance distribution in Equation 1, is computed as the product of the dis-
tribution of distance conditional on magnitude and the marginal distribution of magnitude it-
self (Equation 2): 

      , ,R M MR Mf r m f r m f m   (2) 

In the following, the discretized values of event magnitude and source-to-site distance in-
volved in PSHA will be indicated as    1 2, , , kM m m m   and    1 2, , , sR r r r   of dimen-
sions 1 k  and 1 s , respectively. The ground motion intensity measure at the site is 
discretized in the vector    1 2, , , qIM im im im   of dimension 1 q .  

The GMPM is accounted for via a  k s q   matrix,  A , in which each column represents 
the exceedance probability of a specific IM value conditional to magnitude and distance ar-
ranged in the form of Equation 3. Different columns of the matrix only differ by the IM 
threshold considered. 
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The pdf of magnitude,  Mf m , is approximated by finite probabilities of event’s magnitude 
belonging to k intervals; i.e.,       1 2, , , kP m P m P m . These probabilities, arranged in the form 
of a column vector, are the elements of the  B  matrix in Equation 4. In fact, this matrix has q 
identical columns, each of which is made of the magnitude probability vector repeated s-times. 
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 (4) 

Similarly, the  C  matrix is a row vector with  k s  elements. The first k elements are the 
conditional probabilities of 1r  conditional to the k magnitude values. The elements from 1k   
until 2k  are the probabilities of 2r  conditional to the each of the magnitudes and so on, until 

sr  conditional to all magnitudes; i.e., Equation 5. 
 

   1 1 1 2 1 1 2k s s s kC P r m P r m P r m P r m P r m P r m                             (5) 
At this point, the operation of pointwise multiplication between two matrices of the same di-
mensions has to be recalled (i.e., the Hadamard product [16]). It is here indicated by the   
symbol and provides a resulting matrix of the dimensions of those multiplied. Its elements are 
the products of the corresponding elements in the original matrices. More specifically, 
     D A B   implies that the resulting matrix has each element of the type: ij ij ijd a b  . 

Therefore, the unit-time rates of exceedance of the im  values considered,  1 2
, , ,

qim im im   , 
can be obtained by the product in Equation 6, where the dot represent matrix multiplication.  

         
1 2 qim im im im C A B            (6) 
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2.2 Soil effect 

The GMPMs provide the (usually lognormal) cumulative density function of the IM at the 
site of interest given the magnitude of the earthquake, the source-to-site distance and some 
possible additional seismic parameters (e.g., soil site condition). In most cases, the different 
soil conditions at the site are considered in the GMPMs through modification factors that op-
erate only on the mean of the (lognormal) distribution. When such kinds of GMPMs are cho-
sen for PSHA, i.e. when the standard deviation of the residuals of the GMPM does not depend 
on the soil class, a deterministic relationship between the hazard curves for different soils ex-
ists [17]. This allows REASSES to provide hazard curves for any kind of soil conditions per-
forming a single analysis.  

In particular, it has been demonstrated that, if the soil in the GMPM only affects the mean 
given magnitude and distance, for example via addition of a coefficient soil , as it often hap-
pens, then once the hazard curve is obtained for a reference condition (e.g., rock), the hazard 
curve for soil, 

soilim , is obtained by horizontally translating, in log scale of the abscissa, the 
original curve, 

rockim , by a factor equal to the soil coefficient in the GMPM (Equation 7). 
 
    log log

soil rocksoil rock soil im imif im im        (7)  
 

2.3 Seismic sources and magnitude distributions 

In REASSESS, seismogenic zones and/or finite tridimensional faults can both be inputs for 
PSHA. Seismogenic zones are geographic areas with homogeneous seismicity; i.e., each loca-
tion has the same probability to be the location of the earthquake and the magnitudes of  
events in each location are independent and identically distributed random variables. For the 
characterization of seismogenic zones, the software requires the following input parameters: (i) 
the geographic coordinates of the vertexes of the source, (ii) the seismic parameters and (iii) 
the predominant faulting style, if known. Regarding (ii), it is assumed that the distribution of 
the magnitude of the  earthquakes is described by a truncated exponential distribution con-
sistent with the Gutenberg-Richter (GR) relationship [18]; hence, the seismic parameters of (ii) 
are the slope of such a relationship, together with minimum and maximum  magnitude and the 
mean annual rate of earthquake occurrence in the seismic source zone. The pdf of the epicen-
tral distance is derived from the uniform distribution of the epicenters within the fault. How-
ever, the GMPM may refer to one among a variety of distance metrics; e.g., the minimum 
distance from the horizontal projection of the rupture, known as Joiner and Boore distance 
 jbR  [19]. In the V1.0 of REASSESS the epicentral distances are converted into jbR  accord-
ing to [20].  

The definition of the zones is not the only possibility in REASSESS. In the software, some 
known databases of seismogenic zones are already implemented. These are, referring to Italy, 
the seismogenic zones described in [21] with the seismic parameters taken from [22, 23]. At 
the European scale, the database of seismogenic zones provided by the SHARE research pro-
ject (available at http://www.share-eu.org/, last accessed 22/02/2016) is embedded. 

On the other hand, finite tridimensional faults can also be considered. The geometry and 
location of the single fault have to be known in this case. The required input parameters are 
the geographical coordinates of the vertexes of the fault and the rake, strike and dip angles 
(see [8] for example). A uniform probability distribution of the epicenter on the fault plane is 
assumed. Regarding the distribution of magnitude, apart from the GR, REASSESS V1.0 al-
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lows the definition of a characteristic model [24] that may be more appropriate in the case of 
individual faults. 

2.4 Logic tree and GMPMs 

PSHA is often implemented considering a logic tree, which allows accounting for model 
uncertainty [2, 8]: indeed, it allows the use of alternative models, each of which is assigned a 
weighing factor that is interpreted as the probability of that model being correct. The sum of 
the weights of all the alternative models must be equal to one. When the logic tree is of con-
cern, im , is computed through Equation 8 in which jp  and ,im j  are the weight and the result 
of each branch of the logic tree, respectively; bn  is the total number of branches.  

 ,
1

bn

im im j j
j

p 


    (8) 

In REASSESS accepted models’ heterogeneity refers to: (i) parameters of the magnitude 
distributions (i.e., magnitude range and b-value), (ii) mean annual frequency of earthquake 
occurrence on the sources and (iii) GMPMs. In particular, (i) and (ii) may be from direct input 
of the user, while GMPMs have to be chosen among a set of already implemented models. To 
guide the user, general indications about the tectonic regime each GMPM refers to [25] are 
provided.  

An example of logic tree is shown in Figure 2 in which two alternatives for the total rates 
 1 2,  , Gutenberg-Richter parameters (synthetically identified as GR1 and GR2) and propa-
gation models (GMPM1 and GMPM2) are adopted. The relative likelihood of each alternative 
model is arbitrarily chosen and reported in parentheses.  

REASSESS requires the user to provide the total weight of each branch skipping the im-
plementation of a relative likelihood for each alternative model. Hence, the software automat-
ically verifies that all the weights of the branches sum up to one.  

 

(0.6)

GR1

GR2

GMPM1

GMPM2

GMPM1

GMPM2

(0.5)

(0.5)

(0.7)

(0.3)

(0.7)

(0.3)

(0.4)

GR1

GR2

GMPM1

GMPM2

GMPM1

GMPM2

(0.5)

(0.5)

(0.7)

(0.3)

(0.7)

(0.3)

 ,1 1 0.21im p 

 ,2 2 0.09im p 

 ,3 3 0.21im p 

 ,4 4 0.09im p 

 ,5 5 0.14im p 

 ,6 6 0.06im p 

 ,7 7 0.14im p 

 ,8 8 0.06im p 

1

2

  
Figure 2. Example of logic tree. 
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3 DISAGGREGATION, CONDITIONAL HAZARD AND CONDITIONAL MEAN 
SPECTRA 

Once hazard curves are ready, REASSESS also allows enhancing the characterization of 
the seismic threat for the site in three ways. The first is the disaggregation of the seismic haz-
ard [11] that can be calculated for several exceedance rates; i.e., several values of the intensity 
threshold. Disaggregation is a procedure that allows the computation of the pdf of  , ,M R   
given the exceedance, or occurrence, of a chosen hazard threshold,  , , , ,M Rf m r IM im   , be-
ing   the number of standard deviations im is away from its median value estimated by the 
assumed GMPM. Analytically, such a distribution can be computed through Equation 9 that 
refers to the case of single seismic source and multiple-branches arranged in a logic tree. In 
the equation, in the case of disaggregation of the exceedance hazard, I is an indicator function 
equal to one if IM is larger than the threshold and zero otherwise. The subscript refers to the j-
th branch of the logic tree.  

  
   , , ,

, ,

, , , ,
, ,

bn

j M R j j
j

M R
im

I IM im m r f m r p

f m r IM im




  




   
 


 (9) 

A discussion of the possible uses of disaggregation (e.g., [26]) is out of the scope of this 
paper however it is worth noting that, although disaggregation for the exceedance of the haz-
ard threshold is a traditional choice, in the context of performance based earthquake engineer-
ing disaggregation for the occurrence of the IM may be more appropriate. REASSESS allows 
to compute disaggregation of both ground motion intensity exceedance and occurrence haz-
ards. 

The software also allows the computation of conditional hazard [12] and uniform hazard 
spectra and conditional mean spectra [13]. The former is the distribution of a secondary IM 
conditional on the exceedance (or occurrence) of a primary IM for which the hazard has been 
calculated. This allows assessing the hazard consistent distribution of more than one IM, 
which is equivalent to vector-valued PSHA [27]. In REASSESS, once the UHS for a fixed 
return period has been calculated, it is possible to choose a spectral period defining as primary 
parameter, 1IM , the corresponding pseudo-spectral acceleration and asking for the conditional 
distribution of the secondary intensity measure, 2IM , chosen among a few considered.  

The distribution of conditional hazard,  2 1log logf IM IM , is computed under the assump-
tion of joint lognormality of the two IMs conditional to the hazard variables and according to 
Equation 10 in which  2 1log log , , ,f IM IM M R   depends on the GMPM of 2IM  and 

 1, , logf M R IM  is the disaggregation of the seismic hazard (occurrence or exceedance) for 

1IM . 

      2 1 2 1 1log log log log , , , , , log
M R

f IM IM f IM IM M R f M R IM dm dr d


          (10) 

Finally, the conditional mean spectrum can be computed. It is a target response spectrum 
able to account for the statistical correlation of residuals between different spectral ordinates 
of the same GMPM. This issue, which is disregarded in UHS, is believed helpful for hazard-
compatible record selection [28].  
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The analytical definition of CMS is reported in Equation (11) in which  2log Sa T  and 

 2log Sa T  are the mean and the standard deviation of the logarithm of the pseudo-spectral ac-

celeration  log Sa  at the vibration period 2T  and depend on the selected GMPM; 

   2 1log logSa T Sa T
  is the model of correlation between spectral ordinates at two different periods 

(the one implemented in REASSESS is [29]). The values of M , R  and   are taken from the 
disaggregation of  1log Sa T . In fact, if M , R  and   are chosen to be representative of the 
whole disaggregation distribution (e.g., modal values). Equation 11 can also be the basis for 
marginalization with respect to M , R  and  , via   1, , logf M R Sa T , to obtain 

   2 1log logSa T Sa T
  (this is the case of the REASSESS). 

                  
2 22 1 2 1 1log loglog log , , , log log,Sa T Sa TSa T Sa T M R Sa T Sa T

M R M T          (11) 

4 GRAPHIC USER INTERACE  

The main features of the graphic user interface (GUI) of REASSESS are described in this 
section.1 The GUI is conceptually divided in three sections identified in Figure 3 with the dot-
ted red lines. The first section is dedicated to the definition of input parameters required for 
PSHA. The site is defined by the geographical coordinates and the soil class. The latter is 
provided through the Vs30 (expressed in m/s2) that is, the shear wave velocity of the top 30 m 
of the subsurface profile (see Section 2.2).  

 

 
Figure 3. Graphic interface of REASSESS V1.0. (Tentative) 

 
The GMPM is selected with a pull-down menu in which all the implemented GMPMs are 

reported (see Section 2.4). Then the seismic sources have to be characterized. The user is first 
required to choose between embedded databases of known seismogenic sources, user-defined 
seismogenic sources and individual faults. These three choices are not exclusive so it is possi-
ble, as an example, to integrate sources from databases with information derived from specific 
studies. For each seismic source, a separate window with all the required parameters (see Sec-
tion 2.3) appears. Site and source locations are shown in a map. The user is also required to 
                                                 
1 The development of the other two modules of the software may cause some modification to the GUI. However, 
the main features described in this section will be maintained.  
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choose between single- or multiple-branch of logic tree; the features of the different branches 
of the logic tree are specified in a separate window. A return period of interest is also required. 

Hitting the run button, PSHA is performed and the hazard curves are plotted in the second 
section of the GUI. In the illustrative case of Figure 3, selected GMPM refers to pseudo-
spectral accelerations. Hence, the UHS is computed for the selected return period  1r imT   
and reported in same section.  

Finally, the third section is for the analyses that can be performed after PSHA. These are 
disaggregation, conditional hazard and conditional mean spectra (see Section 3). 

 

5 ILLUSTRATIVE EXAMPLES 

In this section, how the site-specific module of REASSESS works is shown via some illus-
trative examples. A site (40.982N, 14.297E) close to Naples, in the Campania region (south-
ern Italy), is selected and reported in Figure 4 with a star. Seismic sources are the seismogenic 
zones of [21]. The limiting magnitudes for each zone as well as the slope of the Gutenberg-
Richter relationship and the mean annual rate of earthquake occurrence on the zones are those 
reported in [22, 23]. In the same papers, the prevalent faulting style for each zone is also re-
ported. These are divided in four categories: normal (N), reverse (R), strike-slip (SS) and un-
determined (U). 

The selected GMPM is that of [30] that provides the distribution of peak ground accelera-
tion (PGA) and pseudo-spectral accelerations for forty-six oscillation periods between 0.1 and 
2.0s. The model is defined within the intervals of magnitude and distance equal to [4.0, 7.6] 
and [0km, 200km], respectively. In REASSESS, the GMPMs are always applied in their defi-
nition ranges. Hence, the seismogenic zones contributing to the hazard are those (or their por-
tions) within 200km from the site. Moreover, although in the original paper [30], the 
attenuation model was independent on the rupture mechanism, the latter is considered via the 
modification factors provided by [31]. 

According to these criteria, the seismogenic zone within 200 km from the site are reported 
in Figure 4. Seismic parameters of these zones are summarized in Table 1.  
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Zone Mmin Mmax ν b RM 
917 4.3 6.1 0.121 0.794 R 
918 4.3 6.4 0.217 0.84 U 
920 4.3 5.5 0.317 1.503 N 
922 4.3 5.2 0.09 1.409 N 
923 4.3 7.3 0.645 0.802 N 
924 4.3 7 0.192 0.945 SS 
925 4.3 7 0.071 0.508 SS 
926 4.3 5.8 0.061 1.017 SS 
927 4.3 7.3 0.362 0.557 N 
928 4.3 5.8 0.054 1.056 N 

 

Figure 4. Selected site (star) and the seismogenic zones 
involved in the hazard analysis. 

Table 1. Parameters associated to each zone: mini-
mum (Mmin) and maximum magnitude (Mmax), annual 
rate of earthquake occurrence (ν), negative slope of 
GR relationship (b) and rupture mechanism (RM). 
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For the selected site, the UHS are here derived. Referring to rock site, Figure 5a shows the 
UHS’ for the annual exceedance probabilities equal to about 2%, 0.2% and 0.04%, corre-
sponding to return periods of 50, 475 and 2475 years, respectively. On the other hand, the 
UHS’ for rT  equal to 2475 years and the three different soil conditions provided by [30] are 
reported in Figure 5b: rock, stiff and soft soil.  
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Figure 5. (a) UHS for different return periods on rock soil and (b) for a Tr = 2475 years and different soil condi-

tions. 
 
A simple case of logic tree is also discussed. Two GMPMs are selected: GMPM1 [30] and 

GMPM2 [32] (and [33]) with associated weights equal to 0.7 and 0.3 respectively. No other 
sources of model variability are considered. Hence, resulting logic tree is a simplified form of 
that reported in Figure 2 (Figure 6a). The UHS for 2475rT   years and rock soil condition are 
derived from the two alternative branches of the logic tree and shown in Figure 6b together 
with their weighted mean (note that the spectrum is computed only at the spectral periods 
common to both GMPMs).  
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Figure 6. (a) Simplified adopted logic tree and (b) resulting UHS. 

 
Referring to the case of single-branch (Figure 5), the occurrence disaggregations of the 

UHS for 2475rT   years, rock soil condition and three spectral periods equal to 0.2s, 0.5s and 
1.0s are reported in Figure 7 (a, b, and c, respectively). According to these disaggregation dis-
tributions, the CMS’ are computed and reported in Figure 7d together with the UHS.  
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Figure 7. Disaggregation distributions for the occurrence at Tr = 2475: spectral period equal to (a) 0.2s, (b) 

0.5s and (c) 1.0s. (d) Corresponding conditional mean spectra for rock and UHS.2 
 

6 CONCLUSIONS 

A stand-alone software for the probabilistic assessment of seismic hazard is developing. 
The first module is dedicated to site-specific probabilistic seismic hazard analysis (PSHA), 
and a preliminary description of it was provided with this paper. 

PSHA is consolidated, but hazard assessment may still be demanding for earthquake engi-
neering researchers and is very rare for practitioners. In this context, the REASSESS software 
is presented as a user-friendly and computationally-efficient option to tackle PSHA.  

The present version of REASSESS is able to address the following issues: 
 PSHA for several intensity measures accounting for model uncertainty; 
 disaggregation for occurrence or exceedance hazard; 
 conditional hazard for secondary intensity measures, when spectral acceleration is 

the primary one;  
                                                 

2 As a general comment to Figure 7, it is to recall that the REXEL, a software for record selection [34], also 
provides disaggregation distributions for Italian sites [35]. Although REXEL relies on the same models used in 
these illustrative applications, the disaggregations of REASSESS are expected to present some differences with 
respect to those of REXEL. These are due to different computational choices between the two software, which, 
however, provide comparable outputs. 
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 uniform hazard and conditional mean spectra. 
REASSESS, so far, only deals with site-specific PSHA; however, in some cases, the as-

sessment of the seismic hazard requires considering multiple sites at once. This happens when 
the analysis of spatially distributed systems is of concern, or when aggregated losses for port-
folio of structures and/or supply chains are of interest. The need to account for all the uncer-
tainties and the statistical dependencies involved, make the seismic hazard for multiple sites a 
not straightforward task. It is a specific goal of the ongoing developments of REASSESS to 
address multi-site probabilistic hazard assessment, which will include, as special cases, sce-
nario-based regional analyses.  
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Abstract. The nodes of a road transportation network of a certain region can represent a 
population of bridges. In view of a sound characterization of corresponding fragility or vul-
nerability functions, the knowledge of real data, such as geometrical and material properties 
available from a national bridge inventory database, is a crucial element. In fact, the outcome 
of damage seismic assessment can be strongly affected by the variability of such information. 
When only limited information for each node is known and the relevant structural behaviour 
needs to be assessed for e.g. loss estimation studies at macro-scale level, the use of statistical 
tools is of extreme importance. Accordingly, the present paper furnishes a double-fold contri-
bution: (1) provide the systematic statistical characterization of geometrical and material 
properties of typical Italian reinforced concrete (RC) bridges and (2) simplified formulae for 
the quick evaluation of the fundamental elastic period of vibration of RC bridges. This allows 
the development of typological fragility curves for RC bridge classes, which might be chosen 
according to their fundamental period of vibration. As such, the bridges can be identified with 
a specific bridge class, characterized by a representative fragility curve, used for expedite 
large-scale seismic assessment. 
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1 INTRODUCTION 
Severe past earthquakes had a significant impact on road network systems as well as con-

siderable catastrophic effects on human life, buildings and economy. Examples of such disas-
trous events are the San Fernando earthquake in 1971, Loma Prieta in 1989, Northridge in 
1994 and more recent events such as Italian and New Zealand earthquakes in 2009 and 2011, 
respectively. It is due to such consequences that the management of the emergency phase in 
the immediate aftermath of an earthquake is significant. One way to efficiently tackle such an 
issue is to rapidly assess the status of the main network components, which may exhibit weak 
seismic response, which, in turn, may cause infrastructure or cascading system disruptions. 
The main components of a network can be point-site or distributed components [1]. Bridges 
belong to the former category and they play an important role to ensure the efficiency of the 
network system itself and the interconnection between cities’ strategic facilities or of its sur-
rounding area [2]. A number of past studies have addressed the seismic assessment of indi-
vidual bridge structures through nonlinear static or dynamic analysis [3-7]. However, such 
research was built upon the knowledge and the applications initially developed for building 
structures [8-12] and it resulted in the proposal of fragility curves for individual structures 
[13-16].  

The derivation of fragility curves from a number of relevant geometrical or structural pa-
rameters taken from real case studies is of utmost importance for the accuracy of loss assess-
ment investigations as part of decision-making strategies [17-18]. In such way, civil 
protection or other expert bodies can rely on them during the management of post-extreme 
event emergency phases. Yet, especially when dealing with broad areas, the development of 
fragility curves for each individual bridge can be unfeasible, mainly for the computational 
onus that such approach requires. Therefore, a parametric statistical approach may be particu-
larly advantageous to characterize the parameters that affect the existing RC bridges response 
[19]. Given such characterization, one can simulate reliable data to represent additional struc-
tural configurations to fully characterize a wide range of bridges. 

With the above in mind, the present study uses statistical tools to characterize populations 
of Italian bridges, targeting a specific typology. The collected data includes construction year, 
pier heights, total bridge length, span length, number of spans, superstructure area, pier main 
section sizes, compressive strength, tensile strength, shear strength, Young modulus and shear 
modulus of materials. In particular, geometrical and material properties associated to a real 
bridge stock are presented in a statistically usable form. Specifically, in the initial phase, they 
are summarized in terms of average (mean values) and corresponding dispersion (standard 
deviation and coefficient of variation). Successively, statistical distributions are assigned to 
each parameter by means of goodness-of-fit tests for small and larger samples. Such summary 
statistics are then used as input for the generation of a population of a specific bridge typology, 
representing a typical class of Italian bridges, through standard or Latin Hypercube-based 
Monte Carlo sampling schemes [20] in order to obtain a wide variety of bridge configurations. 
Finally, the configurations are analysed in order to define a simplified relationship between 
the period of vibration and the bridge geometrical properties that can be easily obtained or 
estimated through field survey or other equivalent methods. This relationship is intended for 
use in risk and loss assessment models and constitutes a first step towards the assignment 
and/or the generation of analytical fragility and vulnerability functions for specific bridge cat-
egories. In spite of its drawbacks, the relationship can be used as a potential proxy for seismic 
structural demand estimate of well-defined bridge typologies. It would also enable the possi-
bility of rapidly sub-dividing bridge populations in classes for the expedite application of re-
cent record selection procedures (e.g. conditional spectrum method) or early loss assessment 
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approximations, through immediate assignment of a proper fragility curve for the assessment 
of damage level. Ultimately, this relationship may also be applied to estimate structural prop-
erties or damage levels when no detailed information on the bridge is available.  

2 SEISMIC ASSESSMENT FRAMEWORK 

The global framework involving the present study targets the development of typological 
fragility and vulnerability functions for specific bridge classes. The framework, illustrated in 
Figure 1, starts with the random generation of multiple bridge structural configurations, gen-
erated through summary statistics of geometrical and material properties, which can be typi-
cally drawn from national bridge inventories. The obtained bridge portfolio can then be 
characterized in terms of eigenvalue analyses output, which will be useful to either identify 
the fundamental period of vibration or define pushover curve loads for nonlinear seismic de-
mand estimation methods. In fact, in the past, a large number of simplified equations to esti-
mate the fundamental period of vibration have been proposed and are commonly used for 
buildings (e.g. [21, 22]) whereas the absence of similar equations for bridges is well known. 
This paper intends to contribute to fill such a gap by proposing simplified equations as func-
tion of one or more parameters strongly correlated to the fundamental period. The fundamen-
tal period of vibration becomes also handy to e.g. carry out proper selection of records 
according to recent methodologies, such as the conditional spectrum method [23], also suc-
cessfully applied to bridges [24]. Such a selection guarantees reliable performance points for 
any employed nonlinear static procedure or seismic input for nonlinear dynamic analyses.  

 

 
Figure 1. General framework 

Once bridge classes are identified, a proper intensity measure and damage limit states are 
selected so that the damage probability matrix can be derived. This matrix becomes the input 
of a fitting procedure developed to identify the main fragility function parameters. Therefore, 
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the framework is very much dependent on randomly simulated bridges, featuring different 
geometrical configurations. Indeed, the randomness that characterizes the simulated popula-
tion is exclusively related to the structural layout of the pier heights and deck spans, together 
with the variability associated to the material properties. With this portfolio it is possible to 
establish, through regression analysis, empirical equations that relate geometrical properties 
with corresponding structural response and, afterwards, fragility. Such equations may then 
find useful application in expedite risk assessment methodologies or national design codes. 

3 STATISTICS AROUND BRIDGE PROPERTIES 

In order to provide the input for numerical simulation of bridge populations, the available 
information of the bridge stock under investigation has been statistically characterized. Statis-
tical distributions were assigned to each parameter deemed relevant to the behaviour of rein-
forced concrete bridges. For the selected geometrical and material properties, the main 
statistical quantities were evaluated from the sample. Chi-Square and/or Kolmogorov-
Smirnov goodness-of-fit (GoF) tests were applied to assign normal, lognormal, gamma, expo-
nential or Weibull distributions, according to typical alpha values (0.05, 0.10 and 0.20). At an 
initial stage, all the properties available from the source database were statistically character-
ized through GoF testing. Afterwards, bridge configuration sampling and empirical relation-
ships were carried out only for the properties that were relevant for a common RC bridge 
configuration, as detailed in Section 4, namely piers height, total length of bridges, span 
length, section diameter, reinforcing bars’ Young modulus, concrete compressive strength. 

3.1 Chi-Square Goodness-of-Fit test 
This test should be employed under specific conditions: it requires a sufficient sample size, 

only binned data are allowed and a minimum expected frequency is required. Given that the 
selection of the number of bins affects the value of the test, some rules (e.g. Sturge’s rule, 
Normal reference rule and Scott’s rule) suggest the most appropriate bin widths in order to 
minimize the squared error in the approximation of the Chi-Square test. The minimum ex-
pected frequency is unanimously established by literature equal to five, and if this minimum 
requirement is not reached, the combination of adjacent bins in the tails is applied. The subse-
quent overlapping of the theoretical probability density function of the assumed distribution 
on each histogram shows if there is probabilistic agreement; if there is not, the null hypothesis, 
which asserts that the data follows the pre-specified distribution, is most likely incorrect.  

3.2 Kolmogorov-Smirnov Goodness-of-Fit test 

The Kolmogorov-Smirnov GoF test belongs to the class of distance tests and is among the 
best distance tests for small samples, yet it is still reliable for large ones. The test is developed 
starting from the assumption of an empirical distribution, characterized by parameters esti-
mated from the data set or from expert judgment. The comparison between theoretical and 
empirical CDFs follows. If the two CDF curves agree from the probabilistic point of view, the 
assumed distribution is accepted. Such comparison consists of defining the maximum vertical 
distance between the two curves and the p-value based on the maximum distance. The Kol-
mogorov-Smirnov test is widely used in practice and it works properly even if the sample size 
is small; hence it becomes particularly useful for the statistical characterization of geometrical 
and material properties of existing structures, such as the ones herein investigated. 
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3.3 Goodness-of-Fit testing with data truncation 
A non negligible percentage of the data for the different variables was located at the tails of 

the corresponding distribution functions. The identification of outliers was therefore necessary. 
One way to recognize outliers is by using box plots, which synthetically represent all the data 
and group it in quartiles. The variability outside the upper and lower quartiles (respectively q3 
and q1 in Figure 2) was assumed as 1.5 times the interquartile range (IQR) and is represented 
by whiskers. The data outside the whiskers length is identified as outliers. The range of data 
that excludes outliers is the so-called inner fence and it was used as input for the statistical 
tests [25].  

 

 
Figure 2. Typical box plot for identifying outliers 

In the present work, the variables that did not satisfy goodness of fit tests were analysed 
through box plots and in some cases, to better fit the theoretical statistical distribution, a 
whisker length of 3.0 was allowed. All the distribution parameters were accordingly derived. 

4  DEFINITION OF A TYPICAL BRIDGE STOCK 
The statistical treatment of geometrical and material properties was conducted by selecting, 

among the available data, the most relevant parameters from the structural seismic response 
viewpoint. The main bridge typology considered corresponds to Italian reinforced concrete 
bridges built between the 1970s and 1990s, when the major development of the highway net-
work took place. In most cases, such bridges are characterized by simply supported deck or 
monolithic connections (Figure 3). About 30% of the structures exhibit circular or rectangular 
pier cross sections, whereas 35% include several section shapes such as octagonal or compo-
site sections. The pier-to-deck connection is typically of the concrete-concrete or elastomeric 
bearings or other devices type. 

 

 
Figure 3. Typical Italian highway bridge. [26] 
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A case study made up of nearly five hundred Italian bridges (the exact number is 458), il-
lustrated in Figure 4, was built up with a view to the simplified seismic vulnerability estimates 
for RC bridges by using parameterized structural behaviour relationships and future fragility 
curves.  

 

 
Figure 4. Case study: Italian reinforced concrete bridge population 

Ideally, within a seismic risk assessment context, the definition of fragility curves of each 
bridge should be carried out. However, to avoid the considerable time demand of such an ap-
proach, the definition of bridge classes for a certain country would be reasonable if one as-
sumes that the characteristics of bridges in a certain region are typically similar. Furthermore, 
the approach followed in the present section is based on general geometric and material in-
formation provided by a database, which is not enough to define an exhaustive characteriza-
tion of different bridge classes.  

At this point, the portfolio characterization in terms of random simulation of bridge proper-
ties can follow two macro strategies. The first is to consider specific geometric configurations 
with a specific layout (predefined number of piers, spans and regularity level) and then estab-
lish a distribution for every variable of the layout to perform simulations. The second, that is 
adopted here, considers the number of piers, spans and regularity level (pier heights) as ran-
dom variables, defined statistically.  

As such, the Italian bridges represented in Figure 4 were gathered in a single macro bridge 
category, corresponding to straight multi-span continuous reinforced concrete bridges. These 
bridges were modelled using the same deck and pier cross section type and featured no isola-
tion at the pier-to-deck connection level. Abutments were considered as of very high stiffness 
hence nearly fully fixed. Furthermore, curved bridges were assumed as straight and were 
grouped in that same class, whilst arch bridges were considered as part of a different configu-
ration type hence not included in the present study. The available geometrical parameters for 
each bridge, schematically depicted in Figure 5, were individually analysed and general infer-
ence on bridge class was made when the full set of bridge properties was not available. 

Construction type, column height, span length, number of spans, superstructure area, radius 
of curvature in plan, main geometrical dimension of the column section, steel bars tensile 
strength, steel bars Young Modulus were the available parameters that provide insight to-

6018



C. Zelaschi, R. Monteiro and R. Pinho 

wards the typical geometric configuration and material properties of the selected bridges. No 
specific information related to the seismic design was available. A possible indicator to de-
termine whether the bridges were seismically designed or not could be the year of construc-
tion. With respect to the bridges for which the construction year is known, 65% were built 
before 1970; 25% between 1970 and 1980, and 10% after 1980. Therefore, all the bridges 
were conservatively assumed as non seismically designed.  

 

 
Figure 5. Available information on the case study bridges 

For most of the properties, statistical details were investigated using the conventional sta-
tistical tools for distribution testing, described in Section 3, to define input for numerical sim-
ulation. Specific attention was paid to discrete data, for which different statistical treatment 
was required, particularly for the number of spans variable, which only admits integer values. 
In fact, even though the use of Poisson regression would be required, the resulting inappropri-
ate short spans obtained with such an approach led the authors to consider instead the rela-
tionship between number of spans and total length, as given in Table 1. 

 
Variable Distribution Distr. parameters Statistical tests 

Pier height [m] Lognormal Mean (log): 1.95 
std: 0.8275 

Chi-sq. not sat. 
K-S: 10%, sat. 

Total length [m] Lognormal Mean (log): 5.10 
std: 1.145 

Chi-sq. not sat. 
K-S not sat 

Span length [m] Normal Mean: 31.18 
std: 11.527 

Chi-sq. not sat. 
K-S not sat. 

Average span length [m] Normal Mean: 29.936 
std: 12.174 

Chi-sq. not sat. 
K-S not sat. 

Number of spans Regression   # spans=1.483+0.0273*Total length         
  R2=0.89 

Superstructure area [m2] Lognormal Mean (log): 7.88 
  std: 0.9087 

Chi-sq.: 5 %, sat. 
K-S: 10%, sat. 

Table 1. Statistical distributions – geometrical layout properties 

The superstructure width, required for structural modelling and not included in the set of 
available variables, was derived from the superstructure area, considering a trapezoidal wide-
spread Italian deck cross section with the assumption of a solid cross section. The depth of the 
section was defined in line with real bridges, taking into account the average span length. In 
particular, for an average span length of 20m, a reasonable value of deck depth was registered 
to be 1.30m; whilst in the case of 40m, the deck depth assumed was 2.20m. In order to ran-
domly generate superstructure widths, a linear trend was assumed and inference of data was 
then applied. The 458 observations for superstructure width were then derived from the corre-
sponding superstructure area and total bridge length, whose fitting to the most common statis-
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tical distributions were tested through Chi-squared and Kolmogorov-Smirnov GoF tests. Alt-
hough the test was not satisfied at either 99%, at 90% or at 95% confidence levels, the best fit 
was observed to be obtained with a lognormal distribution, without truncation of data. The 
random data was generated between 4.7m and 34.7m, with a mean value of 12.5m and coeffi-
cient of variation of 29.1%.  

The pier cross section characterization was carried out in terms of solid sections, particu-
larly circular cross sections, which were used for the random simulation in Section 5. As for 
material properties, elevation compressive strength, bar tensile strength and reinforcing bars 
Young Modulus statistical distributions were available.  

Finally, it is worth noting that when carrying out data truncation of the geometrical proper-
ties that exhibited a number of outliers, the distribution parameters sometimes significantly 
changed.  

5 RANDOM SAMPLING: GENERATION OF BRIDGE POPULATIONS 
Following the statistical characterization of the geometrical and material properties, the 

random generation of bridge populations can be carried out by simulating possible values 
from the probability distribution functions, adjusted to the different variables described in 
Section 4. To accomplish this, two random simulation schemes, sharing the same underlying 
concepts, were selected: standard and Latin Hypercube-based Monte Carlo. A sufficient num-
ber of iteration steps was ensured to guarantee that sampled parameters approximate the ini-
tially assumed probability distribution functions. Accurate results for output distributions 
depend on how complete the sampling from the input distributions is, thus more efficient 
methods are those that reach this objective with the lower number of iterations. The most 
popular sampling algorithm in engineering applications is standard Monte Carlo (MC), which 
generally requires a large number of iteration steps, whereas a more recent sampling strategy 
proposed is the Latin Hypercube Sampling-based Monte Carlo (LHS) that converges faster on 
the statistics of the input distribution. Needless to say, the selection of a proper sampling 
method is a crucial phase of nonlinear engineering data analysis applications, as it affects both 
computational onus and accurateness of results. 

5.1 Sampling with standard Monte Carlo scheme 
Monte Carlo is a widely spread technique applied to many problems that require the ex-

traction of random or pseudo-random numbers to sample from a probability distribution. In its 
crude or standard version, the Monte Carlo sampling technique assumes that any given sam-
ple may fall anywhere within the range of the input distribution. Its main drawback is that 
when probability distributions are noticeably skewed, it can present outcomes of low proba-
bility, together with clustering. These limitations have incited researchers to develop new 
sampling schemes, such as the Latin Hypercube-based Monte Carlo, discussed ahead. In the 
study presented herein, Monte Carlo sampling was tested for the generation of a population 
set of 1000 bridges, assuming as variables the pier height (lognormal distribution), span 
length (normal distribution), total bridge length (lognormal distribution), section diameter 
(normal distribution), longitudinal reinforcement yield strength (normal distribution), trans-
verse reinforcement yield strength (normal distribution) and steel Young Modulus (normal 
distribution). 

5.2 Sampling with Latin Hypercube scheme 

The Latin Hypercube sampling scheme is a particular case of the Monte Carlo method and 
consists of the stratification of the input cumulative distribution function (CDF). This CDF is 
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subdivided into equal intervals from which the samples are randomly drawn without replace-
ment, retracing the input probability distribution [27]. The input parameters of each simula-
tion constitute the rows of an NxK matrix (N is the number of the numerical simulations and 
K is the number of parameters), obtained according to the inverse target distribution of the 
parameter associated with the column involved [28].  

Even though the LHS-based method exhibits the advantage of reducing computational time 
demand, it does not allow the specification of parameter lower and upper bounds nor generat-
ing a new single bridge configuration. To be consistent with the bounds specified in the 
standard Monte Carlo method, for each parameter, such a drawback was overcome by impos-
ing a greater number of simulations and by eliminating the entire input rows associated to 
those out of range values. Moreover, in order to avoid unrealistic negative parameter values, 
the possible entire input rows of the aforementioned N by K matrix with negative values were 
removed. Very few simulations did not respect the imposed restrictions therefore the de-
scribed assumptions were considered acceptable. 

According to the aforementioned rationale, assumptions, steps, and available information 
(Figure 5), a sample of 100 bridge configurations was generated. This sampling size is in 
agreement with recent studies in the field [29], which focused on the employment of LH sam-
pling to the probabilistic seismic assessment of RC bridges. The distributions of the funda-
mental period in the transverse direction of the bridge populations generated with standard 
and LH-based Monte Carlo sampling are shown in Figure 6.  

 

 
Figure 6. Fundamental transverse period of bridges randomly generated with (left) standard and (right) Latin 

Hypercube–based Monte Carlo sampling schemes. 

6 PERIOD ESTIMATION – REGRESSION ANALYSIS 

In seismic analysis, the knowledge related to the fundamental period of vibration is very 
important as it represents a parameter capable of providing relevant information related to the 
global demand on a structure under a given ground motion. Structural mass, stiffness and 
strength are the variables that primarily affect such a dynamic behaviour parameter. However, 
their knowledge is not always immediate, which renders many times useful a relationship be-
tween the period and easily obtainable properties, such as geometrical information. This rela-
tionship will in turn be useful to get an accurate estimate whenever detailed data for a certain 
bridge is missing. The lack of this sort of studies for bridges, as opposed to buildings, led to 
the identification of one or more parameters strongly correlated to the fundamental period of 
vibration, through an analytical procedure based on the numerical simulation of bridge portfo-
lios. Single variable and multivariate regression analyses were carried out on the randomly 
generated bridge populations for the development of the period estimation relationship. 
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6.1 Existing bridge period relationships 
Eurocode 8 proposes different formulae for the structural period of vibration based on 

stiffness and displacements, differentiated for the cases of rigid and flexible decks. A recent 
methodology [30] produced simplified capacity curves to be used for seismic loss assessment 
of bridges. A bridge population of twenty-one assets was considered as case study. It was 
characterized by two deck lengths (200m and 400m), three different types of abutments and 
different geometrical layouts, corresponding to different regularity classes: regular, semi-
regular, and irregular. The initial period in the transverse direction, corresponding to the 
equivalent single-degree-of-freedom system’s yielding point, resulted as a relevant parameter 
for characterizing simplified capacity curves, thus a preliminary trend line was drawn for de-
fining its relationship with deck length. The number of bridges used was very limited hence 
the need for an improved relationship of that sort is evident. When detailed information of 
existing bridges is not readily available, the properties that can be easily obtained are of geo-
metric nature. For such reason, at this initial stage, only their correlation with the fundamental 
period is considered. 

6.2 Bridge modelling 

Each case-study bridge was modelled in [31], which enabled the creation of an automa-
tized procedure controlled by an external script [32], capable of generating and updating 
model files for each run. The deck was modelled as a continuous elastic element, located right 
at the pier top, with lumped masses and with geometrical properties referred to its centre of 
mass, connected through rigid link elements. Considered the bridge stock characteristics, cir-
cular solid sections were assigned to each pier. With respect to material modelling, Kent-
Scott-Park model with zero tensile strength was assigned to represent concrete behaviour, ac-
counting for confinement factor in case of concrete cores. The confinement level was evaluat-
ed for each bridge component through equations proposed by Mander, since neither Kent-
Park’s model nor its modified version provided information about the confining effects of spi-
ral hoops. A bilinear model was assumed for steel, with no isotropic hardening. On the other 
hand, kinematic hardening was considered through the ratio between post-yield tangent and 
initial elastic tangent, i.e. strain-hardening ratio equal to 0.002. The connection between the 
piers and the deck was assured by shear keys that were modelled with rigid zero length ele-
ments and equal-degree-of-freedom connections. As far as abutments were concerned, a sim-
plified model made up of very high stiffness springs with bilinear response along horizontal 
directions and fully restrained at the ground was employed. 

6.3 Parametric study 

Trying to fill the identified gap in the current state-of-the-art, a relationship between the 
fundamental period of the defined bridge class and relevant geometrical parameters was 
sought using eigenvalue analysis. Such approach made use of the randomly generated bridges, 
guaranteeing the consideration of a large breadth of different structural configurations. The 
representation of the fundamental period versus various geometrical parameters (tallest pier 
height, shortest pier height, average pier height, bridge length, average pier height) for 1000 
bridges generated with standard Monte Carlo simulation was carried out in accordance with 
the statistical distributions proposed in Section 4. This did not evidence a clear nor satisfacto-
ry trend between fundamental period and each parameter considered individually. This is cer-
tainly due to the fact that several variables are being randomly considered and, as such, 
multivariate regression is envisaged with a view to an improvement in the strength of such a 
relationship. Nevertheless, pier height and average pier height parameters seemed to yield a 
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stronger correlation with the fundamental period, which preliminary indicates a possible in-
fluence by factors as regularity and bridge length. 

With respect to the set of 100 bridges generated with LH–based Monte Carlo sampling, a 
screening of the different configurations was carried out to eliminate those including charac-
teristics without physical meaning (e.g. negative pier heights). After such filtering, the re-
maining number of configurations was 78. 

Considering multivariate regression, the analyses were carried out using the standard (1000) 
and LH–based Monte Carlo (78) sampling generated bridges. The corresponding equations 
and plots are presented, respectively, in Tables 2 and 3. The results denote a trend very similar 
to the standard Monte Carlo based results. Indeed, the comparison between the results ob-
tained from multivariate regression analyses applied to the bridge populations associated with 
the two sampling procedures are summarized in Table 4. Such results demonstrate that the 
LH–based sampling scheme provides very close results, even slightly better, to those obtained 
with the standard Monte Carlo algorithm. 
 

Period 
Total length 
Maximum pier 
height 

Eq.1: 
T=-5.5*10-5Ltot+0.019Hmax+0.161 
R2=0.233 

 

Period 
Maximum pier 
height 
Section diameter 

Eq.1: 
T=0.017Hmax-0.225Dsec+0.718 
R2=0.594 

 

Period 
Average pier 
height 
Section diameter 

Eq.1: 
T=0.054Hav-0.215Dsec+0.523 
R2=0.656 

 

Table 2. Multivariate regression for 1000 bridges using standard Monte Carlo simulation 

The final set of regression analysis tests considered the ratio between the two best perform-
ing variables (average pier height and section diameter), Hav/Dsec, which better fitted the re-
sults obtained with numerical simulation. Further improvement of the quality of the fitting 
was obtained by: 

§ carrying out robust regression, which assigns a different weight to each point while per-
forming the regression; 

§ considering the semi-studentized residuals in order to identify the presence of outliers. 
According to a rough rule of thumb, suggested in [25], semi-studentized residuals with 
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absolute value of four or more are to be considered outliers hence they were not includ-
ed when deriving regression equations.  

 

Period 
Total length 
Maximum pier 
height 

Eq.1: 
T=-5.5*10-5Ltot+0.019Hmax+0.161 
R2=0.233 

 

Period 
Maximum pier 
height 
Section diameter 

Eq.1: 
T=0.017Hmax-0.225Dsec+0.718 
R2=0.594 

 

Period 
Average pier 
height 
Section diameter 

Eq.1: 
T=0.054Hav-0.215Dsec+0.523 
R2=0.656 

 

Table 3. Multivariate regression for 78 bridges using LH-based Monte Carlo sampling 

 
Relationship Standard Monte Carlo (1000   

simulations) 
LHS-based Monte Carlo (78 
simulations) 

Period 
Total length 
Maximum piers 
height 

Eq.1: 
T=2.0*10-4Ltot 
+0.015Hmax+0.239 
R2=0.163 

Eq.1: 
T=-5.5*10-

5Ltot+0.019Hmax+0.161 
R2=0.233 

Period 
Maximum piers 
height 
Section diameter 

Eq.1: 
T=0.016Hmax-0.229Dsec+0.977 
R2=0.591 

Eq.1: 
T=0.017Hmax-0.225Dsec+0.718 
R2=0.594 

Period 
Average piers 
height 
Section diameter 

Eq.1: 
T=0.048Hav-0.303Dsec+0.777 
R2=0.590 

Eq.1: 
T=0.054Hav-0.215Dsec+0.523 
R2=0.656 

Table 4. Comparison between multivariate regression results for the two sampling schemes 
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The plots and equations representing the improved relationship, associated with both Latin 
Hypercube and Monte Carlo sampling schemes, are illustrated in Table 5. When considering 
the ratio between average pier height and section diameter, the improvement in the period of 
vibration parametric characterization is notorious, whether standard or LH–based Monte Car-
lo sampling is employed. The quality and strength of the identified correlation is now at a lev-
el able to provide enough confidence in the use of the corresponding formulae. Indeed, a very 
quick estimate of the period of vibration of bridges with the characteristics used in this study 
can be taken as one tenth of the ratio between the average pier height and the pier cross sec-
tion diameter.  

 
Standard Monte Carlo sampling LH-based Monte Carlo sampling 

  

! = -0.088 + 0.117 *+,-./0
 
 

! = −0.048 + 0.101 *+,-./0
 
 

R2 = 0.830 R2 = 0.805 

Table 5. Fundamental period versus ratio (average pier height / section diameter) 

7  CONCLUSIONS 
The study presented in this paper shows, as main contribution, a relationship to estimate 

the period of vibration of a typical class of Italian reinforced concrete bridges, based on easily 
measurable geometrical parameters. with a view to seismic assessment studies. Such bridge 
typology features simply supported continuous deck, nearly fixed abutments and piers with 
circular cross section. The geometrical variability was defined in terms of pier and span layout 
(number and, respectively, height or length) and material properties. The parametric charac-
terization is useful to e.g. rapid loss assessment studies of bridge portfolios. In such a context, 
expedite estimates of structural characteristics are useful, especially when limited information 
is available. In specific, the period of vibration is intended to provide simplified seismic struc-
tural demand information, enabling also future development of fragility curves by classes.  

The geometrical and material properties characterization related to existing bridges was 
successfully carried out through a thorough assignment of statistical distributions based on 
goodness-of-fit tests and outlier elimination techniques. Using such distributions, the random 
generation of a large number of bridges was then performed by applying two different sam-
pling schemes: standard Monte Carlo, characterized by fully randomness, and Latin Hyper-
cube–based Monte Carlo, based on stratified randomness. Both procedures proved to be 
effective in sampling bridge populations to obtain the desired parametric relationships through 
robust nonlinear regression analysis. For both sets of generated bridges, corresponding to the 
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different simulation techniques, the determination coefficients were similar and higher than 
0.8, a fair result from an engineering viewpoint. Taking into account the reduced computa-
tional onus without loss of accuracy, the Latin Hypercube–based Monte Carlo sampling 
scheme revealed itself more advantageous and is therefore proposed as the preferable solution 
for numerical simulation in engineering applications of this sort.  

For what concerns the specific relationship between the period of vibration and the geo-
metrical parameters of the bridges, a simplified equation has been successfully proposed. 
From the authors perspective, it can be employed as a starting step for the expedite assess-
ment of existing bridges of predefined bridge classes (with corresponding e.g. fragility 
curves). For the considered class, the period of vibration is seen as typically related to the ra-
tio between the average pier height and the pier cross section diameter, properties that can be 
easily obtained through visual inspection or even remote techniques (e.g. GIS tools). It is be-
lieved that the work herein presented overcomes its inherent limitations when considering that 
current risk assessment studies, carried out in academic and industry, are based on fragility 
and exposure models built upon proxies with less technical content (e.g. census data). Future 
developments of the present work will indeed investigate the possibility to extend the pro-
posed period equation to other branches of bridge taxonomy i.e. structural bridge classes. Im-
portant developments will also concern the consideration of code-prescribed levels of seismic 
design in terms of strength and ductility in the classification of bridges. 
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Abstract. The Kalman filter developed by R. E. Kalman and R. S. Bucy is states estimation 

theory in the target domain and has been employed in various field of engineering. In general, 

observation data in any system include observation noise and the computational model in-

cludes system noise. The finite element equation is applied to derive the state transition ma-

trix in the system equation of the Kalman filter. We can estimate state values after the time 

progress of spatial models. On the other hand, tidal power generation has the potential to 

contribute significantly as one of the clean energy. In tidal power generation, propellers of 

generator are rotated by tidal current and tidal power is converted to electric energy. There-

fore, the generator should be placed in the fast point of tidal current to produce more electric 

energy. Thus, we focused on the flow field estimation using the observation data at limited 

observation points to find out the fast point of tidal current. As the fundamental study, the es-

timation of the flow field in open channel is carried out based on the finite element method 

and the Kalman filter theory. As the governing equation, the shallow water equations are em-

ployed, and the finite element and the selective lumping methods are applied to discretize the 

governing equations in space and time, respectively. The estimation of the distribution of the 

velocity vector and the water elevation is carried out by using the discretized equation. The 

open channel model is employed in the numerical experiment, and some examinations are 

carried out by changing the observation variables, number and position of observation points. 

In addition, numerical experiments using practical observed values are carried out.
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1 INTRODUCTION 

In this study, the estimation of the flow field is carried out based on the finite element 

method and the Kalman filter theory in open channel. Figure 1 shows an example of open 

channel. As the governing equation, the shallow water equation is employed, and the finite 

element and the selective lumping methods are applied to discretize the governing equation in 

space and time, respectively. The estimation of the distribution of the velocity vector and the 

water elevation is carried out by using the discretized equation obtained by the Kalman filter 

theory. In the numerical experiments, the open channel flow is treated, and some examina-

tions are carried out by changing the observation variables, number and position of observa-

tion points.  

 

 

Figure 1: Open channel. 

 

2 DISCRETIZATION OF GOVERNING EQUATIONS 

The shallow water equations are used as a governing equations, which is represented as 

equation (1) and (2) in the two-dimensional plane.  

 0,  ii gu   (1) 

 0,  ihu  (2) 

where u ,  , g , and h  are flow velocity, water elevation, the gravitational acceleration and 

water depth.  The Galerkin method and the selective lumping method are applied to discretize 

the governing equations in space and time, respectively. Consequently, the finite element 

equation can be written as equation (3). Equation (3) is represented  by equation (4). 
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     nn A  ˆˆ 1   (4) 

where, t , h ,  iS ,  M  and  M  are time increment, mean water depth in the element, the 

matrix for the pressure, consistent mass matrix and diagonal mass matrix.  M
~

 is represented 

as equation (5) by ramping parameter  10  ee .  ̂  indicates the true value. 
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       MeMeM  1
~

 (5) 

The system equation in the Kalman filter is obtained by adding the vector represented by 

the multiplication of the driving matrix   and the system noise vector  q , and is shown as 

Equation (6). Here, the vector    indicates the estimation value in computation by the Kal-

man filter.  In addition, the observation equation shown in Equation (7) is introduced. The 

vectors  z  and  r  and the matrix  H  denote the observation value and  the observation 

noise vectors and the observation matrix. 

        nnn qA   1  (6) 

       111   nnn rHz   (7) 

 

3 COMPUTATIONAL ALGORITHM 

    It shows the numerical calculation algorithm by Kalman filter below. 

 

1. Set input data :  A ,  0

)(P ,  0

)(
ˆ
 ,   ,  Q ,  R ,  ,  1nz (n = 0~imax) 

2. Calculation of estimated error covariance matrix:          TT
QAPAP   )()(  

3. Calculation of Kalman gain matrix:             1
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4. Calculation of predicted error covariance matrix:        )(1)()(   PHKPP  

5. Check of convergence: if             
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7. Calculation of optimal estimated value:           1
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4 EXMINATION BY NUMERICAL EXPERIMENT  

This examination is carried out by changing the observation variables, number and location 

of observation points. The computational conditions in this study is shown in Table 1. Com-

putational model is shown in Figure 2. 

 

Time increment t , s 0.001 

Time steps 2000 
Number of nodes 153 

Number of elements 200 

Gravitational acceleration g , m/s2 9.8 

Lumping parameter e 0.8 

Initial of estimated error covariance 
0

)(P  1.0 

Initial of estimated value 
0

)(
ˆ
  

0 

Convergence determination constant   0.01 

Table 1: Computational conditions. 
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Figure 2: Computational model. 

When the water elevation in amplitude 1.0m and period 2.0 s are given for the equation 

(5), the shallow water flow analysis is carried out. The results by this analysis are used as the 

artificial observation values. In this computation, the covariance for the system noise and ob-

servation noise is set 0.0001 and 0.1, respectively. The system noise covariance matrix  Q  

and observation noise covariance matrix  R  are the diagonal matrix that diagonal component 

are 0.0001 and 0.100. In addition, case ‘a’ represents that observation variables are flow ve-

locity for x-y direction u , v  and water   and case ‘b’ of setting that observation variable is   

only. These cases are distinguished by subscript ‘a’ or ‘b’, number of observation points and 

position of observation points are shown in Figure 3. Numerical results are shown in Figure 4 

- 7. 

 

 

Figure 3: Numerical test conditions. 

In Cases 1-4, the observation points are set on center line of the channel, and number and 

position of the observation points are changed. In Case 5, the observation points are set on 

one side of the wall boundary. 
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                                             Case 1a and 1b                                                                      Case2a and 2b 

  
                                             Case 3a and 3b                                                                      Case4a and 4b 

 
Case5a and 5b 

Figure 4: Comparison of variation of convergence criterion. 

Figure 4 shows comparison of variation of convergence criterion expressed by the Frobeni-

us norm. The equation of the Frobenius norm is shown in the flow chart of section 3.The con-

vergence criterion ε is set 0.01. This convergence criterion follows to the reference by 

Heemink [3]. From this result, it was found that convergence rate in Case ‘a’ is faster than 

that in Case “b” in the iterative computation of the predicted error covariance matrix. 
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        Case 1a                                                                                        Case 1b 

 

  
        Case 2a                                                                                        Case 2b 

 

  
        Case 3a                                                                                        Case 3b 

 

  
        Case 4a                                                                                        Case 4b 
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        Case 5a                                                                                        Case 5b 

Figure 5: Comparison of distribution of estimated water elevation at T =2.0s. 

Figure 6 shows the distribution of estimated water elevation of the channel center line at 
T =2.0s. In Case 1 and Case 2, estimated values are good agreement with the true value. In 

Case 3, when the observation points are set on the inflow boundary side, the estimated value 

is good agreement with the true value in the outflow boundary side region, but, In Case 4, 

when the observation points are set on the outflow boundary side, it was found that it is diffi-

cult to estimate the distribution of the water elevation in inflow boundary side region. In Case 

5, when the observation points are set on one side of the wall boundary, it was confirmed that 

the distribution of the water elevation is similar to that in Case 1. 

 

  
        Case 1a                                                                                        Case 1b 

 

  
        Case 2a                                                                                        Case 2b 
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        Case 3a                                                                                        Case 3b 

 

  
        Case 4a                                                                                        Case 4b 

 

  
        Case 5a                                                                                        Case 5b 

Figure 7: Comparison of time history of estimated water elevation at center point of channel ( x =5.0m, y =0.4m). 

  Figure 7 shows time history of estimated water elevation at center point of channel 

( x =5.0m, y =0.4m). In all cases, observation noise is removed from observed value, and es-

timated values are good agreement with the true value. Table 2 shows L2 norm for difference 

of true and estimated values in Figure 7. In Case 3a and Case 3b, L2 norm is approximately 

equivalent. In other cases, the value of L2 norm in Case ‘a’ (the flow velocity for x and y di-

rections and the water elevation are set as the observation variable) is less than that in Case 

‘b’ (the water elevation is only set as the observation variable.). Therefore, it can be said that 

estimated values in Case ‘a’ are better agreement with the true value than estimated values in 

Case ‘b’. 

6036



T. Yoshiara, T. Kurahashi, Y. Kobayashi and T. Eto 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Comparison of L2 norm for difference of true and estimated values. 

 

5 CONCLUSIONS  

In this study, flow field estimation analysis in open channel was carried out based on 

the Kalman filter FEM. The linear shallow water equation is employed as the governing 

equation, the Galarkin and the selective lumping methods are used to discretize the gov-

erning equation in space and time, respectively. The conclusions in this study is shown as 

follows. 

 

 It was seen that high accurate flow field estimation result is obtained in case that the ob-

servation points are set to the downstream side in the open channel in comparison with 

the case that the observation points are set to the upstream side in the open channel. 

 It was found that if the flow velocities for x and y directions and the water elevation are 

set as the observation variable in the computation of the flow field estimation, high accu-

rate estimation result is obtained comparing to the case that the water elevation is only 

set as the observation variable. 

 

APPENDIX 

An example of flow field estimation using the practical measurement water elevation 

is shown in the appendix. The position of observation points and the size of the channel 

is shown in Figure 8, and the finite element mesh is shown in Figure 9. In addition, Table 

3 shows the computational conditions in the flow field estimation. The flow field estima-

tion analysis is carried out using the observed data at only points No.1 and No.2.  The 

comparison of the time history of water elevation in case of the observed and the esti-

mated values at points No.1 – No.3 is shown in Figures 10-12. From this result, it is 

found that though the flow field estimation can be carried out, there is difference between 

the observed and the estimated water elevation at point No.3. Therefore, it can be said 

that there is a possibility that flow distribution can’t be appropriately obtained, if a lot of 

observation points are not employed, and the period of the inflow wave is short. We sup-

pose that this is one of the future work of this study.  

Case L2 norm for difference of true and estimat-

ed values 

1a 1.899 

1b 1.984 

2a 2.339 

2b 4.050 

3a 2.531 

3b 2.524 

4a 4.161 

4b 4.988 

5a 2.126 

5b 2.206 
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Figure 8: Size of target domain and location of observation points.  

 

 

 

Figure 9: Finite element mesh.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Computational conditions. 

 

Total number of nodes 99 

Total number of elements 160 

Time increment t , s 0.001 

Number of time step 1000 

Lumping parameter e 0.80 

Gravitational acceleration g , m/s2 9.8 

Water depth h , m 0.46 

Driving matrix    Unit matrix 

System error covariance matrix  Q  0.01×Unit matrix 

Observation  error covariance matrix  R  0.1×Unit matrix 

Initial value of estimated error covariance matrix  0

)(P  1.0×Unit matrix 

Initial value of state vector  0

)(
ˆ
  

Zero vector 

Convergence criteria   10-4 
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Figure 10: Comparison of water elevation at point No.1, (x , y) = (4 , 0.2) . 

 

Figure 11: Comparison of water elevation at point No.2, (x , y) = (2 , 0.2) . 

 

 

Figure 12: Comparison of water elevation at point No.3, (x , y) = (0 , 0.2) . 
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Abstract. This paper describes a family of stochastic methods based on Itô's theorem for the 

numerical solution of Dirichlet, Neumann and mixed boundary value problems. The major 

advantages of these techniques are:  

 No mesh is needed. Only the geometry of the domain and the boundary conditions 
should be defined. 

 The solution can be obtained at any point or at any part of the integration domain. It 
is not necessary to solve the whole domain, which can be of special interest in 3D 

applications. 

 The error threshold can be controlled mainly with the step width of the random walk 

generation 

 The algorithms can be easily parallelized. 

 The same approach could be used to the numerical solution of stochastic partial 
differential equations. 

The theoretical approach is described, the corresponding algorithms are presented, and 

the general technique is applied to well-known engineering PDE equations of the elliptic and 

parabolic type. 
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1 INTRODUCTION 

From the origin of calculus in the 17th century by Isaac Newton and Gottfried Leibniz 

partial differential equations have been used to generate mathematical models of natural, 

economic and social phenomena. In general, these equations cannot be solved by analytical 

methods and, from the beginning of the 20th century, different approaches generating several 

discretization approximations have been developed (i.e. Ritz methods [1]). Since then a 

number of numerical methods, as Finite Differences, Finite Element Method, Boundary 

Element Method, Finite Calculus Techniques and many others have proved to give accurate 

results for quite difficult problems, both linear and nonlinear, in one, two and three 

dimensions.  

In general, all these techniques imply some type of domain decomposition or 

discretization, and the solution of the problem must be obtained in the whole integration 

domain. As a consequence of the discretization, a set of algebraic equations (linear or 

nonlinear) must be solved. 

A different approach to the solution of PDE’s is presented in this paper. Probabilistic 

methods that have been developed from 1940 [2] may be used to solve both deterministic and 

stochastic differential equation by means of simulation techniques.  

One of these possible techniques, based in Brownian motion particle simulation will be 

shown to be applied to elliptic and parabolic partial differential equations.  

The advantages of this technique are:    

 No mesh is needed. Only the geometry of the domain and the boundary conditions 
should be defined. This implies that the time-consuming discretization process in 

unnecessary. 

 As it is not necessary to get the solution at every point of the domain, no system of 
equations must be solved. 

 The solution can be obtained at any point or at any part of the integration domain. It is 
not necessary to determine the solution at the whole domain, and therefore there is not 

system of equations to solve, which can be of special interest in 3D and nonlinear 

problems.  

 The error threshold can be controlled mainly with the step width of the random walk 

generation 

 The algorithms can be easily parallelized. 

 The same approach could be used to the numerical solution of stochastic partial 
differential equations [3]. 

In this paper the general technique for elliptic and parabolic differential equations will be 

presented, and will be applied to benchmark problems whose analytical solution is known. 

2 PREVIOUS DEFINITIONS 

2.1   Wiener processes. 

A real stochastic process {      } is called a Wiener process if all the following 

requirements are accomplished: 

      

       is a random normal variable          for every t and s such that 

      

 For every set of arguments             , the set of random variables 

                       
 are independent. 

    has continuous paths for every t > 0. 
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2.2   Martigales 

Consider a sequences of random variables            and the conditional expected value 

 [    |          ] for each n. The conditional expected value is the mean of      if all 

values             are known. If   [    |          ]     the sequence         is a 

martingale. 

The Wiener process is a Markov process as well as a martingale. 

2.3   Itô’s process 

The stochastic process 

                                                             (1) 

in which    is a standard Brownian motion (BM), is called an Itô’s process and           

and           are functions both of time and the stochastic process       [4, 5] 

2.4   Standard Brownian motion 

A standard Brownian motion       is a Wiener process such that: 

  [    ]    

                 has a probability distribution         

Therefore                   (     )
 
        and as the variance of    is 

small it can be assumed that       . [6, 7] 

2.5  Stochastic ordinary differential equations 

An ordinary differential equation is only a rule which determines the change of a 

dependent variable which is a function of an independent variable expressed in terms of the 

function and its derivatives. 

  

  
                                                                         

If non deterministic parameters appear in the differential system, the equation becomes a 

stochastic differential equation  

  

  
                                                                         

where      represents a stochastic process. It is obvious that in this case      is also a 

stochastic process and the solution will be the given by the probability distribution of        

2.6 Itô’s integral 

If one cannot integrate          the stochastic ordinary differential equation can be 
rewritten as 

  

  
              

      

  
                                                

where       is a standard brownian motion. The integral of the above equation is 

        ∫ (      )

 

  

   ∫ (      )     

 

  

                               

This second integral ∫  (      )     
 

  
 cannot be univocally defined, because W(s) 

variations are unbounded, given that    ∑ |     
    

|   
     . The most correct definition 
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from a mathematical point of view was established by Itô in the forties and was the origin of 

the so called stochastic analysis [4, 5, 8, 9]. 

The most important property of Itô’s integral is  (∫    
 

 
)     [10, 11]. 

2.7  Itô’s formula 

Let        ̅  be a continuous function defined over [    ]       taking values in    

and with continuous partial derivatives. We will use the following notation: 

 

  
     ̅        ̅  

      
 

  
     ̅        ̅                                                                

  

   
     ̅         ̅  

For           let {        } be a stochastic process in   . This process is defined 

by the following stochastic differential (Itô’s process) 

                                                                             

where    is a standard Brownian motion. Then, the process defined by 

      (      )    [    ]                                                       

can be differentiated with respect the same Brownian motion 

                         
 

 
          

     

 (                           
 

 
          

 *                                    

To prove this result we apply Taylor’s expansion to u,  

   
  

  
   

  

  
   

 

 

   

   
                                           

Itô’s process can be rewritten as: 

                        √   

                                                          √    (11) 

                     

By replacing     y       in the above Taylor expansion expression 

   
  

  
                          

  

  
   

 

 

   

   
               

(12) 

   
  

  
              (         

  

  
 

  

  
 

 

 

   

   
            ) 

 

Which is known as Itô’s formula. 

3  ELLIPTIC PROBLEM GENERAL APPROACH 

Let be the following elliptic partial differential equation in one spatial dimension 
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with Dirichlet boundary condition 

                                                                               

being    the boundary of the integration domain   and      

     ∑  

    

   
 

 

 
∑∑   

  

      
                                            

that will be applied to a function           . The du differential can be written as 

   
  

  
              (         

  

  
 

  

  
 

 

 

   

   
(         )

 
)         

As the problem is steady state by definition 

  

  
                                                                           

and therefore 

   
  

  
                                                                 

or 

   
  

  
            (    )                                              

This equation can be integrated as 

∫   
  

 

 ∫
  

  
           

  

 

 ∫ (    )  
  

 

                                

being    the so called stopping time, which is defined as the shortest time in which the 

stochastic process   reaches the boundary   , 

      (
 

 
   *                                                           

and consequently  

             ∫
  

  
           

  

 

 ∫ (    )  
  

 

                        

The expected value of these expressions is 

 (      )   (     )   (∫
  

  
           

  

 

)   (∫ (    )  
  

 

)        

As we have defined the stopping time    as the shortest time in which the stochastic 

process   reaches the boundary   , if       is the value of      to obtain inside the 

integration domain,  

 (      )         (∫
  

  
           

  

 

)   (∫ (    )  
  

 

)             
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where        is the boundary condition at the point in which the stochastic process   reaches 

the boundary   . Remember that    is a martingale and one of its properties is 

 (∫    
 

 
)   . 

 Therefore 

 (      )           (∫ (    )  
  

 

)                                  

and the Itô’s formula becomes 

      (      )   (∫         
  

 

)                                     

3.1 Problem solution in several variables 

In the case of more than one variable the elliptic problem can be stated as 

       ̅  

   ̅     ̅      ̅                                                                

     ∑  

    

   
 

 

 
∑∑   

  

      
 

The corresponding stochastic process could be written as 

  ̅   ̅  ̅      ̿  ̅    ̅                                                       

where    are the components of vector  ̅  ̅  . 

The matrix  ̿    is defined as follows [12] 

 ̿   ̿   ̿                                                                      

where     are the components of the  ̿ matrix. This matrix  ̿ can be easily determined if  ̿ is 

symmetric, by using, for example, the Cholesky factorization technique.  

The    and     components are the parameters of the differential operator       

3.2 Problems with Neumann boundary conditions 

 

Figure 1 Particle random walk 
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It must be noted that every particle follows a random walk determined by the Itô’s 

stochastic process (Figure 1). 

But in this case there are some Neumann boundary conditions. We describe now the 

procedure to take into account these boundaries. [13]. 

In a general case with Neumann boundary conditions and at least a Dirichlet boundary 

condition the procedure will be as follows: 

       ̅  

   ̅     ̅      ̅                                                                

 (   ̅ )

  
    ̅      ̅      

where     are the boundaries in which Dirichlet conditions hold and      the boundaries in 
which Neumann conditions are defined. 

One should determine    when the particle reaches a Neumann boundary before getting to 

a Dirichlet boundary.  

       (      )   (∫         
  

 

)   (     )   (∫         
   

   

+       

The integration limits [   
    

] correspond to the time the particle takes to move from    

to    

If the coordinates    correspond to a point located in a boundary with Neumann condition, 

the value       may be determined by Taylor expansion as 

            
  

  
                                                  

In this way, the Neumann condition in     is transformed to a Dirichlet condition and 
therefore: 

       (      )   (∫ (    )  
  

 

)   (     )   (∫ (    )  
   

   

+   

  (     )   (       )   (∫ (    )  
   

   

+                                   

  (     )   (∫ (    )  
   

   

+   (∫         
   

   

+   (       ) 

If this procedure is repeated with    the solution at point   can be written 

       (      )   (∫         
  

 

)   (     )   (∫         
   

   

+  

  (     )              (∫         
   

   

+   

(34) 

  (     )   (∫         
   

   

+   (∫ (    )  
   

   

+  

  (∫         
   

   

+   (       )              
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In a general case Itô’s formula can be written as 

   ̅   (      )   (∫         
  

 

)   ( ∑
  

  
 

      +                    

where 

 (      ) is the contribution of Dirichlet boundary conditions  

 (∫         
  
 

) is the contribution of the input function  

 ( ∑
  

         ) is the contribution of Neumann boundary conditions  

In these expressions    are the points where the particle reaches a Dirichlet boundary 

and    is a small value such that Taylor’s expansions are accurate enough.   

It is clear that for a unique simulation Neumann boundaries can be reached several times. 

To explain more clearly the general technique we propose the following academic 

example. 

   

   
  

   

   
                                                              

with a rectangular boundary               and mixed boundary conditions. 

  

  
             

                    
(37) 

  

  
              

                   

Itô’s process is in this case: 

  ̅   ̅       ̿     ̅                                                            

with                              .  :  
 

To determine the  ̿ matrix we use  ̿   ̿   ̿ , this is to say 

(
  
  

)  (
      
      

) (
      
      

)
 

                                                 

and therefore 

 ̿  (√  

 √ 
*                                                                  

If we apply now Itô`s formula, the solution at point       is 

   ̅   (      )   (∫         
  

 

)                                             

In this example: 

   ̅   (      )   (∫      
  

 

)   (      )      (∫    
  

 

)   

  (      )                                                                    
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where: 
 

  (      ) is the expected value of the particles positions when they reach for the 

first time a Dirichlet boundary condition.  

        is the expected value of the time the particles take to reach  for the first 

time a Dirichlet boundary condition. In other words, the expected value of the 

particles stopping times. 

Let a particle initially at position    (see Figure 1). After a random walk as previously 

described the particle reaches the boundary at    where a Neumann condition holds. Then the 

particle is reflected to   , and the process will be restarted at point              . After 

the corresponding walk, the particle reaches the boundary at    where again a Neumann 

condition holds. The particle is then reflected to              and the process continues 

until the particle reaches a point in which a Dirichlet boundary condition holds    ). Then the 
process stops.  

Let: 

   the time it takes the particle to go from    to    

   the time it takes the particle to go from    to    

   the time it takes the particle to go from    to    

By using Itô’s formula, the contribution of this particle to the solution is 

                                                                 

In this expression         can be expanded as      =       
  

  
       and therefore 

                     
  

  
                                       

but 

                                                                
and again  

u           
  

  
                                                    

and the above expression (44) becomes 

        
  

  
                    

  

  
       

  

  
                       

Finally, as    is a point in which a Dirichlet condition is stablished  

                                                             

and the contribution of this particles to the final solution is 

    
  

  
       

  

  
                                            

3.3 Simulation procedures 

The partial differential equation to solve is: 

                                                                                

with the following boundary conditions: 
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(51) 
     

  
               

with         =    and        =  , being    the boundary of the integration domain   

and 

     ∑  

    

   
 

 

 
∑∑   

     

      
                                             

As previously stated the solution is 

   ̅   (      )   (∫         
  
 

)   ( ∑
  

         )                   (53) 

Then the simulation procedure is as follows: 

3.3.1 Determine the Ito’s process    y     coefficients: 
 

  ̅   ̅       ̿     ̅ 

(
   

 
   

+  (
  

 
  

+   (
       

   
       

+(
   

 
   

+ 

 

(54) 

 ̿    is defined as the matrix calculated from the equation  

 ̿   ̿   ̿                                                                            

where the parameters     are the elements of the  ̿ matrix and the parameters    are the 

elements of the  ̅    vector. 

3.3.2 Set the   and   values, where    is the variance of the Brownian motion process and   

the increment to use in the Taylor series expansions.  

The Brownian motion variance will determine the length of every leap of a particle for 

every time step.  

The following figures show some examples of a Brownian motion process going on from 

the same point (x=0.6, y=2.7) with Dirichlet boundary condition at x=0 and Neumann 

condition at the reflecting border (Figures 2 and 3).  

  

       Standard deviation 0.1       Standard deviation 0.05 

Figure 2. Examples of paths for different values of the BM standard deviation 

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

6050



V. Maceiras and M. Casteleiro 
_____________________________________________________________________________ 

 

 

Figure 3. Two BM examples starting from the same point with the same standard 

deviation 0,01 

A high value of the variance    means a faster simulation process but it is generally less 

exact if the boundaries lie near the particle.  

The h value has to be small enough to fulfill the Taylor expansion conditions but large 

enough to guarantee that the particle is always inside the domain of integration. In this paper a 

value of h five times the standard deviation of the Brownian motion process has been used, 

this is to say 

   √        

3.3.3 Obtain the solution in  ̅ . 

To obtain the problem solution we must calculate 

   ̅   (      )   (∫         
  

 

)   ( ∑
  

  
 

      +                         

A possibility is to use Montecarlo method: we select a large number of particles for each 

point in which the solution must be evaluated. 

From  ̅, every one of these particles performs, for each     a random step defined by Itô’s 
process, namely 

  ̅   ̅       ̿     ̅                                                    (57) 

where    is a standard Brownian motion with Gaussian distribution         
Remember that the time spent for each particle to reach a boundary in which a Dirichlet 

condition holds,   , is called stopping time. 

The contribution of a particle to the solution is  

   
(      )  (∫         

  
 

)  ( ∑
  
         )

 
                                    

where   is the number of times the particle reaches a boundary with Neumann condition,   the 

number of particles used in the simulation and    the time spent for each particle to reach a 

boundary in which a Dirichlet condition holds (the so called stopping time). In equation (58): 

        is the contribution of Dirichlet type boundary conditions. It is evaluated as 
the value of the boundary condition at the point first reached by the particle.  

 ∫         
  
 

 is the contribution of the input function at the solution and must be 

evaluated until the stopping time. 
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  ∑
  

          is the contribution of Neumann type boundary conditions. A particle 

may reach a Neumann type condition never, once or more times before reaching a 

point in which a Dirichlet boundary condition holds. 

The final solution estimation is: 

  ∑  

 

   

                                                                          

3.4  Two dimensional examples 

3.4.1 Let   be the unit circle defined as         in Cartesian coordinates. We state the 

following differential operator. 

                                                                    (60) 

with boundary conditions  

                 

 (61) 

          (
 

 
*            

The analytical solution of this problem is      (
 

 
)√   (See Figure 4) 

The Itô’s process governing the particles motion is 

  ̅   ̅       ̿     ̅                                                            

In this case     ,               and              . Therefore, as  ̿   ̿   ̿  and  

 ̿  (
  
  

), it results that  ̿  (
  
  

). 

 
Figure 4. Analytical solution of the problem stated in section 3.4.1 

It follows that         and         

The numerical solution is: 
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   ̅   (      )   (∫         
  
 

)                                                

because in this example there are not Neumann boundary conditions. In this case      , 

and therefore 

   ̅   (      )                                                            

where    is the stopping time of each particle. 
Figure 5 shows the comparison between the exact (analytical) solution and the simulation 

for different points of the integration domain. 

For radii in the [0.3 al 0.9] interval 5.000 particles have been generated with a process 

standard deviation of 0.01.  

For 0.2 and 0.1 radii 15.000 particles have been generated with a process standard 

deviation of 0.001.  

 

        

a)            [    ]                                          b)              [    ] 
 

        

         a)              [    ]                                         b)              [    ] 

Figure 5. Simulation vs. analytical solutions of problem 3.4.1 for different domain 

points 

3.4.2 Consider the following problem, in which both Dirichlet and Neumann boundary 

conditions are defined: 

                                                                           

with boundary conditions 
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[                      ] 

  

  
|
     

             

(66) 
  

  
|
     

          

  

  
|
     

            

The analytical solution, shown in Figure 6, is: 

        
 

       
[                      ]                                             

The Itô’s process governing the particles motion is  

  ̅   ̅       ̿     ̅                                                                        

Therefore         and         

     

 

Figure 6. Analytical solution of problem stated in section 3.4.2 

The simulation solution is  

   ̅   (      )   (∫         
  

 

)   ( ∑
  

  
 

      +                       

because in this case        
15.000 particles have been generated for each point, the h value is 0.05 and the standard 

deviation of the Brownian motion is 0.01.  

Figure 5 shows the comparison between the exact (analytical) solution and the simulation 

for different points of the integration domain.  
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Figure 7. Simulation vs. analytical solutions of problem 3.4.2 for different domain points 

4  PARABOLIC PROBLEM GENERAL APPROACH 

Consider the following partial differential equation: 

         ̅                                                                                    

with boundary and initial conditions: 
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   ̅       ̅        ̅      

    ̅   

  
    ̅        ̅                                                           

   ̅     ̅         

with    ,  ̅   ,         =    and        =  , being    the boundary of the 

integration domain     The      operator can be written as 

      
    

  
 ∑  

    

   
 

 

 
∑∑   

  

      
                                    

where the time t may be considered as a new coordinate in the process.  

In the n-dimensional case 

  ̅   ̅       ̿     ̅                                                             

that can also be written as   

(

   

   

 
   

,  (

  
  

 
  

,   (

 
   

 
 

 
   

   
       

,(

   

   

 
   

,                                 

where    is the time coordinate  and             the spatial coordinates. 

At every time interval   , the particle moves randomly in the space      and goes back a 

fixed time increment   . 

If the particle reaches a Neumann boundary condition, the particle bounces back and 

continues the random motion inside the integration domain.  

The initial condition    ̅     ̅            is, in this process, considered as a Dirichlet 
boundary condition.  

The particle random motion may stop because: 

 Particle reaches a Dirichlet boundary in the space        

 Particle reaches time  t=0, because, as it was stated before, this initial condition 
works as a Dirichlet Condition for this simulation process. 

 

4.1  Two dimensional parabolic example 

To explain more clearly the general technique we propose the following academic 

example: 

The PDE to solve is: 

  

  
 (

   

   
 

   

   
)                                                                     

with integration domain       ,      ,    (see Figure 8) and boundary conditions 

           

  
                

(76) 
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and the inital condition 

                                                                             

 

Figure 8. Integration domain for the problem presented in section 4.1 

The analytical solution for this problem is: 

         
  

 
∑            (

 

 
*

 

   

 
(
      

  
*
   ( 

   

 
)                         

The stochastic process approach is 

(
   

   
 

   

   
)  

  

  
   

               
(79) 

       

     ∑  

  

   
 

 

 
∑   

  

      
   

 

In this case          y        . 

The Itô process can be written as 

  ̅   ̅       ̿     ̅                                                          

or 

(
   

   

   

+  (
  
 
 

)   (
 
 

 

√ 
 
 

  √ 

)(
   

   

   

+                                     

with           . 

 

 

 

 

 

 

X 

Y 

  ( = 0,  ,  )

  
= 0 

   ,  = 0,   = 0 

  ( = 2,  ,  )

  
= 0 

   ,  = 4,   = 0 
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The estimate of the solution is 

   ̅   (      )   (∫         
  

 

)   ( ∑
  

  
 

      +                     

The second and third addends are null because        and all Neumann boundary 
conditions are also null. 

Then 

   ̅   (      )                                                                   

where    is the already defined stopping time.  

Suppose we want to calculate the problem solution at a point with coordinates        . As 
always, the simulation solution is to generate a number of particles at this point and apply the 

above described technique.. 

 

 

Figure 9. Solution of the problem proposed in section 4.1 

5  CONCLUSIONS 

A simulation stochastic method to solve partial differential equations (of elliptic and 

parabolic type) has been presented. The analysis of the specific boundary and (in the parabolic 

type) initial conditions has been carried out. A number of academic examples, with known 

analytical solutions, have been used as benchmarks, and the simulation solution has agreed 

very well with the exact solutions in all cases.  

The main advantages of this technique are: 

 No domain discretization is necessary.  
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 No need for a solver, because there are not systems of equations in the solution 
process 

 It is not necessary to solve the PDE in the whole integration domain. The solution 
can be obtained only where it is needed (a point, several points, a particular area 

of the domain).  

 In parabolic problems, to obtain the solution at time    it is not necessary to obtain 

it at intermediate times (      ). 

 The approximation error is a function of the number of particles generated in the 
simulation, and decreases as the number of particles increases. This is so because 

the solution is an expected value, and because of the central limit theorem the 

variance will decrease as the number of elements (particles) increases. 

 The speed of the process increases as the variance of the stochastic process (Itô’s 
process) increases. However, near the boundaries, the variance should be kept 

small enough as the walk does not go outside the domain  

 As the solution estimate is an expected value, parallel methods may be applied in 

a very easy way. For instance, the same accuracy will be obtained with a CPU 

generating a 10.000 particles simulation as with 100 CPU’s generating a 100 

particles simulation each. As the only process that can be considered time 

consuming is the particles generation and the corresponding random walk, the 

process time can be directly divided by the number of CPU’s in the cluster. 
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Abstract. Since R.A. Fisher introduced the analysis of variance (ANOVA), the classic design 
of experiments (DoE) utilizes factorial model of fixed effects. The typical procedure assumes 
the normal distribution of the noise and uses the least square method (LSQ) to identify effects 
of the model with a priori assumed structure of main effects and some interactions, usually up 
to the second order. The terms of model are repeatedly eliminated in the specific backward 
stepwise regression.  
Methods of approximation and prediction rapidly evolved in recent years. Apart from this, the 
classic approach of the fixed effects model is still very useful and popular. In fact, this model 
is intrinsic to ANOVA however hidden. The significance analytical improvements have ap-
peared in the background of fixed effects models in recent decades: statistics based on wide-
spread strict requirements of the normal distribution have been replaced by so-called robust 
statistics based on the weak requirement of the continuous distribution or even on the statis-
tics based on numerical simulation like e.g. bootstrap approach. Practically, in the case of 
small size datasets, the conformity with the normal distribution has very weak reliability and 
it leads to very uncertain assessment of  parameters statistical significance. The bootstrap ap-
proach with simulation-based identification of parameters confidence intervals (CI) appears to 
be better solution than theoretically proved but only asymptotically equal t-distribution based 
evaluations.  
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1 INTRODUCTION 

The research investigation in a materials science always leads to the datasets. The large (or 
even huge) datasets should be analyzed to obtain summary results expressed in qualitative or 
quantitative forms. Such conclusions should be semi-proved by a statistical analysis.  

One of the typical methodology is to observe behavior of the phenomenon against different 
treatments of controlled factors being precisely defined in a matrix known as a design of ex-
periment. The general term ‘behavior’ is narrowed to a quantitative variable called ‘response’ 
or ‘output’. The experiment focuses on the ‘effect’: the difference of the output as a result of  
the difference of treatments. If only one controlled factor is changed at time, the experiment is 
named One-Factor-At-Time (OFAT) [1]. On the opposite side, the factorial experiment [2] 
may be found where all controlled factors are changed simultaneously in a specific manner. 
The factorial experiment is also known as ALLFAT (All-Factors-At-Time). This name is of-
ten used in an industrial environment and quality management procedures. 

The sensitivity of the investigated phenomenon to changes of controlled factor decides on 
the statistical significance of such factor. However this definition is intuitively clear, it re-
quires some quantitative measure and its evaluation. Typical procedure used to assessment of 
factors significance is the analysis of variance (ANOVA). 

ANOVA [2] is a well-known procedure to identify an inequality of means evaluated for 
subsets selected from the general dataset by a chosen particular classification factor. The null 
hypothesis H0 states that all means are mutually equal against the alternative hypothesis H1 
that not all means are equal. The ANOVA workflow leads from the general dataset through its 
decomposition to subsets. Mathematically, it is described as a decomposition of a variance, 
which finally leads to comparison of MSfactor (variance explained by classification factor) 
against  MSerror (remained variance). Technically, it replaces the original null hypothesis to its 
equivalent: the ratio of MSfactor by MSerror is equal to zero. As was proved by Fisher, this ratio 
has F-distribution however it requires some additional assumptions about an independency of 
observations, a normality of residuals and a homoscedascity in subsets. These assumptions are 
often questionable, especially when the size of a dataset is small and the statistical inference is 
weak. 

The proposed solution consists of two elements: (a) the replacement of the original null 
hypothesis with its equivalent related to parameters of an associated fixed effects model and 
(b) the replacement of the classic test of parameters significance with the bootstrap-based 
checking of zero existence inside the parameter confidence intervals. This solution is more 
practical for large datasets with the unknown distribution because it does not require to meet 
the ANOVA assumptions.  

Authors have been tried [3] previously to combine a bootstrap approach with an artificial 
neural network approximator to analyze materials science data processed by image analysis 
however they have with many numerical artifacts. Such approach was more successfully for 
processing non-parametric statistical analysis for surface layer [4]. 

The bootstrap approach appears to be a promising solution for some aspects of fuzzy statis-
tics which is developed mainly by Buckley [5, 6]. The general workflow for such implemen-
tations has been proposed by Grzegorzewski [7]. Some preliminary investigations in the field 
of a design of experiments (DoE) have been made by Pietraszek [8, 9].  

2 COMPUTATIONAL METHODS 

Two main methods were used: the fixed effects model [2] and the bootstrap method [10]. 
The fixed effects model is used to evaluate effects being deviations of particular means from 
the grand mean. The bootstrap method is used to evaluate confidence intervals for effects. Fi-
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nally, the existence of zero inside the intervals is inspected. If any of intervals contains zero, 
the null hypothesis of ANOVA is rejected. 

2.1 Fixed-effects model  

The fixed-effects model [2]consist of three terms: 

ij i ijy µ α ε= + +   (1) 

where: 
µ – grand mean (average response), 
αi – an effect at i-th treatment, 
εij – an random error at i-th treatment and j-th replication, 
yij – the observed response at i-th treatment and j-th replication. 

The grand mean and effects are evaluated using the ordinary least squares (OLS) [2]. 

2.2 Bootstrap 

The bootstrap approach [10] to fixed-effects model (Eq.1) is described by the following 

workflow. In the beginning, the parameters �µ , � iα  of the model were identified from the da-
taset using the least squares criterion L 

� �min ( , ) ( , )iiL Lµ α µ α=   (2) 

then fits ɵ iy were evaluated 

ɵ � �
iiy µ α= +   (3) 

and at last residuals rij of the model 

ɵ
ij ij ir y y= −  . (4) 

Then, iteratively, (a) the new dataset RB of the same size containing bootstrapped residuals 
rb|ij was constructed by drawing with replacement from the set of residuals: 

{ }| |: (1 ) (1 ) ( , , : )B b ij b ij klr i n j r i j k l r r= ≤ ≤ ∧ ≤ ≤ ∧ ∀ ∃ =R   (5) 

and (b) new bootstrapped residuals were added to the model fits creating new bootstrapped 
“observations”:  

ɵ
| |B ij B ijiy y r= +  . (6) 

That new observations were used (c) to identify bootstrapped parameters of the model.  

� �min ( , ) ( , )Bi BL Lµ α µ α=   (7) 

The parameters were collected until large number of iterations will be reached. Finally, (d) the 
quantiles were evaluated (typically 2.5% and 97.5%) for datasets of parameters as a range of 
confidence intervals and at last (e) zero existence inside confidence intervals was checked. 
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3 MATERIALS AND DATASET 

The data were obtained during investigation of the ceramic shell mould of the airfoil blade 
casting. The description below is a brief, while details can be found in article of Szczotok et al. 
[11]. 

Nickel-based superalloys are mainly used in aircraft and power-generation turbines. Creep-
resistant polycrystalline turbine blades are typically produced by an investment casting pro-
cess. It is especially useful for making castings of complex and near-net shape geometry, 
where machining may be impossible or too wasteful. Studies were performed on the IN 713C 
superalloy. The castings described in the work were produced by the Laboratory for Aero-
space Materials at Rzeszow University of Technology in Poland. One casting called GK was 
selected for the microstructural and statistical analysis. Final castings were cut off. The cross-
sections were included and prepared as metallographic samples from nickel-based superalloy. 
To reveal the microstructure of the investigated material the surfaces of the samples were 
etched. The microstructural investigations of the cross-sections of the GK casting were carried 
out by a scanning electron microscope. The recorded microphotographs were next subjected 
to a computer-aided image analysis program to estimate quantitatively the main parameters 
describing the (γ+γ’) eutectic islands that occurred in the investigated superalloy. 

The dataset was created by counting number and size of eutectic island detected at six dif-
ferent traces labelled from T1 to T6 (Table 1). The issue was to check the homogeneity of the 
eutectic phase i.e. statistical equivalence of observations at any trace. 

 

Trace 
No  

of islands 
Mean  
Area SE Median 

Quartiles 

Q1 Q3 

T1 31 34.5 7.8 12.0 3.8 53.6 
T2 49 22.0 3.8 12.1 4.2 28.1 
T3 80 24.0 3.4 10.8 4.0 32.2 
T4 75 26.9 3.9 14.6 4.6 35.8 
T5 64 25.1 4.2 11.3 3.9 35.1 
T6 61 24.5 3.5 14.2 8.6 28.4 

Table 1: Descriptive statistics of raw data (source [11]) 

4 ANALYSIS 

The typical method for checking the homogeneity of quantitative data is ANOVA. Due to 
the fact that area measures are positive they need to be transformed by a specific transfor-
mation into the whole real space to avoid nonsense negative values [12]. The natural loga-
rithm was selected as transformation mapping i.e.: 

ln( )LnY area= . (8) 

Such transformation guarantees that any value has physical sense after retransformation.  
Descriptive statistics of transformed data are presented in Table 2. 

The ANOVA protocol leads to the classic ANOVA table which decomposes the total vari-
ation into part assigned to grouping factor and the remain assigned to all other factors grouped 
under name ‘error’ which should be treated rather as ‘unexplained’ than only ‘random error’. 
For the mentioned data, the ANOVA table (Table 3) revealed that critical p-Value is equal to 
0.841, much greater than significance level α = 0.05, what means that homogeneity of traces 
was not rejected. 
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Trace 
No  

of islands 
Mean  
LnY SE Median 

Quartiles 

Q1 Q3 

T1 31 2.63 0.28 2.49 1.34 3.98 
T2 49 2.44 0.18 2.49 1.43 3.33 
T3 80 2.43 0.15 2.38 1.40 3.47 
T4 75 2.55 0.15 2.68 1.53 3.58 
T5 64 2.45 0.17 2.42 1.36 3.56 
T6 61 2.68 0.14 2.65 2.15 3.35 

Table 2: Descriptive statistics of transformed data (source [11]) 

 

Effect SS df MS F p 

Trace 3.318 5 0.664 0.411 0.841 
Error 572.019 354 1.616 – – 
Total 575.338 359 1.603 – – 

Table 3: ANOVA table for transformed data (source [11]) 

Simultaneously, the general linear model (GLM) (Eq.1) was introduced for 6 levels (T1…T6). 
The identification of the model resulted in a set of parameters (Table 4). Note that lack of the 
parameter for T6 is a typical presentation of results by statistical programs (here: StatSoft 
STATISTICA v12), because all effects from T1 to T6 should sum to 0 and T6 should be de-
ducted from such condition.  
 

Effect Parameter SE t p 1) -95 CI +95 CI 
const 2.527 0.070 35.88 0.000 2.389 2.666 
T1 0.100 0.199 0.50 0.617 -0.292 0.492 
T2 -0.091 0.164 -0.56 0.578 -0.414 0.232 
T3 -0.099 0.136 -0.73 0.467 -0.366 0.168 
T4 0.021 0.139 0.15 0.880 -0.252 0.294 
T5 -0.082 0.148 -0.55 0.580 -0.372 0.208 

Table 4: Parameters of fixed-effects model for transformed data 
1) p-value evaluated from inverse cumulative distribution for t-Student at d.o.f. = 354 

 
Trace Fit SE -95 CI +95 CI N 

T1 2.627 0.228 2.178 3.076 31 
T2 2.436 0.182 2.079 2.793 49 
T3 2.428 0.142 2.149 2.708 80 
T4 2.548 0.147 2.260 2.837 75 
T5 2.445 0.159 2.133 2.758 64 
T6 2.678 0.163 2.358 2.999 61 

Table 5: Model fits and their confidence intervals for transformed data 
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The model predictions and their confidence intervals are presented in Table 5. It should be 
noted that such results are still from classic ANOVA for further comparisons. 

Now, the approach was switched to the bootstrap. The number of draw iterations was set to 
10.000 to easy selection of quantiles from the bootstrapped dataset. After the full bootstrap 
procedure, the descriptive statistics were evaluated for model parameters (Table 6) and model 
predictions (Table 7), similarly to Table 4 and Table 5. 

The bounds of the confidence intervals were easy identified due to the selected number of 
bootstrap iterations. They were values found at positions 250 and 9750 in the sorted boot-
strapped results. Similarly, the bootstrapped p-Value was evaluated as relative position of sign 
switching inside the sorted bootstrapped results. 
 

Effect 
Parameter 

mean 
SE p-Valuebootstrapped 1) / 

p-Valuetheoretical 
2) -95 CI +95 CI 

const 2.527 0.070 0.000 / 0.000 2.388 2.665 
T1 0.101 0.196 0.614 / 0.607 -0.281 0.490 
T2 -0.092 0.161 0.576 / 0.568 -0.407 0.224 
T3 -0.099 0.135 0.468 / 0.464 -0.364 0.167 
T4 0.021 0.137 0.869 / 0.878 -0.250 0.290 
T5 -0.082 0.148 0.580 / 0.580 -0.367 0.206 
T6 0.151 0.147 0.310 / 0.305 -0.136 0.435 

Table 6: Parameters of fixed-effects model for transformed data 
1) bootstrapped p-Value was evaluated from relative position of sign switching inside a bootstrap table 

2) theoretical p-Value was evaluated from ratio (mean/SE) and t-Student distribution at d.o.f. = 354 

 
Trace Fit SE -95 CI +95 CI 

T1 2.628 0.225 2.189 3.073 
T2 2.435 0.179 2.090 2.785 
T3 2.428 0.141 2.153 2.703 
T4 2.549 0.145 2.261 2.835 
T5 2.445 0.159 2.136 2.754 
T6 2.678 0.160 2.360 2.988 

Table 7: Boostrap fits and their confidence intervals for transformed data 

The analysis of confidence intervals bounds revealed that small asymmetric exists between 
left and right side relative to means (Table 8). The coefficients were evaluated as studentized 
i.e. a quotient of a deviation and standard error, where deviation was difference between con-
fidence interval bound and respective mean: 

95CI mean
cf

SE

± −= . (9) 
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Trace / 
Effect 

Parameters intervals 
coefficients 

Fits intervals  
coefficients 

-95 CI +95 CI -95 CI +95 CI 
const -1.986 1.971 – – 
T1 -1.949 1.985 -1.951 1.978 
T2 -1.957 1.963 -1.927 1.955 
T3 -1.963 1.970 -1.950 1.950 
T4 -1.978 1.964 -1.986 1.972 
T5 -1.926 1.946 -1.943 1.943 
T6 -1.952 1.932 -1.988 1.938 

Table 8: Studentized coefficients of confidence intervals for the bootstrap model and its fits 

5 CONCLUSIONS  

• Bootstrap approach appears to be effective computational method to identify parameters 
of fixed effects model and their statistical properties. 

• Bootstrap approach does not require to make a priori inconvenient assumptions. 

• Bootstrap approach is very convenient to automatize in computational workflow and fur-
ther statistical postprocessing. 
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Abstract. This work demonstrates an application of the generalized stochastic perturbation 

technique and the corresponding Stochastic Finite Element Method in numerical analysis of 

the stresses for the steel structural element subjected to higher temperatures. This approach is 

based on higher order Taylor expansion of the input random parameters and of the resulting 

state functions and, independently, on the Least Squares Method determination of the struc-

tural responses to the input random parameters. An initial temperature equivalent to the fire 

exposure of the steel structure is taken as the input Gaussian random variable and uniquely 

defined by the constant mean value at outer surfaces of this element, where material parame-

ters of the steel as Young modulus, yield strength, heat conductivity, capacity and thermal 

elongation are all considered as highly temperature-dependent. These functions are adopted 

according to the experimental evidence provided in the literature. We adopt various degree of 

polynomial functions to verify an influence of the response function choice upon the resulting 

probabilistic characteristics. This study is an example of a hybrid usage of the FEM system 

ABAQUS and the computer algebra system MAPLE in stochastic transient fully coupled 

thermo-mechanical analysis, where up to the fourth order probabilistic characteristics of the 

temperatures, displacements and stresses may be directly used in fire reliability analysis of 

the civil engineering structures with the temperature both independent and dependent materi-

al characteristics. The results obtained in this study may serve directly in the stochastic relia-

bility analysis of the steel structures subjected to a fire according to both First and Second 

Order Reliability Methods (FORM and SORM).  
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1 INTRODUCTION 

Reliability of engineering structures under fire conditions remains always very challenging 
and practically important knowledge. It is possible to use it for an efficient prediction of the 
failure time for the structures to get specific information about their fire resistance and evacu-
ation time. The well-known Monte-Carlo simulation needs huge computer time effort. In this 
case it is better to use higher order perturbation techniques implemented with the FEM origi-
nating from the Second Order Second Moment method [1] relevant to small initial random 
fluctuations. We compute probabilistic coefficients of up to the fourth order to gain more in-
formation about probability density function itself. The basic probabilistic moments as well as 
skewness and kurtosis are calculated by full symbolic expansion of integral definitions and 
partial differentiation of the nodal response functions with respect to given random input vari-
able. In this case we consider strength test of elasto-plastic steel cylindrical specimen subject-
ed to high temperatures. All physical and mechanical steel properties like Young modulus, 
yield strength, conductivity, heat capacity and thermal elongation are temperature-dependent.  

2 THEORETICAL BACKGROUND 

Let us introduce the random variable b and its probability density function as ( )xpb . Then, 

the first two probabilistic moments of this variable are defined as [2] 

 [ ] ( )∫
+∞

∞−

=≡ dxxbpbbE b

0 , (1) 

where 0b  means the average value of b  itself and  

 [ ] ( )[ ] ( )∫
+∞

∞−

−= dxxpbEbbVar b

2 . (2) 

Higher probabilistic moments and related coefficients may be defined according to the classi-
cal definitions from the probability theory. The basic idea of the stochastic perturbation ap-
proach employed here is to expand all input random variables and all the resulting state 
functions of the given boundary initial problem via Taylor series about their spatial expecta-
tions using the perturbation parameter ε . The random function f  with respect to its parame-
ter b  around its mean value is given as follows 

 n

n

n

n

n

b
b
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n
ff ∆

∂
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1

10

0
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ε
, (3) 

where 

 ( )0bbb −=∆ εε  (4) 

is the first variation of variable b about its expected value and symbol ( )0.  represents the val-
ue of a function calculated at its mean. Let us analyse further the expected values of stress 
state function ( )bσ  defined analogously to the Eqn. 3 by its expansion via Taylor series as 
follows 

 ( )[ ] ( ) ( ) ( ) ( ) ( )dxxpb
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We remind that this power expansion is valid only if the state function is analytic in ε  and the 
series converge and, therefore, any criteria of convergence should include the magnitude of 
the perturbation parameter; perturbation parameter is taken as equal 1 in several practical 
computations and also here [3, 4]. It yields for the input random variable with symmetric 
probability density function in the second order perturbation approach 

 ( )[ ] ( ) ( ) ( ) ( ) ( )b
b

b
b

b

b
bbE 1010

10

22

2
00

!10

1

!2

1
µ

σ
µ

σ
σσ

∂
∂

++
∂

∂
+= L , (6) 

where ( )bnµ  denotes nth order central probabilistic moment of the variable b . All the terms 

with odd orders are equal to 0 for the symmetric random variable and the orders higher than 
the 10th one are neglected additionally. Similar considerations leads to the expressions, like 
the variance, for instance  

 ( )[ ] ( )( ) ( ) ( )[ ]( ) ( )∫
+∞

∞−

−== dbbpbEbbbVar
2

2 σσσµσ . (7) 

Quite similarly, it is possible to derive 3rd central probabilistic moments using also the 10th 
order approach as 

 ( )( ) ( ) ( )[ ]( ) ( )∫
+∞

∞−

−= dbbpbEbb
3

3 σσσµ , (8) 

and also the 4th order probabilistic moment may be recovered from this scheme as 

 ( )( ) ( ) ( )[ ]( ) ( )∫
+∞

∞−

−= dbbpbEbb
4

4 σσσµ . (9) 

Let us mention that it is necessary to multiply each of these equations by the relevant order 
probabilistic moments of the input random variable to get the algebraic form convenient for 
any symbolic computations. Based on the classical definition of the variance we can calculate 
the coefficient of variation as fallows 

 ( )( ) ( )( )
( )[ ]bE

b
b

σ
σµ

σα 2= . (10) 

Higher order moments and characteristics are determined to recognize the type of probabilis-
tic distribution od the state functions. We compute in turn the skewness coefficients as the 
ratio of the third central probabilistic moment and the third power of standard deviation as 

 ( )( ) ( )( )
( )( )[ ]32

3

b

b
bS

σµ

σµ
σ = , (11) 

and kurtosis as 

 ( )( ) ( )( )
( )( )[ ]

3
4

2

4 −=
b

b
b

σµ

σµ
σκ . (12) 

It should be mentioned that at this stage the proposed procedure is independent from a choice 
of the initial probability distribution function, however a satisfactory probabilistic conver-
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gence of the final results may demand various lengths of the expansions for random variables 
with different distributions. 
 The method is based on the iterative coupled deterministic FEM [5] equations as follows 

 
( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )




=

=+
ααα

ααααα

RθqθK

RθKθC ˆˆ&

, (13) 

where C  is heat capacity matrix, θ is nodal temperatures vector, K̂ is heat conductivity ma-
tric, K  denotes stiffness matrix, R  is matrix of nodal loads, R̂  is a matrix of thermal loads 
and q is the solution displacement vector and α  indices the test number relevant to Response 
Function Method [6]. We solve Eq. (13) in ABAQUS system. Further determination of the 
probabilistic moments from Eqs. (5÷12) thanks to the symbolic derivation of all partial deriv-
atives with respect to the given random variable b . We carry out all these calculations in 
computer algebra system MAPLE. 

3 NUMERICAL EXAMPLE 

 Numerical example consist of the necking of an axi-symmetric steel  specimen (Fig. 1). Its 
initial length is 02L  and initial radius is 0R and 4/ 00 =RL . We make small cut of its corner 

05.0*005,0 0RR =∆ mm to ensure necking in the middle of it [7]. 

 

Figure 1: Geometry and imperfection of the specimen. 

4-noded FEM elements [8] are used for discretization which divide the specimen into 1600 
pieces called in ABAQUS system CAX4RT (Fig. 2a). Each node has 7 degree of freedom (6 
mechanical and 1 thermal which is temperature). Mechanical boundary conditions are 0=xu  

on the left side, 0=yu  on the bottom side and forced displacement 0125.0 Lu y =  applied to 

the top side (Fig. 2b).  
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a) 

 
b) 

Figure 2: FEM model (a) and thermal boundary conditions (b). 

Initial temperatures are set equal to 200 =T °C for all nodal points, while fire simulation is 

performed by setting surface temperatures equal to these calculated from the fire curve after 
ISO 834-1 statement (Fig. 3a). We set these temperature to the top and the right side of the 
specimen (Fig. 3b). 

 
a) 

 
b) 

Figure 3: Time-temperature curve (a) and thermal boundary conditions (b). 

Steel properties as Young modulus, yield strength, conductivity, specific heat and coefficient 
of thermal elongation are highly temperature-dependent according to EN 1993-1-2. Fully 
coupled thermal-stress analysis is used where element temperature affects stress and dis-
placements values. 11 tests were carried out with time period equal to 15 minutes for 11 dif-
ferent values of random variable which was gas temperature sTb ≡  in this case. Figures 4÷6 

show resulting Huber-Mises stress distribution on deformed specimen. As can be expected 
this distribution is not uniform. Moreover we can see precisely how necking rise. 
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Figure 4: Stress distribution at t=0, 60, 300 s. 

 
Figure 5: Stress distribution at t=420, 540, 660 s. 

 
Figure 6: Stress distribution at t=720, 860, 900 s. 
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19 polynomial response functions were performed to describe the response of the structure 
(Fig. 7a). Based on resulting stress values taken from FEM analysis results at an interval of 60 
seconds we made time-dependent Huber-Mises diagram (Fig.  7b).  

 
a) 

 
b) 

Figure 7: Response functions (a) and resulting yield strength reductions (b). 

 Resulting gas temperature is also random variable in this case with its input coefficient of 
variation ( )sTα  in the range of [0.0,0.2]. Figures 8÷9 show expectation, coefficient of varia-

tion, skewness and kurtosis for extreme Huber-Mises stress in the point A of the specimen 
(Fig. 1). The biggest fluctuations of expected values and coefficient of variation could be ob-
served for ( ) 20.0=sTα . Coefficients of variation are close to zero (small dispersion) for 

( ) 10.0≤sTα  and it means that values of stress are concentrated round its means.  

 
a) 

 
b) 

Figure 8: Expectations (a) and coefficient of variation of stress (b). 
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a) 

 
b) 

Figure 9: Skewness (a) and kurtosis of stress (b). 

Studying stress and kurtosis distributions we can see fluctuations for ( ) 10.0=sTα . According 

to this plots we can conclude that Huber-Mises stress distribution is Gaussian when 
( ) 05.0≤sTα  because in this range skewness and kurtosis are close to zero.  

 This computation example has been made to determine the probabilistic characteristics for 
stress distribution under fire condition which is very often taken as non-Gaussian. This test 
illustrates the strength test cylindrical steel rod at elevated temperatures, the results of which 
enable determination of the yield point of the curve changes as a function of time. 

4 CONCLUSIONS 

 Based on this computation we can say that probability distribution of reduced stress under 
fire condition is Gaussian only if we narrow the range for input coefficient of variation to 
( ) 05.0<sTα . Moreover we shown the common usage of FEM software ABAQUS and com-

puter algebra system MAPLE which is crucial to use Stochastic Finite Element Method [9] 
(SFEM). We looked at the influence of polynomial degree [10] on the results of stochastic 
analysis. In such non-linear problems we have to use different functions to fit the response of 
the structure. The information about stress distribution obtained in this study can be use in the 
stochastic reliability analysis of the steel structures under fire according to both First and Sec-
ond Reliability Method [3].  
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Abstract. The main idea of this work is to demonstrate an application of the generalized iter-
ative stochastic perturbation technique to numerical analysis of the hyperelastic materials 
and structures with Gaussian random parameter, where the input random variable is a mag-
nitude of the vertical uniformly distributed load. Theoretical apparatus is connected with the 
general order Taylor expansion of both input and state parameters with random coefficients 
and analytical derivation of their first four probabilistic moments and coefficients. Our com-
putational implementation is released with the Response Function Method having polynomial 
basis of the order minimizing variance and maximizing correlation of the least squares fitting 
to the series of numerical experiments. Computational experiment concerns the hyperelastic 
rubber-like prismatic beam under three-point bending discretized in the FEM system 
ABAQUS with the use of various 3D brick finite elements. Large deformations in the vertical 
symmetry plane of this structure are analyzed in the stochastic context – by determination of 
their expectations, coefficients of variations, skewness and kurtosis for different increments of 
the external load. It enables also to recover the basic probabilistic characteristics of the 
stress-strain curve of such a material, whose further comparison with the experiments will 
allow a full validation of such a probabilistic model. The entire probabilistic algorithm to-
gether with statistically optimized Weighted Least Squares Method fitting are implemented in 
the symbolic algebra package MAPLE. The proposed scheme of the Stochastic Finite Element 
Method is contrasted with the crude Monte-Carlo scheme and also with the semi-analytical 
calculations of the same probabilistic characteristics by direct integration of the response 
functions. 
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1 INTRODUCTION 

Modern probabilistic computational mechanics focuses on a development of the new, 
still more efficient theoretical and numerical methods as well as on their applications in ex-
perimentally driven models or on these research problems where the input statistics are avail-
able. Statistical nature of structural properties obviously necessary for realistic durability 
analysis and property prediction of materials is almost perfectly known for the area of elastic 
homogeneous materials but still deserves some attention in hyperelastic, visco-elastic [1], 
elasto-plastic, elasto-visco-plastic and especially in thermo-elasto-visco-plastic models. Alt-
hough some stochastic models are known in thermal transient processes for temperature inde-
pendent and dependent cases [2], a full coupling in-between elastic and thermal analysis in 
terms of coupled problem is still to be performed also in terms of uncertainty in temperature 
affecting all material and physical characteristics in terms of coupled analyses. A little bit 
separate problem is an identification of all material characteristics for the hyperelastic solid 
that needs more material constants than their elastic counterpart; the statistical point of view 
seems to be quite natural in this context [3], even accounting for the neural networks em-
ployed to provide such an identification [4]. Deterministic constitutive models in the area of 
hyperelasticity relevant to the rubber-like materials are quite well known and systematically 
documented. They include the Neo-Hooekan [5], Mooney-Rivlin [6], Ogden [7], Yeoh [8], 
Gent [9], Arruda-Boyce [10] as well as the very recent so-called extended tube model [11] 
resulting from molecular statistical-mechanical approach for rubber networks provided by 
Henrich and Kaliske. They have some Finite Element Method implementations and applica-
tions [11] that concern only an entirely deterministic case; even for a composite made of par-
ticle-reinforced rubber [12]. Probabilistic counterparts of nonlinear material models [13] are 
definitely less known and not systematically worked out [14] (some exceptional Monte-Carlo 
simulations are available but they return only quantitative results), so that such a systematic 
extension would be necessary. The very important aspect is that the aforementioned theories 
of hyperelastic behavior contain various numbers of material parameters, so that their compar-
isons in terms of material uncertainty will not be so straightforward as in linear elastic case; 
such a study needs definitely more experimental work and theoretical assumptions than before. 

The main objective of this work is application of the iterative generalized stochastic 10th 
order perturbation technique [15] implemented together with the Finite Element Method 
[16, 17, 18] to calculate the first four probabilistic characteristics of the ultimate vertical dis-
placement and the corresponding Huber-Mises stress for the three-point bended hyperelastic 
beam. This study is undertaken to analyze the hyperelastic material with Mullins effect sub-
jected to large deformations in a large-strain non-linear analysis with a complex contact prop-
erties and stabilization of computation. This example is also focused on numerical error 
determination of the FEM solution for various 3D brick finite elements and an increasing dis-
cretization density; it is also concentrated on a sensitivity analysis of the ultimate vertical dis-
placement and the corresponding Huber-Mises stress in addition to the magnitude of 
an external vertical load. Probabilistic considerations included in this work are based on 
the Weighted Least Squares Method (WLSM) with the polynomial basis, whose order is sta-
tistically optimized and relates the displacement and stress with the uncertain external load. 
These optimal polynomials are then used in the iterative perturbation-based SFEM, Monte-
Carlo and semi-analytical integration technique in order to determine expectations, coeffi-
cients of variation, skewness and kurtoses of the vertical deflections and the corresponding 
stresses in the function of the input coefficient of variation. Such a study is carried out to de-
termine accuracy of the iterative perturbation method in analyses of hyperelastic materials and 
to check the probabilistic properties of the output variables, i.e. the ultimate vertical deflec-
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tions and the corresponding Huber-Mises stresses. Such iterative generalized Stochastic Per-
turbation (SPT) method is applied here since it yields more accurate results than the classical 
SPT, including the negative and mixed moment terms that are absent in the linearized version. 
The input random parameter is chosen here as an external load in a form of the uniform pres-
sure, whose Probability Density Function (PDF) is Gaussian. Such a parameter has been cho-
sen here, since it is one of the most unpredictable variables included in the model. It usually 
cannot be exactly calculated in real structures and it varies non-monotonously with large time 
variations and its underestimation may certainly cause an overall failure. This is the case of 
civil engineering structures, machinery, vehicles or aircrafts. This work serves as a prelimi-
nary study for further expansion towards experimentally-calibrated hyperelastic material 
model probabilistic analysis based on a crack initiation or rubber softening. 

2 HYPERELASTIC MATERIAL MODEL 

Let us consider the total strain energy U  in some material, which is defined as 

    ,el
dev i volU U U J   (1)

where devU  stands for the deviatioric part of the strain energy and volU  for the volumetric part 

of this energy. The Yeoh material definition defines these variables in a following way 

     2 3

10 1 20 1 30 1( 3) 3 3dev iU C I C I C I        (2)

and 

       2 4 6

1 2 3

1 1 1
1 1 1 ,el el el el

volU J J J J
D D D

       (3)

in which ioC  and iD  are temperature-dependent material parameters, 1I  stand for the first de-

viatioric strain invariant defined as 2 2 2
1 1 2 3I       and where the stretches i  are defined 

as 
1

3 .i iJ 


  J  stands here for the total volume ratio and i  are the principal stretches. 

The initial shear modulus and bulk modulus are given as 0 10 0 12 , 2 / .C K D    

When a thermal dependence is taken into consideration, the elastic volume ratio elJ  relates the 
total volume ratio J  and the thermal volume ratio thJ  in a following manner / ,el thJ J J  

where  3
1 .th thJ    th  stands for the linear thermal expansion strain obtained from the 

temperature and the isotropic thermal expansion coefficient; it is not considered here. 
The augmented Mullins effect strain energy density function applied in this study is fol-

lowing 

      ,el
dev i volU U U J      (4)

where the damage variable   is defined as 

1
1

m
dev dev

m
dev

U U
erf

r m U



 

    
 (5)
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and the damage function is adopted here as 

     
1

, 1 ,
n

n m
dev devf U d U        (6)

which on the primary path 1   and satisfying the requirement  1 0   can be expressed as  

      1' 1 .m m
dev devm U erf r U        (7)

The variables ,r   and m all denote the input material constants, the first two of which are 
dimensionless and the latter has dimensions of energy. The error function erf  used in this 

definition is defined as    22
exp

x

o

erf x w dw


   and the function  , n
devf U  can be fur-

ther expressed as    , '( ) ' 1 .m m m
dev dev dev dev devf U U U U U          Fundamental proper-

ties of this damage function are that (a) when ,m
dev devU U  then it corresponds to a point on 

the primary curve and 1.0   (b)   attains its minimum value m  upon complete removal of 

deformation, i.e. when 0devU   and (c) in all other cases   varies monotonously from m  to 

1.0. 

3 COMPUTATIONAL EXPERIMENTS AND DISCUSSION 

3.1 Computational model 

A computational model applied in this study consists of three elements, the 10 m long hy-
perelastic beam with section of 1.5 m x 1 m, the support cylinders with diameter of 1.2 m and 
a 0.3 m deep loading plate having section of 1 m x 1 m (Fig. 1). The beam is supported on the 
two cylinders placed on each side of the beam and loaded with various magnitude of pressure 
of 1p Pa  mean value, which is applied on the upper surface of the centrally placed plate. 
The static scheme of three-point bending is applied here firstly because it is a usual scheme 
used in laboratory tests, secondly since such loading is common in various applications of cy-
clically loaded parts and finally as it creates regions dominated by bending and shear. Both, 
an upper loading plate and the cylinders are deformable and much stiffer than the beam with 
elastic parameters set as Young modulus 10E GPa  and Poisson ratio 0.3.   The hypere-
lastic beam has a complex material definition of the Yeoh model with the following parame-
ters: 10 20 301.326, 0.326, 0.1319,C C C     1 2 30.000725, 0, 0,D D D   whose Mullins 

effect has the following parameters: 1.1, 100, 0.1.r m     This ensures a hyperelastic be-
havior and cyclic softening of the beam. A connection between the elements is assured by 
a hard contact in the normal direction enforced by the penalty method and a penalty-driven 
tangential contact behavior with a friction coefficient of 0.99   for the cylinders- and of 

0.8   for the plate-beam boundary; the slippage of the beam from the cylinders is prevented 
by tying its outer edges to the cylinder surface. A possibility of separation of the model ele-
ments after an initial and repeated contact is allowed here (surfaces are not tied after the con-
tact). In order to keep the mechanical boundary conditions for a three-point loading, bases of 
the cylinders are fully restrained (no displacement or rotation allowed) and the loading plate 
has only the vertical displacement degree of freedom (dof) active; it further supports a sym-
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metry of the loading. Additionally, the beam is divided into 8 cells to shorten the surface 
length of both contacts, which speeds up numerical analysis. 

Figure 1: FEM model of the beam. 

Computational model and numerical experiments are provided both in the FEM system 
ABAQUS with a series of beam loadings for the ultimate vertical displacement and the corre-
sponding Huber-Mises stress of the beam. The elements are meshed with 104 397 reduced 
(stress) integration linear brick finite elements (C3D8R) giving a total of 418 602 independent 
variables (Fig. 2); the entire beam element additionally has a hybrid definition of elements of 
type C3D8HR, which deal with a full (or nearly full) incompressibility of this FEM domain. 
The type and amount of elements is selected to obtain the best possible quality of results for 
an acceptable computational effort via the error analysis of computational simulations pre-
sented in Fig. 4 and, separately, by a sensitivity analysis of the resulting displacements and 
the corresponding stress available in Fig. 5. Numerical computations include a material and 
contact non-linearity and are based on the non-linear theory of large strains. Completion of 
each simulation requires partitioning to 40-150 steps, each calculated on the basis of the result 
of the previous one (usually consisting of 2-16 iterations); this is a main reason for the lower 
amount of the Finite Elements (FEs) than in the single-step linear-elastic computations. Re-
sults of these analyses (in a form of the stress mapped on a deformed shape of the beam) show 
large symmetric deformations of a thick beam with also symmetric stress map – a typical 
work range of usual hyperelastic (rubber) materials. Predictably, the stress pattern is symmet-
ric and the highest near the bottom of the beam; there also exist particular stress concentra-
tions nearby the cylindrical supports and on each side of the loading plate. The stress 
concentrations on the support edges of the beam are disregarded in this study since they are 
rather enforced by the tied internal conditions and would differ for the exact type of the slip-
page-preventing support applied in the experiments. 
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Figure 2: The finest mesh of the beam. 

 
 

Figure 3: Map of the reduced stress plotted on deformed configuration of the beam under bending. 

3.2 Computational error and sensitivity analysis  

Within the error study, three types of FEs are used, i.e. the reduced integration linear brick 
C3D8R, the incompatible modes linear brick C3D8I and the reduced integration quadratic 
brick C3D20R; due to incompressibility of the material, the beam is discretized here always 
with the hybrid finite elements (C3D8RH, C3D8IH, C3D20RH). These particular types of 
elements are chosen after their best performance range, which for the linear reduced elements 
is large distortion in bending, for the incompatible modes – bending and for the second-order 
(quadratic) elements with reduced integrations - nonlinearity; all the above phenomena take 
place in this analysis and therefore such an error and performance study seems to be profitable 
here. An error graph presented in Fig. 4 firstly shows the very good convergence of results 
and a small error  rE n  for all the discretization densities applied, which never crosses 3% 

and is as small as 0.15% for the higher amount n  of the FEs. The smoothness of convergence 
is not so evident, as in the linear analyses [20], but an overall reduction of the error together 
with an increase in the FEs amount is still clear. When an influence of material and contact 
non-linearities as well as occurrence of large strain theory is taken into consideration, this re-
sult is more than satisfactory. A secondary observable is, that in this particular case the com-
putations of quadratic elements have a very low convergence and, additionally, that not all of 
the computations lead to the final result – some particular distributions of the elements are 
stuck in various points of the analysis. Basing on this (C3D8I brings no additional variation), 
the standard C3D8R elements are chosen for the further analysis. Please note, that the compu-
tational effort for the quadratic FEs is much higher than for the linear ones of the identical 
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amount and, therefore, Fig. 4 cannot serve for the final evaluation of time-performance of the-
se methods. 

Figure 4: Computational error of the Finite Element Method results. 

Sensitivity coefficients  S p  of both ultimate vertical deformations and the corresponding 

stresses are computed by 11 separate simulations in 20% neighborhood of the mean external 
load, which ranges from 0.9 Pa till 1.1 Pa, via a direct algebraic differentiation based on the 
additional response functions (Fig. 5). These sensitivities are quite naturally all positive, since 
the increase of the external load should also increase both the ultimate vertical displacement 
and also its corresponding reduced stress. The Huber-Mises stress is much more sensitive to 
the fluctuations in an external load but has smaller curvature than the sensitivity of displace-
ment in this particular load region. 

Figure 5: Sensitivity coefficients for the ultimate deformation and the corresponding von Mises stress. 
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3.3 Probabilistic analysis 

The probabilistic computations are all carried out in the symbolic system MAPLE and are 
focused firstly on a determination of the optimum order of the response function of the 
WLSM (Tab. 1), which is then used in the main computation of the probabilistic characteris-
tics based on the ultimate displacements and the corresponding Huber-Mises stresses. 
The procedure of calculation of these characteristics consists of (a) integration of the response 
function together with the Gaussian PDF in a semi-analytical method, (b) its insertion into the 
2nd, 4th and 6th (only for the stresses) order Taylor expansions in stochastic perturbation-based 
approach and (c) its sampling in a discrete Monte-Carlo analysis (with 500 000 random trials) 
for an increasing value of the input coefficient of variation ( ).p  The characteristics calculat-
ed in this manner include the expectation (Fig. 6), the coefficient of variation (Fig. 7), the 
skewness (Fig. 8) and the kurtosis (Fig. 9). The Least Squares Method is used here in its 
weighted form and non-linear version with a weighting scheme similar to the Dirac function – 
[1,1,1,1,1,10,1,1,1,1,1] – making the influence of the mean value equivalently important as 
the remaining test results. Maximization of the optimal polynomial order is done via simulta-
neous maximization of the correlation and minimization of the variance of the WLSM and the 
RMS error. The total number of WLSM increments equals 20 in this study and the chosen 
polynomial order is 4th for the displacement and 5th for the stress. The resulting parameters 
used in the optimization process are well illustrated in Tab. 1 and correlate the subsequent re-
sults with the polynomial order; all the beneath given probabilistic results (Figs 6-9) consecu-
tively show the characteristics of the ultimate vertical displacements on the left and of the 
corresponding reduced (Huber-Mises) stresses on the right side. The input uncertain parame-
ter – an external load p  – varies in 20% neighborhood of the mean value of 1 Pa with 11 dis-

crete values of  0.90, 0.92, ... ,1.00, ... ,1.10 .p  

Variable Vertical deformation Huber-Mises stress 

Parameter Correlation Variance 
RMS 
error 

Correlation Variance 
RMS 
error 

P
ol

yn
om

ia
l o

rd
er

 

10 0.986783 6.54E+04 3.87E+10 -0.988917 5.94E+04 2.73E+10 

9 0.99122 2.59E+03 5.39E+07 -0.985964 2.76E+02 3.88E+06 

8 -0.99389 6.80E+01 1.27E+04 -0.999826 1.78E+01 8.21E+03 

7 -0.964519 3.55E-01 2.04E+00 0.999923 1.21E-02 5.70E-03 

6 0.999816 1.11E-02 5.26E-04 0.999951 2.66E-03 3.64E-05 

5 0.999807 1.68E-03 1.02E-05 0.999952 1.04E-03 1.34E-06 

4 0.999468 2.70E-03 7.94E-06 0.999891 1.25E-03 1.70E-06 

3 0.999405 2.85E-03 8.94E-06 0.999884 1.30E-03 1.84E-06 

2 0.99539 8.00E-03 7.04E-05 0.998737 4.29E-03 2.03E-05 

1 0.999449 1.29E-01 1.83E-02 0.99989 7.63E-02 6.38E-03 

Table 1: Weighted Least Squares Method optimization results for a Dirac type of weights. 

The expectations of the output variables both are a little decreasing in a concave manner 
together with an increase of the uncertainty. Additionally, they both have a horizontal asymp-
tote approached at the zero uncertainty, for which they obviously must return the exact results 
obtained in the computational FEM experiments. These output functions are continuous, 
smooth and with no local inflections or discontinuities. The 2nd order (based on the first two 
Taylor expansions) perturbation-based approach returns here a little divergent results and is 
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valid only for  ( ) 0.00, 0.05 ,p   but as long as the higher order is applied, all the three sep-

arate methods yield exactly the same output. 

Figure 6: Expected values of  
a) the ultimate deflection and b) the corresponding Huber-Mises stress 

 of the beam subjected to three-point bending with respect to the uncertainty in the external load. 

The resulting coefficients of variation (Fig. 7) of both output variables are always increas-
ing in the concave manner while staying lower than the input uncertainty. The differences 
come (a) in the curvature, which is much higher for the displacement than for the stress, (b) in 
the magnitude, a little smaller for the displacements, and (c) in the agreement of the probabil-
istic methods, being perfect for the case of the stress and not so ideal for the displacement 
based coefficient of variation. Predictably, the 4th order stochastic perturbation is much better 
correlating with the other results - up to ( ) 0.12,p  while the 2nd order – only to 

( ) 0.07;p   the 6th order, available only for the stress-based characteristics, is precise for all 
the considered uncertainty range. 

The higher order probabilistic characteristics (Figs 8-9) are generally less convergent than 
the previous ones. In this case not only the perturbation-based approach yields different re-
sults, but also correlation of the Monte-Carlo and semi-analytical outputs is not perfect, espe-
cially for the kurtosis based on the reduced stress. The 4th order perturbation-based approach 
quite early diverges – at  ( ) 0.03, 0.06 ,p  the 6th order is much better here – it diverges on-

ly at ( ) 0.13.p   Nevertheless, these higher characteristics are all smooth and without dis-
continuities. The 2nd order analysis disallows consideration of these higher order 
characteristics, since it simply vanishes. The Skewness is all negative with a rather concave 
manner and a small magnitude comparable for the both output characteristics. This means that 
both PDFs are increasingly leaning to the right side with an increase in uncertainty. Kur-
toses are either only negative with an exponential manner (based on the displacement) or 
positive with a concave-convex curvature and an apparent inflection point at   0.085p   

(based on the stress). Since both, the kurtosis and skewness are quite close to zero, distribu-
tions of both output parameters have PDFs close, but still diverging from the normal (Gaussi-
an) distribution for the entire uncertainty range considered here. 
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Figure 7: Coefficients of variation of  
a) the ultimate deflection and b) the corresponding Huber-Mises stress 

 of the beam subjected to three-point bending with respect to the uncertainty in the external load. 

  

Figure 8: Skewness of  
a) the ultimate deflection and b) the corresponding Huber-Mises stress 

 of the beam subjected to three-point bending with respect to the uncertainty in the external load. 
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Figure 9: Kurtoses of  
a) the ultimate deflection and b) the corresponding Huber-Mises stress 

 of the beam subjected to three-point bending with respect to the uncertainty in the external load. 

4 CONCLUSIONS 

This study reports calculation of the first four probabilistic characteristics of the ultimate 
displacements and the corresponding Huber-Mises stresses based on an input uncertain varia-
ble of the external load. The output variables are computed for the three-point bended hypere-
lastic beam with a Yeoh definition of material, additionally augmented by the Mullins effect. 
An analysis not only uses a novel iterative stochastic perturbation technique, but also connects 
it with a hyperelastic material in a large-strain non-linear numerical simulation. The nonline-
arities come from the material, contact and constitutive relation. A further extension of this 
study may include (a) correlation of the material characteristics with experimental results, (b) 
incorporation of the fracture model in the hyperelastic material definition and (c) sequential or 
full coupling of this study with temperature analysis; such coupling is important here because 
the deformation process of elastomers is exothermic and their mechanical properties depend 
on temperature already in the typical environmental conditions. 

Numerical analysis clearly shows that the computational error is quite small for the entire 
range of the FEs amount and that the preferable brick element type is C3D8R, which has a 
relatively high precision and provides the highest convergence for a moderate computational 
effort. The minimum amount of elements used in such study should generally exceed 60 000 
elements, since the complex support and material definitions are susceptible to the discretiza-
tion density. The resulting displacements range here from 3.22 m to 3.48 m and the Huber-
Mises stresses - 2.42 Pa to 2.69 Pa for the external load in form of pressure of 0.9 Pa to 1.1 Pa. 
Both, the stress and the strain obtained here is much below the rupture limit for elastomers, 
but it certainly belongs to large deformations. Sensitivities of the displacement and Huber-
Mises stress to the change in an external load are all positive and much higher for the reduced 
stress. Probabilistic considerations show a relatively good correspondence in-between differ-
ent techniques and, predictably, an increasing correlation of the stochastic perturbation-based 
technique together with an increase of the length of the proposed Taylor expansion. The 6th 
order expansion is already almost perfectly agreeing with the remaining methods with an ex-
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ception of the kurtoses higher than ( ) 0.12,p   where it slightly diverges. It should be, how-
ever, noted that this order of expansion is available only for the stresses, whose optimal re-
sponse polynomial has a higher order than the one for the displacements. The probabilistic 
distributions of the state variables may generally be considered here as close to Gaussian, 
since both the Kurtosis and Skewness are quite close to zero. Nevertheless, such an assump-
tion should rather be exceptional. 
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Abstract. In the context of integrating uncertainty and variability in Finite Element (FE) mod-
els, several advanced techniques for taking both inter- (between nominally identical parts) and
intra-variability (spatial variability within one part) into account have recently been introduced.
In the framework of non-probabilistic variability, especially the theory of Interval Fields (IF)
has been proven to show promising results. Following this approach, variability in the input pa-
rameters of the FE model is introduced as the superposition of a number of base vectors scaled
by interval factors. Application of the IF concept however requires identification of these pa-
rameters. Recent work has focused on the identification of interval uncertainty for the case of
inter-variability. However, to the knowledge of the authors, no such techniques for identifying
interval intra-variability are present in literature.

This work focuses on finding a solution to the inverse problem, where the variability on
the output side of the model is known from measurement data, but the spatial uncertainty on the
input parameters is unknown. This paper proposes a methodology to solve this inverse problem.
The uncertain simulation space, created by propagating an interval field throughout an FE
model, is modelled using its convex hull. The same concept is used to model the uncertainty
in the measurement space. A metric to describe the discrepancy between these convex hulls,
based on the difference of their volumes and overlap, is defined and minimised in order to
identify the spatial variability on the input side of the model. Validation of the methodology is
performed using simulated measurement data. It is shown that numerically exact identification
of a simulated measured IF is possible following the proposed methodology.
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1 INTRODUCTION

During the last decades, the incorporation of non-determinism in Finite Element (FE) sim-
ulations received wide acceptance among academia and the industry for taking uncertainties
that are omnipresent in our everyday life, already into account in an early design phase [1].
Especially for these design purposes, the study of inter-variability (variability between different
nominal identical products) as well as intra-variability (variability of model properties within a
single component, also referred to as ’spatial variability’) proves to be extremely valuable. In
this context, non-probabilistic approaches such as Interval Finite Elements (IFE) or Fuzzy Fi-
nite Elements (FFE) were introduced, where the uncertainty is depicted as an interval or fuzzy
set and thus propagated. In the IFE concept, the uncertainty is modelled as two crisp bounds on
the variable between which all possible values lie, and thus propagated. The FFE concept is an
extension to this principle, where the membership of a variable to an interval is considered as a
continuous function, ranging from 0 (the variable is certainly no part of the interval) to 1 (the
variable lies for sure in the interval). [2–5].

In the specific case of spatial uncertainty for the description of intra-variability, two ex-
treme methodologies for the representation of the spatial character of the uncertainty are usu-
ally adopted [6, 7]. The first method consists of defining a single interval to represent a spatial
varying parameter for the entire model, assuming it is homogeneous throughout the modelled
geometry. The second method considers one interval per individual element in the FE model,
neglecting all possible dependency throughout the model. The former method poses a serious
underestimation of the complexity of the spatial nature of the uncertainty; the latter gives rise
to physically infeasible realizations of the uncertainty throughout the model. Moreover, by
neglecting all possible dependency, the numerical cost of evaluating the model increases dras-
tically due to the high dimensionality of the input space. As a solution to this, the framework
of Interval Fields (IF) was recently introduced [6–8]. The Interval Field concept is based on
the superposition of nb base vectors ,ψi, which represent a set of spatial uncertainty patterns,
scaled by independent interval factors αI

i , which cover the uncertainty.
Despite the current availability of these very advanced techniques for the uncertainty propa-

gation, the use of representative measurement data to quantify the input uncertainty of FE analy-
ses remains nowadays the major challenge. Especially for a designer who is facing a substantial
(and often beforehand unknown) variability in the realisation of his design, this knowledge is
indispensable when creating reliable products. In literature, some techniques are available to
improve the quality of non-deterministic analyses (see e.g., [9–11]). Techniques for updating
IFE and FFE models on experimental data were introduced only very recently, based on the
minimization of the difference between the extreme boundaries on simulation and measure-
ment data. Haag et al. introduced in this context an inverse methodology for the identification
of the parameters of FFE models [12]. Khodaparast et al. employed a Kriging predictor as
a meta-model for the updating of interval [13] and fuzzy [14] finite element models. Erdogan
and Bakir used a hybrid combination of a Genetic Algorithm and Particle Swarm as updating
scheme in the context of the identification of uncertainty in Fuzzy Finite Element models [15].
Fedele et al. used an adjoint-based optimisation technique to estimate the bounds of a model
parameter, based on uncertain raw measurements [16]. They handled overestimation of the in-
terval width using the inclusion isotonicity property of interval arithmetic. Finally, Fang et al.
employed interval response surface models for the inverse propagation of the interval uncer-
tainty [17]. The proposed techniques however are incapable of dealing with spatially varying
uncertainty, due to the assumption of homogeneity of the uncertainty throughout the model.
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It is clear that in order to be representative for the actual intra-variability present in the
final components, the Interval Field concept needs an accurate quantification of the driving
parameters: the base vectors and interval factors for IF. In the specific case of elastostatic me-
chanical properties, this quantification is impossible to attain following traditional experimental
approaches such as uniaxial tensile tests. This paper therefore focuses on the identification of
the spatial uncertainty on the input parameters of an FE model following an inverse approach.
The variability in the measurement data is represented as the convex hull in q-dimensions of the
complete set of measurement replica. Identification is performed, based on the minimisation of
the variability in the simulation output and this convex hull following an Interior-point minimi-
sation scheme. The concept is demonstrated for Interval FE models, but is easily extendable
to Fuzzy FE models. Simulated measurement data are used for demonstrating the developed
principles.

2 The Interval Finite Element method

The goal of an Interval FE calculation is to find the bounds on the uncertainty in a general
multidimensional result y of an FE calculation f(), based on an interval description of the uncer-
tainty in a number of physical properties γI, which are defined as parameters on the input side
of the model. Formally, the uncertainty space ỹ on the output side of an interval FE calculation
is defined as:

ỹ =
{

y|y = f(γ) ∧ γ ∈ γI} (1)

By definition, an interval parameter x is indicated using superscript I: xI . Vectors are ex-
pressed as lowercase boldface characters x, whereas matrices are depicted as uppercase boldface
characters X. Usually, yI is calculated following an optimisation approach, where the extreme
responses of each dimension y

i
and yi are determined by searching the domain, defined by γI

[3]:

y
i
= min

γ∈γI
fi(γ) i = 1, ..., d

yi = max
γ∈γI

fi(γ) i = 1, ..., d
(2)

Herein, yIi = [y
i
; yi] is the result interval scalar for the ith node of the model. Solution of

eq. (2) returns the smallest hypercubic approximation yI of the uncertainty in the solution set ỹ.
For the remainder of the text, interval parameters are either represented using the bounds of the
interval xI = {x, x} or the centerpoint x̂ = x+x

2
and interval radius rx = x−x

2
.

In the case of spatial interval uncertainty, the input of the IFE model is given as an Interval
Field (IF) γI

F(r). The description of an IF is based on the superposition of nb base vectors ψi,
which represent a set of spatial uncertainty patterns, scaled by independent interval scalars αI

i ,
which cover the uncertainty. In this way the dependency between locally defined intervals is
given by the base vectors, while the local intervals themselves remain independent. Moreover,
the dimensionality of the input space is reduced drastically as compared to defining a local
interval for each node of the model. This favours the numerical cost of an evaluation of the
IF FE model. Formally, an interval field for the description of spatial uncertainty in the input
parameters γI

F(r) is expressed in the explicit form as:

γI
F(r) =

nb∑
i=1

αI
iψi(r) (3)
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3 Identification of interval fields

The application of the interval field approach for the representation of spatial uncertainty
requires the identification of its constituting parameters. The methodology starts from the expert
knowledge of the analyst on the amount and shape of the base functions necessary to represent
the interval field at the input side of the model and incorporates measurement data to identify
the amount of uncertainty, which is captured by the interval vector αI .

The propagation of the uncertainty in the physical parameters γI
F(r) of an FE model typi-

cally yields a d-dimensional uncertainty space ỹ, of which Ys ∈ Rd×q is the matrix containing
all q propagated realisations of γI

F(r). In the context of identifying the input interval field, a
quantification of Ys is necessary to steer the updating procedure. Therefore its convex hull Cs

and corresponding volume Vs are calculated. In general, the convex hull of a finite set of vectors
in Euclidean space is defined as the set of all convex combinations of these vectors. It may also
be shown that the convex hull is the smallest possible convex set, encompassing the vectors
in Ys. The uncertainty space, spanned by the computed realizations in Ys, may contain any
combination of output quantities, ranging from nodal output quantities such as displacements,
stresses or temperatures to global quantities such as eigenfrequencies and -modes.

The measurement data are obtained trough an experimental procedure where the model is
physically tested in analogy to the FE model under consideration. The scattered measurement
points, having the same dimensionality d as ỹ, are grouped in Ym ∈ Rd×t, with t the number
of test replica. In general, the dimensionality of the experimental and simulation data is not
identical. However, through the usage of data interpolation for the measurement data or model
reduction techniques for the simulation model, this condition can be achieved. Analogous to
the simulation data, the convex hull Cm and its corresponding volume Vm are calculated. The
QHULL library is used to compute the convex hulls. This library makes use of the ”Quickhull”
algorithm, as developed by Barber et. al [18].

Identification of αI is made through the minimisation of a cost function δ(αI), expressing
the discrepancy between the output space of the IFE simulation Ys and repeated measurement
data Ym. δ(αI) is calculated, based on the geometrical properties of the d-dimensional convex
hulls Cm and Cs. More specifically, the difference between the volumes Vm and Vs of the
respective hulls and the volume Vo of the intersection Co of Cm and Cs is taken into account.
Due to the convexity of Cm and Cs, Co is also convex. When there is no overlap (i.e. Co = ∅)
present between Cm and Cs, a descent direction for the optimisation problem is ensured by
incorporating the squaredL2 norm of the difference between the center of gravity of respectively
Cm (cm) and Cs (cs). Formally, δ(αI) is defined as:

δ(αI) =

((
1− Vs

Vm

)2

+

(
1− Vo

Vm

)2

+ ‖cm − cs‖22

)1/2

(4)

The goal interval vector αI,∗ is finally identified according to:

αI,∗ = argmin δ(αI) (5)

4 VALIDATION

Validation the developed methodology is performed using a dynamic model of a 1-dimensional
cantilever beam, shown in figure 1. A finite element model containing 10 quadratic shell ele-
ments with 4 nodes is constructed and evaluated for the first 10 eigenfrequencies fe. Without
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the loss of generality, it is assumed that the stiffness of the beam is subjected to spatial uncer-
tainty, which is modelled using the Interval Field concept, with r1 = 2 and r2 = 7, with locally
defined intervals αI

1 and αI
2 capturing the uncertainty. Hyperbolic base functions ψi(r) are

assumed, which are known a priori. This leads to a simulation space Ys ∈ Rq×d, with d = 10.
In this specific case, the Interval Field FE model is solved using the vertex method, leading to
q = 22 = 4 realisations of the simulation space.

Figure 1: Illustration of the Finite-Element model of the cantilever beam on which the method-
ology is validated. r indicates the positive direction along the beam, the numbers in the finite
elements indicate the element numbers.

For benchmarking purposes, measurement data is simulated using an a priori defined interval
field, based on known local intervals αI ∈ IR2, located at r1 and r2. Concretely, the goal local
intervals are defined as αI

1 = [1.35e6; 1.55e6] and αI
2 = [1.65e6; 1.85e6].

The measurement space Ym ∈ Rt×d is generated by performing t = 500 Monte Carlo
simulations, while assuming a uniform distribution between the extreme boundaries of the local
intervals αI . Thus, 500 deterministic fields on the stiffness are solved for the first 10 fe, in
order to construct the 10-dimensional measurement space.

The results of the identification procedure are shown in table 1. It can be seen that the
proposed methodology is capable of determining the goal interval field, with a local maximum
error of 0.042%. This error could be improved by tightening the convergence criteria on the
optimization process or propagating more Monte Carlo samples for the representation of the
measurement data. However, because it is already negligible, it can be defined as numerically
exact. The error listed in table 1 is defined as:

Table 1: Results of the identification procedure on an Interval Field capturing the spatial vari-
ability in the cantilever beam example.

αI
1 [Pa] αI

1 [Pa] αI
2 [Pa] αI

2 [Pa]
Goal 1.35 · 106 1.65 · 106 1.55 · 106 1.85 · 106
Initial 1.00 · 106 1.1 · 106 1.81 · 106 2.30 · 106
Initial error (%) 15.5% 35.5% 9.7% 24.3%
Result 1.356 · 106 1.652 · 106 1.554 · 106 1.849 · 106
Error (%) 0.042% 0.025% 0.001% 0.007%

Figure 2 shows the convergence plots. Absolute convergence is obtained after 37 iterations
of the optimization process, whereas the locally defined input intervals do not change signifi-
cantly after 22 iterations. The discrepancy metric δ, defined in equation 4 decreases over the
optimization from 8.99 to 0.017.
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Figure 2: Convergence of the updating procedure. As can be noted, convergence is approxi-
mately obtained after 20 iterations. Absolute convergence is only obtained after 37 iterations.

Finally, figure 3 shows a selection of the convex hull over 4 sets of eigenfrequencies before
and after the updating procedure. The accurate identification of the interval field encompassing
the measurement data is also evident from these plots.
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Figure 3: Illustration of the extreme realizations of the input field γI
F (r) before and after iden-

tification, as well as the goal input field as a function of the element number.
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5 CONCLUSIONS AND FUTURE WORK

In order to represent spatial uncertainty in the physical model parameters constituting the
input of a Finite Element (FE) model, the Interval Field theorem proves to deliver accurate
results with a limited set of data. The use of this concept however, requires the identification of
its driving parameters, the interval factor αI and a number nb of base vectors ψi(r). A general
methodology to identify αI , based on the incorporation of measurement data was introduced.
The concept of the identification is based on the convex properties of the uncertainty space,
stemming from propagating the input interval field through the interval FE solver on the one
hand, and the calculation of the convex hull of the measurement data on the other hand. A
measure of discrepancy is defined, and identification is performed by minimising this measure.

The methodology was validated on an industrially sized case study of an axisymmetric model
of a pressure vessel using simulated measurement data. It was found that αI could be identified
up to numerically exact, using the proposed methodology, within a limited number of iterations.

Future work will be aimed at extending the developed methodology towards the identification
of base vectors ψi(r) and dimensionality of input space nb, based on the defined discrepancy
measure. Also techniques for the reduction of the output dimensionality will be considered
for speeding up the updating process. Finally, also the incorporation of real life measurement
data, e.g. coming from full-field strain measurement techniques for elastostatic applications or
eigenfrequencies for structural dynamic applications is foreseen in the near future.
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Abstract. Deterministic optimisations result in optimum designs for the specified load case 

but in unstable designs when load cases change. Limitations or uncertainties have to be taken 

into account leading in design optimisations which will then be insensitive to small 

fluctuations of geometric or input parameters. Such a stochastic analysis is often referred to 

as robust design optimisation.  

This paper presents a Robust Design Optimisation for the illustrative example of a 

cylindrical metal crash tube. The goal of the optimisation is to attain a crash structure which 

is insensitive to small fluctuations in the magnitude of the crash load, the direction of the 

velocity, as well as the mass of the impactor. The tilting of the impactor is modelled with a 

stochastic approach. The geometry of the crash tube shall be insensitive to uncertainties by 

optimising the wall thickness and by introducing beadings into the tube. Robust design 

optimisation was conducted with LS-OPT, combining ALTAIR HYPERMORPH for small 

geometrical adaptions and LS-DYNA for finite element method simulations. To reduce the 

computational effort, the optimisation is based on metamodels as this allows for mathematical 

optimisation.  

Robust design optimisation allows for results less sensitive to small system fluctuations and 

hence the geometric tube tolerances can be reduced or the field of application (e.g. vehicle 

class) can be increased.  

For the presented crash tube this advantage results in more stable crash results for 

scenarios departing from the standard. This in turn leads to increased safety levels of life 

protection systems. The use of robust design optimisations on the presented crash tube leads 

to geometries being 6% heavier than the ideal optimum results, but being more robust 

towards geometric or load fluctuations. 
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1 INTRODUCTION 

The safety level of automotive industry increases steadily in order to accomplish stringent 

regulations at reduced weight. To attain these targets crash structures have to be refined and 

optimised. These optimisations are mostly performed with deterministic approaches, 

assuming that the optimisation systems behave idealistically. But, as Weigert [1] illustrated 

(figure 1), the input as well as output parameters face fluctuations (blue and greens bars), 

which are neglected by a state-of-the-art deterministic analysis (red dots). Stochastic 

optimisations can be used considering statistical distributions of input and output parameters 

to improve the optimisation and its results. 

 

 

Figure 1: Illustration of a finite element simulation model and its fluctuations of the input values (blue bars) and 

the output values (green bars) which are neglected by a deterministic analysis (red dots) [1] 

Robust Design Optimisation (RDO) is a stochastic optimisation method investigating the 

robustness of components or assemblies. A robust design is not susceptible to small 

fluctuations or uncertainties in the observed system. These uncertainties may occur through 

environment (e.g. ambient temperature), the Finite Element (FE) model (e.g. material 

parameters) or in the sensors and measurements (e.g. measuring errors) [2, 3]. RDO considers 

such uncertainties as noise variables with statistical measures as for example the normal 

distribution of the yield strength. 

The aim of such an RDO is a design which is insensitive to these uncertainties and which 

is ideally leading to a fail-safe system. The influence of the noise variables shall be minimised 

by optimising the control parameters (e.g. the wall thickness, a parameter controllable by the 

design engineer).  

A deterministic optimum is mostly located near the limit given by the constraints. As a 

consequence a deterministic design tends to failure, if small fluctuations occur in the system. 

Therefore a robust design is very important for safety of critical systems. 

The following sections will focus on the process necessary to develop a robust design 

optimisation. Section two deals with the optimisation setup and its methodology. Section 

three presents the FE model, particularly its boundary conditions and loadings, while the forth 

section shows and discusses the results. The final section concludes the present paper. 
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2 OPTIMISATION SETUP AND METHODOLOGY 

As the idea of the robust design originates in Taguchi [4], his methods are widely spread. 

Taguchi’s idea was to reduce the impact of uncertainties in the system rather than to control 

them which is hardly possible. In order to reduce the computational effort the mean value and 

variance of the parameters are then combined into one variable. This simplification is not 

necessary for today’s standards and does not meet the grown demands. Current optimisation 

programmes use the Dual Response Surface Methodology (DRSM) [5], as for example LS-

OPT [6], which was applied in the course of this paper. DRSM uses a response surface for 

both the mean value and the variance. This simplifies the optimisation process and enables 

multi-criteria optimisation, in contrast to the Taguchi approach where detailed information of 

the variables is lost by combining them. 

The robust parameter design method of LS-OPT is a metamodel-based optimisation [7]. A 

metamodel is a surface, describing the systems response. As the metamodel can be analysed 

by mathematical methods, the optimisation is very fast. This can be seen in the timing 

information shown in figure 2. The comparison of clock time shows that the completion of the 

FE simulations needs 75% of the total time, whereas the metamodeling (0.12%) and its 

optimisation (0.22%) needed together 0.34% of the total time.  

 

 

Figure 2: Timing information for a robust design optimisation 

In this paper robust optimisations are presented whose aim is to gain a better performance 

of a crash tube, insensitive to uncertainties in the loading and boundary conditions, through 

introducing beadings to the crash tube and optimising the wall thickness. 

ALTAIR HYPERMORPH [8] was used to introduce beadings into the crash tube. This 

programme allows the morphing of an existing mesh hence enabling small changes of the 

geometry by displacement of nodes. Figure 3a shows the original mesh. The mesh is 

sectioned with morph volumes (green boxes). The red dots are handles which are used to 

change the position of the tube’s nodes (see Figure 3b). The displacement of the tube’s nodes 

can be parameterised. Due to a specific interface between HYPERMORPH and LS-OPT handle 

parameters can be changed by LS-OPT. This enables a fully automated optimisation of the 

mesh within the given boundaries. 

The morphed mesh models are then transferred to the LS-DYNA solver and simulations are 

calculated. Again the input decks are parameterised for an automated optimisation. The setup 

for the FEM simulations will be discussed in the following section. 
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Figure 3: Illustration of the morphing with ALTAIR HYPERMORPH; (a) display of the morph volumes (green 

boxes) and the handles (red dots); (b) illustration of moved handles and morphed mesh 

3 FINITE ELEMENT MODEL 

The basic FE model (Figure 4a) describes a crash tube with a mid-section diameter of 

100 mm, a height of 300 mm and a wall thickness of 3 mm. The mesh of the tube consists of 

quadratic shell elements with an edge length of 10 mm. The tube is fixed in space on a solid 

base plate with a groove to support the tube and prevent it from sideward sliding. The load is 

applied via a top rigid plate, which has an artificial mass of 1.5 tons and a velocity of about 

30 km/h. The present FE model is a fictional example and not based on any standard crash 

procedure. 

The crash tube is modelled as a steel component. The used material is a carbon steel A572 

with a yield strength of 315 MPa and an ultimate strength of 683 MPa. The maximum 

elongation of this material is about 60%. The material data are taken from Varmint [9], due to 

the possibility to absorb the loads without material failure. It would be possible to consider 

material failure, but this would increase the simulation time enormously without further 

information concerning RDO. MAT_PIECEWISE_LINEAR_PLASTICITY was chosen to 

model this material in LS-DYNA. The impactor and the solid plate are modelled as rigid 

components with MAT_RIGID definition.  

The FEM model is parameterised in the wall thickness. The wall thickness is controlled by 

separate parameters for each node over the height of the tube. The parameters for the wall 

thickness can be used to weaken or strengthen the tube through the introduction of beadings. 

The wall thickness and the beadings introduced by HYPERMORPH are the defined control 

parameters, which shall decrease the influence of the noise parameters. 

(a) (b) 
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Figure 4: (a) FE model of crash tube and set up for a RDO (b) crash pattern of the original geometry                

and (c) crash pattern of the robust geometry 

The noise parameters (=fluctuations) are the impactor mass, its velocity in terms of 

magnitude and direction, as well as a small tilting of the impactor. All of the noise parameters 

are described with a Gaussian distribution. The impactors mass has a mean value of 1.5 tons 

with a standard deviation of ±0.1 tons. The normal distribution of the magnitude of the 

velocity is described with a mean value of 8340 mm/s and a standard deviation of ±200 mm/s. 

The direction of the velocity is modified in a spherical coordinate system, where φ describes 

the angle between the x-axis and the projection of the vector on the x-y-plane and ϑ describes 

the angle between the vector and the z-axis. A mean value of 0
o
 and a standard deviation of 

±0.5
o
 build up the normal distribution of ϑ. The angle φ is described with a truncated normal 

distribution with a mean value of 0
o
 and a standard deviation of ±0.5

o
. 

4 RESULTS 

Figure 5 illustrates the force displacements curves of the different optima (solid lines) as 

well as their mean values (dashed lines).The initial tube geometry (black line) has a maximum 

load capacity of 450 kN and an energy absorption of 38 kJ (at a deformation length of about 

160 mm). The deterministic design optimisation (green lines) increases the maximum load 

capacity by 18% to 540 kN by varying the wall thickness and introducing beadings. In 

contrast, the robust design optimisation (blue lines) achieves an increase of 8% to 495 kN for 

the maximum load capacity. The energy absorption is increased by 21% for the deterministic 

design and by 13% for the robust design.  

(a) (b) (c) 
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Figure 5: Force-displacement curves (solid lines) and corresponding mean force values (dashed lines) 

Figure 6 shows the comparison of the beading depth of the robust and the deterministic 

optimum. The beading depth of the deterministic optimum is more pronounced compared to 

the robust optimum (with a difference of about 0.25 mm).  

 
Figure 6: Illustration of the beading depth of the optimised designs compared to the initial design 

Figure 7 compares the resulting wall thicknesses along the height of the tube. The curves 

of the deterministic and the robust design follow similar paths. Nevertheless the maximum 

wall thicknesses vary significantly from 1.2 mm to 4.8 mm in the case of the deterministic 

optimum but only from 1.5 to 4.7 mm in the robust optimum.  

The robust optimum allows for a better resistance against non-standard loads, while the 

deterministic optimum optimises the folding behaviour for the ideal load scenario. 
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Figure 7: Illustration of the wall thickness along the height of the tube 

5 CONCLUSION 

Robust optimisation leads to an optimal design, which is better convertible to real life than 

deterministic designs as being robust against fluctuations. The present paper shows that the 

robust optimum design achieves increased maximum load capacity as well as a better overall 

energy absorption compared to the initial design. However, the optimal deterministic design 

achieves better results for the ideal load case. If there are deviations from the standard 

scenario, the deterministic optimum tends to failure. This happens, because a deterministic 

optimum is very often near the border of the constraints. Consequently a small modification 

of the optimised system may lead to constraint violation and therefore failure of the system.  

Investigations show that the robust design optimisation does not necessarily result in the 

global optimum. It results in a local optimum, which is less sensitive to small system 

fluctuations. As a result the geometric tube tolerances (=process tolerances) can be reduced or 

the field of application (e.g. vehicle class) can be increased. For the presented crash tube, this 

advantage results in more stable crash results for scenarios departing from the standard. This 

in turn leads to increased safety levels of life protection systems. 
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Abstract. In uncertainty quantification, interval arithmetic provides an appropriate procedure
when little knowledge is available on the nature of the probability distribution of uncertain
or imprecise quantities. This commonly occurs in engineering applications due to subjective
knowledge or incomplete availability of test data. Intervals are by definition unable to take into
account dependent input and output quantities, which forces the assumption of independency
when applying them. This is a severe limitation on the accuracy of the analysis as dependency
is always present to some extent. The concept of interval fields (IF) [1] provides a solution by
defining non-deterministic fields using interval parameters. In its simplest form [2], the field
is expressed as a weighted sum of basis functions, the weights being modelled using interval
parameters. The dependency within the field is then captured by the basis functions, which
describe the spatial nature of dependency, whereas the magnitude of uncertainty is captured
by the weights. Field parameters are usually associated to geometric quantities (such as plate
thickness), but they can be applied generally whenever multiple uncertain input or output quan-
tities are involved. Both at the input and output side of a numerical analysis, IF can be used
for a more realistic description of the estimated uncertainty. At the input side, taking into ac-
count dependency reduces overestimation on the output uncertainty bounds. At the output side,
it is important that a realistic uncertain set of output quantities is represented as closely as
possible without adding conservatism, as this corrupts the results of possible postprocessing or
follow-up analysis. The application of IF here provides an important step towards achieving
this goal.

This paper aims to apply IF to analyse structural Finite Element models with uncertain
structural properties. The property of interest in this paper will be the E-modulus. The concept
of IF will be used to model spatial dependency within this parameter and will lead to a more
accurate estimation of the output uncertainty.
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1 INTRODUCTION

1.1 Possibilistic uncertainty analysis

In numerical modelling, Uncertainty Analysis (UA) concerns the identification and quan-
tification of possible sources of uncertainty within a model, with the purpose of obtaining in-
formation on the uncertainty present in the model’s relevant output. In this context, a non-
deterministic approach of the modelling process is essential. Instead of the classical determin-
istic representation of model parameters, non-deterministic concepts are used to open up the
possiblity of representing uncertainty on the parameters. These concepts can be divided in two
groups. Firstly, probabilistic analysis uses probability distributions and stochastic parameters
to assign a finite probability to a parameter having a certain value. Secondly, possiblistic anal-
ysis omits the concept of probability and only concerns the possiblity of a parameter having a
certain value. Intervals, fuzzy numbers and convex regions are commonly used for this pur-
pose. The choice of which approach to follow is usually based on the availability of knowledge
on the uncertainty that is present. The definition of probability functions requires extensive
knowledge on the uncertain parameter of interest. In practise, the Gaussian distribution is often
assumed to estimate the stochastic moments, but the infinite base of this distribution poses a
fundamental objection to this. Also, to accurately estimate stochastic parameters, a lot of exper-
imental data is required. When experimental data is hard or expensive to obtain or their quality
is questionnable, possibilistic analysis becomes an interesting alterative. The interval approach
provides a much lower threshold to perform a non-determistic analysis than the stochastic ap-
proach. Also numerically, experiments can be expensive in terms of computational time, lim-
iting the use of sample based stochastic techniques such as Monte Carlo Sampling. This paper
will focus on the interval approach as basic tool for possibilistic analysis, and apply it in the
context of a structural Finite Element (FE) model.

1.2 Modelling geometric uncertainty

Uncertain parameters in FE models typically have a spatial character: material properties
such as density and Young’s modulus or geometric properties such as plate thicknesses are
geometrically oriented in space. In uncertain context, these parameters can show variability
over the spatial domain, referred to as geometric variability. In FE-models, such a geometric
parameter is discretised to the elements, leading to a set of discrete variables representing that
variable in each element of the model. According to the possibility of geometric variability, the
value in each element can vary separately, leading to different values in each element. However,
some degree of dependency will usually be present and the value in different elements can
not vary independently. Here the interval concept poses a problem. The uncertainty in each
element could be captured by an interval parameter marking the bounds of the variation, but
interval parameters are by definition incapable of incorporating the dependency present in the
spatial domain. To mark the uncertainty present in such field parameters using a possiblistic
technique, the interval field technique can be used as illustrated in equation 1. In its simplest
form, an interval field consists of basis functions φ(r) representing the dependency and interval
coefficients αI representing the uncertainty.

yI(r) =
n∑
i=1

αIφi(r) (1)
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1.3 Dependency in a possibilistic context

For non-deterministic field parameters, a parameter needs to be defined that represents the
level of dependency within the field. In stochastic FE context, as dictated by the theory of
random fields (RF) [3], the correlation length is often used as measure for the dependency in the
spatial domain. In this case, the correlation between values in different points is made a function
of the distance between the points, with the correlation length Lρas governing parameter. The
example of an exponential relationship is given in equation 2.

COV (x(r1), x(r2)) = exp

(
‖r1 − r2‖

Lρ

)
(2)

As correlation is only defined in stochastic context, use of this parameter in possibilistic context
is not straightforward. The authors proposed the use of the maximum gradient as parameter
governing the dependency in the field, as this better fits the possiblistic approach than the corre-
lation. The subject of this paper will be to apply this approach to identify the variability of the
natural frequencies of a steel plate with geometrically varying Young’s modulus.

2 MODELLING THE INPUT UNCERTAINTY: THE LOCAL INTERVAL FIELD DE-
COMPOSITION

2.1 General concept

Referring to [4], the Local Interval Field Decomposition (LIFD) was introduced to incor-
porate the maximum derivative constraint in a 1D non-deterministic field. This decomposition
method puts a radial-based basis function and corresponding interval parameter in each element
of the FE model. Therefore, the dimensionality of the uncertainty is equal to the number of ele-
ments. The reason for this approach is that, regardless of the level of dependency, each element
can (at least partially) determine its own value and as a result, the dimensionality is equal to the
number of elements. However, the issue of the dependency between the elements still stands.
Through the LIFD, the initial interdependent interval set is transformed to an interval set of (at
least) equal size that is independent, while still obeying the maximum derivative constraint. The
following section considers the expansion of the LIFD to 2D non-deterministic fields.

2.2 Derivation of the LIFD in 2 dimensions

Suppose we have a field parameter u(x, y) with x, y the spatial coordinates in a 2D-plane.
We define the gradient ∇u(x, y) and its norm G as:

∇u(x, y) =

(
∂u(x, y)

∂x
,
∂u(x, y)

∂y

)
(3)

G =

√(
∂u(x, y)

∂x

)2

+

(
∂u(x, y)

∂y

)2

(4)

For a certain realisation ũ(x, y), the maximal and minimal value for that specific realisation
are defined as maxx,y ũ(x, y) = u and minx,y ũ(x, y) = u. The LIFD in 2D will write the
non-determistic field u(x, y) as an interval field uI(x, y) in the form of equation 1 that obeys
the following statements:

1. ∀(x̃, ỹ) ∈ Ω : Umin ≤ u(x̃, ỹ) ≤ Umax

6109



Maurice Imholz, Dirk Vandepitte and David Moens

2. ∀(x, y) ∈ Ω :

√(
∂u(x,y)
∂x

)2

+
(
∂u(x,y)
∂y

)2

≤ Gmax

3. ∀ũ(x, y) : u− u ≤ Dmax

The parameters Gmax, Umin, Umax and Dmax can be independently set. The first statement
demands that the absolute bounds on the field parameter Umin and Umax are never exceeded.
The second statement demands that the norm of the gradient never exceeds a preset value.
This statement accounts for the dependency in the field. The third statement puts a bound
on the difference between the maximal and minimal value of any realisation of the interval
field. The objective of the LIFD is to obey the statements using the four governing uncertainty
parameters mentioned above with an explicit interval field description with independent interval
coefficients.

The only freedom we have is the shape of the basis functions. In the 2D-case, the basis
functions have the following properties:

1. All φi are identically shaped radial basis functions.

2. A single φi is positioned at each element at location ri of the FE mesh.

3. All φi are piecewise second order polynomial functions so the first derivatives are contin-
uous.

figure 1 illustrates the shape of a basis function. For a basis function centered at element i
with coordinates xi and yi, the mathematical definition is given by equation 5.

φi(x, y) =


0 R <

√
(x− xi)2 + (y − yi)2

2(r−ri+R)2

R2
R
2
<
√

(x− xi)2 + (y − yi)2 ≤ R

1− 2(r−ri)2
R2 0 ≤

√
(x− xi)2 + (y − yi)2 ≤ R

2

(5)

with r =
√
x2 + y2 and ri =

√
x2
i + y2

i . To comply with all demands, the following explicit
field is proposed:

uI(x, y) = CI +
n∑
i=1

a · 1Ii · φi(x, y, R), (6)

withCI =
〈
C|C

〉
and 1Ii = 〈0|1〉 defined as the unity interval. The four controllable parameters

are C, C, a and R. A unique mapping between these parameters and the four global uncertainty
pararmeters is given by equation 7:

Umax =
7π · a ·R2

24 · dx · dy
+ C

Umin = C

Gmax =
a ·R
dx · dy

Dmax =
7π · a ·R2

24 · dx · dy
(7)
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Figure 1: shape of a 2D radial basis function. Beyond a radius R from the center point, the basis function equals
zero.
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Figure 2: Illustration how dummy points are added beyond the physical domain to keep the maximum gradient
constraint valid close to the edges.

With these relations, the four global uncertainty parameters can be independently set, leading
to a unique field definition as in equation 6.

To ensure the maximum gradient constraint is kept over the entire domain, an adjustment is
needed close to the edge of the domain. For points that lie within a distance R from a domain
edge, the maximum constraint does not hold, because fewer basis functions have an effect in
these points, leading to a smaller interval on the gradient in these points. To counter this, dummy
points are added beyond the physical domain up to a distance R. The basis functions placed
in these points lie partly in the physical domain and will ensure that the maximum gradient
constraint is kept over the entire physical domain. Figure 2 shows the dummy points beyond
the physical domain.

Figure 3 shows some realisations of a field within a rectangular plane for different values
of R and a. One can clearly see how the combined choice of a and R produce more or less
spatially dependent realisations.

3 PROPAGATING THE UNCERTAINTY: THE CONTINUOUS FIELD RESPONSE
SURFACE

The analysis case in this paper will be the natural frequencies of a simple plate model with
uncertain Young’s modulus. The plate has a total of 20× 20 = 400 elements, which leads to (at
least) 400 interval parameters in the input field. To propagate this uncertain field to the output,
a response surface will be defined. Assume we define a second order polynomial model on an
output w within an input space u1, u2, ..., un given by equation 8.

w = w0 +
n∑
i=1

aiui +
n∑
i=1

n∑
j=1

bijuiuj (8)
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Figure 3: realisation examples for different values of R.

We assume n is a very large number, but all input parameters are instances of the same geometric
parameter at different locations, e.g. the Young’s modulus in each element of the FE-model.
Obviously, determining the coefficients of such a high-dimensional model would require a very
large amount of training samples, especially when the interaction terms are considered. To
reduce the actual dimension of the response surface, we will take into account the high similarity
of the input parameters. For example, the coefficients corresponding to the parameter value in
adjacent elements have to be quite similar. The fact that the coefficients are correlated in space
leads to a response surface description in terms of the spatial coordinates x and y, which the
authors introduced earlier in [5], and is given by equation 9.

w = C +

∫∫
x,y

a(x, y)u(x, y)dxdy +

∫∫
x,y

b(x, y)u2(x, y)dxdy +∫∫
x,y,∆x,∆y

q(x, y,∆x,∆y)u(x, y)u(x+ ∆x, y + ∆y)dxdyd∆xd∆y (9)

The discrete coefficients of the discrete model have been replaced by continuous coefficient
fields that are defined over the spatial domain. The function also includes an interaction term
which includes the product of the geometric parameter u(x, y) at different elements in the
model. Based on the first order approximation:

u(xi + ∆x, yi + ∆y) = u(xi, yi) + ∆x
∂u(x, y)

∂x
+ ∆y

∂u(x, y)

∂y
, (10)
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Figure 4: coefficient fields corresponding to each of the first 10 natural frequencies.

we replace this term by 2 terms including the product of the geometric parameter and its deriva-
tives, leading to equation 11.

y = C +

∫∫
x,y

a(x, y)u(x, y)dxdy +

∫∫
x,y

b(x, y)u2(x, y)dxdy +∫∫
x,y

qx(x, y)u(x, y)
∂u(x, y)

∂x
dxdy) +

∫∫
x,y

qy(x, y)u(x, y)
∂u(x, y)

∂y
dxdy) (11)

For the training process, we assume that the coefficient fields a(x, y), b(x, y) etc. are continuous
functions in the spatial domain, thereby transforming the training process to a much lower
actual dimension. For example, a coefficient field a(x,y) with 400 discrete locations can be
written with a 2D polynomial as in equation 12.

a(x, y) = a00 + a10x+ a01y + a11xy + a20x
2 + a02y

2 (12)

This representation only has 6 unknown coefficients, so instead of determining all 400 coeffi-
cients independently, redefining the problem reduces this number to only 6.

4 APPLICATION: STEEL PLATE WITH UNCERTAIN STIFFNESS PROPERTIES

4.1 Coefficient functions

We now continue towards applying this continuous model on our analysis case. The coeffi-
cient fields a(x, y), b(x, y), etc. are determined by using a linear least-squares based algorithm.
For the specific case of the plate frequencies, first order polynomials lead to errors of only 1%.
The coefficient function for each of the 10 first eigenfrequencies are given in figure 4.
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4.2 Resulting output field

With the response surface defined, we can very easily make the step towards an output inter-
val field description. The interval field can be written as

uI(x, y) = u0(x, y) +
Next∑
i=1

·1Ii · φi(x, y) (13)

with Next the total number of elements and dummy points (figure 2). If we put this in equation
9, we obtain the following description of the output field:

ωI = ω0 +
Next∑
i=1

a · ξ(i) · 1Ii (14)

with ωI an interval vector with the 10 first natural frequencies in it. ξ(i) are vectors with ele-
ments:

ξ
(i)
j =

∫∫
x,y

ai(x, y)φj(x, y)dxdy (15)

4.3 Identifying the uncertain region

The resulting interval field has a total of Next terms. For ease of calculation, the interval
parameters are depicted by normalized intervals 1Ii = 〈0|1〉.

The interval field mentioned above corresponds to an uncertain region of frequency com-
binations. Because the example considers only the first 10 natural frequencies, this is a 10-
dimensional region. If we look at 2D projections of this region on all possible (ωi, ωj)-subspaces,
we observe ’shuttle’-shaped regions, an example of which is given in figure 5. This is due to the
monotonous behaviour of natural frequency w.r.t increasing stiffness. Such a shuttle shape has
two cornerpoints corresponding to the input points where al inputs are at their lowest or highest
value respectively. Between these points, two curves bound the uncertain region, an upper and
a lower curve.

From the fields ξ(i) we can reconstruct the 2D projections of the uncertain region. For

frequencies ωp and ωq, we define the vector ρ(pq) with elements ρ(pq)
i =

ξ
(p)
i

ξ
(q)
i

. Define
+
ρ

(pq)
as

the vector with the elements of ρ(pq) sorted in ascending order, and
-
ρ

(pq)
as the vector with the

elements of ρ(pq) sorted in descending order. Additionally, we rearrange ξ(p) and ξ(q) so that
(equation 16)

+
ρ

(pq)

i =

+

ξ
(p)

i

+

ξ
(q)

i

and
-
ρ

(pq)

i =

-

ξ
(p)

i
-

ξ
(q)

i

. (16)

To each element in
+
ρ

(pq)
and

-
ρ

(pq)
, we assign coordinates

+

φi=
∑i

k=1

+
ξ
(q)

k −
+
ξ
(q)

i /2∑Next
k=1

+
ξ
(q)

k

and
-

φi=

∑i
k=1

-
ξ
(q)

k −
-
ξ
(q)

i /2∑Next
k=1

-
ξ
(q)

k

. Finally, we define the continuous functions
+

h (
-

φ) and
-

h (
-

φ) that interpolate
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Figure 5: Example of a ’shuttle’-shaped uncertainty region.

the points
(

+
ρ

(pq)

i ,
+

φi

)
and

(
-
ρ

(pq)

i ,
-

φi

)
. The lower and upper curve are then described by equa-

tion 17.

lower curve :
+
c (

+

φ) :→

ωp(t) =
∫ t

+
φ=0

+

h (
+

φ)d
+

φ

ωq(t) =
∫ t

+
φ=0

d
+

φ

upper curve :
-
c (

-

φ) :→

ωp(t) =
∫ t

-
φ=0

-

h (
-

φ)d
-

φ

ωq(t) =
∫ t

-
φ=0

d
-

φ
(17)

Figure 6 illustrates the process described above.

4.4 Observations

In the 2D-projections of the uncertain region we can clearly see the effect of a varying
Young’s modulus. We examine 7 cases of increasing maximum gradient. The extreme val-
ues of the Young’s modulus are 210 GPa and 1.2 · 210 = 252 GPa. From figures 7 to 10, that
show some 2D projections for all 7 cases, a few observations can be made:

1. Increasing the maximum gradient does not change the cornerpoints, as these depend on
the extreme values of the Young’s modulus itself, but the uncertain region does change.
The shuttle-shaped regions become wider, effectively decreasing the dependency between
the frequencies as the gradient increases.

2. For lower frequencies, the effect of increasing the gradient on the uncertain region appears
to saturate. This saturation effect is much less outspoken for higher frequencies.

3. Some frequencies, such as 5 and 8 (figure 9), appear to be much more interdependent than
others, which can be seen from the relatively slim shuttle shape. The increased maximum
gradient appears to have little effect on the dependency between these frequencies.

6116



Maurice Imholz, Dirk Vandepitte and David Moens

Figure 6: illustration of the process to determine the uncertain region, for the case of only 5 fields ξ(i).
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Figure 7: uncertainty region projected on the (ω1, ω2)-plane.

Figure 8: uncertainty region projected on the (ω4, ω7)-plane.
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Figure 9: uncertainty region projected on the (ω5, ω8)-plane.

Figure 10: uncertainty region projected on the (ω9, ω10)-plane.
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5 CONCLUDING REMARKS & FUTURE RESEARCH TOPICS

In a possiblistic framework, the inability to use correlation forces us to look at dependency
at a more general level. According to the authors, the shape of the uncertain region itself holds
the most information not only on the degree of dependency between parameters, but also on the
nature of it. In this paper, the interval concept is specifically designed towards the fast com-
putation of these regions. For the purpose of monotonous and linear behaviours, which lead
to so-called ’shuttle’-shaped uncertain regions, this paper introduced an easy way of comput-
ing them without the need of additional simulations. Further research will be done towards
formulating relationships between interval field formulations and uncertain region shapes, for
non-linear and also non-monotonous input-output relations.
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Abstract. Power grids are generally regarded as very reliable systems, nevertheless outages
and electricity shortfalls are common events and have the potential to produce significant social
and economic consequences. It is important to reduce the likelihood of those severe accidents
by assuring safe operations and robust topologies. The grid safety relies on accurate vulnera-
bility measures, control schemes and good quality information. For instance, in power network
operations, contingency analysis is used to constrain the network to secure operative states with
respect to predefined failures (e.g. list of single component failures). An exhaustive failure list is
often not treatable, therefore a selection or ranking is performed to help in the choice. In order
to better understand the power network weakness and strengths a variety of robustness metrics
have been introduced in literature, although many do not account or partially account for un-
certainties which might affect the analysis. In this work power network vulnerability to failure
events is analysed and single line outages (N-1 contingencies) have been ranked using different
metrics (i.e. topology-based, flow-based and hybrid metrics). Sources of uncertainty such as
power demand variability and lack of precise knowledge on the network parameters have been
accounted for and its effect on the component ranking quantified. A modified version of the
IEEE 118 bus power network has been selected as representative case study. The assumption
underpinning the methodologies and the vulnerability results also accounting uncertainty are
discussed.
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1 INTRODUCTION

Robustness of power grids is defined as the degree to witch the network is able to withstand
an unexpected event without degradation in performance [1]. A closely related concept is the
vulnerability, which is sometime regarded as lack of robustness. Robustness and vulnerability
are nowadays major concerns for the future power networks. Historically, power networks were
developed to distribute electricity from large size isolated power plants to the various end-user
loads (e.g. industry or residences) by means of power transmission and distribution networks.
Distribution grids topologies were usually designed in radial fashion to comply with the needs
of a simple one-way flow of electricity, i.e. from the main grid to the local users.

In the last decades this traditional design has deeply changed, the allocation of renewable
energy sources are making its behaviour less predictable and vulnerability assessments less
reliable, mainly due to the considerable amount of uncertainty injected in the system [2]. Non-
radial meshed topologies and not classical structures are likely to became more common in
the future [3]. The presented scenario highlights the need of develop more reliable and robust
frameworks for power grid vulnerability analysis (i.e. adopting sophisticated uncertainty quan-
tification techniques), as well as the need of define enhanced metric for the assessment and
identification of operational and structural risks. In order to improve robustness it is important
to understand the role played by the variability the grid state variables (e.g. power produced,
loads, voltage phases, magnitudes.) and by the imprecisely known network parameters (flow
and voltage limits, topology, line resistances, etc.). Structural weaknesses have to be identified
to design better topologies (e.g. by efficient ranking of components failures) and mitigate like-
lihood of unexpected hazardous situations .

In literature, a wide range of indexes have been proposed for vulnerability and robustness as-
sessment, e.g. using realistic simulation of network response and power-flow solution (“power-
flow-based metrics”) or based on topological analysis of networks, using techniques founded
on complex network theory [4]. The latter are computed using pure topological approaches (i.e.
‘topology-based metrics’) or enhanced by including electrical engineering concepts in the anal-
ysis (i.e. ‘hybrid metrics’). Examples of recently applied metrics are the effective resistance
(RG), network spectral radius (ρG), algebraic connectivity (ΛG) and extended betweenness (Be)
M. Ouyang et al. [6] analysed correlation of six topology-based vulnerability metrics respect to
multiple components failure. E. Bompard et al. [5] compared two hybrid metrics (i.e. extended
betweenness and net-ability) in their ability to rank components failures. Power-flow-based
metric, such as system cascading index (CEI), has been applied to estimate likelihood and ex-
tent of cascading failures [7].

To the Authors knowledge, few among the reviewed works quantified the effect of uncer-
tainty in the metrics and compared the different ranks of component failures. Hence, further
comparison between different indices, with particular regard to the uncertainties affecting the
different approaches seems to be needed. In this survey vulnerability metrics are compared, with
particular regard to the line failures ranking. Power demand uncertainty and system parame-
ters (line power flow limits) uncertainty are analysed and their effect quantified. In addition,
different power-flow models (i.e. alternate current and direct current power-flows) have been
compared in the results. The work aim is to better understand strength and limitations of the
different metrics in ranking critical components and spot network weaknesses, also accounting
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uncertainty.

The paper is structured as follows:
Power network modelling is introduced in Section 2. Contingency analysis and uncertainty
modelling are described in in Section 3. In Section 4 robustness and vulnerability concepts are
discussed and the metrics defined. A case study is defined in Section 5 and results displayed.
Limitation faced and further discussions are presented in Section 6. Section 7 close the paper.

2 BACKGROUND AND POWER NETWORK MODELLING

A power network structure can be represented by an unweighed graph G = {N ,L}, where
N is the set of network nodes (or busses) and L is the set of links (branches or feeders). The
topology of the graph is identified by a squared symmetric matrix called adjacency matrix A,
which elements ai,j are equal 1 if the node i is linked to the node j or 0 if no direct link ex-
ists. Links can be associated to some measure of interest (e.g. length, traffic, power flow, line
resistance, etc.) and the adjacency matrix rewritten in its weighted form W , where the matrix
elements wi,j are the weights of the links between nodes i and j and 0 if not linked.

Spectral graph theory can be used analyse spectral graph proprieties of networks such as
its eigenvalues eigenvectors. Spectral proprieties of graph G bears valuable information about
the network the graph represent and some eigenvalues can be associated to its robustness [8].
Further details are going to be discussed in Section 4.
The Laplacian LA of the adjacency matrix A is defined as [9]:

LA = DA − A (1)

where A is the adjacency matrix and DA is the diagonal matrix of degrees for A. The matrix
Laplacian can be computed using the weighed adjacency matrix W (i.e. including electrical
concepts such as susceptances).

AC and DC Power Flow

Power flow methods are commonly used to solve problem in power grid analysis, as example
the energy dispatch problem, i.e. optimal schedule of power production, or security constrained
optimal power scheduling. The AC power flow is a non linear solver accounting both active and
reactive power flows without neglecting loses. In the AC formulation the active and reactive
nodal equations are as follow [10]:

Pk =
N∑
i

|Vi||Vk|[Gi,kcos(θi,k) +Bi,ksin(θi,k)] (2)

Qk =
N∑
i

|Vi||Vk|[Gi,ksin(θi,k)−Bi,kcos(θi,k)] (3)

where Pk and Qk are active and reactive power injected in the node k, respectively, |Vi| is the
voltage magnitude of node i and θi,j is the voltage angle difference between node i and k. The
elements Gi,k and Bi,k are the conductance and susceptance of the link connecting node i and
k, respectively.The Equations 2-3 are solved for each k ∈ N by some iterative techniques (e.g.
Newton-Raphson method) although convergence is not always assured.
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The DC power flow is a linear approximation of the AC power flow which account for just
active power flows, neglecting power loses and reactive power management. It has been widely
used to alleviate the computational cost of numerically intensive codes and it has always a fea-
sible solution. The majority of works which aimed at including electrical engineering concepts
in graph theoretical approaches made use of the DC assumption, e.g. in defining weighted
adjacency matrix of the graph. The DC power flow formulation can be written as follows [10]:

Pk =
N∑
i

|Vi||Vk|Bi,ksin(θi,k) ≈
N∑
i

Bi,kθi,k (4)

were the equation 4 is obtained under the following DC power flow assumptions:

• Flat voltage profile |Vi| = 1 per unit. ∀ i ∈ N

• Small voltage angle differencessin(θi,k) ≈ θi,k;

• R� X negligible resistance;

It is worth remarking that DC model although useful in reducing computational time, might
result in a poor approximation [10]. In order to obtain good quality results, grid voltage profile
should be as flat as possible and ratio X/R relatively high. This means that the quality of the
DC solution is system dependent and operative state dependent, hence its validity should be
carefully assessed before use. The vast majority of topology-based metrics when enhanced by
using electrical concepts made use of the DC assumptions [4].

3 TREATMENT OF UNCERTAINTY

Generally speaking, uncertainty can be separated in two groups, the so called aleatory and
epistemic uncertainties [11]. The aleatory is related to stochastic behaviours and randomness
in events and variables. The epistemic is commonly related to lack of knowledge about a par-
ticular behaviour, imprecision in measurement and poorly designed models. Adequately model
uncertainty is paramount to improve robustness of the analysis accounting for both lack of infor-
mation and inherent randomness (e.g. environmental conditions, future power demand, power
produced by renewable generators, etc.). In the power grid context well-recognized sources
of uncertainty are electricity price volatility, load power demand and environmental variabil-
ity, model assumption (e.g. DC or AC power flow, contingency selection). The sources of
uncertainty investigated in this work are:

• Uncertainty in the line emergency rating (line power flow constrain) which might be due
to, e.g. neglected effect of ambient wind and temperature. The lack of precise knowledge
on the emergency ratings of network lines have been modelled using uniform distributions
around a given design value [12]. The uniform distribution has been used consistently
with the principle of maximum entropy.

• Load demand uncertainty and variability. The aggregated load connected to a node i
(PL,i) can be described by a Normal distribution [13].The parameter of the distribution
can be estimated from historical records of load demand per node.

A Monte Carlo sampling procedure have been used to propagate uncertainty from the input
to the output quantities of interest. Within each Monte Carlo run, sampling procedure (e.g. in-
verse transform sampling) is used to obtain a random realization for each uncertain parameter
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(nodal loads and line loading limits). The samples are forwarded to the system for further vul-
nerability assessment and contingency ranking. The algorithm allows obtaining a probabilistic
description of the outputs variability, i.e. the output probability distribution functions with re-
spect to the input uncertainties and wider prospective on the result of the ranking.

A contingency in power networks is defined as the unexpected failure of one of its compo-
nents (e.g. links, nodes, generators, transformers) [13]. Contingency analysis is commonly used
to constrain the network to safe operational states if a contingency occurs. Generally speaking,
even if the network has modest size (e.g. small distribution grid), a complete analysis of all pos-

sible failures is infeasible. An exhaustive contingency list will has to include
N∑
k=1

N !/k!(N−k)!

failures, where k is the number of failed components. In power grid reliability and risk assess-
ment, common practice consists in selecting a subset of the more threatening contingencies
based on expert opinion or by some identification procedure [15]. In this work, the N−1 single
line trips are analysed and the most threatening failures ranked using different metrics.

4 ROBUSTNESS AND VULNERABILITY METRICS

Robustness in power grid is defined as the degree to witch the network is able to withstand
an unexpected event without degradation in performance [6]. Vulnerability is used to score low
reliability power grids by assessing drops in performance metrics. The network vulnerability
V(Ci) after the contingency (Ci) occurs can be quantified as follows [4]:

V(Ci) =
M−M(Ci)

M
(5)

where M(Ci) is the network vulnerability metric after contingency Ci and M is the metric
value for the undamaged network.

Power flow-based metrics

Flow-based indexes can be obtained by simulating network in normal and damaged states
and using power flow solvers (e.g. DC or AC). In this work a cascading metric (CEI(Ci))
is obtained simulating the outages by both AC power flow contingency analysis and its linear
DC approximation. Generally speaking, a “cascading” is a sequential successions of depen-
dent events [18].The metric adopted to assess the cascading overload vulnerability is defined as
follows [18]:

CEI(Ci) =
∑
l∈L
P(Cl|Ci)SevOLl(Ci) (6)

where P(Cl|Ci) is the probability of secondary trip of line l after line i contingency occurs
and SevOLl(Ci) is the severity function for line l overload if failure Ci occurs. Severity func-
tions are used to quantify the extent of the failure and different definitions are available [13].
The continuous severity function for overload is specifically defined for each link l (distribution
lines and transformers) and it measures the extent of violation in terms of excessive power flow
ratio PRl. PRl is the ratio between active power flowing in the line Pl and its emergency rating
Pemerg,l. The expression for the continuous severity due to overload (SevOLl) of a line l is
findable in [13].
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SevOLl = d ∗ PRl + c for PRl ≥ PRmin
l (7)

where SevOLl is zero for values of the flow rating less than a safety limit PRmin
l =0.9. The

deterministic limit for the violation of line l is PRl=1, the near violation region is 0.9≤ PRl <1,
and the value PRl under 0.9 is regarded as safe, d=10 and c=-9.

Continuous severity functions, if compared with discrete severity functions, have the advan-
tage of providing non zero risk results for scenarios close to the performance limits, but not
failure, which reflects the realistic sense that near violation scenarios have not null risk. The
probability of cascading trip of line k after an initiating contingency i can be expressed as in
[7]:

P(Cj|Ci) =
Pj(Ci, ζ)− P0,j(ζ)

Ptrip,j(Ci, ζ)− P0,j(ζ)
(8)

where Pj(Ci, ζ) is the post-contingency flow on circuit j given contingency i and operative-
environmental condition ζ , Ptrip,j(Ci, ζ) is defined as the flow leading to a certain trip of the
line j (assumed to be 125% of its maximum capacity) and P0,j(ζ) is the pre-contingency flow
in the line j if condition ζ holds. Equation 8 is related to the fact that higher load levels and
larger transients increases the likelihood of cascading event on circuit k after initiating event on
circuit i. The probability P(Cj|Ci) is zero for Pj(Ci, ζ) ≥ 0.9Pemerg,j .

Topology-based and hybrid metrics

Power network vulnerability can by pure topological analysis of the grid structure. These ap-
proach use unweighted adjacency matrix A, components are regarded as identical and no rough
electrical concept is included in the analysis [4]. Similarly, hybrid metrics adopt complex net-
work concepts often include concepts such as DC approximation and electrical concepts such
as line emergency rating Pemerg,l or link impedances. For these approaches the weighted ad-
jacency matrix W is built using the matrix of susceptances Bi,k. The analysed metrics in this
paper are: graph spectral radius, algebraic connectivity, effective graph resistance, graph global
efficiency [22] and extended betweenness [5].

In spectral analysis of graphs, the largest eigenvalue of the adjacency matrix is known as
graph spectral radius (ρG). Few works attempted to relate spectral radius to the power grid vul-
nerability and relatively small values have been considered as indicator of robustness [8]. An-
other important metrics obtained through spectral analysis of the network graph is the second
smallest eigenvalue of the Laplacian matrix L, also known as the algebraic connectivity (ΛG).
The metric ΛG is used as indicator of the level of connection between nodes in a graph,and is re-
garded as a basic indication of the network robustness level [16]. The effective graph resistance
(RG) is an hybrid metric which have been sometimes related to the power grid vulnerability [8].
The effective resistance Ri,j between a pair of nodes i and j is the potential difference between
these nodes when a unit current is injected at node i and withdrawn at node j.RG can be obtained
as follows:

RG =
N−1∑
i=1

1

µi
(9)
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were µi are the eigenvalues of the L obtained from the weighted adjacency matrix of suscep-
tances. Others vulnerability indicators commonly used in the power network topological anal-
ysis are global efficiency (EG) and betweenness. The efficiency of a network is defined as the
average of inverses of the distance for all nodes. For calculation of EG the reader is reminded
to [22]. Betweenness has been recently used in [14] to identify most vulnerable lines in power
systems. The extended betweenness (Te(l)) has been introduced in [5] as fast metric to spot
most critical lines in terms of system vulnerability. The metric Te(l) is based on both complex
network and electrical concepts. For the line l is defined as:

Te(l) = max(|
∑
g∈G

∑
d∈Ld

Cd
gf

gd
l |) l ∈ L (10)

where Gn and Ld are set of generation nodes and load nodes, Cd
g is the power transmission

capacity from generator g to load d and f gdl is the linearised power flow sensitivity in the line l
with respect to an injection in generation node g and withdraw in the demand node d. Cd

g and
df gdl are computed as described in [5].

5 CASE STUDY
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One-line Diagram of IEEE 118-bus Test System

IIT Power Group, 2003

System Description:

118 buses
186 branches
91 load sides
54 thermal units

Figure 1: The IEEE 118 bus test system [21].

The selected case study is a modified version of the IEEE 118 nodes test system. The network
counts 118 nodes, 186 lines and 54 generators which makes it fairly complex and suitable for
the analysis. Within the gird there are 55 PV nodes (i.e. generators nodes g) and 64 PQ nodes
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(i.e. load nodes d). The network model and load demand and lines emergency ratings data are
available in [20]-[21]. Figure 1 displays the network structure and generators location. The
original network data have been modified in order to simulate a condition of higher stress for
the network. Increment in the load demand of 30 % and Pemerg,l for all the lines l in the links
set L reduced of 20%.

Results power-flow-based metrics

The AC and its linearised version are used to simulate the network in normal and contingency
states the cascading indices CEI computed and line outages ranked. The analysis is performed
as follows:

• First, AC or DC approach is used to compute the optimal power production subject to line
flow limits, generation constraints and load demanded.

• The contingency analysis is performed by removing one line at a time from the system.
The AC or DC methods simulate the power flows redistribution in the branches given the
optimal power scheduled.

• Finally, the CEI(l) are computed for each contingency based on the equation 6. Line
vulnerability are ranked and ordered based on the CEI values.

Figure 2: Normalized CEI results comparison between AC solution and and its DC approximation. On the X-axis
the failed line (Line ID).

Figures 2 shows the optimal power production computed by means of the AC and DC method,
respectively. The Y-axis shows the normalizedCEI results and the X-axis the line identification
number (ID). It can be noticed that DC power flow, when compared to AC power flow, over-
estimate the cascading indices for some of the contingency listed (e.g. lines ID 141-150) and
underestimate them for others e.g line ID 13, 43, 153 (l8−5, l26−30, l89−92). This is mainly due
to the approximate percentage of rating PRk obtained in the DC approach. Nevertheless, the
results are in relatively good agreement, therefore it might be argued that DC solutions approxi-
mate AC solutions fairly well in both undamaged and damaged network conditions. Results are
summarized in Table 5 which displays the 10 most vulnerable lines in the system, with respect
to all the metrics analysed. In both AC and DC flow-based approaches the ranking results are
fairly similar and similar to previous studies, see as example [19]. The most threatening lines
result to be l9−10, l8−9, l8−5, l26−30 for both cases.
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Uncertainty Quantification for the AC and DC Solutions

The AC and DC cascading indexes have been obtained by propagation of the uncertainty in
the load and in the emergency ratings. In accordance with previous studies, but with different
aims, the load demand PL,i ∀i ∈ N has been modelled as normal random variable distributed
around mean µi and with σi equal to 10 % of µi. Uniform distributions are assumed to model
lack of precision in the line maximum allowed flows. The upper and lower bounds have been set
equal to 0.98 % and 1.02 % of the design values. A single loop Monte Carlo has been employed
to sample input uncertainty and quantify its extent in the output. The number of MC samples
for each uncertain variable have been set equal to 2x103, each run counts 64 samples of load
demand PL,d and 185 samples of emergency rating Pemerg,l one for each demand node and
each line ∈ G in the network. Samples have been forwarded to the AC and DC system solver
and CEI(l) values obtained as described in the previous subsection. The contingencies have
been ranked based on the expected value of the cascading metric and the 10 most vulnerable
links have been selected. The ranking scores accounting uncertainty results slightly different
compared to the deterministic case. Nevertheless, metrics drops are affected by uncertainty and
some of the lines failures are more affected than others. The CEI variabilities boxes for the 10
most vulnerable lines are shown in figure 3. It can be noticed that for the DC approximation
CEI for lines l9−10 and l8−9 (rank 1 and 2) bear less uncertainty if compared to the AC case. In
Table 1 are displayed coefficients of variation (Cov) for the 5 most dangerous lines. Coefficient
of variation is computed as ratio between standard deviation and expected value and it is a
standardized measure of dispersion for theCEI distribution. The higher values confirm that AC
solutions are more sensitive to the input uncertainty, which is probably due to the assumption
made in order to apply the DC solver.

Figure 3: Variability in the normalized cascading index CEI for the 10 most vulnerable lines. Comparision
between AC and DC power flow solutions.
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rank 1 2 3 4 5 6 7 8 9 10
CovAC 4.5% 4.5% 2.2% 0.0% 8.0% 8.5% 11.8% 20.7% 23.6% 81.2%
CovDC 3.2% 3.2% 2.5% 0.0% 0.5% 5.4% 1.3% 1.% 0.9% 20.2%

Table 1: Variability box-plot for the ten most vulnerable lines in the IEEE 118 bus system. Coefficients of variations
comparison when AC and DC power flows models are used.

Topology-based metrics and hybrid metrics results

Topology-based and extended hybrid metrics have been computed in both damaged and un-
damaged states. The analysis is carried as follows:

• First, adjacency matrix A and weighted adjacency matrix W are obtained for the undam-
aged network.

• The considered metricsMA andMW are computed for adjacency matrix A and W re-
spectively, as described in section 4.

• The contingency analysis is performed by removing lines from the network. The matrix
A and W corresponding to the graph of the damaged network are obtained and M(l)
computed.

• Finally, vulnerabilities V(l) are computed as in equation 5 for each line failure. Topology-
based and hybrid approach used A and W matrix respectively. The line failure are ranked
based on normalized increment in the system vulnerability.

The topology-based metric which have been obtained in the approach are the graph global
efficiency EG , ΛG(A) and ρG(A). These are computed using the unweighted adjacency matrix
A in a purely topological way. Similarly, the extended hybrid metrics have been computed using
the weighted adjacency matrix W built using susceptance matrix. These approaches account
for both topology and electrical concepts. In this work RG , ΛG(W ) and ρG(W ) are the hybrid
metrics being analysed. Furthermore, normalized Te(l) have been computed fore each line as in
equation 10, used as an additional metric for branch ranking. Table 5 shows metric values for
the undamaged IEEE 118 power network.

EG(A) ρG(W ) ρG(A) ΛG(W ) ΛG(A) RG(W )

0.216 259.56 4.112 0.3 0.0274 1565.6

Table 2: Topology-based and hybrid metrics results for the undamaged original network.

Table 5 shows the 10 most relevant links with respect to Te(l) and the variation in the vulner-
ability. Although different vulnerability metrics produce different scores, the most vulnerable
lines are successfully spotted. For instance, critical lines are l38−65, l23−24, l65−68, l30−38 all
ranked among the top 10 in 6 of the considered metrics. Similarly, lines l81−80 and l68−81 have
been identified as critical by 5 metrics. This result suggest that for the components ranking
purposes few differences can be found between hybrid and topology-based metrics.

Relative metrics drops and increments are displayed in figure 4, the results have been nor-
malized for graphical reasons. It can be noticed that some of the lines failure cause a drop below
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Figure 4: Comparison of relative drops and increment in vulnerability metrics, Y-axis, due to single line failures(X-
axis).
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Rank VEG(A) VρG(W ) VρG(A) VΛG(W ) VΛG(A) VRG(W ) Te(l) CEIAC CEIDC
1 l38−65 l68−116 l69−77 l65−68 l23−24 l65−68 l65−68 l9−10 l8−9

2 l8−9 l65−68 l49−69 l38−65 l68−81 l38−65 l38−65 l8−9 l9−10

3 l85−86 l68−81 l69−75 l68−81 l81−80 l68−81 l68−81 l8−5 l8−5

4 l30−38 l68−69 l75−77 l81−80 l38−65 l81−80 l81−80 l26−30 l26−30

5 l23−24 l64−65 l47−69 l30−38 l77−82 l23−24 l30−38 l89−90 l91−92

6 l49−69 l65−66 l77−80 l23−24 l65−68 l30−38 l23−24 l89−92 l89−90

7 l65−68 l81−80 l69−70 l82−83 l69−77 l70−71 l64−65 l89−91 l88−89

8 l82−83 l38−65 l47−49 l77−82 l82−83 l82−83 l77−82 l91−92 l82−83

9 l69−77 l63−64 l49−54 l70−71 l24−70 l100−103 l65−66 l88−89 l89−91

10 l68−116 l69−77 l70−75 l80−98 l30−38 l105−108 l8−30 l85−89 l89−92

Rank VEG(A) VρG(W ) VρG(A) VΛG(W ) VΛG(A) VRG(W ) Te(l) CEIAC CEIDC
1 0.031 0.4956 0.020 0.382 0.241 0.194 0.342 0.5931 0.57365
2 0.025 0.0299 0.017 0.352 0.178 0.159 0.267 0.5931 0.57246
3 0.023 0.0183 0.016 0.272 0.170 0.115 0.266 0.3028 0.39562
4 0.023 0.0062 0.014 0.266 0.147 0.111 0.263 0.2549 0.35366
5 0.021 0.0005 0.013 0.214 0.145 0.106 0.235 0.2297 0.17620
6 0.020 0.0004 0.013 0.203 0.134 0.103 0.165 0.2066 0.15594
7 0.018 0.0002 0.013 0.109 0.130 0.096 0.145 0.1099 0.07426
8 0.017 0.0000 0.013 0.102 0.113 0.074 0.138 0.1056 0.02133
9 0.017 0.0000 0.012 0.087 0.088 0.059 0.126 0.0973 0.01678

10 0.017 0.0000 0.010 0.072 0.074 0.053 0.119 0.0691 0.00246

Table 3: Ten most vulnerable lines for the IEEE 118 system. Ranking comparison with respect to different metrics
and normalized drops in the vulnerability.

zero some of the normalized vulnerability index (e.g. algebraic connectivity). A drop below
zero means an increment in the robustness of the grid which is caused by the lines removal (e.g.
line ID 146). The capability of the metrics to spot components which have unexpected negative
effects for the network robustness can have an interesting features of hybrid and topology based
metrics, exploitable to improve network robustness and future topology design.

Uncertainty Quantification for Topology-based and hybrid vulnerability metrics

Single loop Monte Carlo sampling procedure has been adopted as in the previous analysis
and uncertain input variable propagated and effects quantified in the output. The Monte Carlo
simulation approach and input distributions used are the same as for the AC and DC power flow
uncertainty quantification. The results obtained for the IEEE 118 power system shows that the
rankings are the same as in the deterministic case. For sake of synthesis, only results for one of
the metrics are displayed, the extended betweenness. Coefficient of variation for the Te(l) have
been displayed in Table 4.
The results shows that considered sources of uncertainty affect less these approaches, i.e. the

Rank 1 2 3 4 5 6 7 8 9 10
Cov Te(l) 0.5 % 0.3% 0.5% 0.5% 0.3% 0.3% 0.4% 0.5% 0.4% 0.3%

Table 4: Comparison of coefficients of variations for the ten most vulnerable lines ranked using extended be-
tweenness Te(l).
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maximum value for the Cov 0.5 % for the ten most vulnerable lines. This is a rather expected
result if considered that the load demand variability do not influence any of the considered
topology-based and hybrid metrics.

6 DISCUSSION AND LIMITATIONS

A modified version of the IEEE 118 nodes power network has been analysed and lines sorted
with respect to their contribution to the grid vulnerability. The comparison between topology-
based and hybrid approaches shows similarities in the ranking results. Spectral analysis of the
network require higher computational cost for obtaining a full spectrum of eigenvalues and
eigenvector for each damaged condition (and relative W , A and L).

Contingency analysis has been used to obtain a power flow-based cascading metrics, the
CEI indices. Both AC and DC power flow solver have been adopted for the calculation and
comparison between line ranking showing minor differences between the approaches. This has
been regarded as a confirmation of well-founded DC hypothesis for the system in exam. The
comparison of the CEI indices with topology-based and hybrid metrics suggest significant dif-
ferences in the ranking. The differences can be explained by lack of considerations about nodal
power injections and withdraw of some of the approaches. The considered topology-based
metrics even if enhanced in hybrid metrics cannot capture in full the operational vulnerabili-
ties in the network. On the other hand, power-flow-based approaches included power injection
and demands magnitudes in the calculation and hence able to identify critical components ac-
counting changes in the operational state. Nevertheless, many of the lines ranked using CEI
index resulted in a null contribution to the system vulnerability (due to null post-failure over-
load severity). This might be seen as a limitation of the CEI metric which has not been able to
capture all the relevant aspect and information enclosed in the line failures.

Uncertainty propagated through the AC and DC methods have been quantified in the CEI(l)
indexes. Ranking results show good agreement with the deterministic solution and between the
different power flow solvers. The AC output seems to be more sensitive to the uncertainties
in the input, which can be due to the less restrictive assumptions compared to the DC method.
The largest majority of the hybrid approaches make use of the DC assumptions. Generally the
goodness of DC approximation should be tested and model adopted carefully[10]. Especially in
scenarios where grid stress is high, such as sudden component failures or attacks, the approxi-
mation might result poor and not represent adequately the reality. Comparisons between hybrid
metrics and pure topological metrics show a good agreement in the line ranking although some
of them, i.e. ranking based on drops in spectral radius, differs substantially. This might be due
to limitation of the latter metric or computational inaccuracies.

7 CONCLUSIONS

The future electric power grid is a complex network which have to deal with uncertainty
from different sources. The correct functioning of the system and components will strongly de-
pend on the operational context. Therefore providing easy to follow guidances and robustness
metrics is uttermost important point. The metrics have to be capable of capturing uncertainties
and variability in the network dynamic and as well intrinsic topological weaknesses in a reli-
able way. In this paper different vulnerability metrics have been compared in their ability to
spot system criticality and ranking important components.The effects of uncertainty have been
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analysed and relative drops or increments in the metrics discuses and compared to the same
approaches with no uncertainty accounted for. The IEEE 118 power grid has been used as case
study. The AC and DC power flow cascading metrics showed higher uncertainty in the outputs
if compared to topology based metrics. This is due to operational variability not fully accounted
in the latter approaches and to the different assumptions. In conclusion, the selection of metrics
for vulnerability assessment of power grids have o be selected carefully. The analyst should
account both influence of the underling model assumptions and system variability. Wrong con-
sideration of uncertainty can lead to imprecise considerations on the system vulnerability and
in the worst case to misleading results on its robustness and reliability.
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Abstract. We present the construction of a multilevel stochastic reduced-order model
devoted to the robust prediction of frequency response functions of complex linear dy-
namical systems that are characterized by the presence of several structural scales
in which there are local displacements in addition to the usual global displacements,
and which are associated with the distinct low-, medium-, and high-frequency bands.
As the levels of uncertainties are different in the three frequency bands, a multilevel
stochastic reduced-order model using several orthogonal subspaces associated with
the several types of displacements is developed. The objective of the paper is to
demonstrate the capability of the multilevel stochastic reduced-order model to adapt
the stochastic modeling of uncertainties to each one of the three frequency bands.
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1 Introduction

We present a new method for the robust prediction of frequency response func-
tions (FRF) of complex linear dynamical structures exhibiting a high modal density.
Commonly, the low-frequency range [1] is characterized by the presence of a few
dozen isolated eigenfrequencies that are associated with global modes, in which case
the modal analysis method [2, 3, 4] allows an effective and efficient small-dimension
reduced-order model (ROM) to be obtained. In contrast, the complex structures we
deal with can exhibit more than hundreds or thousands modes in low frequencies. This
unusual feature is due to the presence of several structural scales within the complex
geometry of the structure. Small flexible components attached to the stiff skeleton of
the structure induce the presence of numerous local modes intertwined with the usual
global modes of the stiff skeleton. For such complex structures, besides the absence of
separation of scales, the global displacements (or global modes) cannot easily be iden-
tified because coupled with the large-amplitude local displacements (or local modes).
For constructing an adapted reduced-order model of such complex structures, a first
version of a two-levels reduced-order model has been proposed [5], and then has been
extended and applied to complex mechanical systems [6, 7]. Then the methodology
has been generalized [8] for constructing multilevel reduced-order models. This paper
is mainly devoted to the stochastic aspects and their implementation in the multilevel
reduced-order model.
First, the proposed method allows for constructing a ROM of smaller dimension, which
is obtained by introducing a subspace of global displacements. The construction of the
latter is based on the introduction of high-degree polynomial shape functions. The
vector basis of the global-displacements subspace is constituted of the eigenmodes
calculated using such an approximation for the kinetic energy. The choice of the poly-
nomial degree allows for controlling the filtering between the so-called global and local
displacements, as well as the resulting dimension and accuracy of the so-called global
ROM. Furthermore, it is well known that local displacements are in general more sen-
sitive to uncertainties than global displacements. The nonparametric probabilistic ap-
proach [9] allows all sources of uncertainty to be globally accounted for by randomiz-
ing each reduced matrix whose probability density function, constructed applying the
maximum entropy principle [10, 11], is parameterized by a unique dispersion hyper-
parameter. In order to separately control the uncertainty level of the displacements of
each of the scales, we propose to use a multilevel ROM, based on the introduction of
orthogonal subspaces. The basis of each of these subspaces is constructed by using,
notably, the aforementioned polynomial approximation for the kinetic energy, with an
adapted polynomial degree. Each basis is constituted of displacements associated with
a given structural scale. Then, the multilevel stochastic ROM is obtained by using
the nonparametric probabilistic approach for each scale. This stochastic model is then
controlled by some dispersion hyperparameters devoted to each scale. The method is
applied to the complex computational model of a car. The objective of this work is
to present a sensitivity analysis of the multilevel stochastic ROM with respect to the
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dispersion hyperparameters in order to demonstrate the capability of the method pro-
posed to adapt the stochastic modeling to the level of uncertainties as a function of the
frequency bands.

2 Classical nominal reduced-order model

Let [M], [D], and [K] denote the (m × m) positive-definite real symmetric mass,
damping and stiffness matrices of a m-dimensional finite element model of a linear
damped structure with bounded domain, Ω. The m-dimensional complex vector U(ω)
of the displacements satisfies, for all ω in the frequency band B, the matrix equation,

(−ω2[M] + iω[D] + [K])U(ω) = F(ω) , (1)

in which the m-dimensional complex vector F(ω) represents the external forces. For
α = 1, . . . ,m , the elastic modes ϕα are the eigenvectors of the following generalized
eigenvalue problem associated with the conservative dynamical system,

[K]ϕα = λα[M]ϕα , (2)

in which λα is the eigenvalue associated with mode ϕα such that λα = ω2
α and ωα =

2πfα , with fα the associated eigenfrequency in Hz. The classical nominal reduced-
order model (C-NROM) is obtained by projecting Eq. (1) onto the subspace, Sc ⊂ Cm ,
spanned by the first n elastic modes (associated with the n smallest eigenfrequencies).
Normalizing the eigenmodes with respect to the mass matrix, the associated reduced-
order basis (ROB) is given by [Φ] = [ϕ1 . . .ϕn] and verifies [Φ]T [M][Φ] = [In] as
well as [Φ]T [K][Φ] = [Λ], with [Λ] the matrix of the first n eigenvalues. In the rest
of this paper, the eigenvectors of any eigenvalue problem such as in Eq. (2) will
follow the same normalization. Introducing the generalized damping matrix [D] =
[Φ]T [D][Φ] and the vector F(ω) = [Φ]TF(ω) of the generalized forces, the vector
q(ω) = (q1(ω) . . . qn(ω)) of the generalized coordinates of the C-NROM is the solu-
tion of the reduced-matrix equation,

(−ω2[In] + iω[D] + [Λ])q(ω) = F(ω) , (3)

and allows displacements U(ω) to be approximated by

U(ω) ' [Φ]q(ω) =
n∑

α=1

qα(ω)ϕα . (4)

In the rest of this paper, several ROMs will be constructed. For simplicity, the notations
will be introduced only for the associated ROB, since any ROM is straightforwardly
obtained, using its ROB, by projection of Eq. (1) and by recovering the physical de-
grees of freedom (DOF) U(ω) such as in Eq. (4).

For the complex structures under consideration, due to the presence of numerous
local displacements, dimension n of the C-NROM is quite large. We propose the
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construction of a global-displacements ROB, from which local displacements are re-
moved. Such filtering relies on the introduction of a reduced kinematics for the mass
matrix.

3 Reduced-kinematics mass matrix

The proposed filtering of local displacements is based on the use of polynomial
shape functions defined on domain Ω, the filtering being controlled by the degree, D,
of the polynomial approximation. The construction of the polynomial basis is detailed
in [8]. Let [B] denote the (m×Np) real matrix constituted of the concatenation of the
Np = (D + 1)(D + 2)(D + 3)/2 polynomials, which are orthogonal such that

[B]T [M][B] = [INp ] . (5)

The polynomials are only used for approximating the kinetic energy (the elastic energy
remains exact). Let V(t) denote a time-dependent real vector of dimension m. The
orthogonal projection Vr(t) of V(t) onto the subspace spanned by the polynomials
basis is given by

Vr(t) = [P]V(t) , (6)

in which the projector [P] is a (m×m) real matrix which is written [8] as

[P] = [B][B]T [M]. (7)

Then, the kinetic energy Ek(V(t)) = 1
2
V(t)T [M]V(t) is replaced by the reduced ki-

netic energy Er
k(V(t)) = 1

2
Vr(t)T [M]Vr(t) = 1

2
V(t)T [Mr]V(t) in which the (m×m)

reduced-kinematics mass matrix [Mr] is positive-semidefinite symmetric real of rank
Np and such that

[Mr] = [M][B][B]T [M] . (8)

For constructing the global-displacements ROB, matrix [Mr] is used instead of [M].

4 Global-displacements reduced-order basis

4.1 Definition

Letψg
α (α = 1, . . . , Np) be the eigenvectors and let σgα be the associated eigenvalues

such that

[K]ψg
α = σgα[Mr]ψg

α , (9)

for which the kinetic energy is subjected to the polynomial approximation and which
allows the (m × ν) real matrix [Ψg] = [ψg

1 . . .ψ
g
ν ] to be constructed, with ν ≤ Np.

Then, the ROB associated with the global nominal reduced-order model (G-NROM) is

6139



O. Ezvan, A. Batou, and C. Soize

given by [Φg] = [Ψg][R], where [R] = [r1 . . . rng ] is constituted of the ng eigenvectors
rα of the small-dimension generalized eigenvalue problem(

[Ψg]T [K][Ψg]
)

rα = λgα

(
[Ψg]T [M][Ψg]

)
rα , (10)

where dimension ng of the G-NROM is chosen as minimum under the constraint f gng
≥

f c , with f gα =
√
λgα/2π . Frequency f c is related to the upper bound of frequency

band of analysis B. The global-displacements subspace, spanned by the ng columns
of [Φg], is denoted by Sg . The matrix [Λg] of the associated eigenvalues is such that
[Λg] = [Φg]T [K][Φg].

4.2 Numerical implementation

The proposed method is adapted so as to be non-intrusive with respect to commer-
cial software for which extraction of mass and stiffness matrices can be difficult or
even impossible. Given the considered approximation for constructing mass matrix
[Mr], replacing consistent mass matrix [M] by a lumped approximation in order to
construct [Mr] is legitimate. We then propose an indirect method for constructing the
global-displacements ROB.

Let S0 be a subspace spanned by the n0 columns of a ROB [Φ0], which can, for
instance, be constituted of elastic modes, available through commercial software. We
suppose having [Φ0]

T
[M][Φ0] = [In0 ] and [Φ0]

T
[K][Φ0] = [Λ0] with [Λ0] a diagonal

matrix with positive elements. Then, considering the approximation Sg ⊆ S0 obtained
writing ψg

α = [Φ0]sα for all α = 1, . . . , Np , Eq. (9) leads us to the reduced-order
generalized eigenvalue problem(

[Φ0]
T

[K][Φ0]
)

sα = σgα

(
[Φ0]

T
[Mr][Φ0]

)
sα . (11)

Since [Φ0]
T

[K][Φ0] = [Λ0], the latter eigenvalue problem does not require having [K]
but [Λ0] instead. Moreover, denoting as [M`] a lumped approximation of [M], the
generalized mass matrix of Eq. (11) is approximated as

[Φ0]
T

[Mr][Φ0] ' [N0][N0]
T
, (12)

with [N0] = [Φ0]
T

[M`][B`], in which [B`] denotes the orthonormalization of [B] with
respect to [M`]. Matrix [S] = [s1 . . . sν ] is such that [Ψg] = [Φ0][S] and we then
have [Φg] = [Φ0][Qg] with [Qg] = [S][R] . Furthermore, reduced matrices involved in
Eq. (10) are given by

[Ψg]T [K][Ψg] = [Σg] , [Ψg]T [M][Ψg] = [S]T [S] , (13)

with [Σg] the matrix of the first ν eigenvalues σgα .
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4.3 Complementary local-displacements reduced-order basis

The complementary basis of local displacements belonging to subspace S0 spans a
subspace S` that is such that

S0 = Sg ⊕ S` , (14)

which means that Sg and S` are in direct sum. The construction of the associated ROB,
[Φ`] , is proposed as follows. It verifies [Φg]T [M][Φ`] = [ 0 ] (orthogonality of the local
basis vectors, ϕ`α , and the global basis vectors, ϕgα , with respect to the mass matrix)
as well as [Φ`] = [Φ0][Q`] (the local basis vectors belong to S0), with [Q`] a real matrix
of generalized coordinates that is defined hereinafter. The orthogonality condition is
written as [C][Q`] = [ 0 ], where matrix [C] is given by [C] = [Φg]T [M][Φ0], and can
be rewritten as

[C] = [Qg]T . (15)

Let [C] = [UC ][ΣC ][VC ]T be the singular value decomposition (SVD) of [C]. Let [Z]
be the concatenation of the columns of [VC ] associated with the zero singular values
(zero diagonal elements of [ΣC ]). Then, the columns of [Z] constitute a vector basis
of the kernel of [C] and matrix [Z] verifies [Z]T [Z] = [In`

] , where n` = n0 − ng
is the dimension of the kernel of [C]. Orthogonality condition [C][Q`] = [ 0 ] leads
us to [Q`] = [Z][U ], with [U ] a matrix of generalized coordinates. The columns uα
of [U ] = [u1 . . . un`

] are the solutions of the reduced-order generalized eigenvalue
problem (

[Z]T [Φ0]
T

[K][Φ0][Z]
)

uα = λ`α

(
[Z]T [Φ0]

T
[M][Φ0][Z]

)
uα , (16)

which can be more simply rewritten as the eigenvalue problem(
[Z]T [Λ0][Z]

)
uα = λ`α uα . (17)

5 Multilevel nominal and stochastic reduced-order models

To sum up, for a given polynomial degree D and a given truncation order ν for
[Ψg] = [ψg

1 . . .ψ
g
ν ], global-displacements subspace Sg and local-displacements sub-

space S` of any given space S0 can be constructed such that S0 = Sg ⊕S`. Dimension
ng ≤ ν of Sg also depends on cutting frequency f c. Therefore, there is a function G
such that

G : (S0,D, ν, f c) 7−→ (Sg,S`) , (18)

which includes the described construction in a compact form.
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5.1 Definition of the orthogonal subspaces

For the multilevel nominal reduced-order model (ML-NROM), three subspaces SL ,
SM , and SH associated with the low-, medium-, and high-frequency bands (LF, MF,
and HF) are constructed. These subspaces are such that Sg = SL⊕SM⊕SH. Space Sg
corresponds to a filtering of local displacements that allows the final dimension (and
thus the computational cost) of the ML-NROM to be reduced. Subspaces Sg and S`
are given by

(Sg,S`) = G(Sc,Dg, νg, f cg ) , (19)

where we recall space Sc to be spanned by the first n elastic modes that would be used
in a classical modal analysis, with f cg a cutting frequency associated with the upper
bound of frequency band of analysis B, and where parameters Dg and νg allow the
filtering to be controlled. It should be noted that, for constructing the ML-NROM, the
construction of S` that is such that Sc = Sg ⊕ S` , is not needed.

We then introduce a second filtering, using DLM ≤ Dg and νLM ≤ ng as well
as a cutting frequency f cLM associated with the upper bound of the MF band. The
associated global-displacements and local-displacements subspaces SLM and SH are
given by

(SLM,SH) = G(Sg,DLM, νLM, f cLM) , (20)

and satisfy Sg = SLM ⊕ SH.

For obtaining subspaces SL and SM, a third filtering parameterized by DL ≤ DLM
and νL ≤ dim(SLM) as well as a cutting frequency f cL associated with the upper
bound of the LF band is introduced. The associated global-displacements and local-
displacements subspaces SL and SM are given by

(SL,SM) = G(SLM,DL, νL, f cL) . (21)

Since SLM = SL ⊕ SM , we thus have Sg = SL ⊕ SM ⊕ SH.

5.2 Multilevel nominal reduced-order model

Due to the orthogonality property, it can be shown that the reduced mass matrix
of the ML-NROM, [M ], is such that [M ] = [Ing ] . In contrast, the reduced stiffness
matrix [K] of the ML-NROM is a full matrix that is written as

[K] =

[KLL ] [KLM ] [KLH ]
[KML] [KMM] [KMH]
[KHL ] [KHM ] [KHH ]

 , (22)

in which, for I and J in {L,M,H}, the matrix block [KIJ ] is given by [KIJ ] =

[ΦI ]
T

[K] [ΦJ ], with [ΦI ] the ROB of SI . The damping matrix [D] of the ML-NROM
is also a full matrix with the blocks [DIJ ] = [ΦI ]

T
[D][ΦJ ] .
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5.3 Multilevel stochastic reduced-order model

The construction of the multilevel stochastic reduced-order model (ML-SROM) is
based on the nonparametric probabilistic approach of uncertainties. This approach
consists in replacing any positive-definite symmetric real (N × N) matrix [X] of a
ROM by an associated random matrix [X] whose probability density function is ob-
tained applying the maximum entropy principle under the constraints (available infor-
mation)

• Matrix [X] is with values in the set of all the positive-definite symmetric real
(N ×N) matrices.

• E{[X]} = [X] , where E is the mathematical expectation: the mean value is
chosen as the value of the nominal model.

• E{||[X]−1||2F} < +∞ , with ||.||F denoting the Frobenius norm.

Given the Cholesky factorization [X] = [LX ]T [LX ] with [LX ] an upper triangular
matrix, random matrix [X] is written as

[X] = [LX ]T [G][LX ] , (23)

in which the algebraic construction of the positive-definite symmetric real (N × N)
random matrix [G] is given in [9] and only depends on a scalar (dispersion) hyperpa-
rameter, δ, verifying

δ2 =
1

N
E{||[G]− [IN ]||2F} . (24)

In general, the local displacements are more sensitive to uncertainties than the global
displacements. The ML-SROM allows the variability of each type of displacements
(belonging to either subspace SL , subspace SM , or subspace SH) to be modeled sep-
arately. For each random matrix [A] = [M], [D], [K] of the ML-SROM, three dis-
persion hyperparameters δAL , δAM , and δAH are thus introduced (with A = M,D,K
referring to each deterministic matrix of the ML-NROM). For I = L,M,H and
A = M,D,K , let [GA

I ] denote the random matrix with the same construction as
[G] and verifying (δAI )

2
= 1

nI
E{||[GA

I ]− [InI ]||2F} , in which nI = dim(SI) . Given
the Cholesky factorization [A] = [LA]T [LA] of each deterministic matrix [A] of the
ML-NROM, each random matrix [A] of the ML-SROM is defined as

[A] = [LA]T [GA][LA] , (25)

in which the (ng × ng) positive-definite symmetric real random matrix [GA] is given
by

[GA] =

[GA
L ] [ 0 ] [ 0 ]

[ 0 ] [GA
M] [ 0 ]

[ 0 ] [ 0 ] [GA
H ]

 . (26)
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Denoting as [Ψ] = [ [ΦL] [ΦM] [ΦH] ] the ROB of the multilevel ROM and introducing
the deterministic vector f(ω) = [Ψ]TF(ω) of generalized forces, the random general-
ized coordinates Q(ω) = (Q1(ω) . . . Qng(ω)) of the ML-SROM are the solutions of
the small-dimension matrix equation

(−ω2[M] + iω[D] + [K])Q(ω) = f(ω) , (27)

which is solved using the Monte-Carlo simulation method [12], and allow the random
response U(ω) associated with U(ω) to be obtained from

U(ω) = [Ψ]Q(ω) . (28)

6 Application to the complex computational model of a car

6.1 Nominal reduced-order models

The nominal finite element model is used for constructing the multilevel stochastic
ROM. The finite element model has m = 8, 000, 000 DOF and the C-NROM is con-
structed using the first n = 16, 192 elastic modes as a ROB (we have fn = 1, 600 Hz).
Then, the global-displacements nominal ROM associated with subspace Sg is con-
structed choosing Dg = 31, ν = 7, 000 and f cg = 1, 525 Hz. Follow the con-
struction of subspaces SLM and SL obtained choosing DLM = 15, νLM = 1, 950,
f cLM = 1, 000 Hz and DL = 4, νL = 400, f cLM = 300 Hz. Dimensions ng , nLM and
nL of subspaces Sg , SLM , and SL are ng = 6, 984, nLM = 1, 919, and nL = 344.

6.2 Multilevel stochastic reduced-order model

The objective of the stochastic model is to take into account the variability as well as
the uncertainties in the computational model (due to both the model-parameter uncer-
tainties and the modeling errors). The global displacements, which usually correspond
to resonances in the low-frequency band, are more robust with respect to small de-
sign changes, variability, and model uncertainties. We recall the multilevel ROM to be
constituted of the following three orthogonal subspaces:

• SL , constituted of displacements obtained using degree DL = 4 for the kinetic
energy and associated with the frequencies below f cL = 300 Hz, thus expected
to consist in low-frequency global displacements.

• SM , constituted of displacements obtained using degree DLM = 15 for the
kinetic energy, associated with the frequencies below f cLM = 1, 000 Hz and
orthogonal to SL, thus expected to consist in combinations of a few global
displacements in presence of many local displacements in the low- and mid-
frequency bands.

• SH , constituted of displacements obtained using degree Dg = 31 for the kinetic
energy, associated with the frequencies below f cg = 1, 525 Hz and orthogonal to
both SL and SM, thus expected to mainly consist in local displacements present
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throughout the entire band with an increasing density towards higher frequen-
cies.

Frequency (Hz)

Figure 1: Random response using the ML-SROM with δML = 0.1 and for all other dispersion hyperpa-
rameters set to zero (95% confidence interval).

Frequency (Hz)

Figure 2: Random response using the ML-SROM with δMM = 0.1 and for all other dispersion hyperpa-
rameters set to zero (95% confidence interval).

Frequency (Hz)

Figure 3: Random response using the ML-SROM with δMH = 0.1 and all other dispersion hyperparam-
eters set to zero (95% confidence interval).
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The ML-SROM allows statistical dispersion levels to be controlled within each sub-
space. A sensitivity analysis of the ML-SROM with respect to the dispersion parame-
ters is carried out. We are interested in performing a sensitivity analysis of frequency
response functions for structural accelerations over the frequency band B = [10, 1500]
Hz. To do so, the modulus in dB of the random normal acceleration in one point
of the car (that is distant from the excitation point) is calculated using Eq. (28) with
nsim = 300 Monte-Carlo realizations. The 95% confidence intervals of the random
response are plotted:

• in Fig. 1 for δML = 0.1 and for all other dispersion hyperparameters set to zero.

• in Fig. 2 for δMM = 0.1 and for all other dispersion hyperparameters set to zero.

• in Fig. 3 for δMH = 0.1 and for all other dispersion hyperparameters set to zero.

For only nonzero δML , the confidence interval is larger in the low-frequency band
whereas it is very thin elsewhere. For only nonzero δMM , the confidence interval is
larger in the mid-frequencies although the dispersion also propagates around. For only
nonzero δMH , the confidence interval is larger in the high-frequency band although it is
also large in the mid-frequency band. These results tend to agree with the qualitative
expectations made hereinbefore. For δMM = 0.1, the propagation of uncertainties in
the high-frequency band is explained by the coupling between subspaces SM and SH ,
which are not orthogonal with respect to the stiffness matrix.

7 Conclusions

A general method has been proposed for the construction of a multilevel stochastic
reduced-order computational model devoted to the robust prediction of the frequency
response functions of complex linear dynamical systems. The proposed multilevel
ROM is based on the nonparametric probabilistic approach. The presence of several
structural scales, characterized by the presence of more or less local displacements
intertwined with the usual global displacements, and associated with the distinct low-,
medium-, and high-frequency bands, induces a heterogeneous variability. Using sev-
eral orthogonal subspaces each one composed of a particular type of displacements, the
multilevel stochastic ROM allows for constructing a finer modeling of uncertainties.
We have demonstrated the capability of the method proposed to adapt the stochastic
modeling to the level of uncertainties as a function of the frequency bands that can be
correlated to the scales of the global and of the local displacements.
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Abstract. A stochastic load identification approach is proposed based on a beam structure. 

The dynamic force is assumed as a non-stationary Gaussian random field varying with both 

time and space. The mode shape functions are selected as orthogonal basis for the projection 

of the distribution function of the stochastic dynamic force which enables the excitation force 

can be estimate from limit measurement response data. The statistics of the stochastic distrib-

uted force are estimated by the Mode Superposition Method (MSM) combined with the Monte 

Carlo Approach (MCA). A numerical example is studied. A trapezium-shaped function is as-

sumed for the distribution of the stochastic dynamic force. The stochastic time history of the 

excitation forces at each location on beam is assumed to be Gaussian and have a time-

varying mean value and power density function. Numerical simulations are conducted to veri-

fy the load identification algorithm. Results show that the proposed method is effective to 

identify the stochastic distributed load on the structure. 
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1 INTRODUCTION 

Dynamic load is one of the key factors in the design and condition assessment of various 

engineering structures. In the cases when the load information is difficult to be obtained by 

direct measurement, indirect approaches which noted as force identification techniques, are 

often adopted. 

Numerous force identification approaches have been proposed in the past decades which 

can successfully estimate the dynamic excitation forces on engineering structure from meas-

urement dynamic response. These methods can mainly be classified into two categories: fre-

quency-domain method [1, 2] and time-domain method [3, 4], etc. Just as their name imply, 

the relationship between the measurement response and the dynamic force to be estimated are 

formulated in frequency domain and time domain respectively in the two kinds of method. 

Most of the aforementioned approaches are deterministic and focusing on the identification of 

concentrated force.  

It is noted that various kinds of the dynamic load are spatially distributed along the struc-

ture. Two approaches namely the finite difference method and the modal method were pro-

posed by Pezerat and Guyader [5] to estimate the spatially distributed dynamic force on 

structure and the regularization approach was adopted to solve the ill-posed problem [6]. In 

the modal method, when the force to be identified only spans over the contact region, a pro-

hibitively large number of basis functions is often needed. An improved method was proposed 

by Liu and Shepard [7] in which new basis functions are introduced to overcome the draw-

back. A mode-selection method for distributed dynamic force was proposed by Jiang and Hu 

[8] and the optimal range of frequency and spatial modes was studied; to improve the accura-

cy on the identified force at fix boundary, the Legendre polynomials are used as the consistent 

orthogonal base functions to describe the distributed dynamic loads instead of the mode shape 

function, similar work was done by Li et al. [9] with the Chebyshev orthogonal polynomials. 

The temporal-dependent external forces for the cutting tools were estimated by Huang et al. 

[10] based on the conjugate gradient method. The acoustic holography and the force analysis 

technique were adopted by Pezerat et al. [11] to identify vibration sources from radiated noise 

measurements. The Virtual Fields Method was adopted by Berry et al. [12] to identify both 

mechanical point load excitation and distributed acoustic excitation of a bending panel. 

Since randomness often exists in excitation forces due to the random nature, e.g. wind load, 

earthquake, excitation due to the road surface roughness, excitation from the ocean waves, etc. 

Stochastic force identification techniques have been developed. To identify the concentrated 

stochastic force on structure, the system uncertainty is not included at first, which can be di-

vided into two kinds: frequency domain method [13] and time domain method [14, 15]; later, 

both the uncertainty in system parameters and excitation forces have been included [16, 17, 

18]. These research work provide statistical estimations on the stochastic excitation forces on 

structure, however, stochastic excitation forces such as the wind load, load due to ocean 

waves, etc. are spatially distributed, new techniques should be developed to deal with the dis-

tributed stochastic dynamic force identification. A frequency domain method was proposed 

by Granger and Perotin [19] to identify the distributed random excitation acting on a vibrating 

structure and this method was further be adopted to a fluid-induced vibration problem [20]. 

The distributed random excitation is assumed as a stationary Gaussian random field and the 

mode method was adopted to identify the distribution and power spectrum density (PSD) 

function of the excitation force from the PSD of the measurement random response.  

In this paper, a time domain approach is proposed in which a non-stationary stochastic dis-

tributed dynamical force is identified from the response sample sets from limit number of sen-

sors under a beam structure. The mode shape functions are selected as orthogonal basis for the 
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projection of the stochastic distributed force. The statistics of the stochastic distributed force 

are estimated by the mode superposition technique combined with the MCA. 

2 STOCHASTIC RESPONSE ANALYSIS OF A DYNAMICAL SYSTEM 

2.1 Description of the dynamical system 

A uniform simply supported Euler-Bernoulli beam subjected to a stochastic distributed dy-

namic force is shown in Figure 1 and this dynamic system will be adopted to demonstrate the 

new identification algorithm in this paper. It is noted that the proposed method may also be 

effective on other kinds of structure with different boundary conditions as long as the vibra-

tion modes are available. 

 

Figure 1: A simply supported beam subjected a stochastic distributed force 

The equation of motion of the dynamical system is 

 
2 4

2 4

( , , ) ( , , ) ( , , )
( , , )

w x t w x t w x t
A c EI f x t

t t x

  
 

  
  

  
                   (1) 

where ρ is the mass density and A is the cross-sectional area, therefore, ρA represents the mass 

per unit length. Symbols c and EI are the damping and the flexural rigidity of the beam, re-

spectively. All the system parameters are assumed to be deterministic. f(x,t,θ) is a non-

stationary Gaussian random field represents the stochastic distributed dynamic force; w(x,t,θ) 

is the stochastic displacement under the beam at location x and time t, and θ represents the 

random dimension. 

2.2 Equation of motion in modal space 

Though correlations may exist among the time, space and random dimension in stochastic 

excitations and random responses, in this research work, the distributed dynamic force is as-

sumed as a non-stationary Gaussian random field and the distribution of the excitation is as-

sumed to be independent of the other two dimensions and. With the ith mode shape function 

φi(x), the stochastic distributed excitation f(x,t,θ) and the stochastic displacement under the 

beam w(x,t,θ) can respectively be expressed as 

     
=1

, , = ,
m

i i

i

f x t x F t                                                  (2) 

     
=1

, , = ,
m

i i

i

w x t x q t                                                    (3) 
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where the random processes Fi(t,θ) and qi(t,θ) are the stochastic modal coordinates of the ex-

citation and the displacement, respectively and m represents the number of modes adopted 

after truncation. When a simply supported Euler-Bernoulli beam is considered, the ith natural 

circular frequency ωi and the mode shape φi(x) have the following expressions respectively, 

 

2

=

=1,2, ,

=sin

i

i

i EI

L A
i m

i x
x

L









 
 
                                               (4) 

where L is the length of the beam. 

Substituting Eqs.(2) and (3) into Eq.(1), by employing the orthogonal property between 

the mode shape functions, 

   
0

d =
L

i j i ijA x x x m                                                   (5) 

where δij is the Kronecker delta and mi represents the ith modal mass. In this case mi=ρAL/2. 

Then Eq.(1) can be rewritten as 

     
 2

,
, +2 , + , = , =1,2, ,

mi

i i i i i i

i

F t
q t q t q t i m

m


                       (6) 

where the over-dot represents the differentiation respect to time t. The symbol ζi denotes the 

damping ratio of the ith mode; Fmi(t,θ) is the ith modal force and 

     
0

, = , , d
L

mi iF t f x t x x                                              (7) 

The stochastic modal coordinates of excitation Fi(t,θ) can be calculated by 

 
 

 2

0

,
, =

d

mi

i L

i

F t
F t

x x





                                                         (8) 

Eq.(6) is a set of stochastic ordinary differential equations which can be solved by numer-

ical methods combined with statistical analysis tools such as the Monte Carlo simulation, the 

KL method, etc. and then the statistics of the random dynamical response under the beam can 

be obtained. 

3 IDENTIFICATION OF THE DISTRIBUTED STOCHASTIC DYNAMIC FORCE 

3.1 Projection scheme of the distributed excitation 

When the distribution of the excitation is assumed to be independent of the other two di-

mensions, the stochastic distributed force f(x,t,θ) can be expressed in the follow form: 

( , , ) ( ) ( , )f x t T x P t                                                          (9) 

where T(x) is a function represents the distribution pattern of the force and P(t,θ) is a random 

process represents the stochastic time history at each location x. 

It is more difficult to estimate a distributed dynamic force f(x,t) than a concentrate one 

since the unknown time histories of the force at each location x should be identified from lim-

ited measurement response data. The number of the unknowns tends to be infinite. In order to 
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reduce the unknowns in the identification process, a projection scheme is often adopted, e.g. 

to represent the distribution function T(x) by a set of orthogonal bases Ti(x),  

( , ) ( ) ( )i i

i

f x t T x d t                                                         (10) 

According to Eq.(10), once the coefficients di(t) are estimated from limited measurement 

response data, the distributed dynamic force can be identified, which will significantly simpli-

fied the identification. With the projection scheme in Eq.(10), the ith modal force of a distrib-

uted dynamic force f(x,t) gives, 

0 0
( ) ( , ) ( )d ( ) ( ) ( )d

L L

mi i i j i

ij

F t f x t x x d t T x x x                                       (11) 

When orthogonal property exists between Tj(x) and φi(x), the integration in Eq.(11) can be 

significantly simplified. Therefore, the mode shape function φj(x) are adopted to replace Tj(x) 

in Eq.(11) in this research work, according to Eq.(5), the expression of the ith modal force can 

be written as 

0
( ) ( ) ( ) ( )d = ( )

L
i

mi i i j i

ij

m
F t d t x x x d t

A
 


                                   (12) 

where 

( )
( ) mi

i

i

AF t
d t

m


                                                      (13) 

Substituting Eq.(13) in to Eq.(10), according to Eqs.(5) and (8), the distributed dynamic 

force f(x,t) can be represented by the mode shape functions as follows: 

1

( , ) ( ) ( ) ( ) ( )
m

i i i i

i i

f x t x d t x F t 


                                       (14) 

It is noted that Eq.(14) will share the same expression with Eq.(2) when the random di-

mension θ is considered. To consider the random dimension θ in Eq.(12) and by substituting 

Eq.(12) into Eq.(6), we have 

       2 1
, +2 , + , = , , =1,2, ,i i i i i i iq t q t q t d t i m

A
      


                (15) 

Eq.(15) shows the relationship between the stochastic modal coordinates of the structural 

response and the stochastic coefficients of the distributed dynamic excitation force. The sto-

chastic force identification algorithm can be formulated based on Eq.(15) with Monte Carlo 

approach. 

3.2 Statistical force identification with MCA in modal space 

Uncertainty in structural responses may originate from uncertainty in both the system pa-

rameters and excitation forces, in this research work, the system uncertainty is not addressed. 

The displacement measured at each location under the beam structure form a set of response 

sample and these sample sets belong to the population of the random displacement field 

w(x,t,θ). When the displacements at location (x1,x2,…xn) are obtained from the rth measure-

ment, these displacement data will form a vector as 
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T

1 2( , ) ( , ) ( , ) , 1, ,r r r r n rw x t w x t w x t r N W                (16) 

where Nr is the total number of the sample sets. 

With the mode shape functions, the modal coordinates of each set of the dynamic response 

sample can be obtained from the following Equation， 
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where qi,r(t) (i=1,…,m) is the modal coordinate of the ith mode and rth measurement andεj,r(t) 

(j=1,…,n) is the error term of the jth location and rth measurement. The error term may in-

clude the measurement noise, model error, truncation of the higher order of modes and so on. 

Generally, the number of the modes m after truncation should be smaller than the number of 

the measurement locations n to avoid solving a set of underdetermined system of equations as 

shown in Eq.(17). When the rth sample of the coordinate of displacement qi,r(t) corresponding 

to the ith mode is obtained, the first and second derivatives of qi,r(t), which represent the co-

ordinate of the velocity
, ( )i rq t and acceleration

, ( )i rq t , respectively, can be derived with differ-

entiation. Therefore, the samples of the coefficient di,r(t) for the distributed force can be 

calculated as 

       2

, , , ,= +2 + , =1,2, ,i r i r i i i r i i r rd t A q t q t q t r N                  (18) 

Finally, the statistics of the identified stochastic distributed force, i.e. the mean valueμf(x,t) 

and the variance Varf(x,t) can respectively be derived as 
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4 NUMERICAL SIMULATIONS 

To verify the effectiveness of the proposed method and investigate different factors which 

may influence the accuracy of this stochastic distributed dynamic force identification algo-

rithm, numerical simulations are conducted. The following parameters of the beam structure 

are adopted. 

Length of the beam L=40 m; Cross-sectional area A=4.8 m
2
; Second moment of inertia of 

cross-section I=2.5498 m
4
; Rayleigh damping is assumed for the structure with damping ratio 

ξ=0.02 for all vibration modes; Young‟s modulus E and mass density ρ of material are 5×10
10

 

N/m
2
 and 2.5×10

3
 kg/m

3
 respectively. The first five natural frequencies of the beam are 3.9, 

15.6, 35.1, 62.5 and 97.6 Hz, respectively. 

A trapezium-shaped distribution function of the stochastic dynamic force is assumed in this 

study which has the following expression, 
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It should be noted that the selection of distribution function is arbitrary unless it is periodic. 

Theoretically, any periodical distribution functions T(x) can be represented by the orthogonal 

modal shape function bases; therefore, it will not affect the investigation on the proposed 

method.  

The stochastic time history of the excitation forces at each location x denoted by P(t,θ) is 

assumed with the following mean values, 

 d ( ) 20000 1 0.1sin(2π ) NP t t                                          (22) 

where the subscript „d‟ denotes the deterministic part. The random part of P(t,θ) is assumed as 

a zero-mean non-stationary Gaussian random process with a time-varying PSD function S(ω,t) 

as 

   d, ( )fS t C P t                                                 (23) 

where Cf is a coefficient represents the level of randomness and Φ(ω) is a two-sided PSD 

function of a zero-mean stationary Gaussian random process, 

  2

1 2

2π 1



 


                                                  (24) 

According to the spectral representation[21] for a Gaussian process, the rth sample of the 

stochastic distributed force f(x,t,θ) at location x can be simulated by the following series, 

   r d d

1

( , ) ( ) ( ) 4 cos( )
kN

f k k k

k

f x t T x P t C P t t   


 
     

 
               (25) 

where  

 1min  kk                                                  (26) 

    minmaxkN                                                 (27) 

It should be noted that Eq. (25) is not unique and other forms of expansion can be adopted. 

The variable φk is a random phase angle uniformly distributed in the interval [0, 2π]. The con-

stant Δω denotes the frequency increment and Nk is the total number of frequency divisions in 

the interval [ωmin, ωmax]. In this study, ωmin=0 Hz, ωmax=200π Hz, Nk=512, therefore, 

Δω=1.227 Hz and the sampling frequency in all the simulations is 200Hz, the total time is 1s. 

The relative errors between the referenced and calculated results, RE, is defined as 

2

2

100%
calculated referenced

referenced

R R
RE

R


                                     (28) 

where
2

 denotes the 2-norm. 
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4.1 Verification of the Forward Problem 

To verify the forward problem of the proposed algorithm, the response samples of the 

beam structure under a stochastic distributed dynamic force are calculated with two methods: 

Modal superposition method with MCA (MMA) and FEM with MCA (FMA).  

The samples of the stochastic distributed dynamic force are calculated from Eq. (25) in 

which the random phase angle φk is generated by “rand” in MATLAB software. Cf which rep-

resents the level of randomness is set to 0.2. When the number of response samples is suffi-

cient, accuracy of the proposed algorithm will not be affected by the level of randomness due 

to the characteristic of MCA. In MMA, the samples of the ith modal force Fmi(t,θ) is calculat-

ed according to Eq. (7) in which the integration is conducted using “trapz” in MATLAB soft-

ware with a step of 0.4m. 30 vibrational modes are adopted and the samples of the modal 

coordinates of the structural response are calculated by solving Eq. (6) using Newmark-β 

method. Response statistics of both 5000 samples and 10000 samples from MCS are obtained. 

In FMA, the samples of the nodal forces are calculated by integrations between the samples of 

the stochastic distributed dynamic force and the Hermitian cubic interpolation shape functions 

and. eight beam elements are adopted in the finite element model. The response samples of 

the beam structure obtained in FMA is similar to that in MMA and the response statistics of 

5000 samples from MCS are obtained. 
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Figure 2. Response statistics of the mid-span displacement 

Three sets of statistics of the mid-span displacement of the beam structure are demonstrat-

ed in Figure 2. They are from 5000 samples in MMA (Case I), 5000 samples in FMA (Case II) 

and 10000 samples in MMA (Case III), respectively. Results show that the time histories of 

mean value and covariance of the mid-span displacement from different simulations agree 

well with each other. If the response statistics of 10000 samples from MMA (Case III) is as-

sumed as the “referenced” result, the relative errors of the mean value and variance between 

Case I and Case III according to Eq. (28) are 0.27% and 2.74%, respectively; the relative er-

rors of the mean value and variance between Case II and Case III also equal to 2.85% and 

5.82%, respectively. Results indicate that: (1) the time histories of response statistics in all 

Cases are agree well with each other; (2) 5000 runs in MCA are sufficient for obtaining accu-
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rate response statistics; (3) Response statistics from FMA in this case is sightly smaller than 

that from MMA. 

4.2 Verifications of the Inverse Problem 

To verify the inverse problem of the proposed algorithm, i.e. to identify the statistics of the 

non-stationary stochastic distributed dynamic force from measurement response samples, 

5000 sets of 19 displacements evenly distributed underneath the beam structure are adopted, 

i.e. Nr=5000 and n=19, the distance between two sensors in this case is 2m. It is noted that 

strain signals can also be adopted in the force identification, since strains have the following 

relationship with displacement for a beam structure, 

 
 2

2

,
,

w x t
x t z

x



 


                                                      (29) 

where z represents the distance from the neutral axis of the beam to the strain gauge. 

Nineteen modes are adopted in the inverse problem, i.e. m=19. When the number of the 

measurement locations n is not less than the number of the modes m, the modal coordinates 

for each set of displacement sample are calculated according to Eq. (17). The cubic spline in-

terpolation is applied on the modal coordinates for each set of displacement sample qi,r(t), 

then the first and second derivatives of qi,r(t) are calculated which represent the modal coordi-

nate of the velocity and acceleration, respectively. Therefore, the samples of the coefficient 

di,r(t) for the distributed force can be calculated according to Eq.(18). Finally, the statistics of 

the identified stochastic distributed dynamic force can respectively be obtained from Eqs. (19) 

and (20). The “referenced” mean value and variance of the stochastic distributed dynamic 

force can respectively be estimated from the following Equations, 
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The identified and referenced statistics of the stochastic distributed dynamic force at the 

mid-span are shown in Figure 3. Results show that the time histories of two statistics agree 

well with each other, which indicates the statistics of the distributed non-stationary stochastic 

dynamic force can successfully be identified from response sample sets. The relative errors 

between the identified and the referenced mean value and variance are 4.55% and 7.08%, re-

spectively.  

Since the stochastic force is non-stationary, the distribution of the force will vary with re-

spect to time. In order to demonstrate the accuracy on the identified distribution of the force, 

the identified distributions at different moments, e.g. at 0.25s, 0.5s and 0.75s, are normalized 

and compared with the referenced distribution function T(x) in Eq. (21). Results are shown in 

Figure 4 in which the identified distributions of the mean force and the variance of the force at 

each moment are compared with T(x) and T(x)
2
, respectively. The distribution at each moment 

of the distributed non-stationary stochastic force can be successfully identified from limit 

number of measurement points. The relative errors between the identified and the referenced 

distribution for the mean value and variance of force at 0.5s are 0.57% and 0.92%, respective-

ly. The relative errors among the identified distribution for the mean value and variance of 

force at different moments are smaller than 0.5%, i.e. the identification error is small and sta-

ble during the time history of the force. 
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Figure 3. Comparison of the identified and referenced statistics of the distributed stochastic force at mid-span 

0 5 10 15 20 25 30 35 40
0

0.5

1

T
(x

) 
fo

r 
M

e
a
n
 v

a
lu

e

 

 

0 5 10 15 20 25 30 35 40
0

0.5

1

Location(m)

T
(x

)2
 f

o
r 

V
a
ri
a
n
c
e

 

 

Referenced T(x)

Identified T(x) at 0.5s

Identified T(x) at 0.25s

Identified T(x) at 0.75s

Referenced T(x)2

Identified T(x)2 at 0.5s

Identified T(x)2 at 0.25s

Identified T(x)2 at 0.75s

 

Figure 4. Comparison of the identified and referenced force distribution at different moments 

5 CONCLUSIONS AND DISCUSSIONS 

In order to estimate a distributed non-stationary random excitation on a vibrating structure, 

a time domain method is proposed and demonstrated on a beam structure. The dynamic force 

is assumed as a non-stationary Gaussian random field varying with both time and space. A 

trapezium-shaped distribution function is selected for the stochastic dynamic force in the nu-

merical simulation. With a combination of MSM and MCA, both the distribution and the 

6157



S.Q. Wu and J. Zhu 

time-varying statistics of the random excitation can be estimated from response sample sets 

with good accuracy. 

Different factors such as the number of vibration modes, the installation of sensors, the 

noise pollution in the response samples, etc. which may affect the accuracy of the proposed 

method are need to be further investigated and since the mode shape function is adopted as 

the orthogonal basis, when the random excitation only applied on part of the structure, nu-

merous mode shape function should be included to achieve accurate results, which will fur-

ther require more measurement sensors to be installed to acquire response samples. For this 

statistical identification approach in time domain, sufficient number of sample sets is assumed 

to avoid the unexpected errors in variance identification, when the number of samples sets 

reduce, the errors in the identified statistics of the random forces will increase and tend to be 

unstable. Investigation on aspects mentioned above will improve this primary work and will 

be conducted in the future work. 
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Abstract. A main reason behind reinforced concrete structural deterioration is chloride-

induced corrosion. Once the critical chloride concentration is exceeded at the rebar level, the 

structure becomes susceptible to corrosion initiation. Corrosion propagates progressively, 

degrades the resistance capacity of the structure and decreases the design safety margin. To 

mitigate this risk, a stochastic sequential data assimilation technique based on chloride con-

centration measurements and the Polynomial Chaos Kalman Filter (PCKF) is presented.  

The Power of PCKF lies in its sampling free scheme and polynomial structure to represent 

uncertainty. In modeling chloride ingress mechanism, different independent sources of uncer-

tainty should be incorporated in the system including, mathematical model simplification er-

rors, parametric errors, boundary condition errors, and time independent sensors errors. In 

such circumstances, the curse of dimensionality hinders the efficiency and the applicability of 

PCKF, due to the exponential growth of the required bases to account for the added uncer-

tainties. This study presents a practical framework to maintain an acceptable accuracy of 

PCKF without scarifying the computational efficiency of the filter. A one dimensional synthet-

ic numerical example is presented to verify the efficiency of the proposed implementation 

scheme.  
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1 INTRODUCTION 

Reinforced concrete (RC) structures, like buildings, bridges, dams, tunnels, pipelines, 

among others, are complex engineering systems, with long life expectancy, that serve socie-

ty’s industrial needs and guarantee economic prosperity. Labor force and financial assets are 

extensively invested in the design and construction stages of RC projects to achiever two-

primer concerns, safety and serviceability through their lifetime. Research efforts and gained 

experience, influence design codes and governmental regulations to improve current practices 

in order minimize the risk of failure and loss of serviceability. However, structures might be 

exposed to different environmental conditions and severe loading that can lead to structural 

deterioration. Therefore, continuous monitoring of the changing environmental conditions and 

accurate prediction of response of structures under real conditions are becoming highly rec-

ommended in practice [1]. In technical terms, this process is known as Structural Health Mon-

itoring (SHM). SHM relies on real time measurements, damage detection algorithm and data 

assimilation technique for early detection of risks and better assessment of the operating con-

ditions. Consequently, early risk alerts are set and maintenance schedules and repair mecha-

nisms are optimized for proactive measures. 

Among these damage mechanisms, corrosion in reinforcement bars is recognized as a seri-

ous deterioration phenomenon that threatens structural integrity. It is usually referred to as the 

most common cause for structural deterioration, and it leads to major problems in mainte-

nance and rehabilitation of RC structures. In practice, corrosion of RC can be understood as a 

two-stage process:  the corrosion initiation stage and the propagation stage [2]. During the 

first stage, the pH of the pore solution is reduced, leading to the de-passivation of the protec-

tive film, and exposing the rebar to corrosion initiation. The most common cause of corrosion 

initiation is typically attributed to the presence of chloride ions; the de-passivation of the pro-

tective films occurs when their concentration at rebar level exceed a certain threshold. The 

source of chlorides may be admixtures, contaminants, marine environments, industrial brine 

and deicing salts. Once the corrosion is initiated, the steel starts to corrode generating iron ox-

ides, which remarks the starting of the second stage. Corrosion then progressively propagates 

causing cracking, delamination and spalling of the concrete cover, thus threatening the struc-

ture and alerts serviceability failure.  

Once the damage occurs, the process becomes irreversible and needs detailed inspections 

and may required complex repair strategies.  This shifts the attention to proactive maintenance 

measures that includes treatment before any considerable damage. The application of this 

strategy needs adequate knowledge about the state of the structure and close monitoring of the 

corrosive species. Condition assessment of such structures is typically based on comparing 

the chloride content at steel level to the critical threshold chloride concentration.  

For accurate prediction of corrosion initiation, Polynomial Chaos Kalman filter (PCKF) 

will be employed, in this study, for parametric identification of the quantities of interest in a 

probabilistic framework. Based on real time measurements and dynamic model predictions, 

the PCKF calibrates the chloride profile and model parameters to improve the prediction of 

the remaining corrosion free service life and to initiate proactive maintenance alert. This study 

will also suggest a practical implementation of PCKF, when time independent sources of un-

certainties are incorporated in the system. The computational cost efficiency and the accuracy 

of the implementation will be compared to its closest descendent in the Kalman Filter family, 

the Ensemble Kalman filter (EnKF). 
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2 CHLORIDE INGRESS 

Different phenomena govern the ingress of chloride ions into concrete pores depending on 

the state of the structure and the depths of concrete cover. In unsaturated medium, diffusion is 

the governing mechanism beyond the convection zone. However, in saturated and fully sub-

merged concrete structures, the diffusion process is the governing mechanism after initial wet-

ting [3, 4]. Since the principle objective is to estimate, the chloride concentration at rebar 

level, chloride ingress is typically modeled as a diffusion process according to Fick’s second 

law and assuming constant boundary conditions. The general diffusion equation relates the 

diffusion coefficient and the gradient of the concentration as follows: 

 

 ∂C

∂t
= ∇. (D(t)∇C) 

(1) 

where C (kg m3⁄ ) is the spatial chloride content at a certain location and time t.  D(t) is the 

diffusivity coefficient at t generally represented as a time decaying function: 

 

 
D(t) = DR (

tR

t
)

m

 
(2) 

where DR is the reference diffusion coefficient at time tR (usuallytR = 28 days) and m is a  

constant depending on concrete mix proportions.  D(t) should also account for the effects 

temperature and relative humidity [5]. 

An analytical solution, eq. 3, is derived from eq. 1 under several assumptions: 1-D diffu-

sion process, constant surface chloride content, constant diffusion coefficient and infinite me-

dium. 

 

 
C(x, t) = Cs[1 − erf (

x

2√Dt
)] 

(3) 

where Cs is the chloride surface concentration, x is the location away from the surface, and t 
is the time period.  

To maintain generality and robustness, a numerical discrete solution for eq.1 will be im-

plemented based on finite element/finite difference scheme rather than the solution presented 

in eq. 3 since the latter tends to lose its accuracy for varying environmental and parametric 

conditions. Moreover, using a numerical discretization scheme, spatial variability in the chlo-

ride profile can be updated and incorporated in the state vector for more accurate dynamic 

model propagation.  

3 SOURCES OF UNCERTAINTY  

Many sources of uncertainty are identified once developing an accurate mathematical 

model to simulate the chloride ingress process. First, the model input parameters have a wide 

margin of variability: the diffusion coefficient depends on the concrete mix and heterogene-

ous aging of concrete, concrete cover depends on the workmanship skills and on-site quality 

control, chloride surface concentration depends on type and severity of exposure, chloride 

concentration threshold values depend on steel bars and cementing material types and admix-

tures and method of measurement etc. [4]. Additional uncertainties can also be attributed to 

simplifications associated with the adopted mathematical model, measurement and human 

errors. To account for the effect of these uncertainties in modeling corrosion, probabilistic 

models can be used to estimate the probability of corrosion initiation, yet the quantification of 
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statistical input is usually very difficult and unfavorable in practice due to limited data and 

wide discrepancy [6].  

Therefore, to identify accurately the corrosion initiation time, engineers are resorting to 

structural health monitoring (SHM). The process of monitoring the corrosion initiation time is 

theoretically tied to monitoring the free chloride ions in concrete and sometimes to total chlo-

ride content [7].  

4 SERVICE LIFE PREDICTION 

To guarantee safety and integrity of the structure, adequate maintenance is an essence. In 

the case of corrosion deterioration, the typical forms of repair are removing the concrete cover 

to clean the corroded steel and restoring the integrity of the formed cracks by certain injec-

tions. In some cases, additional structural support is necessary to rehabilitate the loss in de-

signed structural capacity. This reactive maintenance practice is usually unfavorable for two 

main reasons: First, it pushes the structure to an extreme limit before interfering, which might 

lead to serviceability failure or even structural failure. Second, in case of corrosive deteriora-

tion, the later the maintenance is scheduled the more cost is associated with the repair mecha-

nism. Therefore, pro-active maintenance is highly desirable in practice. The main strategy is 

to provide protection to reinforced concrete structures to either prevent or halt the problem of 

corrosion of the reinforcement before any considerable damage. 

The probability of corrosion of the structure is computed as the probability of the chloride 

concentration exceeding the threshold value at the steel bar location. Typically, a reliability 

tolerance is selected based on the significance of the monitored structure, and accordingly, a 

maintenance plan is set and recurrently updated to prevent the structure from exceeding the 

designated probability of corrosion. 

To represent the probability corrosion initiation, a limit state function relating the chloride 

threshold to chloride concentration at cover location is presented in equation 4. The limit state, 

g, is evaluated as the algebraic difference of the chloride critical threshold concentration and 

the predicted concentration at rebar level. A negative limit state indicates that corrosion has 

initiated while a positive outcome represents a safe un-corroded structure. 

 

 g(Cth, Cs, DR, m, xr) = Cth − C(Cs, DR, m, xr) (4) 

To quantify the uncertainties associated with modeling, parametric and boundary condition 

errors,𝐶𝑡ℎ,𝐶𝑠,𝐷𝑅, and 𝑥𝑟 are modeled as lognormal random variables representing the chloride 

threshold concentration, chloride surface concentration, diffusion coefficient, and cover loca-

tion respectively. The age factor m is best modeled as beta distribution between 0 and 1, to 

abide by the constraining physical behavior. The random process C is the numerical solution 

of the stochastic diffusion equation approximated using a finite elements/ finite difference 

scheme.  

Thus, the probability of corrosion is theoretically represented as the integral of the joint 

probability density function, fx, of the outcome of g, over the negative domain or corrosion 

domain as shown in equation 5: 

 

 
Pf = ∫ fx(

g(Cth,Cs,DR,d,m)<0

Cth, Cs, DR, m, xr)dx 
(5) 

The solution of the above integral is estimated using Monte Carlo simulation, which is 

simple and easy to implement; it consists of simulating the outcome using random samples of 
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the input parameter and repeating the process sufficiently enough times to represent the pdf of 

the outcome 

 

5 SEQUENTIAL DATA ASSIMILATION 

Sequential data assimilation techniques typically utilize the dynamics of a known process 

and set of observations of the outcome for improving the knowledge of unknown state model 

parameters and dynamic variables. A well-known sequential filter, in estimation theory, is 

Kalman filter, which gives unbiased estimate with a minimum error variance when the system 

has linear dynamics and Gaussian measurement errors. However, in a non-linear modeling 

framework and in non-Gaussian framework, the Kalman filter loses many of its pros. Exten-

sions of Kalman filter have been suggested in literature for approximating the posterior 

measures in complex systems. To address this issue, this study proposes the use of polynomial 

chaos based Kalman filter for data assimilation purposes. PCKF was suggested as a sampling 

free alternative [8, 9, 10, 11]. A detailed explanation of its theoretical background and imple-

mentation is discussed below. 

5.1 Polynomial Chaos Expansion (PCE) 

PCE is a non sampling approach to represent uncertainty using deterministic orthogonal 

polynomials. Let ξ(θ) be a vector containing random independent variables, where θ is used as 

an index of the probabilistic character of the components of the vector (ξi). Each component 

of the vector denotes an independent source of uncertainty, where it’s considered as a model-

ing decision to choose the length of the random variables vector or the contributing sources of 

uncertainty. Non-linear functional of ξ are expanded with respect to a basis in space of square 

integrable random variables. A suitable set of these bases is utilized by multidimensional pol-

ynomials, such that they are orthogonal to the joint probability measure of the random varia-

bles vector ξ. Therefore, in accordance with this formulation, if the random variable used is 

Gaussian, the orthogonal multidimensional basis is Hermite polynomials. Then accordingly, 

the deterministic coefficients of each basis are determined to parameterize the probabilistic 

distribution of the expanded function that uniquely represents its distribution and in an L2 

sense. To elaborate the PCE more, consider a random process u(x, θ) that is expanded with 

respect to the vector ξ, with a finite covariance. Thus, its polynomial expansion is written with 

respect to multidimensional Hermite polynomials in Gaussian random variables arguments 

(ξi1,ξi2… ξin) as follows [12]:  

 

 
u(x, θ) = a0(x)Γ0 + ∑ ai1

(x)Γ1 (ξi1
(θ)) +

∞

i1=1

∑ ∑ ai1i2
(x)Γ2 (ξi1

(θ)ξi2
(θ))

∞

i2=1

+ ⋯

∞

i1=1

 
(6) 

Where Γnis the nth multidimensional Hermite polynomial, and ain
 is its corresponding deter-

ministic coefficient. The above series could be truncated by choosing a finite length inde-

pendent random variable vector and an upper limit for the degree of the Hermite polynomial. 

By introducing a one to one mapping to a set of ordered indices, and truncating the series after 

the P
th

 term, the above expansion is rewritten as follow: 
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u(x, θ) = ∑ uj(x)ψj(θ)

P

j=0

 
(7) 

The accuracy of the polynomial expansion is usually refined by increasing the M random 

dimension and/or the maximum order p of the expansion. The total number of terms, P+1, can 

be calculated as following: 

 

 
P + 1 =

(p + M)!

M! p!
 

(8) 

 

5.2  Polynomial Chaos Kalman Filter (PCKF) 

The PCKF consists of two stages: (1) a forecast stage and (2) an analysis stage if a meas-

urement is present. The order and dimension of PC expansion are fixed from the beginning 

and throughout the processing for simplicity and computational purposes.  

5.2.1. Forecast stage 

Let A be the state matrix, which contains the vectors representing the deterministic coeffi-

cients of the PCE corresponding to model state and parameters at time t:  

 

 A =  (u0, u1 … , up)  ui ϵ Rn, A ϵ Rn×(P+1)
 (9) 

where ui corresponds to the i
th

 component of the PCE expansion of the state vector u contain-

ing the chloride concentration at nodes, D, m and Cs. In the forecast stage, the uncertainty of 

the parameters and the dynamic state is propagated forward in time using stochastic Galerkin 

scheme. A process noise is added after forecast to represent the modeling error.  

5.2.2. Analysis stage 

This is a learning stage, where parameters and uncertainties are updated when a measure-

ment is available. The measurement probabilistic representation, which is in this case the free 

chloride concentration at certain locations, is also expanded in a polynomial chaos form,  

 

 
D = ∑ djψj

P

j=0

 

(10) 

where dj is the deterministic coefficient of the jth basis. D is stored in a matrix form, 

 

 B =  (d0, d1 … , dp)   (11) 

The filtering step relies on a minimum square error estimator of the coefficient of the poly-

nomial chaos expansion. To evaluate the coefficient of the analysis step, the filtering step 

equation is projected on an approximating space by the basis of polynomial chaos {ψj}j=0
P , 

this results in: 
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 uj
a = uj

f + PfHT(HPfHT + R)−1. (dj − Huj
f) (12) 

where f  and a denote the forecast and analysis variables respectively, H acts as a linear meas-

urement operator, to relate the true model state, to the measurements d and P ,with f or a indi-

ces, and R are the covariance error matrices of the forecast state and the measurements 

respectively 

In a matrix form, it becomes [8], 

 

 Aa = Af + PfHT(HPfHT + R)−1. (B − HAf) (13) 

5.3 Curse of Dimensionality and Suggested Implementation 

When the process noises and measurement errors are considered in PCKF application as 

time independent variables, the PCE terms could increase beyond computational applicability. 

PCKF has gained a noticeable popularity since it was first used in 2007 [10], however, it was 

rarely applied with time independent process noises and model errors. Moreover, time inde-

pendent measurements are usually approximated with a finite memory dimension with no 

clear methodology or error analysis for this representation. The theoretical necessity to add 

independent dimensions for every independent source of error discouraged researchers from 

applying polynomial chaos based filters to problems with high independent sources of errors. 

This issue could be the reason behind limiting the application of polynomial chaos based fil-

ters to problems with initial value errors and made the use of sampling filters advantageous 

for other applications. 

Theoretically, each independent source of error will cost an increase in the dimensionality 

of the problem. However, this study will focus on keeping the computational cost minimal yet 

without scarifying the accuracy. The suggested approach to deal with increasing dimension-

ality of the PCE, due to incorporation of time independent errors, relies on limiting the PCE 

bases to finite terms, yet keeping an approximate same covariance. This strategy can be 

achieved by projecting the covariance matrix on a pre-specified number of first order terms 

when an additional basis is required beyond the fixed expansion length (P+1).  This method-

ology maintains a good approximate propagation of the covariance and the mean of the pa-

rameters, and maintains a low-dimensional PCE. Thus, the unbearable cost of curse of 

dimensionality is shifted to the cost of projection the covariance matrix on first order terms, 

which is the solution of a system of non-linear equations, with, in most cases, a close initial 

guess. This approach is influenced by the characteristics of PCKF as being suited as an identi-

fication filter rather than inference method, since PCKF provides a good approximation of the 

posterior mean in Bayesian setting with a random priori estimation error [13]. In addition, it 

relies on the covariance matrices of the forecasted state vector and the covariance of the 

measurements, for an optimal identification of the state vector, i.e. maintaining a good esti-

mate of the first two moments is the pillar for a successful implementation of PCKF. 

 

6 NUMERICAL APPLICATION 

The efficiency of the presented health-monitoring scheme is illustrated on 1-D diffusion 

example. The problem represents the chloride ingress in a near shore wall or an interior col-

umn exposed to a corrosive environment. A 50x25 cm reinforced concrete column with a 5 

cm cover depth is used to demonstrate the efficacy of the presented framework. The sensors 
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are put in two locations in the zone of interest, near the rebar location, as shown in Table 1, 

and only one surface is assumed fully saturated. 

 

Sensors Location (m) 

1 0.05 from surface 

2 0.03 from surface 

Table 1 Sensors' Locations 

 

Figure 1 Schematic Drawing 

6.1 Input Parameters  

Table 2 presents the input parameters assumed for the base model. These parameters are 

used to simulate the measured chloride concentrations. 

 

Parameter Value Comments 

Surface Chloride Concentration, Cs 5 kg/m3 High exposure 

Reference Diffusion Rate, DR 0.00015 m2/year At 28 days 

Age factor, m 0.07  

Table 2 Base Model Input Parameters 

The Crank solution eq. 3, with an average time varying diffusion rate Dm (t) [14], is used 

to generate the sensors' synthetic data. To represent measurement errors, an additive Gaussian 

white noise perturbation having a standard deviation equal to 2% of the actual data is added to 

the simulated chloride concentrations. 

Starting with an initial assumption for the state of each parameter, the perturbed synthetic 

measurements are used to calibrate them as time progress. Table 3 presents the assumed initial 

probabilistic characteristics for the model parameters. Furthermore, it is assumed that the 

structures in both problems are chloride free at the beginning of the simulation time.  

 

Parameter Mean Value cov Distribution 

Surface Chloride Concentration, Cs 4 kg/m3 0.07 Lognormal  

Reference Diffusion Rate, DR 0.0001 m2/year 0.07 Lognormal  

Age factor, m 0.05 0.07 Beta  

Table 3 Initial Model Parameters 
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Within the framework of the PCKF, a set of orthogonal polynomials are used to represent 

the uncertainty within the system. The initial PCE is propagated forward in time using finite 

element analysis with 0.025 years increment. The model error and parametric errors are repre-

sented via an additive Gaussian white noise with a standard deviation equals to 1.5% and 2.5% 

respectively of the forecasted mean. To represent the spatial variability in concrete, a spatial 

de-correlation length of 4 cm is assumed; thus a 6 i.d.d random variables are assigned to rep-

resent the uncertainty in the concentration profile grid each time model error is incorporated 

in the system. Whenever measurements are available, the model state vectors are updated us-

ing the analysis stage equations. With a real time sensor system, data availability is not a limi-

tation since sensors typically give instantaneous measurements. However, due to the relatively 

slow nature of the chloride ingress, a one-year measurement interval is adopted.  

6.2 Results 

6.2.1. PCKF implementation 

The benchmark for comparing the results of the suggested implementation will be an 

EnKF approach using theoretically sufficient ensembles representation, to eliminate sampling 

errors, that is in this case 5x10
5
 ensembles. To assess the effect of number of random varia-

bles and maximum order used in the PCE, the methodology will be applied to four independ-

ent formulations of PCE with: (1) 37 dimensions and order 1, (2) 37 dimensions and order 2 

and (3) 37 dimensions and order 3 and (4) 45 dimensions and order 2. Note that the only con-

straint for applying the projection on the first order basis is that the number of first order basis 

(dimension) is at least equal to the length of the state vector, to be able to solve the non-linear 

system of equations. In addition, two EnKF formulations with 0.25 x10
5
 and 1 x10

5
 ensem-

bles will be simulated for comparative purposes. The computational cost will be assessed 

based on the time (sec) needed to run the simulations for 20 years, or 800 time steps. However 

to assess the accuracy of the suggested scheme the average deviation, eq. 14, and the maxi-

mum deviation, eq. 15,  of the first two order moments, from benchmark problem, of  chloride 

concentration at rebar  level and the time varying diffusion rate will be calculated for the sim-

ulated period, as follows: 

Average deviation: 

 
%𝐴𝑑 = ∑

|(u𝑛 − 𝑢𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
𝑛 )|

800 × 𝑢𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
𝑛

800

𝑛=0

× 100 
(14) 

 

 
%𝑀𝑎𝑥𝑑 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (

|(u𝑛 − 𝑢𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
𝑛 )|

𝑢𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
𝑛 × 100)0

800 
(15) 

Where u and u𝑏𝑒𝑐ℎ𝑚𝑎𝑟𝑘 are first or second order moments of the studied sequential formu-

lation and benchmark problem formulation respectively. The %𝑀𝑎𝑥𝑑 of the studied parame-

ters and the %𝐴𝑑, for the simulation period are presented in Tables 4 and 5 respectively. 

Table 6 presents the computational time, in seconds, required for the different sequential fil-

ters' formulations, to perform the forecast steps and the analysis steps for the 20 years. These 

tables reflect the power of the suggested scheme, where the PCKF with dimension 37 and or-

der 2 rendered accurate results, with less than 0.35 %𝑀𝑎𝑥𝑑 and less than 0.094  %𝐴𝑑 and 

with better accuracy and computational cost compared to EnKF formulations. Moreover, no 

significant improvement is shown in the PCE formulation beyond 37 dimensions and second 
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order. This can be attributed to the emphasize of the lower order terms due to the projection 

on the first order bases and to conservation of first two moments in all PCE expansions.  

 

 %𝐴𝑑 for mean 

of C at xr 

%𝐴𝑑 for std of 

C at xr 

%𝐴𝑑 for mean 

of D 

%𝐴𝑑 for std 

of D 

EnKF: 10
5
 Ensembles 0.180 0.571 0.061 0.446 

EnKF: 0.25x10
5
 Ensembles 0.393 2.100 0.490 1.555 

PCKF: Dimensions 37 Order 1 1.074 4.722 1.505 2.930 

PCKF: Dimensions 37 Order 2 0.074 0.350 0.072 0.218 

PCKF: Dimensions 37 Order 3 0.074 0.350 0.059 0.221 

PCKF: Dimensions 45 Order 2 0.074 0.350 0.074 0.219 

Table 4 Maximum percentage deviation from the benchmark problem for chloride concentration C at rebar level 

and diffusion rate D 

 %𝑀𝑎𝑥𝑑 for 

mean of C at xr 

%𝑀𝑎𝑥𝑑 for 

std of C at xr 

%𝑀𝑎𝑥𝑑 for 

mean of D 

%𝑀𝑎𝑥𝑑 for 

std of D 

EnKF: 10
5
 Ensembles 0.010 0.159 0.027 0.183 

EnKF: 0.25x10
5
 Ensembles 0.039 0.346 0.129 0.421 

PCKF: Dimensions 37 Order 1 0.106 0.249 0.387 0.506 

PCKF: Dimensions 37 Order 2 0.007 0.084 0.024 0.094 

PCKF: Dimensions 37 Order 3 0.006 0.082 0.020 0.094 

PCKF: Dimensions 45 Order 2 0.007 0.084 0.024 0.094 

Table 5 Average percentage deviation from the benchmark problem for chloride concentration C at rebar level 

and diffusion rate D 

 

 Computational 

time (Sec) 

Benchmark Problem 15168 

EnKF: 10
5
 Ensembles 3034 

EnKF: 0.25x10
5
 Ensembles 751 

PCKF: Dimensions 37 Order 1 230 

PCKF: Dimensions 37 Order 2 372 

PCKF: Dimensions 37 Order 3 24480 

PCKF: Dimensions 45 Order 2 801 

Table 6 Computational time in seconds for 20 years simulation period 

6.2.2. Parametric identification 

PCKF with 37 dimensions and second order PCE is used for health monitoring of chloride 

ingress in concrete.  Figure 2 shows the mean prediction of chloride concentration at rebar 

level using PCKF calibration technique compared to using initial value parameters, and Fig-

ure 3 shows the mean and 1 std error bars of the calibrated time varying diffusion coefficient 

as compared to the base case model assumptions. A significant improvement in identifying 

the chloride concentration at rebar level and the diffusion parameter is reflected in these two 

figures. Consequently, a more accurate reliability assessment for corrosion initiation can be 

performed using the updated state vector parameters.  
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Figure 2 Measured Vs. Predicted chloride concentration chloride concentration using PCKF and initial parame-

ters at rebar level 

   

Figure 3 Base Case Vs. Mean calibrated time varying diffusion coefficient with 1 std error bars 

  

7 CONCLUSIONS  

In this study, PCKF was employed as a parametric identification tool using a suggested 

practical framework to mitigate the curse of the dimensionality. The power of the suggested 

scheme was reflected by comparing its accuracy and computational efficiency to the well -

known EnKF.  The suggested methodology was used for calibration of dynamic variables and 

model parameters of 1-D diffusion problem for better assessment of corrosion initiation time.  
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Abstract. This paper presents a probabilistic computational model for the dynamic soil-
structure interaction problem. Specifically, the structure and a limited bounded volume of sub-
soil in its vicinity are modeled with functionally graded finite elements, allowing to consider
heterogeneous local subsoil conditions. This part of subsoil is modeled as a three-dimensional
constrained stochastic field. The unboundedness of the surrounding soil is accounted for by
coupling the finite element model with perfectly matched layers. An incident wave field is in-
corporated in the finite element-perfectly matched layers model without explicitly including the
source in the computational domain by decomposing the displacement field of the soil in ac-
cordance with the subdomain formulation developed for the soil-structure interaction problem.
The proposed methodology is illustrated with a case study in which the overall uncertainty is
propagated by means of Monte Carlo simulation. The analysis shows that the uncertainty of the
structural response increases at specific frequency bands and generally for higher frequencies.
These results illustrate how the stochastic variability of the subsoil properties affect both the
incident wave field and the structural response in a wide frequency range, and sets the base for
future investigations.
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1 INTRODUCTION

Dynamic soil-structure interaction (SSI) refers to the dynamic behavior of the coupled soil-
structure system. This problem occurs in several applications from earthquake engineering to
the prediction of traffic induced vibrations in the built environment. Pioneering work on the
subject started in the nuclear industry for the design and construction of earthquake resistant
nuclear reactors. More recently, the development of high-speed railway lines in Europe, east
Asia and USA turned research interest also in the field of railway induced vibrations. Railway
induced vibrations may lead to malfunctioning of sensitive equipment, discomfort to people
and, at high vibration levels, damage to structures. The development of computational models
that efficiently and effectively predict the dynamic response of structures excited by ground
born vibrations is a matter of ongoing research.

When the knowledge of the subsoil properties is incomplete, the dynamic soil-structure in-
teraction problem should be cast into a stochastic form. This can be done by considering para-
metric [14] and/or non-parametric uncertainty [3]. Most of the previously conducted work on
the subject is mainly focused on earthquake engineering applications considering the very low
frequency range (< 10 Hz). The present study considers parametric uncertainty and focuses
on the prediction of vibrations in the built environment which makes the frequency range of
interest much broader.

The remainder paper is organized as follows. First, the stochastic dynamic soil-structure
interaction problem is introduced and the available modeling techniques are briefly discussed.
Next, the particularities of modeling the stochastic subsoil are addressed. Finally, the results of
a case study are presented, and conclusions are drawn.

2 THE STOCHASTIC DYNAMIC SSI

The soil immediately below the structure plays a dominant role in the structural response. In
many cases, this soil is imperfectly known as it may have been perturbed during construction
and its characteristics are likely to be different from those identified by geophysical tests on
virgin land next to the structure. As discussed in the following, the use of finite elements (FE)
provides a great flexibility that allows to incorporate heterogeneous properties in the modeling
of this bounded volume of soil. The structure of interest and the limited bounded volume of soil
in its vicinity will be denoted for convenience as the generalized structure (Figure 1).

The main difficulty in the modeling of dynamic soil-structure interaction stems from the
semi-infinite extent of the soil surrounding the generalized structure, for which the radiation
conditions of the elastodynamic waves to infinity should be satisfied. Generally, the dynamic
soil-structure interaction problem can be formulated either directly or by following a domain de-
composition technique [18]. In the direct approach, the unboundedness of the surrounding soil
is accounted for by using appropriate absorbing boundaries in the limits of the regular domain
(i.e. generalized structure). The use of perfectly matched layers (PML) [2] is a quite versatile
solution to impose these boundary conditions. In the subdomain approach [1], the system is
decomposed into two subsystems: the generalized structure and the soil. Both subsystems are
analyzed separately and usually by a different computational method. The boundary element
method can be used to simulate the unbounded soil domain of infinite extent, where the radi-
ation conditions to infinity are implicitly satisfied, while the finite element method is typically
used for the generalized structure.

Although the use of boundary elements entails the benefit of rendering three-dimensional
problems in two-dimensional ones, the resulting boundary element system matrices are fully
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Figure 1: Dynamic soil-structure interaction problem. The interface Σ defines the physical boundary between the
unbounded soil Ωe

s and the generalized structure Ωg.

populated as opposed to the sparse finite element matrices, leading to increased memory re-
quirements and longer computer time for processing. This aggravates in the case of embedded
or extended foundations where a large soil-foundation interface has to be considered. For these
reasons, the direct formulation of the problem by means of FE-PML is advocated in this study.

The PML are non-physical absorbing layers that are placed at the exterior limits of the com-
putational domain (Figure 2). Ideally, the waves that are outwardly propagating from the regu-
lar domain are fully attenuated inside the PML without any spurious reflections emerging [2].
The effectiveness of the PML strongly depends on the choice and parameterization of their
stretch functions [8]. The bounded soil domain is modeled with finite elements: a distinc-
tion is made between heterogeneous functionally graded finite elements [13] with continuously
varying properties and deterministic homogeneous finite elements. The former are used for
the stochastic soil subdomain while the latter are used to enforce the perfectly matched condi-
tions between the PML and the functionally graded FE. The resulting finite element system of
equations of the total system is written in the frequency domain as:

K̂û = f̂ (1)

where f̂ is the load vector, û is the displacement vector and K̂ is the dynamic stiffness matrix.
The dynamic stiffness matrix K̂ can be subdivided into block matrices according to the degrees
of freedom: ûb of the structure, ût of the stochastic-heterogeneous soil, ûΣ of the interface Σ
delimiting the limits of the regular domain, ûq of the deterministic-homogeneous soil and ûp

the non-physical degrees of freedom of the PML (Figure 2):
K̂bb K̂bt 0 0 0

K̂tb K̂tt K̂tΣ 0 0

0 K̂Σt K̂ΣΣ K̂Σq 0

0 0 K̂qΣ K̂qq K̂qp

0 0 0 K̂pq K̂pp




ûb

ût

ûΣ

ûq

ûp

 =


f̂b

f̂t

f̂Σ

0
0

 (2)

Excitation sources can be located either close to the receiver like in the case of railway
induced vibrations or far from the receiver like in case of an earthquake. If the interest of
the analysis is limited only in the neighborhood of the receiver, a remote excitation source S
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Figure 2: Formulation of the stochastic dynamic soil-structure interaction problem by means of FE-PML. The
computational domain is subdivided into the structural Ωb, stochastic soil Ωt, deterministc soil Ωq and PML Ωp

subdomains respectively. All but the last are modeled with finite elements. The interface Σ defines the limits of
the regular computational domain.

(Figure 2) can be implicitly taken into account by decomposing the displacement field of the
soil in accordance with the subdomain formulation developed for the soil-structure interaction
problem [1]. This way, the computational cost decreases significantly as only the generalized
structure has to be included in the regular domain. Specifically, the displacement field of the
soil is decomposed as (Figure 3):

ûs = ûi + ûd0 + ûd (3)

where ûi are the free field displacements generated by the remote source S (Figure 3b). Gener-
ally, the free field displacements ûi (and tractions t̂i) can be computed by using the appropriate
source model. The locally diffracted wave field ûd0 is defined as the displacement field that is
radiated in the soil with excavated the generalized structure for which applies ûd0 = −ûi on
the interface Σ (Figure 3c). The wave field ûd corresponds to the displacement field radiated in
the soil due to the generalized structure displacements ûg on the interface Σ (Figure 3d). Only
the first and the second of the aforementioned displacement fields contribute to the equivalent
loading vector f̂Σ on the interface Σ of the FE-PML model which represents excitation by a
remote source.

(a)

Γsσ Γsσ

Γs∞

Σ
Ωe

sui

ûs =

(b)

Γs0Γsσ Γsσ

Γs∞Ωsui

ûi
+

(c)

Γsσ Γsσ

Γs∞

Σ
Ωe

s

ûd0
+

(d)

Γsσ Γsσ

Γs∞

Σ
Ωe

s

ûd

Figure 3: Decomposition of soil displacement field in accordance with the subdomain formulation of the dynamic
soil-structure interaction problem. (a) The displacement field in the soil ûs is decomposed into: (b) free field ûi,
(c) locally diffracted ûd0 (with ûd0 = −ûi on Σ) and (d) structurally radiated ûd (with ûd = ûg on Σ).

Once the free field displacements ûi and tractions t̂i have been evaluated on the interface Σ,
the loading f̂Σ can be computed as:

f̂Σ = −
∫

Σ

NT
Σt̂

ne
s

i dΣ− r̂Σ (ûd0) = −
∫

Σ

NT
Σt̂

ne
s

i dΣ− r̂Σ (−ûi) (4)
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where NΣ is a matrix containing the shape functions of the finite element faces located on the
interface Σ, t̂n

e
s
i are the free field tractions and r̂Σ (−ûi) is a vector of the reaction forces on the

interface Σ of the FE-PML model with excavated the generalized structure due to the imposed
displacements −ûi (figure 4). The reaction forces r̂Σ (−ûi) are computed as follows:

r̂Σ (−ûi) =
(
K̂ΣrK̂

−1
rr K̂rΣ − K̂ΣΣ

)
ûi (5)

where the degrees of freedom of the deterministic soil ûq and the PML ûp have been grouped
for clarity as ûr = ûq∪ ûp. The stochastic variation of the soil properties inside the generalized
structure does not affect the loading vector f̂Σ and as a result, in a Monte Carlo analysis it has
to be computed only once.

Σ

ne
s

S

Ωr = Ωp ∪ Ωq

Figure 4: FE-PML model with excavated the stochastic soil subdomain. Auxiliary model for the incorporation of
an incident wave field.

3 THE STOCHASTIC SUBSOIL MODELING

The imperfectly known subsoil is modeled as a stochastic field with given marginal proba-
bility distribution function (PDF) and correlation structure [17]. Usually, the mean value and
the standard deviation are the only available information for the probabilistic characterization
of the subsoil properties. In the absence of more detailed experimental results, a covariance
function is assumed for the stochastic field. The covariance function is usually defined by the
standard deviation function σG(s) and a correlation structure κG(s, s′):

CG(s, s′) = σG(s)σG(s′)κG(s, s′) (6)

This information is sufficient to generate realizations of Gaussian stochastic fields. In this
study, non-Gaussian stochastic field realizations are generated by non-linear transformation of
the underlying Gaussian. This is referred as translation process [7, 10]:

G(θ, s) = F−1
G (FZ (Z(θ, s))) (7)

where F−1
G is the inverse of the target non-Gaussian marginal cumulative probability distribution

and Z is the standard normal cumulative probability distribution.
Furthermore, in order to avoid non-physical dynamic impedance contrasts, a conforming

coupling between the stochastic and the deterministic subdomains of the soil is desirable. This is
achieved by modeling a conditional (or constrained) stochastic field [17]. Conditional stochastic
fields are necessarily heterogeneous as the mean value and standard deviation vary from location
to location [11].
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The Karhunen-Loève expansion can be employed to straightforwardly generate realizations
of a heterogeneous Gaussian stochastic field [16]. Nevertheless, the computation of the Karhunen-
Loève modes entails the solution of a Fredholm eigenvalue problem [6], which is computation-
ally rather expensive and not trivial to implement in this case. Instead, the approach that is
followed in this study is to directly discretize the stochastic field and its covariance matrix into
a random vector and a covariance matrix respectively [9]. Subsequently, the random vector
describing the Gaussian stochastic field is decorrelated by performing eigenvalue analysis to its
covariance matrix:

Λ = ΦTCZΦ (8)

where Λ and Φ are matrices containing the eigenvalues λi and the eigenvectors φi of the covari-
ance matrix CZ respectively. The Gaussian realizations are computed as the superposition of the
deterministic eigenvectors φi of the covariance matrix multiplied by random numbers ξi from
the standard normal distribution. This corresponds to an equivalent discrete Karhunen-Loève
expansion:

Z = Z0 +
nm∑
i=1

φiYi = Z0 +
nm∑
i=1

φi

√
λiξi (9)

Having generated the Gaussian realizations, the non-Gaussian are generated by following the
translation process outlined previously. In Equation 9, the number of eigenvalues considered
in the summation should be sufficiently large in order to capture the relevant information that
is encoded in the covariance matrix. The first nm largest magnitude eigenvalues, that result
in normalized accumulated sum larger than a threshold value εmin can be used as a selection
criterion:

ε(nm) =

nm∑
i=1

λi

tr(CZ)
≥ εmin (10)

where tr(CZ) is the trace of the covariance matrix.
In a Monte Carlo simulation, when random realizations are generated from the entire sam-

pling space, clusters of realizations may form and as a result the space might not be equally
explored. In order to improve the representativeness of the sampled pool of realizations, more
sophisticated sampling techniques can be employed. Latin hypercube sampling with artificial
correlation reduction is used in the present investigation [12].

4 CASE STUDY

The methodology is illustrated with a case study. A three story R/C office building with
regular layout and slab foundation resting at the surface of a visco-elastic halfspace is studied
(Figure 5). The characteristics of the building are summarized in Table 1, while the mean
properties of the visco-elastic halfspace are shown in Table 2.

Figure 6 shows the FE-PML computational model. The subsoil domain is modeled with
three-dimensional twenty-node finite elements. An element size of maximum 2.6 m is used for
the mesh at the exterior limits of the computational domain, corresponding to 2.5 quadratic finite
elements per shear wavelength λs at a frequency of 50 Hz, which is the upper limit considered
in this work. The building is modeled with frame and eight-node shell elements. Standard
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Story height hs 3 m
Columns 0.35 m × 0.35 m
Beams 0.20 m × 0.50 m
x direction walls 0.20 m × 4 m
y direction walls 0.20 m × 2 m
Slab thickness ts 0.15 m
Raft foundation thickness tf 0.60 m
Young’s modulus Es 30 GPa
Material density ρs 2500 kg/m3

Table 1: R/C building characteristics.

4 m 4 m 4 m

4 m

4 m

x

y

Ai z

Figure 5: R/C building layout at floor i.

h Cs Cp G ν ρ β
[m] [m/s] [m/s] [MPa] [−] [kg/m3] [−]
∞ 300 600 162 1/3 1800 0.01

Table 2: Mean properties of the visco-elastic halfspace.

stretch functions are used for the formulation of the PML [8]. Because of the specifically
employed FE discretization and PML parameterization, the model is appropiate for analysis in
the frequency range between 10 Hz and 50 Hz. As the analysis is performed in the frequency
domain, hysteretic damping is assumed for the R/C building with η = 2ξ = 5% [4].

First, the methodology for the incorporation of an incident wave field in the FE-PML model
is verified. The homogeneous visco-elastic halfspace with the properties of Table 2 is used for
this purpose. The visco-elastic halfspace is excited by a remote source S of unit amplitude
located at (-34 m,-26 m,0 m) with respect to the origin of the reference system (Figure 6). The
analysis is performed for the computation of the free field displacements without the presence
of the R/C building. Figure 7 shows both the solutions obtained with the FE-PML model and
the direct stiffness method [15]. The obtained results match perfectly for the frequencies at 10
Hz and 30 Hz, while small differences (< 5%) are observed for the frequency at 50 Hz. This
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13m17m

13m

S (−34m,−26m, 0m)

Ωp

Ωt

Ωq

Ωb

Σ

Figure 6: FE-PML model. Regular domain: heterogeneous functionally graded FE (green color) and homogeneous
deterministic FE (grey and blue colors). PML domain (red color). Remote excitation source S located outside the
limits of the computational domain.

difference can be mostly attributed to discretization error.
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Figure 7: Real part of vertical free field displacements along the (a) x and (b) y axes (z=0) of the FE-PML model.
FE-PML model (solid lines) versus EDT solutions (x marks) [15]. Responses for 10 Hz (blue), 30 Hz (green) and
50 Hz (red).

Next, the R/C building is added at the surface of the stochastic soil. The soil has the mean
properties of Table 2 and only the shear modulus is considered to be stochastic. The Gamma
PDF is adopted for the shear modulus with a coefficient of variation of CoV = 0.3 (Figure
8). An exponential correlation structure with a correlation length of lc = 1.5 is assumed for the
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covariance function of the univariate stochastic field:

CG(s, s′) = σ2
G exp

(
−|s− s

′|2

l2c

)
(11)

A threshold value εmin = 0.95 (Equation 9) is used in the present work for the generation of
the stochastic field realizations, resulting in nm = 1000 eigenvalues (figure 9). A large number
of eigenvalues (and therefore random numbers) is generally required for an adequate represen-
tation of weakly correlated stochastic fields. Figure 10 shows a realization of the stochastic
shear modulus of the soil mapped onto the finite element mesh. The stochastic shear modulus
is constrained to take the deterministic value of the surrounding soil on the interface Σ.

100 200 300 400
0

0.002
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0.006

0.008

0.01

G [MPa]

p
G

Figure 8: Marginal probability distribution function of
soil’s shrear modulus.
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Figure 9: Normalized accumulated sum of Karhunen-
Loève eigenvalues.

G [MPa]

Figure 10: Realization of the stochastic shear modulus of the soil mapped onto the finite element mesh.

The uncertainty is propagated from the stochastic subsoil properties to the structural response
quantities by means of Monte Carlo simulation. In total, nR = 1001 realizations are used for the
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statistical estimation of the structural response quantities. Moreover, the quality of the estimated
statistics is quantified by utilizing the bootstrap method [5]. The degree of uncertainty on the
structural response is assessed by means of coefficients of variation and confidence regions.
The former are defined as:

CoV|U| =
σ|U|
µ|U|

(12)

where |U | is the modulus of the response quantity U , and σ|U| and µ|U| are the standard deviation
and the mean value of |U | respectively. Alternatively, a confidence region with a confidence
level of pc = 90% for the modulus of a response quantity |U | can be defined such that:

P (|Ub| ≤ |U | ≤ |Ut|) ≥ pc (13)

where the lower |Ub| and the upper |Ut| bounds can be obtained as the 5% and 95% percentiles
of |U | respectively from the Monte Carlo simulation results.

The (stochastic) spatial variability of the subsoil properties affects the structural response in
two ways. First, the actual load that excites the structure is altered. Figure 11 shows the free field
incident wave field that excites the R/C building in case of homogeneous subsoil conditions, and
subsoil conditions as those depicted in Figure 10. Although the same excitation source S (Figure
6) is considered in both cases, the actual free field load that excites the building is different.
This happens because, in the latter case, the spatial variability of the subsoil properties, with
its inherent subsoil impedance contrasts (Equation 2), may give rise to constructive/destructive
inference mechanisms that perturb the incident wave field.

<(Uz) [m]
(a) (b)

Figure 11: Free field displacements generated by the remote source S at 50 Hz. (a) Homogeneous subsoil condi-
tions and (b) Stochastic realization with heterogeneous subsoil conditions.

Second, the modal characteristics of the coupled structure-soil system are modified. In the
case where the loading on the structure is exactly the same for all stochastic subsoil realizations,
any difference between the corresponding responses should be solely attributed to the influence
that the spatial variability of the subsoil properties has on the modal characteristics of the sys-
tem. This is demonstrated in Figure 12 which shows the response of node A1 (Figure 5) in the
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y direction in the case where the excitation is directly applied on the R/C building. Specifically,
unit amplitude forces are simultaneously imposed on nodes A1, A2 and A3 in the x, y and z
directions (the subscripts of A stand for floor number). The mean value of |Uy| is plotted with
the corresponding 90% confidence region as function of frequency. The response for five dif-
ferent stochastic subsoil realizations is also plotted. Figure 12b shows the CoV of |Uy| and the
corresponding confidence 95% interval for this estimated statistics.

(a) (b)

Figure 12: Modulus of response of node A1 in the y direction due to applied loading in the x, y and z directions
on the nodes A1, A2 and A3. (a) Mean value of response (solid line), the corresponding 90% confidence region
of response (shaded area) and five realizations of response (colored lines). (b) Coefficient of variation of response
(solid line) and 95% confidence interval for this statistical measure (shaded area).

In case the structure is excited by ground born vibrations, both of the aforementioned effects
take place. Figures 13a and 14a show the responses of node A1 (Figure 5) in the x and z
direction, respectively, when the structure is excited by the remote source S (Figure 6). The
mean value of |Ux| and |Uz| are plotted with the corresponding 90% confidence regions of
response as functions of frequency. Additionally, Figures 13b and 14b show the CoV of |Ux|
and |Uz| and the corresponding 95% confidence intervals for these estimated statistics.

A general trend observed in all figures, is that the structural response uncertainty increases
at higher frequencies. However, there are certain frequency bands where the response of the
coupled soil-structure system is found to be more sensitive to the subsoil properties. Simi-
larly, there are other frequency bands in which the structural response is less sensitive. These
frequency bands are not the same for every structural degree of freedom. From the mean re-
sponse lines (Figures 13a, 14a and 12a), the uncertainty seems to increase at what looks to be
the anti-resonance frequencies of the coupled structure-soil system. This can be misleading as
these frequencies may correspond to eigenmodes of the coupled soil-structure system which
are sensitive to the stochastic subsoil properties. This is demonstrated in Figure 12a, in which
individual realization responses are plotted. Frequencies around 24Hz and 40Hz, which seem
to be anti-resonance frequencies of the system in the mean response, are actually frequencies
where the response of the coupled system is extremely sensitive to the subsoil properties.
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(a) (b)

Figure 13: Modulus of response of node A1 in the x direction due to excitation by the remote source S. (a)
Mean value of response (solid line) and the corresponding 90% confidence region of response (shaded area). (b)
Coefficient of variation of response (solid line) and 95% confidence interval for this statistical measure (shaded
area).

(a) (b)

Figure 14: Modulus of response of node A1 in the z direction due to excitation by the remote source S. (a)
Mean value of response (solid line) and the corresponding 90% confidence region of response (shaded area). (b)
Coefficient of variation of response (solid line) and 95% confidence interval for this statistical measure (shaded
area).

5 CONCLUSIONS

• A methodology is outlined for the direct formulation of the stochastic soil-structure inter-
action problem by means of coupled finite elements-perfectly matched layers. The model
is suitable for analysis in a wide frequency range.

• The methodology is illustrated with a case study, the results of which set the base for
future investigations. The two ways in which the stochastic spatial variability of the
subsoil properties affects the structural response are, also, discussed.
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• Generally, the structural response uncertainty increases at higher frequencies. However,
the structural response sensitivity to the subsoil properties varies considerably over fre-
quency bands.
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Abstract. A multiscale framework to construct stochastic macroscopic constitutive material
models is proposed. A spectral projection approach, specifically polynomial chaos expansion,
has been used to construct explicit functional relationships between the homogenized proper-
ties and input parameters from finer scales. A homogenization engine embedded in Multiscale
Designer, software for composite materials, has been used for the upscaling process. The frame-
work is demonstrated using non-crimp fabric composite materials by constructing probabilistic
models of the homogenized properties of a non-crimp fabric laminate in terms of the input
parameters together with the homogenized properties from finer scales.
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1 INTRODUCTION

Conventional approaches to perform multiscale designs have been to average over the fluc-
tuations of the material properties throughout the scales. In these approaches it is possible to
deduce the constitutive material properties at the macroscopic scale from information avail-
able at finer scales [1], where the properties are computed by averaging over fluctuations in the
stress response of the material. For instance, to deduce the material properties of continuous
non-crimp fabric (NCF) composite materials, the averaged homogenized properties of a unit
cell of a unidirectional lamina (consisting of a tow surrounded by resin within a bounded vol-
umetric unit), at the so-called meso-scale are required. These meso-scale properties of the tow
are in turn homogenized properties from its constituents at a finer scale, i.e., micro- scale.

Robust designs for such complex systems, where properties across scales matter, require re-
liable accounting of the material features as well as the fluctuations and uncertainties associated
with the description and the performance of the constitutive representations at the various scales
of interest. The main objective of this work is to propose a multiscale framework that is able
to account for uncertainties associated with finer scales explicitly. The multiscale framework
is demonstrated by performing stochastic modeling of an NCF composite material across mul-
tiple scales. Specifically, the uncertainties associated with three hierarchical scales have been
assimilated from available measurements and propagated throughout the scales. A Polynomial
Chaos (PC) spectral projection approach [2] has been used to construct the hierarchical func-
tional relationships throughout the scales. The hierarchy of the scales starts at the scale of the
fibers and resin within the tows and goes upward to construct stochastic constitutive models of a
laminate or a structure composed of composite laminates. A homogenization engine embedded
in Multiscale Designer [3], software for composite materials, has been used for the upscaling
process. The proposed framework (i) is suitable for the modeling and analysis of composite
materials, (ii) can be generalized to account for the behavior of physical systems containing
composite parts, and (iii) can be incorporated in inverse calibration frameworks.

2 DEFINITION OF THE COMPOSITE MATERIALS

The proposed multiscale framework is used to construct probabilistic models of composite
laminates that are up-scaled across multiple scales. The composite laminates consist of eight
laminae made of continuous non-crimp fabric (NCF). That is, each lamina is composed of con-
tinuous unidirectional tows and resin. The carbon fiber tows are made of 12K fibers (T700SC
12000 50C). The laminate is designed to be symmetric such that the laminae are oriented as
[0/45/− 45/90/90/− 45/45/0].

3 DEFINITION OF THE SCALES AND THE RESPECTIVE ASSOCIATED PARAM-
ETERS

The NCF laminate, used in this study, is composed of 8 laminae. Each lamina is composed
of unidirectional tows and resin. The tows are composed of fibers with resin filling the space
between the fibers. Thus, the properties of the fibers and resin are required to predict the consti-
tutive properties of the tows. Then, the properties of the composite tows and those of the resin
again are required to predict the constitutive properties of the NCF unidirectional lamina, which
in turn together with other laminae, being oriented according to a certain layout, are required
to predict the constitutive properties of the eight-layer laminate. The chart depicted in Figure 1
defines the multiple scales involved in the aforementioned upscaling process.
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Figure 1: Schematic definition of the multiple scales.

The input parameters at each scale are grouped as (a) the parameters introduced at the scale
(l) and which are characterized from available data at this scale, and (b) the parameters that are
up-scaled from level (l − 1). The parameters belonging to the first group are denoted by Pl,
where l refers to the respective scale. These groups are specific inputs to each level l; i.e., P0

is a group of inputs at level 0, and so on. The parameters belonging to the second group are
denoted by Ql. The parameters from this group are input parameters at level l that have been
obtained via an upscaling process from level l − 1 to level l. The parameters from both groups
are defined in the following subsections at each level.

3.1 Input parameters associated with level l = 0

The set of input parameters at level l = 0, P0, consists of three groups P0
g, P

0
f ,and P0

m

representing the parameters associated with the geometry of the unit cell, the material properties
of transverse isotropic fibers, and the material properties of isotropic matrix, respectively.

Group Parameter Description
P0
g V F,T

f % Volume fraction of fiber within the tow

P0
f

Ef,A Axial Young’s modulus of fibers
Ef,T Transverse Young’s modulus of fibers
Gf,A Axial shear modulus of fibers
νf,A Axial Poisson’s ratio of fibers
νf,T Transverse Poisson’s ratio of fibers

P0
m

Em Young’s modulus of the matrix
νm Poisson’s ratio of the matrix

Table 1: Input parameters P0 at level l = 0 .

These parameters are modeled by uniform random variables. The volume fraction of fibers
within the tow is denoted by V F,T

f . The subscripts A and T , used with the tow material proper-
ties, denote the axial and transverse properties, respectively.
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3.2 Input parameters associated with level l = 1

The set of input parameters at level l = 1, P1, consists of two groups P1
g and P1

m rep-
resenting the parameters associated with the geometry of the unit cell in a NCF lamina and
the material properties of an isotropic matrix, respectively. These parameters are modeled by
uniform random variables.

Group Parameter Description

P1
m

Em Young’s modulus of the matrix
νm Poisson’s ratio of the matrix

P1
g

Da Major diameter of the tow
da Free distance along the major axis
Db Minor diameter of the tow

Table 2: Input parameters P1 at level l = 1 .

The geometry parameters define the dimensions of the unit cell of a NCF unidirectional
lamina and are listed in Table 2. These are illustrated by the drawing in Figure 2, where Da and
Db refer to the diameters of the tow along the major and minor directions, da and db refer to the
gap between the tows along the major and minor directions, which are filled in by the matrix.
Here, db is assumed to be constant and equal to 0.1 mm. The dimensions of the unit cell are
denoted by Sa = Da + da and Sb = Db + db.

Figure 2: A schematic drawing of a unit cell in a NCF unidirectional lamina.

In addition, another set of input parameters at this scale is Q1, the set of homogenized mate-
rial properties of the tow. These are the outcome of the homogenization H1 associated with the
upscaling process from level l = 0 to level l = 1.

Group Parameter Description

Q1

Et,A Axial Young’s modulus of tow
Et,T Transverse Young’s modulus of tow
Gt,A Axial shear modulus of tow
νt,A Axial Poisson’s ratio of tow
νt,T Transverse Poisson’s ratio of tow

Table 3: Input parameters Q1 at level l = 1 .

The material properties of the homogenized tow, which manifest a transverse isotropic sym-
metry, are denoted by Q1 = (Et,A, Et,T , Gt,A, νt,T , νt,A); where the subscript t refers to the
tow and the subscripts A and T refer to the axial and transverse properties, respectively.
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3.3 Input parameters associated with level l = 2

The input parameters at level l = 2, P2, consists of the geometry layout of the laminae
within the eight-layer laminate, P1

g. The orientation of the unidirectional laminae is defined as
[0/45/− 45/90]s, where the upper and lower laminae are oriented along the 0o axis. The num-
ber of laminae is fixed for the laminate analyzed in this paper. The orientation of each lamina
is also considered constant at this stage.

Moreover, the other set of input parameters at this scale, Q2, is the set of homogenized ma-
terial properties of a unidirectional NCF lamina. These are the outcome of the homogenization
H2 associated with the upscaling process from level l = 1 to level l = 2. The material properties
of the homogenized lamina, which are expected to manifest a transverse isotropic symmetry, are
denoted by Q2 = (El,A, El,T , Gl,A, νl,T , νl,A); where the subscript l refers to the lamina and
the subscripts A and T refer to the local axial and transverse properties, respectively.

Group Parameter Description

Q2

El,A Axial Young’s modulus of NCF lamina
El,T Transverse Young’s modulus of NCF lamina
Gl,A Axial shear modulus of NCF lamina
νl,A Axial Poisson’s ratio of NCF lamina
νl,T Transverse Poisson’s ratio of NCF lamina

Table 4: Input parameters Q2 at level l = 2 .

3.4 Output parameters associated with level 3

The layout of the laminate, [0/45/ − 45/90]s, is designed to have quasi-isotropic material
properties. These are grouped in Q3 and are: (1) Exx = Eyy, (2) Ezz , (3) Gyz = Gxz, (4) Gxy,
(5) νxy = νyx, (6) νxz = νyz, and (7) νzx = νzy.

4 HOMOGENIZATION APPROACH

A homogenization engine embedded in Multiscale Designer, software for composite mate-
rials, has been used for the upscaling process [3]. The multiscale design system enables the
analysis and design of material systems, such as composite materials given their microstruc-
ture. An appropriate unit cell morphology is selected for each of the tow homogenization and
the lamina homogenization, respectively.

5 MULTI-SCALE STOCHASTIC ASSIMILATION USING A SPECTRAL PROJEC-
TION APPROACH

The homogenized properties of the laminate are obtained by upscaling the material and ge-
ometry parameters of the ordered laminae. The material properties of a lamina are obtained
using a homogenization protocol that upscales the material and geometry parameters of a unit
cell representing a lamina and consisting of a unidirectional tow. The homogenized material
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properties of a tow are also obtained using a similar homogenization protocol that upscales the
geometry and material properties of a unit cell of fibers and resin.

This hierarchy of upscaling processes is addressed in this current work by propagating un-
certainties associated with parameters from each scale to construct probabilistic models of the
homogenized material properties of the laminate. It is worth noting that the proposed hier-
archical framework is not confined to the eight-layer laminate addressed in this paper. It is
a general framework that can be applied to other composite materials or any heterogeneous
material where fluctuations observed at coarse scales are influenced by fluctuations present at
multiple finer scales.

The propagation of uncertainties across the scales has been carried out using a Non-Intrusive
Spectral Projection (NISP) approach [4]. The NISP approach enables probabilistic models of
the engineering constants representing the homogenized material properties of a laminate as
well as the homogenized properties at lower levels. In other words, stochastic surrogate models
could be constructed to approximate the functional relationship of the parameters Ql, l denotes
the corresponding level, in terms of the input parameters at the finer scales (lower levels); i.e.,
Q3 can be expressed in terms of P0, P1, and P2 instead of P2 and Q2. This is achieved by
projecting the stochastic properties Ql on a finite-dimensional stochastic space, Θ, through
an orthogonal projection. The dimension of this stochastic space equals the dimension of the
grouped input variables P = {P0, P1, · · · , Pl−1}. To do so, a mapping of Ql to a probability
space, Θ, can be expressed in terms of a truncated polynomial chaos (PC) expansion [2] as,

Ql (ξ) =

Npc∑
j=0

qlj Ψj(ξ), (1)

where, l = 1, 2, or 3 refers to the level of upscaled parameters Ql, and Ψj(ξ) is the PC ba-
sis which consists of a set of normalized multi-dimensional orthogonal polynomials in ξ; ξ is a
vector grouping normalized standard variables. The mapping between ξ and the independently-
assumed random variables Pi, introduced in the previous sections at the finer scales i, is defined
such that Φξ

(
ξ
)

= ΦP
(
P
)
. The parameters qlj are the projection coefficients and Npc + 1 is the

dimension of the PC terms, which can be defined in terms of the PC order q and the stochastic
dimension Nrv denoting the size of vector ξ.

The orthogonality condition can be expressed in terms of the inner product, defined on the
stochastic space Θ, as,

〈Ψi(ξ),Ψj(ξ)〉 = 〈Ψj(ξ),Ψj(ξ)〉 δij, (2)

where,

〈u, v〉 =

∫
Θ

u(ξ) v(ξ) pξ(ξ) dξ, (3)

The projection coefficients qlj at level l can be expressed, given the orthogonality of the basis,
in terms of the following inner products,

qlj =

〈
Ql(ξ),Ψj(ξ)

〉
〈Ψj(ξ),Ψj(ξ)〉

, j = 0, 1, ..., Npc. (4)
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To estimate
〈
Ql(ξ),Ψj(ξ)

〉
, a sparse grid cubatures (SGC) approach could be used [4]. Ac-

cording to this approach, Nsgc sets of ξ realizations and associated weights are generated; ξ(i)

and wi, i = 1, · · · , Nsgc [5]. The dimension of each set Nsgc is a function of the stochastic
dimension Nrv and the level of the sparse grid cubatures L. Thus,

qlj =

Nsgc∑
i=1

wi Q
l(ξ(i)) Ψj(ξ

(i)) , j = 1, · · · , Npc. (5)

The spectral representation defined in eqation 1 is then fully identified in terms of the PC coeffi-
cients. The mean values, Q

l
, and variances, V ar

[
Ql (ξ)

]
, of the projected quantities of interest

can be estimated, given the orthogonality of the basis, respectively, as,

Q
l
= q0

j . (6)

V ar
[
Ql (ξ)

]
=

Npc∑
j=1

qlj
2
. (7)

6 EXAMPLE AND DISCUSSION

As explained in the previous section, it is possible to express the homogenization output at
multiple scales (Ql, Q2, and Q3) using the same set of SGC nodes. First, the quantities of
interest are computed at a set of SGC nodes, each of which consists of a combination of input
parameters reported earlier for each scale. The process is repeated for increasing values of the
SGC level in order to determine the appropriate SGC level. Second, at each of the given SGC
levels, a set of respective polynomial chaos coefficients are estimated using equation 5. The
estimated coefficients of (i) the axial modulus of a homogenized tow, Et,A from level l = 1,
(ii) the axial modulus of a homogenized NCF lamina, El,A from level l = 2, and (iii) the axial
modulus of a homogenized NCF laminate Exx from level l = 3 are plotted in Figures 3 to 5,
respectively. The x-axis represents the index of the terms in the polynomial chaos expansion
while the y-axis represents the value of the coefficients. The axial indices 1 to 11 correspond to
the coefficients of the linear terms in the polynomial chaos representation. The coefficients are
plotted for a set of polynomial chaos orders ranging from 1 to 3.

It is clearly shown that the nodes associated with SGC level 3 are sufficient to identify the
coefficients qlj . It can also be concluded that the contributions of some second order terms and
possibly third order terms in the expansion are important for accurate representation of some
homogenized properties at the different scales. To corroborate this conclusion, the probability
density functions (PDFs) of the homogenized axial moduli at homogenization levels l = 1,
l = 2, and l = 3 are plotted in Figure 6. The Figures show that the axial modulus of the
homogenized tow at level l = 1 could be expressed as a linear combination of some of the input
variables since the PDF curves associated with orders 1 to 3 are converged. However, the PDF
curves of the axial moduli of the lamina, l = 2, and the laminate, l = 3, show that a second
order polynomial chaos representation is appropriate, which indicates that some second order
terms in the expansion contribute to these homogenized properties.
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Figure 3: The PC coefficients q1j for Et,A.
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Figure 4: The PC coefficients q2j for El,A.
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Figure 5: The PC coefficients q3j for Exx = Eyy.
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Figure 6: PDF curves for the axial elastic moduli: (left) EtA ∈ Q1 (middle) ElA = Exx ∈ Q2 (right) Exx ∈ Q3

7 CONCLUSIONS

It is shown that polynomial chaos expansion is able to characterize properties at a coarse
scale in terms of fluctuations associated with properties from one or more finer scales. This
characterization is achieved in terms of an analytical form of functional relationships with the
underlying variables at the finer scales.

It is worth noting that the proposed hierarchical framework is not confined to the eight-
layer laminate addressed in this paper. It is a general framework that can be applied to other
composite materials or any heterogeneous material where fluctuations observed at coarse scales
are influenced by fluctuations present at multiple finer scales.

The proposed framework (i) is suitable for the modeling and analysis of composite materials,
(ii) can be generalized to account for the behavior of physical systems containing composite
parts, (iii) enables analytical forms that can be readily used in sensitivity analyses, and (iv) can
be incorporated in inverse calibration frameworks.
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Abstract. A multi-fidelity global metamodel is presented for uncertainty quantification of com-
putationally expensive simulations. The multi-fidelity approximation is built as the sum of a
low-fidelity-trained metamodel and the metamodel of the difference (error) between high- and
low-fidelity simulations. The metamodel is based on dynamic stochastic radial basis functions,
which provide the prediction along with the associated uncertainty. New training points are
added where the prediction uncertainty is largest, according to an adaptive sampling procedure.
The prediction uncertainty of both the low-fidelity and the error metamodel are considered for
the adaptive training of the low- and high-fidelity metamodels, respectively. The method is ap-
plied to a steady fluid-structure interaction (FSI) problem of a 3D NACA 0009 stainless steel
hydrofoil. Two functions are considered simultaneously, namely lift and drag coefficients, ver-
sus angle of attack and Reynolds number. Two problems are presented: in the first problem the
high-fidelity evaluations are obtained through steady FSI computer simulations, whereas in the
second problem they are given by available experimental data from literature. Low-fidelity eval-
uations are provided in both cases by steady hydrodynamic simulations. The overall uncertainty
of the multi-fidelity metamodel is used as a convergence criterion.
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1 INTRODUCTION

The simulation-based design (SBD) process of complex engineering systems (such as aerial,
ground or maritime vehicles) requires computationally expensive physics-based solvers, in or-
der to achieve accurate solutions. When dealing with real-world applications, most of the rel-
evant inputs and outputs are affected by uncertainty, which stems from operational and envi-
ronmental conditions, geometrical tolerances, numerical and/or modelling errors. Therefore,
uncertainty quantification (UQ) methods are required, in order to assess the effects of uncertain
parameters on the relevant outputs. Earlier uncertainty studies addressed deterministic uncer-
tainty analysis (UA) for numerical and modelling errors [1, 2, 3]. More recently, the research
moved to stochastic UQ for environmental and operating conditions. Stochastic UQ studies us-
ing high-fidelity simulations for ship hydrodynamic problems have been presented in [4, 5, 6, 7].

In design optimization, high-fidelity solvers and UQ methods are integrated with single/multi-
objective local/global minimization/maximization algorithms, which may require a large num-
ber of computer simulations (and high computational cost) in order to converge to the final
solution [7, 8, 9]. UQ and design optimization with high-fidelity solvers still represent a tech-
nological challenge and require efficient methods and implementations.

In order to reduce the computational cost, metamodelling methods have been developed
and successfully applied in several engineering fields [10, 11, 12]. In addition to metamod-
els, multi-fidelity approximation methods have been developed with the aim of combining to
some extent the accuracy of high-fidelity solvers with the computational cost of low-fidelity
solvers [13, 14, 15], or the accuracy of experiments (high-fidelity data) and computer simula-
tions (low-fidelity) [16]. Multi-fidelity approximations for uncertainty quantification have been
successfully investigated in [17] and applied in maritime [18] and industrial problems [19].
Furthermore, multi-fidelity metamodels have been successfully used for design optimization
[20, 21, 22].

The objective of the present work is to present a multi-fidelity global metamodel, which man-
ages high- and low-fidelity solvers through a multi-fidelity adaptive sampling procedure. The
method is developed as an essential part of efficient uncertainty quantification of computation-
ally expensive computer simulations. The current method is an extension to multiple functions
[23] of the work presented in [24].

The multi-fidelity approximation is built as the sum of a low-fidelity-trained metamodel and
the metamodel of the difference (error) between high- and low-fidelity evaluations. The meta-
model is based on the dynamic stochastic radial basis function (RBF) method, presented in [23]
for uncertainty quantification and extended to design optimization in [25]. The method provides
the prediction and the associated uncertainty. The adaptive sampling procedure is driven by the
maximum absolute value of the uncertainty, evaluated for each multi-fidelity metamodel. The
prediction uncertainty of both the low-fidelity and the error metamodel is used for the adap-
tive refinement of the low- and high-fidelity training sets. High- or low-fidelity simulations are
computed, depending on the relative uncertainty of error and low-fidelity metamodels.

The method is applied to a steady fluid-structure interaction (FSI) problem, used as a bench-
mark both for experimental [26] and simulation-based shape design optimization studies, using
high-fidelity solvers [27]. Herein, the performances of the 3D NACA 0009 stainless steel hy-
drofoil are addressed in terms of lift and drag coefficients versus the angle of attack (AoA)
and the Reynolds number (Re). Two problems are presented. The first problem addresses
lift and drag coefficients using high- and low-fidelity simulations. Specifically, high-fidelity
evaluations are provided by steady FSI simulations and low-fidelity evaluations are given by
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steady hydrodynamic simulations with fixed geometry. The second problem addresses the same
functions using available experimental data [26] as high-fidelity evaluations. Both high- and
low-fidelity simulations are performed by finite element method (FEM) using the commercial
code COMSOL MultiphysicsTM . A preliminary structural and hydrodynamic characterization
of the current hydrofoil has been provided in [28].

2 MULTI-FIDELITY ADAPTIVE METAMODEL

Considering n functions (relevant outputs), the multi-fidelity metamodel is defined as

f̂i(x) = f̃i,L(x) + δ̃i(x), i = 1, . . . , n

δi(x) = fi,H(x)− fi,L(x), i = 1, . . . , n
(1)

where x ∈ Rn is the independent variable (uncertain parameter), superscript∼ denotes the RBF
prediction, and δi is the difference (error) between high- and low-fidelity simulations (respec-
tively, fi,H and fi,L with i = 1, . . . , n).

The uncertainty associated with the prediction provided by the multi-fidelity metamodel of
the i-th function is defined as

Uf̂i(x) =
√
U2
f̃i,L

(x) + U2
δ̃i

(x) (2)

where Uf̃i,L and Uδ̃i are the uncertainties associated to the prediction of the i-th function, pro-
vided by the low-fidelity and error metamodels (f̃i,L and δ̃i), respectively [23].

Figure 1: Multi-fidelity metamodel adaptive sampling procedure.

The multi-fidelity metamodel is trained using the adaptive procedure shown in Fig. 1. After
initialization, a new sample is added to the training set at each iteration, solving the following
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problem:
(x∗, i∗) = argmax

x,i
[Uf̂i(x)] (3)

Once x∗ and i∗ are evaluated, the training sets H and/or L (high- and low-fidelity, respectively)
are updated as {

If U2
f̃i∗,L

(x∗) ≥ αU2
δ̃i∗

(x∗), then add x∗ to L

If U2
f̃i∗,L

(x∗) < αU2
δ̃i∗

(x∗), then add x∗ to H and L
(4)

where α ∈[0, 1] is an arbitrary tuning parameter, related to the ratio of the computational cost
of the low- and high-fidelity simulations.

3 STOCHASTIC RADIAL BASIS FUNCTIONS

The prediction f̃ is evaluated as the expected value of a set of stochastic RBF predictions
[23], which depend on the stochastic parameter ε ∼ unif[1, 3]:

f̃(x) = E[g(x, ε)]ε (5)

with

g(x, ε) =
m∑
i=1

wi ϕ(x− xi) (6)

where m is the size of the training set, xi are the training points, ϕ(·) = ‖·‖ε, and ‖·‖ is the
Euclidean norm. The coefficientswi are obtained by the linear system Aw = y with w = {wi}.
The elements of the matrix A are aij = ϕ(xi−xj) and the vector y = {yi} collects the function
evaluations at the training points, yi = f(xi).

The uncertainty associated to the metamodel prediction, U(x), is quantified at each x as the
95%-confidence interval of g(x, ε). This may be evaluated using a Monte Carlo sampling over
ε, as shown in [23].

4 APPLICATION: NACA 0009 STAINLESS STEEL HYDROFOIL

The FSI problem presented by [26] is used herein to demonstrate the method. Specifically,
the performances of a 3D NACA 0009 stainless steel hydrofoil are addressed in terms of lift and
drag coefficients (CL, CD). CL, CD are evaluated versus AoA and Re (2D problem), respec-
tively varying within [-1, 15] deg and [2E5, 6E5], which represent a subdomain of experimental
data provided by [26] (AoA ∈ [-15, 15] deg and Re ∈ [2E5, 1E6]). Both the range of variation
have been selected according to the outcomes provided by [26]. Specifically, it was observed
that pre-stall forces are Re dependent only for Re≤8E5 (although the dependence is weak).

The model main particulars are: root, mid and tip chords respectively equal to 0.12 m, 0.09
m and 0.06 m, and span length equal to 0.3 m. The resulting aspect ratio is 3.33. According to
[26], a stainless steel with a density of 7900 kg/m3, a Young modulus of 193 GPa and a Poisson
modulus of 0.3 is chosen for the hydrofoil. Water density and dynamic viscosity are set equal to
999 kg/m3 and 1.1545E–3 Pa·s, whereas the absolute pressure and temperature are set to 201.13
kPa and 293.15 K.

Figures 2(a) and 2(b) respectively show the experimental values of lift and drag coefficients,
provided by [26], versus AoA for Re={2E5;4E5;6E5}. The peak of the lift coefficient falls
within 10 and 11 deg, showing stall for AoA>11 deg.
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Figure 2: Experimental lift and drag coefficients for several Reynolds numbers [26].

Two problems are solved. In the first problem (namely problem 1) high-fidelity evaluations
are provided by FSI simulations, performed with a two-way stationary coupling between hy-
drodynamic (steady incompressible Reynolds Averaged Navier-Stokes Equations, RANSE) and
structural simulations. The low-fidelity evaluations are obtained through steady incompressible
RANSE hydrodynamic simulations, with rigid hydrofoil. Both high- and low-fidelity simula-
tions are performed using the commercial FEM-based code COMSOL MultiphysicsTM and the
ratio between the computational time of the low- and the high-fidelity simulations is approxi-
mately equal to 0.2, see Tab. 1.

In the second problem (namely problem 2), the high-fidelity evaluations are provided by
available experimental data from [26]. Therefore, the multi-fidelity metamodel is initially
trained with experimental data and low-fidelity simulations. For this problem, the ratio be-
tween the computational time of the high-fidelity evaluations and the low-fidelity simulations
is set to infinite, implying that only low-fidelity evaluations are used to update the multi-fidelity
metamodel.

5 SIMULATION SETUP

FSI and hydrodynamic simulations share the same C-type domain for the hydrodynamics. A
length equal to four mid-chords (Cm) is used as radius of the C, the total height of the domain
is twice the span of the hydrofoil. Downstream, the domain extends ten times the mid-chord,
see Fig. 3(a).

The domain is discretized with a structured mesh and the distribution of the elements in the
downstream region is intentionally refined to guarantee the finest discretization of wake flow for
each AoA of the hydrofoil. The grid is also refined in critical regions such as the root and the tip
of the hydrofoil, Fig. 3(b). Parameters pertaining to the grid size used for high- and low-fidelity
simulations are summarized in Tab. 1. Note that high-fidelity (FSI) simulations also include the
structural grid (with coincident nodes) and associated degrees of freedom.

The k − ε turbulence model is used with standard coefficients [29] and wall function. The
non-linear stationary problem is solved with a dumped Newton method through linear step
[30]. A pseudo time-stepping is introduced to increase the simulation stability. The Courant-
Friedrichs-Lewy (CFL) number adjusts the local time-step according to ∆tloc = CFLloch/U ,
where h is the longest cell edge, and U is the magnitude of the local fluid flow velocity. The
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(a) Hydrodynamic domain and boundary con-
ditions

(b) Meshed C-type domain

Figure 3: Hydrodynamic domain and grid.

Simulation N. of elements DoFs Simulation time [h]
FSI 31.3k 2M ≈ 10

Hydrodynamic 29.7k 1.2M ≈ 2

Table 1: Summary of the simulation parameters.

CFL is decreased, proportionally with the increase of the AoA, starting from the value CFL=1.
Second order shape functions are used for the displacement vector, mesh deformation (if

any), velocity, turbulent kinetic energy and turbulent dissipation rate. First order shape functions
are used for the pressure.

The hydrodynamic boundary conditions are set considering an inlet/undisturbed flow on the
gray face, a wall on the blue face and an outlet on the green face. The black faces represent the
hydrofoil (elastic/rigid wall), see Fig. 3(a).

5.1 High-Fidelity Simulations: Fluid-Structure Interaction Solver

The structural boundary conditions include null displacement and rotation at the root sec-
tion of the hydrofoil. The hydroelastic deformation of the hydrofoil implies the deformation of
the mesh. In COMSOL MultiphysicsTM arbitrary Lagrangian-Euler (ALE) method is imple-
mented. The Yeoh method is applied, with a stiffness factor equal to 150 [31].

A segregated iterative solver is applied in order to reduce the problem dimension. Specifi-
cally, three segregated groups are defined: the first for the displacement vector, the second for
the spatial coordinates of the deformed mesh, and the third for the velocity, pressure, turbulent
kinetic energy and turbulent dissipation rate.

The displacement vector is solved with a direct MUltifrontal Massively Parallel Solver
(MUMPS) [31]. The others segregated groups are solved using the Flexible Generalized Min-
imal Residual Method (FGMRES) [32], preconditioned with Generalized Minimal Residual
Method (GMRES) [33].

5.2 Low-Fidelity Simulations: Hydrodynamic Solver Only

Two segregated groups are solved: the first for velocity and pressure, and the second for
turbulent kinetic energy and turbulent dissipation rate. Both segregated groups are solved using
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the FGMRES, preconditioned with GMRES.

6 NUMERICAL RESULTS

The pressure contour on the hydrofoil and on the half-span plane are shown for both FSI and
hydrodynamic-only simulations, for AoA=7 deg, Re=4E5, respectively in Figs. 4(a) and 4(b).
In particular, the deflection of the tip of the hydrofoil is evident in Fig. 4(a).

Figure 5(a) shows for the FSI simulation the pressure contour on the hydrofoil and on the
half-span plane, along with the streamlines deformed by the local velocity component (left color
legend). Finally, Fig. 5(b) shows the pressure contour on the hydrofoil and the velocity contour
on the half-span plane, along with the streamlines deformed by the local velocity component
(left color legend).

(a) FSI simulation. Pressure contour on hydrofoil and
half-span plane

(b) Hydrodynamic-only simulation. Pressure contour
on hydrofoil and half-span plane

Figure 4: High- and low-fidelity simulations, AoA=7 deg, Re=4E5.

(a) FSI simulation. Pressure contour on hydrofoil and
half-span plane

(b) FSI simulation. Pressure contour on hydrofoil and
velocity contour on half-span plane

Figure 5: High-fidelity simulation, AoA=7 deg, Re=4E5.

The numerical results that follow are presented showing the maximum value of the uncer-
tainty of the multi-fidelity metamodel, normalized with respect to the function range (R). The
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adaptive sampling procedure is assumed at convergence when the maximum value of the un-
certainty does not change significantly, if new simulations are added. Furthermore, the multi-
fidelity metamodel, along with the uncertainty of the low-fidelity and error metamodels are
shown at the initial and final iterations. Non-dimensional variables are used to build the meta-
model. However, for the sake of clarity, dimensional results are shown. The initial training set
is composed by the extreme values of the domain and the central point: AoA={-1;7;15} deg,
permuted with Re={2E5;4E5;6E5}.

6.1 Problem 1

Figure 6 shows the maximum value of the normalized uncertainty of the multi-fidelity meta-
model versus the computational cost. The maximum value of the uncertainty of the multi-
fidelity metamodel of the lift coefficient shows a significant reduction during the iterative pro-
cess, as shown in Fig. 6(a). The maximum value of the uncertainty of the multi-fidelity meta-
model of the drag coefficient shows a quite sudden reduction after 4 iterations, as shown in Fig.
6(b). The convergence of the multi-fidelity metamodel is achieved after 13 iterations, corre-
sponding to about 140 hours of simulation time (wall clock, using 1 Intel Xeon E5-1620 v2 3.9
GHz with 4 cores in parallel). A total of 9 high-fidelity and 20 low-fidelity simulations are used,
as summarized in Tab. 2.
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Figure 6: Problem 1, maximum multi-fidelity metamodel uncertainty versus computational cost.

Figures 7(a)-(b), (c)-(d), and (e)-(f) show the initial multi-fidelity metamodel, the low-fidelity
and error metamodel uncertainties, respectively for the lift and drag coefficients. The squares
and triangles represent the points where the high- (H) and low-fidelity (L) simulations are com-
puted.

Comparing Figs. 7(c) and 7(d) it is worth noting that the uncertainty associated to the low-
fidelity metamodel of the lift coefficient is one order of magnitude greater than the uncertainty
associated to the low-fidelity metamodel of the drag coefficient.

Figures 8(a)-(b), (c)-(d), and (e)-(f) show the multi-fidelity metamodel, the low-fidelity and
error metamodel uncertainties, respectively for the lift and drag coefficients, corresponding to
the final iteration (13-th iteration).

It should be noted that the uncertainty of the low-fidelity metamodel is significantly lower
than in Figs. 7(c) and 7(d). Figures 8(e) and 8(f) show the uncertainty of the error metamodel,
which is not changed, since high-fidelity simulations are not added to the original training set.
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(a) Multi-fidelity metamodel of the lift coefficient
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(b) Multi-fidelity metamodel of the drag coefficient
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(c) Uncertainty of the low-fidelity metamodel of the
lift coefficient
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(d) Uncertainty of the low-fidelity metamodel of the
drag coefficient
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(e) Uncertainty of the error metamodel of the lift coef-
ficient

 2

 4

 6

-1  1  3  5  7  9  11  13  15

R
e 

x
 1

0
5
 [

-]

AoA [deg]

H      L

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015
D

ra
g
 C

o
ef

fi
ci

en
t 

[-
]

(f) Uncertainty of the error metamodel of the drag co-
efficient

Figure 7: Problem 1, initial iteration.
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(a) Multi-fidelity metamodel of the lift coefficient
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(b) Multi-fidelity metamodel of the drag coefficient
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(c) Uncertainty of the low-fidelity metamodel of the
lift coefficient

 2

 4

 6

-1  1  3  5  7  9  11  13  15

R
e 

x
 1

0
5
 [

-]

AoA [deg]

H      L

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

D
ra

g
 C

o
ef

fi
ci

en
t 

[-
]

(d) Uncertainty of the low-fidelity metamodel of the
drag coefficient
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(e) Uncertainty of the error metamodel of the lift coef-
ficient

 2

 4

 6

-1  1  3  5  7  9  11  13  15

R
e 

x
 1

0
5
 [

-]

AoA [deg]

H      L

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015
D

ra
g
 C

o
ef

fi
ci

en
t 

[-
]

(f) Uncertainty of the error metamodel of the drag co-
efficient

Figure 8: Problem 1, final iteration.
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6.2 Problem 2

Figure 9 shows the maximum value of the uncertainty of the multi-fidelity metamodel versus
the computational cost. Figure 9(a) shows the reduction of the maximum value of the uncer-
tainty of the multi-fidelity metamodel of the lift coefficient. The maximum value of the uncer-
tainty of the multi-fidelity metamodel of the drag coefficient shows a quite sudden reduction
after 3 iterations, see Fig. 9(b). The convergence of the multi-fidelity metamodel is achieved
after 7 iterations, corresponding to about 130 hours of simulation time (wall clock, using 1 Intel
Xeon E5-1620 v2 3.9 GHz with 4 cores in parallel). A total of 9 high-fidelity experimental data
and 16 low-fidelity simulations are used, as summarized in Tab. 2.
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Figure 9: Problem 2, maximum multi-fidelity metamodel uncertainty versus computational cost.

Figures 10(a)-(b), (c)-(d), and (e)-(f) show the initial multi-fidelity metamodel, the low-
fidelity and error metamodel uncertainties, respectively for lift and drag coefficients. The
squares represent high-fidelity experimental data (H) and the triangles represent the points
where low-fidelity (L) simulations are computed.

Considering Figs. 10(c) and 10(d) it should be noted that the uncertainty associated to the
low-fidelity metamodel of the lift coefficient is one order of magnitude greater than the un-
certainty associated to the low-fidelity metamodel of the drag coefficient. Figures 10(e) and
10(f) show the uncertainty of the error metamodel, which is considerably greater than the cor-
responding uncertainties of Figs. 7(e) and 7(f). This effect is due to the difference between the
simulations and the experiments, which is significantly greater than the difference between the
high- and low-fidelity simulations.

Figures 11(a)-(b), (c)-(d), and (e)-(f) show the multi-fidelity metamodel, the low-fidelity and
error metamodel uncertainties, respectively for lift and drag coefficients, at the final iteration
(8-th iteration).

It is worth noting that the uncertainty of the low-fidelity metamodel, Figs. 11(c) and 11(d), is
significantly lower than in Figs. 10(c) and 10(d), and that the uncertainty of the error metamodel
is not changed, since no experimental data is added to the training set.

7 CONCLUSIONS

A multi-fidelity global metamodel has been presented for uncertainty quantification of com-
putationally expensive computer simulations. High- and low-fidelity solvers are used for the
metamodel training and managed through an adaptive sampling procedure. Multiple functions
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(a) Multi-fidelity metamodel of the lift coefficient
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(b) Multi-fidelity metamodel of the drag coefficient
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(c) Uncertainty of the low-fidelity metamodel of the
lift coefficient
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(d) Uncertainty of the low-fidelity metamodel of the
drag coefficient
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(e) Uncertainty of the error metamodel of the lift coef-
ficient
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(f) Uncertainty of the error metamodel of the drag co-
efficient

Figure 10: Problem 2, initial iteration.
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(a) Multi-fidelity metamodel of the lift coefficient
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(b) Multi-fidelity metamodel of the drag coefficient
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(c) Uncertainty of the low-fidelity metamodel of the
lift coefficient
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(d) Uncertainty of the low-fidelity metamodel of the
drag coefficient
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(e) Uncertainty of the error metamodel of the lift coef-
ficient
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(f) Uncertainty of the error metamodel of the drag co-
efficient

Figure 11: Problem 2, final iteration.
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Pr. Initial iteration Final iteration

CL CD CL CD

# H L max(Uf̂/R) max(Uf̂/R) H L max(Uf̂/R) max(Uf̂/R)

1 9 9 0.1161 0.0585 9 20 0.0254 0.0386

2 9 9 0.1233 0.0769 9 16 0.0307 0.0593

Table 2: High (H) and low (L) fidelity evaluations and max(Uf̂/R) at the initial and final
iterations.

have been considered, simultaneously. The multi-fidelity approximation is obtained as the sum
of a low-fidelity-trained metamodel and the metamodel of the difference (error) between high-
and low-fidelity evaluations. The metamodel is based on the dynamic stochastic RBF method,
which provides the prediction and the associated uncertainty. The prediction uncertainty of
both the low-fidelity and the error metamodel is used for the adaptive refinement of the low-
and high-fidelity training sets, respectively.

The method has been applied to a steady FSI problem addressing the lift and drag coefficients
of a 3D NACA 0009 stainless steel hydrofoil. Two problems have been presented: the first with
high-fidelity evaluations provided by steady FSI simulations and the second with high-fidelity
evaluations provided by experimental data. Low-fidelity evaluations have been provided by
hydrodynamic simulations for both problems.

For problem 1, the overall uncertainty of the multi-fidelity metamodels has been reduced
achieving 2.5% and 3.8% (of the function range) for the lift and drag coefficient, respectively.
For problem 2, an uncertainty of 3% and 5.9% for the lift and drag coefficient has been achieved,
respectively. Although the overall uncertainty in Problem 1 is lower than in problem 2, a bet-
ter agreement with the experimental results is obtained using experimental data in the initial
training set as in problem 2. Furthermore, less iterations have been used for problem 2. For
both problems 1 and 2, the adaptive sampling method always required low-fidelity evaluations
and no high-fidelity information was added to the model after the initialization. This is due to
the high cost of high-fidelity evaluations (simulations or experiments) and the small uncertainty
associated to the error between low- and high-fidelity functions.

Future work will extend the current study to different (and more flexible) materials, such as
aluminum and/or composite materials, and will also include the application of the method to
separate and combined problems of uncertainty quantification and design optimization.
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Abstract. We employ a new stochastic methodology for the construction of sur-
rogate models for uncertainty quantification (UQ) and sensitivity analysis (SA). It is
based on polynomial dimensional decomposition (PDD), as are widely used in solving
high-dimensional stochastic problems that arise in various applications. In our approach,
the coefficients of the PDD expansion are determined by using a least-squares regression
(LSR). Compared to a projection approach, the use of LSR not only avoids the computa-
tion of high-dimensional integrals, but also affords an attractive flexibility in choosing the
sampling points, which facilitates importance sampling using a calibrated posterior distri-
bution based on a Bayesian approach. LSR can be particularly advantageous in cases where
the asymptotic convergence properties of polynomial expansions cannot be realized due to
computation expense, focusing effort on efficient finite-resolution sampling. To efficiently
include parameter spaces with a moderate number of uncertain parameters (up to 7 in this
work), the PDD is coupled with an adaptive ANOVA (analysis of variance) decomposi-
tion. This provides an accurate surrogate as the union of several low-dimensional spaces,
avoiding the typical computational overhead cost of a high-dimensional expansion. In ad-
dition, the PDD representation of the ANOVA component functions is further simplified
in an adaptive way according to the relative contribution of the different polynomials to
the variance. The overall methodology is demonstrated on plasma-mediated ignition sim-
ulations as part of a large predictive science effort in the Center for Exascale Simulation
of Plasma-Coupled Combustion (XPACC). The specific configuration we study includes
model parameters arising from reaction rates in a global chemical kinetics description,
and a laser-induced breakdown ignition seed.
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1 INTRODUCTION

It is well-understood that global sensitivity analysis (GSA) has the advantage of taking
into account the broad influence of input parameters over the ranges and their interactions
onto the output quantity of interest, by considering the entire input space rather than
a specific nominal point (see for example [6]). However, the main difficulty encountered
when employing global methods is the high cost of Monte Carlo (MC) or a quasi Monte
Carlo (QMC) methods. These can be prohibitively expensive.

The objective of this work consists of building an efficient Uncertainty Quantification
(UQ) and GSA method featuring a surrogate model representation that is affordable for
complex numerical simulation problems. To address the so-called curse of dimensionality,
we employ the polynomial dimensional decomposition (PDD) (introduced and developed
by Rahman and coworkers in e.g. [12, 13, 15, 21, 14]) and combine it with the Analy-
sis of Variance (ANOVA) decomposition due to their direct link with each other. The
least-squares regression (LSR) approach is an efficient tool to determine the expansion
coefficients, by minimizing the error of the surrogate model representation in the mean
square sense (see e.g. [7, 18, 3]). Compared to the projection approach (see e.g. [9, 11, 2])
where each polynomial coefficient is obtained by computing a multi-dimensional inte-
gral, the regression approach is more flexible (in choosing sampling points) for problems
involving a moderate number of uncertain parameters. It is known that the number
of ANOVA component functions increases exponentially with respect to the uncertain
parameter dimensionality, and meanwhile the imposed polynomial order for the PDD ex-
pansion involves a polynomial increase of the number of PDD terms for each component
function. This phenomenon causes one main limitation of the regression approach even for
a truncated low-order ANOVA expansion, namely the high number of deterministic model
evaluations for problems characterized by a moderate to large number of uncertainties;
indeed, for the regression problem to be well posed, the number of deterministic model
evaluations is necessary to be larger than the total polynomial expansion size [3, 4]. In
this respect, this paper employs the approach proposed in [20] to combine the active di-
mension strategy and the stepwise regression technique [3, 4] to obtain an efficient sparse
surrogate model representation.

In Section 2, we review basic concepts of ANOVA, Sobol’ sensitivity indices and out-
line main idea of variance-based dimension reduction techniques. A 2-D axisymmetric
application case is investigated in Section 3. Conclusions follow.

2 ANOVA AND VARIANCE-BASED DIMENSION REDUCTION

Let us suppose that the response of a given system of interest can be represented by a
N-dimensional function y = f(ξ)

y = f(ξ) = f(ξ1, ξ2, · · · , ξN), (1)

where ξ are independent input uncertain parameters.
An Analysis of Variance (ANOVA) [16, 8, 1, 17] decomposes f(ξ) into a series of

lower-dimentional component functions as

y = f0 +
N∑

16i6N
fi(ξi) +

N∑
16i<j6N

fij(ξi, ξj) + · · ·+ f1,2,···,N(ξ1, ξ2, · · · , ξN), (2)
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or in compact form

y = f0 +
N∑
T=1

N∑
i1<···<iT

fi1,···,iT (ξi1 , · · · , ξiT ). (3)

Note in ANOVA component functions have zero mean and are orthogonal. For notational
convenience in this section, we write a general T -dimensional component function (1 ≤
T ≤ N) of the ANOVA decomposition as

fiT
(ξT ) = fi1,i2,···,iT (ξi1 , ξi2 , · · · , ξiT ). (4)

Keeping in mind its zero-mean property, the component function (4) can be expanded
by employing Polynomial Dimensional Decomposition (PDD) using an infinite number of
orthogonal basis functions (as done in [12]) by a tensor product for multi-indices jT :

fiT
(ξT ) =

∞∑
jT ,···,j1

CjT
iT

ΨjT
iT
. (5)

Here CjT
iT

is a coefficient, and ΨjT
iT

is a T -dimensional basis polynomial function.
In practice, the expansion with an infinite number of terms in (5) must be truncated.

Following previous work [12], we truncate (5) by m terms for each dimension:

fiT
(ξT ) =

∑
jT ,···,j1≤m

CjT
iT

ΨjT
iT
. (6)

In particular, the first-order, second-order, and third-order component functions are
expressed as

fi(ξi) =
m∑
j=1

Cj
i ψ

j(ξi),

fi2(ξi2) =
m∑
j2=1

m∑
j1=1

Cj2
i2
ψj1(ξi1)ψj2(ξi2),

fi3(ξi3) =
m∑
j3=1

m∑
j2=1

m∑
j1=1

Cj3
i3
ψj1(ξi1)ψj2(ξi2)ψj3(ξi3).

(7)

Least-squares regression (LSR) [5, 20] can be employed to determine the coefficients
Cα of (vector-form) PDD expansion

f(ξ) = CT
αΦα(ξ)

by using a suitable set of training points (i.e. experimental design) and model outputs.
The second-order moment and the global sensitivity indices can be obtained in a straight-
forward way by post-processing.

Indeed, keeping in mind
E(f(ξ)) = Cα0 ,

the approximated variance of the model output is then

Var(f(ξ)) =
P−1∑
j=1

C2
αj
γαj

,
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with the multivariate normalization constant determined by

γαj
= E

[
Φ2
αj

(ξ)
]
,

where P is the expansion size.
It is straightforward to write the variance-based global sensitivity indices (SI) by using

the PDD expansion. Indeed,

Si1,···,iT = Var(fi1,···,iT )
Var(f(ξ)) = 1

Var(f(ξ))
∑

αj⊆(i1,···,iT )
C2
αj
γαj

. (8)

The total sensitivity index STi can be obtained simply by adding all the measures Si1,···,iT
whose index involves the variable ξi.

For practical problems, in particular for the ones with a large number of stochastic
parameters, the size of the PDD representation must be reduced to make the uncertainty
analysis feasible.

A stepwise regression method has been proposed in [4, 3] using a generalized Polynomial
Chaos (gPC) approach to build sparse polynomial representation of the model output. In
order to efficiently represent a moderate to large dimensional parameter space, in addition
to the stepwise regression technique proposed in [4, 3], the PDD approach used in this
work is further coupled with an adaptive ANOVA decomposition, which allows to model
a given number of low-dimensional spaces instead of a single high-dimensional one. The
overall adaptive technique, as a variant of the one used in [4, 3], has been proposed in
[20]. We summarize this LSR strategy as a set of coupled adaptive strategies as follows.

1. Set a truncation dimension ν (the maximum interaction order) in the ANOVA ex-
pansion. This follows the assumption that low-order interactions are of dominant
importance compared to their high-order counterparts.

2. Solve the LSR system including only the PDD terms of the first-order ANOVA com-
ponent functions, and a rank of importances can then be established quantitatively for
all the input parameters. Hence, we retain only so-called active dimensions (the most
influential parameters) for the PDD terms of the second- and higher-order ANOVA
components. Let us use DT to represent the active dimension for interaction order T .

3. Enrich the surrogate model representation by adding one-by-one significant polynomi-
als of second- and higher-order interaction terms by keeping only the corresponding
active dimensions. A variance-based selection criterion is used to retain only polynomi-
als of significant importance to the total variance, which allows to build a very sparse
model representation. We emphasize that recursive resolutions of regression problems
are required for this task.

In next section, this adaptive LSR ANOVA approach is applied to an application case
featuring input uncertainties arising from chemical kinetics and laser-induced breakdown
ignition seed.

3 APPLICATION TO A 2-D COMBUSTION SYSTEM

The combustion in this work is modeled by multi-species Navier–Stokes equations
involving source terms including contributions from a reduced chemical mechanism, and
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a simplified laser-induced breakdown (LIB) plasma model. Both thermal and vortical
contributions are modeled for LIB ignition seed [10]. The model parameter uncertainties
considered in this work mainly come from these source terms.

Note the system of Navier–Stokes equations is discretized by finite difference methods
on structured grids using the software PlasComCM. For details on numerical techniques,
we refer to [10].

3.1 Source of uncertainties

The present combustion model featuring a Laser Induced Breakdown (LIB) ignition
seed includes seven uncertain parameters, which are calibrated against low-dimensional
computations or estimated based on experiments or previous literature data. We summa-
rize these uncertain parameters in Table 1. Note A3, b3, and E3 are calibrated Arrhenius

A3

Combustion kinetics b3 Joint pdfpost calibrated

E3

LTW ∼ U(0.993, 2.979) [mm]

Laser Induced Breakdown RTW (= DTW/2) ∼ U(0.168, 0.504) [mm]

Me ∼ U(1, 3)

Eabs ∼ N (17.642, 3.1157) [mJ]

Table 1: Summary of uncertain model parameters.

coefficients of the following reaction,

2H2 +O2 +H → 2H2O +H. (9)

LTW (resp. RTW ) represents the length (resp. radius) of the luminosity region measured
by experiments (we assume the laser energy is spatially distributed over the luminosity
region). Me is the Mach number of LIB vorticity model, and finally, Eabs is the absorbed
laser energy. The reader is refered to [10] for detailed physical modeling of LIB. Among
the four parameters of LIB, the Gaussian distribution of Eabs is approximated using
experimental results (3160 trials). However, we know significantly less about other three
parameters. Thus, LTW and RTW are simply taken to follow a uniform distribution using
an error bar of 50 % of their norminal value. The upper-bound value of Me = 3 is the
threshold with which our current numerical model becomes significantly unstable.

3.2 Axisymmetric 2-D test problem and quantity of interest (QoI)

An ignition case is computed on a 2-D rectangular domain (as shown in Fig. 1) dis-
cretized as a structured grid of size 501× 503. The initial condition over the 2-D domain
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Figure 1: 2-D axisymmetric computational domain for the ignition case. Left: H2 mass fraction at
t = 0. Right: flow y velocity at t = 0.

is a stabilized cold hydrogen fuel jet (about 3 m/s) into a squared domain filled with air.
The Fig. 1 illustrates this initial flow by showing the H2 mass fraction and y-velocity.

Let
ζ = (ln(A3), b3, ln(E3), LTW , RTW ,Me, Eabs)T

represent the random vector of uncertain model parameters, and Q(x, t; ζ) be a quantity
related to the solution of combustion system, and Q0(x) is its initial value. We can define
the following quantity that links the mass fraction of fuel H2 and oxidizer O2 for the
reaction (9),

Φ(x, t; ζ) =
ν

′
H2,3YO2/WO2

ν
′
O2,3YH2/WH2

= YO2

8YH2

.

Thus, the contour
Φ(x, t; ζ) = 1

defines the stoichiometric surface. E.g. the white contour in Fig. 1 represents the (stabi-
lized) initial stoichiometric surface.

A spatial weighting function w(x, t; ζ) can be defined following a Gaussian pdf with
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respect to Φ,∗

w(x, t; ζ) = 1
σ
√

2π
exp

(
−(Φ− 1)2

2σ2

)
,

where σ is a predefined deviation parameter; we use σ = 0.001 in this work. The spatial
integral of weighting function is denoted by

Ω(t; ζ) =
∫
w(x, t; ζ) dx.

The QoI used in this work is defined as a dimensionless average as follows

JQ(t; ζ) =
1

Ω(t;ζ)

∫
Q(x, t; ζ)w(x, t; ζ) dx

1
Ω0

∫
Q0(x)w0(x) dx

= 〈Q(t; ζ)〉
〈Q0〉

.

If JQ(t � t0; ζ) is close to unity for a quantity such as temperature, it is obvious no
ignition has appeared. Fig. 2 illustrates the temperature field of an ignited example, in
which case the stoichiometric surface is heated by combustion and thus we have a high
JT .

Figure 2: A successful ignition example. Compuational domain with a typical temperature field in [K].
Laser height: y = 103.40 mm.

∗In present case where the stoichiometric surface under flame prpopagation does not change its form
significantly in time, we can use a time-independent weighting function w0(x) for simplicity.
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3.3 Uncertainty propagation and analysis

This section is devoted to the parameter sensitivity analysis for QoI JT . Let us an-
alyze the case where the laser source is put at height y = 103.40 mm (with respect to
experiments). We set the ANOVA interaction order ν = 3 and size of experimental design
Q = 100.

The scatter plots of QoI with respect to each (tranformed) parameter are given in Fig.
3. Note here we employ the following isoprobabilistic tranform by using the cumulative
distribution function (CDF) F ,

ξi = Fζi
(ζi).

By definition JT represents the dimensionless average temperature weighted on the initial-
time stoichiometric surface. If we assume the raise of flame temperature in the vicinity
of stoichiometric surface is mainly due to the release of enthalpy of formation of chemical
reaction itself (not due to laser heat transfer), it is obvious that the greater the value of JT ,
the faster the flame propagates. Thus from Fig. 3 and as expected, we observe qualitatively
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Figure 3: QoI vs. model parameters. Laser height: y = 103.40 mm.
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with a stronger laser source (greater Eabs or smaller RTW i.e. a more narrow region of
high temperature), the more probably ignition occurs, and if this happens, the faster
flame propagates. Also, a greater value of Mach number parameter Me makes ignition
more diffcult to happen because of the flow mixing; however, once ignited the flame is
found to propagate considerably faster due to the vorticity. Concerning the remaining
model parameters, we find it more difficult to draw a similar qualitative conclusion.

A procedure of parameter re-ordering is generally required (see end of Section 2) that
depends upon their variance contribution of first-order ANOVA components.† Fig. 4
(top) presents the SI of input parameters, while the bottom figures illustrate the SI in
the descending order together with the cumulated value. We denote the re-ordered input
random vector for case m = 4 as,

ξ̂m=4 = (ξ3, ξ2, ξ4, ξ5, ξ1, ξ7, ξ6)T , (10)

and for m = 5,
ξ̂m=5 = (ξ2, ξ3, ξ4, ξ5, ξ1, ξ7, ξ6)T . (11)

Note they are slightly different about the relative importance of b3 and E3. In fact, the
SI of b3 and E3 are very close in the case of m = 5.

Active dimension D2 is evaluated using the sum of variances of first-order terms
D2∑
i=1

Var(fi) > p
N∑
i=1

Var(fi), (12)

where p is a proportionality constant in (0, 1), and is very close to 1. Thus we can conclude
from Fig. 4 the following

D2 = 3, if p = 0.7,
D2 = 4, if p = 0.8,
D2 = 5, if p = 0.9,
D2 = 6, if p = 0.95,
D2 = 7, if p = 0.999.

We set p = 0.999 for this case, which results that all input parameters are taken into
consideration for interaction calculations. In fact, the dimensionality of 7 is relatively
low, and the proposed adaptive approach can handle this problem with an experimental
design size Q = 100 by setting this high active dimensionality at this stage. As a result,
the ANOVA expansion has its size equal to

N +
(
D2

2

)
+
(
D3

3

)
= 63.

Fig. 5 illustrates the first-order SI together with total sensitivity indices (TSI). We
observe that the kinetic parameters have a more significant variance contribution than
their laser source counterparts in general. Meanwhile, both measures indicate the input
parameter ξ3(E3) is the most significant one, followed by ξ2(b3). The TSI when setting
m = 5 shows the variance contribution of the input ξ1(A3) is more significant than all
laser source parameters.
†We remind that this step involves a least-squares regression system that only contains polynomial bases
of first-order.
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Figure 4: First-order SI for m = 4 and m = 5. x-axis indexing on the top figure is according to original
random vector ξ. ξ̂ on the bottom figures is the re-ordered input vector. ν = 3. Experimental design
size Q = 100. p = 0.999. Laser height: y = 103.40 mm.

Fig. 6 illustrates the Sobol’ sensitivity indices for both first- and higher-order ANOVA
component functions. For the sake of clarity, we point out explicitly the following:

• x−axis indices 1−7 represent first-order ANOVA components that are ordered accord-
ing to the original random vector

ξ → ζ = (ln(A3), b3, ln(E3), LTW , RTW ,Me, Eabs)T .

• x−axis indices 8−28 represent second-order ANOVA components, while 29−63 repre-
sent third-order ones. These indices are ordered following ξ̂ (10) or (11), and by using
an ANOVA multi-index system presented in [19, page 1556].

We then mostly observe from Fig. 6 that the interaction between b3 and ln(E3) is sig-
nificant compared to first-order and other interaction contributions. The third-order
interactions are in general of less importance than second- and first-order components.
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4 CONCLUSIONS AND FUTURE WORK

This paper aims to deal with Uncertainty Quantification of engineering and physical
problems featuring a moderate to large number of uncertain input parameters. The pur-
pose is to identify the relative importance of these uncertainties onto a given quantity of
interest. This is achieved in this work by performing global sensitivity analysis, and in
particular by combining the Analysis of Variance technique (ANOVA) and the polyno-
mial dimensional decomposition approach (PDD). A set of coupled adaptivity strategies
are futher employed and have been proved useful to identify important parameters in a
simplified plasma-assisted combustion system.
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Figure 5: First-order Sobol’ Sensitivity Indices (SI) and Total Sensitivity Indices (TSI). ν = 3. m = 4, 5.
Experimental design size Q = 100. p = 0.999. All 7 parameters are considered in first- and higher-order
ANOVA components. Laser height: y = 103.40 mm.
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Figure 6: First-, second- and third-order Sobol’ Sensitivity Indices (SI). The element indices of the
original input vector ξ are used for first-order SI, while the ones of the re-ordered input vector ξ̂ are used
for second- and third-order SI. ν = 3. m = 4, 5. Experimental design size Q = 100. p = 0.999. All 7
parameters are considered in first- and higher-order ANOVA components. Laser height: y = 103.40 mm.
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The resulting surrogate polynomial approximation is a very sparse representation of
the deterministic model. Since the surrogate model size is updated recursively in the
stepwise regression procedure, the number of the required deterministic model evalua-
tions is well controlled, and its final value is significantly smaller than when employing
a standard Monte Carlo or quasi Monte Carlo method. Finally, the computation of the
global sensitivity indices simply requires a post-processing of the polynomial coefficients.

More detailed models for Laser Induced Breakdown and Laser-Plasma Interaction are
currently in development in XPACC, while we are also considering more detailed chem-
istry mechanism for future work. A dielectric-barrier discharge (DBD) force and radical
generation model will also be included in our future parametric UQ study.
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Abstract. Numerical simulations of the flow in thoracic aortic aneurysms are carried out by
using the open-source tool SimVascular and considering patient-specific geometries, obtained
through in-vivo imaging. One of the main issues in these simulations is the choice of suit-
able boundary conditions, modeling the organs and vessels not included in the computational
domain. The current practice is to use outflow conditions based on proximal resistance, ca-
pacitance and distal resistance (three-element Windkessel model), whose values are tuned to
obtain a physiological behavior of the patient pressure. However, it is not known a priori how
this choice affects the results of the simulation. A quantification of the impact on the numerical
simulation results of uncertainties in the values of the Windkessel model parameters is carried
out by using the generalized Polynomial Chaos approach. Different patient-specific geometries
are considered, characterized by a different size of the aneurysms, and the effect of wall com-
pliance is also investigated. We analyze the impact of the uncertainties in the selected outflow
parameters on the time-averaged wall shear stress and on the oscillatory shear index, which
are commonly used as hemodynamic descriptors.
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1 INTRODUCTION

The Ascending Thoracic Aortic Aneurysm (ATAA) is a life-threatening cardiovascular disease
with remarkable morbidity and mortality. It is defined as a permanent and localized dilatation
of the aorta, resulting from an irreversible loss of structural integrity of the aortic wall ([1, 2]),
triggered by genetic mutations and/or mechanobiological aspects. Conventionally, an increase in
diameter greater than 50% may be considered as evidence of an aneurysm ([3]). At the state of
the art, clinical decisions on treatment strategies are currently based on empiric criteria, like the
aortic diameter value or its growth rate.

From a biomechanical point of view, the aneurysmatic pathology has been investigated
considering the structural change of the artery wall and its effects on the wall stress distribution,
as well as performing fluid dynamical analyses in order to obtain the distribution of the wall
shear stress. Biomechanical studies (see e.g. [4]) demonstrated that the criterion most widely
used to predict the pathological state of ascending thoracic aortic aneurysms, i.e. the maximum
aortic diameter, fails to predict rupture or dissection, especially in case of small-sized ascending
thoracic aortic aneurysms and this means that other predictors are needed to understand and
estimate the state of the aneurysm. Indeed, ATAAs are characterized by the presence of a
complex hemodynamics, which could contribute to the onset/progression of the disease.

Advances in medical images provide not only accurate morphological features but also the
non-invasive quantification of blood flow. In this context, the Phase Contrast Magnetic Resonance
(PC-MRI) technique has become the prevalent imaging technique for non-invasive and detailed
information due to its good spatial resolution with respect to hemodynamic quantities and due to
the possibility of acquiring time-dependent data sets of the three-directional components of the
blood flow velocity ([5, 6]).

In this scenario, CFD-based techniques are being used to build complex computer representa-
tions of the cardiovascular system in health and disease. CFD modeling enables investigation
of pressure and flow fields at a temporal and spatial resolution unachievable by any clinical
methodology, therefore allowing to easily quantify variables and indicators difficult to be ob-
tained from in-vivo measurements. The main difficulty is represented by the assumptions made in
CFD models, concerning, for instance, boundary conditions or the modeling of wall compliance
and wall properties, which may affect the accuracy of CFD predictions. Thus, the combination
between CFD simulation techniques and in-vivo and ex-vivo measurements is a key ingredient
to set up reliable predictive tools. For instance, phase velocity and anatomic data ([7]) from
PC-MRI have been used to perform patient-specific computational hemodynamics in healthy
([8, 9]) and diseased subjects ([10, 11]), in order to provide evidence of a possible relation
of local wall shear stress with disease ([12, 13]), but, despite all those investigations, reliable
patient-specific models are usually not easy to be obtained.

As previously mentioned, the accuracy of CFD predictions depends on the adopted modeling,
but also on the quality of input data. For CFD applications it is unclear how detailed the clinical
data needs to be in terms of geometry (segmented from medical images) and parametrization
(variability described by the model and the tuning of patient-specific boundary conditions). In
the present work we want to determine the impact of the uncertainties in the input data. This will
provide further understanding of the relative importance of physiological parameters, determining
those which are most influential, and those which can be assumed or averaged. In particular,
we focused on the choice of suitable boundary conditions, modeling the organs and vessels not
included in the computational domain. The current practice is to use outflow conditions based on
proximal resistance, capacitance and distal resistance (three-element Windkessel model), whose

6227



A. Boccadifuoco, A. Mariotti, S. Celi, N. Martini, and M. V. Salvetti

(a) Geometry A (Dr1 = 1.7) (b) Geometry B (Dr2 = 1.5)

Figure 1: Sketch of the considered geometries.

values are tuned to obtain a physiological behavior of the patient pressure. However, it is not
known a priori how this choice affects the results of the simulation. Since a preliminary analysis
showed that the proximal resistance and the capacitance are the main parameters affecting the
pressure profile obtained in the Windkessel model, these two quantities were selected as uncertain
parameters for the uncertainty quantification analysis, while a fixed reference value of the distal
resistance was maintained.

This sensitivity was carried out through a stochastic approach, i.e. by modeling the unknown
parameters as input random variables with a given probability distribution and propagating
the uncertainties through the computational model to statistically quantify their effect on the
results. The stochastic quantification was carried out by using the generalized Polynomial
Chaos approach. Different patient-specific geometries were considered, characterized by a
different size of the aneurysms, and the effect of wall compliance was also investigated. The
impact of the uncertainties in the selected outflow parameters was investigated on the different
quantities of interest; in particular, we analyzed the stochastic mean and standard deviation of
the time-averaged wall shear stress and oscillatory shear index.

2 DEFINITION OF THE PROBLEM

2.1 Geometry definition

Two patient-specific geometries of thoracic aortas subjected to aneurysm in their ascending
region were considered. Both cases were acquired by means of in-vivo imaging. The geometry
A was reconstructed from Computed Tomography (CT), the geometry B by using Magnetic
Resonance Imaging (MRI).

The two geometries are sketched in Figure 1. They differ in the severity of the disease,
property quantified by the maximum diameter ratio Dr = Dmax/Dhealthy, where Dmax is the
maximum transverse diameter (thus, obtained in correspondence of the widest section of the
aneurysm) and Dhealthy is the diameter of the healthy segment (measured in the descending
region of the aorta). The two considered cases are characterized by Dr1 = 1.7 and Dr2 = 1.5,
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Figure 2: Flow rate profile imposed at the inlet section. The following characteristic time instants are highlighted:
the maximum acceleration (A), the peak systole (B), the maximum deceleration (C) and early diastole (D).

respectively.

2.2 Simulation setup and numerical methodology

At the inlet section of the computational domain we imposed the physiological flow rate
waveform of Figure 2 (see e.g. [14, 15]). The distribution of the velocity in the inlet section was
assumed to be uniform.

The choice of outflow boundary conditions is more challenging, since they should accurately
represent the effect of what happens outside the computational domain, modeling downstream
organs and vessels (see e.g. [16] for a detailed overview). For this purpose, a three-element
Windkessel model (also known as RCR model and sketched in Figure 3) was placed in corre-
spondence of each outlet section, with a downstream pressure set to a constant reference value.
Lumped parameter models are based on the analogy between electric circuits and hemodynamic
problems: in particular, analogy is identified between the voltage difference and the drop in
pressure, and between the current and the flow rate. In the presented scheme, the proximal and
distal resistances (Rp and Rd) represent the viscous resistance the blood flow undergoes inside
large and small vessels, respectively. The capacitance C quantifies the compliance, and thus the
capability of storing fluid, of the major arteries. In the numerical deterministic computations used
as a reference, these parameters were set in order to obtain a desired physiological behavior of the
pressure profile (125/80 mmHg) in the simplified fully lumped model in which the contribution
of the flow in the computational domain is not considered:

P (t) +RdC
dP (t)

dt
= (Rp +Rd)Q(t) +RpRdC

dQ(t)

dt
(1)

in which we imposed the inlet flow rate Q(t) of Figure 2. Equation (1) was solved numerically.
The resulting values are: Rp = 106.5 g cm−4 s−1, C = 10.4× 10−4 cm4 s2 g−1 and Rd =
1.67× 103 g cm−4 s−1.

Since descending from a fully lumped parameter model, the values of Rp, Rd and C were
independent of the particular geometry considered. They were then distributed in the various
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Rp

C

Rd

Figure 3: Scheme of a 3-Element Windkessel model.

Table 1: Summary of mechanical properties of the arterial wall used in the deformable simulations.

Quantity Value

Density: ρw [g cm−3] 1.08
Young’s Modulus: Ew [MPa] 3
Thickness: hw [cm] 0.1
Poisson’s Ratio: λw 0.499
Shear Correction Parameter: kw 0.833

outlets as follows:

Rpi = Rp
Atot

Ai

Rdi = Rd
Atot

Ai
for i = 1, . . . , noutlets

Ci = C
Ai
Atot

(2)

where noutlets is the number of the outlets in the considered case (i.e., 3 in the first geometry
and 4 in the second), Ai is the area of the outlet i and Atot is the sum of the areas of all the
outlets. The previous relations arise from the consideration that when increasing the vessel
section the resistance opposed to the blood flow becomes smaller, while the wall compliance
capability increases. Unlike Rp, Rd and C, the quantities obtained through Equation (2) are
case-dependent.

On the arterial wall we imposed a no-slip condition. Both rigid and deformable simulations
were performed. When considering the arterial wall compliance, for the sake of simplicity
the aorta was assumed as an elastic, homogeneous and isotropic material, with a uniform wall
thickness. The values of the mechanical properties chosen are reported in Table 1, where all
dimensional properties, except for Young’s Modulus, are expressed in CGS units.

The values of blood dynamic viscosity and density were specified as µ = 0.04 g cm−1 s−1

and ρ = 1.06 g cm−3, respectively.
The hemodynamic simulations were performed with SimVascular (see [17]), an open-source

comprehensive package specific for cardiovascular problems. The computational grid is unstruc-
tured and consists of tetrahedral elements, due to their adaptability to complex computational
domains, like patient-specific geometries. The numerical code solves the three-dimensional
incompressible Navier-Stokes equations by means of a stabilized finite element method, which
makes it possible to choose linear shape functions for both velocity and pressure. For advancing
in time, it uses the generalized α-method, which is an implicit technique that permits to achieve
second order accuracy (see [18]).
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The physical time step chosen for performing the numerical simulations was 0.001 s for
both rigid and deformable cases, resulting in 800 time steps every cardiac cycle. After a grid
sensitivity study, we chose a tetrahedral grid having approximately 2.2× 105 for the geometry A
and a tetrahedral grid with approximately 2.4× 105 nodes for the geometry B.

Furthermore, each computation was run until the L2 norms of the normalized differences
between two successive pressure waveforms and between two successive flow rate waveforms
were smaller than 10−5 (see [19]). These quantities were evaluated in correspondence of the
descending aortic outlet section.

2.3 Quantities of interest and indicators

When considering the effects of the blood flow on the arterial wall, particular attention is
given to the Wall Shear Stress (WSS), namely the modulus of the tangential stress τ exerted by
the flow on the arterial wall, i.e.

WSS (x, t) = |τ (x, t)| (3)

since it is thought to play an important role in the formation and growth of vascular diseases.
Two additional parameters assume significant importance and are here used as hemodynamic
descriptors: the Time-Averaged Wall Shear Stress (TAWSS), i.e. the wall shear stress throughout
an entire cardiac cycle of period T , defined as:

TAWSS (x) =
1

T

∫ T

0

|τ (x, t)| dt (4)

and the Oscillatory Shear Index (OSI), which represents a measure of the deviation of the
tangential stress from the predominant axial direction,

OSI (x) =
1

2

(
1−

∣∣ 1
T

∫ T
0
τ (x, t) dt

∣∣
1
T

∫ T
0
|τ (x, t)| dt

)
(5)

This last indicator takes values in the range [0, 0.5]. Lower OSI values indicate that the tangential
stresses at the wall are oriented predominately in the primary direction of the blood flow. On the
other hand, high values indicate a very oscillatory behavior, 0.5 meaning that the instantaneous
and the time-averaged vectors are never aligned.

3 RESULTS OF THE REFERENCE DETERMINISTIC SIMULATIONS

This section presents the results obtained for the reference deterministic simulations. For the
geometry A (Figure 1(a)) simulations were carried out both for rigid and deformable walls, while
for the geometry B (Figure 1(b)) only rigid walls were considered.

3.1 Geometry A with rigid walls

Figure 4 shows the instantaneous flow streamlines obtained in the simulation of the flow
in the geometry A with rigid walls. The streamlines are colored according to the velocity
magnitude. During systole they present a very regular behavior and the highest values of the
velocity (Figure 4(a)), while recirculation areas occur in the diastolic phase (Figure 4(b)), which
is characterized by reverse flow entering from the domain outlets.

In Figure 5 the WSS distributions at different time instants are shown. The four time instants
marked in Figure 2 are considered. We selected the same WSS range in all the figures to highlight
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(a) Peak systole (b) Early diastole

Figure 4: Instantaneous flow streamlines for the geometry A with rigid walls. The streamlines are colored according
to the velocity magnitude.

(a) Max acceleration (front) (b) Max acceleration (back) (c) Peak systole (front) (d) Peak systole (back)

(e) Max deceleration (front) (f) Max deceleration (back) (g) Early diastole (front) (h) Early diastole (back)

Figure 5: WSS distribution for the geometry A with rigid walls.

the different magnitude of the tangential stresses along a cardiac cycle. The highest values of the
stresses are found at peak systole in correspondence of the two small branches The stresses on
the ascending region of the aorta are rather low during the whole cardiac cycle, possibly due to
the large size of the aneurysm.

TAWSS and OSI are presented in Figures 6 and 7. The TAWSS distribution gives information
on the mean behavior of WSS during the cardiac cycle, and it summarizes what found in the
instantaneous maps: the most stressed regions are the areas with high curvature, while the
aneurysm region is characterized by low stress. Since these mean stresses during a cardiac cycle
are much smaller if compared with the maximum ones occurring during peak systole, a smaller
TAWSS range was chosen.

High values of OSI (i.e., close to its maximum limit of 0.5) are associated to recirculation
areas, see Figure 4(b) for comparison. Note that they occur also inside the aneurysm.

3.2 Effect of the wall compliance

In this section we evaluate the effect of the deformations of the arterial wall. The geometry A
is considered.
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(a) Front view (b) Back view

Figure 6: TAWSS distribution for the geometry A with rigid walls.

(a) Front view (b) Back view

Figure 7: OSI distribution for the geometry A with rigid walls.

The flow streamlines do not present significant differences if compared with the ones obtained
with rigid walls, and thus they are not shown here. The only effect is a slight decrease of velocity
magnitude, due to the widening of the vessel under the action of the blood flow.

The distributions of WSS and TAWSS are qualitatively very similar to the case of rigid walls,
with only a variation in the quantitative values, which in the deformable case are lower (e.g.,
compare Figure 8 with Figure 6). This behavior could be expected given the possibility of the
wall to move and relax.

(a) Front view (b) Back view

Figure 8: TAWSS distribution for the geometry A with deformable walls.

The OSI distribution (Figure 9) does not present significant difference between deformable
and rigid cases: this behavior is not surprising since this index is related to the velocity field,

6233



A. Boccadifuoco, A. Mariotti, S. Celi, N. Martini, and M. V. Salvetti

which was found to be very similar in the two situations.

(a) Front view (b) Back view

Figure 9: OSI distribution for the geometry A with deformable walls.

3.3 Effect of the wall geometry

The effect of a different geometry and aneurysm size is evaluated by considering the geometry
B (see Figure 1(b)). A simulation with rigid walls was performed with the same setup as for the
geometry A.

Figure 10 shows the TAWSS distribution, and should be compared with Figure 6. The main
effect of the geometry on TAWSS is the formation of areas of significant stress also in the
ascending part of the aorta. This is due to the presence of a smaller aneurysm, and thus to the
smaller size difference between the ascending and the descending regions.

(a) Front view (b) Back view

Figure 10: TAWSS distribution for the geometry B with rigid walls.

High values of OSI can be found in the internal areas of both ascending and descending
regions of the aorta, as shown in Figure 11, indicating thus that significant recirculation regions
are present also inside the aneurysm.

4 UQ METHODOLOGY

The generalized Polynomial Chaos (gPC) approach, in its non-intrusive form, is an interpolant-
type method, based on the projection of a given random process over an orthogonal known
basis ([20]). The chaos expansion for a stochastic response output may be expressed as follows
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(a) Front view (b) Back view

Figure 11: OSI distribution for the geometry B with rigid walls.

(term-based indexing):

X(ω) =
∞∑
k=0

akΦk(ξ(ω)) (6)

where X(ω) is the random process, ξ(ω) is the vector consisting of the independent random
variables in the event space Ω, corresponding thus to the set of considered uncertain parame-
ters, Φk(ξ) is the gPC polynomial of index k and ak is the corresponding Galerkin projection
coefficient.

The response surface is obtained by a truncation of the spectral decomposition (Equation (6))
to a finite limit T . Applying polynomial order bounds for all one-dimensional polynomials
(tensor-product expansion), T is obtained as follows:

T =
M∏
i=1

(Pi + 1)− 1 (7)

where M is the dimension of the random parameter space and Pi is the polynomial order bound
for the ith dimension.

Thanks to the orthogonality of the polynomial basis, the coefficient ak can be computed as
follows:

ak =
〈X,Φk〉
〈Φk,Φk〉

=
1

〈Φk,Φk〉

∫
ωεΩ

XΦkρ(ξ) dξ (8)

where ρ(ξ) is the weight function associated with the chosen polynomial family. The integrals
can be computed through different mathematical methods: Gaussian quadrature was used in
the present work. The polynomial family to be used must be a priori specified. When dealing
with Gaussian quadrature, an optimal family has a weight function similar to the probability
measure, W (ξ), of the random variables; it depends, thus, on the Probability Density Function
(PDF) shape of the uncertain parameters.

As previously explained, the uncertain parameters in the Windkessel model are the proximal
resistance, Rp, the capacitance, C, and the distal resistance, Rd. Since a UQ analysis with
three uncertain parameters and 3D unsteady simulations is extremely expensive, a preliminary
stochastic analysis was carried out to evaluate the single effect of Rp, C and Rd on the output
pressure cycle in the 0D Windkessel model, i.e. neglecting the contribution of the 3D geometry
of the aorta. This allowed to single out the effect of each uncertain parameter and, thus, to
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Figure 12: Effect of the variation of the capacitance C on the pressure waveform in correspondence of the descending
aorta outlet section for the geometry A with rigid walls. The results are expressed in terms of stochastic mean
(dashed line) ± stochastic standard deviation (continuous lines).

select the most important for the UQ analysis on 3D simulations, whose results are discussed in
Sections 5 and 6.

After this 0D analysis, we selected Rp and C and allowed them to vary in the following
ranges: Rp ∈ [85.8, 148.4]g cm−4 s−1 and C ∈ [5.82× 10−4, 12.6× 10−4]cm4 s2 g−1. First, we
evaluated the effect of C alone: both rigid and deformable simulations were performed for the
geometry A, while rigid walls were considered for the geometry B. Then, we investigated the
combined effect of C and Rp: rigid simulations were performed for both the geometries.

The PDF of the input uncertain parameters is assumed to be uniform; this leads to the choice
of Legendre polynomials for the gPC basis. The polynomial expansion is truncated to the third
order for each dimension; hence, four quadrature points for each random variable are sufficient
to compute the coefficients of the expansion. This leads to 4 or 16 hemodynamic simulations
when considering one or two input parameters, respectively. These simulations were carried out
for each quadrature point in the parameter space.

5 UQ ANALYSIS OF THE EFFECT OF UNCERTAINTIES IN THE VALUE OF C ON
THE PRESSURE CYCLE AND ON THE FLOW FIELD

In this Section we evaluate how an uncertainty in the value of the capacitance C affects the
quantities of interest reported in Section 2.3.

5.1 Geometry A with rigid walls

Figure 12 shows the output pressure waveform obtained in correspondence of the descending
aorta outlet section. The results are presented in terms of the stochastic mean value ± the
stochastic standard deviation. An increase of C leads to a reduction of the pulse pressure, as
systolic and diastolic pressures become closer. On the other hand, the mean pressure Pmean is
maintained practically constant.

The effect of the variation of C on TAWSS and OSI is evaluated in terms of the stochastic
mean value and stochastic standard deviation, individually portrayed.

The stochastic mean distribution of TAWSS is almost equal to the reference deterministic
result. The difference between the two TAWSS fields is shown in Figures 13(a) and 13(b) to
allow a quantitative analysis. Differences are practically zero in most of the arterial lateral
surface. Significant differences are found only in the upstream part of the descending aorta and
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their absolute values are up to 10% of the corresponding stochastic mean values. In the same
region we also find the largest stochastic variance of TAWSS (see Figures 13(c) and 13(d)). This
means that this is the region in which TAWSS is most sensitive to the value of C.

Figures 14(a) and 14(b) report the difference between the stochastic mean distribution of
OSI and the distribution obtained in the reference deterministic simulation. Again, differences
are practically zero in the ascending aorta and in the two branches, independently of the value
of OSI in those regions (note that in the reference deterministic simulation OSI assumes high
values also in the internal part of the aneurysm, as shown in Figure 7(a)). On the other hand,
significant positive and negative differences are found in localized regions of the aortic arch and
of the descending aorta, where we also find the largest stochastic variance (see Figures 14(c)
and 14(d)).

(a) Front view (b) Back view

(c) Front view (d) Back view

Figure 13: Difference between the stochastic mean value and the reference deterministic value of TAWSS (a-b), and
stochastic standard deviation of TAWSS (c-d) for the geometry A with rigid walls. Effect of uncertainties in the
value of the capacitance C.

5.2 Effect of the wall compliance

In this Section we repeat the same UQ analysis as in Section 5.1 but considering the wall
compliance. As before, the pressure waveform is evaluated in correspondence of the outlet
section of the descending aorta, and the results are presented in terms of the stochastic mean
value ± the stochastic standard deviation in Figure 15. The results obtained by considering the
walls rigid are also reported in the same figure for comparison. It is clear that taking into account
wall deformations leads to a smaller pulse pressure. This result could be expected, since the wall
compliance acts as a further capacitance contribution and in both cases an increase of C reduces
the difference between systolic and diastolic pressures, the mean pressure value being almost
constant. The stochastic variance with C is also slightly reduced in the compliant case.

The indicators quantifying the stress levels on the arterial wall are again presented in terms of
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(a) Front view (b) Back view

(c) Front view (d) Back view

Figure 14: Difference between the stochastic mean value and the reference deterministic value of OSI (a-b), and
stochastic standard deviation of OSI (c-d) for the geometry A with rigid walls. Effect of uncertainties in the value of
the capacitance C.

their stochastic mean value and of their stochastic standard deviation. As in the rigid case, for
the sake of brevity we focus only on the cycle-averaged quantities.

Since the stochastic mean distribution of TAWSS is very close to the reference deterministic
one, to allow a quantitative comparison in Figures 16(a) and 16(b) we present the difference
between these two fields. As occurred in the rigid case, the differences are zero in most part of
the aortic wall and are significant only in limited regions of the descending aorta. Their value
never exceeds 10% of the corresponding stochastic mean. Figures 16(c) and 16(d) show the
difference between the stochastic mean fields for deformable and rigid cases. This difference is
uniform almost everywhere and negative in value, denoting that the arterial wall is subjected to
smaller stresses when it has the possibility to expand and relax. However, the same qualitative
behavior suggests that the flow topology does not significantly change.

The stochastic standard deviation of TAWSS is shown in Figures 16(e) and 16(f), while the
difference between the deformable and the rigid cases is reported in Figures 16(g) and 16(h). The
largest values of the stochastic standard deviation are found in the aortic arch and descending part
(see Figures 16(e) and 16(f)) and they are smaller compared to the rigid case (see Figures 16(g)
and 16(h)). As in the rigid case, the ascending region of the aorta presents no significant
variability of the results.

Figures 17(a) and 17(b) show the difference between the stochastic mean distribution of
OSI and the corresponding reference deterministic field. Again, most part of the aorta does not
present significant differences. Differences can only be found in the distal aortic neck and in the
descending region. However, they can reach about 30% of the corresponding stochastic mean
value, thus being more important than the ones observed for TAWSS. Figures 17(c) and 17(d)
highlight the difference between the OSI stochastic mean fields for deformable and rigid cases.
Significant differences involve a larger portion of the aorta, mostly located at the aortic arch
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Figure 15: Effect of the variation of the capacitance C on the pressure waveform in correspondence of the descending
aorta outlet section in the geometry A: comparison between deformable and rigid walls. The results are expressed in
terms of stochastic mean (dashed line) ± stochastic standard deviation (continuous lines).

and descending part, but presenting some significant values also in the aneurysm region. This
behavior can be related to the high sensitivity that OSI has to the flow field and to the locations
of recirculation areas. A small variation in these locations can lead to a significant change in the
OSI distribution. This can be deduced by analyzing the flow streamlines, here not shown for the
sake of brevity.

Figures 17(e) and 17(f) show the stochastic standard deviation of OSI. Again, the descending
aorta presents the largest variability, while the aneurysm region is characterized by small values
of the stochastic variance. The comparison with the rigid case is evaluated in Figures 17(g)
and 17(h), which illustrate the difference between the stochastic standard deviation of OSI
for rigid and deformable walls. As observed for the stochastic mean distribution, the large
differences in the descending aorta are possibly due to small changes in the flow field.

5.3 Effect of the wall geometry

In this Section we investigate the effect of the wall geometry by performing the UQ analysis
on the geometry B with rigid walls. The output pressure waveform at the descending aorta outlet
section is almost identical to the one obtained for geometry A with rigid walls (see Figure 12)
and for sake of brevity is not shown.

The difference between the stochastic mean distribution of TAWSS and the corresponding
reference deterministic distribution is presented in Figures 18(a) and 18(b). The effect of
considering a smaller aneurysm is that the ascending and descending regions are closer in size.
This produces a similar difference distribution in the whole aorta. These differences are not very
high, except in some limited regions in which they reach 15% of the stochastic mean value at the
same location.

Figures 18(c) and 18(d) show the stochastic standard deviation. Again, for the geometry B a
significant variability is present also in the aneurysm region. The largest values of the stochastic
standard deviation are about 25% of the corresponding stochastic mean value.

The difference between the stochastic mean value of OSI and the corresponding reference
deterministic one is presented in Figures 19(a) and 19(b). Unlike what observed for the geometry
A, differences affect not only the aortic arch and the descending aorta but also the aneurysm
region. However, these differences may be again related to small changes in the flow field and
small changes in location of recirculation areas.

Figures 19(c) and 19(d) illustrate the stochastic standard deviation obtained for OSI. High
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(a) Front view (b) Back view

(c) Front view (d) Back view

(e) Front view (f) Back view

(g) Front view (h) Back view

Figure 16: Effect on the TAWSS distribution of uncertainties in the value of the capacitance C (geometry A
with deformable walls): difference between the stochastic mean value and the reference deterministic value (a-b),
difference between the stochastic mean values in deformable and rigid cases (c-d), stochastic standard deviation in
the deformable case (e-f), and difference between the stochastic standard deviations in deformable and rigid cases
(g-h).
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(a) Front view (b) Back view

(c) Front view (d) Back view

(e) Front view (f) Back view

(g) Front view (h) Back view

Figure 17: Effect on the OSI distribution of uncertainties in the value of the capacitance C (geometry A with
deformable walls): difference between the stochastic mean value and the reference deterministic value (a-b),
difference between the stochastic mean values in deformable and rigid cases (c-d), stochastic standard deviation in
the deformable case (e-f), and difference between the stochastic standard deviations in deformable and rigid cases
(g-h).
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variability is mostly found in the aneurysm region, where it can reach values about 35% of the
stochastic mean value in the same location.

(a) Front view (b) Back view

(c) Front view (d) Back view

Figure 18: Difference between the stochastic mean value and the reference deterministic value of TAWSS (a-b), and
stochastic standard deviation of TAWSS (c-d) for the geometry B with rigid walls. Effect of uncertainties in the
value of the capacitance C.

6 UQ ANALYSIS OF THE EFFECT OF UNCERTAINTIES IN THE VALUES OF Rp

AND C ON THE PRESSURE CYCLE AND ON THE FLOW FIELD

The aim of this Section is to assess the effect of uncertainties in the proximal resistance Rp

and in the capacitance C on the quantities of interest reported in Section 2.3.

6.1 Geometry A with rigid walls

Figure 20(a) shows the output pressure waveform at the descending aorta outlet section, again
in terms of the stochastic mean value ± the stochastic standard deviation. The main difference
compared to the case in which only the capacitance C was allowed to vary is an increased
variability of the results, especially in the region near the maximum pressure value (see Figure 12
for comparison). Figure 20(b) confirms this indication, illustrating the partial sensitivities to the
two uncertain parameters alone and combined. For most part of the cardiac cycle the capacitance
C is the main responsible of the variability of the results. In these regions the uncertainty in the
proximal resistance Rp does not produce significant effects on the pressure profile, which thus
maintains substantially the behavior of Figure 12. Rp becomes predominant in a small portion of
the cycle, near peak systole. This explains why an increased stochastic standard deviation can be
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(a) Front view (b) Back view

(c) Front view (d) Back view

Figure 19: Difference between the stochastic mean value and the reference deterministic value of OSI, and stochastic
standard deviation of OSI for the geometry B with rigid walls. Effect of uncertainties in the value of the capacitance
C.

observed in the region near the maximum pressure value.
The effect of the second source of uncertainty (Rp) is evaluated considering the difference

distributions between the stochastic outputs in the cases of two sources (C and Rp) and single
source (C) of uncertainty. The averaged effect during a cardiac cycle of Rp on WSS is illustrated
by the TAWSS distribution. Figures 21(a) and 21(b) show the difference distribution between the
stochastic mean values of TAWSS in the two UQ analyses, while Figures 21(c) and 21(d) present
the difference in the stochastic standard deviation. The effect of the second source of uncertainty
on the stochastic mean value is very limited, with only small regions significantly affected. On
the other side, its effect on the stochastic standard deviation is much more significant. The
differences are mainly located in the region of the distal aortic neck and can reach 50% of the
corresponding value obtained when considering only the variation of C.

Similar considerations apply also to OSI. The effect of considering Rp as an uncertain
parameter has a limited effect on the stochastic mean value (see Figures 22(a) and 22(b)),
while the stochastic standard deviation is in proportion much more affected (see Figures 22(c)
and 22(d)). The difference respect to the case of single source of uncertainty is mainly located in
the distal aortic neck. As found previously, this region presents again the highest sensitivity to
the uncertain parameters.
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Figure 20: Effect of the variation of the capacitance C and proximal resistance Rp on the pressure profile in
correspondence of the descending aorta outlet section (geometry A with rigid walls). The results are expressed in
terms of stochastic mean ± stochastic standard deviation (a) and partial sensitivities to the two parameters (b).

6.2 Effect of the wall geometry

In this Section we investigate the effect of the geometry of the aorta. A UQ analysis with
two uncertain parameters (C and Rp) was thus performed on the geometry B with rigid walls.
The output pressure waveform at the descending aorta outlet section is almost identical to the
one obtained for the geometry A (Figure 20) and for the sake of brevity is not shown here. This
behavior suggests that the two geometries have basically the same resistance contribution on
the flow, thus producing very small changes in the output pressure. This confirms what found in
Section 5.3 for the case of only one source of uncertainty.

To isolate the effect of Rp on TAWSS and OSI, we again present for each stochastic output
the difference field between the distribution obtained with two sources of uncertainty (C and Rp)
and that obtained with a single source of uncertainty (C).

Figure 23 quantifies these differences for the stochastic mean value and stochastic standard
deviation of TAWSS. As found for the geometry A, the second source of uncertainty Rp has
a small effect on both the stochastic mean distribution (see Figures 23(a) and 23(b)) and the
stochastic standard deviation (see Figures 23(c)), even if the variation of the stochastic standard
deviation is in percentage terms again more significant. The effect of the geometry B is that
these difference distributions are more uniform in the whole aorta, due to the similar size of the
ascending and descending regions.

Considerations similar to those made for TAWSS also apply to OSI. Both the stochastic mean
value (Figures 24(a) and 24(b)) and the stochastic standard deviation (Figures 24(c) and 24(d))
are little affected by the introduction of the second uncertain parameter Rp. However, 0.5 is the
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(a) Front view (b) Back view

(c) Front view (d) Back view

Figure 21: Difference between the distributions of TAWSS obtained when considering both the uncertainties in C
and Rp and the uncertainty in C alone. Stochastic mean (a-b) and stochastic standard deviation (c-d), geometry A
with rigid walls.

(a) Front view (b) Back view

(c) Front view (d) Back view

Figure 22: Difference between the distributions of OSI obtained when considering both the uncertainties in C and
Rp and the uncertainty in C alone. Stochastic mean (a-b) and stochastic standard deviation (c-d), geometry A with
rigid walls.
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maximum value that OSI can take, so even small differences in absolute terms can be relatively
significant.

(a) Front view (b) Back view

(c) Front view (d) Back view

Figure 23: Difference between the distributions of TAWSS obtained when considering both the uncertainties in C
and Rp and the uncertainty in C alone. Stochastic mean (a-b) and stochastic standard deviation (c-d), geometry B
with rigid walls.

7 CONCLUDING REMARKS

The blood dynamics in two patient-specific ATAA geometries, characterized by different
severity of the aneurysm pathology, was simulated. Deterministic simulations showed that the
size of the aneurysm has a significant impact on the wall stress and flow feature, the smaller
aneurysm being characterized by larger wall shear stresses and by a more recirculating flow.
The wall compliance uniformly reduces the values of the shear stresses without changing their
distribution, at least for the elastic, homogeneous, isotropic and constant thickness properties of
the walls considered herein.

A stochastic sensitivity analysis to the uncertainties in the outflow boundary-condition pa-
rameters, namely the capacitance and the proximal resistance in the Winkdessel model, was
also carried out. The mean stochastic values of TAWSS and OSI are very similar to those
obtained in deterministic simulations carried out with values of the parameters guessed to obtain
a desired physiological behavior of the pressure profile in a simplified fully lumped model. The
stochastic variance of TAWSS and OSI was found to be very low inside the larger aneurysm,
while more significant variations are present in localized regions of the aortic arch and of the
descending aorta. For the geometry characterized by a smaller aneurysm, significant variability
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(a) Front view (b) Back view

(c) Front view (d) Back view

Figure 24: Difference between the distributions of OSI obtained when considering both the uncertainties in C and
Rp and the uncertainty in C alone. Stochastic mean (a-b) and stochastic standard deviation (c-d), geometry B with
rigid walls.

is present also inside the aneurysm, indicating that the stress numerical predictions inside small
aneurysms are more sensitive to the outflow boundary conditions. The effects of wall compliance
on the stochastic mean value of TAWSS are the same as those observed in the deterministic
simulations, i.e. a uniform reduction of TAWSS. The variability of TAWSS with the considered
boundary-condition parameters is also reduced in the case with compliant walls.

Finally, considering the uncertainties in the capacitance only and in both the capacitance
and the proximal resistance leads to very similar distributions of the stochastic mean values of
TAWSS and OSI for both geometries. This means that the effect of the proximal resistance on the
stochastic mean distributions is very limited. Conversely, its effect on the stochastic variability
of TAWSS and OSI is more significant, again for both considered geometries.

The proposed methodology permits to quantify the propagation of the uncertainties in input
data on the output quantities of interest in patient-specific ATAA configurations. In the present
case, we focused on uncertainties in the outflow parameters, but the same methodology could
be applied to different types of uncertainties, as e.g. uncertainties in the geometry due to
imaging/reconstruction errors or in the mechanical properties of the vessel walls. Finally,
if in-vivo measured hemodynamic quantities are available, calibration of different simulation
parameters could be carried out using a stochastic approach, providing thus a platform integrating
CFD simulations and in-vivo measurements.

6247



A. Boccadifuoco, A. Mariotti, S. Celi, N. Martini, and M. V. Salvetti

REFERENCES

[1] D. Botta and J.A. Elefteriades. Matrix metalloproteinases in thoracic aortic aneurysm
disease. International Journal of Angiology, 15(1):1–8, 2006.

[2] J.S. Wilson and J.D. Humphrey. Evolving anisotropy and degree of elastolytic insult
in abdominal aortic aneurysms: Potential clinical relevance? Journal of Biomechanics,
47(12):2995–3002, 2014.

[3] K.W. Johnston, R.B. Rutherford, M.D. Tilson, D.M. Shah, L. Hollier, and J.C. Stanley.
Suggested standards for reporting on arterial aneurysms. Journal of Vascular Surgery,
13(3):452–458, 1991.

[4] S. Pasta, A. Rinaudo, A. Luca, M. Pilato, C. Scardulla, T.G. Gleason, and D.A. Vorp.
Difference in hemodynamic and wall stress of ascending thoracic aortic aneurysms with
bicuspid and tricuspid aortic valve. Journal of Biomechanics, 46(10):1729–1738, 2013.

[5] M. Markl, W. Wallis, and A. Harloff. Reproducibility of flow and wall shear stress analysis
using flow-sensitive four-dimensional mri. Journal of Magnetic Resonance Imaging,
33(4):988–994, 2011.

[6] U. Morbiducci, R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F.M. Montevecchi, and
A. Redaelli. Mechanistic insight into the physiological relevance of helical blood flow
in the human aorta: An in vivo study. Biomechanics and Modeling in Mechanobiology,
10(3):339–355, 2011.

[7] P. Volonghi, D. Tresoldi, M. Cadioli, A.M. Usuelli, R. Ponzini, U. Morbiducci, A. Esposito,
and G. Rizzo. Automatic extraction of three-dimensional thoracic aorta geometric model
from phase contrast mri for morphometric and hemodynamic characterization. Magnetic
Resonance in Medicine, 2015.

[8] U. Morbiducci, R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions
for image-based computational hemodynamics: Impact of idealized versus measured
velocity profiles in the human aorta. Journal of Biomechanics, 46(1):102–109, 2013.

[9] U. Morbiducci, D. Gallo, S. Cristofanelli, R. Ponzini, M.A. Deriu, G. Rizzo, and D.A.
Steinman. A rational approach to defining principal axes of multidirectional wall shear
stress in realistic vascular geometries, with application to the study of the influence of helical
flow on wall shear stress directionality in aorta. Journal of Biomechanics, 48(6):899–906,
2015.

[10] S. Celi, F. Di Puccio, P. Forte, and L. Spadoni. Investigation on residual stress effects in fe
simulations of balloon angioplasty. volume 2005, pages 249–250, 2005.

[11] S. Celi and S. Berti. Three-dimensional sensitivity assessment of thoracic aortic aneurysm
wall stress: A probabilistic finite-element study. European Journal of Cardio-thoracic
Surgery, 45(3):467–475, 2014.

[12] A. Frydrychowicz, A.F. Stalder, M.F. Russe, J. Bock, S. Bauer, A. Harloff, A. Berger,
M. Langer, J. Hennig, and M. Markl. Three-dimensional analysis of segmental wall shear
stress in the aorta by flow-sensitive four-dimensional-mri. Journal of Magnetic Resonance
Imaging, 30(1):77–84, 2009.

6248



A. Boccadifuoco, A. Mariotti, S. Celi, N. Martini, and M. V. Salvetti

[13] D.C. Wendell, M.M. Samyn, J.R. Cava, L.M. Ellwein, M.M. Krolikowski, K.L. Gandy,
A.N. Pelech, S.C. Shadden, and J.F. LaDisa Jr. Including aortic valve morphology in com-
putational fluid dynamics simulations: Initial findings and application to aortic coarctation.
Medical Engineering and Physics, 35(6):723–735, 2013.

[14] D. Gallo, G. De Santis, F. Negri, D. Tresoldi, R. Ponzini, D. Massai, M.A. Deriu, P. Segers,
B. Verhegghe, G. Rizzo, and U. Morbiducci. On the use of in vivo measured flow rates as
boundary conditions for image-based hemodynamic models of the human aorta: Implica-
tions for indicators of abnormal flow. Annals of Biomedical Engineering, 40(3):729–741,
2012.

[15] J. Lantz, J. Renner, and M. Karlsson. Wall shear stress in a subject specific human aorta
- influence of fluid-structure interaction. International Journal of Applied Mechanics,
3(4):759–778, 2011.

[16] A.D. Caballero and S. Laı́n. A review on computational fluid dynamics modelling in human
thoracic aorta. Cardiovascular Engineering and Technology, 4(2):103–130, 2013.

[17] Alison Marsden and Shawn Shadden. SimVascular: Cardiovascular modeling and simula-
tion. http://simvascular.org, 2015. Online; accessed 11-December-2015.

[18] Kenneth E. Jansen, Christian H. Whiting, and Gregory M. Hulbert. A generalized-αmethod
for integrating the filtered Navier-Stokes equations with a stabilized finite element method.
Computer Methods in Applied Mechanics and Engineering, 190(3-4):305 – 319, 2000.

[19] Lucian Itu, Puneet Sharma, Tiziano Passerini, Ali Kamen, Constantin Suciu, and Dorin
Comaniciu. A parameter estimation framework for patient-specific hemodynamic computa-
tions. Journal of Computational Physics, 281(0):316 – 333, 2015.

[20] D. Xiu and G. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential
equations. SIAM Journal on Scientific Computing, 24(2):619–644, 2003.

6249

http://simvascular.org


ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

OPTIMIZATION OF A PHOTOACOUSTIC GAS SENSOR USING
MULTIFIDELITY RBF METAMODELING

Cédric Durantin1,2, Justin Rouxel1, Jean Antoine Désidéri3 and Alain Glière 1

1Univ. Grenoble Alpes, F-38000 Grenoble, France
CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
e-mail: {cedric.durantin,justin.rouxel,alain.gliere}@cea.fr

2 University Nice - Sophia Antipolis, 06108 Nice, France

3 ACUMES Team
INRIA Sophia Antipolis Méditerranée, 06902, Sophia Antipolis,France

e-mail: jean-antoine.desideri@inria.fr

Keywords: Metamodel, Optimization, Multifidelity, Radial Basis Function

Abstract. The numerical optimization of a photoacoustic gas sensor is a challenging problem
in terms of computational time. The signal detected by the gas sensor is a non-linear function
depending on several geometrical parameters. The optimization requires a very large number
of function calls, thus an important simulation time. In the case of photoacoustics, two dif-
ferent numerical models with different fidelity levels are available to simulate the behavior of
the component. In order to reduce the computational burden of optimizing the gas sensor, a
new multifidelity metamodeling framework, based on Radial Basis Function, is proposed. The
present method offers an alternative to co-kriging (a widely used multifidelity metamodel). This
multifidelity model is then used in an optimization sequence to enrich a training database, via
a strategy inspired by Gutmann [1]. The process is applied to the optimization of geometrical
parameters in the gas sensor problem.
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1 INTRODUCTION

Numerical simulation is widely employed in engineering to study the behavior of future de-
vices and optimize their design. Nevertheless, each computation is often time consuming and,
during an optimization sequence, the simulation code is evaluated a large number of times. An
interesting way to reduce the computational burden is to resort to a metamodel (or surrogate
model) of the simulation code. The process of metamodeling successively implies creating a
design of experiment (DOE), evaluating the numerical model response of the DOE and then
training the metamodel on the dataset previously obtained. Once the metamodel is built, it can
predict the response of the numerical model for a new evaluation point at an extremely reduced
time. Thus it can be used in a costly procedure in terms of number of evaluations such as sen-
sibility analysis or optimization. The prediction accuracy depends on the number of points in
the dataset and the complexity of the function to replace. Sometimes, models having different
levels of fidelity are available and can be hierarchically ranked in accuracy. In this case, multi-
fidelity surrogate modeling aims at efficiently combining information from the different levels
of approximation in order to build a metamodel at a reduced cost.
Here the focus is set on the design of a photoacoustic gas sensor. Two different simulation
codes are used to describe the performance of the component. The linearized Navier-Stokes
equations constitute the high fidelity model and the coarse model consists in the decomposi-
tion of the pressure field onto the acoustic modes basis, obtained by solving the homogeneous
Helmholtz equation. The computational time for the high fidelity model exceeds one hour on
a twenty-core cluster node cadenced at 3 GHz. For the coarse model, the computational time
is reported on the same node at 3 minutes. There is a potential time saving in using as much
as possible information obtained from the coarse model and still keep good prediction accuracy
by also using the expensive model.
Among metamodeling approaches, kriging models [2, 3, 4] are well known in the metamod-
eling community. This method is attractive because of its capability to estimate a confidence
interval of the predicted function. It has recently been revised in order to allow the use of
both coarse and complex versions of the computer simulation. This multifidelity approach en-
hances the prediction accuracy at a reduced computational cost [5]. Then several studies dealing
with co-kriging (multifidelity version of kriging) and its use in optimization have been exposed
[6, 7, 8]. Radial Basis Functions (RBF) based interpolation method is another existing choice
as surrogate model. The new method offers an alternative to co-kriging that might be superior
in high dimensional optimization problem, as stated by Regis and Shoemaker on single fidelity
problems [9]. To the best of our knowledge, no version of multifidelity RBF-based method has
been published at the moment.
The present work offers a new possible way to solve the optimization problem of the photoa-
coustic gas sensor design via RBF multifidelity metamodeling method (co-RBF). Since some
optimization algorithms are already developed for RBF-based optimization [9, 1], they could
be extended to a multifidelity version. Here only the so-called Gutmann-RBF method improved
by Regis and Shoemaker [9] is used for the multifidelity metamodel based optimization of the
gas sensor.
The optimization problem of the photoacoustic gas sensor is described in section 2 and the
methodology of the co-RBF metamodeling method is detailed in section 3. The extension of
RBF-based optimization algorithm to co-RBF is presented in section 4, together with the result
of the gas sensor optimization.
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2 MINIATURIZED PHOTOACOUSTIC GAS SENSOR DESIGN

2.1 Physical principle and numerical models

Photoacoustic (PA) spectroscopy is employed to detect gas traces with a high sensitivity,
often below the part per billion by volume (ppbv) level. The principle of PA spectroscopy relies
on the excitation of a molecule of interest by a light source emitting at the wavelength of an
absorption line of the molecule. The light source, usually a laser in the mid-infrared range,
is modulated at the acoustic frequency of a resonant cell, containing the gas mixture. During
the molecules relaxation, the kinetic energy exchange with the surrounding gas creates local
temperature modulation, and thus acoustic waves in the chamber [10].
The cell used in this work is of the differential Helmholtz resonator (DHR) [11] type. It is
composed of two chambers linked by two capillaries (Figure 1). The gas excitation is ensured
by illuminating one chamber with a laser source. At the Helmholtz resonance of the cavity,
acoustic signals in the two chambers are in phase opposition. The signals provided by two
microphones measuring the pressure into each chamber are subtracted to provide the PA signal.
As the PA signal is inversely proportional to the volume of the resonant cell [10], a trend towards
the size reduction of PA cells has been initiated during the last decade [12], [13]. Assuming

Figure 1: Geometry of a DHR cell.

no viscous and thermal losses and a harmonic heat source, the non-homogeneous Helmholtz
equation can be used to compute the pressure field in the cell, and thus the differential PA
signal:

∇2p+ k2p = iω
γ − 1

c2
H (1)

where ω is the modulation frequency, c the speed of sound, γ the Laplace coefficient of the gas,
k = ω/c the wave number andH the Fourier transform of the power density of the heat source.
This pressure acoustic model is computationally efficient and accurate at the macro-scale but
fails at the micro-scale. In fact, various volume and surface dissipation processes, at work in
the bulk of the propagation medium and close to the walls, cannot be neglected in miniaturized
devices, where boundary layers occupy a non-negligible part of the overall cell volume. Nu-
merous approximate models have been adapted from the pressure acoustic model to take into
account the dissipation effects. For instance Kreuzer [14], rely on eigenmode expansion of the
pressure field and a correction by quality factors. The latter model is fast and faithful enough to
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constitute the coarse approximation used in our multifidelity approach.
The rigorous, but CPU time and memory consuming, model relies on the full linearized Navier-
Stokes formulation (FLNS), that fully accounts for viscous and thermal dissipation effects. In
that approach, small harmonic variations are assumed. The PDE equations system (2) is com-
posed of the continuity equation, incorporating the ideal gas equation of state p = ρRMT , and
the momentum and energy conservation laws:

iω
(

p̃
p0
− T̃

T0

)
+∇ · ũ = 0

iωρ0ũ = −∇p̃+∇ ·
(
µ
(
∇ũ+∇ũT

)
+ (λ− 2µ/3) (∇ · ũ) I

)
iωρ0CpT̃ = −∇ ·

(
−κ∇T̃

)
+ iωp̃+Q

(2)

where p̃, T̃ and ũ are respectively the pressure, temperature and velocity fields of the gas; p0,
T0 and ρ0 are the mean values of the pressure, temperature and density fields; λ and µ are the
bulk viscosity and the shear viscosity. Q is the heat source.

2.2 Optimization problem

In the framework of the PA sensor case, the FLNS model represents the expensive code and
the Kreuzer model the coarse version. The computational time for the FLNS model is actually
around one hour and ten minutes on a twenty-core cluster node cadenced at 3 GHz. For the
Kreuzer model, the computational time is reported on the same node at 3 minutes. Both models
are solved using the commercial software COMSOL (COMSOL AB, Sweden), based on the
finite element method.
The PA cell has a chamber diameter of 1 mm and three parameters are involved: chamber length,
radius and length of capillaries. Parameters ranges are available in Table 1. The photoacoustic
signal detected is the objective to maximize by varying the three geometrical parameters. The
new metamodel developed to reduce the computational cost of model evaluations is described
in the next section.

Input Range (mm)
chamber length [10,20]
capillaries radius [0.3,0.5]
capillaries length [5,20]

Table 1: Parameters and ranges of photoacoustic models.

3 MULTIFIDELITY RADIAL BASIS FUNCTION

The basics of RBF-based metamodelling [15, 16, 17, 18] are first briefly explained to intro-
duce the derivation of the co-RBF method. The efficiency of the co-RBF method is not assessed
here since it is out of the scope of this paper.

3.1 RBF interpolation model

Given a set of n distinct points X = {x1, . . . ,xn}(xi ∈ Rd, i = 1, . . . ,n) where the cor-
responding function values z1, . . . , zn are known, the RBF approximation is defined as a linear
combination of the radial basis function ϕ :

Ŷ (x) =
n∑

i=1

βiϕ (‖x− xi‖) +R (x) (3)
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Where ‖·‖ denotes the Euclidean norm in Rd, the coefficients βi are real numbers andR belongs
to the linear space of polynomials in d variables. The radial basis functions used in this paper
and the corresponding polynomial forms are given in Table 2. Gaussian RBF gives more free-
dom to improve the generalization of Equation (3) at the expense of a more complex parameter
estimation process. A procedure based on the minimization of the predict error is a possible
way to estimate the Gaussian parameter. For a more complete list of available RBF, the reader
is referred to Gutmann [1].

RBF ϕ (r) , r > 0 R (x)
Cubic r3 aTx+ b

Gaussian exp

(
−

d∑
i=1

γiri
2

)
, γi > 0 0

Table 2: Different choices of radial basis functions.

Once a particular ϕ is selected, the interpolation condition rights:

(
φ F
FT 0

) β
a
b

 =

(
z
0

)
φij = ϕ (‖xi − xj‖) , i = 1, . . . , n , j = 1, . . . , n

F =


xT
1 1

xT
2 1
...

...
xT
n 1


(4)

In the Gaussian RBF case, the system is reduced to φ×β = z. It can be shown that the system
is invertible if and only if the data points are distinct. It is noteworthy that the inversion of
this matrix is the most time demanding part of the training of the surrogate model and that, if
points in X are close to each other, the matrix is ill-conditioned. An example of Gaussian and
Cubic RBF for the approximation of the modified Branin function [19] is represented on Figure
2, where red dots are the training points and contour lines are the RBF-based metamodel. The
training set is constructed with the Latin Hypercube Sampling method [20]. The third plot is
the contour of the real Branin function. The Gaussian RBF emulates the Branin function better
than the Cubic one because of the parameter γ that scales each inputs based on their impact on
the output variance.

3.2 Co-RBF

In this work, a multifidelity version of RBF-based metamodel has been developed to solve
the photoacoustic gas sensor optimization problem at a reduced computational time. It is now
assumed that different levels of modeling in terms of accuracy are available for our physical
problem. In the general context, it is possible to link multiple sets of data with different levels
of fidelity, but, for sake of readability, the method description is limited here to two datasets.
The more accurate set, which is also the more demanding in terms of computational time, is
represented by training points Xe and their corresponding outputs ze. The coarse simulation
model is represented by Xc and zc. These training sets can be obtained using the maximin op-
timized Nested Latin Hypercube designs [21] in order to improve prediction accuracy by better
filling the whole input space.
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Figure 2: Cubic and Gaussian RBF-based metamodel of the modified Branin function.

The multifidelity approximation is built using the auto-regressive model of Kennedy and O’Hagan
[5]:

ŷe (x) = ρŷc (x) + ŷd (x) (5)

where ρ is a scaling factor, yc the RBF interpolant of the coarse model and yd the RBF in-
terpolant of the difference between the expensive process and the scaled coarse process. This
formulation allows different levels of fidelity to have different correlation structures. The RBF
parameters for the coarse and the difference model are not necessarily the same and are esti-
mated separately. To build this multifidelity model, the coarse process is considered indepen-
dently of the expensive one. Its parameters are estimated within the classical RBF framework
described in section 3.1. Once

(
βc ac bc

)T obtained, the RBF parameters of the difference
function have to be estimated. The assumption is made that, given the point xci , no more in-
formation can be learnt about zei from the coarse process. This Markov-like property implies
that only yc (xe) is considered during the estimation of the difference model parameters. If the
dataset Xe is not evaluated on the coarse model, his corresponding output is predicted by the
previously built coarse model RBF. Then the following linear system has to be solved:(

φd Fe

Fe
T 0

) βd

ad

bd

 =

(
ze − ρyc (xe)

0

)
(6)

The linear system, Equation 6, depends on the unknown scaling factor ρ. Rippa [22] derived
a leave-one-out (LOO) formula that estimates the RBF model prediction error. This formula
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was initially developed for calibrating the parameter of the Gaussian RBF by minimizing the
LOO error. Here this method is used by adding the scaling factor ρ as a parameter to optimize.
The LOO formula is given in Equation (7) and its optimization was solved using the covariance
matrix adaptation evolution strategy (CMA-ES) [23]. In the Cubic RBF case, the LOO error
depends only on the scaling factor:

LOO (γ, ρ) =
n∑

i=1

(
βdi(γ)

φd
−1
ii
(ρ)

)2

(7)

An example of the evolution of the LOO depending on γd and ρ is available on Figure 3 left,
in a test case defined by Forrester et al. [6]. The global minimum of the map is located at
γd = 1 and ρ = 1.74. This map is obtained from a one-dimensional example displayed on the
right plot. Four expensive points and eleven coarse points are evaluated to build the Gaussian
co-RBF. The resulting interpolant is the red dashed line and it is close the real model (black
solid line).

Figure 3: LOO cross-validation error on a one-dimensional example of co-RBF metamodeling.

4 OPTIMIZATION

4.1 Method

An optimization strategy has first been developed by Gutmann [1] in a single fidelity RBF
metamodeling approach. It has then been improved by Regis and Shoemaker [9] and referred
to as Controlled Gutmann RBF (CG-RBF). This method is an iterative algorithm similar to the
Efficient Global Optimization (EGO) procedure derived by Jones [24] for kriging. A design
of experiments of the function to optimize is first evaluated and interpolated by a RBF. At
each optimization iteration, the RBF interpolant is updated with new evaluated points until the
optimum is found. A criterion is defined to select the next infill points based on a measure of
the bumpiness of the RBF interpolant [1]. A target value of the global minimum of the function
to optimize is cyclically selected to orient the infill criterion toward global exploration or local
refinement of the RBF. As a stopping criterion, the maximum number of evaluations is specified
by the user.
Some assumptions are needed to transfer the CG-RBF method to the multifidelity framework.
First we consider that only the expensive function is called to refine the prediction accuracy in
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the vicinity of the global minimum. The evaluation time of the coarse model is considered to
be so low that it can be evaluated a large number of time. The prediction accuracy on the coarse
model is thus good enough and there is no need to add supplementary training points. Second,
since the difference model is built using the expensive points, the infill criterion of the CG-RBF
method is computed using the RBF function ϕd. As a result:

hn (l) =
(−1)mϕ+1

[ŷe (l)− f ∗
n]
×

[
ϕd (0)−

(
uTn F T

l

)( φd Fd

Fd
T 0

)−1(
un
Fl

)]
(8)

where un (l) := (ϕ (‖l − x1‖) , . . . , ϕ (‖l − xn‖))T , Fl =
[
lT 1

]
and f ∗

n corresponds to the
targeted minimum value. The optimization of min

l
− log hn (l) gives the next infill point.

4.2 Results of the optimization of the photoacoustic gas sensor

The photoacoustic signal detected is the objective to evaluate from simulation models, to
surrogate with co-RBF and then to optimize with the CG-RBF-based procedure. The DOE of
each model are first defined. For the coarse Kreuzer model, 100 points are evaluated and the
RBF built on these data is assumed to be accurate enough. Then 5 points of the expensive
FLNS model are evaluated. This allows the training of the co-RBF model in the Gutmann-RBF
algorithm extension to multifidelity framework. Our stopping criterion is different from that
described by Gutmann [1]. Here it is defined at the end of the target value cycle: once a cycle
is over, the optimization stops if a better minimum value has not been evaluated compared to
the previous cycle. Five different DOE are tested to check if the optimization leads to the same
optimum. The number of evaluations needed to get the minimum location can also be assessed.
The obtained results are summarized in Table 3. Two different areas are targeted at the end
of the optimization algorithm. Parameters values are close to the upper bounds of the input
space. This bound has been set up to fill some integration requirements of the gas sensor in a
more complex system. It is either the capillaries length or the capillaries radius that is reduced
to get an optimum value around 1.90 Pa. Both solutions provide an improved photoacoustic
signal. Note that fabrication uncertainties have not been included yet in the design process but
robustness could be a way to select one among the two solutions.

DOE Optimum location Optimum value Number of function calls
1 [20 , 0.5 , 17.7] 1.90 18
2 [20 , 0.5 , 17.7] 1.90 24
3 [20 , 0.47 , 20] 1.90 18
4 [20 , 0.5 , 20] 1.88 12
5 [20 , 0.45 , 20] 1.91 24

Table 3: Results over five initial DOE of the optimization of the photoacoustic gas sensor.

The number of cycles needed to optimize the process is between 2 and 4. Each cycle has a
cost of 6 calls to the expensive model. In a previous work, we used only the expensive model
with the EGO procedure to get an optimal geometry. The algorithm converged after 40 function
calls to a solution with an optimum value of 1.84 Pa and [20 , 0.36 , 19.6] as the optimum
location. The benefit of the multifidelity approach developed in this work is clear, in terms of
computational time and accuracy of the optimum obtained, when compared to this previous
study.
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5 CONCLUSIONS

A new multifidelity RBF-based metamodel has been proposed in this work. It is derived
through the autoregressive model of Kennedy and O’Hagan [5] and combines the information
from the coarse and the expensive numerical model of our design problem. An extension of
the CG-RBF optimization algorithm is also suggested in the framework of the co-RBF. This
allows the use of a complete multifidelity-based optimization procedure that is an alternative to
the co-kriging method combined with EGO.
An optimal design of the photoacoustic gas sensor has been defined by to the new procedure.
The extension of the CG-RBF optimization algorithm brings a way to refine the prediction ac-
curacy toward the global optimum of our problem. The results obtained are superior than those
obtained with a single fidelity approach in terms of accuracy and computational time.
This work in progress is a first step towards the creation of an efficient co-RBF based optimiza-
tion algorithm. It has to be supplemented by a complete benchmark between this new procedure
and the already existing co-kriging-based optimization method. Furthermore, other extension
of already existing RBF-based optimization algorithms, such as the Constrained Optimization
using Response Surfaces (CORS) algorithm [9] can be explored. The application of this method
to the design of nanophotonic component is also considered.
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Abstract. The probabilistic analysis of geotechnical structures presenting spatial variability 

in the soil properties is generally performed using Monte Carlo simulation (MCS) 

methodology. This methodology is not suitable for the computation of a small failure 

probability because it becomes very time-expensive in such a case due to the large number of 

simulations required to calculate the failure probability. For this reason, one needs to keep to 

a minimum the number of calls to the deterministic model when performing the probabilistic 

analyses. In order to overcome the shortcoming related to the excessive number of calls of the 

deterministic model when performing Monte Carlo simulations, Echard et al. (2011) 

proposed an Active learning reliability method (called AK-MCS) combining Kriging and 

Monte Carlo Simulation. The method was shown to be very efficient as the obtained 

probability of failure is very accurate needing only a small number of calls to the 

deterministic model. The probabilistic analyses presented in this paper were performed using 

AK-MCS methodology by Echard et al. (2011). The present study involves a probabilistic 

analysis at the ultimate limit state of a strip footing resting on a spatially varying soil using 

AK-MCS approach. The objective is the computation of the probability Pf of exceeding the 

ultimate bearing capacity of the footing under a prescribed footing load. The soil cohesion 

and angle of internal friction were considered as two non-isotropic non-Gaussian random 

fields. The deterministic model was based on numerical simulations using the finite difference 

code FLAC
3D

. Some probabilistic results are presented and discussed. 
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1 INTRODUCTION 

The spatial variability of the soil properties affects the behavior of geotechnical structures 

(bearing capacity, foundation settlement, slope stability, etc.). Several authors have 

considered the effect of the spatial variability of the soil properties in their calculation models. 

For the bearing capacity of foundations which is the subject of the present paper, one may cite 

among others [1, 2]. 

It should be mentioned that when dealing with probabilistic studies that involve spatially 

varying soil properties, the classical Monte Carlo Simulation (MCS) methodology is generally 

used to determine the probability of failure Pf. This method is known to be very time-

consuming. This is because (i) it generally makes use of finite element or finite difference 

models which are generally time-expensive and (ii) it requires a great number of calls of the 

deterministic model for the computation of the small failure probabilities encountered in 

practice. Thus, one needs to keep to a minimum the number of calls to the deterministic 

model when performing the probabilistic analyses.  

In order to overcome the shortcoming related to the excessive number of calls of the 

deterministic model when performing Monte Carlo simulations, Echard et al. [3] proposed an 

active learning reliability method (called AK-MCS) combining Kriging and Monte Carlo 

Simulation. The method was shown to be very efficient as the obtained probability of failure 

is very accurate needing only a small number of calls to the deterministic model. The 

probabilistic analyses presented in this paper were performed using AK-MCS methodology 

by [3]. They involve the probabilistic analysis at the ultimate limit state of a strip footing 

resting on a spatially varying soil using AK-MCS approach. The objective is the computation 

of the probability Pf of exceeding the ultimate bearing capacity of the footing under a 

prescribed footing load. The soil cohesion and angle of internal friction were considered as 

two non-isotropic non-Gaussian random fields. They are characterized by two specified 

marginal distribution functions and a common autocorrelation function. The methodology 

proposed by [4] is used to generate these two random fields. The deterministic model is based 

on numerical simulations using FLAC
3D

 software. Some probabilistic results are presented 

and discussed. 

The paper is organized as follows: The next section aims at presenting the probabilistic 

method used for the computation of the failure probability of a strip footing resting on a 

spatially varying soil. It is followed by some numerical results. The paper ends with a 

conclusion.   

2 PROBABILISTIC MODELS 

The aim of this section is to present the probabilistic model used in the present paper. The 

impact of the soil spatial variability on the ultimate bearing capacity was considered. It should 

be remembered here that the system response involves the ultimate bearing capacity (Pu) of a 

strip footing resting on a spatially varying soil. The soil cohesion c and friction angle φ were 

modeled as two non-isotropic non-Gaussian random fields. The EOLE methodology [4] was 

used to discretize the two random fields (i.e. to obtain realizations of the soil cohesion c and 

friction angle φ that respect the correlation structure of those fields). The performance 

function used to calculate the probability Pf of exceeding the ultimate bearing capacity was 

defined as follow: 

 

  
  

  
                                (1) 
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Where Ps is the prescribed footing load. As for the probabilistic method used in this paper, 

the active learning reliability method combining kriging and Monte Carlo Simulation (called 

AK-MCS) was employed. This method combines both the classical crude Monte Carlo 

Simulation (MCS) methodology and the Kriging meta-model technique.  

In this section, the EOLE method of discretization of random fields was firstly presented. It 

is followed by a brief presentation of the crude Monte Carlo method, the kriging 

metamodeling technique and the combined use of the kriging and the Monte Carlo Simulation 

(i.e. AK-MCS methodology) used for the probabilistic analysis. 

2.1 Method of generation of anisotropic non-Gaussian random fields 

Let us consider two anisotropic non-Gaussian random fields ( , )NG

iZ x y ( ,i c  ) 

described by: (i) constant means and standard deviations (μi, σi; ,i c  ), (ii) non-Gaussian 

marginal cumulative distribution functions Gi ( ,i c  ), and (iii) a common square 

exponential autocorrelation function LN

Z [(x, y), (x', y')] which gives the values of the 

correlation between two arbitrary points (x, y) and (x', y'). This autocorrelation function is 

given as follows: 
22

' '
[( , ), ( ', ')] exp

Z

LN

x y

x x y y
x y x y

a a


     
            

    (2) 

where ax and ay are the autocorrelation distances along x and y respectively. The 

Expansion Optimal Linear Estimation method (EOLE) and its extension to cover the case of 

non-Gaussian random fields are used herein to generate the two random fields of c and φ. 

Notice that EOLE was first proposed by [4] for the case of uncorrelated Gaussian fields, and 

then extended by [5] to cover the case of correlated and uncorrelated non-Gaussian fields. In 

this method, one should first define a stochastic grid composed of q grid points (or nodes) 

 1 1( , ), ..., ( , )q qx y x y  for which the values of the field are assembled in a vector 

 1 1( , ), ..., ( , )q qZ x y Z x y  . The number of grid points within the stochastic mesh is 

determined in such a manner that in each direction (x or y), there are five grid points within 

each autocorraltion distance. Secondly, one should determine the correlation matrix for which 

each element  
,

;
i j

NG

   is calculated as follows: 

 
,

; ( , ), ( , )
Z

i j

NG NG

i i j jx y x y            (3) 

The common non-Gaussian autocorrelation matrix 
;

NG

 
  should be transformed into the 

Gaussian space using Nataf model [6] since the discretization of the random fields using 

EOLE is done in the Gaussian space. As a result, one obtains two Gaussian autocorrelation 

matrices ;

c

   and ;



   that can be used to discretize the two random fields as follows: 

( , );

,

1

( , ) . . ,
Z x y

j

N
i j i i

i i i j
i

j

Z x y µ i c



  



        (4)  

where ( , ; ,i j i c  ) are two non-correlated blocks of independent standard normal random 

variables. Notice finally that ( , ; ,
j

i i

j i c   ) in equation (4) are the eigenvalues and 

eigenvectors of the two Gaussian autocorrelation matrices ;

c

   and ;



   respectively, and 

( , );Z x y   is the correlation vector between the random vector χ and the value of the field at an 
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arbitrary point (x, y). Once the two Gaussian random fields are obtained, they should be 

transformed into the non-Gaussian space by applying the following formula: 

 1( , ) ( , ) ,NG

i i iZ x y G Z x y i c           (5) 

where (.)  is the standard normal cumulative density function. 

2.2 Monte Carlo method  

The Monte Carlo simulation method consists in generating N samples which respect the 

joint probability density function fX(X) of the M random variables (X1, …, XM) gathered in a 

vector X. For each sample, the system response is calculated. Thus; for the N samples, one 

obtains N values of the system response gathered in a vector   [ (  )  (  )    (  )] 
which may be used to determine the failure probability for a prescribed threshold of this 

system response. A very large number of realizations is required to obtain a rigorous value of 

the failure probability especially when computing small failure probabilities. It should be 

noted herein that the random variables considered in the present paper are the standard normal 

variables 
j (j=1, …, N) that appear in Eq. (4) for the computation of a given realization of 

the cohesion c and the friction angle random fields. 

2.3 Kriging metamodeling technique 

The metamodeling technique aims at replacing the response (or the performance function 

in this paper) of a computationally-expensive mechanical model by a metamodel (i.e. a simple 

analytical equation). The kriging metamodeling technique is based on the idea that the 

performance function  ( ) is seen as a realization of a stochastic field  ̂( ) [12]. The kriging 

metamodeling needs a design of experiments DoE of length   to define the stochastic 

parameters of this field and then, predictions of the response can be obtained on any unknown 

point. Let us define the design of experiments by the vector   [           ], with    the 

i
th

 experiment, and   [ (  )  (  )    (  )] the corresponding response vector. The 

approximate relationship between any experiment x and the response G(x) can be denoted as:    

 

 ̂( )   (   )   ( )                                                                               (6) 

 

Where: 

  (   ) is the deterministic part which gives an approximation of the mean value of 

the performance function. It corresponds to a regression model that can be written 

as: 

 

 (   )    ( )               (7) 

 

Where    [       ] is the vector of coefficients to be determined,   ( )  

 [  ( )   ( )     ( ) ]
 
is a collection of regression functions (or regressors). The number p 

of regression functions is assumed to be less than or equal to the number   of observations so 

that the problem is not under-determined (i.e. it does not lack equations to compute the 

unknowns). In this paper, ordinary kriging is selected which means that  (   ) is a scalar to 

be determined [i.e.  (   )= ]. So the estimated  ̂( ) can be simplified as: 

 

 ̂( )   (   )   ( )     ( )       (8)                                                                 
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  ( ) represents the fluctuation around the mean value. It is given by a 

Gaussian random process (or a random field) with zero mean and covariance 

defined by 

 

    [ (  )  (  )]    
   (      )         (9) 

 

where   
  is the process variance; xi, xj are two points from the whole samples X 

and R(xi, xj) is the correlation function between these two points with a correlation 

parameter vector θ. Several models exist to define the correlation function R. 

However, in this paper, the anisotropic squared-exponential function is selected. It 

is given by: 

 

 (     )  ∏  (   (     )
 
) 

          (10) 

 

Where N is the number of random variables, ix  and jx  are the i
th

 coordinates of the 

points xi and xj and θi is a scalar which is equal to the inverse of the correlation 

length in the i
th
 direction. 

 

As may be seen from equation (6), the kriging metamodel consists of a linear regression 

model  (   ) and a stochastic process  ( ). 
 

As   is a square matrix of dimension NxN, i.e.   [ (     )]    and F is a unit vector 

of dimension N, then β and   
  can be estimated as: 

 

 ̂  (      )                                                                                                              (11) 

 

 ̂ 
   

 

 
 (    )     (    )                                                                                         (12) 

 

The correlation parameter θ can be obtained through the maximum likelihood estimat ion:  

 

           (     
    | |)                                                      (13) 

     

Once the parameters  ̂   ̂ 
  and   are determined, the Best Linear Unbiased Predictor (BLUP) 

of the response  ̂( ) at an unknown point   is shown to be a Gaussian random variate  

 ̂( )   (  ̂( )   ̂( ))  where  

 

  ̂( )      ( ) 
  (    )                                                                                             (14) 

 

  ̂
 

 ( ) 
    

 ( )(    ( )(      )    ( )    ( )    ( ))                                       (15) 

 

Where  ( )= [R(x, x1), R(x, x2), . . . , R(x, xN )], u(x) =       ( )   . Notice that   ̂( ) is 

usually taken as the estimated  ̂( ) at point  . The computation of   ̂( )  and   ̂
 

 ( ) 
 can be 

obtained by MATLAB toolbox DACE [7].  

Notice that the variance   ̂
 

 ( ) 
 is defined as the minimum of the mean squared error between 

 ̂( ) and G(x). The variances of points in the initial DoE are zero, but the variances of the 
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other points are always not zero. A large value of   ̂
 

 ( ) 
means that the prediction is not exact. 

Therefore, the variance prediction   ̂
 

 ( ) 
 is important in the unexplored areas and presents a 

good index to improve the initial DoE. This property is interesting and is used in the 

following paragraph.  

 

2.4 AK-MCS methodology 

In a first stage, a significant number of realizations (about 1 million) of the spatially 

varying soil medium were generated by MCS using the Expansion Optimal Linear Estimation 

(EOLE) method. The response of most of these realizations will not be computed from the 

original deterministic model; only a few numbers of realizations will be computed using this 

model depending on their corresponding learning function values. In a second stage, an initial 

small Design of Experiments (DoE) based on a random selection of some realizations among 

the MCS population was determined and employed to compute the Kriging model (based on 

the values of the responses obtained using the original deterministic model). In a third stage, 

the adopted learning function U (which makes use of the already-obtained kriging model) is 

employed to choose the best next realization (among all the realizations of the MCS 

population) to be used for the computation of the system response from the original 

deterministic model. This realization is the one that leads to the minimal value of the learning 

function U. In a final stage (stage 4), the response obtained from this realization is employed 

to update the kriging model with this new response value (only in case where the adopted 

stopping condition has not been reached). Notice that stages 3-4 should be repeated several 

times until reaching the adopted stopping condition. At the end, the surrogate kriging model is 

considered to be enough accurate for the estimation of the failure probability and the 

corresponding value of the coefficient of variation, for the prescribed number of simulations. 

If the coefficient of variation of the failure probability is found to be too high, the initial MCS 

population should be increased. A more comprehensive step-by-step procedure describing the 

implementation of the AK-MCS methodology for the computation of the failure probability 

may be given as follows:  

 

1. Generate a population S of nMC (say 1,000,000) realizations of the spatially varying soil 

parameters c and φ using Monte Carlo Simulation. It should be emphasized here that 

the computation of the performance function for these realizations (as defined in 

equation 1 based on the computationally-expensive FLAC
3D

 model) is not required at 

this stage.  

2. Randomly select from the S population a small number of realizations (called initial 

Design of Experiments DoE) containing N1 realizations (say 20). For those N1 

realizations, one should evaluate the performance function given by equation (1) based 

on the computationally expensive FLAC
3D

 model. The required initial DOE may be 

greater than 20 for a great number of random variables (i.e. for a spatially varying soil 

property with small values of the autocorrelation distances). This is because for high 

dimensional problems (i.e. when a large number of random variables is needed to 

discretize the c and φ random fields), the kriging model needs more points (i.e. 

realizations) in order to compute correlation parameters θi  given by equation (10). 

3. Compute the kriging model according to the small initial DoE containing the N1 

realizations. This kriging model is given by equation (14).  It should be mentioned here 

that this stage was performed using the Matlab toolbox DACE [7]. In this paper, 
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ordinary kriging model was used (i.e. the regression model is considered to be 

constant) and a square exponential correlation function was adopted in the analysis.  

4. By using DACE toolbox, compute (for the whole population S containing the nMC 

realizations of the random field) both the kriging predictor values   ̂  of the 

performance function (based on equation 14) and their corresponding kriging variance 

values   ̂
  (based on equation 15). From the obtained values of the kriging 

predictors   ̂, obtain an estimation of the probability of failure fP by counting the 

number of negative predictors   ̂   and dividing it by the total number of samples in S 

as follows:  

 

                                                  ̂   
  ̂  

   
               (16) 

 

Also compute the coefficient of variation of fP as follows: 

1
( )

f

f

f MC

P
COV P

P n


       (17) 

5. Identify the best next realization in S for which one will compute the performance 

function using FLAC
3D

. This is performed by evaluating a learning function U for each 

realization in S. The learning function U is given by: 

 

 

 (  )  
| 
 ̂(  )

|

 
 ̂(  )

                     (18)

          

The best next candidate realization is the one with minimum value of U. If this 

minimum value of U is smaller than 2, the performance function based on FLAC
3D

 is 

evaluated for this best candidate and the initial DoE is updated. Thus one should go back to 

step 3 and evaluate a new kriging model based on the updated DoE. Steps 3, 4 and 5 are 

repeated until the minimum value of U becomes larger than 2. At this stage the learning 

stops and the metamodel is considered accurate enough based on the nMC realizations. 

6. When the learning stops, one must compute the estimated values of both the probability 

of failure fP  and the coefficient of variation  fCOV P . The obtained value of fP is 

considered to be accurate if   5%fCOV P  . If the estimated coefficient of variation is 

larger than 5%, one must increase the population S in step 1 and repeat the procedure.  

 

It should be emphasized herein that a small initial DoE is chosen within the present 

approach (see step 2) in order to keep to a minimum the number of calls to the 

deterministic model. This initial DoE is successively increased by a single realization at 

each time (see step 5). The chosen realization is the one that is improving the most the 

metamodel because equation (18) searches for the realization that has a small kriging 

predictor (i.e. a realization that is close to the limit state surface) and/or a high kriging 

variance (i.e. a high uncertainty in the sign of its performance function value). Notice that 

the realizations with high uncertainties in the sign of their performance function values 

(positive or negative) are those that are close to the limit state surface. Finally, notice that 

the stopping criterion min(U)>2 corresponds to a maximal probability of making a mistake 
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on the sign of the performance function of (-2)=0.023. This means that the stopping 

criterion is relevant making use of the realizations with a small uncertainty in making a 

mistake in their performance functions’ signs, the probability of making a mistake in the 

signs of their performance function values being negligible.    

2.5 Probabilistic numerical results 

The aim of this section is to present the probabilistic numerical results of a strip footing 

resting on a spatially varying soil and subjected to a vertical loading. The soil shear strength 

parameters (c and φ) were considered as anisotropic non-Gaussian random fields. The soil 

cohesion c was modeled by a lognormal distribution. Its mean value and its coefficient of 

variation (referred to in this paper as reference values) were taken as follows: c 20 kPa, 

COV c 25%. On the other hand, the soil friction angle φ was assumed to be bounded (i.e 0 

45
°
). A beta distribution was selected for this parameter with a mean value and a 

coefficient of variation given as follows: µφ = 30
°
 , COVφ = 10%. . The soil dilation angle ψ 

was considered to be related to the soil friction angle φ by 2/ 3. This means that the soil 

dilation angle was implicitly assumed as a random field that is perfectly correlated to the soil 

friction angle random field. Notice that the same autocorrelation function (square exponential) 

was used for both c and φ. 

As for the autocorrelation distances ax and ay of the two random fields c and φ, both cases 

of isotropic (i.e. ax=ay) and anisotropic (i.e. ax>ay) random fields will be treated although the 

soil is rarely isotropic in reality. In our study, the reference values adopted for ax and ay were 

ax=10m and ay=1m. For the considered soil domain and for the different values of the 

autocorrelation distances (ax, ay) used in the analysis, the total number N of random variables 

(or eigenmodes) that is used to discretize the two random fields c and φ is determined based 

on a variance of the error 10%. It should be mentioned here that the initial design of 

experiment (DoE) contain 20 samples. 

 

2.5.1 Deterministic model 

The deterministic model was based on numerical simulations using the finite difference code 

FLAC
3D

. The soil behavior was modeled using a conventional elastic-perfectly plastic model 

based on Mohr-Coulomb failure criterion. Notice that the soil Young modulus E and Poisson 

ratio υ were assumed to be deterministic since the ultimate bearing capacity is not sensitive to 

these variables. Their corresponding values are respectively 60E MPa  and 0.3 . Finally, 

concerning the footing, a weightless strip foundation of 1m width and 0.25m height is used. It 

is assumed to follow an elastic linear model ( 25E GPa , 0.4  ). The connection between 

the footing and the soil mass is modeled by interface elements having the same mean values 

of the soil shear strength parameters in order to simulate a perfectly rough soil-footing 

interface. These parameters have been considered as deterministic in this study. Concerning 

the elastic properties of the interface, they also have been considered as deterministic and 

their values are as follows: 1sK GPa , 1nK GPa  where Ks and Kn are respectively the shear 

and normal stiffness of the interface.  

As shown in Figure 1, a strip footing of width B=1m that rests on a soil domain of width 13B 

and depth 5B was considered in the analysis. For the displacement boundary conditions, the 

bottom boundary was assumed to be fixed and the vertical boundaries were constrained in 

motion in the horizontal direction. For the computation of the bearing capacity of the rigid 

rough strip footing subjected to a central vertical load using FLAC
3D

, the following method is 

adopted: an optimal controlled downward vertical velocity of 5   10
-6

  m/timestep (i.e. 

displacement per timestep) was applied to the bottom central node of the footing. Damping of 
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the system is introduced by running several cycles until a steady state of plastic flow is 

developed in the soil underneath the footing. At each cycle, the vertical footing load is 

obtained by using a FISH function that calculates the integral of the normal stress components 

for all elements in contact with the footing. The value of the vertical footing load at the plastic 

steady state is the ultimate footing load. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Soil domain and mesh in the FLAC
3D 

 

2.5.2 Probabilistic results for the reference case 

Figure (2) presents for the reference case (ax=10m, ay=1m) the failure probability Pf, the 

coefficient of variation COVPf and the learning function values U as function of the added 

points (i.e. added realizations) for a number of realizations nMC equal to 500000. It should be 

mentioned here that 491 additional points were added to the initial DoE before the algorithm 

stops (U>2). The final obtained values of Pf and COVPf are respectively 1.408x10
-3

 and 

3.766%. Figure (2) shows that the probability of failure starts to converge at about 480 calls to 

the deterministic model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Pf, cov(Pf) and U values as function of the added points for the reference case  

 

Figures (3) presents typical realizations and the corresponding velocity field of the random 

fields for the reference case. As may be seen from this figure, the spatial variability of the soil 

 

5
B

 

13B 

6268



Jawad Thajeel1, Tamara Al-Bittar2, Nour Issa3and Abdul Hamid Soubra4  

 

properties can produce a non-symmetrical mechanism even though the footing is subjected to 

a symmetrical vertical load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Typical realization and the corresponding velocity field of the random fields for the 

reference case (ax=10m, ay=1m) (nMC = 500000) 

 

2.5.3 Effect of the number of simulations on COVPf  

To ensure a small uncertainty on the estimation of the failure probability, the number of 

realizations nMC to be used must be sufficient to provide a small value of the coefficient of 

variation COVPf of this failure probability. Figure (4) shows for the reference case the 

variation of COVPf (as computed by AK-MCS methodology) with the number of realizations 

nMC. As expected, Figure (4) shows that COVPf decreases (i.e. the accuracy of the failure 

probability increases) with the increase of nMC.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Coefficient of variation of Pf versus the number of realizations nMC 
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2.5.4 Effect of the autocorrelation distance 

Table 1 presents the effect of the isotropic autocorrelation distance (ax=ay) on the failure 

probability (Pf) and the corresponding coefficient of variation COVPf as computed by AK-

MCS methodology using nMC=1,000,000 realizations of the random field. This table also 

gives, for each autocorrelation distance, (i) the number of eigenmodes that is needed to satisfy 

the criterion imposed on the variance of the error of the random field (i.e. variance 

error<10%), (ii) the number of added points (i.e. the number of added realizations) and (iii) 

the obtained value of the learning function U for which the learning stops. As may be seen 

from this table, Pf increases with the increase in the autocorrelation distance. A small value of 

the coefficient of variation of the failure probability (smaller than 3%) was obtained for the 

adopted value of nMC. The number of added realizations required to lead to a good 

approximation of the kriging model seems to be greater for the smaller values of the 

autocorrelation distance, although there is no regular increase in the number of added points 

with the decrease of the autocorrelation distance. Indeed, this number depends on the 

evolution of the learning function value to satisfy the stopping conditions.    

 

 

  

Table 1. Number of random variables used to discretize the random field in EOLE method, 

Pf , COVPf  and  number of added points in the case of an isotropic case 

ax=ay (m) Number of needed 

random variables for the 
two random fields (c, φ) 

Pf × 10
-3 Covpf % Number of  

added 

points 

U 

10 4 2.407 2.0358 243 2.033194 

20 4 3.509 1.685 342 2.007373 

50 4 3.824 1.614 65 2.292211
 

100 4 3.87 1.604 76 2.147826 

 

 

3 CONCLUSION 

The probabilistic analysis of shallow foundations resting on a spatially varying soil was 

generally performed in literature using MCS methodology. The mean value and the standard 

deviation of the system response were extensively investigated. This was not the case for the 

failure probability because MCS methodology requires a large number of calls of the 

deterministic model to accurately calculate a small failure probability. This paper mainly 

presented a probabilistic analysis at the ultimate limit state of a strip footing resting on a 

spatially varying soil using an active learning reliability method combining kriging and Monte 

Carlo Simulation (called AK-MCS). The method was shown to be very efficient as the 

obtained probability of failure is very accurate needing only a small number of calls to the 

deterministic model. Within this method, one performs a Monte Carlo simulation without 

evaluating the whole population using the original deterministic model. Indeed, the 

population is predicted using a kriging metamodel which is defined using only a few points of 

the population that are evaluated employing the original deterministic model. The objective of 

this paper is the computation of the probability Pf of exceeding the ultimate bearing capacity 

of the footing under a prescribed footing load. The soil cohesion and angle of internal friction 

were considered as two non-isotropic non-Gaussian random fields. The deterministic model 
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was based on numerical simulations using the finite difference code FLAC
3D

. The main 

findings of this study can be summarized as follows: 

1. The probabilistic analysis has shown that the small failure probability Pf was 

computed accurately (i.e. with a small COVPf) using only a small number of calls of 

the deterministic model.  

2. The failure probability Pf increases with the increase in the autocorrelation distance. 

The number of added realizations required to lead to a good approximation of the 

kriging model seems to be greater for the smaller values of the autocorrelation 

distance.   
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Abstract. We present an optimal sensor placement methodology for structural health moni-
toring (SHM) purposes, relying on a Bayesian experimental design approach. The unknown
structural properties, e.g. the residual strength and stiffness, are inferred from data collected
through a network of sensors, whose architecture, i.e., type and position may largely affect the
accuracy of the monitoring system. In tackling this issue, an optimal network configuration is
herein sought by maximizing the expected information gain between prior and posterior prob-
ability distributions of the parameters to be estimated. Since the objective function linked to
the network topology cannot be analytically computed, a numerical approximation is provided
by means of a Monte Carlo analysis, wherein each realization is obtained via finite element
modeling. Since the computational burden linked to this procedure often grows infeasible, a
Polynomial Chaos Expansion (PCE) approach is adopted for accelerating the computation of
the forward problem. The analysis expands over joint samples covering both structural state
and design variables, i.e., sensor locations. Via increase of the number of deployed sensors
in the network, the optimization procedure soon turns computationally costly due to the curse
of dimensionality. To this end, a stochastic optimization method is adopted for accelerating
the convergence of the optimization process and thereby the damage detection capability of
the SHM system. The proposed method is applied to thin flexible structures, and the resulting
optimal sensor configuration is shown. The effects of the number of training samples, the poly-
nomial degree of the approximation expansion and the optimization settings are also discussed.
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1 INTRODUCTION

Let us consider a structural system, monitored through a network of sensors. The measured
response of the system subjected to a set of given actions is collected in the vector y ∈ Rny ,
where entries can be either displacements or rotations. Here ny is the number of measurements,
i.e., the number of sensors to be deployed multiplied by the number of physical quantities that
can be measured by each sensor.
Let us define a set of mechanical properties like Young modulus, stiffness, modal parameters,
collected in the vector θ ∈ Rnθ , to be identified using the measured data y. The capability of a
SHM system to detect and identify the said mechanical properties is basically affected by two
aspects [1]: the mathematical tools exploited to estimate the parameters; and the experimental
setting, i.e., the physical quantities to be measured and the procedure to measure them. Con-
sidering the experimental design alone, the estimation capability is affected by several aspect,
including:

• sensor characteristics such as accuracy, resolution, sensitivity, noise, etc.;

• number of sensors;

• orientation and deployment of sensors;

which should be appropriately set to ensure high accuracy at a reduced cost.
Optimal sensor placement (OSP) forms a fundamental task for real SHM applications, as it can
allow decreasing the cost and complexity of the SHM system. As summarized in [2, 3, 4],
among the most commonly adopted OSP methods we find: the effective independence method
(EFI); the driving-point residue method (EFI-DPR); the kinetic energy method (KEM); the
modified variance method (MVM); methods based on topology optimization [5]. All afore-
mentioned methods do not take into account that measurements are inevitably corrupted with
errors, and hence they should be treated as stochastic quantities. The main goal of the present
work is to determine the optimal configuration of sensors, that guarantees the best estimation
of mechanical parameters or, in other words, the maximum amount of inferred information,
under noise corrupted variables. The general purpose framework proposed in [6] is applied to
the OSP problem, in order to find the sensor configuration guaranteeing a maximal amount of
information, as already proposed in [7] and [8].
The remainders of the paper is organized as follows: in Section 2, the main theoretical aspects
of the adopted methodology, such as the problem settings, the numerical solution of the prob-
lem and the optimization scheme, are described. In section 3, the framework is implemented
on a simple benchmark problem consisting in a flexible simply supported plate. Finally, some
concluding remarks and possible future developments are friefly summarized in Section 4.

2 BAYESIAN EXPERIMENTAL DESIGN FOR OPTIMAL SENSOR PLACEMENT

2.1 Problem settings

Moving from a space discretized system, the position of the sensors is defined through an
appropriate design variable vector d ∈ Rnd , that can be set alternatively as:

• vector of spatial nodal coordinates

d = {x1 y1 z1 δ1 . . . xnsens ynsens znsens δnsens}T (1)
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where 1 6 nsens 6 nnodes is the number of sensors to be deployed; variable δi =
{ui, vi, wi}T identifies the orientation of the i− th sensor; the spatial coordinates xi, yi, zi
are defined in the discrete domain of all the nodes of the Finite Element (FE) model;

• vector of nodal labels
d = {d1 δ1 . . . dnsens δnsens}T (2)

with di designating the FE model node where the i− th sensor is placed.

The measured quantities y are related to the model output u ∈ Rnnodesndof , ndof denoting the
number of degrees of freedom of each node associated to the FE model, through the relation:

y = Lu + ε (3)

where ε ∈ Rnsens is the model prediction error, accounting for the modelling and measurement
errors, and is therefore related to the type of sensors deployed. pε = p(ε) is defined as the prob-
ability density function associated with the model prediction error. L ∈ Rnsens×nnodesndof is a
configuration matrix, linking the measurements y to the model response u, defined as a boolean
matrix, with 1 or 0 entries corresponding respectively to the measured and non-measured quan-
tities. L depends both on the sensors positions, i.e., the nodes in which the sensors are placed,
and the direction of the measured displacement or accelerations. Therefore, L = L(d) is func-
tion of the experimental variable d.
Since the structure is modeled through a FE model, the model response u depends on the mea-
chanical properties of the system, according to:

u = K(θ)−1F (4)

where K ∈ Rnnodesndof×nnodesndof is the stiffness matrix associated with the discretized structure
and F ∈ Rnnodesndof is the load vector. The load is assumed implemented as a quasi-static way
and therefore any dynamic effect on the response is disregarded.
Eqs. (3) and (4) lead to:

y = G(d,θ) + ε (5)

where:
G(d,θ) = L(d)K(θ)−1F (6)

is the forward model operator Rnd ×Rnθ → Rnu that maps the design variable and the parame-
ters to be estimated onto the response domain.
The main goal of the OSP problem is to determine the optimal sensor configuration d∗, for the
Bayesian inference of the mechanical parameters θ. Here we use the general framework pro-
posed in [6, 9], which is applicable to any Bayesian inference problem; θ and y are therefore
treated as random variables, with their appropriate probability densities, accounting for their
respective uncertainties.
Bayes’ theorem allows to compute the conditional probability density of the parameters to be
inferred, given the acquired data, i.e., the measurements. In the case of experimental design,
the Bayes’ rule can be specialized, taking also into account the design variable, as:

p(θ|y,d) =
p(y|θ,d)p(θ|d)

p(y|d)
(7)

where p(θ|y,d) is the posterior distribution (probability density of θ, given y and d), p(y|θ,d)
is the likelihood, p(θ|d) is the prior distribution and p(y|d) is the evidence. In the following, the
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evidence is assumed to be independent of the design variable, therefore p(θ|d) = p(θ). Hence,
the prior knowledge of θ is not affected by the experimental procedure.
Following [10], the optimal experimental design in a Bayesian sense can be obtained by maxi-
mizing the following expression:

max
d∈D

∫
Y

∫
Θ

U(d, y,θ)p(θ, y|d)dθdy (8)

where Y and Θ respectively designate the supports of p(y|d) and p(θ). Within a decision theory
formulation, U(d, y,θ) is a utility function defined in (D,Y ,Θ) → R that takes into account
the usefulness of the experimental decision d, given a particular value of θ and y. The optimal
experimental design aims to maximize the expected utility function specified by Eq. (8). As
summarized in [11], the choice of the utility function is strictly related to the type of problem,
whether it is a prediction or an estimation one. As suggested in [7], the most common utility
function for the inference problems is the expected Kullbach-Leibler divergence (also called
expected gain in Shannon information [12] or relative entropy) between the posterior and the
prior probability distributions [13]:

DKL(p(θ|y,d)||p(θ)) =

∫
Y

∫
Θ

log
p(θ|y,d)

p(θ)
p(y,θ|d)dydθ (9)

The rationale behind this choice relies on the concept that the optimal configuration should yield
the largest increase in information between the prior and the posterior.
Recasting Eq. (9) into the experimental design problem, the utility function becomes:

U(d, y,θ) = U(d, y) =

∫
Θ

log
p(θ̄|y,d)

p(θ̄)
p(θ̄|y,d)dθ̄ (10)

Remebering that θ̄ is a dummy variable and using Eq. (10), the optimization statement of Eq.
(8) becomes:

max
d∈D

∫
Y

∫
Θ

p(θ|y,d) ln
p(θ|y,d)

p(θ)
dθp(y|d)dy (11)

Rearranging Eq. (11) using Eq. (7), we can rewrite the optimization problem as:

find d∗ = arg max
d∈D

Ū(d)

such that Ū(d) =

∫
Y

∫
Θ

{ln[p(y,θ|d)]− ln[p(y|d)]}p(y,θ|d)p(θ)dθdy
(12)

where Ū(d) is the so-called expected information gain in θ.

2.2 Surrogate modeling

The optimization problem defined in Eq. (12) is handled through Monte Carlo sampling as:

Ū(d) ≈ 1

Nout

Nout∑
i=1

{
ln
[
p(yi|θi,d)

]
− ln

[
p(yi|d)

]}
(13)

where Nout represents the number of samples θi to be drawn in the outer Monte Carlo sum.
The evidence computed at y(i) is approximated as:

p(yi|d) ≈ 1

Nin

Nin∑
j=1

p(yi|θj,d) (14)
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The samples θi and θj are drawn from the prior distribution p(θ), which is chosen a priori. In
SHM applications, the main goal is to identify the mechanical properties of a damaged struc-
ture, and it is common to assume parameters θ as drawn from a uniform distribution U(Θ). In
reducing the associated computational cost, the same set of samples θ is used for both the inner
and the outer sum, resulting in Nin = Nout; the computational complexity is thus reduced from
O(NoutNin) to O(Nout). For further details on the bias introduced by this assumption and on
the numerical approximation, the interested reader is referred to [6].
The term p(y|θ,d) corresponds to the probability density of the measured data y, given a spe-
cific set of mechanical parameters θ and a specific sensor configuration d. Using Eq. (5), we
can conclude that:

p(y|θ,d) = pε(ε) = pε(y−G(d,θ)) (15)

Hence, via use of Eqs. (6) and (15), Eq. (13) becomes:

Ū(d) ≈ 1

Nout

Nout∑
i=1

{
ln
[
pε(ε

i)
]
− ln

[
1

Nin

Nin∑
j=1

pε(G(d,θi) + εi −G(d,θj))

]}
=

=
1

Nout

Nout∑
i=1

{
ln
[
pε(ε

i)
]
− ln

[
1

Nin

Nin∑
j=1

pε(L(d)[Ki−1 −Kj−1]F + εi)

]} (16)

where Ki,j = K(θi,j). The samples εi are drawn from the density distribution pε, that is chosen
once again a priori.
From a computational point of view, the most time-consuming part of the procedure is the eval-
uation of the system response through the model mapping G(d,θ) of Eq. (6). Assuming that
we use the same batch of samples θ for both sums, the Monte Carlo approximation would re-
quireNout evaluations of the system output, each one associated to a stiffness matrix inversions,
rendering the computation practically infeasable. In order to overcome this problem, in [6] the
adoption of a Polynomial Chaos Expansion (PCE) scheme has been proposed. Given an input
random vector with independent components x ∈ Rnx , described by a joint probability density
function fx, and an output random vector y calculated through a certain computational model
M, the PCE allows to build a map, or metamodel, relating the two spaces. Assuming that:

E[y2] =

∫
Dx

M2(x)fx(x)dx < ∞ (17)

it is possible to define (see [14]):

y =M(x) =
∑

α∈NM

yαψα(x) (18)

where ψα are multivariate polynomials of order p orthonormal to fx, α ∈ NM is a multi-index
associated with ψα, and yα ∈ R are the corresponding coefficients. For practical purposes, the
sum is truncated to a sub-set of the multi-indeces α ∈ A ⊂ NM , according to:

y ∼= yPCE =MPCE(x) =
∑
α∈A

yαψα(x) (19)

whereMPCE stands for the surrogate model, and yPCE is the approximated response computed
through it.
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Recalling Eq. (5), the forward model maps the design variable and the parameters into the
measurement domain (D,Θ)→ Y as:

y =M(x) = G(d,θ) (20)

As suggested in [6], the PCE is applied jointly as:

x =

[
θ
d

]
(21)

with x ∈ Rnθ+nd . In this way, it is not necessary to build a different PCE for each possible
design variable d, which would lead to a larger computational cost. In order to compute the
surrogate model, two sets of samples θk and dk with k = 1, · · · , NPCE are drawn from the
respective aforementioned probability densities; the output samples are then calculated through
the complete model yk = M(xk). Once the input and output populations have been built, the
truncated bases and the relative coefficients are computed through the Least Angle Regression
(LAR) algorithm, as specified in [14, 15]. The accuracy of the surrogate model with respect
to the complete one is affected by both the population size NPCE and the poynomial degree
p; these settings should be chosen so as to minimize the leave-one-out (LOO) cross-validation
error, as defined in [16].

2.3 Optimization algorithm

The optimization statement summarized in Eq. (12) is herein solved by applying the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) [17], which comprises a stochastic
search algorithm for numerical optimization of non-linear non-convex functions. The basic idea
is to sample the design variable d from a multivariate normal distribution, and produce a new
mutation of the generated population that is closer to the maximum of the function Ū(d).
The algorithm can be summarized as follows:

1. for each iteration, a population of design points d is sampled from the Normal multivariate
distribution di ∼ m + σNi(0,C) for i = 1, · · · , λ, where m ∈ Rnd is the mean vector,
σ ∈ R is the step size and C ∈ Rnd×nd is the covariance matrix;

2. m and C are updated through cumulation, in order the likelihood of the successive itera-
tions to be increased;

3. the previous steps are repeated until a certain tolerance on the function evaluation is at-
tained.

Further details on the algorithm can be found in [18].

3 RESULTS

The method discussed in Section 2 is now applied to a simple SHM benchmark case; a
square plate, simply supported at four edges and subjected to a static force applied at its centre
point (see node 1 in Figure 1). The structure is ideally subdivided into four zones and the aim
of the SHM system is the estimation of the Young modulus Ej , j = 1, ..., 4, of each zone.
The sensors can be positioned at each node of the adopted 10x10 FE model and, for the sake
of simplicity, only the out-of-plane deflections are assumed to be measured. The structure
is discretized through conventional shell elements, with 6 degrees of freedom per node. The
mechanical behaviour of the material is supposed to be linear elastic.
Two cases are considered herein:
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Figure 1: Benchmark structural case.

(a) the position of the damaged zone is known, therefore the input variables of the PCE
surrogate model are summarized in vector:

x = {E2 d1 · · · dnsens}T (22)

(b) the position of the damaged zone is unknown:

x = {E1 E2 E3 E4 d1 · · · dnsens}T (23)

Let us consider the simplest case: only one sensor is deployed. Figures 2 and 3 demonstrate the
contour plot of the objective function defined by Eq. (12) computed on each node of the plate,
respectively related to cases (a) and (b). The parameters to be estimated, aggregated in vec-
tor θ, are sampled from a uniform distribution U(0, E), where E is the Young modulus of the
undamaged material. The probability distribution of the model prediction error ε is supposed
to be Gaussian N (0, σ2) with standard deviation σ = 10−5 m. In order to compute the PCE
coefficients and bases, the design variable d is sampled uniformly with coordinates defined over
the interval [0, 0.2], both along the width and the length of the plate.
The optimal configuration, i.e., maximizing the objective function, is determined at position
(x∗, y∗) = (0.08, 0.12) for case (a), i.e., as expected near the zone in which the damage will
occur, see [5]. In case (b), the problem settings are perfectly symmetric and therefore the ob-
jective function as well: the optimal is determined in point (x∗, y∗) = (0.10, 0.10). The figures
show the optimization paths obtained through the CMA-ES algorithm: each path corresponds
to a different initial condition, i.e., the four corner points, and the red circles identify the results
reached after 25 objective function evaluations. It is demonstrated that, for both cases, the re-
sults are stable with respect to the initialization settings and they correspond to the maximum
of the contour plot.
The accuracy of the optimization process is largely affected by the PCE approximation phase.
The error introduced by the PCE surrogate model with respect to the FE model can be measured
through the leave-one-out (LOO) error, as defined in [16]:

εLOO =

N∑
i=1

(
M(xi)−MPCE(xi)

)2
1− hi

/(
N∑
i=1

(
M(xi)− µ̂Y

)2) (24)
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Figure 2: Contour plot of the objective function Û(d) with one sensor for case (a) and CMA-ES optimization paths
(NPCE = 104, p = 10, NMC = 5 · 103).

Figure 3: Contour plot of the objective function Û(d) with one sensor for case (b) and CMA-ES optimization paths
(NPCE = 104, p = 10, NMC = 5 · 103).

where µ̂Y = 1
N

∑N
i=1M(xi) is the sample mean of the set of quadrature points and hi is the ith

component of the vector given by:

h = diag
(
A(ATA)−1AT

)
(25)
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where A is the experimental matrix that contains the values of all the basis polynomials in the
experimental design points.
Figures 4 and 5 report the LOO error as a function of the polynomial order p and the number
of samples NPCE in a log-log plot. Figures show that, as expected, the error decreses as NPCE

and p increase; we can point out that for increase beyond a certain value of NPCE , the error
trend remains basically stable.
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Figure 4: LOO error εLOO associated to the PCE surro-
gate model for case (a).
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Figure 5: LOO error εLOO associated to the PCE surro-
gate model for case (b).

4 CONCLUSIONS

In the present paper, a new method has been proposed for optimal sensor placement in struc-
tural health monitoring applications, having supposed the measurements are noise-corrupted.
The method is adapted from the general framework proposed in [6] for the optimal design of
experiments; the procedure is coupled with a Covariance Matrix Adaptation Evolution Strategy
optimization scheme, which allows for determining the optimal sensor configuration, associated
with the maximum amount of information given by the measurements. In order to reduce the
computational cost linked to the multiple forward problem simulations required, a Polynomial
Chaos Expansion metamodeling scheme is adopted.
The method is herein applied to a simple benchmark problem of a simply supported plate un-
der bending loads. It has been demonstrated that the optimization algorithm is able to find the
optimal sensor configuration, further taking also into account measurement error. The method
proves successful and yielding a design of experiments corresponding to reduced approxima-
tion error.
Further developments will concern the application to more complex structures, with multiple
sensors configurations.
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MATLAB-based softwares UQLab and CMA-ES used for the implementation of the method.

REFERENCES

[1] D. Balageas, C. P. Fritzen, A. Gemes, Structural Health Monitoring. Wiley-ISTE, 2006.

[2] C. Leyder, V. Ntertimanis, E. Chatzi, A. Frangi, Optimal Sensors Placement for the Modal
Identification of an Innovative Timber Structure. Proceedings of the 1st International Con-
ference on Uncertainty Quantification in Computational Sciences and Engineering, 467-
476, 2015.

[3] M. Meo, G. Zumpano, On the optimal sensor placement techniques for a bridge structure.
Engineering Structures, 27:14881497, 2005.

[4] M. Chang, S. Pakzad, Optimal Sensor Placement for Modal Identification of Bridge
Systems Considering Number of Sensing Nodes. Journal of Bridge Engineering,
19(6):04014019, 2014.

[5] M. Bruggi, S. Mariani, Optimization of sensor placement to detect damage in flexible
plates. Engineering Optimization, 45(6), 659-676, 2013.

[6] X. Huan, Y. M. Marzouk, Simulation-based optimal Bayesian experimental design for
nonlinear systems. Journal of Computational Physics, 232(1):288-317, 2013.

[7] K. J. Ryan, Estimating Expected Information Gains for Experimental Designs with Ap-
plication to the Random Fatigue-Limit Model. Journal of Computational and Graphical
Statistics, 12(3):585-603, 2003.

[8] C. Papadimitriou, Optimal Sensor Placement Methodology for Parametric Identification
of Structural Systems. Journal of Sound and Vibration, 278:923947, 2004.

[9] X. Huan, Y. M. Marzouk, Gradient-Based Stochastic Optimization Methods in Bayesian
Experimental Design. International Journal for Uncertainty Quantification, 4(6):479-510,
2014.

[10] D. V. Lindley, Bayesian Statistics, A Review, Society for Industrial and Applied Mathe-
matics (SIAM), 1972.

[11] K. Chaloner, I. Verdinelli, Bayesian Experimental Design: A Review. Statistical Science,
10(3):273-304, 1995.

[12] C. E. Shannon, A Mathematical Theory of Communication. Bell System Technical Jour-
nal, 27:379-423, 1948.

[13] D. V. Lindley, On a Measure of the Information Provided by an Experiment. The Annals
of Mathematical Statistics, 27(4):986-1005, 1956.

[14] S. Marelli, B. Sudret, UQLab User Manual. Chair of Risk, Safety & Uncertainty Quan-
tification, ETH Zürich, 2015.
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Abstract. Thanks to computing power increase, risk quantification relies more and more on

computer modelling. Methods of risk quantification based on a fixed computational budget

exist, but computer models are almost always considered as a single black box.

In this paper, we are interested in analyzing the behavior of a complex phenomenon,

whose evolution can be modelled via two nested parametrized computer models. By two

nested computer models, we mean that some inputs of the second model are outputs of the

first model. Based on series of observations of the considered phenomenon, the idea is,

first, to calibrate the parameters of each model, and then, to construct a predictor for the

output of the second model, which takes into account the fact that, on the first hand, the two

models are not perfect, and on the other hand, there exist uncertainties in the parameters’

calibration.

Concerning the calibration of the models’ parameters we distinguish between the classic

”black-box” method, parallel method and grouped method. In the case of a parallel cali-

bration, each model is calibrated separately whereas in the case of a grouped calibration,

the parameters of the two models are calibrated all together. In both cases, the extent to

which the proposed predictor integrates the uncertainties of the nested system is demon-

strated. The proposed methods are then applied to an example.
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1 INTRODUCTION

In this paper, we are interested in analyzing the behavior of a complex phenomenon,

whose evolution can be modeled by two nested parametrized computer models. By two

nested computer models, we mean that some inputs of the second model are outputs of the

first model. The computer models are assumed linear with respect to the models’ parameters

β1 and β2. Both models are supposed to be affected by model errors ǫ1 and ǫ2. These errors

are assumed to be independent. So we have :

y1 (x1) = h1 (x1)
t β1 + ǫ1 (x1)

y2 (x2) = h2 (x2)
t β2 + ǫ2 (x2)

x2 = y1

(1)

where :

• x1 7→ y1 and x2 7→ y2 are the considered phenomena, x1 ∈ R, x2 ∈ R, y1 ∈ R and

y2 ∈ R

• h1 (x1)
t β1 and h2 (x2)

t β2 the deterministic computer codes, h1 (x1) ∈ R
p1 × 1,

h2 (x2) ∈ R
p2 × 1, β1 ∈ R

p1 × 1, β2 ∈ R
p2 × 1,

• ǫ1 and ǫ2 the real-valued models’ errors. They are modelled by centered Gaussian

processes.

The outline of this paper is the following. In section 2 is presented the general method

to calibrate these two nested codes. We suppose we have access to observations of the

phenomena x1 7→ y1, x2 7→ y2 and x1 7→ y2. In sections 3 to 5 three special cases of the

general method are presented. These cases, depending on the available information, are the

following :

• the parallel method. In this case, there are observations only for the phenomena x1 7→
y1 and x2 7→ y2 which are denoted by

(

x1,obs
(1),y1,obs

(1)
)

and
(

x2,obs
(2),y2,obs

(2)
)

,

• the ”black-box” method. In this case, there are observations only for the nested phe-

nomenon (x1 7→ y2), which are denoted by
(

x1,obs
(3),y2,obs

(3)
)

,

• the ”grouped” method. In this case, there are observations for the phenomenon x1 7→
y1 7→ y2, which are denoted by

(

x1,obs
(1),y1,obs

(1)
)

,
(

x2,obs
(2),y2,obs

(2)
)

and
(

x1,obs
(3),y2,obs

(3)
)

, where y1,obs
(1) = x2,obs

(2), x1,obs
(3) = x1,obs

(1) and

y2,obs
(2) = y2,obs

(3).

Note : notations (1), (2) and (3) correspond to first phenomenon, second phenomenon and

nested phenomenon.

Finally in section 6 the three specific cases of the general method are applied on a numerical

example.
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2 THE GENERAL METHOD

In this section we propose a general framework to calibrate nested codes and build pos-

terior predictors of these codes by taking into account observations of the three phenomena

(x1 7→ y1, x2 7→ y2 and x1 7→ y2).

2.1 Nested model linearization

According to equation (1) the relation between y2 and x1 is given by :

y2 (x1) = h2

(

h1 (x1)
t β1 + ǫ1 (x1)

)t
β2 + ǫ2

(

h1 (x1)
t β1 + ǫ1 (x1)

)

, (2)

Assuming that nominal values β̄1 and β̄2 of β1 and β2 are available such that in the

vicinity of β̄1, h1 (x1)
t (β1 − β̄1

)

+ ǫ1 (x1) is small, we get a linear approximation of the

nested code and its error :

y3 (x1) = h3 (x1)
t βc + ǫ3 (x1) , (3)

where ǫ3 (x1) is the proposed model error :

ǫ3 (x1) = ∆F2c

(

x1, β̄c

)

ǫ1 (x1) + ǫ2
(

h1 (x1)
t β̄1

)

, (4)

and :

h3 (x1) =





h31 (x1)

h32 (x1)





y3 (x1) = y2 (x1) + h31 (x1)
t β̄1

h31 (x1) = ∆F2c

(

x1, β̄c

)

h1 (x1)

h32 (x1) = h2

(

h1 (x1)
t β̄1

)

∆F2c

(

x1, β̄c

)

= ∂h2

∂x2

(

h1 (x1)
t β̄1

)t
β̄2

β̄c =

[

β̄1

β̄2

]

.

(5)

Given equations (1) and (3) a joint model for the three phenomena (x1 7→ y1, x2 7→ y2
and x1 7→ y2) is proposed :

ygp (xgp) |βc ∼ N
(

hgp (xgp)
t βc , Cgp

(

xgp;x
′

gp

) )

(6)

where :

βc =

[

β1

β2

]

, (7)

xgp =
(

x
(1)

1
, x

(2)

2
, x

(3)

1

)

, (8)
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ygp (xgp) =













y1

(

x
(1)

1

)

y2

(

x
(2)

2

)

y3

(

x
(3)

1

)













, (9)

hgp (xgp)
t =















h1

(

x
(1)

1

)t

0

0 h2

(

x
(2)

2

)t

h31

(

x
(3)

1

)t

h32

(

x
(3)

1

)t















, (10)

Cgp

(

x
(1)

1
, x

(2)

2
, x

(3)

1
; x

′
(1)

1
, x

′
(2)

2
, x

′
(3)

1

)

= (11)

















C1

(

x
(1)

1
, x

′(1)

1

)

0 C1

(

x
(1)

1
, x

′(3)

1

)

∆F2c

(

x
′(3)

1
, β̄c

)

0 C2

(

x
(2)

2
, x

′(2)

2

)

C2

(

x
(2)

2
,h1

(

x
′(3)

1

)t

β̄1

)

∆F2c

(

x
(3)

1
, β̄c

)

C1

(

x
(3)

1
, x

′(1)

1

)

C2

(

h1

(

x
(3)

1

)t

β̄1, x
′(2)

2

)

C3

(

x
(3)

1
, x

′(3)

1

)

















,

and C1, C2 and C3 are the covariance functions of ǫ1, ǫ2 and ǫ3 errors.

Given equation (6), in the case of uninformative prior or Gaussian prior for βc, the pa-

rameters’ distribution and the posterior predictive distribution given the observations, are

Gaussian (see [1], [6], [7], [11] [12]).

The following sections present the parameters’ calibration and the prediction given series

of observations according to the model presented above.

2.2 Calibration of the codes’ parameters and posterior predictive distributions

Given equation (6), we have :

ygp,obs|βc ∼ N ( Hgpβc , Rgp ) , (12)

where :

ygp,obs =









y1,obs
(1)

y2,obs
(2)

y3,obs
(3)









, (13)

y3,obs
(3) = y2,obs

(3) + h31

(

x1,obs
(3)
)t
β̄1, (14)

xgp,obs =











x1,obs
(1)

x2,obs
(2)

x1,obs
(3)











, (15)

6286



Sophie Marque-Pucheu, Guillaume Perrin and Josselin Garnier

Hgp = hgp (xgp,obs)
t , (16)

Rgp = Cgp (xgp,obs;xgp,obs) . (17)

Given equation (12), the posterior distribution of βc given the observations ygp,obs can be

modeled in a Bayesian framework. We distinguish two cases :

• No prior information case :

πprior [βc] ∼ 1 (18)

• Gaussian prior case :

πprior [βc] ∼ N

(

̂βprior
c , Rβc

prior
)

(19)

In a Bayesian framework, in these two cases, the parameters’ posterior distribution is Gaus-

sian :

βc | ygp,obs ∼ N ( E (βc | ygp,obs) , cov (βc | ygp,obs) ) (20)

where :

• in the no prior information case :

cov (βc | ygp,obs) = Rβc
=

(

Hgp
tRgp

−1Hgp

)

−1

E (βc | ygp,obs) = ̂βc = Rβc
Hgp

tRgp
−1ygp,obs

(21)

• in the Gaussian prior case :

(cov (βc | ygp,obs))
−1 = ˜R−1

βc
= Rβc

−1 +
(

Rβc

prior
)

−1

E (βc | ygp,obs) = ˜βc = ˜Rβc

[

Rβc

−1
̂βc +

(

Rβc

prior
)

−1
̂βprior
c

] (22)

Given equations (6), (12) and (20), the posterior predictive distribution ygp (xgp) |ygp,obs

is Gaussian. Its properties are :

ygp (xgp) | ygp,obs ∼ N

(

ŷgp (xgp,E (βc | ygp,obs)) , ̂Cgp (xgp;xgp)
)

(23)

where for all βc :

ŷgp (xgp, βc) = hgp (xgp)
t βc + rgp (xgp)

t
Rgp

−1 (ygp,obs −Hgpβc) (24)

rgp (xgp) = Cgp (xgp,obs;xgp) (25)

̂Cgp

(

xgp;x
′

gp

)

= Cgp

(

xgp;x
′

gp

)

− rgp (xgp)
t
Rgp

−1rgp
(

x′

gp

)

+ugp (xgp)
t
cov (βc | ygp,obs)ugp

(

x′

gp

)

(26)
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ugp (xgp) = hgp (xgp)−HgpRgp
−1rgp (xgp) (27)

In the following sections are presented three specific cases of the general method previ-

ously introduced. The cases are distinguished according to the type of available observa-

tions.

3 THE PARALLEL APPROACH

In this section we present a particular case of the previously presented general frame-

work. The parallel method corresponds to the case where only observations of the phenom-

ena x1 7→ y1 and x2 7→ y2 are available.

3.1 Key features of the approach

In the parallel approach, there is no observation for the nested phenomenon, that is :
(

x1,obs
(3),y2,obs

(3)
)

= ∅.

This method includes the following steps :

1. the parameters’ calibration given the observations
(

x1,obs
(1),y1,obs

(1)
)

and
(

x2,obs
(2),y2,obs

(2)
)

. Considering that the covariance matrix given by equation (11)

is a block diagonal matrix, it is like β1 and β2 were calibrated separately given the

observations
(

x1,obs
(1),y1,obs

(1)
)

and
(

x2,obs
(2),y2,obs

(2)
)

.

2. the construction of the posterior predictors given the observations :

(a) for the phenomenon 1 : the proposed predictor is an interpolating Gaussian

predictor given the observations
(

x1,obs
(1),y1,obs

(1)
)

(b) for the phenomenon 2 : the proposed predictor is an interpolating Gaussian

predictor given the observations
(

x2,obs
(2),y2,obs

(2)
)

(c) for the nested phenomenon : the proposed predictor is Gaussian thanks to a

linearization of the coupling of the Gaussian predictors of the phenomena 1 and

2 (see 3.2).

The following section presents how the predictor of the nested code is built in the parallel

approach.

3.2 Parallel predictor for the nested code

As shown above, we have two posterior Gaussian predictors given the observations :

ypred,i (xi) = yi (xi) |
(

xi,obs
(i),yi,obs

(i)
)

∼ N

(

ŷi (xi, βi) , ̂Ci (xi, xi)
)

i = {1, 2}

(28)

where :

ŷi (xi, βi) = hi (xi)
t βi + ri (xi)

t
Ri

−1

(

yi,obs
(i) − hi

(

xi,obs
(i)
)t
βi

)

(29)
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ri (xi) = Ci

(

xi,obs
(i); xi

)

(30)

Ri = Ci

(

xi,obs
(i);xi,obs

(i)
)

(31)

̂Ci (xi; x
′

i) = Ci (xi; x
′

i)− ri (xi)
t
Ri

−1ri (x
′

i)− ui (xi)
t
Rβi

−1ui (x
′

i) (32)

ui (xi) = hi (xi)− hi

(

xi,obs
(i)
)

Ri
−1ri (xi) (33)

Given equation (28) the posterior predictor for the nested phenomenon can be written :

ypred,3 (x1, βc) = ŷ2 (ŷ1 (x1, β1) + δŷ1 (x1) , β2) + δŷ2 (ŷ1 (x1, β1) + δŷ1 (x1)) (34)

where :

δŷi (xi) ∼ N

(

0 , ̂Ci (xi; xi)
)

i = {1, 2} (35)

Thanks to a first order Taylor series expansion and making the following approximation

according to equation (29)

∂ŷ2
∂x2

(x, β) =

[

∂h2

∂x2

(x)

]t

β (36)

the posterior predictor for the nested code is :

ypred,3

(

x1, ̂βc

)

≃ ŷ2

(

ŷ1

(

x1, ̂β1

)

, ̂β2

)

+

[

∂h2

∂x2

(

ŷ1

(

x1, ̂β1

))

]t

̂β2δŷ1 (x1)+δŷ2

(

ŷ1

(

x1, ̂β1

))

(37)

It is a linear combination of the independent Gaussian processes δŷ1 and δŷ2, thus it is a

Gaussian predictor.

Table 1 summarizes the ’parallel’ method’s characteristics.

Table 2 presents the MSE of the calibrated codes and predictors for the ’parallel’ method.

4 THE ’BLACK-BOX’ APPROACH

In this section we present a particular case of the previously presented general framework

(see 2). The ’black-box’ method corresponds to the case where only observations of the phe-

nomenon x1 7→ y2 are available, that is
(

x1,obs
(1),y1,obs

(1)
)

= ∅ and
(

x2,obs
(2),y2,obs

(2)
)

=
∅.

About the nested model’s error, the following cases are distinguished :

• ǫ1 and ǫ2, are known, so the error is given by equation (4),

• ǫ1 and ǫ2 are unknown, so a specific model error for the nested code is proposed (it is

assumed to be a zero-mean stationary Gaussian process).
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Nested model error The nested model error is not used because there is no ob-

servation for the nested phenomenon.

Calibration of parameters

βc = (β1, β2)
• β1 is calibrated given the observations for x1 7→ y1,

• β2 is calibrated given the observations for x2 7→ y2.

Posterior predictor for phe-

nomenon x1 7→ y1

Gaussian predictor given the observations of the phe-

nomenon x1 7→ y1
Posterior predictor for phe-

nomenon x2 7→ y2

Gaussian predictor given the observations of the phe-

nomenon x2 7→ y2
Posterior predictor for phe-

nomenon x1 7→ y2

Gaussian predictor thanks to a linearization of the coupling

of the Gaussian predictors of the phenomena x1 7→ y1 and

x2 7→ y2.

Table 1: This table summarizes the ’parallel’ method’s characteristics

Phenomenon

Empirical normalized

integrated squared error

(Empirical MSE) of the

calibrated codes

Empirical normalized integrated squared error

(Empirical MSE) of the posterior predictors

x1 7→ y1

∑

x1

(

y1 (x1)− h1 (x1)
t
̂β1

)2

∑

x1

(y1 (x1))
2

1
∑

xi

(yi (xi))
2

∑

xi

(yi (xi)− hi (xi)
t
̂βi

−ri (xi)
t
Ri

−1

(

yi,obs − hi (xi,obs)
t
̂βi

)

)2

i = {1, 2}

x2 7→ y2

∑

x2

(

y2 (x2)− h2 (x2)
t
̂β2

)2

∑

x2

(y2 (x2))
2

x1 7→ y2

1
∑

x1

(y2 (x1))
2

∑

x1

(y2 (x1)

−h2

(

h1 (x1)
t
̂β1

)t
̂β2)

2

∑

x1

(

y2 (x1)− ŷ2

(

ŷ1

(

x1, ̂β1

)

, ̂β2

))2

∑

x1

(y2 (x1))
2

Table 2: This table presents the normalized empirical integrated mean squared error of the

calibrated codes and predictors for the ’parallel’ method
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Nested model error Two cases are distinguished :

• ǫ1 and ǫ2, are known, so the error is given by

equation (4),

• ǫ1 and ǫ2 are unknown, so a specific model error

for the nested code is proposed (it is assumed to

be a zero-mean stationary Gaussian process).

Calibration of parameters

βc = (β1, β2)
βc is calibrated given the observations for x1 7→ y2

Posterior predictor for phe-

nomenon x1 7→ y1

First code using the posterior distribution of β1

Posterior predictor for phe-

nomenon x2 7→ y2

Second code using the posterior distribution of β2

Posterior predictor for phe-

nomenon x1 7→ y2

Gaussian predictor given the observations of the phe-

nomenon x1 7→ y2

Table 3: This table summarizes the ’black-box’ method’s characteristics

The method includes the following steps :

1. the parameters’ calibration given the observations
(

x1,obs
(3),y2,obs

(3)
)

,

2. the construction of the posterior predictors given the observations :

(a) for the phenomenon 1 : there is no observation
(

x1,obs
(1),y1,obs

(1)
)

, so the pro-

posed predictor is the calibrated code. Thanks to the code’s linearity and the

parameters’ Gaussian distribution the calibrated code’s distribution is Gaussian

with :

• mean : h1 (x1)
t
E
(

β1 |
(

x1,obs
(3),y2,obs

(3)
))

• and variance : h1 (x1)
t
cov

(

β1 |
(

x1,obs
(3),y2,obs

(3)
))

h1 (x1)

(b) for the phenomenon 2 : there is no observation
(

x2,obs
(2),y2,obs

(2)
)

, so the pro-

posed predictor is the calibrated code. Thanks to the code’s linearity and the

parameters’ Gaussian distribution the calibrated code’s distribution is Gaussian

with :

• mean : h2 (x2)
t
E
(

β2 | y2,obs
(2)

(

x1,obs
(3)
))

• and variance : h2 (x2)
t
cov

(

β2 |
(

x1,obs
(3),y2,obs

(3)
))

h2 (x2)

(c) for the nested phenomenon : the proposed predictor is an interpolating Gaussian

predictor given the observations
(

x1,obs
(3),y2,obs

(3)
)

Table 3 summarizes the ’black-box’ method’s characteristics.

Table 4 presents the normalized empirical integrated mean squared error of the calibrated

codes and predictors of this method.
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Phenomenon

Empirical normalized

integrated squared error

(Empirical MSE) of the

calibrated codes

Empirical normalized integrated squared er-

ror (Empirical MSE) of the posterior predic-

tors

x1 7→ y1

∑

x1

(y1(x1)−h1(x1)
t
̂β1)

2

∑

x1

(y1(x1))
2

x2 7→ y2

∑

x2

(y2(x2)−h2(x2)
t
̂β2)

2

∑

x2

(y2(x2))
2

x1 7→ y2

1
∑

x1

(y2 (x1))
2

∑

x1

(y2 (x1)

−h2

(

h1 (x1)
t
̂β1

)t
̂β2)

2

1
∑

x1

(y2 (x1))
2

∑

x1

(y3 (x1)− h3 (x1)
t
̂βc

−r3 (x1)
t
R3

−1

(

y3,obs − h3 (x1,obs)
t
̂βc

)

)2

where :

r3 (x1)
t = C3 (x1;x1,obs)

R3 = C3 (x1,obs;x1,obs)

Table 4: This table presents the normalized empirical integrated mean squared error of the

calibrated codes and predictors for the ’black-box’ method
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Nested model error Zero-mean Gaussian process, combination of the propaga-

tion of the first phenomenon’s uncertainty ǫ1 and the second

phenomenon’s uncertainty ǫ2 (ǫ1 et ǫ2 zero-mean Gaussian

process with covariance function Matérn 5

2
), see equation

(4)

Calibration of parameters

βc = (β1, β2)
βc is calibrated given the observations of the three phenom-

ena (x1 7→ y1, x2 7→ y2 and x1 7→ y2)
Posterior predictor for phe-

nomenon x1 7→ y1

Gaussian predictor given the observations of the three phe-

nomena (x1 7→ y1, x2 7→ y2 and x1 7→ y2)
Posterior predictor for phe-

nomenon x2 7→ y2

Gaussian predictor given the observations of the three phe-

nomena (x1 7→ y1, x2 7→ y2 and x1 7→ y2)
Posterior predictor for phe-

nomenon x1 7→ y2

Gaussian predictor given the observations of the three phe-

nomena (x1 7→ y1, x2 7→ y2 and x1 7→ y2)

Table 5: This table summarizes the ’grouped’ method’s characteristics

5 THE ’GROUPED’ APPROACH

In this section we present a particular case of the previously presented general framework

(see 2). The ’grouped’ method corresponds to the case where observations are chosen for

the phenomenon x1 7→ y1 7→ y2. So we have x1,obs
(1) = x1,obs

(3), x2,obs
(2) = y1,obs

(1) and

y2,obs
(2) = y2,obs

(3).

The method includes the following steps :

1. the parameters’ calibration given the observations
(

x1,obs
(1),y1,obs

(1)
)

,
(

x2,obs
(2),y2,obs

(2)
)

and
(

x1,obs
(3),y2,obs

(3)
)

,

2. the construction of the posterior predictors given the observations :

(a) for the phenomenon 1 : the proposed predictor is an interpolating Gaussian

predictor given the observations
(

x1,obs
(1),y1,obs

(1)
)

,
(

x2,obs
(2),y2,obs

(2)
)

and
(

x1,obs
(3),y2,obs

(3)
)

,

(b) for the phenomenon 2 : the proposed predictor is an interpolating Gaussian

predictor given the observations
(

x1,obs
(1),y1,obs

(1)
)

,
(

x2,obs
(2),y2,obs

(2)
)

and
(

x1,obs
(3),y2,obs

(3)
)

,

(c) for the nested phenomenon : the proposed predictor is an interpolating Gaussian

predictor given the observations
(

x1,obs
(1),y1,obs

(1)
)

,
(

x2,obs
(2),y2,obs

(2)
)

and
(

x1,obs
(3),y2,obs

(3)
)

.

Table 5 summarizes the ’grouped’ method’s characteristics. Table 6 presents the normal-

ized empirical integrated mean squared error of the calibrated codes and predictors of this

method.

6 NUMERICAL EXAMPLE

In this section we apply the previously presented particular cases of the general method

on a numerical example. In this example we study a computer model coupled with itself.
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Phenomenon

Empirical normalized

integrated squared error

(Empirical MSE) of the

calibrated codes

Empirical normalized integrated squared error

(Empirical MSE) of the posterior predictors

x1 7→ y1

∑

x1

(

y1 (x1)− h1 (x1)
t
̂β1

)2

∑

x1

(y1 (x1))
2

1
∑

x1

(y1 (x1))
2

∑

x1

(y1 (x1)− hgp (xgp,1)
t
̂βc

−rgp (xgp,1)
t
Rgp

−1

(

ygp,obs − hgp (xgp,obs)
t
̂βc

)

)2

where : xgp,1 = (x1, ∅, ∅)

x2 7→ y2

∑

x2

(

y2 (x2)− h2 (x2)
t
̂β2

)2

∑

x2

(y2 (x2))
2

1
∑

x2

(y2 (x2))
2

∑

x2

(y2 (x2)− hgp (xgp,2)
t
̂βc

−rgp (xgp,2)
t
Rgp

−1

(

ygp,obs − hgp (xgp,obs)
t
̂βc

)

)2

where : xgp,2 = (∅, x2, ∅)

x1 7→ y2

1
∑

x1

(y2 (x1))
2

∑

x1

(y2 (x1)

−h2

(

h1 (x1)
t
̂β1

)t
̂β2)

2

1
∑

x1

(y2 (x1))
2

∑

x1

(y3 (x1)− hgp (xgp,3)
t
̂βc

−rgp (xgp,3)
t
Rgp

−1

(

ygp,obs − hgp (xgp,obs)
t
̂βc

)

)2

where : xgp,3 = (∅, ∅, x1)

Table 6: This table presents the normalized empirical integrated mean squared error of the

calibrated codes and predictors for the ’grouped’ method

6294



Sophie Marque-Pucheu, Guillaume Perrin and Josselin Garnier

Method Average variance over a test set according to the source of uncertainty

General

method

ǫcond = E
xgp

gal=(∅,∅,x1)

[

Cgp

(

xgp
gal;xgp

gal
)

− rgp

(

xgp
gal
)t

Rgp
−1rgp

(

xgp
gal
)

]

ǫβ = E
xgp

gal=(∅,∅,x1)

[

ugp

(

xgp
gal
)t

cov (βc | xgp,obs)ugp

(

xgp
gal
)

]

Parallel

method

ǫcond = ǫcond,1 + ǫcond,2

ǫcond,1 = Ex1

[

[

∂h2

∂x2

(

ŷ1

(

x1, ̂β1

))

]t

̂β2

(

σ2

1
− r1 (x1)

t
R1

−1r1 (x1)
)

]

ǫcond,2 = Ex1

[

σ2

2
− r2

(

ŷ1

(

x1, ̂β1

))t

R2
−1r2

(

ŷ1

(

x1, ̂β1

))

]

ǫβ = ǫβ,1 + ǫβ,2

ǫβ,1 = Ex1

[

[

∂h2

∂x2

(

ŷ1

(

x1, ̂β1

))

]t

̂β2u1 (x1)
t
cov

(

β1 | y1,obs
(1)
)

u1 (x1)

]

ǫβ,2 = Ex1

[

u2

(

ŷ1

(

x1, ̂β1

))t

cov
(

β2 | y2,obs
(2)
)

u2

(

ŷ1

(

x1, ̂β1

))

]

’Black-

box’

method

ǫcond = Ex1

[

C3 (x1; x1)− r3 (x1)
t
R3

−1r3 (x1)
]

ǫβ = Ex1

[

u3 (x1)
t
cov

(

βc | y2,obs
(3)
)

u3 (x1)
]

u3 (x1) = h3 (x1)− h3

(

x1,obs
(3)
)

R3
−1r3 (x1)

Grouped

method
see General method

Table 7: This table presents the sources of uncertainty of the nested phenomenon’s predic-

tors. We denote by ǫcond the part of variance coming from the conditional Gaussian process

and by ǫβ the part of variance coming from the parameters’ posterior distribution.
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−4 −2 0 2 4

−
4

−
2

0
2

4

x1 or x2

y 1
o

r
y 2

(a) Model (code 1 or 2)

−4 −2 0 2 4

−
4

−
2

0
2

4
6

x1

y 2
(b) Nested model

Figure 1: The continuous line corresponds to reality i.e. y1 (x1), y2 (x2) or y2 (x1) and the

dashed line correspond to the codes h1 (x1)
t β1, h2 (x2)

t β2 or h2

(

h1 (x1)
t β1

)t
β2. Figure

1a presents phenomena x1 7→ y1, x2 7→ y2 and figure 1b phenomenon x1 7→ y2.

This section is organised as follow. Firstly, the phenomenon and its associated computer

code are introduced. Secondly, the way to choose the observations is presented. Thirdly,

the method to estimate the hyperparameters of the model error is exposed. Fourthly, the test

sets of the posterior predictors are presented. Finally the achieved results for the ’parallel’,

’black-box’ and ’grouped’ methods on this example are showed.

6.1 Presentation of the phenomenon

The model properties of the numerical example are :

h1 (x) = h2 (x) =

[

1
x2

]

(38)

β1 = β2 =

[

−5
0.4

]

y1 (x) = y2 (x) = h1 (x)
t β1 −

1

4
cos (2πx) = h2 (x)

t β2 −
1

4
cos (2πx)

(39)

Figure 1 presents the model alone and the nested model. It can be seen that the errors of the

phenomena x1 7→ y1 and x2 7→ y2 are regular. The error of the nested phenomenon is more

chaotic.

The three previously presented methods are applied on this example.

6.2 Observations’ choice

Regarding the number of observations three cases are studied : 4, 8 or 12 observations.

The observations are generated given a maximin Latin Hypercube Sampling for x1,obs
(1)
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and x2,obs
(2) in the parallel method (in this example x1,obs

(1) = x2,obs
(2)), for x1,obs

(3)

for the ’black-box’ method and for x1,obs
(1) and x1,obs

(3) for the grouped method (in this

example x1,obs
(1) = x1,obs

(3)). The observations’ sampling, the parameters’ calibration and

the posterior predictors’ construction are repeated 50 times for each case.

6.3 Covariance functions’ hyperparameters

The covariance functions’ hyperparameters are assumed to be known before the parame-

ters’ calibration. In the parallel and the grouped methods the hyperparameters of the Matérn

covariance functions of ǫ1 and ǫ2 are estimated by a Restricted Maximum Likelihood Es-

timator (see [1]). In the ’black-box’ method, ǫ3 is assumed to be a zero-mean stationary

Gaussian process. The hyperparameters of its Matérn covariance function ǫ3 are estimated

by a Restricted Maximum Likelihood Estimator.

6.4 Analysis of the predictors’ performances

Once the predictors are built, their performances are analyzed on 100 points’ grids over

the input space of each phenomenon. For the three phenomena the input space is [−5, 5].

6.5 The parallel approach

In the parallel approach, there are observations for the phenomena x1 7→ y1 and x2 7→ y2
which are denoted by

(

x1,obs
(1),y1,obs

(1)
)

and
(

x2,obs
(2),y2,obs

(2)
)

. Figure 2 presents for

the phenomena x1 7→ y1, x2 7→ y2 and x1 7→ y2 the calibrated codes’ and the predictors’

accuracy for the ’parallel’ method. Figure 3 presents an example of posterior predictor for

each phenomenon (1, 2 and nested). Figure 4 presents the sources of uncertainty of the

nested phenomenon’s predictor. The findings are :

• The more observations there are, the more accurate predictions and the better cali-

brated codes are.

• The predictors’ performance is less sensitive to the observations’ choice when the

number of observations increases.

• Both mean and confidence interval of 95% of all predictors are accurate.

• The predictors for the phenomena x1 7→ y1 and x2 7→ y2 are interpolating. The

predictor for the phenomenon x1 7→ y2 is a linearization of coupling the predictors

of the first and the second phenomena, thus it is not interpolating because there is no

observation of phenomenon x1 7→ y2.

• When there are few observations, the uncertainty of the nested phenomenon’s predic-

tor mainly comes from the parameters’ posterior distribution. The uncertainty lowers

with the numbers of observations. This reduction with the number of observations is

particularly significant for the uncertainty coming from the parameters’ distribution.

6.6 The ’black-box’ approach

In the ’black-box’ approach there are observations for the nested phenomenon only,

which are denoted by
(

x1,obs
(3),y2,obs

(3)
)

. Figure 5 presents for the phenomena x1 7→ y1,
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Parallel method
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(b) Phenomenon 1
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(c) Code 2
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(d) Phenomenon 2
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(e) Nested code
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Figure 2: The figures present the empirical MSE (see table 2) of the calibrated codes (2a, 2c,

2e) and the predictors (2b, 2d, 2f) for the ”parallel” method. The parameters’ calibration and

the posterior predictors’ construction have been repeated with 50 series of observations. The

same observations were used for both codes (x1,obs
(1) = x2,obs

(2)). The lower the empirical

MSE is, the more accurate the calibrated code is. It can be seen that the accuracy of the

predictors and calibrated codes increases with the number of observations and that all codes

are well calibrated.
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Parallel method : Posterior predictors’ mean and confidence interval
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Figure 3: Each figure presents an example of posterior predictor for each phenomenon. The

dotted line represents the predictor’s mean, the continuous line the real phenomenon and the

grey area the predictor’s confidence interval of 95%. The predictors are built with the same

8-point LHS maximin designs for x1 7→ y1 and x2 7→ y2 phenomena (x1,obs
(1)=x2,obs

(2)).

It can be seen that the predictors’ means and confidence intervals of 95% are accurate. The

predictor of the nested code is not an interpolating Gaussian predictor because there is no

observation for the phenomenon x1 7→ y2.

Parallel method : sources of uncertainty of the nested phenomenon’s predictor
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Figure 4: The figures above present the distribution of the average variance of the nested

phenomenon’s predictor over a test set of 100 points. We denote by ǫcond the part of vari-

ance coming from the conditional Gaussian process and by ǫβ the part of variance coming

from the parameters’ posterior distribution (see table 7). It can be seen that the variance

lowers with the number of observations. This reduction is particularly significant for the

uncertainty coming from the parameters’ distribution.
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x2 7→ y2 and x1 7→ y2 the calibrated codes’ and predictors’ accuracy for the ’black-box’

method. Figure 6 presents an example of posterior predictor for each phenomenon (1, 2 and

nested). Figure 7 presents the sources of uncertainty of the nested phenomenon’s predictor.

The findings are :

• The more observations there are, the more accurate the nested predictor is.

• When the number of observations increases, the parameters’ calibration is less sensi-

tive to the observations’ choice.

• The second code is better calibrated than the first code.

• The nested code is never well calibrated.

• The mean of the nested phenomenon’s predictor is accurate, but its variance is rela-

tively high.

• The predictors of the first and the second phenomena are just calibrated codes. Their

variances are relatively high.

• When there are few observations, the uncertainty of the nested phenomenon’s predic-

tor mainly comes from the parameters’ posterior distribution. The uncertainty lowers

with the number of observations. This reduction is particularly significant for the

uncertainty coming from the parameters’ distribution.

6.7 The ’grouped’ approach

In this case observations of the three phenomena are available, which are denoted by
(

x1,obs
(1),y1,obs

(1)
)

,
(

x2,obs
(2),y2,obs

(2)
)

and
(

x1,obs
(3),y2,obs

(3)
)

. In this example we

consider that x1,obs
(1) = x1,obs

(3), y1,obs
(1) = x2,obs

(2) and y2,obs
(2) = y2,obs

(3). Fig-

ure 8 presents for the phenomena x1 7→ y1, x2 7→ y2 and x1 7→ y2 the calibrated codes’

and the predictors’ accuracy for the ’grouped’ method. Figure 9 presents an example of the

posterior predictors for each phenomenon (1, 2 and nested). Figure 10 presents the sources

of uncertainty of the nested phenomenon’s predictor. The findings are :

• Both codes are well calibrated,

• For the phenomenon x1 7→ y1, the accuracy of the calibrated code increases with the

number of observations,

• For the phenomenon x2 7→ y2, the accuracy of the calibrated code decreases with

the number of observations. This is probably due to an ill-conditioned problem. The

space filling of the observations x2,obs
(2) is not good.

• When there are few observations, the uncertainty of the nested phenomenon’s predic-

tor mainly comes from the parameters’ posterior distribution. The uncertainty lowers

with the number of observations. This reduction is particularly significant for the

uncertainty coming from the parameters’ distribution.
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’Black-box’ method
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(c) Code 2
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(d) Phenomenon 2
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(e) Nested code
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(f) Nested phenomenon

Figure 5: The figures present the empirical MSE (see table 4) of the calibrated codes (5a, 5c,

5e) and the predictors (5b, 5d, 5f) for the ”black-box” method. The parameters’ calibration

and the posterior predictors’ construction have been repeated for 50 series of observations.

It can be seen that the second code is always better calibrated than the first code. When

the number of observations increases, the empirical MSE lowers and is less sensitive to

the observations’ choice. So the calibrated codes’ and predictors’ robustness and accuracy

increases with the number of observations.
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’Black-box’ method : Posterior predictors’ mean and confidence interval
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Figure 6: Each figure presents an example of posterior predictor for each phenomenon. The

dotted line represents the predictors’ mean, the continuous line the real phenomenon and

the grey area the confidence interval of 95%. The predictors are built with a 8-point LHS

maximin design. The confidence intervals are relatively high. The predictors of the first

and the second phenomena are not interpolating because there is no observation for these

phenomena (
(

x1,obs
(1),y1,obs

(1)
)

= ∅ and
(

x2,obs
(2),y2,obs

(2)
)

= ∅). The predictors for

these phenomena are just calibrated codes integrating posterior parameters distribution.

’Black-box’ method : sources of uncertainty of the nested phenomenon’s predictor
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Figure 7: The figures above present the distribution of the average variance of the nested

phenomenon’s predictor over a test set of 100 points. We denote by ǫcond the part of the

variance coming from the conditional Gaussian process and by ǫβ the part of the variance

coming from the parameters’ posterior distribution. The variance lowers with the number

of observations, especially for the part coming from the parameters’ distribution (see table

7). The variance coming from the conditional process is relatively high because the error of

the nested model is chaotic (see figure 1)

6302



Sophie Marque-Pucheu, Guillaume Perrin and Josselin Garnier

Grouped method

Calibrated codes Posterior predictors
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4 8 12

0.
00

3
0.

00
4

0.
00

5
0.

00
6

0.
00

7

Number of observations

E
m

p
ir

ic
al

M
S

E

(b) Phenomenon 1
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(c) Code 2
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(d) Phenomenon 2
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Figure 8: The figures present the empirical MSE (see table 6) of the calibrated codes (8a, 8c,

8e) and the predictors (8b, 8d, 8f) for the ”grouped” method. The observations’ sampling,

the parameters’ calibration and the posterior predictors’ construction have been repeated

50 times. All codes are well calibrated. The calibrated code’s and predictor’s accuracy

of the phenomenon 1 increases with the number of observations. The calibrated code’s

and predictor’s accuracy of the phenomenon 2 is poorer than for the phenomenon 1 and

decreases with the number of observations. This is due to the bad space filling of y1,obs
(1) =

x2,obs
(2). Indeed the observations are chosen for phenomenon x1 7→ x2 7→ y2. So even if

the observations x1,obs
(1) fill in well the space [−5; 5], the observations y1,obs

(1) = x2,obs
(2)

are not well distributed in [−5; 5]. This leads to an ill-conditioned problem.
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Grouped method : Posterior predictors’ mean and confidence interval
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Figure 9: Each figure presents an example of posterior predictor for each phenomenon. The

dotted line represents the predictors’ mean, the continuous line the real phenomenon and

the grey area the confidence interval of 95%. The predictors are built with a 8-point LHS

maximin design x1 7→ x2 7→ y2. It can be seen that both mean and confidence interval are

well estimated. The observations of the phenomenon 2 are not well distributed in [−5; 5].
All the predictors are Gaussian and interpolating.

Grouped method : sources of uncertainty of the nested phenomenon’s predictor
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Figure 10: The figures above present the distribution of the average variance of the nested

phenomenon’s predictor over a test set of 100 points. We denote by ǫcond the part of variance

coming from the conditional Gaussian process and by ǫβ the part of variance coming from

the parameters’ posterior distribution (see table 7). It can be seen that the variance lowers

with the number of observations. This reduction is particularly significant for the uncer-

tainty coming from the parameters’ distribution. It can be seen that both part of variance are

relatively low even when there are few observations.
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7 CONCLUSIONS AND FURTHER WORK

A general framework has been proposed to calibrate nested computer models whatever

the type of available observations among the three possibilities
(

x1,obs
(1),y1,obs

(1)
)

,
(

x2,obs
(2),y2,obs

(2)
)

and
(

x1,obs
(3),y2,obs

(3)
)

. Predictors for all phenomena have been pro-

posed for all possibilities of available observations. Three specific cases of this general

method have been presented depending on the available observations. The performance of

the codes’ calibration and the posterior predictors has been analyzed on a numerical exam-

ple for these three specific cases.

Questions remain about the choice of the design points. In particular our general frame-

work could enable designs where there are not the same number of observations for the

first and the second phenomena. Thus parsimonious or sequential (see [2], [3], [4], [5],

[8], [9], [10]) designs could be proposed in order to improve the accuracy of the nested

phenomenon’s predictor.
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Abstract. Over the last years, a lot of effort has been made to make existing uncertainty quan-
tification techniques more efficient in high dimensions. An important class of methods relies
on the assumption that the polynomial chaos representation of the model response is sparse.
This paper contributes to the validation and assessment of an innovative basis selection tech-
nique for building sparse polynomial chaos expansions. A regression approach is used for
computing the polynomial chaos coefficients. The technique is based on statistical inference
theory which provides information about the true regression model from an estimated regres-
sion model based on samples. The latter information is used to build iteratively the sparse
polynomial chaos expansion. Using the developed methodology, a more robust and efficient ba-
sis selection technique is obtained. For validation purpose, the methodology is applied to high
dimensional analytical test cases, including the Oakley & O’Hagan function (d=15) and the
Morris function (d=20). The results are compared with those obtained from two state-of-the-
art techniques, namely the LARS-based algorithm and compressive sampling. As compared to
previous work, more comparisons with the LARS-based method are provided, through the use
of UQLab, a MATLAB-based uncertainty quantification framework developed by Sudret and
Marelli [1]. It is shown that, with equal settings, the developed methodology results in a more
accurate polynomial chaos expansion compared to the aforementioned technique. In addition,
a new criterion for building an optimal polynomial chaos expansion is further investigated.
The conclusions are in-line with previous findings, i.e. the present criterion always builds a
sparser polynomial chaos expansion which is, in addition, at least as accurate as compared to
the optimal polynomial chaos expansion obtained from the classical cross validation technique.
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1 INTRODUCTION

In recent years, due to the increase in computational power, the interest in uncertainty quan-
tification (UQ) in computational fluid dynamics (CFD) has drastically increased. This has led
to an extensive use of polynomial chaos (PC) methods, which are known for their ability to
propagate efficiently uncertainties through complex engineering models.

Initially, the PC applications were highly intrusive in the sense that the PC expansion was
inserted in the partial differential equations describing the problem. Some applications of in-
trusive PC are available in [2, 3]. Though, it turned out that, in addition to being error prone,
a lot of effort was required to modify the CFD code. This made intrusive PC less attractive for
industry who are relying on their own well-validated CFD code. It is for this reason that a focus
was made on non-intrusive techniques, where no change to the CFD software is required.

In non-intrusive PC, the PC coefficients are computed using either a projection or a regres-
sion approach [4]. In both cases, the stochastic solution is calculated by running a series of
deterministic simulations for different realization of the uncertain input parameters. The exact
number of calls to the CFD software, also referred to as the number of samples, depends on the
PC expansion order but also, and most importantly, on the number of input random variables.
For a given PC order, the number of samples required grows exponentially with the number of
dimension. In the literature, this exponential increase of computational cost with the number of
random dimensions is often referred to as the curse-of-dimensionality. The latter issue consti-
tutes a serious brake in the application of non-intrusive PC to relevant industrial applications,
which are inherently characterized by many uncertainties, e.g. uncertainties on operational
conditions, geometrical uncertainties, etc. Hence, in order to handle this issue, efficient non-
intrusive techniques have been developed in the last few years.

To takle the curse of dimensionality, an important class of methods, which has been proven
particularly effective, relies on the assumption that the PC solution is sparse. This means that
only a limited number of features will contribute significantly to the modeling of the model
response. The most famous techniques relying on such assumption are the sparse regression
technique of [5, 6] and the compressive sampling technique [7, 8]. In the former approach, the
PC coefficients are calculated using the LARS method while in the later approach, an underde-
termined system of equations is solved using `1 regularization [7].

In this paper, an innovative basis selection technique for building sparse polynomial chaos
expansion is further investigated. The methodology combines statistical inference theory with
regression-based PC. The use of statistical inference will provide information about the true
regression given an estimated regression model based on samples. The latter information is
then used to build the sparse PC metamodel iteratively, following a forward-backward strategy.
It follows that the developed methodology has two important features, i.e. (i) robustness as the
dependency with respect to the sampling strategy is removed and (ii) effectiveness as most of the
terms that are captured will contribute to the true regression model. An extensive comparison
with state-of-the-art techniques such as the LARS-based method and the compressive sampling
technique is provided.
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2 REGRESSION-BASED POLYNOMIAL CHAOS

Suppose Y is the exact model response. Y is function of a set of random variables ξ =
(ξ1, ..., ξd), where d is the dimension of the random space. The polynomial chaos theory consists
in expanding the exact model response into a series of orthogonal polynomials,

Y (ξ) =
P∑
i=0

uiψi(ξ) (1)

where ui are the PC coefficients and ψi are the PC basis, chosen in accordance with the proba-
bility density function of the input random variables following the so-called Askey scheme of
polynomials [9]. As an example, if the random variables are uniformly distributed, then the
Legendre polynomials are used.

The PC coefficients can be calculated using either a quadrature (projection) or a regression
method. In the present work, we focused on the regression approach. The regression method
consists in evaluating Equation (1) at different location in the stochastic space and solving the
resulting system of equations, i.e.

Y
(
ξ(j)
)
=

P∑
i=0

uiψi

(
ξ(j)
)
, j = 1, ..., n (2)

In practice, an overdetermined system of equations is built to avoid the overfitting phenomenon
[10]. As a rule of thumb, the number of samples is often chosen as twice the number of PC terms
and the system is solved in a least squared sense. The statistical moments are then derived by
post-processing the estimated PC coefficients, as detailed in [11].

3 STATISTICAL INFERENCE IN REGRESSION ANALYSIS

In this work, a distinction is made between the population regression model, which is built
based on an infinite number of samples, and the estimated regression model, based on a limited
number of samples. A convention commonly used is to denote estimated parameters with a
”hat” superscript. This convention will be followed throughout this paper. The population
regression model is written as

Y =
P∑
i=0

uiψi + ε (3)

where ε denote the error made by approximating the exact model by the population regression
model. In the sequel, it will be assumed that the error is iid. with zero mean and constant
variance σ2. On the other hand, an estimated regression model is given by

Y =
P∑
i=0

ûiψi + ε̂ (4)

where ε̂, the difference between the exact model and an estimated regression model, is called
residual. The primary goal of statistical inference is to derive information about the parameters
of the true regression model given the parameters of the estimated regression model. In the
following, statistical inference will be used for (i) building confidence intervals on the regression
coefficients, (ii) testing the dependency between the exact model response and one specific
predictor.
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3.1 Confidence intervals

In this section, we build confidence intervals (CIs) on the regression coefficients. A CI al-
ways takes the same form, i.e. an estimate± critical value× standard deviation of the estimate.
The estimate ûj is provided by ordinary least squares (OLS) while it is possible to show that the
variance of the regression coefficients can be calculated as [12]

V[û] = σ2(ΨTΨ)−1 (5)

where Ψ denotes the design matrix (matrix containing all the features). The variance σ2 is a
population parameter which can be estimated as follows [12]

σ̂2 =
1

DOF

n∑
i=1

(Yi − Ŷi)2 (6)

which is nothing else but the residual sum of squares (RSS) divided by the number of degrees
of freedom (DOF) [12]. It turns out that the CIs for the regression coefficients can be built as

uj ∈
[
ûj ± tDOF;α/2

√
V[ûj]

]
(7)

where tDOF;α/2 is the critical value.

3.2 Hypothesis testing

The goal of hypothesis testing in regression analysis is to test the dependency between the
exact model response Y and a given predictor. Let consider the following estimated regression
model

Ŷ =
P∑
i=1

ûiψi (8)

In order to test the dependency between the response and one specific predictor ψi, the null and
alternative hypotheses are stated as follows

H0 : ui = 0 (9)
H1 : ui 6= 0 (10)

To assess the veracity of H0 a test statistic is defined

tûi =
ûi√
V[ûi]

∼ tDOF (11)

which means that the test statistic follows a Student-t-distribution with DOF degrees of freedom.
The decision rule is

RH0 : if |tûi| ≥ tDOF;1−α/2 (12)

��RH0 : if |tûi| < tDOF;α/2 (13)

where RH0 means the null hypothesis is rejected in favour of the alternative hypothesis and��RH0

the null hypothesis is not rejected. In other words, the test statistic is compared with a critical
value. If the test statistic lies inside the critical region, then H0 is rejected.
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4 RESULTS AND DISCUSSION

4.1 Oakley & O’Hagan function (d=15)

First the Oakley & O’Hagan function [13] is considered:

Y = a1
Tξ + a2

T sin(ξ) + a3
T cos(ξ) + ξTMξ (14)

where ξ = {ξ1, ..., ξ15} are independent random variables, normally distributed with zero mean
and variance equals one, i.e. ξi ∼ N (0, 1), i = 1, ..., 15. The Oakley & O’Hagan function
consists of 15 random dimensions, among which 5 variables contribute significantly to the vari-
ability of the output, 5 have a smaller effect and the remaining 5 input variables have almost no
effect on the output of interest [14]. The vectors aj , j = {1, 2, 3} and the matrix M are reported
at http://www.jeremy-oakley.staff.shef.ac.uk/psa_example.txt.

The Oakley & O’Hagan function is seen as the expensive model, that will be modeled by a
sparse PC expansion using Hermite polynomials. In the sequel, for the sake of comparison, two
sparse PC metamodels will be built. The first one is built using the LARS-based method and the
second one using the statistic-based approach. On the one hand, the LARS-based calculation
of the PC coefficients is provided by UQLab, a MATLAB-based UQ framework developed
by Sudret and Marelli [1]. Regarding the settings, the degree-adaptivity is activated, i.e. the
calculation of the PCE coefficients is performed for a range of PC degree and the degree with
the lowest leave-one-out (LOO) error is selected [REF]. In addition, no truncation to the set of
candidates basis has been applied (q = 1). On the other hand, the STAT method is also run
for a range of PC degree, among which the best PC metamodel is selected. A cut-off level of
20% is applied for the STAT-CI method. In all cases, the PCE-based methods are run with two
quasi-random experimental designs of size n = 500 and n = 750 respectively. The relative `2
error is used to measure the accuracy of the resulting PC expansions.

Results are reported in Table 1. It turns out that, using the same experimental design, the
STAT method results in a metamodel which is almost one order of magnitude more accurate
as compared to the accuracy of the best metamodel calculated with the LARS method. More-
over, the level of sparsity of the resulting PCE is significantly much smaller when the STAT-CI
method is used (almost 50% less terms are captured). This confirms that the statistic-based
method selects the PC terms in a smarter way, which can result in large savings in terms of
computational cost.

LARS-MCV STAT-MCV STAT-CI
n=500 n=750 n=500 n=750 n=500 n=750

Relative `2 error 2.0 � 10−2 4.6 � 10−3 3.8 � 10−3 7.3 � 10−4 3.4 � 10−3 4.9 � 10−4

Level of sparsity 204 341 234 374 135 189
PC order 3 4 4 5 4 5

Table 1: Oakley function - Comparison of different adaptive methods for building sparse PC expansions.

More detailed comparisons are reported in Figure 1. In that Figure, the magnitude of the
estimated PC coefficients is plotted against a reference solution. The reference solution is given
by a full PCE of order 4 where PC coefficients are computed with regression (requiring 7752
samples). For the sake of comparison only, the LARS algorithm is run using a PC degree of 4
(which is not optimal as shown in Table 1). It is shown that, using only 500 samples, the STAT
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method is able to capture exactly the most important contributions while the LARS method also
captures lots of irrelevant contributions. It is therefore not surprizing that the STAT method
results in better performance as compared to the LARS method.

100 101 102 103 104

PC term

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|û
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Figure 1: Oakley function - Magnitude of estimated regression coefficients versus a full PCE of order 4 (Left:
LARS, Right: STAT)

Eventually, a comparison is made between the STAT method and compressive sampling,
using the same experimental design (n=500). Results are reported in Figure 2. It is shown
that the compressive sampling technique captures some important contributions. Roughly, the
coefficients whose order of magnitude lies in the range 1 − 10 are correctly captured. Though
CS completely fails in capturing the PC coefficients with lower order of magnitude, resulting in
a metamodel of poor quality compared to the one computed with the STAT-CI method.
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Figure 2: Oakley function - Comparison between the STAT-CI method and compressive sampling
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4.2 Morris function (d=20)

The second function considered is another high dimensional function, namely the so-called
Morris function [14]:

Y = β0 +
20∑
i=1

βiwi +
20∑
i<j

βijwiwj +
20∑

i<j<k

βijkwiwjwk +
20∑

i<j<k<`

βijk`wiwjwkw` (15)

where

wi =

{
2
(
1.1 ξi

ξi+0.1
− 0.5

)
if i = 3, 5, 7

2(ξi − 0.5) otherwise.
ξi ∼ U(0, 1) (16)

and 
βi = 20 for i = 1, ..., 10 and βi = (−1)i otherwise
βij = −15 for i = 1, ..., 6 and βij = (−1)i+j otherwise
βijk = −10 for i = 1, ..., 5 and βijk = 0 otherwise
βijk` = 5 for i = 1, ..., 4 and βijk` = 0 otherwise

(17)

The Morris function consists of 20 random dimensions, uniformly distributed over [0,1]. A
detailed sensitivity analysis of the Morris function is available in [14]. The Morris function
is seen as the expensive model which will be replaced by a sparse PC-based metamodel using
Legendre polynomials. A similar study is performed as compared to the previous test case. The
PC-based methods are run with two quasi random designs of experiments (n = 500, n = 750).
Again, a cut-off level of 20% is applied for the STAT-CI method.

Results are shown in Table 2. In that case, the STAT-CI method still outperforms the LARS
method but the gap between both approaches is less significant. The gain in terms of accuracy
reaches 27% (resp. 34%) using a design of experiments made of 500 (resp. 750) individuals.

LARS-MCV STAT-MCV STAT-CI
n=500 n=750 n=500 n=750 n=500 n=750

Relative `2 error 8.4 � 10−2 5.9 � 10−2 1.1 � 10−1 5.7 � 10−2 6.1 � 10−2 3.9 � 10−2

Level of sparsity 52 93 192 195 53 62
PC order 3 3 3 4 3 4

Table 2: Morris function - Comparison of different adaptive methods for building sparse PC expansions.

The resulting sparse PC expansions (n = 500) are now faced with a reference solution,
namely a full PCE of order 3 whose PC coefficients were calculated with regression (see Figure
3). Those results are in-line with previous findings, i.e. in contrast with the STAT-based method,
the terms captured by the LARS method do not exactly correspond to those calculated by the
full PC solution. This will inevitably result in a deterioration in the estimation of the statistical
moments.

Eventually, the performance of the STAT-CI method is compared with the compressive sam-
pling technique (see Figure 4). Using the same design of experiments (n = 500), the perfor-
mance of compressive sampling is comparable to the performance of the statistic-based method.
The main difference with previous test case is that the order of magnitude of the PC coefficients
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Figure 3: Morris function - Magnitude of estimated regression coefficients versus a full PCE of order 3 (Left:
LARS, Right: STAT)

is greater than in the previous test case. Those terms are perfectly capture by the compressive
sampling technique.
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|û
j
|

p=3, ε̂=6.1e−02

Full PCE

STAT-CI (n=500)

Morris function (d=20)

Figure 4: Morris function - Comparison between the STAT-CI method and compressive sampling

5 CONCLUSIONS

In this paper, the performance of a novel basis selection technique are further investigated.
The developed methodology shows good potential in building sparse PC expansions at a reduced
computational expense. Moreover, it has two essential features, i.e. (i) robustness with respect
to the experimental design and (ii) effectiveness in the sense that only terms that truly contribute
to the true regression model are captured.

In order to show the effectiveness of the proposed method, two high-dimensional analytical
test cases are considered, namely the Oakley & O’Hagan function (d = 15) and the more chal-
lenging Morris function (d = 20). In each case, at equal settings, the accuracy of the sparse
PC metamodel shows significant improvement as compared to existing state-of-the-art tech-
niques. Particularly, the results confirm the superiority of the statistic-based approach over the
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LARS-based approach. In addition, it is confirmed that the terms captured by the statistic-based
method correspond exactly to the most important features calculated by a full PC expansion.

In the future, the method will be applied to relevant industrial applications.
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Abstract. The necessity for more detailed descriptions of both structural geometry and me-
chanical properties, renders the use of highly detailed finite element (FE) models almost pro-
hibitive for complex, large structures. This becomes even more challenging when taking into
account that structural systems and their excitations are often characterized by parameter un-
certainty. To this end, this study addresses the problem of estimating reduced order metamodels
for the accurate representation of computationally costly numerical models. A substructuring
approach is adopted for segregating the modeled system into a series of smaller components,
by separating the parts with exclusively linear characteristics from the uncertain ones. Each
of these components is then approximated by corresponding ARX representations, the param-
eters of which are functionally dependent on uncertain input parameters, also accounting for
uncertainty propagation through the FE model. These functional models are coupled in the
time domain to formulate a complete metamodel of the system. The effectiveness of the pro-
posed method is illustrated through its application on the metamodeling of a vehicle frame with
uncertain suspension. The results demonstrate the efficiency of the proposed methodology for
accurate prediction and simulation of the numerical model dynamics.
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1 INTRODUCTION

FE modeling has nowadays become a standard tool for the numerical simulation of civil,
mechanical and aeronautical engineering structures [1, 2, 3] and is extensively used for de-
sign optimization [4], reliability analysis [5, 6], as well as for the simulation of hysteretic be-
haviour [7, 8] and damage [9, 10]. When dynamic loading is involved, however, the increased
complexity of FE models renders the efficient characterization of the structural response a quite
difficult task, especially for large structures, despite the rapidly growing computational power
and the continuous development of increasingly efficient algorithms [11, 12]. A common strat-
egy in such cases is to apply less refined macro-models to the simulation of the global behaviour
using, for example, model reduction methods [13], and then implement more detailed local FE
micro-models for the description of complex parts of the structure.

Alternatively, substructuring techniques [14] can be considered, under which the total struc-
ture is disassembled into several subcomponents that can be analysed separately. This frame-
work retains many advantages over other approaches, since it allows isolation of areas, in which
more detail is required, it can be successfully implemented in parallel computing and software–
in–the–loop schemes, while it allows for flexible usage of the subcomponents in other struc-
tures. This latter advantage is one of the most significant aspects of substructuring, taking under
consideration modern challenges of production engineering [15], where coupling of numerical
models with fabricated subcomponents (e.g., in the form of experimental prototypes [16]) is a
common practice, using hybrid testing and hardware–in–the–loop methods [17].

Another important aspect that must be taken into consideration during the simulation process
corresponds to the inherent uncertainty that characterizes critical parameters of the available FE
model, such as its associated mechanical properties, the range of operational and environmental
conditions under which the structure is designed to operate and, of course, the diverse nature
and levels of all possible excitations. In dealing with this issue, Monte Carlo–based methods
have been widely applied, despite the necessity for a large number of simulations, with each
one demanding excessive computational cost. In contrast to these, simpler representations of
the numerical model are formulated using metamodelling techniques, which essentially build
a parametric model of the original FE one, termed as metamodel or surrogate model [18, 19].
This metamodel must be able to predict the dynamic response in a computationally inexpensive
way and with sufficient accuracy [20, 21].

Under this perspective, the problem faced in the current study pertains to the determination
of the structural response in critical points of the structure using a small number of computation-
ally inexpensive simulations, which take into account the whole operational range of inherent
uncertainties and provide a representative behavioral map of the structure. A special case to this
problem corresponds to the availability of physically available parts of the structure, for which
experimental data, rather than an analytical model, are available. To address this problem, a
process that consists of three overlapping and interrelated stages, namely, (i) the substructuring
stage, (ii) the model reduction stage and (iii) the metamodeling stage, is proposed and outlined
in the following.

The paper is organized as follows: Section 2 outlines the proposed methodology and de-
scribes the associated substructuring, model reduction and metamodeling stages. Section 3
contains a numerical study pertaining to a “vehicle”–like prototype that consists of a frame sub-
structure and one linear suspension with uncertain stiffness. Finally, in Section 4 the results are
summarized and remarks for further research are given.
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2 THE PROPOSED FRAMEWORK

2.1 Problem formulation

Let us consider an n–DOF FE model of a damped structural system that can be mathemati-
cally represented by a second–order vector differential equation of the form

M(ξ)q̈(t) + D(ξ)q̇(t) + K(ξ)q(t) = f(t) (1)

where M(ξ), D(ξ) and K(ξ) are the real [n×n] mass, viscous damping and stiffness matrices,
q(t) is the [n× 1] vibration displacement vector and f(t) is the [n× 1] vector of excitations.

The dependence of the structural matrices to ξ is herein used to notate their variability due
to a number of uncertain parameters related with either inherent properties of the structure, or
exogenous random variables, e.g. geometry, mass distribution, environmental conditions and so
on. For a number of L such uncertain parameters it follows that ξ(t) = [ξ1, ξ2, . . . , ξL]. In its
most general statistical representation, the parameter vector ξ may be considered as a realization
of the vector random process Ξ with joint PDF fΞ(ξ). Simpler realizations are possible if it is
assumed that each parameter ξk is a realization of an independent random process Ξk with PDF
fΞk

(ξk).
In this setting, the problem addressed herein aims at simulating the structural response, in

the form of vibration displacement, velocity, or acceleration, under the following conditions:

- The size n of the FE model of the structure is prohibitely large for computationally efficient
direct simulation.

- The structure can be split into a number of smaller substructures and all the associated bound-
aries can be adequately described.

- A statistical description of the uncertain parameters and the excitations is available for the
whole operating range of the structure.

2.2 Substructuring

Assume that the total structure, described by Eq. 1, is constructed by the proper assembly of
two substructures, A(ξ) and B(ξ). Then, instead of attempting to simulate the whole structure,
it is possible to carry out distributed simulations for each substructure, provided that the com-
mon interface among the subdomains is appropriately defined. Indeed, the equations of motion
that describe each substructure are

MA(ξ)q̈A(t) + DA(ξ)q̇A(t) + KA(ξ)qA(t) = fA(t) + hA(t) (2)

and
MB(ξ)q̈B(t) + DB(ξ)q̇B(t) + KB(ξ)qB(t) = fB(t) + hB(t) (3)

with all the associated quantities previously defined, with the exception of h∗(t), which corre-
sponds to the vector of connecting forces. Then, from de Klerk et al. [14], recovery of Eq. 1
proceeds by first stacking the substructures as[

MA O
O MB

]
︸ ︷︷ ︸

M

[
q̈A(t)
q̈B(t)

]
+

[
DA O
O DB

]
︸ ︷︷ ︸

D

[
q̇A(t)
q̇B(t)

]
+

[
KA O
O KB

]
︸ ︷︷ ︸

K

[
qA(t)
qB(t)

]
︸ ︷︷ ︸

q(t)

=

[
fA(t)
fB(t)

]
︸ ︷︷ ︸

f(t)

+

[
hA(t)
hB(t)

]
︸ ︷︷ ︸

h(t)

(4)
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and then by specifying the compatibility (identical displacements of the coupled DOFs) and
equilibrium (action–reaction forces) conditions as,

Cq(t) = 0 and ETh(t) = 0 (5)

respectively, with C and E denoting signed Boolean and Boolean matrices, respectively. Ac-
cordingly, by defining a unique set of structural DOFs, q(t), through

q(t) = Eq(t) (6)

it follows from Eq. 5 that Cq(t) = CEq(t) = 0, from which E = null{C}. Substituting Eq. 6
to Eq. 4 implies

MEq̈(t) + DEq̇(t) + KEq(t) = f(t) + h(t) (7)

thus, multiplication by ET leads to the representation of the total structure by Eq. 1 with

M = ETME, D = ETDE, K = ETKE, f(t) = ET f(t) (8)

2.3 Model reduction

When the substructures still retain a large number of DOFs, model reduction can be used to
further suppress the DOFs. While several other alternatives are possible (the interested reader
is referred to Antoulas [13] for an authoritative treatment) the Ritz transformation is currently
implemented. Following the previous discussion and if only the substructure A(ξ) requires
reduction, a new set of coordinates is provided by

qA(t) = ΨAqAR(t) (9)

where ΨA is a subset of the normal modes of Eq. 2, the selection of which depends on the
frequency range examined. Applying this transformation to Eq. 2 and pre–multiplying by ΨT

A

implies

MAR(ξ)q̈AR(t) + DAR(ξ)q̇AR(t) + KAR(ξ)qAR(t) = fAR(t) + hAR(t) (10)

for

MAR = ΨTMAΨ, DAR = ΨTDAΨ, KAR = ΨTKAΨ

fAR(t) = ΨT fA(t), hAR(t) = ΨThA(t) (11)

and corresponds to a reduced representation of the substructure A(ξ).

2.4 Metamodeling

The third stage of the proposed methodology aims at estimating a reduced model of Eq. 3.
Consider the case where the substructure B(ξ) contains one DOF, a single excitation and a
single uncertain parameter, so that Eq. 3 corresponds to a scalar nonlinear differential equation
and ξ = ξ . Then the structural output can be approximated using Adaptable Functional Series
Autoregressive with eXogenous input (AFS-ARX) models of the form [22]

y[t, ξ] +
na∑
i=1

αi(ξ)y[t− i] =
nb∑
i=0

βi(ξ)u[t− i] + e[t] (12)
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where y[t] and u[t] denote the model’s output and input, respectively, αi(ξ) and βi(ξ) are the
coefficients of the AR and exogenous polynomials, of orders na and nb, respectively, and e[t]∼
N (0, σ2

e) is the model’s zero-mean Gaussian residual sequence.
The AFS-ARX(na, nb) model of Eq. 12 accounts for the uncertainty of B(ξ) through the

regression parameters θi(ξ), which are currently admitting a representation based on B–spline
functions

αi(ξ) =

p∑
j=1

αijSj,k(ξ, δα) (13a)

βi(ξ) =

p∑
j=1

βijSj,k(ξ, δβ) (13b)

with Sj,k(ξ, δ) denoting the sequence of B-splines of order k and of functional subspace param-
eter vector δ ≡ [τk+1, . . . , τp]

T , henceforth referred to as the vector of free knots, of dimension
dim(δ) = p− k, consisting of the non-decreasing sequence of the free internal knots. Given a
realization ξ, a particularly convenient way for defining Sj,k(ξ, δ) is obtained by means of the
Cox-de Boor recursion formula for the normalized B-splines [23, p. 90], according to which

Sj,1(ξ, δ) =

{
1 if τj ≤ ξ < τj+1

0 otherwise
(14a)

Sj,i(ξ, δ) = wj,i(ξ)Sj,i−1(ξ, δ) + (1− wj,i(ξ))Sj+1,i−1(ξ, δ), for 1 < i ≤ k (14b)

where

wj,i(ξ) =

{
ξ−τj

τj+i−1−τj if τj < τj+i−1,

0 otherwise.
(14c)

It is noted that since the internal free knots form a non decreasing sequence of real numbers,
they have to satisfy proper constraints in relation to their bounds and order [24].

The efficient representation ofB(ξ) through AFS-ARX(na, nb) models is succeeded through
the establishment and the solution of an associated identification problem, in which all the
unknown parameters of the model are estimated, that is, the integers na, nb, p and k, the
parameters αij and βij in Eq. 13, the vectors of free knots δα and δβ , as well as the residual
variance σ2

e . To this end, the original AFS-ARX(na, nb) model of Eq. 12 is transformed into a
linear regression form as

y[t] = φ[t, δ]θ + e[t] (15)

for δ = [δα δβ]T and

φ[t, δ] =
[
− y[t− 1]S1,k(ξ, δα) − y[t− 1]S2,k(ξ, δα) . . . x[t− nb]Sp,k(ξ, δβ)

]
(16)

and
θ = [α1,1 α1,2 . . . αna,p]

T (17)

If input–output data are available over t = 1, . . . , N then Eq. 15 yields

y = φ(δ)θ + e (18)
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where y = [y[1] . . . y[N ]]T , φ(δ) = [φ[1, δ] . . . φ[N, δ]]T and y = [e[1] . . . e[N ]]T . Notice
that the AFS-ARX(na, nb) model must include all available statistical information of ξ. Thus, a
number of simulations (or experiments, if the substructure B(ξ) is experimental) is performed,
say L, given a set of uncertainty parameter realizations, ξl, and the corresponding input–output
data sets are obtained, xl = [xl[1] . . . xl[N ]]T and yl = [yl[1] . . . yl[N ]]T , respectively, for
l = 1, 2, . . . , L. Each one of these sets must satisfy Eq. 18, so that

yl = φl(δ)θ + el (19)

By pooling Eq. 19 for all available experiments it follows thaty1
...
yl

 =

φ1(δ)
...

φl(δ)

 θ +

e1
...
el

⇒ Y = Φ(δ)θ + E (20)

and the parameter vector θ can be recovered by the least squares estimate

θ =
[
Φ(δ)TΦ(δ)

]−1
Φ(δ)TY = Φ(δ)†Y (21)

with Φ(δ)† denoting the pseudo-inverse of Φ(δ). Since the parameter vector θ depends on the
vector of free knots δ, the latter must be estimated prior to the implementation of Eq. 21. Notice
that the prediction error sequence E can be expressed as

E = Y −Φ(δ)θ ⇒
= Y −Φ(δ)Φ(δ)†Y ⇒

=
[
I−Φ(δ)Φ(δ)†

]
Y (22)

Thus, δ can be estimated by the solution of the following nonlinear optimization problem [24]

δ̂ = arg min
δ
VVP(δ)

.
= arg min

δ
‖(I−Φ(δ)Φ(δ)†)Y‖2 (23)

A final note in metamodeling refers to the cases of large data: observe that from Eqs. 18–20
the involved matrices, Y and Φ(δ), can become quite large even for small values of na, nb,
p, L and N . Indicatively, for an AFS-ARX(2,3) model with B–spline basis of second order,
p = 3, L = 20 and N = 500, their sizes are [10000× 1] and [10000× 15], respectively. In such
cases, and in order to avoid numerical inconsistencies, it may be preferable to model directly
the parameters αi(ξ) and βi(ξ) from Eq. 13, in a process that can be easily realized in parallel.
Such an estimation problem turns out to be a typical data–driven uncertainty quantification one
that can be solved using, for example, the method described in Spiridonakos et al. [24]. This
alternative is adopted for the analysis presented in the next section.

3 IMPLEMENTATION

The method’s performance and effectiveness is assessed via the metamodeling of a “vehicle”–
like prototype that consists of a frame substructure, displayed in Fig. 1, which is connected to
four wheelsets through corresponding primary linear suspensions. Each wheelset is modeled as
a mass with one degree of freedom and with equivalent stiffness and damping, while all suspen-
sions are identical, except from the front right one that is characterized by uncertain stiffness.
The associated parameters of the model are displayed in Tab. 1.
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Figure 1: The frame substructure.

Quantity Symbol Value Unit
Frame material density E 2.1× 1011 N/m
Frame material modulus ρ 7850 kg/m3

Wheelset mass mw 16 kg
Wheelset stiffness kw 35 N/m
Wheelset damping cw 0 Ns/m
Suspension stiffness ks 22 N/m
Suspension damping cs 5 Ns/m
Uncertain stiffness kfr ∼ N (22, 6) N/m
Road profile rfr ∼ N (0, 7× 10−3) m

Table 1: Parameters of the simulated vehicle.

The FE model of the frame is constructed using quadrilateral shell and hexahedral solid el-
ements, resulting in 45564 DOFs. Model reduction is accordingly applied using the method
outlined in Section 2.3, leading to a reduced model of only 54 DOFs. The latter is then con-
nected to the wheelset–suspension subsystems and the total structure is simulated by assuming
excitation only in the front right position, which consists of a zero mean Gaussian process that
is filtered using a 10th order digital Butterworth filter with low-pass frequency at 30 Hz. A
number of L = 50 simulations is performed at a sampling period Ts = 1 ms and for t = 5 s,
each one under a specific realization of kfr, drawn using the latin hypercube sampling (LHS)
method and illustrated in Fig. 2. The substructure B(ξ) is herein selected to be the subsystem
that has the road-induced force applied to the wheelset mass as an input and the vertical accel-
eration of the common boundary between the frame and the front right suspension as an output.
Vibration excitation-response pairs of N = 5000 data are thus stored after every simulation.
Figure 3 displays an indicative data pair that corresponds to L = 20.

To examine the consistency of the method under the availability of limited simulations and
/or data, estimation ofB(ξ) is conducted using only simulations # 16 until # 30 (see Fig. 2). In
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Figure 2: The uncertain stiffness kfr for the 50 simulations conducted.
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Figure 3: Vibration acceleration response at the front right boundary and road induced force for L = 20.

every case, the first 2000 values are extracted from the input–output data set, in order to avoid
modeling transient effects, and the set used for identification consists of only the next 1000 data.
In order to get an initial insight some initial trial-and-error modeling attempts were performed,
revealing that AFS-ARX(2,3) are potentially adequate for representing the substructure B(ξ).
This results in five parameters, α1, α2, β0, β1 and β2, which must be expressed in respect to the
uncertain stiffness. A two–stage procedure is utilized to this purpose:

[S1] Simple ARX(2,3) models are estimated for every simulation and five new (compressed)
data sets are formulated, with the uncertain stiffness as input and the AR/X parameter as
output.

[S2] Models in the form of Eq. 13 are fitted to each parameter, for p = 1, . . . , 10 and k =
1, . . . , 4.

Figure 4 illustrates the results of this procedure. All examined models returned almost perfect
match, as can be seen by the percentage fitness to the data, calculated by

fit = 100

(
1− ‖q − q̂‖
‖q − q̄‖

)
(%) (24)

where q and q̂ denote true and estimated quantity, respectively, and q̄ denotes mean value, with
only Sj,1 exhibiting slightly lower performance. Thus, a model with B-spline basis functions
of second order, Sj,2, and of p = 3 was selected for the uncertainty quantification of the AFS-
ARX(3,2) parameters. For this model, Fig. 4 further displays the true (e.g., the ones estimated
during step [S1] above) parameter values versus the model calculated ones.

6323



Vasilis K. Dertimanis, Dimitrios Giagopoulos and Eleni N. Chatzi

0 5 10

99.6

99.8
fit

 (
%

) S
j,1

S
j,2

S
j,3

S
j,4 10 20 30

−1.99

−1.98

−1.97

α 1

 

true
B−spline

2 4 6 8 10

99.6

99.8

fit
 (

%
)

15 20 25 30
0.98

0.99

1

α 2

2 4 6 8 10

99.6

99.8

fit
 (

%
)

15 20 25 30
−0.015

−0.01

−0.005

β 0

2 4 6 8 10

99.6

99.8

fit
 (

%
)

15 20 25 30
0.01

0.02

0.03

β 1

2 4 6 8 10

99.6

99.8

fit
 (

%
)

p
15 20 25 30

−0.015

−0.01

−0.005

k
fr
 (N/m)

β 2

Figure 4: Results of the uncertainty quantification process for each parameter of the AFS-ARX(2,3) model. Left
side: percentage fitness to data of every estimated model. Right side: true versus model-based outputs, using
Eq. 13 with p = 3 and k = 2.

The identified AFS-ARX(3,2) model is finally validated against its applicability to the whole
spectrum of possible uncertain values. To this end, the data from four simulations that were not
used in the estimation process (randomly selected, with two realizations among #1, . . . ,#15
and two among #31, . . . ,#50) are forwarded into the model and the predicted output is plotted
over the one simulated from the total structure in Fig. 5. Excellent matching is confirmed,
implying that the AFS-ARX(3,2) model can adequately replace substructure B(ξ).

4 CONCLUSION

A process for the effective simulation of large–scale, uncertain FE models was outlined in
this study, consisting of three interrelated stages that take on the substructuring, the model
reduction and the metamodeling steps. The illustrated results provide significant indication of
effectiveness and suggest further investigation in this path, with respect to a number of issues
that remain active challenges in the field of structural modeling and simulation. Automation
of the proposed process, by focusing on the smart interpretation of boundary constraints, the
extension to simultaneous substructuring and metamodeling of nonlinear models, as well as
the implementation to real-time hybrid testing techniques are issues that are currently being
investigated by the authors.
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Figure 5: Validation of the AFS-ARX(2,3) model in for simulations not used for identification.
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Abstract. In this work, some new results are presented on the dynamics of multibody mechan-
ical systems involving contact and friction. The main contribution refers to the development of 
a new, systematic and accurate method for detecting contact among the components of the 
system. For simple geometries, this task is achieved by employing analytical means. For sys-
tems with components involving complex geometric shapes a more involved numerical meth-
odology is developed. In both cases, once contact is detected, the common normal vector and 
the penetration depth is also calculated, leading to determination of the contact force and mo-
ment arising between the contacting bodies. This information is then passed to a solver, provid-
ing the full dynamic response of the system. The validity and numerical efficiency of the 
methodology developed is first demonstrated by considering a number of examples with rela-
tively small geometric complexity but large traditional value and interesting dynamic response. 
Some new results are obtained on the dynamics of these systems. Finally, the same methodology 
is also tested and found to give more realistic results in more complicated mechanical applica-
tions. 
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1. INTRODUCTION 

Accurate and efficient prediction of dynamics of a multibody system subject to unilateral 
constraints is necessary in a large number of modern engineering applications [1-4]. This pre-
diction is based heavily on suitable algorithms, leading to a fast and accurate prediction of the 
contact points and the forces developed there during motion. As a result, there is a continuous 
effort to improve the available techniques in both the contact detection and the prediction of the 
overall dynamics, as reflected by the vast amount of the literature devoted to the subject. The 
present research work belongs to this general category of investigations. 

In general, the contact detection methods rely heavily on the type of geometric modeling. 
There are two major categories of geometric models employed currently, the polygonal and the 
non-polygonal. According to the first category, a solid body is divided into polygon soups (the 
solid is represented by a set of connected triangles) and conventional polyhedra (the geometry 
is represented with a polyhedron). These polyhedra may be convex or non-convex. In the cate-
gory of the non-polygonal models, the body is divided into constructive solid geometry, implicit 
surfaces and parametric surfaces. Using the constructive solid geometry method, one can create 
objects from basic primitives such as spheres, blocks, cones and others, by combining them 
with set theoretical operations. The contact detection methods developed in the present research 
work use conventional convex polyhedra and basic primitives. These methods have found wide 
application in many diverse areas such as robotic simulations and computer games [5-8]. 

In particular, a two step approach has been developed in this work for the contact detection 
problem, referring to the computational problem of detecting intersection of two or more rigid 
bodies. In brief, a broad phase detection is considered first, which is typically a computationally 
efficient operation that yields pairs of objects that may intersect. This involves either the bound-
ing volume approach (more specifically the axis aligned bounding boxes (AABB) for the cases 
of simple primitives) or the more elaborate approach of an AABB tree for the cases where a 
triamesh construction of a surface is involved. Next, a narrow phase detection is considered, 
where the individual pairs of bodies identified in the previous strep as potentially intersecting 
are checked in a more elaborate manner. This includes simple analytical relations (as in the case 
of sphere to sphere or sphere to box) or more complex approaches for the general convex pol-
ytope cases. In the latter case, intersection is tested using the Gilbert-Johnson-Keerthi’s algo-
rithm, which relies on support functions to measure the shortest directed distance for the two 
bodies of interest by creating and iteratively updating a simplex inside the Minkowski differ-
ence. As soon as contact is detected, the corresponding contact response is resolved. This in-
cludes evaluation of the penetration depth and the contact normal as well as identification of 
the contact manifold. For the non trivial cases, the penetration depth and the contact normal are 
resolved by employing the expanding polytope algorithm. According to this algorithm, a poly-
tope is created inside the Minkowski difference and is iteratively expanded until an edge of the 
Minkowski difference is hit, thereby yielding the penetration depth and the contact normal vec-
tor. Finally, for the non trivial cases a clipping algorithm is used, where the two objects are 
clipped in the direction of the contact normal generating the contact manifold. The geometric 
center of the contact manifold is assumed to be the contact point. 

In the present paper, a collection of contact detection methods between bodies of specific 
shape are presented. This includes a two part combination of canonical shapes, like a sphere, 
an orthogonal parallelepiped, an ellipsoid, a conical frustum and a triangle. The algorithms used 
are analytical in some cases and numerical in others. In all cases, the algorithm comprises of 
three parts. At first, it is determined whether there is contact between two bodies. Then, the 
contact point, the common normal vector and the penetration depth are calculated. Finally, the 
contact force and moment are applied on both bodies taking into account the penetration depth, 

6329



Antonios Pournaras, Fotios Karaoulanis and Sotirios Natsiavas 

 

the relative velocities of the bodies and the contact point. The last part of the algorithm is the 
same for all the above cases. The first two parts are different for each case and they are presented 
thoroughly in Sections 2 and 3 below. 

Employing the aforementioned contact detection algorithm, a number of characteristic ex-
ample problems was solved by using existing numerical codes for predicting the dynamic re-
sponse [9, 10]. The first set of examples chosen are of academic interest and well-known in 
previous literature [4, 11-17]. This includes the rattleback, the Euler disk, the sphere on a turn-
table, the tippe–top and the woodpecker toy. A selected set of numerical results are first pre-
sented for these systems, throwing some new light into special features of their dynamics, which 
were not examined before. In addition, results for a more involved mechanical system [18-20], 
taken from an industrial application, are also obtained by using the same methodology and 
presented. 

The organization of this paper is as follows. First, in Section 2, some simple cases of contact 
detection are briefly summarized. In particular, these cases refer to contact of bodies with a 
canonical geometric shape, which can be solved in an analytical manner,. Then, in Section 3, a 
general contact detection methodology is presented, referring to bodies with arbitrary geomet-
rical shapes. Next, in Section 4 some numerical results are presented for two selected mechan-
ical systems. Finally, the most important findings of this work are summarized in the last section. 

2. CONTACT DETECTION BETWEEN BODIES OF CANONICAL SHAPE 

In the present section, a collection of results on contact detection between bodies with a 
specific canonical shape are presented. These shape combinations include the following: sphere 
to sphere, sphere to orthogonal parallelepiped (or simply box), sphere to ellipsoid, sphere to 
conical frustum and sphere to triangle. 

2.1 Sphere to Sphere 

This case is trivial. Let c1 and c2 be the position vectors of the two spheres’ centers, while r1 
and r2 are the corresponding radii. Then, the two spheres intersect when the distance between 
their centers is less than or equal to the sum of the radii. This means that ||c1-c2|| ≤ r1+r2. In 
addition, the penetration depth is d = (r1+r2) - ||c1-c2||, as shown in Fig. 1. Moreover, the contact 
point x is defined by the intersection of the line that connects the centers and an arbitrarily 
chosen sphere. The common normal vector n defines the line of impact and its direction is 
defined from the contact point to the sphere’s center which was arbitrarily chosen. 

 

Fig. 1. Geometry of sphere to sphere contact. 

2.2 Sphere to box 

The intersection test is done by computing the point in the parallelepiped (or box, for brevity) 
which is closest to the sphere. Let the box be centered at the origin and aligned with the axes, 
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as shown in Fig. 2. The dimensions of the box in the x, y and z axes are 2n1, 2n2 and 2n3, 
respectively. The sphere’s center is at c = (c1 , c2 , c3 ). The point in the box closest to the 
sphere’s center is given by 

x = (clamp(c1,-n1,n1),clamp(c2,-n2,n2),clamp(c3,-n3,n3))  (1) 

where 

clamp(c,a,b)=� a, if c<a
b, if c>b

c, otherwise
    (2) 

The sphere intersects the box if the point x is contained in the sphere ||x-c|| ≤ r, where r is the 
sphere’s radius. The contact point is x. The penetration depth is given by d = r - ||x-c||. The 
common normal vector n is a vector starting from the contact point x and ending at the sphere’s 
center c. 

 

Fig. 2. Geometry of sphere to orthogonal parallelepiped contact. 

2.3 Sphere to ellipsoid 

For testing the intersection of a sphere with radius R and an ellipsoid with semi–principal 
axes a, b and c, the point of the ellipsoid closest to the sphere is calculated. Let the axes’ origin 
be centered at the ellipsoid center, as depicted in Fig. 3. Also, let p = (px , py, pz ) be the sphere’s 
center and r = (x, y, z) be the point in the ellipsoid closest to the sphere. In order to determine 
this point, the following constrained minimization problem needs to be solved 

min  ��� � ��� + ��� � ��� + ��� � ���   (3) 

such that 

��� � + ��! � + ��" � � 1 = 0.     (4) 

For this, a Lagrange multiplier λ and a function L(x,y,z,λ) are introduced by 

&��, �, �, (� = ��� � ��� + ��� � ��� + ��� � ��� + ( )��� � + ��! � + ��" � � 1*. (5) 

Then, the minimum of the above function is calculated by solving the following equations 

	+,+� = 0, +,+� = 0, +,+� = 0, +,+- = 0    (6) 

The resulting set of nonlinear algebraic equations is solved with the Newton–Raphson 
method. 

�
.

�
	

�
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The sphere intersects the ellipsoid if the point r is contained in the sphere ||r-p|| ≤ R. The 
contact point is r. The penetration depth is given by d = R - ||r-p||. The common normal n vector 
is a vector starting from the contact point r and ending to the sphere’s center p. 

 

Fig. 3. Geometry of sphere to ellipsoid contact. 

2.4 Sphere to conical frustum 

This case leads to an axisymmetric problem with axis being the frustum’s axis, as shown in 
Fig. 4. By taking the plane which is defined by the frustum’s axis and the sphere’s center, the 
problem becomes equivalent to determining the intersection between a trapezoid and a circle. 
The coordinate system origin is placed at the center of the bottom face of the frustum. For 
testing the intersection, a point x in the trapezoid which is closest to the sphere is calculated. 
The space outside the trapezoid is divided into five sections and according to which section the 
sphere’s center p belongs to, a different analytical method of calculating the closest point is 
applied. Then, the sphere intersects the frustum if the point x is contained within the sphere ||x-
c|| ≤ r, where r is the sphere’s radius. The contact point is x. The penetration depth is given by 
d = r - ||x-c||. The common normal vector n is a vector starting from the contact point x and 
ending to the sphere’s center c. 

 

Fig. 4. Geometry of sphere to conical frustum contact. 

2.5 Sphere to triangle 

The intersection test is done by computing the point x in the triangle which is closest to the 
sphere. Let the coordinate system origin be placed at the center of the sphere, as shown in Fig. 
5. Let p0, p1 and p2 be the vertices of the triangle. The sphere’s center is projected on the trian-
gle’s plane. This plane is divided into seven sections and according to which section the 
sphere’s projected center belongs to, a different analytical method of calculating the closest 
point is applied. Then, the sphere intersects the triangle if the point x is contained in the sphere 
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||x|| ≤ r, where r is the sphere’s radius. The contact point is x. The penetration depth is given by 
d = r - ||x||. The common normal vector n is a vector starting from the contact point x and ending 
to the sphere’s center. 

 

Fig. 5. Geometry of sphere to triangle contact. 

3. CONTACT DETECTION BETWEEN BODIES OF GENERAL SHAPE 

For the general case of two convex polytopes, the contact detection problem is resolved by 
following the algorithmic treatment presented in this section. The computational problem is 
assumed to be defined given a pair of convex shapes and the spatial relation between them. The 
above treatment is currently employed for cases including the rectangular cuboid (or simply 
box), the conical frustum and the ellipsoid, giving a total of six different contact combinations. 
The proposed approach is split into the following three steps. 

1. The intersection testing, which refers to a Boolean query that is true if and only if the 
intersection of two shapes is nonempty [8]. The intersection is tested within this work, 
using the Gilbert-Johnson-Keerthi’s algorithm [5, 6]. 

2. The evaluation of the penetration depth and the contact normal. As soon as the inter-
section testing query yields true, the corresponding penetration depth and the contact 
normal are evaluated using the Expanding Polytope Algorithm (EPA) [5]. The penetra-
tion depth and the contact normal can then be used for the estimation of the correspond-
ing contact force/moment vector. 

3. The generation of the contact manifold, i.e., the set of contacting points [6], which can 
be used for the contact force/moment vector application. An implementation based on 
clipping is proposed for all cases except those employing an ellipsoid. For the latter, the 
geometric properties of the ellipsoid are exploited. 

3.1 Intersection testing 

The intersection is tested using the Gilbert-Johnson-Keerthi’s (GJK) algorithm. GJK is an 
iterative method, initially proposed for computing the distance between complex objects in 
three-dimensional space [5]. It can, however, be also employed to solve different proximity 
queries including ones that are of interest in the collision detection problem. GJK is quite pop-
ular in this field, mainly because it is very versatile (only a set of vertices describing the convex 
polytope can be used) and is extremely efficient [6]. 

Overall, GJK relies on support functions to measure the shortest directed distance between 
the two convex polytopes of interest, say A and B. It does so, by creating and iteratively updat-
ing a simplex inside the Minkowski difference set A–B, with A–B={a–b | a ∈A, b ∈B}. A 
simplex is defined as the convex hull of an affinely independent set of vertices. Up to four 
vertices can be employed, so a simplex can be a single point, a line, a triangle or a tetrahedron. 
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In each iteration, the updated simplex lies closer to the origin than the previous one. When the 
origin of the Minkowski difference is included in the simplex, the two shapes are determined 
to intersect. 

 
function EPA: 

D ← arbitrary vector 
v ← A.Support(d) – B.Support(-d) 
W ← {v} 
do: 

w ← A.Support(v) – B.Support(-v) 
if v·w > 0: 

return false 

W ← ProjectOrigin(W ∪ v) 
until |W| = 4 or ||v|| < tol 
return true 

Table 1. The basic steps of the GJK algorithm 

In the above, Support  provides the support mapping 

SA(v) = {p: max{v· a: a ∈A = v· p, p ∈A}}. 

Given a direction v this returns the points p in the shape A that would be the first to come in 
contact with a plane with normal v that moves from infinitely far away towards the center of A. 
Furthermore, ProjectOrigin  returns the point on a point (obvious solution), line or triangle 
which is the closest to the origin. 

3.2 Penetration depth and contact normal 

The penetration depth and the contact normal are found using the Expanding Polytope Al-
gorithm (EPA). EPA is an accurate algorithm used for computing the penetration depth between 
a pair of shapes A and B, having a non-empty intersection. Similar to the GJK, EPA employs 
only the support mappings of the corresponding shapes, further contributing to the versatility 
of the overall approach. 

Starting point for the EPA is a polytope that contains the origin of the Minkowski difference. 
The simplex provided by GJK is used to generate the polytope required. The GJK may consist 
of only a point, a line or a triangle. In this case, proper initialization of the polytope is performed, 
following the approach described in [6]. 

As soon as a valid simplex is build inside the Minkowski difference set, then this is itera-
tively expanded into a convex polytope. The algorithm proceeds in each step so that the face 
closest to the origin is the one that is expanded. The iterations stop when an edge of the Min-
kowski difference is recovered during expansion (within some numerical accuracy), thereby 
yielding the penetration depth (and the corresponding normal vector), as equal to the distance 
from the origin to this face. 
 

function EPA: 

P ←  A convex polytope containing the origin 
Q ← ∅ 
for each face f in P: 

e ← construct(f) 
if e.closest_internal(): 

Q.push(e)  
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μ ← infinity 
do: 

e = Q.pop() 
if not e.obsolete: 

v ← e.v 

w ← A.Support(v) – B.Support(-v) 
μ ← min( μ, (v·w) 2 / ||v|| 2) 

close_enough ← μ ≤ (1 + tol) 2||v|| 2 
if not close_enough: 

e.obsolete = true 
E ← ∅ 
for i ← 0, 1, 2: 

sihlouette(e.adj i , e.j i , w, E) 
for se, i ∈ E: 

ne ←  construct(se.y i ⊕1, se.y i , w) 
if ne.affinely_dependent: 

return ||v|| 
if ne.closest_internal() 
   and ||v|| 2≤|ne· v| ≤μ: 

                      Q.push(ne) 
until close_enough or Q.empty() or ||Q.pop().v|| 2 > μ 
return ||v|| 

 

Table 2. The algorithm in [6] 

In the above Q is a priority list and μ is an upper bound for the squared penetration depth. 
Entry is a structure for the polytope face, that holds the vertices (y), the adjacent entries (adj ), 
the indices of the corresponding adjoining edges (j ) and obsolete  which is a boolean that 
identifies if this face has become obsolete during a previous iteration. Furthermore ⊕ denotes 
the addition modulo 3. 

Once an entry e that contains the point closest to the origin, point w is calculated as described 
above. The front side of entry e can always be seen from the w, so that e is marked obsolete . 
Then, the polytope is recursively traversed starting with each entry adjacent to e. All the entries 
that can be seen from e are further marked as obsolete . This procedure is provided by func-
tion sihlouette , which is based on a recursive flood filling algorithm. 
 

function sihlouette(e, i, w, E): 
if not e.obsolete: 

if e.v·w < ||e.v|| 2: 

E ← {E, (e, i)} 
else: 

e.obsolete ← true 
sihlouette(e.adj i ⊕1, e.j i ⊕1, w, E) 
sihlouette(e.adj i ⊕2, e.j i ⊕2, w, E) 

Table 3. Pseudocode for function sihlouette  

3.3 Contact manifold generation 

The contact manifold, which usually is further reduced to a single point where the contact 
force is to be applied, is generated using a clipping algorithm. For this case, the faces of the 
shapes A and B should be explicitly defined. This is a major difference from the algorithmic 
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treatment described so far, that required only the corresponding support mappings. Furthermore, 
this procedure may introduce accuracy issues when the shape is not defined from flat faces only. 
This is the reason why the contact point in the ellipsoid is not generated by this method, but by 
exploiting its geometric property of the normal uniqueness. 

As a first step, the reference face is identified, which is the face normal to the contact vector 
(or its opposite), as returned by the EPA. An incident face is then identified on the other shape, 
which is the one that is closer to the opposite of the vector used for the reference face. Then, a 
set of clippings is performed between the incident face and the faces that are adjacent to the 
reference one. Each clipping reduces the size of the contact manifold, which is initially set equal 
to the incident face. A final clipping is performed in the remaining area by the reference face. 
 

function clipping: 

reference ← A.find_reference(v) 
incidence ← B.find_incidence(v) 
if not reference: 

reference ← B.find_reference(-v) 

incidence ← A.find_incidence(-v) 
manifold ← incidence.vertices() 
for f ← reference.faces(): 

manifold ←  manifold.clip(f) 

manifold ←  manifold.translate(||v||) 
manifold ←  manifold.clip(reference) 

Table 4. Pseudocode for the clipping function 

The contact point can then be assumed as the geometrical center of the contact manifold. 

4. NUMERICAL RESULTS 

Employing the aforementioned contact detection algorithms, a number of characteristic ex-
ample problems was solved by using an existing numerical codes for predicting the dynamic 
response [9]. The first example chosen is of academic interest and is known in literature as the 
woodpecker toy [15-17]. In addition, results for a more complex mechanical system, involving 
ball bearings, were also obtained by using the same methodology [18-20]. 

4.1 Results for the woodpecker toy 

The woodpecker toy shown in Fig. 6 consists of a pole fixed to the ground, a sleeve, a tor-
sional spring and a woodpecker. The sleeve and the woodpecker are connected with a revolute 
joint and a torsional spring. The hole in the sleeve is slightly larger than the diameter of the 
pole. The toy’s response is heavily affected by friction and impact phenomena. The woodpecker 
moves down due to gravity with a pitching motion and impacts the pole while the sleeve acts 
as a jamming mechanism with the presence of friction. The system oscillates and may end up 
in a stable limit cycle. 

The first scientific studies on the dynamics of this toy, based on application of non–smooth 
and contact mechanics theory, was presented in [15-17]. The model is planar and consists of 
three rigid bodies: the woodpecker, the sleeve and the pole. The sleeve’s lateral movement is 
small so it is neglected. Another major assumption is that both the woodpecker and the sleeve 
rotate with small angle, so the gap functions are calculated with linearized kinematics. 
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Fig. 6. The woodpecker toy. 

In the present paper, the model is created using basic solids. Specifically, the pole is repre-
sented by an orthogonal parallelepiped, the sleeve by two orthogonal parallelepipeds, the body 
of the woodpecker by an ellipsoid, its head by a sphere, its beak by a conical frustum and a 
sphere at the tip (see Fig. 6). There exist also a revolute joint and a torsional spring between the 
sleeve and the woodpecker. Contact is taken into account between the beak’s tip and the pole 
(sphere to box) and between the sleeve and the pole (box to box). Values for the geometry, 
masses, moments of inertia and contact parameters are taken from [16]. Here, the model is also 
planar. However, the sleeve’s lateral movement is taken into account, although it does not make 
any significant difference. The major difference with [16] is that the rotations of both the sleeve 
and the woodpecker are not assumed to be small, hence the kinematics is nonlinear. The above 
assumptions are critical and play a significant role to the system’s response. By examining the 
results of [5], it can be seen that the woodpecker’s and sleeve’s extremum angles are 30 and 6 
degrees respectively. The woodpecker’s rotation is far too large to be linearized, whereas the 
sleeve’s angle just passes the limit. 

Comparing the results obtained here with those presented in [16] it is concluded that the 
linearization based on small rotations influences the results especially in the woodpecker’s 
angle where the upper and lower limits are slightly greater and smaller respectively (see Fig. 
7a). Regarding the sleeve’s angle there are no significant differences because for such an angle 
range the linearization is a good approximation (Fig. 7d). Similar bevahior is evident 
concerning the angular velocities. Examining these quantities, it is evident that a slight variation 
appears at the upper and lower limits for both the woodpecker and the sleeve (Figs. 7c and 7d). 
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Fig. 7. Numerical results for the woodpecker toy. Time history of the woodpecker: (a) rocking angle, (b) angular 
speed, (c) sleave angle and (d) sleave angular speed. 

4.2 Results for a mechanism with a rolling bearing 

Dynamics of ball bearings has been studied from many different angles of view, including 
lubrication, wear, vibration and sound. In some cases, a multibody model was used. The most 
preferred modeling assumptions are the following: no slipping of the balls during rolling on the 
surface (the ball motion is defined by a kinematic constraint), no friction between the balls and 
the bearing’s rings, planar motion and negligible mass of the balls [18, 19]. To investigate 
whether these assumptions are reasonable, development and consideration of more realistic 
models that remove the above assumptions is needed. 

In the present paper, a model for a ball bearing (SKF BB1B420205) is first developed. Then, 
this is used in a crank-rod-slider mechanism to represent the revolute joint between the crank 
and the rod, as shown in Fig. 8a. Regarding the ball bearing modeling, the balls are modeled by 
eight spheres, while the inner and outer rings and the cage are modeled by triangle meshed 
solids (see Fig. 8b). Moreover, contact is enabled between each sphere and both rings, while 
sphere to sphere and inner to outer ring contact is not taken into account. Although contact 
between the cage and the balls could also be studied, it was choosen not to do it here because 
the loads arising between the cage and the balls are not significant. Another reason for this is 
that the model becomes much more complicated, resulting in additional computer simulation 
time with no significant gain. To prevent the balls from coming into contact, eight inline con-
straints are added between each ball’s center and a specific coordinate system on the cage (see 
Fig. 8c). Concerning other major connections, the cage is connected to the inner ring’s center 
with a revolute joint, the outer ring is fixed to the crank, while the inner ring is fixed to the rod. 
Values for the geometry, masses, moments of inertia and contact parameters are taken from 
[19]. The evaluation of the contact forces is based on Herzian contact deformation theory that 
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takes into account the geometry and the material properties. The methodology for calculating 
the stiffness values for the contact is described thoroughly in [20]. 

  

Fig. 8a. Mechanism     Fig. 8b. Ball bearing model 

  

Fig. 8c. Cage model    Fig. 8d. Normal force on a ball 

By implementing the contact detection algorithm between sphere and triangle presented in 
Section 2, the mechanical model developed was simulated, assuming that the crank rotates with 
a constant angular speed of 300 rpm. In Fig. 8d is depicted the normal force acting from the 
outer ring to a ball for three different meshes. Although the maximum force is congruent with 
that presented in [19], the time history is completely different. This is believed to be due to the 
lack of friction in the model employed in [19], where the balls movement is induced by impos-
ing a kinematic constraint, taking into account that the balls roll without sliding. In reality, this 
is not true and causes the balls to be at a different position. 

5. SYNOPSIS 

A new contact detection methodology was presented, leading to an accurate and numerically 
efficient determination of the dynamic response of a class of multibody engineering systems 
involving contacts and friction. The methodology developed allows solution to general 
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mechanical problems, without having to formulate the equations of motion and the gap 
functions in each case, separately. Furthermore, the new algorithm takes into account large 
relative rotations between two solid bodies and does not suffer from restrictions caused by 
kimenatic linearization. In particular, the contact detection algorithm between a sphere and a 
triangle allows to create more detailed and realistic models for ball bearings or any machine 
element involving contact between a sphere and a general surface (e.g., constant velocity joint). 
Furthermore, it allows incorporation of friction using either Amontons–Coulomb or even more 
sophisticated friction laws. Therefore, it is expected that this tool can prove usefull to engineers 
who want to study various phenomena arising in complex mechanical systems with components 
involving contact and friction. Some of these advantages were illustrated in this work by 
presenting results for the classical woodpecker toy and a more complex systems involving ball 
bearings. 
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Abstract. This study is focused on a class of discrete mechanical systems subject to equality 
motion constraints involving time and acatastatic terms. In addition, their original configura-
tion manifold possesses time dependent geometric properties. The emphasis is placed on a 
proper application of Newton’s law of motion. A first step is to consider the corresponding 
event manifold by adding time to the set of coordinates and then determine its geometric 
properties. Next, the way of introducing time dependence in these properties through a coor-
dinate transformation in the event manifold or the motion constraints is also investigated. Al-
so, foliation theory is used to clarify some key concepts and provide an accurate definition of 
a scleronomic manifold, leading to a set of coordinate invariant conditions. The analysis is 
completed by an appropriate set of equations of motion on the original configuration mani-
fold, appearing as a system of second order ordinary differential equations. Finally, the ana-
lytical findings are enhanced and illustrated further by considering selected examples. 
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1 INTRODUCTION 

Among the many subjects of analytical dynamics, a central place is occupied by those re-
ferring to the derivation of the equations of motion of systems subject to equality constraints 
(e.g., [8, 21, 23]). Over the last decades, it has become apparent that many of the theoretical 
questions in this area of dynamics can be answered in an illustrative and complete way by 
employing fundamental concepts of differential geometry [4, 17, 18]. This in turn provides a 
stronger foundation in solving difficult engineering problems by employing new, more accu-
rate and robust numerical techniques (e.g., [2, 6, 11]). Based on these observations, the main 
objective of this work is to use such concepts in order to treat a class of mechanical systems. 
These systems are described by configuration manifolds possessing time dependent geometric 
properties (i.e., metric and connection) and are subject to equality motion constraints involv-
ing an explicit time dependence and acatastatic terms. Besides providing a new and clear in-
terpretation of the key concepts, the theoretic framework chosen allows a systematic 
derivation of the equations of motion for the class of systems examined. 

The present study is an extension of recent work of the authors on scleronomic systems [15, 
19]. Again, the emphasis is put on explaining several demanding theoretical aspects, which 
are of keen interest to the engineering community. In addition, the main philosophical ap-
proach adopted is that the safest and deepest principle of Mechanics is Newton’s law of mo-
tion [7, 9]. Specifically, the new contributions of this work can be summarized as follows. 
First, the central issue is the consistent application of Newton’s law to the class of mechanical 
systems examined. Due to the presence of time in the properties of the configuration manifold, 
the need to express Newton’s law in an invariant form leads naturally to its application to the 
event configuration manifold of the system [12, 23]. This step is performed first in a geomet-
rically consistent manner. Moreover, another issue clarified in this work is the way time ef-
fects are introduced into the properties of a configuration manifold in an explicit manner. It is 
shown that these effects appear either by performing a time dependent transformation in the 
event manifold or by enforcing additional time dependent motion constraints. In addition, it is 
demonstrated that the former effects are in fact removable. Furthermore, the geometrical pic-
ture built by employing the classical engineering approach is enhanced in a remarkable way 
by utilizing some ideas of foliation theory [3, 14, 22]. Among other things, this theory pro-
vides a coordinate invariant way of stating the conditions for a configuration manifold to be 
scleronomic, even though its geometric properties may exhibit a spurious time dependence. 
Another important new contribution of the present work is the derivation of the equations of 
motion for the class of systems examined as a set of second order ordinary differential equa-
tions in the original configuration manifold. This presents certain advantages when compared 
to classical approaches leading to a set of differential algebraic equations, instead. It also ex-
hibits better characteristics than previous methods leading to sets of ordinary differential 
equations through elimination of motion constraints or Lagrange multipliers [2, 15]. Finally, 
for the special case of scleronomic systems, the equations of motion derived are shown to be-
come identical with a similar set of equations obtained earlier [15]. 

The organization of this paper is as follows. First, some useful concepts of differential ge-
ometry are briefly summarized in Section 2. In Section 3, the idea of the event manifold is 
employed and its geometric properties are set up. Then, the equations of motion are derived, 
firstly on the event and subsequently on the configuration manifold. In Section 4 are dis-
cussed effects caused by a special change of coordinates in the event manifold. Likewise, in 
Section 5 is investigated the effect caused by the presence of time dependent and acatastatic 
terms in the motion constraints. The results of these effects are identified and separated in 
Section 6, where a set of scleronomicity conditions is presented by employing basic ideas of 
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foliation theory on manifolds. Then, the equations of motion for the general class of systems 
examined are derived and presented in Section 7. Finally, results are presented for two me-
chanical examples, illustrating basic features of the class of systems examined. 

2 SOME GEOMETRIC PRELIMINARIES  

This work focuses on the dynamics of mechanical systems, whose spatial configuration can be de-
termined at any time by a finite set of local coordinates, say 1, , nq q…  [12, 21]. The motion of 
such a system can be represented by the motion of a fictitious point p  moving along a curve 

( )sγ γ=  on an n-dimensional manifold M , the configuration space of the system [23]. Then, 

if ϕ  is a coordinate map acting from a neighborhood of point p  to the classical space nR , the 
coordinates of p  are 

 ( )q pϕ= , (1) 

with 1( , , )nq q q= … . Usually, the parameter s  coincides with time t  and the quantity 
v d dtγ=  represents the velocity vector at p . This vector  is tangent to γ  and belongs to an 
n -dimensional vector space pT M , the tangent space of the manifold at p  [4, 10], with com-

ponents i iv q= ɺ  in the holonomic basis 1{ }g ng g= …B  [5]. Αdopting the usual summation 

convention for repeated indices [24], the velocity vector can be written as 

 
1

n i i
i ii

v v g v g
=

= =∑ .  

In general, any element u  of the vector space pT M  can be expressed in the form i
iu u e= , 

where 1{ }e ne e= …B  is an arbitrary basis of pT M . Also, one needs often to establish a re-

lation between two different bases, say between gB  and eB , through equations of the form 

 j
i i je A g=    or   j

i i jg B e=    ( , 1, ,i j n= … ), (2) 

where j
iA  and j

iB  are elements of n n×  matrices, satisfying the conditions 

 j i i j j
i k k i kA B A B δ= = , (3) 

which involve Kronecker’s delta jkδ  [17]. Moreover, any basis of pT M  is characterized by its 

structure constants ij kc , defined through the Lie bracket in the form 

 [ , ] i
j k j k ie e c e= .    

A complete description of the motion of a dynamical system can be achieved by introduc-
ing the dual space to pT M  at any point of the manifold, denoted by pT M∗ . Its elements are 

called convectors. Then, for any vector u , a covector u∗

ɶ
 may be found through the dual prod-

uct. For example, to each basis eB  of pT M , a dual basis e
∗
B  can be constructed for pT M∗ , with 

elements { }ie
ɶ

 satisfying 

 ( )i i
j je e δ=

ɶ
, (4) 

Apart from the set of points, a manifold used in dynamics should possess two additional 
geometrical objects. Οne of them is the metric tensor, with components in the basis e

∗
B  given 

by 
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 ,i j i jg e e= 〈 〉 , (5) 

where ,〈⋅ ⋅〉  denotes the inner product of the tangent space pT M . This provides a dual product 

by 

 ( ) , , pu w u w w T M∗ ≡ 〈 〉 ∀ ∈
ɶ

. (6) 

If the components of the metric tensor are identified with those of mass matrix, through the 
kinetic energy, then the covector corresponding to the velocity vector v  is the generalized 
momentum *p

ɶ

. 

Another geometrical tool which is essential in dynamics is the affine connection, repre-
sented by symbol ∇ . Its components i

j kΛ  in a basis eB  of space pT M , known as affinities, 

are defined by 

 
j

i
e k j k ie e∇ = Λ . (7) 

Then, the covariant differential of a covector *u
ɶ

 along a curve on M  with tangent vector v  is 

 *
,( ) j i

v i j j iu u u v e∇ = − Λℓ
ℓ

ɶ ɶ
, (8) 

with ,
j

i j iu u q= ∂ ∂ . Then, M  is a Newton manifold if determination of the true path of motion 

on M  due to a given set of applied forces *f
ɶ

 is based on application of Newton’s second law 

with form 

 v p f∗ ∗∇ =
ɶ ɶ

, (9) 

Next, consider a new manifold AM , with a dimension m  smaller than n , generated after 
imposing a set of motion constraints on M , which are eventually cast in the form 

 i iv N vα
α=    ( 1, ,i n= … ; 1, ,mα = … ), (10) 

where Av v eα
α=  is a vector of 

Ap AT M  and i
iv v e=  is an element of pT M . Then, it was shown 

in a previous study that if the original manifold M  is Newtonian, the new manifold AM  re-
mains Newtonian, provided that the metric and connection on AM  satisfy the compatibility 
conditions 

 i j
i jg N g Nαβ α β=  (11) 

and 

 ,( ) 0i j i j k
i j j i kg N N g N N N g v vλ β γ

β α λγ α γ β α β γΛ − − Λ =ℓ

ℓ
, (12) 

with ,
i iN N qγ
α γ α= ∂ ∂  [26]. Using Eq. (8), the last condition yields 

 ,[ ( ) ]j i i k
i j j i kg N N g N N gλ λγ

βα β α γ α γ αβγσΛ = + Λ +ℓ

ℓ
,    

where αβγ αγβσ σ= −  and the remaining part corresponds to what is known in the literature as 

“the metric compatibility condition” [4, 24]. 
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3 GEOMETRIC PROPERTIES OF EVENT MANIFOLD - APPLICATION OF 
NEWTON’S LAW 

For a mechanical system, the geometric properties of the configuration manifold M  can be 
determined through enforcement of a set of constraints on the motion of a system of N  un-
constrained particles, taking place within an archetypal Euclidean manifold 3NE , with dimen-
sion 3N  [9, 17]. When inertial Cartesian coordinates are used, the metric of this space 
involves only constant diagonal elements, while all the affinities vanish [19]. Furthermore, 
even when general curvilinear coordinates are used, the geometric properties of this manifold 
may depend on the position on the manifold but they do not depend on time explicitly. In this 
way, 3NE  presents a raw model for a scleronomic manifold. Then, for a general scleronomic 
manifold M , it is true that 

 ( )i j i jg g q=    and   ( )k k
i j i j qΛ = Λ , (13) 

where the coordinates q  are related to position on the manifold through Eq. (1). However, in 
several cases, the motion constraints imposed on the original system of particles or the trans-
formations performed are such that the geometric properties of a configuration manifold M  
appear in the form 

 ( ( ), )i j i jg g q t t=    and   ( ( ), )k k
i j i j q t tΛ = Λ  (14) 

and the manifold is rheonomic. In fact, this can occur artificially, even in the archetypal scler-
onomic manifold 3NE , by performing a velocity transformation like that of Eq. (2), with ele-
ments ( , )j

iA q t , depending on time [9, 16]. Another way to introduce time dependence is 
through enforcement of a set of motion constraints. These ideas will become more concrete in 
Sections 4 and 5, respectively. 

When the geometric properties of a manifold M  are time dependent, the need to keep the 
form invariance of Newton’s law, as expressed by Eq. (9) through the covariant derivative of 
momentum, makes it convenient to perform the analysis of the motion on the so called event 
or extended configuration manifold, denoted by M , with dimension 1n +  [12, 23]. A natural 
way to introduce this manifold is through coordinate maps. Specifically, if ϕ  is a coordinate 

map of M , corresponding to a coordinate map ϕ  on M , then the coordinates of point p  of 

M  can be selected by 

 ( ) ( , )q p qϕ τ= = ,    

where τ  is a new coordinate, introduced for accommodating time. This means that 

 i iq q=    ( 1, ,i n= … )   and   1 0nq q τ+ ≡ = . (16) 

Consequently, the tangent vector v  to the image curve ( )sγ  on M  of a curve ( )sγ  on M  at 

point p  belongs to an ( 1n + )-dimensional vector space pT M , with components 

 ( )i id
dsv ϕ γ= �    ( 1, ,i n= … )   and   1 0nv v d dsτ+ ≡ =  (17) 

6346



Elias Paraskevopoulos, Sotirios Natsiavas 

in the natural basis 1 0{ }g ng g g= ⋯B  of pT M , created by the tangent vectors to the coor-

dinate lines corresponding to the coordinate map defined by Eq. (15). The last result can be 
put in the form 

 0
0

I i
I iv v g v g v g= = +    ( 1, , 1I n= +… ; 1, ,i n= … ). (18) 

Similar expressions can also be obtained for bases eB  of pT M  other than the natural basis 

gB  but respecting the separation of the temporal from the spatial coordinates induced by Eq. 

(19). Such bases will be referred to as separable bases of pT M   (or M , for simplicity) in the 

sequel. 

In essence, incorporatiοn οf time into the set of coordinates helps in converting the original 
manifold M  into an extended configuration manifold M , which is scleronomic [17]. Then, a 
linear velocity transformation similar to that of Eq. (10) can always be established between 
the two scleronomic manifolds 3 3N NE E≡ ×R  and M . Before employing this transformation, 
it is first necessary to determine the geometric properties of 3NE  and M . Based on the defini-
tion of the former manifold as a Cartesian product of 3NE  and R , its metric matrix appears in 
the form 

 
00

( ) 0
[ ]

0 ( )IJ T

G q
G G

G τ
 

= =  
 

, (19) 

where the n n×  submatrix [ ]i jG G=  includes the components of the metric tensor on 3NE , 

while 00( )G τ  is a non-negative scalar, which may be a function of the temporal coordinate. In 

addition, the set of affinities on 3NE , say K
IJΓ  (with , , 1, , 1I J K n= +… ), includes the following 

elements 

 ( )k k
i j i j qΓ = Γ    ( , , 1, ,i j k n= … )   and   0 0

00 00( )τΓ = Γ , (20) 

where k
i jΓ  are the affinities on 3NE , while all the remaining mixed type affinities (involving 

any combination of the spatial coordinates and the temporal coordinate) are zero. 

Next, knowledge of the set of motion constraints imposed on 3NE  in order to get the mo-
tion on M  permits evaluation of the velocity transformation matrix between the tangent spac-
es of these manifolds, expressed by Eq. (10) (see Section 5). Then, the geometric properties of 
M  can be determined by application of Eqs. (11) and (12). First, the metric matrix on M  is 
obtained in the form 

 
0

0 00

( , ) ( , )
( ) [ ]

( , ) ( , )IJ T

g q g q
g q g

g q g q

τ τ
τ τ

 
= =  

  

⌢

, (21) 

where [ ]i jg g=⌢ ⌢  is an n n×  matrix, while 0g  is an n-vector and 00g  is a scalar quantity. In ad-

dition, the set of affinities becomes complete, in the sense 

 0 0 0 0
0 0 00 0 0 00( ) [ , , , , , , , ]K k k k k

IJ i j i j i j i jqΛ = Λ Λ Λ Λ Λ Λ Λ Λ . (22) 
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Taking into account the qualitative difference in the role of the temporal and the spatial 
coordinates and Eq. (19), it is frequently advantageous to select a special basis in pT M , in 

which 

 0( , ) 0g q τ = .    

Such a basis will be called a standard basis of M  in the sequel. Based on Eq. (5), this means 
that standard is a special separable basis, with base vector corresponding to the temporal co-
ordinate being normal to the base vectors associated with the subspace of pT M  spanned by 

the spatial coordinates. Then, it is easy to show that in a standard basis of pT M  it is true that 

 i iv v=    ( 1, ,i n= … ), (23) 

where iv  represents velocity components in the corresponding basis of pT M . Due to the 

symmetry of the metric matrix, this choice is always possible through a transformation. 

For the problem at hand, the communication between the configuration manifold M  and 
the event manifold M , after selecting s τ= , is achieved by imposing the single holonomic 
constraint 

 0 00 1 0q vτ− = ⇒ − = . (24) 

Moreover, Eqs. (17) and (23) define an ( 1)n n+ ×  transformation between the spaces pT M  and 

pT M . By employing a standard basis in pT M , it can be put in the following compact form 

 0
0

I I i I
iv v vδ δ= +    ( 1, , 1I n= +… ; 1, ,i n= … ). (25) 

Based on this transformation, the components i jg  and k
i jΛ  of the metric and the affinities on 

manifold M  can be related to the components IJg  and K
IJΛ  of the metric and the affinities on 

manifold M   through the compatibility conditions (11) and (12). More specifically, employ-
ing a separable basis on M , the linear part of the velocity transformation expressed by Eq. 
(10) is given in the present case by 

 I I
i iN δ= . (26) 

Therefore, it is straightforward to verify that Eq. (11) is satisfied when 

 i j i jg g=    ( , 1, ,i j n= … ), (27)  

while application of Eq. (14) yields the following condition on the affinities 

 0
0( ) 0j k

j i k j i k j i kg g g v vΛ − Λ − Λ =ℓ ℓ

ℓ ℓ
   ( , , , 1, ,i j k n=ℓ … ). (28)  

In a standard basis, the last condition is satisfied by the simpler choice k k
i j i jΛ = Λ . 

The above help in establishing the interrelation between manifolds M  and 3NE , through 
the interrelation between the event manifolds M  and 3NE , as shown schematically in Fig. 1. 
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Fig. 1 Relation between manifolds M  and 3NE , through their relation to M  and 3NE  

 

Using the metric matrix in the form of Eq. (21), the kinetic energy of the system on the ex-
tended configuration manifold M  can be put in the form 

 1
2 1 02

I J
IJT v g v T T T= ≡ + +    ( , 1, , 1I J n= +… ), 

where, using Eqs. (18) and (27), the three individual terms are found in a separable basis as 
follows 

 1
2 2

i j
i jT v g v= ,   0

1 0
i

iT v g v=    and   0 01
0 002T v g v= . 

Therefore, all these terms are in fact quadratic in velocity. Moreover, the generalized momen-
ta in the event manifold M  can be determined in the form 

 J
I IJp g v=    ( , 1, , 1I J n= +… ),  

with 

 0
0

J j
i i J i j ip g v g v g v= = +    ( 1, ,i n= … )   and   0

1 0 0 0 00
J j

n J jp p g v g v g v+ ≡ = = + . 

Finally, since the extended configuration manifold M  is scleronomic, the true path of mo-
tion on it can be determined by application of Newton’s second law in the generalized form 

 v M Mp f∗ ∗∇ =
ɶ ɶ

, (29) 

where Mf
∗

ɶ

 represents the applied forces on M , while 

 ,( )K L J I
v I K JI LMp p v p v e∗∇ = − Λ

ɶɶ

, (30) 

where ,
J

I J Ip p q≡ ∂ ∂  [10, 19].  
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Then, a special class of covectors, known as Newton covectors[21], can be defined on mani-
fold M  by 

 vM M Mh p f∗ ∗ ∗≡ ∇ −
ɶ ɶ ɶ

, (31) 

with components in a general basis of *
pT M  given by 

 ,( )J K L J K
I IJ K JI L K Ih g v v g v v f= − Λ − . (32) 

By definition of these covectors, the law of motion on manifold M  is expressed in the form 

 0 0IMh h∗ = ⇒ =
ɶ ɶ

, (33) 

in the absence of any motion constraints. 

Next, based on Eq. (26), the components of the Newton covectors on the original mani-
fold M  are found by employing the following mapping from a separable basis of *

pT M  to 
*
pT M  

 I
i i Ih hδ= . (34) 

Using Eqs. (32), (27) and performing simple mathematical operations, it eventually turns out 
that 

 0 , 0 ,0( ) ( )j k j L J K
i i j i k i j i J i L K ih g v g v g v g g v v f= + + + − Λ − , (35) 

with 

 
0

0

0 0 0
0 00 0 0 0 0 0 0 00

( )

( ) ( ).

L J K j k
J i L K j i k j i k

j
j i j i i j i j i i

g v v g g v v

g g g g v g g

Λ = Λ + Λ

+ Λ + Λ + Λ + Λ + Λ + Λ

ℓ

ℓ

ℓ ℓ ℓ

ℓ ℓ ℓ

 (36) 

Again, in the special case of a standard basis of M , the last expression is simplified consider-
ably to 

 0 0
0 00 0 00( )L J K j k j

J i L K j i k i j j i ig v v g v v g g v gΛ = Λ + Λ + Λ + Λℓ ℓ

ℓ ℓ
. (37) 

Furthermore, more terms disappear for scleronomic systems, since then all the mixed affini-
ties vanish. Then, Newton’s law on manifold M  is written in the simpler form 

 ,( ) 0j k j k
i i j k j i k ih g v v g v v f= − Λ − =ℓ

ℓ
, (38) 

resembling fully that of Eq. (32) on M . The extra terms in Eq. (35) are inertial and come ei-
ther from terms involving the off-diagonal components 0ig  of the metric of a non-standard 
basis or by mixed affinities, defined on the event manifold only and related to differentiation 
with respect to time. 

4 APPLICATION OF A SPECIAL COORDINATE TRANSFORMATION ON THE 
EVENT MANIFOLD 

Next, let ψ  be an alternate coordinate map in the vicinity of point p  on M , similar to that 
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defined by Eq. (1). Then, the corresponding set of coordinates of p  on M  can be selected by 

 ( ) ( , )x p xψ ω= = , 

through a new coordinate map ψ . The last equation can be combined with Eq. (15) to yield 

 ( ) ( ( , ), ( , ))x q x q qχ τ ω τ= = , (39) 

with composite map 1χ ψ ϕ −= � , so that 

 ( , )i ix x qτ=    ( 1, ,i n= … )   and   1 0 ( , )nx x qω τ+ ≡ = . (40) 

In fact, for the purposes of the present study, the last coordinate can be selected by 

 ( , )qω τ τ= . (41) 

Then, the Jacobian matrix ˆ[ ]I

I
J J=  (with ˆ, 1, , 1I I n= +… ) corresponding to this particular type 

of coordinate transformation is given by 

 
( , ) ( , )

( )
0 1T

J q c qx
J q

q

τ τ ∂= =  ∂  
, (42) 

where the n n×  matrix ˆ[ ]i
i

J J=  and the n -vector c  are determined by 

 ( , )J q x qτ = ∂ ∂    and   ( , )c q xτ τ= ∂ ∂ . (43) 

Based on the above, the class of transformations considered are similar to Eq. (2), but have 
the special structure exhibited by Eq. (42). Then, the new and old base vectors in the corre-
sponding bases of pT M  and pT M∗  are related by 

 ˆ ˆ ( )I
II I

e J q e=    and   ˆ

ˆ ( )I I I

I
e J q e= , (44) 

while the components of the vectors and covectors in these bases are related by 

 ˆ

ˆ ( )I I I

I
v J q v=    and   ˆ ˆ ( )I

II I
v J q v= , (45) 

respectively [17]. Finally, the components of the metric tensor and the affinities in the new 
basis of pT M  are found by 

 ˆ ˆ ˆ ˆ
I J

IJIJ I J
g J g J=    and   ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ,

K I J K K K K
K IJ KIJ I J J I

J J B J BΛ = Λ + ,    

respectively. These relations demonstrate that the new metric components and affinities are 
time dependent, when at least one element of matrix J  or vector c  is time dependent, even if 
the original components do not depend on time. Specifically, the new metric matrix appears in 
the form 

 0̂
ˆ ˆ

ˆ ˆ ˆ0 00

ˆ
ˆ [ ] T

TIJ

g g
g g J g J

g g

 
= = =  

  
 (47) 

on the extended configuration manifold M . Taking Eq. (21) into account, it turns out that 

 ˆ ˆˆ [ ] T
i j

g g J g J= = ⌢ ,   ˆ 00

T Tg J g c J g= +⌢    and   ˆ ˆ 0 0000
2T Tg c g c c g g= + +⌢ . (48) 
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The above results hold even in cases where the elements of matrix J  and vector c  in Eq. 
(42) do not satisfy Eq. (43). Then, the new basis, defined by Eq. (44), will be anholonomic in 
general. However, it is easy to verify that it will remain separable. In this respect, it is note-
worthy that the set of matrices expressed by Eq. (42) presents similarities with the Galilean 
group of transformations applied to a particle in order to preserve the form of Newton’s law in 
Cartesian coordinate systems [1, 23]. Also, even when a standard basis is employed in pT M  

originally (i.e., when 0 0g = ), the new basis will turn into a separable basis eventually, if 

0c ≠ . Finally, when the transformation is such that 0c = , a standard basis yields a new 
standard basis, since then Eqs. (47) and (48) lead to 

 
00

0ˆ
0

T

T

J g J
g

g

 
=  
 

⌢

. (49) 

Now, based on Eq. (45b), the components of the Newton covectors in the new basis of 
*
pT M  are 

 ˆ ˆ
I

II I
h J h= . (50) 

Substituting Eq. (32) in the right hand side of the last equation and performing simple opera-
tions leads to 

 ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,
( ) ( )I J J K I J I J K L J K I

IJ IJ JI LK II I J K I K J I J K I
h J g J v v J J g J J J g v v J f= − + Λ − . (51) 

Next, following an application of the compatibility conditions expressed by Eqs. (11) and (12) 
in the more appropriate form 

 ˆ ˆ ˆ ˆ
I J

IJI J I J
g J g J=    and   ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,
( ) 0L I J I J K L J K

IJ J I LKJ I L K I K J I J K
g J J g J J J g v vΛ − − Λ = , (52) 

it eventually turns out that 

 ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,
( )J K L J K

I IJ K J I L K I
h g v v g v v f= − Λ − . (53) 

Note that the form of the last equation is identical to the fundamental form of Eq. (32). Finally, 
by employing the mapping from a separable basis of *

pT M  to *
pT M  defined by 

 ˆ

ˆ ˆ ˆ
I

i i I
h hδ=  (54) 

and performing simple mathematical operations it eventually turns out that 

 ˆ ˆ ˆ ˆˆ ˆ
ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ0 0 ,0,

( ) ( )j k j L J K

i i j i j iJ i L Ki ik
h g v g v g v g g v v f= + + + − Λ − , (55) 

with 

 

ˆˆ ˆˆ ˆ ˆ ˆ0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆ 0

ˆ ˆ ˆ ˆ ˆ ˆˆ0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ0 00 0 0 0 0 0 0 00

( )

( ) ( ).

L J K j k
j i j iJ i L K k k

j
j i j i i j i j i i

g v v g g v v

g g g g v g g

Λ = Λ + Λ

+ Λ + Λ + Λ + Λ + Λ + Λ

ℓ

ℓ

ℓ ℓ ℓ

ℓ ℓ ℓ

 (56) 

Eq. (55) is similar to Eq. (35), while Eq. (56) is similar to Eq. (36). Moreover, in a standard 
basis, the last equation can be put in a form similar to Eq. (37). Obviously, the last observa-
tions reveal that the form of the components of the Newton covectors remains invariant under 
the special transformation performed. This confirms the form invariance of Newton’s law 
when expressed in different bases. 
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To complete the picture, consider a companion change of basis in the configuration mani-
fold M , relating the new and old base vectors in pT M  and pT M∗  by 

 ˆ ˆ ( , )i
ii i

e J q t e=    and   ˆ
ˆ ( , )i i i
i

e J q eτ= ,  

respectively, where matrix ˆ[ ]i
i

J J=  is selected to coincide with the n n×  matrix covering the 

upper left part of matrix J  defined by Eq. (42). Then, the components of the vectors and 
covectors in pT M and pT M∗  are related by 

 ˆ
ˆ ( , )i i i
i

v J q t v=    and   ˆ ˆ ( , )i
ii i

v J q t v= , (57) 

respectively, while the components of the metric and the affinities in the new basis of M  are 
given by 

 ˆ ˆ ˆ ˆ
i j

i ji j i j
g J g J=    and   ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ,
k i j k k k k

k i j ki j i j j i
J J B J BΛ = Λ + , (58)  

respectively, with 

 ˆ
ˆ
i i i

j ji
J B δ=    and   ˆ ˆ

ˆ ˆ
j i j

i i i
B J δ= . (59) 

Consequently, the components of the Newton covectors in the transformed basis of the origi-
nal manifold M  are found in the form 

 ˆ ˆ
i

ii i
h J h= . (60) 

Employing Eq. (35) and performing lengthy but simple mathematical operations in the right 
hand side of the last equation, which are similar to those involved in Eqs. (51) and (52), it 
eventually turns out that ̂

i
h  regains the form of Eq. (55). This verifies the existence of com-

mutativity between the special type of coordinate transformation examined and the transfor-
mation between the original manifold M  and the extended manifold M . 

Finally, using Eq. (23) in conjunction with Eq. (57a) yields 

 ˆ
ˆ ( , )i i i i
i

v v J q t v= =    ( ˆ, 1, ,i i n= … ), 

where iv  is the velocity component in the corresponding standard basis of M . Taking into 
account Eq. (59), the last equation leads to 

 ˆ ˆ ˆi i iv v v= + ⌢ , (61) 

with 

 
ˆˆ ˆ ˆ0

0̂

i i i i i
i iv B J v B c= =⌢ . (62) 

Eq. (61) shows that ˆ ˆi iv v≠ , in general, even when i iv v= . Substitution of the term îv  from Eq. 
(61) into Eq. (55) yields the equations of motion on manifold M  in terms of the velocity 
components îv  in pT M  and îv

⌢ . By their definition, Eq. (62), the terms îv
⌢  are known and due 

to the presence of the n-vector c  in the Jacobian ( )J q , defined by Eq. (42). Based on Eq. 
(43), it is clear that this vector becomes zero when a time independent chart (i.e., coordinate 
system) is selected on M , defined by 

 ( )x x q= . (63) 
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This means that the terms îv
⌢  can be eliminated by a proper selection of the chart on manifold 

M . Therefore, only such charts may have meaningful counterparts on M , which clarifies 
some of the terminology employed in the literature on “time dependent” charts. 

5 APPLICATION OF A SPECIAL COORDINATE TRANSFORMATION ON THE 
EVENT MANIFOLD 

Ιn the present section, it is assumed that the motion of the system examined on configura-
tion manifold M  is subject to an additional set of k  constraints with form 

 ( , ) ( , ) 0A q t v a q t+ = , (64) 

where [ ]R
iA a=  is a known k n×  matrix. Then, the motion of the system takes place on a curve 

( )A tγ  of another manifold AM , with dimension  m n k= −  [19]. Next, let { }αθ  ( 1, ,mα = … ) be 
a set of generalized coordinates in a neighborhood of a point Ap  of AM , related to point p  of 

M  through Eq. (64). Furthermore, let { }eα  and and { }eα

ɶ
 be a basis of 

Ap AT M  and 
Ap AT M∗ , re-

spectively. 
The new fundamental item in Eq. (64) is not so much the explicit appearance of time but 

rather the acatastatic term a  [21]. This term destroys the linearity and provides an affine na-
ture to the constraint equations. In principle, Eq. (64) can be used in order to establish a map-
ping between the tangent spaces 

Ap AT M  and pT M . Namely, Eq. (64) can easily be recast in the 

form 

 ( , ) ( , )v N q t q tθ υ= +ɺ , (65) 

where the n m×  matrix N  and the n-vector υ  are determined in terms of the elements of the 
k n×  matrix A  and the k -vector a  [12, 19]. To overcome the loss of linearity, due to the 
presence of the term υ , the last equation is put in the form of a linear transformation between 

the tangent spaces 
Ap AT M  and pT M  of the corresponding event manifolds. This permits con-

version of Eq. (65) into the following linear relation between the components of tangent vec-
tors 

 ( )I Iv N q vΦ
Φ= , (66) 

with 1, , 1mΦ = +…  and 1, , 1I n= +… , where the extended matrix N  appears in the form 

 
( , ) ( , )

[ ( )]
0 1

I
T

N q q
N N q

τ υ τ
Φ

 
= =  

 
. (67) 

This ( 1) ( 1)n m+ × +  matrix has a similar structure with the Jacobian matrix defined by Eq. 
(42). 

Next, the metric matrix on manifold M  is assumed to have the general form expressed by 
Eq. (21), while the set of affinities is complete, in the sense of Eq. (22). Then, based on the 

velocity transformation represented by Eq. (66), the components of the metric matrix and the 
affinities on the new manifold are determined by employing Eqs. (11) and (12) in the form 

 I J
IJg N g NΦΨ Φ Ψ=    and   ,( ) 0I J I J K L

IJ JI LKg N N g N N N g v vΧ Ψ Ω
ΨΦ ΧΩ Φ Ω Ψ Φ Ψ ΩΛ − − Λ = . (68) 
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Obviously, any time dependence of matrix N  and vector υ  is transferred into the geometric 

properties of manifold AM . In particular, the metric matrix on the new Newtonian manifold 

AM  is 

 0

0 0 00

( )
[ ]

( ) 2

T T

T
A T T T T

N g N N g g
g g N g N

g g N g g g

υ
υ υ υ υΦΧ

 +
= = =  

+ + +  

⌢ ⌢

⌢ ⌢ .    

In general, this ( 1) ( 1)m m+ × +  matrix is full. Therefore, unless 

 0( ) 0TN g gυ + =⌢ , (70) 

the new basis obtained in 
Ap AT M  is not standard, even when the basis of pT M  is standard. 

As usual, application of Eq. (66) means that the base vectors in 
Ap AT M  and pT M  are related 

by 

 ( )I
Ie N q eΦ Φ=    ( 1, , 1mΦ = +… ; 1, , 1I n= +… ),    

while the components of the covectors are related by 

 ( )I
Iv N q vΦ Φ= . (71) 

Therefore, the components of the Newton covectors in the basis of *

Ap AT M  are found through 

 I
Ih N hΦ Φ= . (72) 

Substituting Eq. (32) in the right hand side of the last equation and performing simple opera-
tions yields first the following relation 

 , ,( ) ( )I J I J I J K L I
IJ IJ JI LK Ih N g N v v N N g N N N g v v N fΨ Ω Ψ Ω

Φ Φ Ψ Ω Φ Ω Ψ Φ Ψ Ω Φ= − + Λ − . (73) 

Next, application of the compatibility conditions expressed by Eqs. (68), leads to the final 
form 

 ,( )h g v v g v v fΨ Ω Χ Ψ Ω
Φ ΦΨ Ω ΨΦ ΧΩ Φ= − Λ − . (74) 

Once again, the form of the last equation is similar to Eq. (32). Also, in accordance with Eq. 
(34), the transformation between separable bases from *

Ap AT M  to *
pT M  appears in the form 

 h hα αδ Φ
Φ= . (75) 

Consequently, by performing simple mathematical operations one can originally obtain the 
components of the Newton covectors on the manifold AM  in the form 

 
0

0 , 0 ,0 0

0 0 0
0 00 0 0 0 0 0 0 00

( ) ( ) ( )

( ) ( ) 0.

h g v g v g v g g g v v

g g g g v g g f

β γ β γ β δ
α αβ α γ αβ α βα γδ βα δ

γ γ β γ
βα γ βα α γβ α β α γ α α

= + + + − Λ + Λ

− Λ + Λ + Λ + Λ − Λ + Λ − =
 (76) 

Some simplifications apply to the last equation when the transition from manifold AM  to AM  
is performed by using a standard basis in 

Ap AT M , so that 

 v vα α= ,   g gαβ αβ= ,   γ γ
αβ αβΛ = Λ    ( , , 1, ,mα β γ = … ) 

and the new metric matrix is block diagonal. In addition, some more terms drop out when the 
system is scleronomic. Then, Eq. (76) can eventually be put in the form 
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 ,( )h g v v g v v fβ γ γ β δ
α αβ γ β α γ δ α= − Λ − ,    

which is identical to that of Eq. (38), obtained for the original manifold M  in Section 3. 

6 APPLICATION OF FOLIATION THEORY AND DEFINITION OF A 
SCLERONOMIC MANIFOLD  

The material presented in this section completes the geometrical picture created in Section 
3 for the event manifold M . First, the attention is focused on creating the extended configura-
tion manifold M  based on the configuration manifold M  at a fixed time tτ = . This is done 
by considering the flow 

 0 , 0( , ; ) tp p t pτψ τ ψ= ≡ , (77) 

taking points 0p M M∈ ⊂  at time t  to points p M∈  at a later time τ , as shown in Fig. 2, so 

that a local coordinate chart on M  and a time independent chart on M  share the same spatial 
coordinates at each point. Using terminology of foliation theory, the local coordinates ( , )q τ  

on M , where q  are also coordinates on manifold M  for each τ , are called distinguished co-
ordinates, while the temporal coordinate τ  is known as a transverse coordinate [14]. In this 
setting, the chart corresponding to Eqs. (39) and (41) is a foliated or distinguished chart, while 
manifold M  is considered to be a leaf of M  through point p  under this foliation. The specif-

ic foliation examined here has codimension 1 and partitions the event manifold M  into mani-
folds M  of dimension n , one at each time τ . Moreover, T  denotes a transverse submanifold 
of M , which is single dimensional and is described by the temporal coordinate. In fact, it is a 
total transversal since it meets all the leaves of the foliation, by construction [22]. In addition, 
the collection of the subspaces of pT M  possessing vectors with projection on pT M  only, at all 

points of M , forms the special distribution MD  on M . This is known as the structural distri-

bution of M , while its complement TD  is called the transversal distribution on M  [3]. Finally, 

the tangent space of the event manifold M  at point p  can be split in the form 
 

 
 

Fig. 2 Construction of manifold M  by M  and the time flow 
 

 p p pT M H V= ⊕ , (78) 
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where pH  and pV  are subspaces of pT M , forming the distribution MD  and TD , respectively. 

Among other things, Eq. (78) implies that any vector of pT M  can be split uniquely in the 

form 

 u h v= + , (79) 

with ph H∈  and pv V∈ , where v  is a tangent vector along the time flow defined by Eq. (77). 

Next, it is assumed that manifold M  is a fixed set of points but its metric components and 
affinities may depend on time. The objective is to provide conditions for M  to be sclerono-
mic. To achieve this goal, it is first necessary to define two special sets of curves on M . The 
first set includes “leaf curves” ( ; )M sγ τ , lying entirely on M  for each fixed τ , with tangent 
vector Mh d dsγ=  belonging to MD , as depicted in Fig. 3. Likewise, the second set includes 
“transverse curves” ( ; )T qγ σ , with tangent vector Tv d dγ σ=  belonging entirely to the trans-
versal distribution TD . 
 

 
 

Fig. 3 Definition of two special families of curves on M  
 

By definition, a scleronomic manifold M  can be viewed as a fixed surface within a Eu-
clidean space of a bigger dimension [7, 23]. This means that its geometric properties may de-
pend on its position in M  but not on time. Then, the corresponding event manifold M  can be 
seen as a product 

 M M T= × . (80) 

When a manifold possesses properties depending on time in an explicit manner, it can be 
viewed as a surface varying with time within a Euclidean space possessing a sufficiently big-
ger dimension [4, 17]. However, time dependence may also be introduced in the geometric 
properties by performing a transformation in M  even in inherently scleronomic manifolds, as 
was shown in Section 4. The key to resolving this problem comes from the product form ex-
pressed by Eq. (80), which is true for a scleronomic manifold only. This is crucial in revealing 
and stating its geometric properties, since it implies that the event manifold M  carries two 
complementary foliations [3]. Specifically, in such a case, a second foliation exists, which has 
codimension n  and partitions the event manifold M  into manifolds T  of dimension 1, one 
for each combination of the spatial coordinates q . Based on this, for a configuration manifold 
M  to be scleronomic, it is required that an autoparallel curve starting at a point of M  and 
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ending on another point of M , for a fixed τ , should always remain on M . Likewise, an au-
toparallel curve starting on T  and ending on T , for a fixed set of spatial coordinates q , 
should always remain on T . Taking into account the definition of the special families of 
curves Mγ  and Tγ , these statements are expressed by the following mathematical conditions 

 h Mh D∇ ∈    and   v Tv D∇ ∈ . (81) 

Furthermore, the Lie derivative of the vector fields created by extending the vector hh∇  on all 

of M , along a vector field on M  with tangent vector v  (i.e., the time flow represented by Eq. 
(77)), should be zero. Likewise, the Lie derivative of the vector fields created by extending 
the vector v v∇  on all of M , along a vector field on M  with tangent vector h , should also be 

zero. Mathematically, these statements are equivalent to 

 ( ) 0v hL h∇ =    and   ( ) 0h vL v∇ = , (82) 

where the above Lie derivatives can be determined through the corresponding Lie brackets by 

 ( ) [ , ]v h hL h v h∇ = ∇    and   ( ) [ , ]h v vL v h v∇ = ∇ ,    

respectively. Moreover, the parallel transfer of the tangent vector h  of a leaf curve ( ; )M sγ τ  
along a transverse curve ( ; )T qγ σ  and vice versa is preserved on a scleronomic manifold. This 
means that 

 0vh∇ =    and   0hv∇ = .    

On a scleronomic manifold M , conditions should also be imposed on the metric tensor of 
M . First, based on the product form of M , expressed by Eq. (80), its metric matrix in the ho-
lonomic basis defined by the foliated coordinates can be decomposed in the special form 

 
( ) 0

0 ( )
M

T
T

g q
g

g τ
 

=  
 

.    

Then, the following conditions must also be true for preserving the form of the metric tensor 
along the vector fields created by the special vectors v  and h  on a scleronomic manifold 

 0v ML g =    and   0h TL g = , (84) 

where Mg  and Tg  represent the restriction of metric g  on the structural and transverse distri-

bution of M , respectively. Among other things, the last conditions guarantee that the metric 
g  is bundle-like and any autoparallel of M , which is orthogonal to a leaf of the foliation, is 
also orthogonal to every other leaf it meets [22]. 

In summary, the manifold scleronomicity conditions are expressed by Eqs. (81)-(84). 
These conditions do not depend on the basis selected on pT M . However, they take a very ex-

plicit and useful form when they are expressed in the special coordinate basis corresponding 
to the foliated coordinates of M . In fact, taking into account that the metric is Riemannian, 
the two complementary foliations of M  are now orthogonal, that is T MD D⊥=  [3]. Therefore, 
the base vector 0g , corresponding to the temporal coordinate, is orthogonal to all the base 

vectors ig  ( 1, ,i n= … ), corresponding to the spatial coordinates. At this point, it is clear that a 

foliated basis is a holonomic separable basis, while a foliated basis with 0g  orthogonal to ig  
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corresponds to a holonomic standard basis. Also, the special vectors which are tangent to the 
leaf and transverse family of curves can be expressed in the form 

 ( )i
ih h q g=    and   0

0( )v v gτ= , 

respectively, in a holonomic standard basis. Next, employing the first of Eqs. (81) and per-
forming the necessary mathematical operations it turns out originally that 

 0
, , 0( ) ( )K K J I k k j i i j

h I IJ K i i j k i jh h h h g h h h g h h g∇ = + Λ = + Λ + Λ . 

Then, a simultaneous application of Eq. (82a) leads eventually to the conditions 

 ( )k k
i j i j qΛ = Λ    and   0 0i jΛ = . (85) 

Treating Eqs. (81b) and (82b) in a similar manner yields 

 0 0
00 00( )τΛ = Λ    and   00 0iΛ = . (86) 

Likewise, application of the two conditions in Eq. (83) leads to 

 0
0 0 00 0K k

j j jΛ = ⇒ Λ = Λ =    and   0
0 0 00 0K k

i i iΛ = ⇒ Λ = Λ = , (87) 

respectively. Finally, substituting the appropriate vector and tensor quantities in Eqs. (84) and 
performing the necessary mathematical operations, taking into account that the Lie derivative 
of the metric tensor along the flow defined by Eq. (77) is given by 

 , , ,[ ( ) ( ) ]I I I L I I L J K
v J K I J L J I K K L K I JL g v g v c v g v c v g e e= + − + − ⊗ , 

leads eventually to 

 ( ) 0 ( )M i j M Mt g g g q∂
∂ = ⇒ =    and   0 ( )T T Tq g g g τ∂

∂ = ⇒ = . (88) 

Thus, Eqs. (85)-(88) provide a set of scleronomicity conditions in component form, with re-
spect to a standard basis. Obviously, these conditions are identical to the conditions stated ear-
lier in the form of Eq. (13) or, alternatively, Eqs. (19) and (20). 

7 EQUATIONS OF MOTION ON THE CONFIGURATION MANIFOLD 

In Section 5, a set of equations of motion was derived on the constrained manifold AM , 
with respect to a minimal set of coordinates. Such an approach is inconvenient to apply, espe-
cially for complex systems, since it requires the selection of a specific set of independent co-
ordinates and elimination of the dependent coordinates through the constraint equations at 
every time instant. In general, this is not an easy task to achieve. Moreover, it requires differ-
entiation of the constraint equations, leading to their violation at the lower kinematic level [2, 
11]. In addition, the geometric properties of the constrained manifold need to be re-
determined at every step, through Eqs. (11) and (12). For these reasons, it is frequently advan-
tageous to derive the equations of motion on the original manifold M , for which the geomet-
ric properties are known and not affected by the additional constraints. 

Next, it is assumed that the original configuration manifold M  of the class of systems ex-
amined possesses time dependent geometric properties. Moreover, the system is subject to an 
additional set of k  time dependent acatastatic motion constraints, in the form of Eq. (64), or 
equivalently in the form 

 0( , , ) ( , ) ( , ) 0R R i R
iq v t a q t v a q tψ ≡ + =ɺ    ( 1, ,R k= … ). (89) 

When a constraint is holonomic, Eq. (89) can be integrated and cast in the form 
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 ( , ) 0R q tφ = .    

The derivation of the equations of motion is based on a consistent application of Newton’s 
law of motion, similar to that performed in an earlier study [15]. One of the basic ideas in that 
study was to consider the configuration manifold M  as the total space of a fiber bundle with 
base space AM  and fibers consisting of the Cartesian product manifold 1C kM M M= × ×⋯ , 
where the single dimensional manifolds RM , 1, ,R k= … , are related to the action of the R-th 
motion constraint. Since that study is applicable to scleronomic systems, some modifications 
are necessary before applying it here. First, based on Eq. (89), the velocity components of a 
vector in pT M  and 

Rp RT M  are related by 

 0
0

i i R i
R R Rv c v c v= +    ( 1, ,i n= … )   and   0 0

Rv v= ,    

which can be combined and put in the form of Eq. (65). Moreover, the components i
Rc  and 

0
i
Rc  correspond to special vectors of pT M , for each constraint R , satisfying the conditions 

 1R i
i Ra c =    and   0 0

R i R
i Ra c a= −    ( 1, ,R k= … ; 1, ,i n= … ). (90) 

In addition, a transformation similar to that represented by Eqs. (66) and (67) can be estab-
lished between TM  and RTM , through the ( 1) 2n + ×  matrix 

 0( , ) ( , )

0 1
R R

R

c q c q
N

τ τ 
=  
 

.    

Therefore, the components of the metric and the affinities on the event manifold RM  can be 
determined by an equation similar to Eq. (68), while the Newton covectors on the dual space 

*

Rp RT M  are obtained by application of an equation similar to Eq. (76), with form 

 
0

0 , 0 ,0 0

0 0 0
0 00 0 0 0 0 0 0 00

( ) ( ) ( )

( ) .

R R R R R R
R RR R R RR R RR RR RR R

R R R R
RR R RR R RR R R R R R R

h g v g v g v g g g v v

g g g g v g g f

= + + + − Λ + Λ

− Λ + Λ + Λ + Λ − Λ − Λ −
             

Employing the connection compatibility condition and performing simple mathematical oper-
ations, the last expression can eventually be put in the form 

 0( )R R R
R RR R RR RR Rh m m c k fλ λ λ= + + + −iɺ ɺ . (91) 

The quantity Rλ  represents the spatial coordinate of the two dimensional manifold RM . Also, 
in the last equation and in the sequel, the convention on repeated indices does not apply to 
index R , while 

i j
RR RR R i j Rm g c g c≡ = ,  0 0 0 0( )i j

R R R i j R im g c g c g≡ = + ,  ,0
ii j i j

RR R R R i j Rj

f
c c c c g c

v

∂
= − −

∂
,  ,

i j
RR R i j Rk c f c= −    

and 

 ,0 0 0( )i i j
R R i R i j R if c f c g c g= + + . (92) 

Following the analysis presented in [15], by incorporating the above modifications into 
the constraint equations and omitting the details, the equations of motion can be put in the 
form 

 * *
M Ch h=
ɶ ɶ

 (93) 

on manifold M , with 
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 * i
M ih h e=
ɶ ɶ

,    

where ih  is given by Eqs. (35) and (36), while 

 *

1

k R i
C R iR

h h a e
=

=∑
ɶ ɶ

,    

with Rh  given by Eq. (91). Next, substitution of the last two equations in Eq. (93) leads even-
tually to the following set of equations of motion on the original configuration manifold M  

 
0 0 0

0 0 0 00 0 0 0

0
0 0 0 00 01

( ) ( ) ( )

[( ) ],

j j k j
i j i j i k j i k j i j i i j i j

k R R R R
i i i i RR R RR RR RR

g v g g g v v g g g g v

g g f a m m c k fλ λ λ
=

+ − Λ + Λ + Λ + Λ + Λ + Λ

+ Λ + Λ − = + + + −∑

i ℓ ℓ ℓ

ℓ ℓ ℓ

ℓ i

ℓ

ɺ ɺ
 (94) 

where 

, ,0( ) ( ) ( )j j j
i j i j i jg v g v v g v= +i ℓ

ℓ
   and   , ,0( ) ( ) ( )R R R R

RR RR R RRm m mλ λ λ λ= +iɺ ɺ ɺ ɺ .             

The additional information needed for a complete mathematical formulation is obtained 
by incorporating an appropriate form of the k  equations of the constraints. In particular, pro-
ceeding in a manner similar to that followed in previous work [15], a second order ordinary 
differential equation (ODE) is obtained for each holonomic constraint, with form 

 ( ) 0R R R
RR RR RRm c kφ φ φ+ + =iɺ ɺ , (95) 

which forces both Rφɺ  and Rφ  to become zero eventually. Likewise, each nonholonomic con-
straint gives rise to a scalar ODE with form 

 ( ) 0R R
RR RRm cψ ψ+ =i
ɺ ɺ , (96) 

causing Rψɺ  to become zero. 
Next, by introducing the matrix notation 

1( )n Tq q q= ⋯ ,   1( )k Tλ λ λ= ⋯ ,   1( )n Tv v v= ⋯    and   [ ]i jM g= , 

Eq. (94) can be put in the following general form 

 ( ( , ) ) ( , , ) ( , )[( ) ( , , )]TM q t v h q v t A q t M h tλ λ λ+ = +i iɺ ɺ . (97) 

The array ( , , )h q v t  includes all the terms in Eq. (94) multiplied by the affinities or originating 

from the components 0ig  of the metric on the event manifold M , together with the applied 

forces if . Likewise, the elements of the diagonal matrix 11( )kkM diag m m= ⋯  and the array 

0h C K m fλ λ≡ + + −ɺ ɺ , 

including the diagonal matrices 11( )kkC diag c c= ⋯  and 11( )kkK diag k k= ⋯  and the ar-

rays 0 10 0( )T
km m m=ɺ ɺ ɺ⋯  and 1( )T

kf f f= ⋯ , are determined through application of Eq. 

(92). 
In summary, Eq. (94) furnishes a set of n  second order ODEs. These equations together 

with Eqs. (95) and (96) form a set of n k+  second order ODEs in the n k+  unknown coordi-
nates iq  and Rλ , describing the behavior of mechanical systems with an arbitrary (but finite) 
number of coordinates, possessing a time dependent original configuration manifold and be-
ing subject to time dependent and acatastatic motion constraints. In general, solution of these 
equations can only be achieved by numerical means, after applying a suitable numerical dis-
cretization [20, 25]. For the scleronomic case, it is easy to verify that these equations are sim-
plified considerably and become identical with those presented in [15]. The ODE form of the 
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set of equations derived is associated with several advantages over formulations leading to 
sets of algebraic-differential equations (DAEs) [2, 11]. It also presents advantages over previ-
ous formulations leading to an ODE form after elimination of the redundant coordinates or the 
Lagrange multipliers from the equations of motion, since this is done at the expense of violat-
ing the motion constraints at the lower kinematical levels [2, 15]. Finally, another advantage 
of the present approach is that the affinities are independent and not derived from the metric 
components (i.e., the connection is not necessarily metric compatible). This allows for the 
most general and consistent derivation of the equations of motion [19]. 

8 EXAMPLES 

Two examples are presented in this section, illustrating theoretical aspects investigated in 
the previous sections. The first refers to motion of a constrained particle, with attention on 
recognizing when a constraint is scleronomic or rheonomic. Then, the problem of the rolling 
motion of a sphere over a rotating table is re-examined, by employing the scleronomicity con-
ditions developed in Section 6. 

8.1 Spherical pendulum with a moving end 

Consider the spatial motion of a particle with mass m . The unconstrained motion is de-
scribed by three coordinates ix  with respect to an inertial Cartesian coordinate frame X . Then, 
the components of the metric tensor and the affinities can be easily determined for both the 
configuration manifold 3M E=  and the corresponding event manifold 3 3E E= ×R . The parti-
cle motion is constrained by a rigid bar with negligible mass and length L , as shown in Fig. 5. 
The particle is located at one end of the bar, while the other end (point P) moves along the 
axis 3Ox  with a known displacement history 

 ˆ( ) cosP Px t x tω= . 

This is represented by a holonomic constraint with equation 

 1 1 2 2 2 3 2 2( , ) ( ) ( ) ( ( )) 0Px t x x x x t Lφ = + + − − = , (98) 

which by differentiation with respect to time can be put in the general form of Eq. (89), with 

 1 1 2 3( , ) (2 2 2( ( )))Pa x t x x x x t= −
ɶ

   and   1 3
0( , ) 2( ( )) ( )P Pa x t x x t x t= − − ɺ . 

Νext, consider the motion of the particle with respect to a new set of coordinates, corre-
sponding to a new frame S . This frame has origin at point P and axes remaining parallel to 
the axes of frame X . Due to the constraint by Eq. (98), the position of the particle can be fully 
determined by the angular spherical coordinates 1θ  and 2θ , as depicted in Fig. 5. Specifically, 
the following relations are established between the original Cartesian coordinates and these 
spherical coordinates 

 1 1 2sin cosx L θ θ= ,   2 1 2sin sinx L θ θ=    and   3 1 ˆcos cosPx L x tθ ω= + . (99) 

Then, the velocity transformation (66) is set up with extended matrix N  in the form of Eq. 
(67), with 

 

1 2 1 2

1 2 1 2

1

cos cos sin sin

cos sin sin cos

sin 0

L L

N L L

L

θ θ θ θ
θ θ θ θ

θ

 −
 =  
 − 

   and   
0

0

ˆ sinPx t

υ
ω ω

 
 =  
 − 

. 

Substituting the above into Eq. (69), the metric matrix is determined in the form 
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2 1

2 2 1

1 2
00

ˆ0 sin sin

0 sin 0

ˆ ˆsin sin 0 ( sin )

P

A

P P

mL m Lx t

g mL

m Lx t g m x t

ω θ ω
θ

ω θ ω ω ω

 
 =  
 + 

. 

This result shows that the basis obtained in AM  is not standard. In addition, it is found that 

there exist both pure and mixed affinities, which are expressions of coordinates 1θ , 2θ  and t . 
 

 
 

Fig. 5 A spherical pendulum with a translating end 
 

Next, the emphasis was placed in investigating whether these effects are removable by a 
change of basis in AM . Using integrability conditions, the following change of coordinates 

 
1ˆ ˆ1 1 cos2 tan ( )eθ ωτθ − += ,   2 2ˆθ θ=    and   ˆτ τ= ,           (100) 

was found to lead to a coordinate basis where the new metric matrix is block diagonal. In fact, 
the metric matrix in the new coordinate system is obtained in the 3 3×  diagonal form 

 2 1 2 1 1 2
00

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( sin ( , ) sin ( , ) [ cos ( , )sin ] )A Pg diag mL mL g m x tη θ τ η θ τ ω η θ τ ω= + , 

with 

 
1ˆ ˆ1 1 cosˆ ˆ( , ) 2 tan ( )eθ ωτη θ τ − += . 

However, all its elements have a mixed dependence on both the spatial coordinate 1θ̂  and the 
temporal coordinate τ̂ . Similar findings resulted in evaluating the corresponding affinities. 
These imply that conditions (13), or alternatively Eqs. (85)-(88), do not hold in the case ex-
amined. Therefore, the manifold AM  is rheonomic. Since the original manifold M  is sclero-
nomic, the motion constraint expressed by Eq. (98) is rheonomic, in accordance with the 
classical definitions [12]. 
Νext, consider the motion of the particle with respect to a new Cartesian coordinate frame 

Y , with coordinates iy  ( 1,2,3i = ), in the same configuration manifold M . In particular, the 
origin of this frame is point P, while its axes remain parallel to the corresponding axes of 
frame X , as shown in Fig. 5. Then, the two sets of coordinates are related by 

 1 1x y= ,   2 2x y=    and   3 3 ˆ cosPx y x tω= + .           (101) 

In the new coordinate system, the motion constraint appears also in a holonomic form 

 1 1 2 2 2 3 2 2( , ) ( ) ( ) ( ) 0y t y y y Lφ = + + − = .           (102) 
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However, in contrast to Eq. (98), this now appears in a scleronomic catastatic form, according 
to common terminology [12, 23]. In order to explain the discrepancy with Eq. (98), it is useful 
to view Eq. (101), together with ˆt t= , as a coordinate transformation in the original event 
manifold 3M E= , similar to that expressed by Eq. (39). Then, the Jacobian is obtained in the 
form of Eq. (42), with 

 3J I=    and   ˆ(0 0 sin )TPc x tω ω= − . 

Consequently, evaluation of the metric in the new basis of 3E  through Eq. (48) yields 

 3ĝ g mI= = ,   
0̂

ˆ(0 0 sin )TPg m x tω ω= −    and   2
ˆ ˆ 0000

ˆ( sin )Pg g m x tω ω= + . 

As expected, based on the fact that 0c ≠ , the new basis in pT M  is not standard, since ̂
0

0g ≠  

for ˆ 0Pxω ≠ . Moreover, all the affinities on M  are found to be equal to zero, exception for 

 3̂ 2
ˆ ˆ00

ˆ cosPx tω ωΛ = .    

Therefore, despite the fact that it does not involve time in an explicit manner, the motion con-
straint expressed by Eq. (102) is in fact rheonomic, since the configuration manifold M  is 
scleronomic, while the constrained manifold AM  is rheonomic, as shown above. This result 
resolves the difference observed in the time dependence appearing in the constraint equations 
(98) and (102). Furthermore, it demonstrates that the classical classification of constraints on 
a mechanical system with configuration manifold possessing time dependent geometric prop-
erties is accurate only when the components involved in the constraint equations are ex-
pressed with respect to standard bases in both M  and AM . 

8.2 Rolling of a sphere on a rotating table  

Next, consider the motion of a rigid sphere, rolling without slipping on a horizontal table 
[9]. This table rotates with an angular speed ( )tΩ  with respect to a fixed vertical axis 3Ox , as 
shown in Fig. 6. The sphere has radius r , mass m  and a known mass moment of inertia J  
with respect to any axis passing through its center of mass C. The coordinate system F , 
shown in Fig. 6, is fixed (inertial) and the angular velocity of the table is 

 3( ) ( )T t t eω = Ω .           (103) 

 
 

Fig. 6 Rigid sphere rolling over a rotating table 
 

First, the position of the sphere is determined at any time t  by the generalized coordinates 

 ( ) ( )T T T
Cq t x θ= ,           (104) 

where the arrays 
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 1 2 3( )T
Cx x x x=    and   1 2 3( )Tθ θ θ θ=  

represent the position of the center of mass and the orientation of the sphere, respectively, 
with respect to the inertial reference frame F . Due to the symmetry of the sphere, the classi-
cal Cartesian rotation vector is selected for the description of its rotational motion [11]. The 
coordinates ( )q t  represent a point on a product configuration manifold 3 (3)M M= ×R , with 

dimension n=6 [18]. Then, the motion of the system can be viewed as the motion of a point 
along a specific path ( )tγ  on manifold M , with tangent vector given by 

 ( ) ( )T T T
Cv t v ω= ,    

where 

 1 2 3( )T
Cv v v v=    and   1 2 3( )Tω ω ω ω= ,            

with i iv x= ɺ  ( 1,2,3i = ). Moreover, the quasi-velocities ω  are related to the true angular veloci-

ties θɺ  through the corresponding tangent operator ( )T θ  at θ  [11], by 

 ( )TTω θ θ= ɺ .    

Then, based on the kinetic energy of the sphere, the metric of M  is found in the block diago-
nal form 

 3

3

0
[ ]

0i j

mI
g g

JI

 
= =  

 
.           (105) 

Moreover, since the manifold M  examined is a product manifold, its affinities appear in 
product form as well. In particular, all the affinities related to the translational part can be se-
lected to be zero, while the non-zero affinities related to the rotational part of the motion can 
be chosen to take the following constant values in a body frame 

 1 1 2 2 3 3
23 32 31 13 12 21 1R R R R R RΛ = − Λ = Λ = − Λ = Λ = − Λ = .           (106) 

Moreover, all the mixed affinities are zero [18]. Then, the affinities can be evaluated in the 
coordinate system used by employing the rotation matrix exp( )R θ= ɶ  as a transformation ma-
trix in Eq. (46). 

Next, due to the constraints imposed on the motion of the sphere, there appear 3k =  con-
straint equations, so that the dimension of manifold AM  is just 3m= . Specifically, the first 
constraint is holonomic and guarantees that the center of the sphere stays on a constant height 

 1 3 1 30 0x r vφ φ= − = ⇒ = =ɺ .           (107) 

In addition, the rolling condition of the sphere leads to two more constraints, namely 

 2 1 2 2 0x r xψ ω= − + Ω =ɺ ɺ    and   3 2 1 1 0x r xψ ω= + − Ω =ɺ ɺ ,           (108) 

which are nonholonomic and acatastatic. Therefore, the 3 6×  matrix of constraints A and the 
vector a  appearing in Eq. (64) take the form 

 
0 0 1 0 0 0

1 0 0 0 0

0 1 0 0 0

A r

r

 
 = − 
  

   and   2

1

0

( , )a q t x

x

 
 = Ω 
 −Ω 

.           (109) 
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Based on these results, one can determine the components of the special constraint vectors Rc  

and 0Rc  by Eq. (90). For instance, a possible choice for these vectors is the following 

 1 (0 0 1 0 0 0)Tc = ,   2 (0 0 0 0 1 0)Tc r= − ,   3 (0 0 0 1 0 0)Tc r= , 

 10 0c = ,   2
20 (0 0 0 0 0)Tc x r= Ω    and   1

30 (0 0 0 0 0)Tc x r= Ω . 

Consequently, application of the first two relations in Eq. (92) leads to determination of the 
elements of the diagonal mass matrix M  and the vector 0m  in the form 

 11m m= ,   2
22 33m m J r= = ,   10 0m = ,   2 2

20m x J r= −Ω    and   1 2
30m x J r= Ω .             

Likewise, given a set of applied forces acting on the sphere, which can be represented by a 
resultant force ( , , )f q q tɺ  and moment ( , , )Cm q q tɺ  with respect to its center C [21], the elements 

RRc  and RRk  of the diagonal damping and stiffness matrices C  and K , as well as the corre-

sponding forcing terms Rf  ( 1, ,3R= … ) are also evaluated by applying Eq. (92). 
Collecting all the above and substituting in Eq. (94) leads to the equations of motion of 

the constrained system examined on the original configuration manifold in matrix form. The 
set of coordinates q  is given by Eq. (104), while the Lagrange multipliers 1 2 3( )Tλ λ λ λ=  

correspond to the set of constraints (107) and (108). In the present formulation, the six ODEs 
represented by Eq. (97) are accompanied by a constraint equation in the form of Eq. (95) and 
two constraint equations in the form of Eq. (96), where the terms 1φ , 1φɺ , 2ψɺ  and 3ψɺ  are taken 
from Eqs. (107) and (108). This leads to a system of 9 second order ODEs for the 9 unknowns, 
q  and λ , of the problem. 

Finally, a simple inspection of Eqs. (105) and (106) reveals that the original configuration 
manifold M  is scleronomic. Moreover, based on Eq. (109), an appropriate 7 4×  transfor-
mation matrix N  is first determined in the form of Eq. (67), so that the 4 4×  metric matrix 
corresponding to the event constrained manifold AM  is determined by application of Eq. (69) 
in the diagonal form 

 2 2 2 1 2 2 2 2
00(( ) ( ) [( ) ( ) ] ( ))Ag diag m J r m J r J g mJ mr Jθ θ= + + + Ω + + , 

where αθ  (with 1, ,4α = … ) is a coordinate set on AM . This corresponds to a standard basis. 
Evaluation of the corresponding structure constants shows that they are all zero, except for 

 1 1 2 2 2
02 20 10 01( )c c J mr J c c= − = Ω + = = − . 

This indicates that the basis selected in AM  is not holonomic. Therefore, it is more convenient 
here to apply the scleronomicity checks in the coordinate invariant form presented in Section 
6 in order to judge safely whether the constrained manifold is rheonomic or not. Indeed, ap-
plication of Eq. (84) to the example considered reveals that the first condition on the metric is 
satisfied identically. However, evaluation of the Lie derivative required by the second condi-
tion in the same equation shows that there appears the following non-zero term 

 2 2
00( ) 2 ( )h TL g mJ mr J= Ω + ,    

which becomes zero only when 0Ω = , corresponding to a stationary table. This demonstrates 
that Eq. (84) is violated when 0Ω ≠  and reveals that manifold AM  is rheonomic, indeed. 
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9 SYNOPSIS 

This study was devoted to mechanical systems possessing configuration manifolds with 
time dependent geometric properties and being subject to additional acatastatic equality mo-
tion constraints involving time explicitly. This time dependence, in conjunction with the need 
to keep invariant the form of Newton’s law in different manifolds, led to an introduction and 
consideration of the corresponding event manifold. These time dependent terms were shown 
to be introduced by either a basis transformation in the event manifold or by additional mo-
tion constraints. Moreover, the time terms introduced by a basis transformation are artificial 
and can be removed from the equations of motion. These results were reinforced and en-
hanced further by exploiting some concepts of foliation theory. Apart from providing useful 
clarifications on the geometry of the motion, this theory was also employed in establishing a 
set of coordinate invariant conditions for judging whether a configuration manifold is sclero-
nomic. Finally, the equations of motion were obtained in the original configuration manifold, 
in the presence of constraints. Also, some of the analytical findings were illustrated by exam-
ining two systems exhibiting basic features of the class of systems examined. 

The results presented in this work are applicable and cover a wide range of engineering 
systems. To obtain them, some useful tools from differential geometry were employed. In re-
turn, apart from providing a nice interpretation of the key concepts, these tools helped in per-
forming a consistent application of Newton’s law to manifolds with general time dependent 
geometric properties. Eventually, this led to a system of second order ODEs, which are much 
easier to handle than sets of DAEs [2, 11]. In addition, the final set of equations of motion 
was obtained on the original configuration manifold, whose geometric properties are not af-
fected by the presence of the additional motion constraints. Also, these equations involve 
properties of the corresponding event manifold. These provide fertile ground for developing 
new advanced formulations, leading to more accurate, effective and robust numerical methods 
for solving these equations, by enhancing available techniques [6, 13, 20]. 
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Abstract. In this work, a computational framework is presented in order to estimate the 

optimal values of the linear and nonlinear components of large scale dynamical systems using 

vibration measurements. An extensible framework for Bayesian Uncertainty Quantification 

and Propagation of complex and computationally demanding physical models, was connected 

in an efficient way with a numerical code leading to an automated determination of dynamic 

response of linear and nonlinear mechanical systems. The effect of correlation in the 

prediction error models postulated in the Bayesian model selection and parameter estimation 

technique is investigated. The measurements are taken to be either response time histories or 

frequency response functions. The framework was applied in two complex mechanical systems. 

First examined a lightweight bicycle frame with the nonlinear front suspension component. In 

this system uncertainty models of the linear and nonlinear suspension components are 

identified using the experimentally obtained transmissibility functions. These uncertainties, 

integrated with uncertainties in the linear frame of the bicycle, are propagated in order to 

estimate the uncertainties for the combined system. The second system examined include a 

two stage gear transmission system. In this model the housing of the gearbox is modeled by 

using finite elements, while the essential effects of the gear-pair, the bearings and the shafts 

are taken into account via a lumped nonlinear mathematical model. This model possesses 

strongly nonlinear characteristics, accounting for gear backlash, meshing stiffness, 

transmission error properties and bearing stiffness nonlinearities. In order to identify the 

values of the parameters, accelerations time histories are used, obtained during various 

operating conditions of the gearbox. These measurements are recorded from a special 

experimental device (Drivetrain Prognostics Simulator). The computational challenges are 

outlined and the effectiveness of the framework on these two complex mechanical systems is 

demonstrated. 
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1 INTRODUCTION 

The main objective of the present work is to demonstrate the advantages of applying 

appropriate numerical and experimental methodologies in order to identify, update and 

optimize the model parameters and develop a high fidelity finite element model of both linear 

and non-linear components, comprising the whole assembly of the examined structure. In this 

process, many issues are taken into account, related to the development of FE model, the 

experimental modal analysis procedure and the development of effective computational 

model updating techniques.   

The equations of motion of mechanical systems with complex geometry are first set up, 

applying classical finite element techniques. As the order of these models increases, the 

existing numerical and experimental methodologies for a systematic determination of their 

dynamic response become inefficient to apply. Therefore, there is a need for the development, 

improvement and application of new suitable methodologies for investigating dynamics of 

large-scale mechanical models in a systematic and efficient way. Moreover, in order to 

optimize the FE model of a structure, structural model updating methods [11], have been 

proposed in order to reconcile the numerical (FE) model, with experimental data. Structural 

model parameter estimation based on measured modal data (e.g. [4-10]) are often formulated 

as weighted least-squares estimation problems in which metrics, measuring the residuals 

between measured and model predicted modal characteristics, are build up into a single 

weighted residuals metric formed as a weighted average of the multiple individual metrics 

using weighting factors. Standard gradient-based optimization techniques are then used to 

find the optimal values of the structural parameters that minimize the single weighted 

residuals metric representing an overall measure of fit between measured and model predicted 

modal characteristics. Due to model error and measurement noise, the results of the 

optimization are affected by the values assumed for the weighting factors. 

In this work, the applicability and effectiveness of the updating methods, coupled with 

robust, accurate and efficient finite element analysis software are applied on linear and non-

linear components of a whole structure using experimentally identified modal data. The 

framework was applied in two complex mechanical systems. First examined a lightweight 

bicycle frame with the nonlinear front suspension component. The second system examined 

include a two stage gear transmission system. In this work was selected to be presented in 

detail only the results of the first system. More specifically, a lightweight and geometrically 

complex bicycle frame as well as the suspension-fork subassembly of a real bicycle are 

examined, comprising the linear and nonlinear subsystems of the whole bike assembly. 

Furthermore, the suspension-fork subassembly is consisted of two linear parts (upper and 

lower fork part) connected with two springs and two seals which impose strong nonlinearity 

in the system. Issues related to estimating unidentifiable solutions [12-15] arising in FE model 

updating formulations are also addressed. A systematic study is carried out to demonstrate the 

effect of model error, finite element model parameterization, number of measured modes and 

number of mode shape components on the optimal models and their variability. It is 

demonstrated that the updated finite element models obtained using measured modal data may 

vary considerably. 

The organization of this paper is as follows. First in the first section, the theoretical 

formulation of finite element model updating based on modal characteristics and frequency 

response functions is briefly presented. In the second section, the experimental device is 

introduced. First, a quick presentation of the digitization of the bicycle components leading to 

the final parametric CAD model is shown with the corresponding detailed FE models. Next 

presented the experimental modal analysis procedure followed in order to identify the modal 
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characteristics and the FRF’s. Finally, the parametric studies on updating the linear and 

nonlinear FE models of the bicycle components, with the predictions of frequency response 

functions and time histories, based on the optimal models, are presented in the fourth section. 

Conclusions are summarized in the fifth section. 

2 FINITE ELEMENT MODEL UPDATING METHODS 

2.1 Modal Residuals 

Let ˆˆ{ , , 1, , }oN

r rD R r m     be the measured modal data from a structure, consisting of 

modal frequencies ˆ
r  and mode shape components ˆ

r  at oN  measured DOFs, where m  is the 

number of observed modes. Consider a parameterized class of linear structural models used to 

model the dynamic behavior of the structure and let NR   be the set of free structural model 

parameters to be identified using the measured modal data. The objective in a modal-based 

structural identification methodology is to estimate the values of the parameter set   so that 

the modal data 0{ ( ),  ( ) , 1, , }N
r r R r m       predicted by the linear class of models at the 

corresponding 0N  measured DOFs best matches the experimentally obtained modal data in 

D . For this, let 

 2 2

2

ˆ( ) ( )( )
( )    and   ( )

ˆ

ˆ
ˆr r

r r r
r r

r r

 

    
   



 





  (1) 

be the measures of fit or residuals [16] between the measured modal data and the model 

predicted modal data for the r -th modal frequency and mode shape components, respectively, 

where 2 T|| ||z z z  is the usual Euclidean norm, and 
2ˆ( ) ( ) / ( )T

r r r r        is a normalization 

constant that guaranties that the measured mode shape ˆ
r  at the measured DOFs is closest to 

the model mode shape ( ) ( )r r     predicted by the particular value of  . To proceed with the 

model updating formulation, the measured modal properties are grouped into two groups. The 

first group contains the modal frequencies while the second group includes the mode shape 

components for all modes. For each group, a norm is introduced to measure the residuals of 

the difference between the measured values of the modal properties involved in the group and 

the corresponding modal values predicted from the model class for a particular value of the 

parameter set . For the first group, the measure of fit 1( )J  is selected to represent the 

difference between the measured and the model predicted frequencies for all modes. For the 

second group, the measure of fit 2( )J  is selected to represent the difference between the 

measured and the model predicted mode shape components for all modes. Specifically, the 

two measures of fit are given by  

 2 2 2
1 2

1 1 1

( )  and   ( ) 1 ( )( ) ( )
r r

m m m

r
r r r

J J MAC       
  

        (2) 

where ˆ ˆ( ) ( ) /T
r rr r r rMAC        is the Modal Assurance Criterion [23] between 

experimentally identified and estimated mode shapes for the r -th mode. Alternative measures 

of fit can easily be used and found in literature [18-22]. 
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2.2 Response Residuals 

Derived from the MAC for any measured frequency point, k  a global correlation 

coefficient may be used [17, 24]: 

    

         

2

( ) ( )
( )

( ) ( ) ( ) ( )

H

X k A k

s k H H

X k X k A k A k

H H
x

H H H H

 


   
  (3) 

where  ( )X kH  and  ( )A kH   are the experimental (measured) and the analytical (predicted) 

response vectors at matching excitation - response locations. As the MAC value, ( )s kx   

assumes a value between zero and unity and indicates perfect correlation with ( ) 1s kx   . For 

( ) 0s kx   , no correlation exists. Similar to the MAC, ( )s kx  is unable to detect scaling errors 

and is only sensitive to discrepancies in the overall deflection shape of the structure. To 

emphasis this characteristic, ( )s kx 
 
is accordingly called the shape correlation coefficient 

[24]. 

The lack of sensitivity to scaling of the shape correlation coefficient does not allow the 

identification of identical FRFs. This insufficiency becomes even more dramatic if just one 

measurement and its corresponding prediction are correlated. In this case, the column vectors 

reduce to scalars and    ( ) ( )A k X kH k H  is always satisfied (constant k may be complex), 

therefore leading to 1sx 
 
across the full frequency spectrum for uncorrelated FRFs.  

As a result, a supplementary correlation coefficient ( )a kx   is proposed by targeting the 

discrepancies in amplitude. The amplitude correlation coefficient is defined as:  

    

         
2 ( ) ( )

( )
( ) ( ) ( ) ( )

H

X k A k

a k H H

X k X k A k A k

H H
x

H H H H

 


   



 (4) 

where the response vectors are identical to those used for ( )s kx  . As for the shape correlation 

coefficient, ( )a kx   is defined to lie between zero and unity. This time, however, the 

correlation measure is more stringent and only becomes unity if    ( ) ( )A k X kH H  . That is 

to say, all elements of the response vectors must be identical in both phase and amplitude 

even if only one measurement is considered. Similarly to modal residuals, two measures of fit 

are proposed using ˆ( )s rx 
 
and ˆ( )a rx   which correspond to the identified resonant frequencies 

of the system:  

 2 2
3 4

1 1

ˆ ˆ1 ( , )   and   1 ( , )( ) ( )
m m

s r a r
r r

J x J x     
 

           (5) 

2.3 Weighting Residuals Method 

Minimizing at global minimum the following single objective, traditionally solves the 

parameter estimation problem:  

 1 1 2 2 3 3 4 4;( ) ( ) ( ) ( ) ( )J w J J J Jw w w w         (6) 

formed by the four objectives ( )iJ , using the weighting factors 0iw  , 1,2,3,4i , with 

1 2 3 4 1w w w w    . The objective function ;( )wJ  represents an overall measure of fit between 

the measured and the model predicted characteristics. The relative importance of the residual 

errors in the selection of the optimal model is reflected in the choice of the weights. The 
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results of the identification depend on the weight values used. The optimal solutions for the 

parameter set   for given w  are denoted by ˆ( )w  [12-15]. 

3 EXPERIMENTAL APPLICATION 

The model updating methodologies are applied in order to update the FE model of a real 

bicycle. The bicycle consisted of the main frame, which presented in Figure 1 and is made of 

aluminum and from the front suspension which also consisted of two main parts which are 

presented respectively in Figures 3 and 4. The lower part of the fork, has the same material 

properties with the bicycle frame, while the upper fork part, consisted of steel tubes which are 

connected with a solid aluminum part. The thicknesses of the cross sections of the main frame 

as long as the lower part of the fork can vary along their length.  

3.1 Digitization and FE Models 

First, using a 3D Laser Scanner in order to collect, process and design the CAD model. 

Next, the geometry of the bicycle frame is discretized mainly by shell elements (triangular) 

and solid elements (tetrahedral). The total number of DOFs was 1,000,000. Similarly, the 

upper part of the fork was modeled with shell (triangular and quadrilateral) and solid 

(tetrahedral) elements resulting to 125,000 DOFs and the lower part of the fork was modeled 

only with solid (tetrahedral) elements resulting to 205,000 DOFs. The detailed FE models are 

presented in Figures 2, 3 and 4. For the development and solution of the finite element models 

appropriate software was used [25, 26].  

  

Figure 1: Bicycle frame Figure 2: Finite element model of the frame 

   

Figure 3: Upper (part 1) of the suspension-fork Figure 4: Lower (part 2) of the suspension-fork 
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3.2 Experimental Modal Analysis 

After developing the nominal finite element models, an experimental modal analysis of the 

frame and fork parts, was performed to quantify its dynamic characteristics. The frame and 

fork parts were hung up using a crane and straps, to approximate free-free boundary 

conditions for the test. First, all the necessary elements of the FRF matrix required for 

determining the response of the substructures were determined by imposing impulsive loading 

[5-9]. The measured frequency range was 0-2048 Hz, which includes the analytical frequency 

range of interest for the frame, 0-600 Hz, as well as for the fork parts, 0-500 Hz. An initial 

investigation indicated eleven natural frequencies for the frame and four for the fork parts, in 

this frequency range. A schematic illustration of the experimental arrangement is presented in 

Figure 5. In these figures, the locations and directions of acceleration measurements are 

presented, applying an impulsive load in all directions and at several locations. Based on the 

measured FR functions, the natural frequencies and the damping ratios of the substructures 

were estimated [10, 11, 15]. The identified mode shapes have also been recorded so that they 

can be used for updating the finite element models. 

   

Figure 5: Accelerometer locations on main frame and fork parts 1 and 2 

As an outcome of the above two procedures, in the Table 1 summarized the modal analysis 

results for the main frame, while similar results presented for the fork parts 1 and 2 in the 

Table 2. 

Mode

Identified 

Modal 

Frequency

Nominal FE 

Predicted 

Modal  

Frequency

Difference 

between 

Identified and FE 

Predicted Modal 

Frequencies

Identified 

Modal 

Damping 

Ratio

1 84.88 96.46 12.01 0.21

2 108.29 118.72 8.78 0.19

3 270.69 319.15 15.19 0.12

4 311.96 357.30 12.69 0.08

5 315.15 358.72 12.15 0.13

6 368.01 414.69 11.26 0.13

7 425.73 491.11 13.31 0.12

8 450.25 494.05 8.87 0.16

9 465.19 530.79 12.36 0.16

10 484.45 545.44 11.18 0.35

11 504.86 575.88 12.33 0.23

][ HzrE [ ]
FErN Hz 100%FE

FE

rN rE

rN

 




(%)rE

 

Mode

Identified 

Modal 

Frequency

Nominal FE 

Predicted 

Modal  

Frequency

Difference 

between 

Identified and FE 

Predicted Modal 

Frequencies

Identified 

Modal 

Damping 

Ratio

1 188.26 168.18 11.94 0.15

2 268.79 259.38 3.63 0.11

3 419.36 453.39 7.51 0.39

4 452.13 499.42 9.47 0.43

1 79.65 80.88 1.51 0.48

2 86.21 94.45 8.72 0.15

3 425.04 429.20 0.97 0.12

4 497.25 553.03 10.09 0.11

FORK PART 1

FORK PART 2

][ HzrE [ ]
FErN Hz 100%FE

FE

rN rE

rN

 




(%)rE

 

Table 1: Modal frequencies and modal damping 

ratios of the frame 

Table 2: Modal frequencies and modal damping 

ratios of the two parts of the suspension-fork 

A2 A1 

A3 

A4 A5 

A6 
A7 

A8 
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More specifically, the first column of Table 1 presents the values of the lowest natural 

frequencies ( )rE , while the corresponding damping ratios are included in the fourth column. 

In the same table, the second column presents the values of the natural frequencies obtained 

from the analysis of the nominal finite element model ( )
FErN  and the third column compares 

these frequencies with the corresponding frequencies obtained by the experimental data. The 

errors determined between the nominal FE model and the experimental measurements are not 

insignificant, indicating that the FE model updating process is necessary.   

4 FINITE ELEMENT MODEL UPDATING 

4.1 Linear FE model parameterization 

The parameterization of the finite element models is introduced in order to demonstrate the 

applicability of the proposed finite element model updating method. The parameterized 

models are consisted of thirteen, two and four parts, for the frame, fork part 1 and fork part 2, 

respectively, as shown in Figure 6. The first four parts (P1, P2, P3 and P4) of the frame are 

modeled with solid elements, while the remaining nine parts (P5-P13) are modeled with shell 

elements. Fork part 1 is modeled with shell and solid elements for P1 and P2 respectively and 

fork part 2 is modeled solely with solid elements. The thickness of the shell elements, the 

Young’s modulus and the density are used as design variables. Thus, the final numbers of the 

design parameters are thirty-five (35), five (5) and eight (8) variables for the frame, fork part 

1 and part 2 respectively.  

   

Figure 6: Parts of the parameterized FE Models of the frame and suspension- fork parts 

The FE models of the main frame and the fork parts are updated using the identified modal 

frequencies and mode shapes shown in Tables 1 and 2. The identified mode shapes include 

components at all sensor locations. Additionally, we define as design response the total 

weight of the model, in order to be taken into consideration during the optimization process. 

4.2 Linear FE Model Updating Results 

The results from the FE model updating method are shown in Tables 3 and 4 for the frame 

and fork parts respectively. A comparison between identified ( )rE and optimal FE predicted 

modal frequencies ( )
FErO  is also presented.  

The FRF predicted by the optimal FE model (black dashed line) for the frame are 

compared in Figure 7 with the FRF computed directly from the measured data (red 

continuous line) at two indicative measurement locations in the frequency range [50Hz, 

550Hz]. The FRF of the initial nominal model (blue dashed dot line) is also shown in these 
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figures to be inadequate to represent the measured FRF. Compared to the FRF of the initial 

nominal model, it is observed that the updated optimal model tend to considerably improve 

the fit between the model predicted and the experimentally obtained FRF close to the 

resonance peaks. 

Mode

Identified 

Modal 

Frequency

Optimal FE 

Predicted 

Modal  

Frequency

Difference 

between Identified 

and FE Predicted 

Modal Frequencies

1 84.88 84.89 0.01

2 108.29 108.29 0.00

3 270.69 270.61 0.03

4 311.96 312.16 0.06

5 315.15 315.47 0.10

6 368.01 368.01 0.00

7 425.73 426.01 0.07

8 450.25 449.51 0.17

9 465.19 465.59 0.09

10 484.45 484.38 0.02

11 504.86 505.23 0.07

[ ]rE Hz [ ]
FErO Hz 100%FE

FE

rO rE

rO

 





 

Mode

Identified 

Modal 

Frequency

Optimal FE 

Predicted 

Modal  

Frequency

Difference 

between 

Identified and FE 

Predicted Modal 

Frequencies

1 188.26 188.53 0.14

2 268.79 267.86 0.35

3 419.36 420.83 0.35

4 452.13 452.10 0.01

1 79.65 79.65 0.00

2 86.21 86.21 0.00

3 425.04 425.04 0.00

4 497.25 497.25 0.00

FORK PART 1

FORK PART 2

][ HzrE [ ]
FErO Hz 100%FE

FE

rO rE

rO

 





 

Table 3: Comparison between identified and 

optimal FE predicted modal frequencies for the main 

frame. 

Table 4: Comparison between identified and 

optimal FE predicted modal frequencies for the fork 

parts 1 & 2. 
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Figure 7: Comparison between measured, nominal and optimal FRF in two typical elements of the FRF 

matrix 

5 ANALYSIS OF NON-LINEAR SYSTEM 

The FE model, of the nonlinear subassembly of the suspension-fork, was created 

connecting fork part 1 and 2 with two springs simulating the restoring force ( )rf x  and two 

non-linear bushing elements simulating the damping force ( )df x . The final nonlinear 

suspension FE model with the corresponding lumped model presented in Figure 8. 

In order to identify the parameters of the subsystem, which exhibit strongly nonlinear 

characteristics, a series of experimental trials was performed. In the experimental device 
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shown in Figure 9 two electromagnetic devices are used, at the top and at the bottom of the 

suspension, imposing harmonic excitation with π/2 rad phase difference using 0.2 Hz 

frequency step for three different forcing levels. 

  

Figure 8: FE model of the suspension-fork and 

theoretical lumped model 

Figure 9: Schematic illustration and experimental 

arrangement of suspension sub-assembly 

In Figure 10 depicted the imposed forces 1( )F t  and 2( )F t  for the three different forcing 

levels at 6Hz  which is approximately the resonant frequency of the system, while in 

Figure 11 depicted the acceleration transmissibility functions of measurement location 2, for 

the three different forcing levels. A number of models of the restoring and damping forces, 

say 
r

f  and 
d

f , respectively, were tried for modeling the action of the supports and compared 

with the experimental results. The classic linear dependence of the restoring force on the 

displacement and of the damping forces on the velocity of the support unit was first assumed. 

However, critical comparison with the experimental results using the Bayesian model 

selection framework demonstrated that the outcome was unacceptable in terms of accuracy. 

Eventually it was found that an acceptable form of the restoring forces is the one where they 

remain virtually in a linear relation with the extension of the spring, namely 

 ( )rf x kx  (7) 

while the damping force was best approximated by the following formula 

 2
1

3

( )d

c x
f x c x

c x
 


 (8) 

As usual, the linear term in the last expression is related to internal friction at the support, 

while the nonlinear part is related to the existence and activation of dry friction. More 

specifically, in the limit 3 0c  , the second term in the right hand side of Equation (8) 

represents energy dissipation action corresponding to dry friction. On the other side, in the 

limit 3c   this term represents classical viscous action and can actually be absorbed in the 

first term. 

The results for 1 2 3,  ,   and k c c c  are obtained based on the experimental response spectra 

values for the accelerations of the two suspension components, using the parameters of the 

updated linear parts (1 and 2) of the suspension fork subassembly and the transmissibility 

functions of the support system for three different forcing levels. Let ˆ{ ( ) , 1, , }rN
r rS s R r n    
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be the measured transmissibility functions at rN  measured frequencies where n  is the 

number of involved frequencies. Let 1 1 2 3( , , , )Nk c c c R     be a parameter space, 

corresponding to the linear and nonlinear coefficients of the restoring and damping forces 

respectively. 
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Figure 10: Time-history of the external forces 

applied at a fundamental harmonic frequency 6Hz  
Figure 11: Transmissibility functions of the 

support system for three different forcing levels 

The results for 1 2 3,  ,   and k c c c  are obtained based on the experimental response spectra 

values for the accelerations of the two suspension components, using the parameters of the 

updated linear parts (1 and 2) of the suspension fork subassembly and the transmissibility 

functions of the support system for three different forcing levels. Let ˆ{ ( ) , 1, , }rN
r rS s R r n    

be the measured transmissibility functions at rN  measured frequencies where n  is the 

number of involved frequencies. Let 1 1 2 3( , , , )Nk c c c R     be a parameter space, 

corresponding to the linear and nonlinear coefficients of the restoring and damping forces 

respectively. Similarly to the linear model, the objective is to estimate the values of the 

parameter set   so that the analytical response spectra values, namely the transmissibility 

functions match the experimentally obtained functions estimated in S . In Figure 12, presented 

a comparison in two measured locations, between the numerical nonlinear FE model (red 

line), with the experimental measurements (black line), in harmonic excitation with forcing 

frequency of 6Hz . More specifically, the nonlinear FE model with the estimated values of 

the stiffness and damping properties, was solved with nonlinear transient response analysis. 

The blue line was derived using the equivalent theoretical linear model and is presented also 

for comparison purposes.  

From these results, it arises that the estimation of the values of the parameters is very close 

to the real values, since the theoretical nonlinear model is very close to those of the 

experimental results. 

Finally, in order to test the reliability of the applied methodology, we examine the full 

bicycle model (Fork and frame). More specifically, with the use of two electrodynamic 

shakers imposing base excitation at the wheels locations and measuring the dynamic response 

in several locations in the frame and suspension substructures in the three directions.  
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An illustration of the fixed-free arrangement of the bike on the shakers with acceleration 

measurement locations is presented in Figure 14, while in Figure 13 the finite element model 

of the whole bike assembly is shown. 
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Figure 12: Acceleration time histories at two measured locations in harmonic excitation with frequency 

6Hz   

 

 

A2 
A1 

A3 

A4 

A5 

A6 

A7 

 

Figure 13: FE model of the bike assembly. 
Figure 14: Fixed-free arrangement on electrodynamic 

shakers 

The measured acceleration time histories in the three directions in the locations 1 and 2, 

were imported as base excitation in the finite element model of the system. In Figure 15, 

presented a comparison in three measured locations in the vertical direction, between the 

numerical nonlinear FE model (red line), with the experimental measurements (black line), in 

harmonic excitation with forcing frequency of 6Hz . The blue line was derived using the 

equivalent theoretical linear model and is presented again for comparison purposes.  

From these results, it arises that the full bicycle theoretical nonlinear FE model is very 

close to those of the experimental results.  

Also, in Figure 16, is shown an indicative point of time, of the dynamic response of the full 

nonlinear system. 
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Figure 15: Acceleration time histories at three measured locations in harmonic excitation with frequency 

6Hz   

 

Figure 16: Dynamic response of the nonlinear full FE model in harmonic excitation with frequency 6Hz   

6 SUMMARY 

A computational framework is presented in order to estimate the optimal values of the 

linear and nonlinear components of large scale dynamical systems using vibration 

measurements. An extensible framework for Bayesian Uncertainty Quantification and 

Propagation of complex and computationally demanding physical models, was connected in 

an efficient way with a numerical code leading to an automated determination of dynamic 

response of linear and nonlinear mechanical systems. Numerical and experimental 

methodologies were applied in order to identify the model parameters and develop a high 

fidelity finite element model of the structure examined. The applicability and effectiveness of 
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the methods applied, is explored by updating finite element model of a lightweight and 

geometrically complex bicycle assembly, using experimentally identified modal data. Direct 

comparison of the numerical and experimental data verified the reliability and accuracy of the 

methodology applied. 
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Abstract. The key to successful application of surrogate modelling is the ability to quickly 

generate high quality data over a large parameter space. This can be achieved through appli-

cation of Variable Fidelity Modelling (VFM), which is a data fusion technique that allows da-

ta from different sources to be combined. VFM can be used to correct a dataset obtained by a 

simple and fast method with a small number of high quality samples in order to generate a 

high-fidelity surrogate at a marginal cost. 

This paper presents the results of a feasibility study of a VFM technique based on Hierar-

chical Kriging in the context of aerospace applications. A generic process for generation of a 

high quality surrogate using VFM and assessment of its accuracy is presented and validated 

for a number of realistic use case scenarios. Investigation of the impact of various parameters 

of the method is conducted, highlighting the importance of selection of the appropriate data 

correlation functions. 

The potential of VFM to significantly reduce the computational cost required for genera-

tion of a high-fidelity surrogate is demonstrated for the case of a parametric study of wing 

cruise performance used at the early stages of the aircraft design process. In addition, an ap-

plication where the VFM method is used to predict the effects of wing section optimization is 

shown. The VFM approach presented in this paper can be implemented in a number of differ-

ent scenarios and can offer significant improvements for the surrogate generation process by 

quickly generating high-fidelity response surfaces. 
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1 INTRODUCTION 

Due to the high costs involved, aircraft designers have to ensure that every new aircraft 

meets the required safety and performance standards long before it enters service. In practice, 

this is achieved during a long development process, which involves intensive calculations, 

tests and numerical simulations. Modern design offices make extensive use of computers, 

simulating almost every aspect of the aircraft system. 

In practice, a significant number of important decisions, which have substantial impact on 

the design of a new aircraft, are taken at the preliminary design stage when the amount of 

available information is usually small and a large number of possible configuration variants 

are still considered. In a conventional approach, the so-called Point-Based Design (PBD), 

a baseline concept is developed at an early design stage and is subsequently modified to 

achieve a feasibility, and ideally, optimal design during the design process. Usually, this in-

volves a number of iterations during which the aircraft can undergo significant modifications 

as more information becomes available. This means that a wrong decision taken at the begin-

ning of the project can lead to problems downstream, once more information becomes availa-

ble.  

An alternative approach, using the Set-Based Design (SBD) paradigm, was proposed in the 

CONGA (Configuration Optimisation for Next Generation Aircraft) programme [1]. In this 

methodology, a number of designs are developed concurrently and, as more information be-

comes available, the unfeasible concepts are removed from the set. By keeping the design 

space open and reducing the number of additional iterations, SBD enables fast convergence 

on the designs which satisfy all constraints [2].  

The main challenge of SBD is the fact that a large amount of data has to be developed at 

the early stage of the project. This can prove problematic, especially for a novel aircraft con-

figuration, for which the amount of empirical, legacy data is limited. Even despite the contin-

uous improvements in simulation algorithms and speed of computers, performing extensive 

simulations of large data sets is still not feasible in practice.  A promising alternative is the 

use of surrogates generated from a reduced number of data points to explore the design space. 

This can considerably reduce the computational costs; however, a large number of simulations 

may still be necessary. 

A further reduction of the effort required to generate an appropriate surrogate can be 

achieved if a low-fidelity method is used for its construction. This, however, may result in 

a loss of data quality. The Variable Fidelity Method (VFM) explored in this paper attempts to 

take advantage of speed offered by application of the low-fidelity methods, without compro-

mising the accuracy of the final surrogate, by correcting it with a limited set of high-fidelity 

data points. 

 

Figure 1: Illustration of the VFM concept. 
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The concept of VFM is illustrated in Figure 1. In principle, the VFM uses a simple fast 

method to construct a response surface that characterises the overall trends in the dataset. This 

is then corrected by a small set of high-fidelity data allowing a high-quality response surface 

to be obtained at a fraction of the cost required to generate it only from the high-fidelity data.  

This paper evaluates the potential applications of VFM in the context of aerodynamic air-

craft design. First, the VFM concept developed by DLR [3], which is used in this study, is 

briefly presented and discussed. This is followed by analysis of the results for four test cases 

aimed at the investigation of different features of the method. Next, a short discussion on pos-

sible application of the VFM approach is given. The paper finishes with short summary and 

main conclusions.   

2 VARIABLE FIDELITY MODELLING 

As described in the introduction, the VFM is a data fusion technique that allows the data 

with different levels of fidelity to be combined in order to generate a high-fidelity surrogate 

with a limited number of high-fidelity data points. The method discussed in this paper has 

been introduced in [3] and expanded further in [4]-[6]. This section provides an overview of 

the technique and outlines the main ideas used. 

2.1 Method description 

The VFM method discussed in this paper is based on the concept of Hierarchical Kriging 

(HK). Kriging is a statistical interpolation method introduced by Krige in [7], which models 

the interpolated variables by a Gaussian process and allows for their prediction based on co-

variance between the known samples. HK extends this concept to different levels of sample 

fidelities by adding the next step during which the low-fidelity surrogate is corrected by the 

high-fidelity data [4]. 

A low-fidelity surrogate is constructed during the first stage of the HK process. The values 

predicted by the surrogate can be calculated as: 

 

 �̂�𝑙𝑓(𝒙) = 𝛽0,𝑙𝑓 + 𝒓𝑙𝑓
𝑇 (𝒙)𝑹𝑙𝑓

−1(𝒚𝑆,𝑙𝑓 − 𝛽0,𝑙𝑓𝟏) (1) 

 

where 𝒚,𝑙𝑓 are the low fidelity samples, 𝑹𝑙𝑓 is the correlation matrix representing the correla-

tion between the available samples, 𝒓𝑙𝑓 is the correlation vector representing the correlation 

between the untried point, and the available samples and 𝟏 is the identity matrix. 𝛽0,𝑙𝑓 is an 

unknown constant calculated as 𝛽0,𝑙𝑓 = (𝟏𝑇𝑹𝑙𝑓
−1𝟏)

−1
 𝟏𝑻𝑹𝑙𝑓

−1𝒚𝑠,𝑙𝑓. 

The VFM response surface, which corrects the low-fidelity surrogate with high-fidelity 

samples, is calculated in the second stage of the process. The resulting high-fidelity predic-

tions are evaluated as: 

 

 �̂�(𝒙) = 𝛽0 �̂�𝑙𝑓(𝒙) + 𝒓𝑇(𝒙)𝑹−𝟏(𝒚𝑆 − 𝛽0𝑭) (2) 

 

where 𝒚𝑠  are the high fidelity samples, 𝐹 = [�̂�𝑙𝑓(𝒙(1)), … , �̂�𝑙𝑓(𝒙(𝑛))]
𝑇

, and 𝛽0 =

(𝑭𝑇𝑹−1𝑭)−1 𝑭𝑻𝑹−1𝒚𝑠 is the scaling factor, indicating the correlation of the low- and high-

fidelity functions.  

It is quite clear that the generated response surface will strongly depend on the chosen cor-

relation model, that has an impact on both high- and low-fidelity correlation matrices 𝑹 and 
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𝑹𝑙𝑓 as well as on the correlation vectors 𝒓 and 𝒓𝑙𝑓. The most common correlation model is the 

Gaussian exponential function which can be written as: 

 

 𝑹(𝜽, 𝒙, 𝒙′) =  ∏ exp(−𝜃𝑘|𝑥𝑘 − 𝑥𝑘
′ |𝑝𝑘  𝑚

𝑘=1 ) ,        1 < 𝑝𝑘 ≤ 2 (3) 

 

where 𝜃 are unknown hyper-parameters which need to be calculated. Different correlation 

models, such as Gauss correlation function, cubic splines or radial-basis-functions are also 

available. 

Although the scaling factors 𝛽 can be determined analytically, they depend on the 𝜃  hy-

per-parameters, which are obtained during surrogate construction process by maximum likeli-

hood estimation. This essentially requires optimisation of the hyper-parameter values in a way 

that leads to minimising the variances in the surrogate. More information on the process can 

be found in [4]. 

2.2 Error estimation 

One of the main advantages of the applied method is that it provides an estimate for the 

root mean-square error (RSME), which can be used to assess the quality of the generated sur-

rogate. The RSME estimate can be used not only to evaluate the statistical accuracy of the 

generated response surface (e.g. max, mean), but also to highlight the surrogate regions with 

highest uncertainty in the results. This can be applied for adaptive surrogate refinement, as 

will be shown later. 

 It has to be noted, however, that the RSME estimate is based on the mathematical formu-

lation and depends on the chosen correlation model, therefore it might not be accurate. In fact, 

it is generally found that, although it correctly highlights the surrogate regions with least con-

fidence, the prediction is generally too optimistic when compared to true errors [4]. Hence, an 

additional test is required to validate the accuracy of the obtained response surface. 

 Different techniques for surrogate error analysis are available. If a sufficient number of 

high-fidelity data points is available, a cross-validation can be performed. In such a scenario, 

a subset of high-fidelity data is identified and removed from the set of points used for the gen-

eration of the VFM surrogate. The surrogate prediction can be then compared to the available 

high-fidelity data in order to determine the values of true errors. 

Most often, however, the amount of high-fidelity data is so small that it is desirable to use 

all available data for generation of the surrogate. In those circumstances the so-called “leave-

one-out test” [8] can be adopted. The principle of this technique is to generate several variants 

of the response surface. For each variant a single high-fidelity point is randomly removed and 

the true error is calculated by comparison of the surrogate prediction with the high-fidelity 

data. If the true error remains small for all tested variants, the surrogate can be considered as 

saturated, i.e. sufficiently accurate so that addition of new high-fidelity points will not lead to 

significant improvement in the quality of the generated response surface. 

2.3 VFM process at ARA 

This section describes how the VFM procedure, suggested in [6], was implemented at 

ARA. Figure 2 illustrates various steps of the process. First, Design of Experiment (DoE) 

techniques are used to define the samples for low- and high-fidelity data used to generate the 

VFM surrogate. The aim is to ensure that the entire design space is covered with as few data-

points as possible. Usually the number of high-fidelity points is between 5-10% of the number 

of low-fidelity samples. 
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Figure 2: VFM process implemented at ARA. 

 

Next, data for both sets of samples is generated either by simulation or through experi-

ments. In fact, the source of data is irrelevant, as long as the fidelities of different data sets can 

be easily identified. Once the data are available, a low-fidelity response surface is generated 

and corrected with the high-fidelity data using the process described above.  

The quality of the obtained surface is evaluated based on the VFM RSME prediction. If the 

estimated accuracy is sufficient, the surrogate is validated using either reference high-fidelity 

data or by means of the leave-one-out test. If this test is passed as well, the surrogate genera-

tion finishes, otherwise additional refinement is performed. 

The choice of refinement points depends on the purpose of the generated surrogate, and 

weighting of errors in different regions of the surrogate. Either way, the new high-fidelity 

points are generated based on the RSME estimate, usually more than one at a time. Occasion-

ally, if the RSME error prediction is small but the true errors are considerable, additional 

points can be added based on the true error values. The process concludes once a VFM model 

of sufficient accuracy is obtained. 

3 FEASIBILITY STUDY 

This section presents the results of the VFM feasibility study conducted at ARA in order to 

evaluate potential applications of this technique and offer a better understanding of its limita-

tions. The tests described here focus on VFM applications in the field of aerodynamics and 

each of them aims at evaluation of a specific feature of the VFM approach. 

3.1 Choice of the low-fidelity model 

One of the obvious applications of the VFM is to combine the data obtained with methods 

characterized by different levels of fidelity. In general, the low-fidelity method allows for the 

results to be obtained quickly, but with a limited level of accuracy. The high-fidelity data, on 

the other hand, offers a greater accuracy, but requires more effort to be obtained. This test ad-

dresses the impact of the choice of the low-fidelity method on the resulting VFM surrogate 

and how the low-fidelity data affects the required number of high-fidelity correction data 

points.  
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The example presented here covers 2D simulations of the flow over a NACA 632-215 aero-

foil resolved using the BVGK code [9] in two variants: 

 low-fidelity – inviscid 

 high-fidelity – inviscid with coupled boundary layer 

Two scenarios are investigated. First, a lift polar at Mach number 𝑀 = 0.5 is simulated 

over a linear incidence (𝛼) range from 0 to 5 degrees. Figure 3 shows the lift coefficient as 

the function of the incidence angle for different levels of fidelity, along with the high-fidelity 

points used for generation of the VFM. It can be observed that although the low-fidelity data 

predicts higher values of the lift coefficient 𝐶𝑙, it predicts the same trend as the reference 

high-fidelity results. A VFM surrogate of a sufficient accuracy is be obtained for all investi-

gated high-fidelity points configurations.  

 

Figure 3: VFM of lift coefficient obtained with different high-fidelity points. 

 

A comparison of error estimation obtained during the VFM generation with the ‘true’ error 

calculated as the difference between the lift coefficient predicted by the VFM and the refer-

ence high-fidelity data is shown in Figure 4. The figure demonstrates that reducing the num-

ber of high-fidelity points used to generate the VFM surrogate leads to higher errors. Also, 

apart from case (c), with 3 high-fidelity points, the error prediction has a similar behaviour to 

the ‘true’ error although they differ in magnitude.  

The second scenario considered during this test was an investigation of a drag polar at 

𝑀 = 0.6 over a similar incidence range from 0 to 5 degrees. The resulting drag polars along 

with the used high-fidelity points are illustrated in Figure 5. Again, a sufficient number of 

high-fidelity points allows for a VFM surrogate of a reasonable quality to be obtained. On the 

other hand, using 3 high-fidelity points, which was sufficient in the previous scenario, now 

results in a VFM of a very poor accuracy. This can be explained by inspection of the low-

fidelity data behaviour shown in Figure 6a. Since the low-fidelity model is inviscid, the result-

ing drag coefficient will be zero everywhere, apart from high incidences where wave drag ef-

fects are observed. The low-fidelity prediction of the drag coefficient has therefore 
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a completely different behaviour to the trends observed in the high-fidelity model, thus it ac-

tually impacts the VFM surrogate generation in a negative way. In fact, for this scenario, gen-

eration of a response surface from high-fidelity points only would result in a better prediction. 

 

Figure 4: Comparison of errors for the lift coefficient prediction. 

 

Figure 5: VFM of drag coefficient obtained with different high-fidelity points. 

 

What is encouraging, however, is that the model errors, shown in Figure 6b, illustrate that 

the built-in VFM error prediction is capable of capturing the poor quality of the generated sur-

rogate and highlighting the areas where improvement is required.  

 

Figure 6: Comparison of errors of lift coefficient predictions. 
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The main conclusion from this test is that the choice of adequate low-fidelity data is criti-

cal to successful application of the VFM. The low-fidelity data should be characterised by 

a similar behaviour to the trends observed in the high-fidelity model. The second conclusion 

is that the error estimates obtained using the VFM, although not precisely correct, allow for 

the assessment of the quality of the surrogate and indicate the parameters for which more 

high-fidelity information should be provided.  

3.2 VFM accuracy and surrogate refinement process 

The second feasibility test focused on investigation of the accuracy improvement offered 

by adoption of the VFM when compared to a response surface generated only from the high-

fidelity data points and on the impact of surrogate refinement process on the accuracy of the 

obtained data.  

In this case, the drag coefficient dependency over a range of Mach numbers and incidences 

for a civil airliner wing was studied. The high-fidelity data was generated from the results of 

3D simulations of the wing using the TAU RANS solver [10]. The low-fidelity data was ob-

tained by spanwise integration of the results obtained for 2D simulations of the sections of the 

investigated wing. The concept of the process is illustrated in Figure 7. 

 

Figure 7: Illustration of the process used for surrogate refinement test. 

 

Figure 8 shows the surrogates of the drag coefficient as a function of incidence angle at 

various Mach numbers obtained using VFM and by fitting a response surface (RSM) for high-

fidelity points only. The initial surrogates were generated with 5 high-fidelity data points ob-

tained by DoE (see highlighted circles in Figure 8a). The surrogates were subsequently re-

fined by addition of new high-fidelity data points in the regions where VFM error prediction 

indicated the largest values of the relative error (ratio between error and drag coefficient val-

ue). The use of relative error was motivated by the fact that, in practice, the low drag coeffi-

cient values are of most interest. The surrogates were deemed as saturated, i.e. addition of 

new high-fidelity points resulted in a little difference in estimated errors, when 19 high-

fidelity data points were used. The final surrogates are compared to each other and to the ref-

erence data (TAU) in Figure 8b. 

The convergence of statistical characteristics (maximum, average, median) of the VFM er-

ror estimates is illustrated in Figure 9. A rapid, although non-monotonic, reduction in all sta-

tistical values describing the error estimates is observed at the beginning of the refinement 

process. Change in the relative error remains relatively small when 11 high-fidelity points are 

used and decreases monotonically when more than 15 points are available.  Similar behaviour 

is observed for the absolute error values, although here, the maximum error remains relatively 

high.  
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Figure 8: Surrogates of the drag coefficient polars at various Mach numbers obtained using VFM and fitting 

a response surface (RSM) from high-fidelity points only. 

 

Figure 9: Convergence of the error estimates. 

 

Figure 10: Comparison of absolute and relative error prediction for VFM and RSM. 

 

A comparison of the statistics of the error predictions before and after the refinement pro-

cess for the VFM and high-fidelity only surrogate (RSM) is shown in Figure 10. Although the 

error reduction for the RSM is considerably more pronounced, the RSM prediction remains 
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inferior to the VFM. Moreover, the VFM surrogate obtained with 5 high-fidelity data points 

offers similar accuracy as the refined RSM both in terms of absolute and relative errors. The 

refinement process, driven by the requirement to minimise the maximum relative error, al-

lowed both the maximum absolute error and maximum relative error to be reduced by a factor 

of 3. In general the improvement in relative errors is stronger than for absolute errors.  

High-fidelity solutions for a number of additional points, not used for surrogate refinement, 

were obtained for an additional validation stage. This allowed for the real errors, i.e. the dif-

ference between VFM prediction of the drag coefficient and the actual simulated value, to be 

calculated. The results of this validation for the initial and saturated surrogates are demon-

strated in Figure 11.  

 

Figure 11: Comparison of the VFM error estimates and the actual prediction errors. 

 

Both absolute and relative errors remain small for the low drag coefficient values, but the 

real errors are considerably larger in the high incidence range. Although in general, the surro-

gate refinement led to reduction of both estimated and actual errors, in some cases, i.e. 

𝑀 = 0.725 and 𝐴 = 1.0, the errors have increased. No direct correlation between the errors 

predicted by the VFM and the actual errors can be identified. Nevertheless, the same trends 

can be observed, i.e. reduction in error estimate corresponds to the reduction of the actual in-

accuracy of the prediction.  

This test clearly demonstrates that given an appropriate low-fidelity model, VFM can be 

used to generate a surrogate of a superior quality to a response surface generated from high-

fidelity data only. In practice, this means that by adopting the VFM technique the number of 

required high-fidelity data points can be significantly reduced or the quality of the surrogate 

can be improved.  

The analysis of the error estimates shows how it can be used to drive the refinement pro-

cess in the desired way (local vs. global, absolute vs. relative).  Although the error estimates 

generally give a reasonable prediction of the surrogate accuracy, additional tests, using high-

fidelity data, are required in order to ensure the quality of the obtained response surface. 
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3.3 Time benefits enabled by application of VFM 

One of the main motivations for application of the VFM technique is to enable generation 

of a high-quality surrogate at a fraction of the cost required to generate the same surrogate 

based only on high-fidelity points. One of the main ARA requirements in the CONGA project 

was to construct a dataset with wing cruise performance (lift and drag coefficients) for a wing 

family with varying planform areas and spans at a range of incidences (see Figure 12 for illus-

tration). 

 

Figure 12: Illustration of the process adopted in CONGA project. 

 

The required dataset was constructed from 108 points over a three-dimensional design 

space with 3 values of span, 4 values of wing surface area and 9 incidences. The low-fidelity 

data was computed with the Viscous Full-Potential method (VFP) [11], whereas the high-

fidelity results were extracted from the results of TAU simulations. A surrogate refinement 

process, similar to the one described in previous section was adopted, with lift coefficient sur-

rogate refinement driven by reduction of absolute error estimates, and drag coefficient surro-

gate driven by the relative error reduction. The leave-one-out test has been applied to ensure 

a sufficient quality of the obtained surrogates. The final VFM surrogate was constructed from 

108 low-fidelity points and 20 high-fidelity results. 

On average, 15 minutes were required to generate a single data point with VFP compared 

to 4 hours on a 20-core cluster needed for a single TAU solution. A comparison of the time 

needed to generate the VFM surrogate with the time required for 108 TAU simulations is 

shown in Figure 13. Application of VFM allowed the surrogate of appropriate quality to be 

obtained in 25% of the time necessary to simulate all 108 data points. In theory, it could be 

possible to construct a surrogate from a smaller number of high-fidelity data points, but, as 

already demonstrated in the previous example, it is unlikely that it would have similar quality 

and would still require significant computational effort. 

  

Figure 13: Comparison of the time required to generate the final data set. 
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This test case clearly demonstrates the time benefits of the application of the VFM tech-

nique. Generation of a surrogate has an additional advantage in that it can be used to examine 

the drag and lift coefficients at intermediate values of the design parameters, at virtually no 

cost, since the generated VFM response surface is continuous. Moreover, it is easily possible 

to extend the surrogate by increasing the range of parameters or by addition of new dimen-

sions. 

3.4 Impact of the correlation function 

The final test presented in this paper investigates the impact of one of the most important 

parameters of the VFM technique, i.e. the choice of correlation function used to generate the 

response surface.   

In order to assess the impact of the correlation function, surrogates with dependence of the 

aerofoil performance (L/D) on its thickness-to-chord ration (t/c) are analysed. Unlike in the 

previous examples, where two different methods were used to generate the solutions, here 

both low- and high-fidelity data are generated using the same 2D solver – BVGK. The differ-

ence in the level of data fidelity is attributed to the different means of obtaining the geometry. 

The high-fidelity data consists of 3 aerofoils of different thicknesses designed for optimum 

performance, while the low-fidelity geometries are generated by scaling the baseline section 

thickness while maintaining a fixed camber line (see Figure 14 for illustration). 

 

Figure 14: Sections used for generation of VFM surrogate. 

 

This exercise is motivated by the fact that it is not normally possible, due to the time con-

straints, to optimise sections during the preliminary aircraft design stage. In fact, the wing sec-

tions probably do not exist at this point in time and even if some legacy data are available, 

this might not be suitable for the new aircraft model. Still, ability to predict the potential op-

timum aerodynamic performance would allow realistic performance targets to be set when 

sizing the aircraft, without actually performing the time and resource intensive optimisation. 

The VFM surrogates generated with two different correlation functions, i.e. Gaussian Ex-

ponential function (GEXP) and Multi-Quadratic (MQ) Radial Basis Function (RBD), are 

shown in Figure 15. Both surrogates use the same low-fidelity data – performance (L/D) char-

acteristics of the varying thickness sections are derived from the optimised baseline aerofoil. 

Two high-fidelity data points, corresponding to the baseline and thick sections, are used in 

both scenarios. The thin optimised aerofoil is used as a reference point for validation.  

The data presented in Figure 15 highlight significant differences not only in the obtained 

VFM surrogates but also differences in the low-fidelity response surfaces constructed during 

the process. While the GEXP low-fidelity response surface closely follows the supplied data 

points, the MQ surface is smoother and follows the general trend rather than the actual data. 

Similar behaviour is observed for the generated VFM surrogates, i.e. in the extrapolation re-

gion the GEXP surrogate follows the low-fidelity data, whereas the MQ extends the original 

data trend. The magnitude of estimated errors is also smaller for the case of the MQ correla-

tion function.  
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Figure 15: Comparison of the VFM surrogates obtained with different correlation functions. 

 

The results presented for this test case show the importance of the choice of an appropriate 

correlation function. If the input data is characterised by a high level of noise it is beneficial to 

use RFB-based correlation functions, as they allow for a smooth surrogate to be generated. On 

the other hand, GEXP is more localised, so it is a more appropriate choice for data where the 

general behaviour is not necessarily smooth and local effects need to be considered. In all 

cases, however, care needs to be taken when extrapolating the data beyond the available high-

fidelity data boundaries. 

4 POSSIBLE APPLICATIONS OF VFM 

The VFM technique has a range of possible applications in the context of modern aircraft 

design. This section attempts to summarise the various ways in which this method can be 

adopted. It is suggested to divide the range of possible VFM applications into two main 

groups, namely data fusion and local surrogate refinement.  

The objective of data fusion is to combine two or more datasets with different level of fi-

delity into a single high-quality response surface. As demonstrated in previous sections, using 

the VFM not only offers significant reduction of the time needed to generate high quality sur-

rogates from sparse datasets, but also allows for efficient assessment of the surrogate accuracy. 

Below is a non-exhaustive list of possible scenarios for data fusion: 

 

 Correcting low-fidelity code with high-fidelity code (e.g. EULER + RANS) 

 Correcting partially converged CFD results with fully converged ones 

 Combining results with different mesh refinement levels 

 Combining wind tunnel data with CFD data 

 Correcting CFD for aeroelasticity effects  

 Combining results with different levels of geometry maturity 

An alternative application of the VFM is to locally refine the surrogate during the optimi-

sation process. Combined with an optimisation algorithm, VFM can be applied to find func-

tion minima efficiently (see Figure 16 for illustration). In such a case, the design space is 
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explored with the low-fidelity response surface, while high-fidelity results are used for local 

refinement of the surrogate. An example process is described below: 

1. Find the function minimum with the low-fidelity response surface 

2. Run the high-fidelity code on the optimum point 

3. Generate the VFM surrogate with the addition of high-fidelity data 

4. Use the VFM as response surface in step 1  

It is believed that the approach presented above could significantly reduce the time re-

quired for optimisation, as only a few high-fidelity simulations would be necessary.  

 

Figure 16: Illustration of VFM used for optimisation. 

5 CONCLUSIONS 

This paper explored the applicability of using the Variable Fidelity Modelling (VFM) in 

the context of aerodynamic analysis of modern aircraft designs. The VFM can be used for 

rapid generation of high-quality surrogate models by combining the results obtained from 

a low-fidelity method with a limited number of high-fidelity data points. By reducing the 

number of high-fidelity points required for generation of the surrogate, VFM enables the 

overall cost of creating the response surface to be significantly reduced.  

A wide range of possible applications has been identified, which include, but are not lim-

ited to, combining results from simulations at different levels of fidelity, using different levels 

of input fidelities, as well as using the method to increase efficiency during an optimisation 

process.  The studied examples have clearly demonstrated that applying VFM can offer sig-

nificant time reduction without loss of surrogate quality, or can be applied to enhance the 

quality of an existing dataset. 

 

Examination of the presented test cases allowed for the best practice for VFM application 

to be developed: 

 

 The quality of VFM strongly depends on the trends observed in low-fidelity data 

 VFM results are sensitive to the chosen correlation function. Gaussian Exponential 

Function is generally more robust, however Multi-Quadratic Radial Basis Function can 

be used to obtain smooth data and is more suitable for extrapolation 

6396



Marian A. Zastawny 

 The error estimates returned by the VFM can be used to indicate the error magnitudes 

and areas of poor surrogate quality, however, they do not offer accurate error values 

 The best practice for surrogate construction is to drive the refinement process using the 

built-in error estimator and use additional techniques (e.g. leave-one-out test) for results 

verification 
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Abstract. In this paper, the Markov theory is introduced in order to model the roll motion 
excited by random wave excitation. Specifically, a four-dimensional (4D) Markov dynamic 
system is established by combing the single-degree-of-freedom (SDOF) model used to repre-
sent the ship rolling behavior in random beam seas with a second-order linear filter used to 
approximate the stationary wave excitation moment. Based on the Markov property of the 4D 
coupled dynamic system, a 4D path integration (PI) method is applied in order to solve the 
Fokker-Planck equation, which governs the probabilistic properties of the coupled dynamic 
system. The theoretical principle and numerical implementation of the current state of the art 
4D PI method are presented. Furthermore, the numerical robustness and accuracy of the 4D 
PI method are evaluated by means of the versatile Monte Carlo simulation (MCS) technique. 
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1 INTRODUCTION 

The challenge to calculate the response statistics of nonlinear, marine structures subjected 
to a random seaway is still substantial. In this work, the rolling behavior of a vessel in random 
beam seas is to be studied since the associated high-level responses with low probability lev-
els are important for reliability based ship design and operation in practice.  

For the cases of beam seas, the roll motion is assumed to be decoupled from other motions 
and governed by a single-degree-of-freedom (SDOF) equation [1], which is also a second or-
der differential equation. In the SDOF model, the nonlinearities associated with damping and 
restoring terms as well as the randomness of the wave excitation term are all incorporated. 

Various probabilistic approaches have been proposed to analyze the stochastic response of 
the roll motion in random seas [2-4]. Among these strategies, the methodology based on the 
Markov diffusion theory is attractive because the probabilistic properties of the roll motion is 
governed by the Fokker-Planck (FP) equation. In order to build a Markov system for describ-
ing the random roll motion, a second order linear filter is applied in order to approximate the 
stationary wave excitation moment as a filtered white noise. Subsequently, a four-dimensional 
(4D) coupled system is generated but the corresponding high-dimensional FP equation leads 
to another challenge.  

Analytical solutions of the FP equations are only available for some linear systems and a 
very limited class if nonlinear systems. Direct numerical methods aiming to solve the low-
dimensional FP equations, such as the finite element method [5] and the finite difference 
method [6], are hardly feasible because for the high-dimensional FP equations. In this regard, 
the so-called “curse of dimension” problem comes into play, which means that difficulties 
arise due to the processing capacity as well as the storage needed for the computation increas-
es dramatically with the dimension of the FP equation. 

The path integration (PI) method is an efficient approximation for solving the FP equation 
and providing the stationary or non-stationary response probability density function (PDF) of 
the dynamic system [7-9]. The evolution of the response PDF is computed in short time steps 
via a step-by-step solution technique. Specifically, the based on the Chapman-Kolmogorov 
equation, the response PDF at a given time instant can be obtained when the response PDF at 
an earlier close time as well as the conditional PDF are already known. In this work, a 4D PI 
procedure is developed to address the challenge of determining the response statistics of the 
roll motion in random beam seas. The feasibility and reliability of the PI technique will be 
demonstrated by comparing with the Monte Carlo simulation.       

2 MATHEMATICAL MODEL 

When the ship is excited by beam wave loads, the roll motion is described by the following 
SDOF equation [10]: 

 3
44 44 1 3( ) ( ) ( ) | ( ) | ( ) ( ) ( )qt b t b t t c t c t m t              (1) 

where θ(t) and ( )t are the roll angle and the roll velocity, respectively.  b44 and b44q are the 
relative linear and quadratic damping coefficients, c1 and c3 are the relative linear and nonlin-
ear roll restoring coefficients. m(t) is the relative roll excitation moment, it is a stationary 
Gaussian process and described by the spectrum Smm(ω). The SDOF model (1) can be trans-
formed into the following state-space equation which is written as: 

 
1 2

3
2 44 2 44 2 2 1 1 3 1 3( | | )q

dx x dt

dx b x b x x c x c x x dt


      

 (2)  
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where x1= θ(t), x2= ( )t and x3= m(t) is the driving process for the dynamic system (2).  
The linear filter technique is widely used in the engineering community due to its simplici-

ty and practicality. The driving process m(t) is a stationary Gaussian process with appropriate 
spectral density, it can approximated quite satisfactorily by a suitable linear filter. In this work, 
a second-order linear is applied in order to approximate the desired spectrum, Smm(ω). 

The second-order linear filter is expressed by the following differential equation: 

 3 4 3

4 3

( )dx x x dt dW

dx x dt

 


  
  

 (3)  

where x3 and x4 are the state variables in the filter equation with x3 representing the output 
m(t). dW(t)=W(t+dt)-W(t) represents an infinitesimal increment of a standard Wiener process 
with E{dW(t)} =0 and E{dW(t)dW(s)}=0 for t ≠ s and E{dW(t)2}=0. The spectrum generated 
by the second-order linear filter (3) is denoted as SFilter(ω) and given as: 

 
2 2

2 2 2

1
( )

2 ( ) ( )FilterS
 

   


 
 (4)  

where α, β, γ are the parameters of the linear filter and they are determined by minimizing the 
least square error between the spectral density of the filtered spectrum SFilter(ω) and the spec-
tral density of the target spectrum, Smm(ω). It is worth emphasizing that the filtered spectrum 
(4) is double-sided, while the relative roll excitation spectrum Smm(ω) is physically single-
sided. This difference needs to be reflected when performing the simulation itself. 

 By combining the equation (2) with equation (3), the extended dynamic system is formed. 
Therefore, the roll motion in random beam seas can be described by the following 4D state 
space equation: 

 

1 2

3
2 44 2 44 2 2 1 1 3 1 3

3 4 3

4 3

( | | )

( )

q

dx x dt

dx b x b x x c x c x x dt

dx x x dt dW

dx x dt

 



      


  
  

 (5)  

3 4D PATH INTEGRATION METHOD 

3.1 Main principle  

The dynamic system represented by equation (5) is a Markov diffusion process and it can 
be expressed as the following stochastic differential equation: 

 ( , ) ( ) ( )d t dt t d t x a x b W  (6)  

where x(t)=(x1(t),…, x4(t))T is a 4D state space vector process, the vector a(x,t) is the drift 
term and b(t)dW(t) represents the diffusive term. The vector dW(t)=W(t+dt)-W(t) denotes 
independent increments of a standard Wiener process. 

For the Markov process x(t), its transition probability density, p(x,t|x′,t′), also known as the 
conditional PDF is governed by the FP equation, which is expressed as: 

 
24 4 4

1 1 1

1
( , | , ) ( , ) ( , | , ) ( ( ) ( )) ( , | , )

2
T

i ij
i i ji i j

p t t a t p t t b t b t p t t
t x x x  

          
    x x x x x x x  (7)  

where x′ denotes the state space vector at time t′ and t′< t. 
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For numerical solution of the time continuous stochastic differential equation (SDE) (6), 
discretization of the equation with respect to time t is essential. In this regard, Naess and Moe 
propose a fourth-order Runge-Kutta-Maruyama approximation: 

 ( ) ( ) ( ( ), ) ( ) ( )t t t t t b t t        x x r x W  (8)  

where Δt=t-t′ is the time increment and the vector r(x(t′), t′) denotes the explicit fourth-order 
Runge-Kutta (RK4) increment or RK4 approximation. Since W(t) is a Wiener process, for 
short time increment Δt, the independent increment ΔW(t′)=W(t)-W(t′) is a Gaussian variable 
for every t′ (a constant is considered to be a Gaussian variable with zero standard deviation). 

With the introduction of the time discrete approximation, the time sequence 0{ ( )}ii t 
x is a 

Markov chain and it can approximate the time-continuous Markov solution of the SDE (6) 
with satisfactory accuracy when the time increment Δt is sufficiently small [8]. 

For a time increment Δt= t-t′, the transition probability density of equation (8), p(x,t|x′,t′), 
is given as a (degenerate) Gaussian distribution, which is written as: 

 1 1 1 2 2 2

3 3 4 4 4

( , | , ) ( ( , , )) ( ( , , ))

( , | , ) ( ( , , ))

p t t x x r t t x x r t t

p x t x t x x r t t

 


              
        

x x x x

x

 (9)  

where 3 3( , | , )p x t x t  is given by the relation: 

 
2

3 3 3
3 3 22

( ( , , ))1
( , | , ) exp

22

x x r t t
p x t x t

tt 

            

x
  (10)  

in which ri(x′, t′, Δt) = ri(x(t′), t′, Δt), i=1,2,3,4 are the Runge-Kutta increments for the state 
space variables.  

For the PI method, the evolution of the response statistics, such as the PDF of the random 
process x at time t can be obtained by the following basic equation: 

 
4

( , ) ( , | , ) ( , )
R

p t p t t p t d     x x x x x  (11)  

where 
4

1
i

i
d dx


  x . 

Since the expression for the transition probability density is obtained (i.e., the equations (9) 
and (10)), the PDF of x(t) can be obtained by the following iterative algorithm if an initial 
PDF (i.e. at time t0) is given: 

 
4 4

( ) ( 1) (0) (0) ( 1)
1 0

1
( , ) ( , | , ) ( , )

n
s s n

s sR R s
p t p t t p t d d 




   x x x x x x   (12)  

where x= x(n) = x(tn), t = tn = t0+n·Δt, x(s) = x(ts) and ts = t0+s·Δt.     

3.2 Numerical implementation  

Equation (12) describes the mathematical principle of the PI approach. For numerical im-
plementation of the 4D PI method, a reasonable computational domain and the corresponding 
computational grid have to be determined at first. In this work, the initial PDF p(x(0), t0) is 
chosen as a 4D Gaussian PDF in four dimensions with zero mean and variances evaluated by 
a simple Monte Carlo simulation [8]. The straightforward Monte Carlo simulation (MCS) en-
sures that the initial 4D Gaussian PDF includes all the information corresponding to the se-
lected parameters of the dynamic system, and it also provides a rational computational 
domain and computational grid for the subsequent simulation. 
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As for the numerical implementation of the iterative algorithm (12) for each grid point, it 
represents the PDF at the previous time t′ as an interpolating spline surface via Parabolic B-
spline. Then, the RK4 approximation scheme is applied to calculate the deterministic trajecto-
ries backwards for each grid point. Therefore, each grid point at time t is mapped backwards 
with the corresponding starting point at the previous time t′ and the PDF values at the back-
ward-mapped points, i.e. the starting points, can be given by using the spline surface. Finally, 
the PDF at time t, i.e. the new PDF, is calculated by substituting the transition probability 
density given in terms of equations (9) and (10) into the integral equation (11). The flowchart 
of the numerical implementation of the 4D PI method with the iterative algorithm described 
above is shown in Figure 1. 

 
Figure 1: Flowchart of the numerical implementation of the 4D PI method 

4 NUMERICAL RESULTS  

In this Section, an ocean surveillance ship is selected in order to study the stochastic roll 
response. The parameters for this parameters are given in Ref. [11]. The relative roll excita-
tion moment spectrum Smm(ω) for a given sea state [10] is presented in Figure 2. 

As mentioned above, the parameters α, β, γ in the second-order filter (4) are determined by 
minimizing the square errors between the filtered spectrum and the target spectrum, Smm. It 
can be readily seen that the filtered spectrum is reasonable in terms of bandwidth, peak fre-
quency and peak value. However, there is a slight discrepancy between the two spectra in the 
critical region near the natural roll frequency ω0. This discrepancy should not be neglected 
since the distribution of high level response is sensitive to the variation of the external excita-
tion in this frequency region [12]. Therefore, a constant, c, should be introduced as a correc-
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tion factor for the filtered spectrum in order to decrease the discrepancy in the critical fre-
quency region. The filtered spectrum (4) can then be changed into: 

 
2 2

2 2 2

1 ( )
( )

2 ( ) ( )Filter

c
S

 
   




 
 (13)  

and the corrected (or modified) spectrum in the critical region is also presented in Figure 2.  
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Figure 2: Relative roll excitation moment spectrum and the filtered spectrum, the corrected filtered spectrum 
(part) for a given sea state. 
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Figure 3: Joint PDF of the roll response obtained by the 4D PI method. 

As mentioned in Section 3, the joint PDF of the roll angle process and the roll velocity 
process can be obtained directly by the 4D PI method. The joint PDF of the roll response 
yielded by the 4D PI method for the selected sea state is presented in Figure 3 and the mar-
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ginal PDFs of the roll angle process and the roll velocity process are shown in Figure 4 and 
Figure 5, respectively.   
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Figure 4: Marginal PDF of the roll angle process. 
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Figure 5: Marginal PDF of the roll velocity process. 

In Figures 4 and 5, it is observed that the comparisons of the marginal PDFs obtained by 
the 4D PI method and the corresponding empirical estimations obtained by MCS demonstrate 
the high-level accuracy of the 4D PI method. Furthermore, the 4D PI method provides nice 
results for the low probabilities, but the distribution obtained by MCS are suffering from un-
certainties. The Gaussian distributions of the marginal PDFs in Figures 4 and 5 are obtained 
by using the variances evaluated by the straightforward MCS technique mentioned in Section 
3. Actually, they are the marginal PDFs of the 4D Gaussian PDF, p(x(0), t0), which serves as 
the initial PDF in the 4D PI procedure. It is shown that the Gaussian distributions in Figures 4 
and 5 provide reasonable approximations of the statistics of small amplitude roll motions. 
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However, for the high-level responses, the distributions of the roll angle process and the roll 
velocity process are very different from the normal distribution, which underestimates the cor-
responding low levels in this region.    

The mean upcrossing rate is a key parameter for estimation of the large and extreme re-
sponse statistics as well as for evaluation of the associated reliability of marine structures sub-
jected to random external excitations. The calculation of the mean upcrossing rate of the roll 
angle process θ(t) is usually based on the Rice formula (14) and the joint PDF of the roll re-
sponse, which can be obtained directly by the 4D PI technique. The mean upcrossing rate v+(ζ)  
is given as follows: 

 

0

( ) lim ( ; )

( ; ) ( , ; )

t
v v t

v t f t d

 

    

 







  

  

 (14)  

where v+(ζ;t) denotes the expected number of upcrossings for the ζ-level per unit time at time t 
by the roll angle process θ(t), ( , ; )f t  



 is the joint PDF of the roll angle process and the roll 

velocity process at the time instant t. 
The upcrossing rate for the selected sea state calculated by application of the 4D PI ap-

proach and the corresponding empirical estimation of the upcrossing rate as well as the 95% 
confidence interval (CI) obtained by MCS are shown in Figure 6. It can be readily seen that 
the 4D PI technique yields quite accurate and reliable result, even in the high roll response 
region. Hence, the 4D PI method is suitable for evaluation of the response statistics with low 
probability levels. 
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Figure 6: Upcrossing rates obtained by the 4D PI method and MCS. 

5 CONCLUSIONS  

In this work, a 4D Markov dynamic system is generated in order to describe the rolling be-
havior of a vessel subjected to random wave excitation. Based on the Markov property of the 
dynamic system, a 4D PI scheme is introduced to solve the high-dimensional FP equation. 
Comparisons of the response statistics obtained by the 4D PI method and MCS demonstrate 
the numerical robustness and accuracy of the 4D PI in calculating the statistics of the high roll 
response levels when subjected to random wave excitation.      
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Abstract. We study the nonlinear static and dynamic analysis of problems with uncertain, 

spatially variable material properties using specifically tailored flexibility-based fiber ele-

ments. For deterministic problems, flexibility, or force-based, fiber elements have been prov-

en able to provide accurate response estimates using a single beam element per structural 

member. We extent this formulation for the probabilistic assessment of structures whose 

properties are described by homogeneous non-Gaussian translation stochastic fields. The 

proposed modeling allows the use of different integration schemes, depending on the correla-

tion length parameter of the stochastic field. This element formulation, contrary to ordinary 

displacement-based elements, allows to overcome the need for a very dense mesh of beam el-

ements, which depends on the stochastic field and the regions where plastic rotations will oc-

cur. The performance of the proposed modeling approach is demonstrated on a steel portal 

frame. Considerable reduction of the computing effort is achieved in all cases. The paper un-

derlines the importance of realistic uncertainty quantification and is expected to provide val-

uable guidance for the structural analysis and the design of systems with uncertain properties. 
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1 INTRODUCTION 

The stochastic approach continuously gains acceptance as a reliable and valuable tool for 

the calculation of the response variability of structures. The inherent randomness of certain 

systems in terms of material, geometry and loads prohibits deterministic treatment of the 

problem. Over the past 20 years the seismic reliability assessment of structures including un-

certainties, has received considerable attention. The spatial variability of material and geomet-

rical properties [1] along with the uncertainty of seismic excitation [2] and the coupling of 

stochasticity and nonlinearity [3], have been thoroughly investigated with various approaches.  

Fiber elements have been used on many occasions for the reliability assessment of frame 

structures. Contrary to the deterministic problem where inelastic deformations are lumped at 

the beam ends, in stochastic analysis we need distributed plasticity elements so that our calcu-

lations consider the variation of system properties along the member [4]. The use of force-

based fiber beam-column elements allows to consistently integrate the spatial variability of 

inelastic systems with uncertain system properties. For deterministic problems these elements 

are able to provide accurate response estimates using a single beam element per member. The 

use of force-based elements for the stochastic assessment of steel frames was first presented 

in [5] where the seismic capacity of a steel frame subjected to natural ground motion records 

was examined. In [6] the force-based formulation for the reliability assessment of bridges was 

used under moving loads, while [7] used force-based fiber elements for the nonlinear static 

assessment of a simple two-bay frame. Their numerical results are based on a series of meas-

urements of the system properties [8]. 

2 INELASTIC FIBER BEAM-COLUMN ELEMENTS 

2.1 Distributed plasticity elements 

Distributed plasticity beam-column elements allow yielding to occur at any location along 

the element as opposed to plastic-hinge elements, where inelastic demand is lumped at the 

beam ends. The two most common formulations of distributed plasticity elements are the dis-

placement-based (DB) and the force-based (FB) approach. 

 Displacement-based elements, also known as stiffness-based elements, follow the classical 

finite element theory and use cubic Hermitian shape functions to interpolate the displacement 

field. These elements require a fine mesh at the regions where inelastic deformations are ex-

pected to be high, e.g. the beam ends. On the other hand, force-based elements [9,10,11] use 

force interpolation functions to overcome the problem of the unknown curvature distribution 

once yielding occurs. This approach always maintains equilibrium of both forces and defor-

mations and converges to a state that satisfies the constitutive laws within a specified toler-

ance. As a result, for deterministic problems a single force-based element per member is 

sufficient for accurately predicting the nonlinear behavior, provided that no element loads are 

present. 

Nonlinear beam-column elements are usually based on the “natural” coordinate system (al-

so known as “basic” or “corotational” system) which is a system that translates and rotates 

following the motion of the element. The beam elements have three degrees-of-freedom 

(Figure 1), the axial displacement u1 and two rotations θ1 and θ2 which fully describe the ine-

lastic demand and are grouped in v = [u1, θ1, θ2]
Τ. Following the Euler-Bernoulli beam theory, 

the strain εx(x,y) is obtained as: 

   
 

 
   0

sec, 1x S

ε x
ε x y y y x

k x

 
   

 
a d (1) 
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where as(y) is the section kinematic matrix and dsec (x) is the section deformation vector. The 

section stiffness matrix is calculated as the derivative of the section forces Dsec with respect to 

the section deformations dsec: 

Tsec sec
sec 2

sec sec

1
 S S

A A

y
dA dA

y y

   

   

      
     

       
 

D D
k a a

d d
 (2) 

where ∂σ/∂ε is the tangent of the nonlinear uniaxial constitutive law and y is the distance from 

the neutral axis. Distributed plasticity elements are also known as “fiber” elements, since each 

section is discretized to a finite number of fibers which are used to numerically calculate the 

section stiffness ksec of Eq. (2). If N is the axial force and M is the bending moment of a cross-

section, the section forces are calculated by integrating the stress over the height of the cross-

section as follows: 

T

sec

1
x S x

A A

N
σ dA σ dA

M y

   
     

   
 D a   (3) 

Figure 1: Cartesian and natural coordinates of a plane beam-column element. 

2.2 Displacement-based elements 

The displacement-based (DB) method uses the element interpolation functions and its de-

rivatives in order to calculate section deformations and strains from the nodal displacements. 

The relationship of section and element deformations is given by: 

sec

1 0 01
( )

0 2(3 / 2) 2(3 / 1)
N x

x L x LL

 
  

  
d B ν ν=  (4)  

BN(x) is the strain-displacement transformation matrix of the element. The element stiffness 

matrix is calculated in the natural system as: 

T

N N sec N

L

dL K B k B  (5) 

The Cartesian element stiffness is obtained from KN with the aid of simple algebraic trans-

formations [12]. 
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2.3 Force-based elements 

The force-based (FB) method uses force interpolation functions, which are always exact 

since the distribution of bending moments remains linear after element yielding. The force 

interpolation matrix bs relates section forces with the natural forces S, thus: 

sec S sec

1 0 0

0 / 1 /x L x L

 
    

 
D b S D S   (6) 

The natural stiffness matrix is calculated as the inverse of the element flexibility matrix as: 

 
11

sec

T

N N S S
L

dL
   K F b k b  (7) 

For both displacement and force-based elements, the element stiffness matrix is calculated 

numerically using Gauss integration. For the case of force-based elements, Gauss-Lobatto in-

tegration is preferred which is a variation of Gauss integration that considers the beam ends as 

integration sections. This rule is preferred since the bending moment receives its maximum 

values at the beam ends. 

3 THE STOCHASTIC FINITE ELEMENT METHOD 

3.1 Stochastic field discretization 

For nonlinear inelastic problems the discretization of the stochastic field requires special 

attention. A stochastic (or random) field H(x,ω) is a mapping from a random outcome ω to a 

function of space (or time) of a random variable x. It is usually called “field” when it varies in 

space and “process” when it varies in time. The statistical properties of stochastic fields (e.g. 

probability distribution and correlation structure) are either assumed or obtained from experi-

mental measurements. In the stochastic finite element method the choice of the FE mesh size 

is critical, since this decision affects also the discretization of the stochastic field. In principle, 

the FE mesh size is controlled by the geometry and the expected gradient of the stress field, 

which in nonlinear problems is not constant during analysis, while the variation of the sto-

chastic field is a property of the structure. The variation of the stochastic field is usually 

measured using the correlation length parameter b, which is the distance over which signifi-

cant loss of correlation occurs. Therefore, the FE mesh should be short enough in order to 

capture the essential features of the random field and avoid loss of information.  

3.2 Simulation of non-Gaussian stochastic fields 

Non-Gaussian stochastic fields are suitable for the description of many practical engineer-

ing parameters, such as material properties, geometric characteristics, soil properties, waves, 

wind loads, etc. In order to simulate a non-Gaussian stochastic field, a transformation of a 

Gaussian field with known second-order statistics needs to be performed. The spectral repre-

sentation method [13] is a direct method for the simulation of Gaussian stochastic fields. The 

method calculates the stochastic field as the sum of cosine functions with random phase an-

gles and amplitudes. It is based on the power spectrum concept, which is a real, non-negative 

function that describes how the variance of the stochastic field data is distributed over the fre-

quency domain. Spectral density functions include the variance and the correlation scale char-

acteristics of the stochastic field and usually are functions of exponential or square 

exponential type.  

A power spectrum of square exponential type is shown in Figure 2a for different values of 

the correlation length b, while the influence of the correlation length parameter to the sample 
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functions of a Gaussian stochastic field, generated by the spectral representation method, is 

shown in Figure 2b. 

(a) (b) 

Figure 2: (a) Sample spectral density function Sff(ω) of square exponential type with standard deviation σff=0.1 

and different correlation length values, (b) sample functions of a Gaussian stochastic field for different values of 

the correlation length parameter b. 

A non-Gaussian stochastic field can be obtained as a translation field by properly trans-

forming a Gaussian field. Specifically, a zero-mean homogeneous non-Gaussian stochastic 

field f(x) with spectral density function Sff (ω), can be obtained with the aid of a nonlinear 

monotonic transformation of a zero-mean Gaussian field H(x) as: 

   1f F H   x x  (8) 

where F is the non-Gaussian marginal cumulative distribution function (CDF) of f(x) and Φ is 

the standard Gaussian CDF. The above transformation is a memory-less translation of every 

space coordinate xi. However, the choice of the marginal distribution for the translation field 

f(x) imposes constraints to its correlation structure [14]. For non-Gaussian translation fields 

whose autocorrelation function has some inadmissible values, or is not positive-definite, the 

approximation error should be also taken into consideration [15].  

4 PROPOSED METHODOLOGY 

We propose the use of flexibility-based elements for the seismic probabilistic assessment 

of nonlinear frame structures with stochastic properties. For the deterministic analysis of ine-

lastic frame structures, flexibility-based elements are able to capture the response using a sin-

gle element per member. When stochastic problems are considered, the frame properties vary 

along the length of every member. Most FE types require appropriately modifying the FE 

mesh depending on the properties of the stochastic field and also on the regions where con-

centration of inelastic demand is expected, i.e. beam ends, region of concentrated forces etc. 

However, for stochastic problems the critical locations are not known a priori since the struc-

tural properties vary. We show that force-based elements, if combined with a pertinent numer-

ical integration scheme, offer accurate estimates of the response variability, maintaining the 

advantage of a single element per member. The resulting FE scheme is suitable for full-scale 

frame structures with affordable computing cost and accuracy.  

We use stochastic non-Gaussian fields to simulate the material properties. Constitutive 

laws typically depend on several parameters. A simple bilinear model depends on two param-

eters: the elastic modulus E and the yield stress fy, while more parameters may be required for 

other materials, e.g. reinforced concrete. The material parameters may be denoted as Di and 
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are here assumed uncorrelated. If H(x) is the zero-mean stochastic field, each material proper-

ty is distributed along each member. If D0,i is the expected value of each parameter the materi-

al property is described as Di(x) = D0,i (1 +  Hi(x)). Τhe section stiffness ksec is calculated with 

the aid of Eq. (2), where the material properties are a function of D = [D1, D2, …, DN]T
. For 

example for a bilinear steel material D = [E, fy,]
T and the section stiffness is obtained with the 

aid of Eq. (2): 

T T

sec

( )
S S

A

dA








D

k a a  (9) 

The element stiffness matrix is calculated at the Gauss-Lobatto integration sections as: 
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 (10) 

where NIP is the number of integration points, wi and xi are the weights and the location of 

Gauss-Lobatto integration sections. Note that x1 and xNIP refer always to the two ends of the 

beam element. A similar integration is also adopted for the element internal forces. The above 

methodology is implemented with the aid of OpenSees [16]. OpenSees is an open-source 

structural analysis software that allows the user to define any numerical integration scheme. 

The pre and post processing of our results are performed with the aid of customized in-house 

software.  

We first generate zero-mean Gaussian stochastic fields using the spectral representation 

method. These fields have a spectral density function of square exponential type: 

2 2 2

( ) exp
42

HH

b b
S

 




 
  

 
 (11) 

where σ is the standard deviation of the stochastic field and b is the correlation length parame-

ter. The lognormal fields are subsequently obtained using Eq. (8). The spectral density func-

tion is expected to be slightly different from SHH(ω), since the translation to the lognormal 

CDF adds a small approximation error.  

5 STEEL PORTAL FRAME EXAMPLE 

We consider the steel portal frame of Figure 3 as a case study. All the members of the 

frame have HEB 200 wide flange cross-sections and are modeled with a single force-based 

beam-column element. A distributed load q=40kN/m is applied at the bay and remains con-

stant throughout the loading history. The uncertain material properties are the Young’s modu-

lus E and the yield stress fy, both assumed to vary stochastically along each member. The 

material properties are described by the following expressions: 

 

 

0 1

0 2

( ) 1

( ) 1y y

E x E H x

f x f H x

   

   

(12) 

where H1(x), H2(x) are two zero-mean 1D-1V homogeneous lognormal stochastic fields with 

COV equal to 10% as indicated by the Joint Committee for Structural Safety [17]. Different 

values of the correlation length parameter b are considered in order to investigate the sensitiv-
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ity of the response to the correlation scale of the stochastic fields. In order to validate the pro-

posed method, we consider as reference solution FE models that use a very dense mesh of 50 

displacement-based fiber elements per member. Such a dense mesh is expected to accurately 

describe randomness for any correlation length.  

Figure 3: One-storey steel frame. 

5.1 Nonlinear static analysis 

The response variability of the steel frame is calculated through nonlinear static analysis 

for a sample size of 500 crude Monte Carlo simulations. For every simulation we obtain the 

capacity curve in terms of roof drift versus applied load. The mean capacity curve of the 

frame is shown in Figure 4a, together with the mean plus and minus one standard deviation 

curves. The vertical dashed line is used in order to separate the pre-yielding from the post-

yielding phase of loading. Figure 4a clearly shows that the effect of E is rather small (pre-

yielding phase), while considerable variability is observed after yielding where fy comes into 

play.  

According to Figure 4b the calculation of the mean capacity is not sensitive to the number 

of integration sections even for a small correlation length (b=0.1). On the other hand, Figure 5 

examines the necessary number of integration points in order to capture the response variabil-

ity defined as the COV (standard deviation divided by the mean value) conditional on the roof 

drift. As a reference solution we use the red solid curve obtained with the aid of a very dense 

mesh of 50 displacement-based elements per member. For four correlation length values, we 

compare the COV estimates using force-based elements of 5, 10, 15 and 20 integration sec-

tions. All four plots of Figure 5 show that increasing the number of integration points offers a 

better description of the random fields, since the COV values converge to the exact solution. 

The convergence is faster as the correlation length b becomes larger (e.g. compare Figure 5a 

and Figure 5d). The vertical dashed line (defined in Figure 4) provides the threshold between 

linear elastic and inelastic response. In the elastic regions the COV is practically constant and 

very low (2-6%). When the frame starts to yield, the COV increases almost monotonically as 

the roof drift also increases. 
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(a) (b) 

Figure 4: (a) Mean and mean ± one sigma capacity curves of the portal frame, (b) mean capacity curves for rang-

ing number of integration points. 

(a) (b) 

(c) (d) 

Figure 5: Sensitivity of response variability (COV) to the number of integration points for different correlation 

lengths. 

5.2 Nonlinear response history analysis 

The seismic performance of the steel portal frame is also studied using nonlinear response 

history analysis. Seismic demand is measured with the aid of the maximum roof drift ratio 

(θmax). A lumped mass matrix is formed in agreement to the distributed load q (Figure 3). The 

fundamental mode of the frame was found equal to T1=1.24sec when the mean value of the 

Young’s modulus E is used, while the damping matrix was obtained assuming 5%-Rayleigh 

6414



Georgios Balokas and Michalis Fragiadakis 

damping on the first and the second mode. All response history analyses were performed us-

ing a single force-based beam-column element per member with 20 Gauss-Lobatto integration 

sections. Again we assume that the correct solution is that of a very dense mesh of displace-

ment-based elements.  

Figure 6: Roof drift demand of the natural ground motion records (red circles) plotted on the capacity curve of 

the frame (solid line).  

All response history analyses are performed with fifteen ground motion records. The rec-

ords cover a broad spectrum of seismic intensities in order to evaluate the structural behavior 

at different levels of seismic demand. All records are scaled with a uniform scaling factor 

equal to 2, to guarantee that some of them will yield the frame. Figure 6 shows the maximum 

drifts demand for every record plotted against the capacity curve of the frame, assuming the 

mean value of every random parameter. Significant record-to-record variability is expected 

due to the different frequency content and duration of the ground motions. 

The accuracy of the proposed method is examined considering the first three statistical 

moments. Figure 7 shows the mean storey drift (θmax) for four values of the correlation length. 

The proposed force-based modeling provides results that are practically identical to the “cor-

rect” solution. Note that in Figure 7, the records are sorted from left to right according to the 

maximum expected drift demand of Figure 6.  

Figure 8 shows the effect of stochastic material properties on the COV of θmax demand. For 

all b values considered, the accuracy of the force-based formulation is again very close to the 

correct solution. The errors observed are small proving that the discretization with 20 sections 

is sufficient. Furthermore, records that do not cause large inelastic displacement demand (rec-

ords on the left) have smaller COV values than records that caused inelastic damage on the 

building (records towards the right). Still, the COV values are very sensitive to the record 

characteristics while, for most ground motions, the COV of the response is lower than the var-

iance of the stochastic input parameters. The effect of the correlation length is small compared 

to the significance of the ground motion properties, while large correlation lengths tend to in-

crease the COV. 
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Figure 7: Mean drift demand for correlation values equal to b=0.1, 0.5, 2 and 10. 

Figure 8: COV of drift demand for correlation values equal to b=0.1, 0.5, 2 and 10. 

Figure 9 shows the skewness (third statistical moment). The skewness provides a measure 

of the asymmetry of the sample’s cumulative distribution function. Contrary to the COV, the 

skewness is quite sensitive to the correlation length and varies with the record properties. For 

many records the skewness differs considerably for different b values and doesn’t follow the 

properties of the lognormal material/input properties. Furthermore, samples of opposite skew-

ness for the same natural record, e.g. records 11 and 15, were found. In all cases, the proposed 

modeling gave excellent estimates of the skewness. 
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Figure 9: Skewness of drift demand for correlation values equal to b=0.1, 0.5, 2 and 10. 

Apart from accuracy, the proposed method also reduces considerably the computing cost. 

Figure 10 compares the computational cost of the proposed element to that of the displace-

ment-based formulation for both static and dynamic analysis. An Intel Core 2 Duo processor 

required more than double time to run 500 Monte Carlo simulations for the nonlinear static 

case. For the response history analysis of a single record, the proposed methodology required 

approximately 10% of the time of the displacement-based element for the same number of 

simulations. Although the computational effort of the displacement-based element can be re-

duced using a more coarse mesh, Figure 10 provides a clear indication of the exceptional per-

formance of the force-based element which can be therefore adopted for the simulation of 

real-scale problems without having to modify the mesh of fiber elements. 

Figure 10: Computing cost of 500 Monte Carlo simulations of the portal frame for the force-based and the dis-

placement-based formulation. 

6 CONCLUSIONS 

A novel modeling approach for the probabilistic seismic assessment of frame structures 

with stochastic system properties is proposed. The proposed method extends the use of flexi-
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bility-based fiber elements to the stochastic finite element method, offering the possibility of 

applications to real-scale problems due to the remarkable computational performance and sta-

bility of these elements. The performance of the proposed modeling is demonstrated on a one-

storey steel portal frame. The study provides a valuable guidance for the analysis and the de-

sign of structures with non-Gaussian system properties and its main conclusions are here 

summarized: 

 The choice of the number of integration points is essential. The integration should be

able to capture the spectral characteristics of the input stochastic field.

 The proposed modeling offers remarkable accuracy and reduced computing numerical ef-

fort, even for very small values of the correlation length parameter (highly uncorrelated

stochastic fields).

 The computational performance was exceptional, especially for the case of response his-

tory analysis where the proposed modeling reduced the required computing effort by

90%. This allows the implementation of the method to real-scale problems.
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Abstract. Evolution toward more complex electrical systems on board of commercial aircrafts 

to be fitted in smaller containment areas of composite lightweight structures have raised chal-

lenges in respect of thermal optimization in a multi-disciplinary context. It is so crucial to 

OEMs that it motivated the assembly of a consortium from 32 companies around an R&D pro-

ject, named “Thermal Overall Integrated Conception of Aircraft” under the umbrella for 

Framework Program 7 with a focus on: 

 Closing the gap between architectural view and domain specific simulations  

 Enabling multi-level, multi-disciplinary approach for flexible architecture trade-offs 

 Developing new integrated architecture aiming to thermally optimize aircraft  

Among others activities along this project, MSC is engaged to sustain one of the selected use 

cases conducted by Airbus and referenced here as new power plant integration.    

Specifically, an environment enabling architects to conduct a trade-off study collaboratively 

with domain specialists has been developed. It is tightly integrated with Airbus simulation en-

vironment built on the top of heterogeneous solutions from Siemens, Cenaero and MSC. 

TOICA outcome so far have focused on: 

 Trade Study Process Management capitalizing on former projects developments like 

the “Modeling and Simulation information in a collaborative Systems Engineering 

Context”  (MoSSEC) introduced in Crescendo 

 Multi-Level and Multi-Disciplinary Optimization tightly linked to the concept of agile 

behavioral model generation  

This paper exposes maturity of the proposed solution validated by real plateaus execution in-

volving all actors of the targeted study. 
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1 INTRODUCTION 

Among critical capabilities required by architects and chief engineers, managing efficient 

trade-off studies of thermal energy has become a number one priority. The efficiency and 

management are needed because the aircraft manufacturers work collaboratively with their 

extended enterprise to propose competitive solutions. 

Indeed, if early evaluation of more alternatives is key to avoid late recognition of “low-

performing” design solution and facilitate faster time to market demands, then better under-

standing of the thermal behaviour has emerged because of the growth of inter-related chal-

lenges at sub-component level: 

 Shift from hydraulic and pneumatic systems to more electrical ones in modern aircrafts 

has highly affected the overall thermal load; the thermal load has increased five-fold over 

the two last decades. No reduction in such a trend being expected for the foreseeable fu-

ture. 

 Further, confinement of equipment to address payload increase (cargo and passengers) 

has raised issues related to sensitivity of new generation batteries to ambient temperature. 

 Effort to lighten Aircraft Structures through use of composite materials, whose insulation 

power is higher by 2 orders of magnitude, created more thermal constraints. However, 

the mechanical properties of composites might also drop drastically beyond their glass 

transition temperature. The gap between composite and thermal expansion coefficients 

can also induce critical constraints at the junctions of some components assembly.  

To overcome these thermal challenges, it is key that the aerospace industry performs ther-

mal trade management as early as possible in the development process. Therefore, a consorti-

um of 32 companies, coordinated by Airbus, launched an R&D project, named “Thermal 

Overall Integrated Conception of Aircraft” (TOICA [8]) that has been awarded for funding by 

the European Community’s Seventh Framework Programme (FP7/2007-2013, under grant 

agreement n°604981). 

The focus of this project is on: 

 Closing the gap between architectural view and domain specific simulations validation 

 Enabling multi-level, multi-disciplinary approach for preforming flexible architecture 

trade-off analyses. 

 Developing new integrated architecture/solutions aiming to thermally optimize aircraft  

Among the partners and their associated contributions: 

 Airbus leads several Use Cases and drive their implementation through “plateaus”. Plat-

eaus are technical working sessions where thermal trade-off studies are operated using 

the TOICA capabilities and where business benefits are assessed. 

 MSC contributes to the development of TOICA capabilities like: 

o Specific Aircraft Architect Environment to empower the architects with 

means of assessing their architectures in early design phases, through 

trade-off studies and reviews. 

o Collaborative data and process management capitalizing on previous pro-

ject outcomes like Behavioural Digital Aircraft matured by CRESCENDO. 

o Parametric Model Generation to enable end users to build objects serving 

as inputs in studies of configurations and their evaluations along trade off 

process. 
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o Coupling simulation approaches in Multi Discipline and Multi-level con-

text. 

This paper intends: 

 To share the status of the proposed methods, elaborated with partners using Technology 

Readiness Level, reviewing Airbus’s use case relative to Pylon Architecture trade-off for 

new power plant integration.  

Specifically, the TOICA collaborative richness will be described showing how the Flexi-

ble Model Generation capability, capitalizing on Pyramid of Model and Super Integration 

concepts, is used either to address needs of the simulation experts or as a trade-off gener-

ator engine serving the architect platform. 

MSC, as work package leader, is coordinating the Flexible Model Generation capability; 

Siemens/LMS is orchestrating the Pyramid of Model concept. 

 To map the proposed methods to TOICA use case driven by Airbus and focusing on 

management of power plant integration trade off from a multi-disciplinary perspective.  

2 TOICA AT A GLANCE 

TOICA is a 3-year European project, coordinated by Airbus that was launched in 2013. Its 

contributors comprise a consortium of 32 partners from 8 countries associated with a budget 

of nearly 30M€. 

R&D effort is balanced amongst eleven industrial companies, seven IT vendors, five small 

and medium enterprises, four research centers, and five universities. 

Capitalizing on results (Figure 1) of the CRESCENDO European project (2009-2012), 

where the concept of the Behavioural Digital Aircraft (BDA, now referred to as the MoSSEC 

standard [7]) architecture was specified, developed and validated, TOICA aims to introduce 

the next generation approach to sustain aircraft thermal studies throughout the design cycle. 

The proposed path is to develop simultaneously the systems, equipment and components by 

utilising the exchange of their behavioural representations amongst the stakeholders. 

In that respect, the TOICA members have agreed on four High Level Objectives (HLO): 

 HLO1: Develop customized collaborative simulation capabilities improving the genera-

tion, management, and maturity of the BDA dataset. 

 HLO2: Develop new concepts for improved thermal load management within aircraft 

components, systems and equipment, which will integrate innovative cooling technolo-

gies and products. 

 HLO3: Assess and validate the developed capabilities and technology concepts against 

different common reference aircraft targeting both “Enter into Service (EIS) 2020” and 

EIS 2030+ Thermal Concept Aircraft”. 

 HLO4: Optimise aircraft design by enabling highly dynamic allocation and association 

between requirements, functions and product elements (Super integration) for product 

innovations.  
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Figure 1: TOICA History 

In order to deliver applicable results on time, TOICA relies on its Use Case driven organi-

zation; with a progress monitoring scheme derived from a realistic aircraft design cycle that is 

drum beat by regular Milestone plateaus (MSP). In other words, real actors, in the context of 

their design activity, test any capability developed, which allows them to check a proposed 

method and review its Technology Readiness Level (TRL) validation. Further, it allows them 

to evaluate the gap between the expectations and the evidence produced.   

Six main use cases, illustrated in Figure 2, have been retained: 

 Manage Future Aircraft Architecture  

 Integrate Equipment Thermal 

 Research new cooling Technologies 

 Manage Aircraft Heat Load via Heat Sink  

 Optimize Overall Thermal ( Energy) for Systems  

 Integrate Power plant  
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Figure 2: TOICA Use Cases 

TOICA partners target to contribute to “Challenge 3 – Competitiveness through innova-

tion” of the ACARE SRA2 High Level Target Concept (HLTC) “High Efficient Air 

Transport System”, enhancing: 

 Aircraft development cost 

o Reducing by 10% equipment development impact via a more robust speci-

fication process allowing equipment supplier, or risk-sharing partners, to 

design systems and equipment according to more realistic margins. 

o Reduce the costs and time associated with integration and installation of 

systems and equipment in aircraft by strongly reducing the need for late 

rework 

   Supply chain efficiency  

o Reduce by 50% the lead time of an aircraft thermal architecture assessment. 

o Shorten by 6 months the equipment development process by improving the 

exchanges of thermal requirements with the suppliers and sharing the over-

all thermal view information across the supply chain. 

 Aircraft operational costs:   

o Reduce by 5% the energy/power consumption used for active cooling or 

controlling (heating) of systems 

o Increase the Mean Time Between Failure (MTBF) by 15% as the direct 

impact of more equipment-dedicated specifications 

In the following chapter, we focus on a specific study related to the future architecture as-

sociated to Airbus New Engine Option (NEO). For the sake of this study, we will pay special 

attention to TOICA developed capabilities: Architects’ Cockpit, and Flexible Model Genera-

tion. We will highlight how the overall study is already benefiting from the MoSSEC standard 

[7] and the multi-level coupling, mechanisms. Finally we will elaborate on how it will be ful-

ly delivered using additional TOICA developed capabilities like Super Integration. 
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3 NEO USE CASE 

3.1 Business Challenges and benefits 

Maximum re-use of equipment is expected in order drastically reduce program develop-

ment costs.  

However, for various reasons like hotter engine and reduced space allocation the thermal 

environment of equipment, thermal constraints on new configuration raise. This trend is even 

accentuated by new nacelles and engines design orientations like: 

 Increase of the engine by-pass ratio impacting cooling efficiency 

 Shorter nacelles impacting space allocation 

 More electrical function generating more heat sources. 

This leads to a strong need for efficient thermal trade-off means of equipment, required to 

face such an emergence of thermal challenges. 

The required capabilities to be delivered by TOICA should: 

 Enable early trades on power plant and pylon integration considering thermal integration 

& ventilation as well as re-use of constrains. 

 Enable trade on bleed architecture that includes all the driving parameters: ventilation, 

thermal impact and exhaust section, bleed performance, etc…  

 Analyze the close aero-mechanical-thermal coupling impact to pylon design.  

3.2 Trade off scenario 

In this case, the evolution of the aircraft configuration follows a process composed of the 

following key steps: 

 Define Top level aircraft requirement; 

 Define Mission; 

 Derive Neo Power Plant architecture constraints from aircraft baseline including  

o Aircraft level requirements 

o System level design requirements 

o Functional definition 

o Baseline architecture definition  

 Analysis at aircraft and system level of the baseline configuration 

 Review and challenge of the baseline configuration 

 Evolve the configuration in a iterative process 

In particular, the introduction of baseline variants or alternatives hypothetically takes place 

during the review and leads to the evolution of the configuration. 

The evolution of the configuration will generate a variant dataset, linked to the baseline da-

taset to ensure traceability of the entire evolution process. This is because the dataset is linked 

to the configuration 
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Specifically, as shown in the workflow views reported above, the main actors’ interactions 

with the dataset can be summarized as follows: 

 Power Plant Architect: Defines the trade-off study  He specifies the study objectives and 

populates the dataset by creating/importing the 

o TLAR 

o Operational definition 

o Aircraft configuration and zoning 

o Objectives 

 Thermal Expert: Receives the study request from the Power Plant  Architect and enriches 

the dataset by defining the thermal objectives and constraints before to split the request in 

two branches: 

o The first one, the analysis of cooling and packing of engine integration 

compartments 

 In turn this sub-study will involve additional actors like the Engine 

Architect and his thermal team, at integrator partner’s level.  

o The second one, relative to pylon thermally constrained design trade off 

 Equally to the previous one, this branch will grow into a distributed 

and collaborative study coordinated by a thermal leader 

 
 

Figure 3: TOICA Neo Use Case Scenario 

The sub-study dedicated to pylon trade-off will be detailed along the next paragraph to il-

lustrate how thermal expert will leverage most of the TOICA developed capabilities to col-
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laborate with the architect. This expert will orchestrate a multidisciplinary and multi-level op-

timization process for the engine pylon, where this process takes into account thermal, flutter 

and detailed stress constraints (Figure 4).  

The goal in that case being to assess the sensitivity of the main performance indicators 

with respect to variations of the pylon width along three different of its sections. The consid-

ered performance indicators will be mass of the pylon and the drag coefficient; proposing a 

set of design solutions that are optimal in the sense of both aerodynamics and structure disci-

plines. 

  

 

Figure 4: Multi-Disciplinary scenario overview 

Technically this will be reached by leveraging a bi-level approach: 

 At global level: each discipline feeds the global process with shared parameters (pylon 

width, material choice…), constraints and objectives (minimum drag and mass). 

 At local level: specific parameters and constraints for each discipline are addressed, and 

are not shared among the disciplines. 

3.3 To-Be process requirements mapping to TOICA capabilities 

In order to address the business objectives defined in 3.1, the “As-Is” process needs to be 

enhanced in a way that the workflow, highlighted by Figure 3, can be executed by the actors. 

Initial requirements direct us to an environment where the architects can (Figure 5) 

 Define their domain architecture at aircraft level, (the Power Plant level in the specific 

case of TOICA), or at Engine Integrator level. Forthwith these objects are called models 

because: 

o Conceptually they are supported by the idealization from various perspec-

tives, being for instance functional; logical, 1D to 3D views. 
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o Such models are essentially assembly of sub-models: from the require-

ments and objectives within an operational scenario to physical representa-

tions that can co-exist at different levels. 

 Edit/Author the architecture model, meaning: 

o Populating  datasets for a certain view 

o Updating view representation while development matures 

o Deriving alternatives from a baseline, or an existing library of architectures. 

At this stage, it corresponds to trade variable definition converted to pa-

rameters of the architecture model, where a parameter can encompass 

many representations like 

 Geometrical ( change of a dimension or a zone) 

 Functional ( choice in function to perform ) 

 Architectural (requirements & objectives balance scope) 

 Behavioural (selection of Idealization level & method to assemble 

possible components of overall object)  

 Explore a proposed architecture through visualization of the 

o Requirements space (requirements, objectives, constraints) 

o Alternatives, as an initial means of comparison 

 Instantiate and manage trade off request from previous variants: 

 Defining and distributing tasks to various stakeholders across the 

extended enterprise; while retaining Intellectual Property Rights in 

the context of heterogeneous domain tools and infrastructures. 

 Monitoring based on selected key indicators throughout the project 

by tracing 

 Assumptions 

 Uncertainties 

 Results 

 Decisions 

 

 
Figure 5: Architects’ Cockpit functional scope 

6428



 Olivier Tabaste, Cedric Campguilhem  

 

Beyond natural interest into an Architects’ Cockpit from the NEO scenario, two additional 

TOICA developed capabilities will consolidate the benefits delivered to the end users. In the 

latter scenario, many stakeholders are engaged in a collaborative effort. The foreseen deploy-

ment does anticipate multiple lifecycle management platforms (Airbus legacy and /or part-

ner’s heterogeneous infrastructure constraints). Therefore, the communication and exchange 

scheme with the extended enterprise require some level of standard format and services to 

work collaboratively with them. In that respect, TOICA contributes to the MoSSEC [7] stand-

ard, by working on necessary BDA objects expanding the thermal collaborative scenario that 

were already validated during CRESCENDO project [1]. 

Keeping in mind the Architects’ Cockpit requirements, and switching to the Modeling and 

Simulation (M&S) toolbox, it is now easy to understand why and how it has to be “powered 

inside” with Flexible Model Generation technology. Indeed, its purpose is to enable the as-

sembly of componentized models: what an architecture definition is; and to introduce parame-

ters to enable creation of variant models: what a tradeoff requires. 

At such a stage, we do not even need to know what the sub-model components will be. 

Their representation will be populated with richer models while the development cycle of the 

aircraft progresses. In paragraph 3.4, we will show examples like top-level aircraft require-

ments (TLAR); operational scenarios, functional or system models and surrogate simulation 

models or 3D CAD models. However, at this stage it is important to emphasize that if Flexi-

ble Model Generation allows you to select a sub component and/or parameterized it along the 

global model assembly, it does not affect the possible choices among level representations. 

Indeed, if a choice does not exist at the start of the aircraft project it is important to organ-

ize the way we make a particular choice when several options become available. Do I select a 

surrogate representation of the structure, or a full 3D model? Does a 3D model derives from a 

preliminary simplified representation, or vice versa: surrogate versus 3D is not only a differ-

ence in the maturity of the study; it can be a preference in respect of the analysis performance 

associated with the precision on the expected result. The M&S workgroup in charge of this 

capability has developed the Pyramid of Models organization that can be seen at process-

oriented libraries of models that the Flexible Generation aspect will query when a possible 

choice occurs.(Figure 6) 

 

 
Figure 6: Pyramid of Models Serving the Flexible Model Assembly Generation 

 

This coupled solution enables framework of model usage to sustain NEO scenario with the 

Multi-Disciplinary architectural/behavioral representation of the complete aircraft, in any op-

erating conditions. 
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During the implementation of NEO use case detailed in this paper, we will see a second 

aspect of Flexible Model Generation directly applied to a more commonly understood geome-

try parameterization, driving a parametric simulation model. In that respect TOICA has capi-

talized on methodology introduced by Airbus and enhanced in a European project from 

framework program seven named MAAXIMUS [3].This approach is to use external shapes 

and add Design Parametric Objects (DPOs) of structural components like, ribs, holes, stiffen-

ers or corners piece reinforcements 

Then for each DPO an excel design table (DT) is created with associated parameters and 

each parameter of the DTs can be linked through excel with others if needed, or with parame-

ters associated to an external shape and logged into an xml format. 

Diving more into the details: we know that the scenario has to be driven by a Multi-

Disciplinary Optimization (MDO) and Multi-Level as well as accounting for optimization and 

coupling aspects, using the TOICA M&S capabilities. We will not elaborate this optimization 

method because it is covered by a “conventional” Design of Experiment approach. Therefore, 

we focus attention to the fashion in which simulations are coupled. 

Indeed, we have already described benefits of Flexible Model, assembling components 

from libraries organized as a Pyramid of Models. What we have dropped so far was the magic 

to make dissimilar idealization components compatible for the execution of a coupled run. In 

the context of NEO such integration has been performed by the creation of behavioural librar-

ies and surrogate models that will enable exchange though “MoSSEC” connectors. This “in-

terface” component, in the generation of the model, becomes one of the possible “variability” 

or parameter of the Flexible Model. It means here that if Architect view of the aircraft is: 

 Pylon Structure +Interfaces+ Equipment + Operational Scenario 

The representation for a simulation of a trade study can be for instance upon choice of 

equipment partner’s CAE preferred domain tools: 

 Pylon Structure(Solver A) + Interface (Solver A to B) + Equipment(Solver B) + Loads 

&Boundary Conditions  

 Pylon Structure (Solver A) + Interface (Solver A to C) + Equipment(Solver C) + Loads 

& Boundary Conditions  

As we need to enlarge Flexible Model to the concept of Architectural Model, the method 

needs to sustain not only coupling of models via an “interface component” but also functional 

models for which one change is going to impact more than, for instance the definition of 

model itself (more electrical components…) . Flexible Model will then be supported by Super 

Integration, which will be demonstrated in future TOICA plateaus. 

Finally, we will close this presentation of TOICA capabilities complementarity, as well as 

their mapping to the use case needs pointing onto risk reduction one.  It is the final touch to 

empower stakeholders and ultimately architects to trace information and decision associated 

with the KPIs. 

3.4 Scenario implementation example 

Consistently with capability mapping, the cornerstone component of the scenario imple-

mentation has been the Architects’ Cockpit. Choice has been made on MSC SimManager in-

teracting with SimManager as the SLM for the pylon multi-disciplinary trade-off and another 

PLM technologies representing legacy or extended enterprise platforms. This will enable the 

demonstration of TOICA collaborative philosophy, throughout the exposure of a communica-

tion to a SimManager server across APIs that are MoSSEC compliant, as demonstrated in 

CRESENDO [2]. Then a key core product functionality known as “Assemble&Simulate” that 
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enables in the simulation context to glue model components together for a particular simula-

tion scheme( parts idealization, connectors ,loads, constrains, materials, solver parameters, 

key results to extract, report to generate) before to automatically submit a job and retrieve the 

outputs, has been extended to an “Assemble&WorkRequest”. As such it is behaving in the 

same way in respect of an architecture model to define, populate with datasets and associate 

to a trade study, requests to be sent to other actors. 

Knowing that SimManager work request are by design mapped to MoSSEC model net-

work representation, the solution can be implemented in a context of the extended enterprise 

for which the trade study demand is conveyed then to the partner by a MoSSEC web service. 

 

 

Figure 7: Illustration of Architects’ Cockpit leveraging Flexible Model Assembly from functional architecture vs 

scenario 

Representation can be updated by right clicking on a model component in order to browse 

the “MoSSEC” libraries (Pyramid of Model & Super Integration) and select the preferred 

available level to be used in the study. User interface also allows for variant generation for 

instance by dragging and dropping an existing instance prior to define the variable parameters 

and update the master consequently. (Figure 7) 

Same kind of sequence is applicable to any layer of architects in the scenario, knowing that 

each time a request is made to actors, a notification is send which allows next stake holder to 

update the detail of the model in respect of its domain of concerns. 

And finally, Architects’ Cockpit will monitor study request execution, checking each task 

status (pending, running, completed, aborted…) in respect of planning. Each task can report 

objects, returned to the requester by the actor in charge of a particular aspect of the study. Of 

course, a result (temperature, width impact…), or a report of combined information can help 

to sustain a documented decision, in between additional milestone feedback like validation 

gates can also be controlled. Knowing that communication here again is managed by 
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MoSSEC associative model network (AMN) [2], it is possible to sink two activities with a 

filter on the granularity of details, and the representation of information exchanged.  

 
 

Figure 8: Multi-Level process granularity from Architects’ Cockpit to SLM 

The first use of AMN allows architect to safely trace simulation expert answers without 

any burden on CAE domain know how has shown in Figure 8, while the second way of use 

empowers Intellectual Property Right preservation by the mean of behavioral representation 

along the collaboration. 

The second enabler, we will detail is the Flexible Model Generation applied this time to 

Simulation domain. In order here to address need for multiple variant on a geometrically pa-

rameterized model, we have developed around MSC SimXpert, a tool that can (Figure 9): 

 Read an aircraft geometry and associated parametrization relying on DPOs as introduced 

in chapter 3.3  

 Leverage the Airbus patented ways in associating them to Parameterized Geometric Sup-

port (PGS): a child CAD model of the DMU associated to DTs representing part of the 

physics [5]. 
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Figure 9: Airbus FEMIX based Flexible Model Generation 

Multi-Level Coupling is managed then by an extension of FEMIX capabilities to the DPOs 

relevant to the various additional domains like thermal one (by the way FEMIX for non-

purely structural solution has been demonstrated as well in CRESCENDO for Acoustics), and 

the optimization “block” is implemented by coupling a Nastran SOL200 Finite Element Mod-

el run to the Sizing process (second level of optimization) within Airbus Sizing legacy envi-

ronment by the mean of Nastran DRESP3. 

 

Figure 10: Multi-Level Multi-Disciplinary process 
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Along the 5th plateau (MSP5) execution, SimManager took into account the collaborative 

MDO distribution of surrogate models for the structural, thermal and aero domains in one 

hand, while it was driving on the other hand, the structural optimization to sizing process. As 

illustrated in Figure10. This was achieved with support from NLR’s tool named BRICS [6] 

and Cenaero’s platform known as MINAMO. The flexible model capability from SimXpert 

has matured and will execute a full automatic coupling of the structural optimization process 

with thermal and aero surrogate models at horizon of 6th plateau. 

In that scenario, the post processing with architects’ cockpit and risk reduction associated 

to value assessment were also demonstrated for MSP5. (Figure 11) 

 

 
 

Figure 11: Trade-off decision and value assessment interaction 

4 CONCLUSIONS  

Through the review of one of the Airbus Use Cases, we have illustrated the relevance and 

benefit of TOICA capabilities, whether it relates to their interactions through MoSSEC as a 

standard for collaboration, or independently operating as M&S innovations. 

A strong point has been made on the fact that TOICA capabilities, though split by project 

WBS to optimize consortium knowhow and resources, are not totally independent and con-

jointly contribute to TOICA high-level objectives. 

In particular Flexible Model associated to Pyramid of Models and Coupling in the simula-

tion world; as well as Super Integration from Architecture perspective is a Key enabler of Ar-

chitects’ Cockpit: a pillar of TOICA. 

It is important to notice that between mid-term project presented in previous papers [9] and 

outcome of 5th plateau detailed in chapter 3, the solutions have matured to higher level of ma-

turity. Indeed the referenced demonstration executed by end users themselves, within an IT 

infrastructure exact image of their industrial working environment, enabled validation of a 
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TLR4, for Architect’s Cockpit and Flexible Model capabilities acting here in a tight interac-

tion. This trend is expected to mature even more for the last plateau to be held just before this 

paper is publicly presented. 
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Abstract. The TOICA EU FP7 project focuses on developing capabilities that support air-

craft manufacturers and their supply chain in jointly performing thermal analyses of aircraft 

architectures. Collaboration capabilities and related multi-disciplinary modelling and simu-

lation technologies are key pillars for joint thermal analyses. The paper describes two such 

capabilities: surrogate modelling and smooth cross-organisation workflow execution. These 

capabilities have been further developed based on TOICA needs. The integrated application 

of the capabilities is illustrated in the context of an aircraft wing fuel tank thermal analysis 

conducted in TOICA. 
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1 INTRODUCTION 

Aeronautics research and technology development programs generally involve collabora-

tion among different organisations, in order to include all required skills from the supply 

chain, to share risks and costs and to timely and efficiently develop innovative products. To 

achieve the challenging objectives of contemporary and future aeronautics, and to maintain 

global industrial leadership [1], a high level of integrated system design of the aircraft and its 

subsystems is needed. This requires a continuously increased level of collaborative engineer-

ing through modelling and simulation along the supply chain in order to improve cost and 

time efficiency and to reduce the integration risk in later phases. Teams of engineers from 

various disciplines and organisations are supposed to collaborate across organisational and 

geographical boundaries. The size and complexity of aircraft programs, the market demands, 

and the competition in the market require the collaboration to be effective and efficient, while 

obeying security constraints and preserving the intellectual property of the supply chain 

members. 

To achieve a step change in the way multi-disciplinary teams in an extended enterprise car-

ry out modelling and simulation processes, several capabilities that support collaboration and 

multi-disciplinary modelling and simulation were developed in the context of the TOICA EU 

FP7 project. TOICA develops these capabilities for application in the thermal analysis of air-

craft architectures and validates them on realistic thermal use cases. The need for thermal 

analysis of aircraft architectures has emerged from the increased application in aircraft of 

technologies that strongly impact the thermal behaviour of the aircraft. 

Collaborative engineering through modelling and simulation along the supply chain has to 

deal with two opposite goals. Firstly, the supply members want to protect their intellectual 

property rights (IPR) amongst each other, whereas more integrated simulation may ask for 

more and agile exchange of data among the supply chain. Secondly, security policies at the 

supply chain members limit access to simulation resources, whereas increased collaboration 

asks for well-established simulation workflows across the supply chain that support reproduc-

ibility and traceability of simulation data and processes. 

In the TOICA project, the Netherlands Aerospace Centre NLR developed and applied two 

innovative technologies that enable collaborative engineering through modelling and simula-

tion, while respecting IPR and security policies among the supply chain: the Brics capability 

and surrogate modelling. Brics enables multi-disciplinary and multi-partner engineering teams 

achieving cross-organisational simulation workflows while dealing with security constraints 

and measures of the involved organisations. Surrogate modelling is an effective method for 

reducing a complex simulation model to a ‘light’ version, which may respect IPR policies and 

can be exchanged easily among the supply chain. A surrogate model is specifically useful for 

extensive trade-off studies at aircraft level during conceptual design (as in TOICA), since a 

surrogate model requires low computational efforts.  

The two innovative technologies are illustrated on the realistic use case of fuel tank ther-

mal modelling, which was set up in the abovementioned TOICA project. This use case is 

driven by the needs to investigate the potential of fuel as heat sink and to support certification 

of a wing fuel tank that is made from non-aluminium materials. The potential of fuel as heat 

sink is limited by thermal constraints due to certification requirements. In case of novel mate-

rials for the fuel tank extensive testing and/or detailed thermal analysis is necessary to deter-

mine the bulk fuel tank thermal behaviour for different flight cases. 

Section 2 will introduce the TOICA project, the fuel tank thermal modelling use case, and 

the problems and challenges that have led to the development of the Brics and surrogate mod-

elling technologies. Sections 3 and 4 describe the backgrounds, details, and realistic example 
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applications of Brics and surrogate modelling, respectively. Section 5 describes the integrated 

application of the two technologies to the fuel tank thermal modelling use case. Section 6 pre-

sents conclusions.  

2 OUTLINING THE CONTEXT 

This section describes the context and rationale of the study of which the results are presented 

in this paper. Subsection 2.1 introduces the TOICA project. Subsection 2.2 introduces the fuel 

tank thermal modelling use case. Subsection 2.3 describes the problems and challenges that 

have led to the development of the two innovative capabilities addressed in this paper. 

2.1 Introduction to TOICA 

Thermal behaviour has become a crucial topic in the development of modern aircraft. This 

is due to the increasing number of complex systems required by modern, more electric com-

mercial aircraft, the introduction of hotter engines with higher by-pass ratios, the increased 

use of composite material in aircraft structures, and the confinement of highly dissipative 

equipment and systems in smaller areas, to save space for passengers and cargo. New ad-

vanced techniques to manage the aircraft thermal behaviour at the early stages of development 

are essential to take the right configuration decisions while meeting market demands. 

The ‘Thermal Overall Integrated Conception of Aircraft’ (TOICA) EU FP7 project intends 

to change the way thermal studies are performed within the aircraft design processes [2]. The 

project focuses on the creation and management of new aircraft architectures, including ther-

mal analysis and trade-off studies of such architectures, via a so-called “Architect’s Cockpit” 

as depicted in Figure 1. The thermal analyses require collaborative effort from the supply 

chain involved in the development of modern aircraft. The TOICA project develops advanced 

capabilities to support the collaborative analyses.  

 

Figure 1: Depiction of the TOICA Thermal Architect’s Cockpit that enables collaborative thermal trade-off stud-

ies (source: [2]) 
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2.2 The fuel tank leading edge case 

The use case addressed in this paper is related to one of the use cases of the TOICA project: 

using fuel as a heat sink for waste heat from other systems. This may raise certification issues 

with regards to the fuel tank, especially if innovative, non-aluminium materials are involved. 

Therefore, part of the TOICA use case is dedicated to the integrated analysis of the thermal 

behaviour of a wing fuel tank. The applicable wing fuel tank thermal model is part of the Ale-

nia Thermal Aircraft Model lead by Finmeccanica’s Aircraft Division. To comply with certi-

fication standards of a wing fuel tank that is made from non-aluminium materials, extensive 

testing and/or detailed thermal analysis is necessary to determine the bulk fuel tank thermal 

behaviour for different flight cases. The methodology for the fuel tank thermal characteristics 

evaluation shall indicate - during the aircraft preliminary design phase – whether or not a 

flammability reduction means (FRM) is needed. 

Figure 2 depicts a 3D schematic view of a wing fuel tank and leading edge. The tank is 

filled with fuel up to a certain level. Consequently, there remains a part of the tank that is not 

filled with fuel, but which may contain fuel vapour. This part is called the ‘ullage’. The tank 

compartment is separated from the leading edge compartment by a spar. Within the leading 

edge compartment a bleed pipe resides that transports hot air from the engine. The bleed pipe 

causes the fuel and the ullage to heat up when the engine is switched on. Furthermore, other 

heat sources such as solar radiation on the wing may cause the fuel and the ullage to heat up. 

All such heat sources need to be taken into account into the integrated thermal analysis of the 

wing fuel tank. 

 

Figure 2: Schematic of the wing fuel tank. The bleed pipe is located in front of the wing fuel tank. The bleed 

pipe causes the fuel and ullage, i.e., the unfilled part of the tank, inside the tank to heat up. 

The thermal analyses are performed at two levels: 

 Detailed thermal analysis by calculating the three-dimensional temperature profiles via 

structural Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). 

 Quick thermal analysis and prediction of the bulk temperature via a nodal model, apply-

ing a thermal network approach. The nodal model must be validated by the detailed 

thermal analysis. An efficient and sufficiently accurate model is needed for applying the 

analysis during the aircraft predesign phase. 

Both analysis levels rely on accurate boundary condition estimations for the fuel tank 

structure. Therefore, the effect of heat sources that are located close to the tank (e.g. the bleed 

pipe) is modelled to identify hot spots on the boundary of the fuel tank due to external heat 

sources.  
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On the detailed level this estimation is supported by a model of the wing leading edge. 

This model is described in further detail in subsection 5.1. On the quick analysis level the es-

timation is performed by a surrogate model of the wing leading edge. The derivation of the 

surrogate model is described in subsection 5.2. 

Figure 3 provides a scheme of simulation models that are involved in the fuel tank thermal 

analysis together with their interrelations and thermal coupling. The different simulation 

models depicted in Figure 3 have been developed by different partners with different tooling: 

University of Padova using StarCCM+ for the fuel tank CFD model, Siemens Industry Soft-

ware using LMS Imagine.Lab Amesim
TM 

for the fuel tank nodal model, and NLR using 

Abaqus for the fuel tank structure FEA model and for the leading edge FEA/CFD model. The 

latter model is addressed in this paper. In the ideal situation these models run all at one physi-

cal location: at the aircraft manufacturer. However, if this is not the case, collaborative engi-

neering technologies can facilitate an efficient integration workflow/process. Various reasons 

for such collaborative multi-partner approach will be explained for the general case in the 

next section. 

 

Figure 3: Model coupling and relation scheme of the fuel tank thermal analysis. The models in the green blocks 

will be further detailed in this paper (see section 5). 

2.3 Problem description and challenge 

Collaborative modelling and simulation in aeronautical industry with a multi-disciplinary, 

multi-organisational and multi-site engineering team are commonly hampered by security 

constraints, protection of intellectual property, and dependency on simulation tools and com-

plex simulation models that are expensive to run. Several research projects in the EU frame-

work programmes, such as VIVACE, CESAR, and CRESCENDO have been dedicated to 

development of innovative concepts and technologies that support collaborative engineering 

processes in the aerospace context. In the context of TOICA, NLR addressed two particular 

aspects: distributed collaboration technologies and cost and time efficient simulation technol-

ogies. 
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With respect to distributed collaboration, NLR investigated the limitations of cross-

organisation collaborative engineering resulting from the fact that organisations are protective 

with respect to access to their own assets. Due to a variety of security constraints imposed by 

the connected organisations, running a simulation workflow that comprises tools at the differ-

ent organisations is not obvious. Organisational rules and fire wall settings seem to make par-

ticipation of a partner in a cross-organisation simulation workflow difficult or even 

impossible. NLR’s challenge in this respect is to facilitate and smoothen the execution of 

cross-organisation workflows while dealing and complying with the policy and rules of the 

involved organisations. The approach is outlined in section 3. 

NLR also focussed on cost and time efficient simulation technologies. These are often a 

challenge within aeronautic design. Models that describe the behaviour of an aircraft compo-

nent in detail are usually expensive to run. They may be dependent on specific simulation 

tools and difficult to interface with other models. This makes it difficult to apply them in 

trade-off studies on aircraft level. Furthermore, they may not be shared with partners in order 

to protect the company’s knowledge that lies behind the model. Surrogate modelling can pro-

vide a solution to these challenges. In order to achieve cost and time efficient simulation tech-

nologies NLR’s objective is to develop surrogate models in such way that: 

 the generated models have an appropriate accuracy (fit for purpose), 

 the generated models are efficient (computationally cheap), 

 intellectual property of the detailed model owner is protected, 

 integration and model derivation effort is minimal, and 

 both transient and steady-state thermal behaviour can be simulated. 

This capability is presented in section 4. 

Both capabilities will be illustrated by separate application examples in the frame of 

TOICA. Furthermore, their integrated application in the context of the fuel tank leading edge 

use case is described in subsection 5.3. 

3 SMOOTH EXECUTION OF CROSS-ORGANISATION WORKFLOWS 

This section introduces Brics as capability for the support of smooth execution of cross-

organisation workflows. A quick, high-level introduction to Brics, describing its rationale and 

a global overview is given in subsection 3.1. A more detailed description of Brics is given in 

subsection 3.2. Implementation aspects of Brics are described in subsection 3.3. A first realis-

tic example application of Brics in the context of a distributed MDO study is briefly presented 

in subsection 3.4. The application of Brics in the context of fuel tank thermal modelling is de-

scribed in subsection 5.3. 

3.1 Cross-organisation collaboration challenges 

Collaborative engineering activities and simulation workflows are largely supported by in-

formation and communication technology and software tools. But making cross-organisation 

collaborative engineering efficient and effective in practice requires a step change. For exam-

ple, collaborative workflows typically span the networks of the collaborating organisations. 

The workflows would ideally run seamlessly across the networks of these organisations. 

However, with the current complexity of design, analysis and simulation tools and workflows 

it is difficult to be compatible with the varying security settings and the variety thereof. Engi-

neers are facing unintended security restrictions due to security rules, fire walls and proxy 

servers. These restrictions help organisations protecting their assets and intellectual properties 

and obeying legislation and regulations. In practice, aircraft collaborative design teams end up 

in using standard facilities, such as e-mail and FTP servers, and in dealing with IT depart-
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ments and security officers that seem unwilling to cooperate. From an aircraft program tech-

nical point of view, effective and efficient collaboration in the jungle of security rules, 

measures and technologies is a big challenge. This challenge has been the point of departure 

for the development of Brics. 

NLR has long history of experiences in supporting the realisation of cross-organisation 

workflows. The knowledge, expertise and reusable solutions have been collected in, and are 

being deployed through Brics. In a nutshell, Brics targets to achieve smooth and secure execu-

tion of cross-organisational multi-partner collaborative workflows. It enables all engineering 

partners to participate, even if they are “network access restricted” because of security 

measures [3]. At the same time, Brics complies with the security constraints of the organisa-

tions involved. Brics also aims to allow each partner to have full control over its own re-

sources, including computing resources, on-line data, and software tools. This means that 

organisations do not have to put their resources under management of Brics, any cross-

organisation workflow nor any umbrella authority. The resources may be deployed on behalf 

of cross-organisation workflows only under full control of the organisation’s own employees. 

Brics caters for a “man-in-the-loop”, as is shown in Figure 4. 

 

Figure 4: Schematic overview of the basic idea behind Brics: performing a remote calculation from within a 

“master” workflow by sending a notification to a remote engineer, who may decide on whether or not perform an 

action or a series of similar actions. Brics in addition facilitates the orchestration of the remote job and the data 

exchanges involved.  

The “evolution” of Brics started more than ten years ago, in research projects aimed at es-

tablishing virtual or extended enterprises in the support of collaborative engineering activities 

(VIVACE[4], CESAR[5], CRESCENDO[6]). Cross-organisation collaboration used to be 

mainly based on the exchange of data files via e-mail, FTP servers, websites for information 

exchange and collaboration (e.g., SharePoint), product lifecycle management and support sys-

tems, telecon and videoconference systems. In some cases it involved the shared use of tools, 

workflows and data on centralised systems. Commercial workflow management tools are 

available to support cross-organisation workflows but generally put heavy demands on the 

interconnectivity of the systems and organisation networks involved. They usually enforce the 

collaborating partners to install and use the same tool. 

Brics has evolved and still is evolving “on the job”. This means that it is being developed 

in projects that target or apply collaborative engineering activities and workflows. Its devel-
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opment is fed by needs and requirements that come from projects, use cases, and engineering 

teams that involve more and more cross-organisation collaborative engineering while facing 

ever increasing security constraints. Through the years, the security rules and mechanisms 

have become and still are becoming stricter. At the same time, partners in collaborations want 

to persist using their own processes, methods and tools, even while fulfilling their role in col-

laborations and collaborative workflows. This will enable them to fully exploit their own ex-

pertise and to pursue their own way of working, but on the other hand leads to more and more 

heterogeneous environments to be dealt with in collaborations. The two growing barriers of 

security and heterogeneity have fed and still feed the ongoing evolution of Brics. 

3.2 Brics technology to support cross-organisation collaborative workflows 

Brics comprises protocols and supporting middleware that facilitate remote execution of 

tools and workflows. The remote execution involves sending of notifications to remote engi-

neers, exchange of data, and synchronisation of distributed activities. Brics is based on default 

and standard network protocols, tools and facilities. Application of Brics has minimum “con-

nectivity” requirements: being able to send and receive e-mail messages and to upload and 

download files to a file or data server that is accessible to at least one other partner. To avoid 

misunderstandings, Brics does not “penetrate” fire walls nor rely on known bugs in network-

ing software or in other security means. The communication related to Brics-enabled cross-

organisation workflows is fully transparent and can be explained easily to the involved IT de-

partments and security officers upon request. Brics respects the security rules of the collabo-

rating partners. It supports the application of secure communication technologies, it involves 

remote engineers explicitly and it enables the collaboration partners to have full control over 

their own resources. Brics can be used complementary to existing engineering tools and work-

flows, and does not require changes of tools, methods, and processes in organisations. These 

properties contribute to the possible deployment of Brics with minimum impact on the busi-

ness of the connected organisations. 

Brics is based on a simple protocol that arranges the execution and data flow between an 

orchestrating (or “master”) workflow in one organisation and a remote engineer in another 

organisation who is assigned to execute a tool or a part of the workflow. The protocol com-

prises the uploading of data files that are input for a remote process, sending a notification to 

a remote engineer requesting the execution of a task, the synchronisation with the remote task, 

and the downloading of the data files that are output of the remote task; cf. Figure 5. The ‘sin-

gle-task’ protocol is suitable for the execution of a single remote task. If the same protocol 

were applied in a loop, the remote engineer would repeatedly be notified to execute the same 

task again with slightly different input data. The handling of a consecutive series of similar 

notifications is cumbersome, time consuming and error prone. Brics has an extended protocol 

for gracefully dealing with such multi-task jobs. The ‘multi-task’ protocol centralises the trig-

gering of the remote engineering into a single notification, requesting the remote engineer to 

execute a series of equal tasks. The protocol furthermore deals with handling the series of 

equal tasks and the graceful termination thereof. The protocols are described in detail in [7]. 

The middleware provide software methods to support the protocols. The methods can be 

plugged in easily as commands in scripts and tools in workflows and hence enable the use of 

the protocols from within scripts and workflows. The middleware supports the use of various 

existing mechanisms for notifications and data exchanges. It includes mechanisms to deal 

with proxy servers and to use permitted communication channels with the required level of 

security. It also includes mechanisms for relaying data files and notifications, to cater for situ-

ations in which partners have no access to particular data, file or e-mail services. The middle-

6443



E.H. Baalbergen, W.F. Lammen, A.J. de Wit, R. Maas, S.M. Moghadasi, J. Kos and F. Chiacchio  

 

ware furthermore supports engineers in providing specific parametric calculations “as a ser-

vice”, for use by (possibly remote) engineers and workflows [8]. 

 

Figure 5: Simplified sequence diagram of the Brics single-task protocol. 

3.3 Implementation 

The Brics middleware comprises a set of Java packages with a small number of ‘main’ 

programs and interfaces. As such, Brics is operational on a variety of operating systems, in-

cluding Windows, Linux, and UNIX. The Java packages enable easy integration of the mid-

dleware in Java applications and existing products. Brics has been successfully integrated in 

COTS and open-source workflow management and optimisation tools such as Boss Quattro, 

Isight/FIPER, RCE, and Optimus. The main programs include simple command interpreters 

that cater for interactive use of Brics as well as use of Brics from within script languages such 

as UNIX and Linux command scripts, Windows BAT scripts, Python, and Matlab. 

To support data exchange, Brics is capable of interacting with a variety of data and file 

servers. Examples are FTP, MS SharePoint, Share-A-space, and shared file systems. Interfac-

es to other, including new and organisation-specific data exchange services, such as Airbus’ 

FTS+ service, can be added easily at the Brics developer’s level. Brics’ default mechanism for 

notifications is e-mail. Brics has also provisions for dealing with product-specific notification 

mechanisms. 

As might be clear from the above, Brics includes many interfaces. The middleware is also 

capable of communicating through a variety of – secure as well as insecure – internet com-

munication channels. Use of Brics requires some configuration, which includes the specifica-

tion of what data server and e-mail interfaces to use, web addresses and authentication 

information for the services, and proxy servers to deal with. The configuration information 

can be provided as parameters at the Java level as well as via environment variables and con-

figuration files for the main programs and interfaces. The light-weight configuration means 

makes Brics an agile tool in the various collaboration settings. 

3.4 Example application in a distributed MDO process 

Brics has been installed in industry, research institutes, software vendors, and SMEs. It has 

been, and still is being applied for the implementation of cross-organisation distributed work-

flows in several EU and national research projects (VIVACE, CRESCENDO, CESAR, 

TOICA). In these projects, Brics has proven to be a valuable tool through which partners can 
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experience collaborative working in a flexible and easily accessible way, even in an early 

stage of the development of multi-partner scenarios and workflows. 

Brics facilitates the transformation and integration of local workflows into cross-

organisation collaborative engineering workflows, by supporting the replacement of a tool by 

a ‘stub’ that handles the remote execution of the tool as if it runs locally. Section 5.3 describes 

the application of Brics in thermal analysis of an aircraft wing fuel tank. A realistic example 

application was set up and demonstrated live in the context of TOICA [9]. In this use case, 

Brics has been used for the realisation of an automated multi-partner and cross-organisation 

distributed multidisciplinary design optimisation (MDO) workflow; see Figure 6. 

 

Figure 6: Overall process of preliminary design of power plant structures under thermal constraints. The process 

includes a distributed cross-organisation MDO workflow. The yellow boxes indicate the different partners. Note 

that different departments from Airbus were involved. The small green boxes indicate the role of Brics for or-

chestration and data exchange. 

The MDO workflow serves to support the preliminary design of aircraft power plant struc-

tures under thermal conditions. The optimisation requires multiple disciplines and tools avail-

able from the aircraft OEM as well as the suppliers. The MDO workflow concerns the 

optimisation of an aircraft pylon design using structural, thermal as well as aerodynamic sim-

ulations. The so-called “master” workflow drives the MDO process and is operated from the 

OEM’s site by a simulation expert. The progress of the optimisation process can be monitored 

by the simulation expert as well as the architect. The master workflow uses Brics to initialise 

the optimisation and simulation processes (tools and workflows) at the different partners. The 

optimisation process uses Brics to orchestrate the simulations and to manage the data ex-

changes in between. The remote partners use Brics to respond to the series of simulation re-
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quests and to manipulate the data to be exchanged. Notifications are sent by e-mail messages, 

and data exchanges take place via a single shared data server located at the OEM. 

Subsection 5.3 describes the application of Brics in the fuel tank modelling case introduced 

in section 2.2. In that case, Brics has been used in combination with the surrogate modelling 

techniques that are discussed in the next section. 

4 SURROGATE MODELLING 

This section describes the details of NLR’s surrogate modelling capability. An introduction 

is provided in subsection 4.1. The general surrogate modelling process is presented in subsec-

tion 4.2. Subsection 4.3 focusses on surrogate modelling of time-dependent models. A first 

realistic TOICA application of the surrogate modelling capability is discussed briefly in sub-

section 4.4. The application of the capability in the context of fuel tank thermal modelling is 

described in subsection 5.2. 

4.1 Capability introduction 

A surrogate model is an approximating model that replaces a more complex simulation 

model. The terminology “surrogate model” is used in the context of behavioural models. It is 

also referred to as “reduced model”. Similarly to the complex simulation model the surrogate 

model is a representation of the behaviour of a system. The surrogate model however aims at 

reducing the complexity needed to compute the system behaviour. There are several possible 

reasons for creating a surrogate model from a complex model: 

 Numerical efficiency – A surrogate model requires less computational power than the 

complex model. This is specifically useful in case the model needs to be used in an op-

timisation loop and therefor executed many times 

 Protection of intellectual property (IP) – The complex model may not be distributed to 

other parties because of the protection of IP. A surrogate model may be an alternative 

for this as it can be implemented as a black-box. The contents of the original complex 

model are not visible anymore. 

 Ease of integration – Running a complex model may require the specific tool, which it 

was developed with. In several cases the model needs to be integrated with other models, 

developed with other tools at other organisations. These tools do not necessarily inter-

face with each other. A surrogate model – being a simplified representation of the origi-

nal complex model – can usually be integrated more easily into other tools. 

One can consider two broad families of surrogate/ reduced models. First, data-fitted surro-

gate models are data-driven models that emulate the responses of a complex simulation model 

(see Figure 7). This type is applicable to this paper. Second, simulation models can also be 

reduced in a physics-based way. This type is not treated in detail in this paper, but is consid-

ered in TOICA e.g.:  

 Model reduction by means of geometry simplification of the original CAD model; see 

[10] and [11]. 

 Model reduction by means of thermal nodal modelling; see [12] for an explanation.  

In aeronautic design surrogate models are usually applied as part of a design optimisation 

loop. In some cases the surrogate models are adapted on the fly as part of the optimisation al-

gorithm: so-called adaptive surrogate models. Another frequent application is the creation of 

surrogate models as part of data analysis and statistics. A surrogate model is then directly de-

rived from experimental data in order to predict a certain behaviour that is under investiga-

tion [13]. 
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Figure 7: Illustration of data-fitted surrogate model derived from a detailed model of an equipment behaviour. 

Organisations that need to create surrogate models develop their own tools for it or use 

commercial-off-the-shelf (COTS) software packages. Several steps in the surrogate modelling 

process can indeed be performed automatically (see also subsection 4.2), but to derive a sur-

rogate model that is fit for purpose the involvement of experts is still essential. Expert judg-

ment is needed as the choice for the most appropriate data fitting method depends very much 

on the data set that is to be fitted. NLR has long experience in developing and applying surro-

gate models based on data fitting from various EU research projects (e.g., POA[14], ICE[13], 

VIVACE[15], CRESCENDO[16], MAAXIMUS[17]). 

4.2 Workflow for surrogate model derivation 

The derivation of a surrogate model comprises several steps. When a surrogate model is 

derived from a set of input/output data of the complex model, the sampling of the data points 

is based on a so called Design of Experiments (DoE). The DoE is a crucial ingredient of the 

surrogate generation process, especially when the function evaluations are expensive. It 

should provide sufficient variation in the input values to cover the desired input range because 

it must contain as much information as possible. Examples of DoE methods are full or frac-

tional factorial designs, Latin Hypercube Sampling (LHS) or D-optimal methods. Based on 

the DoE a database is derived that contains the results (input and output data) of the sequence 

of simulations with the complex model. 

The surrogate model itself is derived by fitting the set of input-output data. For this several 

fitting techniques exist. The most common is polynomial regression, also referred to as re-

sponse surface method. Other methods have been developed with more complicated analytical 

expressions like artificial neural networks, kriging, radial basis functions, splines, etc. The 

methods can be divided in interpolation and approximation methods. In case of interpolation 

the resulting surrogate model exactly matches the data points from which it was created with 

estimations in between those data points. In case of approximation the surrogate model does 

not exactly match the data points but approximates them as well as the space in between. The 

feasibility of a fit method depends on the nature of the data set: high or low dimensional, 
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sampled in a grid or scattered, noisy or clean, sampled in a sparse or dense manner (referring 

to the DoE), etc. 

The fitting process is usually supported by dedicated software tools that statistically ana-

lyse and pre-process the data set, provide multiple fit methods and facilitate a fit assessment 

to select the best method with the appropriate settings. At NLR the MATLAB based in-house 

fitting tool MultiFit[15] is used. The assessment of a candidate surrogate model is performed 

by excluding a number of points of the data set from the fit and reserving them for validation 

afterwards by comparing the surrogate prediction in these points with the true values. This 

validation data set can be shifted across the complete data set to have a better validation range: 

cross-validation Several error metrics are available to represent the validation, e.g. Root Mean 

Square Error (RMSE), Mean Absolute Percentage Error (MAPE), R-squared test and quantile 

tests. 

Figure 8 shows the identified steps that constitute the generic surrogate modelling work-

flow. Almost all steps are implemented using MATLAB. Only the runs with the high-fidelity 

model depend on its particular enabler (e.g. CFD or FEA computations). These runs can be 

orchestrated and linked into the surrogate modelling workflow using Brics. Such integration 

is detailed in subsection 5.3. 

The resulting surrogate models are represented with analytical functions, calculating an 

output prediction in one step. As such they require very low computational effort. 

 

Figure 8: Generic workflow for deriving a surrogate model. 

The surrogate models are by default available as MATLAB analytical functions, since they 

were created in the MATLAB environment. They have been exported as C type DLL or exe-

cutable file using the MATLAB Coder. The export makes the model a black box and easy to 

integrate with other simulation tools, e.g. as Functional Mock-up Unit [18]. 
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4.3 Transient surrogate modelling 

In most cases data-based surrogate models are applied in the context of a steady-state anal-

ysis of system behaviour. During TOICA a method has been developed for creating transient 

surrogate models. This means that the surrogate model is able to capture time-dependent be-

haviour, specifically in short intervals of time (dynamic behaviour). The transient surrogate 

modelling problem is formulated as follows. Derive a function f such that 

𝑦(𝑡) ≈ 𝑓(𝑦(𝑡 − ∆𝑡), 𝑢(𝑡), 𝑢(𝑡 − ∆𝑡), ∆𝑡),     (1) 

with y the vector of output variables, u the vector of input variables, t the simulation time and 

t a time step. For simplicity reasons only one time delay t of u and y is added in equation 1 

but one could also consider multiple time delays here. In the context of thermal analysis y 

usually represents a temperature field whereas u represents boundary temperatures and/or heat 

flows.  

The creation of a transient surrogate model gives rise to a significant increase of data, be-

cause complete time histories of the model inputs and outputs are needed to derive a surrogate 

model. Furthermore the dimensions of u and y may be very high, e.g. if complete temperature 

fields on a structure are to be predicted. In general, the more input dependencies need to be 

taken into account by the surrogate model, the more data points are needed. In many cases a 

large number of simulations is not feasible, because of the computational cost (e.g. CFD runs). 

In such cases it is useful to analyse whether the dimensionality of the inputs and outputs can 

be reduced. In the context of a thermal analysis this reduction can be applied to the tempera-

ture field y. As such a data pre-processing step is performed in which a transformation of the 

data is created that affects the eventual surrogate model. The transformation function will be-

come part of the final surrogate model. The data pre-processing step has been performed us-

ing Proper Orthogonal Decomposition (POD) [19]. With this method the dimension of the 

data is reduced by finding the (spatial) coherence in the simulated time histories of y by per-

forming a singular value decomposition of the snapshot matrix and retaining the singular vec-

tors that correspond with largest singular values. These POD vectors derived from the 

simulation results form a reduced basis for y. Then a function g is to be fitted such that 

𝑐(𝑡) ≈ 𝑔(𝑐(𝑡 − ∆𝑡), 𝑢(𝑡), 𝑢(𝑡 − ∆𝑡), ∆𝑡),     (2) 

with c the predictions of the POD coefficients (i.e., the representation of y in the new basis), u 

the vector of input variables, t the simulation time and t a time step. Typically c has a di-

mension that is orders of magnitude smaller than y.  

 

Figure 9: Top-level view of a recurrent artificial neural network that fits the POD coefficients c(t). 

A suitable method for deriving the function g is a recurrent artificial neural network (ANN). 

This method supports fitting of time series [20]. The recurrent ANN fits the values c(t) of the 

POD coefficient matrix as a function of the inputs u(t) -including a number of time delays of 
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u(t) - and it feeds the predictions of c(t) back into the network with one or multiple time de-

lays. This is illustrated in Figure 9. A recurrent ANN is applied as surrogate modelling meth-

od in the fuel tank use case described in subsection 5.2. 

With a recurrent ANN the time step t is assumed to be fixed. In some cases the data set 

may contain time series with different time step values, e.g. when the data set is assembled 

from other data sets. In those cases a feed-forward ANN can be used instead, in which the his-

tories of c(t) and the time step t are to be treated as inputs as well. Such ANN is illustrated 

in Figure 10, and has been applied in the example described in subsection 4.4. 

 

Figure 10: Top-level view of a feed-forward artificial neural network that fits the POD coefficients c(t), for time 

histories with variable time steps 

The steps for creating transient surrogate models have been automated as much as possible 

using the generic workflow depicted in Figure 8. 

4.4 Example application in equipment thermal integration 

The application of the transient surrogate modelling method to the fuel tank analysis use 

case is detailed in subsection 5.2. Earlier during TOICA, the method has been applied in the 

context of equipment thermal integration. That realistic application is summarised in this sub-

section. 

 

Figure 11: Illustration of surrogate modelling in the context of equipment thermal integration. 
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A data set has been provided of the transient thermal behaviour of the Air Data Inertial 

Reference Unit (ADIRU), by Thales (see Figure 11). The data set contains a number of time 

histories of 21 nodal temperatures on the equipment with varied initial conditions and a varied 

ambient temperature. The nodal temperatures represent the vector of output variables y to be 

predicted and the ambient temperature represents the input variable u (see equation 1). The 

data set consists of 5448 records in total. The dimensions of the data set have been reduced 

using POD. Five singular vectors have been retained. The POD coefficients have been pre-

dicted by a feed-forward ANN, taking the time history of the POD coefficients at the previous 

time step, the ambient temperature and the time step as input (see also Figure 10). The ANN 

consists of 2 hidden layers of size 12 and 8 respectively. Training has been performed using 

Bayesian regularisation. The resulting surrogate model has a temperature prediction error of 

order 1-2 
o
C (measured on the full data set used for fitting). 

The surrogate model has been exported as a C type DLL which has been integrated with 

the system simulation tools (representing equipment thermal integration, see Figure 11): 

 Amesim, used for integration of the surrogate ADIRU model on aircraft level. 

 Dymola, used for integration of the surrogate ADIRU model on avionics compartment 

level. 

5 THERMAL SIMULATION OF A FUEL TANK LEADING EDGE 

This section details the case of thermal simulation of a fuel tank leading edge, which is re-

lated to one of the use cases of the TOICA project: using fuel as a heat sink for waste heat 

from other systems. Part of the TOICA use case is dedicated to the integrated analysis of the 

thermal behaviour of a wing fuel tank. The applicable wing fuel tank model is part of the Ale-

nia Thermal Aircraft Model lead by Finmeccanica’s Aircraft Division.  

In subsection 5.1 the thermal model of a hot spot close to the fuel tank is described. The 

model is used to simulate the thermal effect of a bleed pipe on the tank wall. Furthermore, in 

subsection 5.2 a surrogate model is created from the results obtained in subsection 5.1. This 

surrogate model is then shown to produce comparable results of thermal history as the origi-

nal model of subsection 5.1. Finally, in subsection 5.3, the simulation and surrogate creation 

steps are integrated into the collaborative engineering chain. All simulations have been per-

formed by NLR. 

5.1 Thermal modelling 

Thermal analysis of an aircraft wing fuel tank consists of an internal and external tempera-

ture simulation. External temperature analysis covers the wing structure and structural heat 

sources, e.g. bleed pipe. Internal temperature covers the fluid and ullage (cf. Figure 2). 

To identify the effect of heat sources external to the wing tank, a thermal model is neces-

sary that is able to capture convection, conduction and radiation effects of these heat sources. 

Such heat sources are typically components that are running through the wing where the fuel 

tank is located. These components may not be directly in contact with the wing fuel tank. 

However, their supports are typically connected to the wing spar that is part of the fuel tank 

structure, causing the wing spar to locally heat up. Furthermore, the air inside the bay where 

the heat source is located is heated up. Therefore, a fluid-structure model is created that mod-

els the effect of heat sources and e.g. cooling effects of vents that are present in front of the 

fuel tank wall. The present case consists of a hot spot in the form of a bleed pipe located in the 

wing leading edge in front of the fuel tank; see Figure 2. 

The thermal model for fuel tank external heat sources consists of two individual models 

that are coupled. The first model is a structural thermal model using a Finite Element ap-
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proach and simulates the structural thermal loading. The second model consists of a fluid 

thermal model using a Finite Volume approach and models thermal behaviour of the air inside 

the leading edge. The two models are coupled to exchange temperature and heat flux values. 

These models are simulated in Abaqus standard (Finite Element) and Abaqus CFD (Finite 

Volume), and are coupled through Abaqus co-simulation engine [21].  

In Figure 2, an overview is given of the wing structure consisting of skin, spar, and bleed 

pipe. The fluid model consists of the air inside the wing leading edge bounded by skin, spar 

and bleed pipe. Hence, the hot air inside the bleed pipe is not part of the CFD model but mod-

elled as boundary conditions for the structural FE model. Furthermore, the front spar is the 

boundary of the structure model. The fuel and ullage section is not modelled in this fluid-

structure model and is taken into account via a boundary condition. Modelling of the fuel and 

ullage are carried out by another TOICA partner, the University of Padova, using a CFD pro-

gram. 

Structural model 

The upper and lower skins as well as the wing spar are made of composite material with 

different thermal properties in plane 6.7 W/mK and out of plane 0.7 W/mK, a density of 1.60 

g/cm
3
 and specific heat of 1.4 J/gK. The curved part of the leading edge consists of a de-icing 

boot. Inside the leading edge is a bleed pipe made of aluminium. The structure model is 

shown in Figure 12. 

 
 

Figure 12: Wing structure part for which an FEA model is created. Left: the closed wing leading edge. Middle: a 

cut-out to show the internal structure showing the ribs, bleed pipe and bleed pipe supports. Right: the finite ele-

ment mesh of the leading edge structure, bleed pipe and supports. Via a cut-out the internals are shown. 

Hot air coming from the engine is running through the bleed pipe. This bleed pipe is then 

heated up and releases its heat via radiation to the surrounding walls. Additionally, via con-

vection with the air inside the leading edge and finally via conduction with the bleed pipe sup-

ports, the walls are heated up. Air is running through the wing leading edge via ventilation 

holes. As can be seen in Figure 12 the bleed pipe radius is smaller than the hole in the rib sec-

tion. Through this open area air is entering the wing leading edge in the model. On the oppo-

site side air is leaving the wing leading edge via the space between the rib and the bleed pipe. 

For meshing the structural model, linear tetrahedron elements are used and mesh seeding is 

chosen such that it more or less corresponds to the mesh seed that is used for the fluid domain. 

Boundary conditions are fixed temperatures on the wing top and bottom skin (including the 

de-icing boot). Thermal interaction of the front wing spar with the fuel is modelled via a heat 

transfer coefficient that was obtained from a CFD analysis conducted by the University of Pa-

dova for the fuel tank internals, i.e. ullage and fuel. The interaction with the air inside the 

leading edge is modelled via a fluid-structure interaction. Calculated wall temperatures on the 

FEA nodes are transmitted to the fluid calculations and the fluid calculations return heat trans-
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fer coefficients on the CFD nodes. Interpolation of the calculated values is used to map results 

of the FEA onto the CFD and vice versa. 

Fluid (air) model 

To model the thermal interaction via convection of the wing leading edge structure and the 

air inside the leading edge, a fluid (air) model is created of the leading edge internals. In Fig-

ure 13 the geometry is shown. To summarise, all the empty space inside the leading edge is 

used for the volume mesh. 

 

Figure 13: Wing leading edge air model showing the mesh of the air inside the wing leading edge that is mod-

elled via a finite volume approach. 

The fluid model is meshed using fluid linear tetrahedron elements. The mesh seed is cho-

sen such that it more or less corresponds to the mesh seed that is used for the structure domain. 

The Spalart-Allmaras turbulence model is applied that uses wall functions to avoid very fine 

meshes near the walls. Boundary conditions are no slip conditions where the air touches the 

structure. Furthermore, a constant fluid flow is prescribed on one side of the leading edge. 

 

Figure 14: Temperature plot in degrees Kelvin of a cut-out of the Finite Element model for the structure filled up 

with a cut-out of the Finite Volume model for the fluid (air) in the leading edge. 

The air intake is located on the front side of the leading edge shown in Figure 14. The ven-

tilation is taken into account in the model using a constant 1kg/s airflow running from left to 

right through the ribs. There is an opening in the rib that is larger than the size of the bleed 

pipe. On the back side of the leading edge the rib has an opening and here a constant pressure 

of 1 bar is applied. The result is a flow of air that cools the leading edge and prevents the lead-

ing edge internal from heating up too much by the bleed pipe. 

Co-simulation approach 

A transient analysis is carried out with an initial time step of 1 for both FEA and CFD. For 

the CFD model an automatic time stepping scheme is used called Courant-Friedrichs-Lewy 
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(CFL) time increment method and the time integration method is Galerkin. The numerical 

procedure to solve the pressure equation is using Bi-Conjugate Gradient, stabilised with a pre-

conditioner algebraic multigrid. Furthermore, the inflow of air is smoothly introduced over a 

period of ten seconds. 

The FEA model uses a fixed time increment, a direct solver and Full Newton. The maxi-

mum allowable temperature change per increment is 10 degrees and the maximum allowable 

emissivity change per increment is 0.1. 

The Co-simulation agent uses a Gauss-Seidel coupling algorithm (FEA and CFD are 

solved sequentially). The target time step for both analyses is the FEA time step. The FEA 

uses so-called fixed time stepping, i.e. lockstep, and the CFD uses so-called subcycling, i.e. 

multiple time stepping within a targeted time step.  

Main results 

The heat flow in the leading edge is simulated for a situation where the aircraft is on 

ground with engine on. Several ambient temperatures are chosen as starting condition. Fur-

thermore, cooling of the leading edge is accomplished via a constant mass flow of ambient air 

into the leading edge. The top part of the leading edge is heated up by a constant solar radia-

tion that leads to a 344K temperature of upper skin. The bottom part of the leading edge is 

heated via reflection of solar radiation from the ground leading to a 327K temperature of low-

er skin. Hot air (473K) is heating up the bleed pipe which is modelled via sink temperature 

and convection coefficient. The right tank compartment is full of fuel at a temperature of 

324K while in the left tank compartment the fuel has a temperature of 321K. In addition, the 

left tank compartment has a fuel level of 12cm from the tank bottom. The ullage space in the 

left tank compartment has a temperature of 326K. 

 

Figure 15: Temperature history of the front spar for different ambient starting conditions. The average tempera-

ture of the entire front spar is plotted. 

Figure 15 shows the temperature history of the average temperature of the front spar with 

an output time step of 50 seconds. For different ambient starting conditions the final tempera-
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ture approaches a value between 320K and 327K. Hence the effect of the hot bleed pipe is 

sufficiently compensated for by the cooling effect from outside venting air. Not all transient 

simulations have reached a final steady-state within 1000 seconds, but for all cases the steady-

state temperature of the front spar is not expected to be significantly higher than that of the 

fuel inside the tank. Nevertheless, Figure 15 shows that the time it takes to reach the steady-

state temperature depends on the ambient temperature, ranging from approximately 700 sec-

onds for an ambient temperature of 323K more than 1000 seconds for 273K. The simulations 

are time consuming. A single analysis can take up to 2 days to run on a single cluster node 

with 20 cores. Application of such simulations is not practical for long transient simulations 

and in case the transient behaviour is to be predicted for ambient starting conditions additional 

to the ones depicted in Figure 15, e.g. during extensive trade-off studies at aircraft level in the 

early design stages. This is where a surrogate model of the transient behaviour is an added 

value. 

5.2 Surrogate model 

With the thermal model of the leading edge transient simulations can be performed. How-

ever the calculation time of one transient simulation is very long, e.g. up to 2 days for a simu-

lation of 1000 seconds. The high computational effort makes it difficult to apply such 

simulation as part of efficient thermal analysis during the early design stage. Therefore a sur-

rogate model has been derived using the transient surrogate modelling capability as described 

in subsection 4.3. The surrogate model of the leading edge predicts the wing spar temperature 

field at a certain time as a function of the wing spar temperature field during the previous time 

step and of the ambient air temperature. Equation 1 has been adapted to: 

�⃗� (𝑡) ≈ 𝑓(�⃗� (𝑡 − ∆𝑡), 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡(𝑡), ∆𝑡),    (3) 

with �⃗�  the temperature field in K, 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 in K, t the simulation time, ∆𝑡 the time step and f 

the analytical function representing the surrogate model. The ambient temperature remains 

constant during one transient simulation. Therefore a time delay of 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 – like applied in 

equation 1 on the input u – is not considered relevant here. 

 

Figure 16: Surrogate modelling process scheme of the leading edge model. 
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Figure 16 illustrates the process of deriving the surrogate model. Five transient simulations 

have been performed, starting at different ambient temperatures. The ambient temperature has 

been varied between 273K and 323K. It is assumed that the temperature of the ventilation air 

through the leading edge is equal to the ambient temperature. Each transient simulation runs 

for 1000 seconds with an output time step of 50 seconds (cf. Figure 15). The resulting data 

represents the temperature field on the wing spar, calculated by the FEA analysis on 2700 

nodes.  

The spatial dimension of the data has been reduced using POD. The dimensionality has 

been reduced from 2700 nodes to 5 POD vectors that represent the relevant spatial behaviour 

over time. The data fitting problem is now reduced to fitting the time history of the POD coef-

ficients, see also equation 2. A recurrent artificial neural network has been applied using a 

hidden layer of 5 nodes (see also Figure 9). The POD transformation functions have been in-

tegrated into the surrogate model such that the surrogate model predicts the complete tem-

perature field at the 2700 spatial nodes. The predictions have a maximum error of 1.6K 

measured over the full data set of nodal temperatures. 

Figure 17 depicts the surrogate model predictions over time together with the FEA data 

points compared by their spatial mean values. The transient predictions by the surrogate mod-

el have been extended to 2000 seconds in order to test the prediction of the steady-states. 

Within the time interval between 1000 and 2000 seconds the results have been compared with 

a number of simulation results from additional transient runs with the detailed FEA/CFD 

model, with output time step 250 seconds. Figure 17 shows that the predictions by the surro-

gate model between 1000 and 2000 seconds are close to the FEA data points, even though the 

surrogate model is extrapolating in this region. Close to 2000 seconds the extrapolation starts 

to give undesired effects: the curves bend downwards again. However, the surrogate model 

provides a useful means to estimate the steady-state temperatures and the times when they 

have been reached. 

 

Figure 17: Spatial mean values of the surrogate model predictions (solid lines), fit data points provided by FEA 

(stars) and additional verification data points provided by FEA (diamonds) for the five simulation cases with 

ambient temperature variations.  
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5.3 Integrating the collaborative engineering capabilities 

The integrated thermal analysis of a wing fuel tank usually involves experts from different 

disciplines and possibly different departments and organisations. Disciplines involved could 

concern fuel systems, wing structure, pylon, fuselage, and thermal analysis (FEA/CFD and 

systems). Organisations involved could be aircraft manufacturers, system and component 

suppliers, and simulation solution providers. This distributed process can be performed as a 

collaborative workflow, using Brics for orchestration and data exchange, and using surrogate 

modelling to bridge the gaps between different simulation tools of the disciplines and organi-

sations. To demonstrate such distributed process a part of it has been realised, namely the der-

ivation of the leading edge surrogate model as described in the previous section. 

The calculation of the simulation FEA/CFD data set for creation of the leading surrogate 

model is a time-consuming process. Furthermore it may be challenging to obtain time slots 

and permissions for performing the simulation on appropriate computer hardware while using 

the specific software licenses that are needed. And when all simulations have been performed 

the generated data may be contained in very large files which are difficult to handle and ac-

cess. Extraction of the relevant data needed for fitting is still to be performed in a post-

processing step. It has been experienced that structuring the whole data calculation process 

into a workflow improves the efficiency of deriving the surrogate model. Brics supports the 

implementation of such a workflow, especially when the FEA/CFD thermal simulations are to 

be calculated by another partner than the one who derives the surrogate model. Figure 18 il-

lustrates the implementation of the workflow. The detailed thermal analysis by means of 

batch simulations as illustrated in the upper part of Figure 16 is now realised through a dis-

tributed process with Brics. This process results in a data set from which the surrogate model 

can be derived. 

 

Figure 18: Distributed process for obtaining the data for a surrogate model of the leading edge. The upper half 

covers Figure 16, while in this figure the detailed thermal analysis is performed in a distributed way. 
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The surrogate modelling expert does not need to worry about how the data set of thermal 

behaviour of the leading edge is derived (and how the relevant parts are accessed). This is be-

ing performed by a thermal expert who may be part of another organisation or another de-

partment. The orchestration of the distributed calculation process and the exchange of the data 

is performed by Brics. At NLR thermal analysis, surrogate modelling, and distributed collabo-

ration with Brics have been combined in order to derive a surrogate model of the leading edge 

thermal behaviour in an efficient way. 

6 CONCLUSIONS 

In the paper, we presented two collaborative engineering capabilities that support the need 

for high level of integrated system design of the aircraft and its subsystems: surrogate model-

ling and smooth cross-organisation workflow execution. The development of the capabilities 

took place in past projects, driven by needs and requirements from and discussions with 

stakeholders, and based on experiences gained with collaborative engineering and simulation 

solutions built. The capabilities have been further developed based on needs and distributed 

multi-partner simulation scenarios in the TOICA project. The application of the technologies 

has been illustrated by realistic examples of collaborative thermal analysis conducted in 

TOICA. An integrated application of the technologies has been demonstrated in a specific use 

case: wing leading edge thermal simulation for the thermal analysis of fuel tank. 

Based on the experiences with solutions for distributed multi-partner scenarios based on 

Brics, and successful demonstrations thereof, we conclude that Brics enables the smooth 

cross-organisation execution of engineering workflows in a world full of security rules and 

measures, while still complying with the overall and organisation-specific security policies. 

Through its flexible integration with a variety of standard and COTS software, Brics also 

demonstrated to be applicable through the various organisations with minimum effort. The 

impact on the business of the individual organisations is kept to a minimum, apart from the 

ability to connect to extra-organisation workflows. As such, we conclude that Brics responds 

to the challenges of distributed cross-organisation collaboration, and hence contributes to ef-

fective and efficient collaboration among aircraft manufacturers and their supply chains. 

As demonstrated in the fuel tank thermal modelling case, surrogate modelling has proven 

to make expensive, time-consuming and typically complex simulations of aircraft component 

behaviour available for quick thermal analysis. In collaborative simulations, it also caters for 

use of models that may not or cannot be shared with partners for intellectual property preser-

vation reasons or that are restricted by their implementation tools. As such, surrogate model-

ling has proven providing valuable technology for cost and time efficient simulation during 

the preliminary design phase. 

Furthermore, the detailed modelling of the thermal behaviour of a wing leading edge, 

based on FEA and CFD analysis, has been described. Such thermal modelling capability ca-

ters for detailed analysis of aircraft components that are to be manufactured with innovative 

materials, such as composites, in order to support certification of these components. 

The capabilities have been further developed and demonstrated in the context of collabora-

tive thermal analyses orchestrated by the aircraft manufacturer and performed throughout the 

supply chain, including small to medium enterprises. More generally, the capabilities can be 

applied beyond thermal analysis to support modelling and simulation for high level of inte-

grated aircraft design in general, which increases the competitiveness of the European aero-

nautics industry. The generic character of the capabilities suggests investigating the 

applicability in other areas, such as automotive and ship-building. 

The research leading to the results described in this paper has received funding from the 

European Community Seventh Framework Programme (FP7/2013-2016) under grant agree-

6458



E.H. Baalbergen, W.F. Lammen, A.J. de Wit, R. Maas, S.M. Moghadasi, J. Kos and F. Chiacchio  

ment no. 604981 (TOICA, [2]). The authors would like to acknowledge all colleagues from 
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Abstract. Many traditional engineering design processes in industry have evolved, and now-

adays they are supported by computational tools and methods. As a consequence, apart from 

the quantity of information and data, a network of simulation methods produces information 

at various level of detail and nature. Furthermore, human interactivity is an essential consid-

eration when building and designing such computational systems, simply because there is a 

requirement to process and understand this information that is produced during an engineer-

ing project effectively in real time.  

We introduce here a Visual Analytics perspective in computational engineering design pro-

cess, as well as tightening the interactive analysis of engineering data with Parallel Coordi-

nates and Scatter plots. To demonstrate the benefits of the proposed approach we use a case 

study that describes the design of an aero engine component critically suffering from the op-

erating conditions but at the same time from the change of specifications and customer re-

quirements.  

Some of the benefits include minimisation of rework through early identification of behaviour 

in selected Value Dimensions, as well as the ability to trade product performance (e.g. weight, 

minimum expected life) with internal stakeholder expectations (e.g. higher overall productivi-

ty of aircraft, low degree of aircraft modifications, faster design convergence). Furthermore, 

the proposed method develops the ability to identify architectural options that align with Val-

ue Creation Strategies, but also the evaluation of design options in advance of physical trade 

studies. 
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1 INTRODUCTION 

These days, people perceive for granted complex engineering products, such as an aircraft, 
and most importantly use them in their daily routine. As a result, the requirements and specifi-
cations should meet the expectations of the customers and stakeholders simultaneously. In oth-
er words, the technical and engineering objectives that usually drive a design process, should 
now reflect the impact of customer satisfaction. In our example, a passenger would wish to 
have more leg space for comfort, better quality of air in the cabin, and cheap ticket price, and 
expect to be able to reach at the airport and spend minimum amount of time during security 
control and boarding. But how do these expectations translate to engineering performance in-
dicators? How these metrics can be modelled? What are the relationships between such proper-
ties? We believe Visual Analytics and Big Data management can assist towards finding 
answers to these questions, and perhaps more importantly to create new questions that weren’t 
thought before, but will further support the human imagination and creativity. 

In an engineering design process, as illustrated in Figure 1, we start with the description of a 
problem, which we then need to formulate and model, often, in a computational/simulation en-
vironment. The same problem can have many model instances depending on the level of detail 
that is described, or even the point of view of the analysis. Each of these problem formulations 
are then explored, almost simultaneously through design optimisation studies, simulation and 
analysis tools, or similar. Before we are able to cascade this information downstream in the 
process for decision making, we need to collect, synthesise, and process the data. 

The process to collect this data, most of the times, has a complex structure, since many dif-
ferent analysis and simulation tools are used during an engineering design project. Further-
more, in many cases they are located in geographically different sources. 

The mere amount of aspects that need to be considered simultaneously when making deci-
sions during product development is one of the main reasons why synthesis in engineering de-
sign relies on experienced and advanced human cognitive skills. Since the introduction of 
computational support, the ability to design and optimise products have made several leaps 
forward. As one example, the actual definition and representation of a compressor, or turbine 
blade is no longer possible to be defined by hand. Advances in Computational Fluid Dynamics 
and the following ability to optimise such designs have enabled efficiency of compressor de-
sign to advance from 9X% to over 99% in just a couple of decades. A second aspect is that to 
differentiate on the marketplace, success is increasingly determined by how well the product 
performs from multiple perspectives. 

From an industrialist’s perspective, we are now at a point where we no longer create a sin-
gle concept with small variations of forthcoming products, but rather exploring entire design 
spaces using advanced computer tools. Engineers have the capability to produce more data per 
instance, for more variants and for more situations than ever before. 

There is a need to visualise the data and more importantly to be able to interpret and under-
stand what these data mean in a sensible way. Traditional ways of the representation of the be-
haviour of a design solution include the use of animations of e.g. deflection and distortion of a 
product (modal analysis, stress plots, etc.). Where the engineer could display results of one, or 
few alternatives, now is no longer feasible due to the multitude of variants and circumstances 
(loads) that the product is exposed to. Many aspects need to be explored for a range of alterna-
tive solutions. As a consequence, even if it is possible to generate such information, the analy-
sis of a multi-parameter design space for many alternatives drive the need to interact and 
understand much richer and more complex dataset. 
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Hence, we need to complement other visualisation techniques to enable rich understanding 
of many alternatives subject to variation to many variables or aspects. This is also another ma-
jor contribution of this paper. 

 

 

Figure 1: High level view of an engineering design process supported by visual analytics tools and methods. 

 

2 BACKGROUND AND LITERATURE 

Decision making during development is by nature multi-disciplinary, and several authors 

have proposed ways on how to explore design spaces in many dimensions. The MOVA 

framework by Woodruff et.al. [6] extended a finite dimensional design strategy to a more 

general framework to include multiple objectives, and compared the approach with alternative 

decision making strategies. Keim et al [15] summarised the area of Visual Analytics as a re-

sult from a three year European project, and concluded that assisting designers using visual 

analytic systems was one of the key challenges for the future. 

 

In Figure 2 it is shown a schematic representation of a concept of how to facilitate human 

interactivity within the automated computational engineering design cycle. 

 

 
Figure 2: Schematic representation of an interactive optimisation engineering design process [10]. 
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The automated computational design cycle is shown on the left, and at the heart of the over-
all process is the human, who interactively analyses the results of the process, understands the 
complexities and infuses this knowledge in real-time into the automated process.  

Although engineering design largely relies on the use of numerical and computational anal-
ysis tools, the synthesis and insights enabling design decisions still expect design engineers to 
understand the breadth of the design problem. There is a human aspect on decision making 
where the influence of appearance and visualisation has been shown to affect decision making 
in design situations. The influence of colours in visualising results has been previously applied 
in the area of Value Driven Design [16]. It has further been demonstrated the effect of contex-
tual information of product oriented data and observed the effect on engineering team attention 
to how data was visualised [14]. The ability to interact with alternatives and changing condi-
tions, such as product requirements changes and/or preference changes are clearly emphasised. 

Engineering Design is a highly iterative activity, where the definition of forthcoming prod-

ucts is typically matured through managing iteration and changes. Any decision support 

method needs to facilitate the study of variation, trading, etc. Data is typically produced in 

engineering tools, but also in less quantitative manner. Subjective metrics such as confidence, 

appearance, risk, etc co-exist with quantifiable aspects such as stresses, strains etc. 
Parallel coordinates (||-coords) can support and facilitate the possibility to identify trends 

and relationships between technical properties and specification characteristics when these are 
simultaneously represented in a multi-dimensional domain. 

There are platforms and frameworks under investigation and development that facilitate 

the human interaction and drive/guide optimisation studies. But also offer visual representa-

tion of the product in an auxiliary engineering analysis environment (i.e. Workways [12]). 

3 AN ENGINEERING EXAMPLE 

The initial aim and objective of this work was to identify the means to connect high level 

stakeholder and customer expectations and requirements to actual technical key performance 

characteristics and indicators. We use the Value Assessment method as introduced in [2] and 

expanded in [1]. Here, we only provide a brief description of the main stages of the Value As-

sessment process. For more details the reader should refer to [1] and [2]. 

3.1 Value Driven Design Methodology 

A Value Assessment process can be best described within the Value Driven Design pro-

cess as shown in Figure 3. 

 
Figure 3: The four phases of the Value Driven Design methodology. 
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In phase I the stakeholder expectations and needs are captured and linked with Value Di-

mensions and Value Drivers. The often tacitly expressed expectations are organised into a 

Value Creation Strategy (VCS), this is the prioritised set of stakeholder needs that can be in-

fluenced in design via the Value Drivers. The Value Drivers are consequently aspects wherein 

it is possible to define the design parameters to explore.  Typically, the breadth of information 

in phase I is vast. Explicit and numerically defined expectations, such as expected range or 

target weights are mixed with tacit and ill-defined expectations, such as being “sustainable” or 

“easily maintainable”, “easy to integrate into a system” etc. Explicit and quantifiable model-

ing may not be feasible, not at least in early phases, but may still be necessary to include in 

decision making.  

The second phase takes the VCS as input and serves to support the design synthesis stage. 

Searching for solutions in the design space is divided into an architectural modeling phase, in 

this case using an extended function means modeling approach, where the functionality of the 

systems is modeled and the alternative design solutions are defined. At this phase, the charac-

teristics of the forthcoming design is modeled for all relevant candidate design solutions. One 

way of representing an architectural option is via Design Structure Matrices (DSM’s), where 

the pattern of internal dependencies of design objects provides a quantifiable pattern of the 

architectural option (Figure 4).  

 

 
Figure 4: Through Function-Means modeling in CCM (Configurable Components Model) environment [17], 

alternative architectures of a RTS engine component are exported as DSM’s. 

 

The third phase introduces analytical tools that analyse the behaviour of the alternative ar-

chitectures along with the evaluation of the properties identified as Value Dimensions in 

phase I. One efficient method to understand and explore the behaviour of the product is the 

Change Propagation Method (CPM) [18], where dependencies between the architectural ob-

jects are assigned with probability and impact information. Change propagation analysis then 

generate information of how an architectural definition reacts to changes and perturbations 

(Figure 5). It has been demonstrated that it is possible to define first order relations to several 

stakeholder needs, such as “integration ability” and “development process efficiency” [1]. Of 

course, more traditional methods such as Finite Element Analysis (FEA) and Computational 

Fluid Dynamics (CFD) are also possible to be applied at this stage of the Value Driven De-

sign methodology. 

The focus of this paper is the fourth phase where the results from the simulated behaviour 

of all alternative architectural studies are collected and organised. Using ||-coords as a means 

of visualisation, the experience and intuition of the designer can be combined with the pat-

terns discovered using analytical methods. Since multiple aspects and multiple architectural 

options are studied, the pattern recognition abilities of humans is used to facilitate interactive 

exploration and search for suitable combinations of input and output.  
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Figure 5: A DSM representation of the product and the combined risk matrix as calculated in CAM (Cambridge 

Advanced Modeller) environment. 

 

3.2 A Brief Description of the Case Study 

The method using visual analytics is applied onto a case study. The product studied is a 

sub system of an aircraft jet-engine, a rear turbine structure (RTS) as shown in Figure 6. From 

an applied perspective, the RTS is a tightly integrated structural component of the jet engine 

used to propel the aircraft and provide power to the aircraft also for other purposes. A re-

engine scenario where the aircraft manufacturer wishes to upgrade the performance of the air-

craft by replacing and/or upgrading the existing engine type is considered here. The engine 

manufacturing consortia consisting of the jet engine OEM and its design partners need to un-

derstand the new consequences and assess what design options exist that are necessary to sat-

isfy the ambitions of the re-engine scenario. 

 

 
Figure 6: Re-engine scenario: turbine exit structure (illustration from Flight Magazine). 

 

In the European project TOICA, the scenario is defined as a context, wherein the Value 

Assessment Methodology, described in [1] and introduced above has been followed. In this 

paper we focus on phase IV but capture portions of the dataset for clarification and to present 

the sources of information used when assessing value in the interactive way using ||-coords. 

From phase I, a range of Value information is captured, each linking Stakeholder Expecta-

tions to Value Drivers. In Figure 7 this is illustrated for the “Higher Productivity of Aircraft” 

Stakeholder Expectations. This expectation eventually is influenced by weight since this has a 

first order influence on payload, and on minimum expected life which has an equal direct in-

fluence in the operating cost of an aircraft.  
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Figure 7: Expression of generic stakeholder expectations and needs, and the mapping to value dimensions and 

value drivers. 

 

Since the stakeholder expectation of “Higher productivity of Aircraft” and both of its 

Stakeholder Needs are attributed to the operation of the aircraft, the property of “Mission Per-

formance” was the right classification of value dimension. Notably, there are other Value Di-

mensions, addressing other aspects of stakeholders, such as how costly the products are to 

integrate into a system etc.  

The weight of a component is a good example of a Value Driver that can be assigned as a 

firm and quantifiable target. It can equally be related to the impact on productivity of the air-

craft, since frequently is the case in aerospace that weight is given a direct relation to produc-

tivity of the aircraft. In design phases, it is equally common to formulate penalty relations in 

monetary terms if target weights are not met.  

In a similar manner, there are relations with the expected life and the productivity of oper-

ating the aircraft. Maintenance schedules, repair and inspection costs are directly related to the 

satisfaction of a minimum expected life.  

Both minimum expected life and weight of components are examples of quantifiable value 

drivers. To evaluate weight and expected life, there is effectively no mature way of analysing 

this impact for new alternative designs without modeling the CAD definition (calculation of 

volume) and making physics based evaluations using computational techniques such as finite 

element analysis (calculation of the stresses and strains) and some life analysis technique 

(such as crack propagation and/or fatigue analysis).  

The actual relations between weight and performance, or minimal life and operating cost 

are business sensitive data and not disclosed explicitly in this paper.  

 

4 INTERACTIVE ANALYSIS WITH PARALLEL COORDINATES 

4.1 Methodology 

The inputs to the interactive analysis for Value Assessment are initially the results from the 

functional analysis and CPM analyses, as well FEA and CFD analyses. Parallel coordinates 

are used to display simultaneously the results onto each value dimension in the same plot as 

the design variables. The architect can work interactively with the data set, and filter out ar-

chitectures in several ways, either via filters on the parameters or via a graphical plot in 2D 

where two selected parameters are compared to each other. As the concepts are refined, more 

advanced modeling and analysis tools can be used to predict the behaviour or the concept. 

The first step (to the left below) operate on the pre-embodiment DSM data. In this step alter-

native variants are down-selected, and the most promising variants are selected for further re-

finement. Selection of variants allow physical and parametric geometrical modeling and finite 

element analyses to be conducted. The same tool and interactive analysis is re-used with a 

richer data set. This is described to the left in Figure 8.  

 

6467



Timoleon Kipouros and Ola Isaksson 

 
Figure 8: Parallel coordinates and interactive analysis and visualisation of impact of stakeholder needs and value 

dimensions enabled using multi-disciplinary analysis and design tools. 

 

Similar examples and methods of interactive analysis can be found in [7], [8], [9], [10], [11], 

[12], and [13]. 

 

5 FUTURE WORK AND CONCLUSIONS 

The approach presented, and the interactive way of analysing datasets was used to assess in-
itial architectural descriptions based on DSM representations and CPM as analysis method. 
The same visual analytics tools is re-used as the data set is enriched through more detailed and 
refined models of the architectures. In particular, the visual and interactive tool has been 
demonstrated effective as a means to facilitate the communication between architects and dif-
ferent engineering design teams. The ability to link “high level” objectives through the Value 
Creation Strategy, to the design variables characterising the various architectures has been 
demonstrated successfully. Since information in complex product development typically en-
gage many disparate competences and specialist teams, the value of communicating the expec-
tations and technical results are decisive. The Visual Analytics methods and tools are highly 
suitable to combine data from different sources and of different nature.  

In particular, the ability to analyse the often extensive data sets by filtering, selecting and 
searching for combinations of parameter values is an important feature. This is typically the 
task for multidisciplinary optimisation specialists, whereas through the visual analytics ap-
proach different stakeholders can analyse the datasets simultaneously. Based on this type of 
interaction during the development of the methods and tools in the TOICA project, engage-
ment and critical understanding were aspects that were significantly improved.  

Here we also list the identified benefits so far, and emphasis is given on further potentials 
and contributions in the engineering design field. 

These include: 

- Ability to represent many design alternatives that were evaluated simultaneously for 
many variables 

- Aggregation of information, where dynamic navigation in resolution and underlying as-
sumptions can be done interactively 

- Analysis supported by the ability to search for better and more suitable solution areas 

- Describe the logic-disciplinary development via computational tools 

- Ability to combine disciplines (multi-physics) 

- Ability to process large amount of data (computational power) 
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- Ability to automatically generate the necessary designs and their variation (design au-
tomation, KBE, etc)  

- Differentiation in business by tailoring and customising products and services (i.e. more 
variations and aspects ageing) 

But also other enabling means to support decision making: 

- Impact of component performance to global performance 

- Identify meaningful trade-offs between requirements and design parameters 

- Understand the design space and find answers to the questions: 

o What are the important parameters? 

o How the requirements compete? 

o Where are the most promising solutions? 

- Manage risk 

For further work there are several directions of interest. One is to further strengthen the in-
teraction with different scientific communities, such as the engineering disciplines, computer 
science, visual analytics communities, mathematics and cognitive decision making specialists.  

Secondly, already in its current state of maturity, there is an exploitation track to explore. 
The needs and contexts prevailing in decision making situations during product development 
can already now benefit from the ability to bring in complex data sets, link them to high level 
objectives and increase interaction with specialists. There is a route to more clearly understand, 
demonstrate and implement support for decision making in complex product and production 
development situations. The ability to represent and characterise architectures via internal and 
external dependencies is a promising area, where research is needed to enhance representation, 
definition and evaluation methods and tools. It is likely that the actual decision making process 
throughout a development project will continue to develop new practices. One of which is the 
facilitation of more interactive, visual and analytical tools.  
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Abstract. In this paper, the continuous adjoint method, developed by NTUA in the Open-
FOAM R© environment, is coupled with an RBF-based morpher developed by UTV to tackle
optimization problems in low-speed aeronautics. The adjoint method provides a fast and accu-
rate way for computing the sensitivity derivatives of the objective functions (here, drag, lift and
losses) with respect to the design variables. The latter are defined as a set of variables con-
trolling a group of RBF control points used to deform both the surface and volume mesh of the
computational domain. The use of the RBF-based morpher provides a fast and robust way of
handling mesh and geometry deformations, facing two challenging tasks related to shape opti-
mization with the same tool. The coupling of the above-mentioned tools is used to tackle (a) the
minimization of the cooling losses for an electric motor installed on a lightweight aircraft, by
controlling the cooling air intake shape and (b) the shape optimization of a glider geometry tar-
geting maximum lift-to-drag ratio by mainly optimizing the wing-fuselage junction. Regarding
problem (a), a porous media is utilized to simulate the pressure drop caused by the radiator;
the adjoint to this porosity model is developed and presented. This work was carried out in
the framework of the EU-funded RBF4AERO project and the presented methods are available
through the RBF4AERO platform (www.rbf4aero.eu).
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1 INTRODUCTION

During the last years, CFD-based aerodynamic shape optimization has been attracting the
interest of both academia and industry. The constituents needed for executing an automated
shape optimization loop include the flow solver, the geometry parameterization (the parameters
of which act as the design variables), an optimization method capable of computing the optimal
values of the design variables and a way to adapt (or regenerate) the computational mesh to
each candidate solution.

Nowadays, a great variety of in-house and commercial flow solvers exist. In the study pre-
sented in this paper, the steady-state flow solver of the open-source CFD toolbox, OpenFOAM R©,
is used to numerically solve the Navier-Stokes equations for incompressible, turbulent flows.

Shape parameterization techniques can be divided into two categories, i.e. those parame-
terizing only the surface to be optimized and those which also deform the surrounding mesh
nodes. In the context of an optimization method, the former rely on, among others, the normal
displacement of surface wall nodes [14], the displacement of control points of Bézier–Bernstein
or NURBS curves or surfaces and the variation in CAD parameters [15, 17]. The latter include
volumetric B-splines or NURBS [9], Radial Basis Functions (RBFs) [6, 4], the harmonic coor-
dinates method, etc. The great advantage of this category is that the interior of the computational
mesh is also deformed, avoiding, thus, costly re-meshing and allowing the initialization of the
flow field from the solution obtained in the previous optimization cycle, since the mesh topol-
ogy is preserved. In this paper, a number of parameters controlling the positions of groups of
RBF control points are used as the design variables, using technology and methods developed
in the context of the RBF Morph software [3].

Gradient-based optimization methods require a high effort to develop and maintain but can
have a cost per optimization cycle that does not scale with the number of design variables, when
the adjoint method is used to compute the gradients of the objective function. Both discrete and
continuous adjoint methods, [5, 12], have been developed. In this work, a continuous adjoint
method implemented on the NTUA in-house version of the OpenFOAM R© software is used.

The above-mentioned tools are combined in order to form an automated optimization loop,
targeting the maximization of the lift-to-drag ratio for a glider plane and the cooling losses
minimization caused by the cooling system of a small electric airplane.

The work presented in this paper was carried out in the framework of the RBF4AERO
Project which aims at developing the RBF4AERO Benchmark Technology, namely a numerical
platform conceived to face the requirements of top-level aeronautical design studies such as
multi-physics and multi-objective optimization, fluid-structure interaction (FSI), adjoint-driven
optimization and ice accretion simulation. Based on the RBF mesh morphing technique, the
platform allows to significantly boost the aerodynamic design process and a relevant impact is
then expected in the ever-growing technological demand posed by aeronautical manufacturers
in relation to the performance and reliability of aircraft components.

2 THE CONTINUOUS ADJOINT METHOD

In this section, the formulation of the continuous adjoint PDEs, their boundary conditions
and the sensitivity derivatives (gradient) expression are presented in brief. The interested reader
could find more about the adjoint method used in [18, 19, 13]. Since both geometries to be stud-
ied operate at low air speeds, the development is based on the incompressible RANS equations.
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2.1 Flow equations

The mean flow equations read

Rp=−∂vi

∂xi
=0 (1a)

Rw
i =v j

∂vi

∂x j
+

∂ p
∂xi
−

∂τi j

∂x j
+ fi=0 (1b)

where vi are the velocity components, p is the static pressure divided by the constant density,
τi j =(ν + νt)

(
∂vi
∂x j

+
∂v j
∂xi

)
are the components of the stress tensor, ν and νt the kinematic and

turbulent viscosity, respectively. In eq. 1b, term fi stands for any external force acting on the
fluid. In one of the applications studied in section 5, a non-linear, anisotropic porosity model is
used based on the Darcy-Forchheimer law, [1]. In this case, fi reads

fi=ri jv j , ri j=νDi j +
√

v2
kEi j (2)

where Di j and Ei j are constant Darcy and Forchheimer tensorial coefficients.
Eqs. 1 along with the turbulence model PDE(s) comprise the primal or state equations. In the

applications presented in section 5, the Spalart-Allmaras, [16], and k-ω SST, [10], models are
used. Though the continuous adjoint to both turbulence models has been developed by some of
the authors, [18, 13, 8], the remainder of the continuous adjoint formulation will neglect their
differentiation in the interest of space.

2.2 General objective function

Let F be the objective function to be minimized by computing the optimal values of the
design variables bn,n ∈ [1,N]. A general expression for an objective function defined on (parts
of) the boundary S and the computational domain Ω is given by

F =
∫

S
FSinidS+

∫
Ω

FΩdΩ (3)

where n is the outward facing normal unit vector.
Differentiating eq. 3 w.r.t. to bn and applying the chain rule yields

δF
δbn

=
∫

S

(
∂FSk

∂vi
nk+F́v

S,i

)
∂vi

∂bn
dS+

∫
S

(
∂FSi

∂ p
ni+F́ p

S

)
∂ p
∂bn

dS+
∫

S

∂FSk

∂τi j
nk

∂τi j

∂bn
dS

+
∫

SW

ni
∂FSi

∂xk

δxk

δbn
dS+

∫
SW

FSi

δ (nidS)
δbn

+
∫

SW

FΩnk
δxk

δbn
dS+

∫
Ω

F́v
Ω,i

∂vi

∂bn
dΩ+

∫
Ω

F́ p
Ω

∂ p
∂bn

dΩ

(4)

where SW is the parameterized part of the solid wall boundaries and F́Φ
Ω

includes the partial
derivative ∂FΩ/∂Φ plus any term resulting from the use of the Green-Gauss theorem for in-
tegrals of the form

∫
Ω

∂

∂bn

(
∂Φ

∂x j

)
dΩ. Terms F́v

S,i and F́ p
S are non-zero only if FΩ includes dif-

ferential operators of vi or p. In eq. 4, δΦ/δbn is the total derivative of any quantity Φ while
∂Φ/∂bn is its partial derivative. These are related by

δΦ

δbn
=

∂Φ

∂bn
+

∂Φ

∂xk

δxk

δbn
(5)

To avoid computing variations in the flow variables, the adjoint method as presented in the next
subsection, is used.
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2.3 Continuous adjoint formulation

Starting point of the continuous adjoint formulation is the introduction of the augmented
objective function

Faug=F+
∫

Ω

uiRv
i dΩ+

∫
Ω

qRpdΩ (6)

where ui are the components of the adjoint velocity vector and q is the adjoint pressure. For the
development of the adjoint to the turbulence model PDEs, the reader is referred to [13]. The
differentiation of eq. 6, based on the Leibniz theorem, yields

δFaug

δbn
=

δF
δbn

+
∫

Ω

ui
∂Rv

i
∂bn

dΩ+
∫

Ω

q
∂Rp

∂bn
dΩ+

∫
SW

(uiRv
i +qRp)nk

δxk

δbn
dS (7)

Then, the derivatives of the flow residuals in the volume integrals on the r.h.s. of eq. 7 are
developed by differentiating eqs. 1 and applying the Green-Gauss theorem, where necessary.
This development can be found in [18, 8, 13].

In order to obtain a gradient expression which does not depend on the partial derivatives of
the flow variables w.r.t. bn, their multipliers in (the developed form of) eq. 7 are set to zero,
giving rise to the field adjoint equations

Rq=−
∂u j

∂x j
+ F́ p

Ω
=0 (8a)

Rv
i =u j

∂v j

∂xi
−

∂ (v jui)

∂x j
−

∂τa
i j

∂x j
+

∂q
∂xi

+F́v
Ω,i + f a

i =0 (8b)

where τa
i j =(ν + νt)

(
∂ui
∂x j

+
∂u j
∂xi

)
are the components of the adjoint stress tensor and f a

i is the
adjoint to the external force term. The adjoint to the Darcy-Forchheimer porosity force term
reads

f a
i =uk(rki +Ek jv jvi) (9)

The adjoint boundary conditions are derived by treating the flow variations in the boundary
integrals (of the developed form of) eq. 7. This development is presented in detail in [13].

In industrial applications, the wall function technique is used routinely in analysis and design.
When the design is based on the adjoint method, considering the adjoint to the wall function
model becomes necessary. The continuous adjoint method in problems governed by the RANS
turbulence models with wall functions was initially presented in [19], where the adjoint wall
function technique was introduced for the k− ε model and a vertex–centered finite volume
method with slip velocity at the wall. The proposed formulation led to a new concept: the
“adjoint law of the wall”. This bridges the gap between the solid wall and the first node off
the wall during the solution of the adjoint equations. The adjoint wall function technique has
also been implemented in flow solvers based on cell-centered finite-volume schemes, for the
Spalart–Allmaras , [18], and k−ω SST , [8], models.

After satisfying the adjoint PDEs and their boundary conditions, the remaining terms in eq. 7
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yield the sensitivity derivatives

δFaug

δbn
=−

∫
SW

[
(ν +νt)

(
∂ui

∂x j
+

∂u j

∂xi

)
n j−qni+

∂FSW,l

∂vi
nl+F́v

SW,i

]
∂vi

∂xk

δxk

δbn
dS

+
∫

SW

ni
∂FSW,i

∂xk

δxk

δbn
dS+

∫
SW

FSW,i

δ (nidS)
δbn

dS+
∫

SW

(uiRv
i +qRp +FΩ)

δxk

δbn
nkdS

−
∫

SW

[(
−u〈n〉+

∂FSW,k

∂τlm
nknlnm

)(
τi j

δ (nin j)

δbn
+

∂τi j

∂xm
nm

δxk

δbn
nknin j

)]
dS

−
∫

SW

[
∂FSW,k

∂τlm
nktI

l tI
m

(
τi j

δ (tI
i tI

j)

δbn
+

∂τi j

∂xm
nm

δxk

δbn
nktI

i tI
j

)]
dS

−
∫

SW

[(
∂FSW,k

∂τlm
nk(tII

l tI
m + tI

l tII
m)

)(
τi j

δ (tII
i tI

j)

δbn
+

∂τi j

∂xm
nm

δxk

δbn
nktII

i tI
j

)]
dS

−
∫

SW

[
∂FSW,k

∂τlm
nktII

l tII
m

(
τi j

δ (tII
i tII

j )

δbn
+

∂τi j

∂xm
nm

δxk

δbn
nktII

i tII
j

)]
dS (10)

New symbols appearing in eq. 10 are explained in [13]. The deformation velocities, δxk/δbn,
included in eq. 10 express the dependency of the boundary wall nodes on the shape modifica-
tion parameters. This can be computed by differentiating the surface parameterization scheme
presented in the next section.

3 RBF-BASED MORPHING

In this section the mesh morphing algorithm based on RBFs is described. The background
theory of RBFs and details of its application in the mesh morphing field are presented; the
industrial implementation of the method, as provided by the stand alone version of the software
RBF Morph, is then described; finally, the coupling of the mesh morphing tool with adjoint-
based sensitivities is explained.

3.1 RBFs background

RBFs are mathematical functions able to interpolate data defined at discrete points only
(source points) in an n-dimensional environment. The interpolation quality and its behavior
depends on the chosen radial basis function.

In general, the solution of the RBF mathematical problem consists on the computation of the
scalar parameters of a linear system of order equal to the number of considered source points.
The RBF system solution, determined after defining a set of source points with their displace-
ment, is employed to operate mesh morphing to the discretized domain of the computational
model. Operatively, once the RBF system coefficients have been computed, the displacement
of an arbitrary node of the mesh, either inside (interpolation) or outside (extrapolation) the do-
main, can be expressed as the sum of the radial contribution of each source point (if the point
falls inside the influence domain). In such a way, a desired modification of the mesh nodes
position (smoothing) can be rapidly applied preserving mesh topology.

RBFs can be classified on the basis of the type of support (global or compact) they have,
meaning the domain where the chosen RBF is non zero-valued.

An interpolation function composed of a radial basis function ϕ and a polynomial h of order
m− 1, where m is the order of ϕ , introduced with the aim to guarantee the compatibility with
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rigid motions, is defined as follows

s(x) =
N

∑
i=1

γiϕ (‖x− xki‖)+h(x) (11)

where N is the total number of contributing source points. The degree of the polynomial has
to be chosen depending on the kind of RBF adopted. A radial basis fit exists if the coefficients
γi and the weights of the polynomial can be found such that the desired function values are
obtained at source points and the polynomial terms gives no contributions at source points, i.e.

s(xki) = gi,1≤ i≤ N ,
N

∑
i=1

γiq(xki) = 0 (12)

for all polynomials q with a degree less or equal to that of polynomial h. The minimal degree of
polynomial h depends on the choice of the RBF. A unique interpolant exists if the basis function
is a conditionally positive definite function [11]. If the RBFs are conditionally positive definite
of order m≤ 2 [2], a linear polynomial can be used

h(x) = β1 +β2x+β3y+β4z (13)

The subsequent development will assume that the aforementioned hypothesis is valid. The
values for the coefficients γi of RBF and the coefficients β of the linear polynomial can be
obtained by solving the system (

M P
PT 0

)(
γ

β

)
=

(
g
0

)
(14)

where g are the known values at the source points and M is the interpolation matrix defined by
calculating all the radial interactions between source points

Mi j = ϕ
(∥∥xki− xk j

∥∥) ,1≤ i≤ N,1≤ j ≤ N (15)

P is a constraint matrix that arises to balance the polynomial contribution and contains a column
of ”1” and the x,y,z positions of the source points in the other three columns

P =


1 xk1 yk1 zk1

1 xk2 yk2 zk2
...

...
...

...
1 xkN ykN zkN

 (16)

RBF interpolation works for scalar fields, hence a system of the form of eq. 14 has to be solved
for each of the three spatial directions.

The RBF method has several advantages that make it very attractive for mesh smoothing.
The key point is that being a meshless method only grid points are moved regardless of which
elements are connected to them; this make the method suitable for parallel implementation. In
fact, once the solution is known and shared in the memory of each processing node of the cluster,
each partition has the ability to smooth its nodes without taking care of what happens outside,
because the smoother is a global point function and the continuity at interfaces is implicitly
guaranteed. Though meshless, the method is able to exactly prescribe known deformations
onto the surface mesh: this effect is achieved by using all the mesh nodes as RBF centres
with prescribed displacements, including the simple zero field to guarantee that a surface is left
untouched by the morphing action.
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3.2 RBF Morph tool

The industrial implementation of the RBF mesh morphing poses two challenges: the numer-
ical complexity related to the solution of the RBF problem for a large number of centers and
the definition of suitable paradigms to effectively control shapes using RBF. The software RBF
Morph allows to deal with both as it comes with a fast RBF solver capable to fit large datasets
(hundreds of thousands of RBF points can be fitted in a few minutes) and with a suite of mod-
eling tools that allows the user to set-up each shape modification in an expressive an flexible
way.

RBF Morph allows to extract and control points from surfaces and edges, to put points on
primitive shapes (boxes, spheres and cylinders) or to specify them directly by individual coor-
dinates and displacements. Primitive shapes can be combined in a Boolean fashion and allow
to limit the action of the morpher itself. Two shape modifications used in this study are rep-
resented in fig. 1. It is worth noticing that the shape information coming from an individual
RBF set-up are generated interactively with the help of the GUI and are used subsequently in
batch commands that allows to combine many shape modifications in a non linear fashion (non
linearity occurs when rotation axes are present in the RBF set-up).

(a) cooling system diffuser (b) wing-fuselage junction

Figure 1: Example of RBF points arrangement for the definition of two shape parameters, (a) the lower wall of
the cooling system diffuser is parameterized using a cluster of RBF control points forming a cylinder. A Box
Encapsulation is used to limit the effect of the movement in the vicinity of the diffuser, also making sure that the
edge forming the diffuser inlet will not be deformed, since it is defined by the fuselage shape which needs to remain
intact, (b) a similar setup is used to define the deformation of the wing-fuselage junction close to the leading edge.

3.3 Coupling of RBF mesh morphing with adjoint sensitivities

Once the adjoint-based sensitivities are available, it is possible to easily compute the sensitiv-
ities w.r.t. shape parameters exploiting the parametric mesh available using the mesh morphing
tool. In order to take into account the non-linear fashion of the morphing field, the mesh defor-
mation velocities are generated by numerical differentiation of the morphing field around the
current design point in the parametric space. For a given set of shape parameters, the morpher
is capable to update the baseline mesh into the current one. A perturbed mesh, w.r.t. the cur-
rent one, can then be obtained for each shape parameter, computing the mesh resulting from its
perturbation while keeping all the other constant. The sensitivity w.r.t. each given parameter is
then obtained by multiplying the surface perturbation field by the surface sensitivities, eq. 10. It
is worth noting that the aforementioned coupling works not just at the origin of the parametric
space (baseline model) but at any given design point; adjoint data need to be recomputed for
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each design point for which local sensitivities are required.

4 OPTIMIZATION ALGORITHM

The gradient-based algorithm used to minimize the objective function is described in brief
below:

1. Define the shape modification parameters, section 3.

2. Solve the flow equations, eqs. 1.

3. Compute F .

4. Solve the adjoint equations, eqs. 8.

5. Compute the deformation velocities and through them, the sensitivity derivatives, eq. 10.

6. Update the design variables by using a descent method.

7. Morph the parameterized surface and displace the interior mesh nodes.

8. Unless the stopping criterion is met, go to step 2.

5 APPLICATIONS

5.1 Cooling losses minimization for an electric aircraft

The first application of the automated optimization loop presented in section 4 deals with
the minimization of the fluid power dissipation within the cooling system of the electric engine
mounted on a lightweight aircraft. The RANS equations are solved around a simplified fuse-
lage geometry which includes the cooling system configuration, fig. 2; a hex-dominated mesh
consisting of about 2.1 million cells is utilized. The flow Reynolds number is Re=1.22×105

based on the hydraulic diameter of the cooling system inlet and the k-ω SST turbulence model
is used. To avoid simulating the flow within the heat exchanger, its impact on the flow is mod-
eled through the addition of a non-isotropic porosity term, eqs. 1b and 2. The objective function
to be minimized reads

F =
F1

F2
, F1=

∫
Ωc

[
(ν +νt)

2

(
∂vi

∂x j
+

∂v j

∂xi

)2

+ ri jviv j

]
dΩ, F2=

∫
SIC

vinidS (17)

In eq. 17, F1 expresses the fluid power dissipation within the cooling system domain Ωc, fig. 2,
in the presence of an anisotropic porous medium. Since the flow rate through the cooling
system is not fixed, the denominator F2, quantifying the volume flow rate through the cooling
system inlet SIC , is included in F in order to prevent the optimization algorithm from reducing
the power dissipation by dramatically reducing the flow through the radiator. The latter is
important since the cooling capacity directly depends on the flow mass passing through the
cooling configuration.

Since SIC is not a mesh boundary, computing the appropriate contributions from the differ-
entiation of F2 to the adjoint flow is not a trivial task. In order to facilitate the imposition of the
adjoint boundary conditions, a couple of coinciding boundaries are defined at SIC , abbreviated
as SL

IC and SR
IC ; flow variables are equated in the corresponding faces of SL

IC and SR
IC . Due to the
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applied boundary conditions, SL
IC and SR

IC practically act as internal mesh faces during the solu-
tion of the flow equations. Then, for the solution of the adjoint equations, F2 is defined along
only one of these boundaries, say SL

IC . Developing the adjoint to the aforementioned objective
function and taking into consideration the primal boundary conditions, the following adjoint
boundary conditions are derived along SL

IC and SR
IC

uL
i = uR

i , qL = qR +
F1

F2
2

(18)

Only the shape of the diffuser of the cooling system, located directly downstream of its inlet,
fig. 2(a) is allowed to vary in this optimization study. Eight RBF-based design variables are
defined, controlling the upper, lower and side walls of the diffuser, fig. 3. The CG method is used
to update the design variables and a 5% reduction in F is obtained within 4 optimization cycles,
caused by an 8% reduction in fluid power dissipation and a slight reduction of the volume flow
rate by 3%. The optimized diffuser geometry along with the cumulative surface displacement
is depicted in fig. 2(c). In fig. 4, the flow streamlines inside the initial and optimized cooling
system geometries are presented. The reduction in the objective value can be attributed to the
fact that the flow recirculation present close to the upper diffuser wall has practically vanished
in the optimized geometry.

(a)

(b) (c)

Figure 2: Cooling system optimization: (a) the cooling system and its position in the airplane geometry. The
diffuser is coloured in red and is the only part of the geometry that is allowed to vary during the optimization.
The yellow area is where the actual cooling takes place and is modeled by adding an anisotropic porosity term in
the momentum equations. The combination of the red, yellow and blue parts comprises Ωc, (b) the initial diffuser
geometry (flow from right to left) and (c) the optimized diffuser geometry, colored based on the cumulative (after
four optimization cycles) surface displacement; the maximum displacement is located at the lower diffuser wall.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Cooling system optimization: deformation velocity (δxk/δbm) for the eight design variables parameter-
izing the diffuser shape. Design variables (a)-(d) parameterize the upper diffuser wall while those shown in (e)-(h)
the side and lower walls.

5.2 Lift-to-drag ratio maximization for a glider plane

This section is concerned with the shape optimization of a glider plane targeting the maxi-
mization of the lift-to-drag ratio or, equivalently, the minimization of

F =−
∫

SW

(
−τi jn j + pni

)
rL

i dS∫
SW

(
−τi jn j + pni

)
rD

i dS
(19)

where rL and rD are the lift and drag force projection (unit) directions, respectively. The flow
Reynolds number is Re=1.55×106 based on the wing chord, the Spalart–Allmaras turbulence
model is used, the mesh consists of about 4.7 million cells and the far-field flow angle is 10o.
The geometry is parameterized using four RBF-based design variables depicted in fig. 5, con-
trolling the wing-fuselage junction close to the leading and trailing edges as well as parts of the
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(a) initial, ‖v‖ (b) optimized, ‖v‖

Figure 4: Cooling system optimization: streamlines plotted through the initial (left) and optimized (right) geome-
tries, coloured based on the flow velocity. The intense flow recirculation present close to the upper diffuser wall
has practically disappeared.

upper fuselage surface. The convergence of the steepest descent-driven algorithm presented in
section 4 is showcased in fig. 6(a). It can be observed that the lift-to-drag ratio has increased by
15%, caused by 10% drag reduction and a 4% lift increase. The optimized geometry is illus-
trated in fig. 6(b). In fig. 7, the near-wall velocity isolines are plotted on the glider surface for
the initial and optimized geometries. It can be observed that the flow recirculation formed close
to the trailing edge-fuselage junction has been significantly reduced.

6 CONCLUSIONS

The continuous adjoint method and an RBF-based morpher, combined into an automated op-
timization software were used to build a gradient-based optimization algorithm, applied to two
low-speed aeronautical applications; the first targeted the losses minimization within the cool-
ing system of a small electric airplane while the second one the increase of the lift-to-drag ratio
for a glider plane. The first application required the differentiation of a non-linear, anisotropic
porosity model, used to simulate the flow resistance within the radiator of the cooling system. In
both cases, the optimized solution was achieved within very few optimization cycles, leading to
a small optimization turnaround time. The coupling of the adjoint-based optimization software
and the RBF-based morpher is part of the RBF4AERO platform. In a companion paper, [7],
the part of RBFAERO platform which combines the RBF-based morpher with an Evolutionary
Algorithm-based optimization strategy is also presented.
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(a) (b)

(c) (d)

Figure 5: Glider shape optimization: the magnitude of the parametric velocity (δxk/δbm) for the four design
variables parameterizing the glider shape. The first two parameterize the wing-fuselage junction close to the
leading and trailing edges, while the second two affect parts of the upper glider surface. All design variables are
allowed to vary within certain limits in order to prevent the generation of non-manufacturable solutions.
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Figure 6: Glider shape optimization: (a) convergence of the lift-to-drag ratio (L/D), along with the lift and
drag values. All values plotted w.r.t. the ones obtained using the initial geometry. A 15% lift-to-drag increase is
observed in 4 optimization cycles by mainly reducing the drag value and slightly increasing lift, (b) the optimized
glider geometry, coloured based on the cumulative surface displacement. A maximum displacement of 14.2 cm is
observed close to the leading-edge and fuselage junction.
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Abstract. The concept of Smart Micro Vanes (SMV) has been developed and investigated 

through computational simulations. The concept may significantly extend the applicability of 

natural-laminar-flow-and-high-aspect-ratio wing for modern, low-cost transport aircraft. The 

proposed device is an array of deployable micro-vanes (turbulators) located at a front part of 

the suction side of the wing. In nominal, cruise flight conditions the SMV are hidden in order 

not to trip the laminar boundary layer. In transonic flow, in extraordinary conditions of 

sudden gust the SMV are deployed to force laminar-turbulent transition of boundary layer on 

the suction side of the wing. This causes sudden drop of lift force acting on the wing and 

significant reduction of a danger of buffet onset. Both these phenomena are beneficial and 

desirable in the context of active control of aerodynamic loads acting on the wing structure. 

The paper presents results of computational simulations of transonic flight of simplified 

model of natural-laminar-flow wing in conditions of sudden-gust appearance. The 

simulations have been conducted for the case of clean model wing as well as for the same 

wing equipped with Smart Micro Vanes, deployed automatically (simulation of simple close-

loop control) to protect the wing structure against excessive aerodynamic loads. 
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1 INTRODUCTION 

Reduction of operational costs of modern transport airplanes is one of key goals of 

contemporary Aeronautical Engineering. The goal is trying to be achieved by reduction of 

both the aerodynamic drag and weight of aircraft [1]. For transport airplanes operating at 

transonic air speeds, the main drag components are: induced drag, friction drag and wave drag. 

Reduction of each of the drag components is achieved by different means. Reduction of 

induced drag can be achieved by application of higher-aspect ratio wing, but this leads to 

increased aircraft weight. For this reason a design solution based on active flow control that 

make it possible to build lighter high-aspect-ratio wings are in demand. On the other hand the 

known solution for reduction of friction and wave drag is transonic, natural-laminar-flow 

wing. This solution has, however, significant drawbacks in unsteady flow. In cases of rapid 

changes of flight conditions, as in sudden gusts the loads on laminar wing grow more rapidly 

than on turbulent wing and buffet oscillations leading to structural damage of wing may 

appear earlier than for turbulent wing.  

Taking into account all above pros and cons concerning application of Natural Laminar 

Flow (NLF) technology for wings of low-cost transport airplanes operating at transonic 

speeds, one may conclude, that such approach needs application of smart devices controlling 

the flow on the wing and loads acting on the wing in extraordinary flight conditions. In 

contrast to classic wing-load-control systems protecting the wing structure against excessive 

loads, such a system for the NLF wing should also protect the transonic flow on the wing 

against the buffet onset. 

The interaction between boundary layer and transonic effects on the NLF wing has been 

investigated within the FP7 project TFAST (Transition Location Effect on Shock Wave 

Boundary Layer Interaction). Based on results of computational investigations conducted 

within the project [2], the authors of the paper have developed concept of Smart Micro Vanes 

(SMV). This concept may significantly extend the applicability of natural-laminar-flow-and-

high-aspect-ratio wing for modern, low-cost transport aircraft. The proposed smart device is 

an array of deployable micro-vanes (small, thin plates) located at a front part of the suction 

side of the wing. In nominal, cruise flight conditions the SMV are hidden inside the wing in 

order not to trip the laminar boundary layer. It is assumed that the SMV are deployed to force 

laminar-turbulent transition of boundary layer generally in two situations: 

1. In extraordinary conditions of sudden gust in transonic flow: 

 to alleviate growing aerodynamic load acting on the wing  

 to reduce a danger of buffet onset (as well as wing buffeting) 

2. Optionally, in takeoff-and-landing conditions (low speed, high lift) to avoid a danger 

of laminar-stall appearance at high angles of attack (which is well known drawback of 

laminar airfoils and wings). 

The paper presents results of computational simulations of transonic flight of simplified 

model of NLF wing in conditions of sudden-gust appearance. The simulations have been 

conducted for the case of clean NLF wing as well as for the same wing equipped with Smart 

Micro Vanes, activated (deployed) to protect the wing structure against excessive 

aerodynamic loads.    

2 RESEARCH SUBJECT AND METHODOLOGY 

The computational investigations of SMV applied for wing-load control via boundary-

layer control were conducted for the case of simplified model of wing segment presented in 

Figure 1. The segment was built based on V2C laminar airfoil designed by Dassault Aviations 

especially for investigations of SWBLI in the TFAST project. Two configurations of the wing 
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have been investigated: the clean wing (with fully retracted micro vanes) shown on the left 

side of Figure 1 and the wing equipped with SMV, which were retracted or deployed 

depending on current flight conditions. The latter configuration in nominal cruise flight 

conditions looked exactly the same as clean-wing configuration. In sudden-gust conditions, 

when aerodynamic loads exceeded given threshold, the SMV were deployed and investigated 

configuration looked as it is shown on the right side of Figure 1. 

 

 
Figure 1:  Investigated model of NLF-Transonic Wing equipped with Smart Micro Vanes. 

Left side: Clean NLF Wing with retracted SMV. Right side: Wing with fully deployed SMV. 

 

The wing-flight simulations were conducted through solution of Unsteady Reynolds-

Averaged Navier-Stokes Equations (URANS) using ANSYS FLUENT solver [3]. For the 

modelling of investigated phenomena the four-equation Transition SST turbulence model was 

applied. This model solves additional four equations on four unknown variables: k – turbulent 

kinetic energy,  - specific dissipation rate of k,  - intermittency (probability of boundary 

layer being turbulent) and Re - Reynolds number based on boundary layer momentum 

thickness. Second-order spatial and temporal discretisation of URANS equations was applied.  

In conducted simulations, instead of finite-span wing segment, the infinite-span wing was 

investigated, utilising periodicity conditions at the ends of wing segment. The chord of the 

wing was C=0.2m. 

During the wing-flight simulations, the effect of sudden gust was modelled by sudden 

growth of angle of attack, which was achieved by physical rotation of computational mesh. 
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The effect of deployment of SMV was realised through a change of status of cell walls 

modelling physical surfaces of deployed vanes. In case when the vanes were retracted, the 

surfaces had status "interior" while for fully deployed vanes they had status "wall".  

In conducted CFD simulations, a simple Closed-Loop Control (CLC) of wing loads was 

introduced. It was assumed that during the flight, the control system is monitoring current 

values of load factor (n), defined as the ratio:  

 

  n = L / W         (1)  

 

where L is a current lift force acting on the wing and W is a weight of aircraft. According to 

assumed CLC algorithm: the load/flow control system was activated (SMV were deployed) 

when for increasing load factor it exceeded the assumed activation threshold n=1.3.  

Similar approach using time-accurate solution of URANS equations was already applied 

for analysis  of reduction of aerodynamic loads in gust as an effect of fluidic wing-load-

control devices [4],[5].  

3 SIMULATION OF TRANSONIC FLIGHT OF NLF WING  

IN SUDDEN-GUST CONDITIONS 

3.1 Flight Conditions  

In conducted computational simulations, the nominal, cruise flight conditions were 

assumed as follows: 

 Mach number:  M=0.7 

 Reynolds number:  Re=2.67∙10
6

  

 Lift coefficient:  CL= 0.76 

The assumed sudden-gust model was realised through change of current angle of 

attack - physical rotation of computational mesh with angular speed 5deg/s. As a result, the 

gust velocity profile presented in Figure 2 was applied in the conducted simulations. In 

presented results, only the gust-velocity-growth phase was taken into consideration.  

time [s]
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Figure 2: Assumed model of sudden-gust conditions. Time-variable gust velocity (VG)  

related to flight velocity (VF) during the gust-velocity-growth phase. 
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Within the TFAST project, several different positions and heights of SMV were investigated 

from point of view of their effectiveness and suitability for wing-load-control purposes. In the 

presented simulations only the configuration of six rows of SMV of height of 0.125% of wing 

chord, located at 20% of wing chord (see Figure 1) was investigated, because such 

configuration seemed to be optimal based on previously conducted research [2].   

3.2 Results of Simulations 

Time history of flight in sudden gust conditions of two compared configurations: clean 

wing and wing equipped with SMV, in synthetic form is presented in Figure 3. 

time [s]
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1.7
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BL Control via SMV
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of the gust impact

buffet onset on NLF Wing

threshold of activation of load-control system

activation of SMV

 

Figure 3: Comparison of time histories of load factor (n) during the sudden, growing gust, 

for two configurations: 1) Clean NLF Wing and 2) the Laminar Wing equipped with SMV  

controlling the flow inside the boundary layer. 

 

According to assumed gust profile (Figure 2) the gust started influencing the wing loads at 

the moment t0.11s of simulation. The load factor started growing from this moment, and it 

exceeded the threshold 1.3 at the moment t0.57s. For the clean-wing configuration, the load 

factor continued growing smoothly until the moment t0.70s. Starting from this moment, the 

load factor for the clean-wing configuration indicated oscillations of quickly growing 

amplitude. These oscillations were effect of buffet onset on the suction side of the wing, due 

to a strong, unsteady flow separation behind the shock wave. Frequency of the observed 

buffet was approximately 98 Hz. 

For the configuration of wing equipped with SMV, the simulation of unsteady gust load 

was the same as for the clean wing until the moment t0.57s when the load factor exceeded 

assumed threshold 1.3. At the moment, the SMV were fully deployed. Figure 3 shows that 

activation of SMV caused sudden drop of load factor of nearly 0.2. Next, for a moment, the 

load factor indicated some diminishing oscillations and after it continued smooth, mild 

increase. For the conditions, where the flow around clean wing indicated strong buffet, the 

flow around the wing with deployed SMV was free of any instabilities. 
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The same qualitative differences in the transonic flow around two compared configurations 

are visible in Figure 4, where the time histories of wing pitching-moment coefficient are 

compared.   

time [s]

C
m
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BL Control via SMV

activation of SMV

buffet onset on NLF Wing

 

Figure 4: Comparison of time histories of pitching-moment coefficient (Cm) during the sudden, growing gust,   

for two configurations: 1) Clean NLF Wing and 2) the Laminar Wing equipped with SMV  

controlling the flow inside the boundary layer. 

 

Figure 5, Figure 6 and Figure 7 present numerical Schlieren visualisations (contours of 

gradient of air density projected on appropriate direction) of shock waves in the flow around 

two compared configuration captured in selected moments of wing-flight computational 

simulations. For the moments t=0.6172 (Figure 5) and t=0.7072 (Figure 6) the visualisations 

show that in turbulent flow forced by the deployed SMV the shock waves are slightly weaker 

and located nearer the leading edge of the wing than in purely laminar flow.  

Figure 7 presents Schlieren visualisations of shock waves in the flow around two compared 

configuration captured at the moment, when for the clean wing the strong buffet is observed. 

In this case the shock wave is extremely unsteady and it quickly changes its position causing 

quick changes of flow parameters. Extreme-front and extreme-back positions of the shock 

wave during the buffet observed for the clean wing are shown in upper and middle part of 

Figure 7. For the configuration of wing with deployed SMV, the shock wave does not indicate 

any instabilities.   

Figure 8, Figure 9 and Figure 10 present distribution of pressure coefficient (CP) in 

selected cross-section of the wing, captured for two compared configuration in selected 

moments of simulations. The CP distributions presented in Figure 8 are captured at a moment 

shortly after achieving by the load factor (n) the threshold 1.3 and after deployment of SMV. 

The differences in CP distribution clearly explain significant drop of aerodynamic load 

concerning the configuration with deployed SMV. For this configuration, the observed 

decrease in pressure difference between upper and lower surfaces of the wing is a result of 

deceleration of the flow on the upper surface caused by both the deployed SMV and induced 

by them turbulent boundary layer which is much thicker than laminar boundary layer. 

In Figure 10 the unsteady CP distributions on the clean wing captured during the strong 

buffet are compared with CP distribution on the wing with deployed SMV, which does not 

indicate any instabilities.  
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Figure 5: Schlieren visualisation of shock waves at a moment shortly after deployment of SMV. 

Upper graph: clean-wing configuration. Lower graph: configuration with fully deployed SMV.  

 

Figure 6: Schlieren visualisation of shock waves at a moment shortly before the buffet onset on the clean wing. 

Upper graph: clean-wing configuration. Lower graph: configuration with fully deployed SMV. 
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Figure 7: Schlieren visualisation of shock waves during a strong buffet on the clean wing. 

Upper and middle graphs: clean-wing configuration for extreme-back and extreme-front  

positions of the shock waves. Lower graph: configuration with fully deployed SMV  

and steady position of the shock wave. 
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Figure 8: Comparison of pressure-coefficient  (CP) distribution on the wing at a moment shortly after  

deployment of SMV, for two configurations: 1) Clean NLF Wing  

and 2) the Laminar Wing with fully deployed SMV.  
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Figure 9: Comparison of pressure-coefficient (CP) distribution on the wing at a moment shortly before  

the buffet onset on the clean NLF wing, for two configurations: 1) Clean NLF Wing  

and 2) the Laminar Wing with fully deployed SMV. 
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Figure 10: Comparison of pressure-coefficient (CP) distribution on the wing during a strong buffet  

on the clean NLF wing, for two configurations: 1) Clean NLF Wing, two cases of extreme-front (F)  

and extreme-back (B) positions of shock waves and 2) the Laminar Wing with fully deployed SMV 

 and steady position of the shock wave. 
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4 CONCLUSIONS  

 The concept of Smart Micro Vanes has been developed and investigated through 

computational simulations so as to prove its potential advantages which may 

significantly extend the applicability of natural-laminar-flow-and-high-aspect-ratio wings 

for modern, low-cost transport aircraft operating at transonic air speeds. 

 The proposed device is an array of micro-vanes which in extraordinary, high-

aerodynamic-load flight conditions are deployed to force laminar-turbulent transition 

which leads to immediate drop of excessive wing load as well as to reduction of danger 

of transonic buffet onset.  

 Conducted simulations showed that effective flow control and wing-load control may be 

ensured by Smart Micro Vanes of height at least 0.125% of wing chord, preferably 

located at 20% of wing chord. 

 For the investigated configuration of wing equipped with Smart Micro Vanes, in sudden-

gust conditions, observed reduction of load factor, being the effect of activation of the 

device, was approximately 0.2 shortly after activation and 0.1 in a further phase of the 

gust. 

 For the investigated configuration of wing equipped with Smart Micro Vanes, in sudden-

gust conditions, in contrast to the clean-wing configuration, the transonic-buffet 

phenomenon was not observed. 
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NOMENCLUATURE  

C  - wing chord 

CL  - lift coefficient 

Cm  - pitching moment coefficient 

CP  - pressure coefficient 

L  - lift force 

M  - Mach number 

n  - load factor – def. (1) 

t  - time 

VG  - gust velocity (normal to flight direction) 

VF  - flight velocity  

W  - weight of aircraft 

Re  - Reynolds number 

  - density 
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BL  - Boundary Layer 

NLF - Natural Laminar Flow 

SMV - Smart Micro Vanes 

SST  - Shear Stress Transport 

URANS - Unsteady Reynolds-Averaged Navier-Stokes Equations 
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Abstract. This paper deals with the design of an adaptive trailing edge aimed at increasing 

the range capacity of a large commercial aircraft. Moving from the requisites, a brief discus-

sion about the expected performance will be introduced together with a suitable layout. Then, 

the design of the structural system able to guarantee both the deformability and the structural 

resistance will be presented. The next step is devote to the actuation system design, able to be 

integrate din the structural body and bear the external aerodynamic load. The external skin 

contributes to load bearing but also to the actuation effort required. Details refer to other 

publications while here it is considered though its effect only. An aeroelastic study, ensuring 

the stability of the proposed device over the whole wing system will be finally dealt with. A 

discussion on the real applicability in the aeronautics will conclude the work, pointing out at 

the necessary improvement required. Other work on the same subject, but referring to other 

design and implementation aspect will be fully referred to. 
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1 INTRODUCTION 

Conventional high lift systems, such as flaps or slats, are the common way to modify air-

craft wing geometry during take-off and landing in order to provide additional lift at low 

speed. However, they have limited efficiency due to the geometric discontinuities, require 

high installation efforts and offer no functional flexibility in cruise, as, for instance, differen-

tial surface deflection. For some last-generation aircraft as B787 and A350, additional func-

tions, such as differential flap settings are ensured by innovative flap actuation system 

concepts.  

In the framework of SARISTU project, research was conducted to develop an adaptive 

trailing edge device aiming at maximizing wing aerodynamic performance in cruise. Wing 

shape is controlled during flight in order to compensate the weight reduction following the 

fuel burning, by allowing the trimmed configuration to remain optimal in terms of efficiency 

(Lift to Drag ratio) or minimal drag. Trailing edge adaptations were investigated to achieve 

significant benefits in aircraft fuel consumption whose reduction ranges from 3% to 5% de-

pending on flight mission. Target morphed shapes - to be reproduced in flight - were deter-

mined through CFD-based optimization analyses; the same applies to the overall dimensions 

of the morph-able trailing edge (chord/span, see Figure 1). In order to assure the necessary 

figures for the aerodynamic efficiency of the reference A/C wing, it was found that the mor-

phable trailing edge portion should have spanned 3.0 meters along the inner wing (kink) and 

9.6 meters along the outer wing region; the required chordwise extensions should have been 

equal to the 20% and to the 10% of the wing MAC (nearly 3.5 meters) respectively for the 

inner and the outer segments. 

 

 

Figure 1: Morphing trailing edge regions [1]. 

Morphing is enabled by a multi-finger architecture driven by load-bearing actuators systems 

(hidden in Figure 2), designed to work synchronously to provide camber variation. After in-

formation gained from a widely distributed strain sensor network, the control system drives 

actuators movement. An adaptive, highly deformable skin, (shown in Figure 3), consisting of 

hard and soft segments, absorbs part of the external loads and insures a smooth profile. While 

the soft skin segments release a smooth, gapless transition between movable and fixed parts 

of the underlying kinematic structure, the hard skin segments compensate deformations due to 

air pressure gradients. The soft segments are based on elastomer foam while the hard seg-

ments consist of aluminum profiles. Both segments are covered by a thin layer to ensure a 

smooth surface. The system keeps its structural properties while actuated, then allowing the 
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preservation of a specific target shape regardless the action of the operational loads. The soft 

segments are located above and under the rib hinges while the hard segments are connected to 

the rib structure.  

 

 

Figure 2: The Adaptive Trailing Edge (ATED) device [5]. 

 

 

Figure 3: The morphing skin consists of hard and soft segments. Elastomer foam is used for soft segments which 

are located above and under the rib hinges. Hard segments are alumium profiles (grey). Hard and soft segments 

are covered with a thin elastomer layer [5]. 

These geometrical parameters were used as input for the definition of the structural con-

cept enabling the transition from the baseline trailing edge configuration to the morphed one. 

The structural sizing of the concept was addressed while considering the effective operative 

loads expected in service and the applicable airworthiness requirements; nevertheless, for the 

economy of the project, detailed design activities were carried out with reference to the instal-

lation on wind tunnel demonstrator only. On the other side, the wind tunnel demonstrator rep-

licated the last eight bays of the wing in full-scale size; the morphing trailing edge layout 

pertinent to the outer wing segment of the reference aircraft was then simply relocated along 

the wing span and supposed to be installed in the region usually occupied by the aileron (Fig-

ure 4). Its overall dimensions remained therefore unchanged with respect to real aircraft in-

stallation. 
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Figure 4: Wind Tunnel Demonstrator. 

2 MORPHING TRAILING EDGE CONCEPT  

In order to enable the transition of the trailing edge sections from the reference (baseline) 

shape to the target ones, a morphing structural concept was developed for ribs. Each rib (Fig-

ure 5) was assumed to be segmented into four consecutive blocks (B0, B1, B2, B3) connected 

to each other by means of hinges located on the airfoil camber line (A, B, C). Block B0 is rig-

idly connected to the rest of the wing structure, while all the other blocks are free to rotate 

around the hinges on the camber line, thus physically turning the camber line into an articu-

lated chain of consecutive segments. Linking rod elements (L1, L2) - hinged on not adjacent 

blocks - force the camber line segments to rotate according to specific gear ratios compliant 

with the shapes to be achieved  

 

 

Figure 5: Morphing rib layout: (a) blocks and links, (b) hinges 

These elements make each rib equivalent to a single-DOF mechanism: if the rotation of 

any of the blocks is prevented, no change in shape can be obtained; on the other hand, if an 

actuator moves any of the blocks, all the other blocks follow the movement accordingly. The 

rib mechanism uses a three segment polygonal line to approximate the camber of the ATED 

airfoil and to morph it into the desired configuration while keeping approximately unchanged 

the airfoil thickness distribution. 

The ribs’ kinematic was transferred to the overall trailing edge structure by means of a 

multi-box arrangement (Figure 6(a)). Each box of the structural arrangement was assumed to 

be characterized by a single-cell configuration delimited along the span by homologue blocks 

of consecutive ribs, and along the chord by longitudinal stiffening elements (spars and/or 

stringers). 

Servo rotary load-bearing actuators coupled to quick-return mechanisms were adopted for 

the independent control of each rib of the device. An FBG-based system based on sensing 
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elastic beams located at the middle of each bay was used to detect shape configurations and to 

generate the information for appropriate open- and closed-loop control actions. 

The structural concept herein described resulted from an iterative design process consisting 

of three main loops; the executive layout was obtained by progressively updating a prelimi-

nary assessed configuration on the base of feasibility considerations and stress analyses out-

comes. The updating process followed the design progress of the ATED main equipment 

(basically actuation/sensing system) and structural interfaces with the rest of the wing (dead 

box). Finally, in order to assure the safety of the wind tunnel test, aeroelastic investigations on 

wind tunnel demonstrator were carried out in order to show the clearance of the device instal-

lation from any flutter up to three times the maximum airspeed to be tested (80 m/s). 
 

 

Figure 6: Morphing box architecture (a) and actuation system (b). 

3 ACTUATION SYSTEM  

Contrary to flexural joints-based compliant morphing mechanisms, the morphing trailing 

edge device combines a rigid-body mechanical system with a compliant adaptive skin. The 

actuation kinematics is based on a “direct-drive” actuation consisting of an arm (actuation 

beam) that is rigidly connected to the B2 block shown in Figure 6 (b). This arm rotates the 

resulting 1-DOF-based mechanical system and transmits the actuation torque from the actua-

tor to the adaptive rib.  

In order to minimize the actuation torque necessary to hold and move the ATE device, dif-

ferent actuation kinematics were assessed during the design phase. The size and shape of a 

suitable actuator were in turn estimated taking into account weight and safety constraints. The 

torque needed to activate the device is generated by an actuation force acting perpendicularly 

to this arm (if the friction can be considered equal to zero) resulting from the contact between 

a carriage and a linear guide. This force is generated by a rotational actuator via a crank rotat-

ing with the actuator shaft. A simplified sketch of the mechanism is shown in Figure 7. The 

actuation arm rotates around the “virtual hinge” (the point around which the second rib block 

rotates during the movement of the ATE device) and transmits the actuation load (torque) 

from the actuator to the second rib block. As shown in Figure 8, the mechanical advantage 
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increases with the morphing angle and this is much more evident as higher is the ratio be-

tween the arm length L (distance between the second rib block virtual hinge) and the actuation 

crank radius R. However, the higher the L/R ratio is, the higher the actuator rotation angle has 

to be. This limits the palette of Commercial Off-The-Shelf (COTS) servo actuators suitable 

for the actual application. 

 

Figure 7: The actuation system layout [6]. 

 

 
 

Figure 8: Mechanical advantage and actuator shaft angles of the actuation system. 

4 FLUTTER ANALYSIS  

In order to assure the safety of wind tunnel tests, flutter analyses were carried by consider-

ing the morphing trailing edge device integrated into the full-scale SARISTU wind tunnel 

demonstrator. The finite element used for static analyses was condensed into a dynamically 

equivalent one characterized by a reduced number of degrees of freedom. Dynamic condensa-

tion was based on the generation of direct input matrices at grids [7] to capture both inertial 

and stiffness properties of the device. 

Reduction grids were rationally selected to get optimal modes shape resolution. The con-

densed dynamic model was then assembled to the FEM of the test article (Figure 9) and the 

overall system modes were evaluated. 
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Figure 9: Structural model used for aeroelastic computations. 

 

 

Doublet lattice method was adopted for the evaluation of the unsteady aerodynamic coeffi-

cients; a suitable 3D paneling was implemented for such a purpose (Figure 10). Surface 

splines were used to interpolate modal displacements along the centers of the aerodynamic 

panels and generalized aerodynamic forces were evaluated with reference to the airflow con-

ditions expected during tests. 

 

 

Figure 10: Test article aerodynamic model. 

 

PK method [9] was adopted to investigate the occurrence of flutter in the speed range 0-

3*Vmax, being Vmax the maximum speed expected during tests (=80 m/s). 1% critical damp-

ing was conservatively assumed for all elastic modes. No flutter was detected up to 240 m/s 

(Figure 11); a first instability was found at 250 m/s and essentially due to the coupling of test 

article bending and trailing edge elastic deflection (Figure 12). 
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Figure 11: Flutter Vg plot. 

 
 

Figure 12: Modes highly participating into flutter dynamic : test article bending (left), trailing edge elastic de-

flection (right). 

5 CONCLUSIONS  

A novel architecture enabling wing trailing edge camber morphing was addressed with ref-

erence to large aircraft end-applications (EASA CS-25 category). The conventional monolith-

ic box arrangement was replaced by a multi-box solution characterized by conventional spars 

and segmented adaptive ribs. Single-degree-of-freedom mechanisms, driven by load-bearing 

electro-mechanical actuators, were implemented to change the wing trailing edge shape by 

controlling the adaptive ribs individually. A compliant multi-material skin was used to ac-

commodate the large deformation induced by ribs kinematics while providing enough stiff-

ness to properly withstand external aerodynamic loads. 

A brief and general description of the approaches and methodologies followed for the 

structural assessment of the overall device was presented; design strategies and consequent 
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results were outlined. Some open issues still remain on the developed architecture, installation 

aspects and implementation strategy. The specifications should be improved by considering a 

complete aircraft, so to compute the overall effect of the trailing edge device on the overall 

aircraft aerodynamic polar. The layout of the device shall also derive from the global refer-

ence geometry, so to find the best arrangement along the wing span and its chord. Further 

complications are also expected, following the implementation of a complex kinematic sys-

tem on a movable surface such as a flap. On the other hand, the available room should be far 

more adequate to host the innovative components with respect to the wing tip zone. Indeed, 

studies to verify the possibility of inserting such systems in the aileron are currently per-

formed by this same team and other researchers.  

The actuator system design shall be integrated within the structural design, so to come to a 

unique active structural, load-bearing  system, instead of merging to components, separately 

developed. Finally, control system capability, not addressed in this paper, should move from 

adaptive feedforward architectures, based on pre-built strain maps, to real-time feedback sys-

tems, sensible to the selected objective parameter; therefore included into the overall aircraft 

avionics. 
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Abstract. Synthetic jets actuators that produce a zero net mass flow rate have been locally 

applied at the pylon-wing junction to suppress the high-lift penalties caused by the closely 

coupled engine integration. The high fidelity numerical simulations utilizing unsteady Reyn-

olds-averaged Navier-Stokes have been performed to simulate this problem. A wind tunnel 

model representing a 2,5D wing with pylon, nacelle and deployed high-lift devices is used for 

this study. Active flow control applied at the wing-pylon junction area can prevent the larger 

flow separation on the wing behind the nacelle caused by the slat cutback, increase the lift 

and to postpone the stall angle by interaction of the vortices from the SJA with vortices domi-

nating this region. The performed unsteady CFD simulations demonstrate the possibility lo-

cally affect the flow by utilization of AFC. The geometrical setup of the actuators and the flow 

variables (blowing coefficient, actuation frequency) have been varied, as well. Two different 

shapes and positions of the nacelle’s strike have also been considered during the simulations. 

The positive effect of the application of the SJA on maximum lift and stall angle has been ob-

served. 
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1 INTRODUCTION 

Utilization of the Ultra-High Bypass Ration (UHBR) engine in air transport is driven by 

ecological and economical aspects. These new engines have lower emissions of CO2 and 

NOx, higher efficiency and smaller fuel consumption. On the other hand the integration of 

UHBR engine is very challenging part from two aspects, at least. The first one is the high-lift 

conditions at high angles of attack and low-speeds and the second one is connected with the 

clearance between the runway surface and the nacelle. To avoid longer landing gear struts suf-

fering from weight and space penalties, the nacelle should closely-coupled to the wing. This 

closely-coupled integration causes the high-lift penalties due to the high-lift devices cut-back 

to prevent clashes with the nacelle or thrust reverser [1]. Among other techniques the Active 

Flow Control (AFC) can be successfully applied to remedy this lift lost due to the high-lift 

devices cut-back. 

Within the European project AFLoNext [2] one of the main goals is the application of Ac-

tive Flow Control (AFC) techniques, like pulsed jet blowing and Synthetic Jet Actuators 

(SJA), on wing/pylon junction to remedy the lift losses caused by in closely-coupled engine 

integration. A significant effort of experimental and numerical investigation of the application 

of the passive and AFC techniques to locally suppress the flow separation or improve the 

high-lift performances at the wing-pylon area, outer-wing or applied to high-lift devices has 

been done [3-7]. This paper summarized the results of the SJA of the high-lift configuration 

using the CFD simulation by means of URANS approach. The effect of the momentum coef-

ficient C and actuation frequency f is discussed. 

 

2 GEOMETRICAL SET-UP 

2.1 Wind tunnel model 

Model used for CFD studies is based on a wing section of a generic high-lift wing, the 

DLR-F15 [8], which is representative for today’s transport aircraft high-lift system layout. It 

is equipped with a slat and a single-slotted Fowler flap. Because of the AFLoNext project this 

model was modified to integrate pylon and nacelle. It represents 2,5D wing with sweep angle 

28deg equipped with the side plates.  

2.2 Strake configurations 

Two different strake’s configurations were used during this study. They differ in the shape 

and location on the nacelle. Both strakes are depicted in Figure 1. The new strake is located 

closer to the wing to be more effective and creates stronger strake’s vortex. The effect of the 

original and new strake on baseline flowfield is described in subsequent section. 

 

 

Figure 1 Position of old (grey) and new strake (red) on nacelle 
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2.3 Actuator’s geometry and position 

The circular actuator with area 5mm
2
 was used for simulation of the synthetic jet. Two 

configurations of the actuators were used during this study. They differ in the location and 

number of actuators. The first configuration is characterized by two rows of actuators located 

at 0.01% and 0.021% of the chord of the wing. The spanwise position of this configuration 

with two rows of actuators is limited by the inner slat-end on one side and the pylon’s axis on 

the other side. The actuators in the second row are placed in cascade regarding the actuators in 

the first row. The second configuration was created from the first one by omitting the second 

row of actuator. One halve of actuators is considered in comparison with the first configura-

tion. The spanwise location remained the same. The spanwise spacing between the actuators 

is 0.01m. 

Actuators of both configurations were placed parallel with the leading edge and inclined 

30deg towards the wing’s surface. The actuators’ cavities were physically modeled to enable 

the development of boundary layer inside them. 

 

3 NUMERICAL METHODS 

3.1 Grid creation 

All grids used during this study were created in Pointwise grid generation software. The 

grids are unstructured with rectangular elements on the model surfaces and with tetrahedral 

elements in the volume. The boundary layer is simulated by prismatic elements and the condi-

tion of y+ bellow 1 was fulfilled. The region of interest was refined to capture all flow phe-

nomena (interaction of the vortices, flow separation,…). In case that the modification of the 

strake or actuator’s positions was considered, the same grid topology was used. Only the 

blocking of the surface grid on the nacelle and in the region of actuators was modified due to 

new strake and different actuators locations, the number of nodes remained the same. The grid 

in the region of interest was not changed.   

3.2 Boundary conditions and CFD solver 

Mass flow inlet/outlet boundary conditions (BC) were used to simulate the flow from SJA. 

The mass flow, total temperature and flow direction are defined at these BC. The adjusted 

mass flow corresponds to the required blowing velocity at the cavity’s outlet. The simulation 

of the synthetic jet is done by switching between the mass flow inlet and mass flow outlet 

boundary condition controlled by harmonic (or step) function. It is possible to define the de-

sired peak velocity and frequency of the synthetic jet using the harmonic function. In case that 

the step function is used, the duty cycle can be also controlled. The typical course of the mass 

flow in time for synthetic jet actuator is depicted in Figure 2. The cavities of the actuators 

were physically modeled during the mesh generation process to enable the development of 

boundary layer velocity profile inside them. The boundary conditions were applied at the bot-

tom part of these cavities. The fully modeled cavities have some drawback in terms of the grid 

creation, number of cells etc., but the flow at the cavities’ outlets is more realistic. On the oth-

er hand same effort has been devoted to applying the surface boundary conditions simulating 

the flow from actuators and actuation models in the past [7, 9-11].  
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Figure 2 Typical course of the mass flow during the simulation of synthetic jet 

3.3 Flow conditions 

All of the computations were performed at a chord-based Reynolds number of 

Re=4.65·10
6
, the freestream Mach number 0.2 and freestream pressure corresponded to the 

0m International Standard Atmosphere. These flow conditions correspond to the landing con-

ditions of the characteristic airliner. 

3.4 Baseline configuration – strake effect 

The effect of the strake on the local flowfield has been experimentally and numerically in-

vestigated in the past [12]. It is usually used to remedy the lift losses due to the slat cut-back. 

During this study it was found that the original strake did not affect the flow as it was ex-

pected. The strake’s vortex was too high above the wing and applying the AFC it transported 

low momentum flow towards the wing. It was the main reason to use a new strake design by 

DLR during the AFLoNext project. The new strake has been moved towards the wing’s lead-

ing edge and it is slightly larger than the original one. The position of this strake was verified 

by numerical simulations performed also by DLR. 

The comparison of the lift curves of the original and new strake configurations is depicted 

in Figure 3. It can be seen that the new strake has a significant effect on the local flowfied be-

hind the nacelle at stall condition and it is able to improve the lift more effectively than the 

original one. The new strake creates stronger vortex which is closer to the wing and more in-

teracts with the vortices dominating this region.  
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Figure 3 Effect of strakes on baseline flow 

The surface streamlines together with the area of separated flow (visualized by negative x 

component of the skin friction coefficient) of the baseline flow with original strake are depict-

ed in Figure 4. It is possible to see the development of the separated area with increasing AoA 

(depicted by the arrow). The surface streamlines and flow separation areas of the baseline 

flow corresponding to the configuration with the new strake is depicted in Figure 5. It is pos-

sible to see that for the same AoAs, the flow separation area is smaller in comparison with the 

configuration with original strake. No flow separation has been observed in the outer part of 

the wing (behind the pylon’s axis in spanwise direction) for the simulated AoAs. 

 

Figure 4 Surface streamlines and flow separation area (visualized by negative Cfx in blue) for baseline configu-

ration – original strake 

 

Figure 5 Surface streamlines and flow separation area for baseline configuration with new strake 

AoA 

AoA 
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The location of the flow separated area between the inner slat-end and pylon’s axis was the 

main reason for creation of the configuration of the circular actuators with limited span wise 

position between the inner slat-end and pylon’s axis. The configuration with the new strake 

was used during the CFD simulations of the SJA. 

3.5 Synthetic Jet simulations 

The boundary condition described in 3.2 was used for simulating of the Synthetic Jet (SJ) 

by means of URANS approach. A harmonic function with defined frequency and amplitude, 

representing the desired mass flow, was used for SJA. The frequency was limited by the limit 

of 100 Hz at first. A more realistic actuation frequency 1kHz has been simulated consequently. 

Due to extremely high time consuming simulation of the higher actuation frequency, only one 

post stall AoA was simulated for the configuration of the actuators in one row. The adjusted 

mass flow corresponded to the peak velocity 150m/s.  

The configurations with one and two rows of actuators have been used to evaluate the ef-

fect of C on aerodynamic performances. The frequency effect was evaluated on the configu-

ration with one row of actuators using different actuation frequency. 

From lift curves depicted in Figure 6 it is possible to see the effect of SJA with actuation 

frequency 100Hz (red curve) and the effect of different C and f, as well. The stall angle was 

delayed by about 2deg in comparison with the baseline configuration. The CLMAX was im-

proved by about 8 lc according to the baseline CLMAX and by about 14 lc at the same post stall 

AoA of the baseline configuration. 

 

Figure 6 Lift curves and CL values of bsl and SJA of both configurations of actuators 

The surface streamlines and separated areas of the configuration of two rows of SJA work-

ing with frequency 100Hz at simulated AoAs are depicted in Figure 7. It is possible to see that 

the separated area at stall angle is almost the same as at lower AoA due to the interaction of 

the synthetic jet with the inboard LE-step and slat-end vortices (see Figure 8). With increasing 

AoA the SJA is not able to effectively control the vortices and inboard LE-step vortex bursts 

and it causes the large flow separation area (see Figure 7 and Figure 8, right). The vortices for 

simulated AoAs are depicted in Figure 8. It is possible to see the interaction of the flow from 

SJA with the inboard LE-step and slat-end vortices and the discontinuity of the slat-end vor-

tex and slightly reduced inboard LE-step vortex at post stall AoA. These vortices cannot af-
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fect the flow in close vicinity of the wing and the flow separates.  It has to be emphasized that 

these surface streamlines and vortices correspond to the last iteration of the simulations.  

 

 

Figure 7 - Surface streamlines and flow separation area for two rows of SJA 

   

Figure 8 Vortex structures for two rows of SJA, pre-stall AoA (left), stall AoA (middle) and post stall AoA (right) 

The effects of C and actuation frequency on CL at stall AoA are also depicted in Figure 6. 

The C is decreased from 0.0252% to 0.0127% by using one row of actuators instead of two 

rows. The effect of reduced C on the CL is depicted in Figure 6 by the left arrow. The value 

of CL is decreased by about 6 lc. The vortex structures for both values of C are depicted in 

Figure 9 (left and middle figures). It is possible to see the positive effect of higher C on the 

structure of the inboard LE-step and slat-end vortices. These vortices are more continuous in 

comparison with the vortices corresponding to the lower C (one row of actuators). For the 

smaller C the slat-end vortex is more discontinuous and the inboard LE-step vortex is slight-

ly weaker and not so much affects the local flow close to the wing’s surface. 

 

  

Figure 9 Effects of C and actuation frequency on vortex structures, two rows of actuators (left), one row (mid-

dle) and one row of actuators with f=1000Hz (right) 

AoA 

AoA 
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In case that the one row of actuators is used (smaller C) and the actuation frequency is in-

creased from 100Hz to 1000Hz, the CL is increased by about 3 lc (see Figure 6). The right 

black arrow indicates the change of CL with the change of actuation frequency. The dimen-

sionless frequencies F
+
 corresponding to the 100Hz and 1000Hz are increased from 4.79 to 

47.9, respectively. The effect of actuation frequency on forming the vortex structure is depict-

ed in Figure 9 (middle and right figures). In comparison with the lower C and lower fre-

quency (vortices in the middle), the slat-end and also the strake’s vortex are more affected by 

SJA with higher actuation frequency. Especially the LE-step vortex is stronger. 

Comparison of the flow separation areas for particular cases with SJA are depicted in Figure 

10. It is possible to see that the flow separation area is increased by using smaller C and on 

the contrary the higher actuation frequency slightly reduce it. 

 

 
 

Figure 10 Surface streamlines and flow separation area of two rows of actuator (left), one row of actuator (mid-

dle) and one row of actuator with actuation frequency 1000Hz (right) 

 

4 CONCLUSIONS 

No flow separation was observed in the outboard part of the wing for the baseline and con-

trolled flows for both strakes configurations. It was the main reason for the location of the ac-

tuators between the inner slat-end and pylon’s axis. 

The strake’s shape and its position have a significant effect on the CL and local flowfield 

without AFC. The new strake increases the CLMAX by about 9 lc in comparison with the origi-

nal one. 

The stability and vertical position of the vortices forming behind the slat-end and inboard 

LE-step vortex have a significant effect on local flow separation on the wing-pylon area. If 

these vortices are “continuous” (not bursting or discontinuous) and closer to the wing’s sur-

face, the flow separation is usually suppressed. The structures and positions of these vortices 

can be, to a certain degree, maintained by a local application of AFC like SJA. 

The effect of C and the actuation frequency of SJA was considered and evaluated on the 

configuration with the new strake. The CLMAX can be increased by about 8 lc by means of ap-

plying of two rows of SJ actuators with actuation frequency 100Hz. The C has been changed 

from 0.0252% to 0.0127% by considering two rows or one row of actuators, respectively. In 

case that the C is reduced to one half, the CL is decreased by about 6 lc. But utilizing higher 

actuation frequency, the CL can be increased again by about 3 lc. The overall drop of CL by 

means of smaller value of C and higher actuation frequency is only 3 lc in comparison with 

the value of CL obtained using SJA in two rows and actuation frequency 100Hz. 
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Due to the very high time consuming of the simulations of the SJA especially with the 

higher actuation frequency (1000Hz), the effect of the C and f was evaluated only for one 

post stall AoA. 

The simulated high actuation frequency 1000Hz is still approximately one half of the 

working frequency of the real SJA. The simulation of the working frequency of SJ should be 

done using large eddy simulation (LES) instead of URANS, but for our target large Reynolds 

number it is not feasible today. 
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Abstract. A novel combined method for highly brittle materials, which provides an efficient

and accurate insight into multi-scale fracture modeling, is proposed. In particular, physically-

motivated molecular dynamics simulations are performed to predict crack propagation, in the

nanoscale, and therewith determine material and other parameters required for the macroscale

modeling under a phase-field continuum approach. The proposed computational approach,

which does not require any empirical parameters, contributes towards an improved understand-

ing of mechanics at all length-scale levels.
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1 INTRODUCTION

Molecular Dynamics (MD) simulations are considered new computational methods, employed

to describe the time evolution of a system of interacting particles. They require the numerical

solution of Newton’s equations for every particle governed by an interatomic potential, i. e.,

bonded and non-bonded potentials, keeping track of the evolution of the system in space. Due

to their real time scales (pico seconds), MD methods are perfectly suited to study the high-speed

crack propagation of brittle materials, as demonstrated in the work of Rountree et al. [30]. Addi-

tionally, there have also been some applications of the method for a variety of inorganic crystals,

such as Si3N4 [16], SiO2 [31], 3C-SiC [17], and GaAs [34]. Although these studies have pro-

vided valuable in-sights into crack dynamics, a systematic analysis of mechanical properties at

an atomistic scale, as well as a link to the macroscopic continuum mechanical approaches are

still not well established.

Nowadays, typical MD simulations can be performed on systems containing hundreds of thou-

sands, or perhaps, a few millions of atoms for simulation times ranging from a few hundred

nanoseconds up to a millisecond. These numbers are certainly respectable, but one may run

into conditions, where size and/or time limitations become important. The challenges related to

the limited dimensions or time scales can be tackled by upscaling MD parameters and frame-

works through continuum models. In fact, as it has been shown in numerous other studies, i. e.,

[5, 26, 27, 28], the mechanical behavior of a given continuous material can be reproduced in a

different scale by using mechanical parameters derived directly from atomistic MD simulations.

In what numerical modeling regards, phase-field modeling (PFM) has emerged as a powerful

tool to model brittle fracture under a macroscopic continuum approach, offering a good accor-

dance between numerical treatment, accuracy, and computational costs. The pioneering works

related to an elastic energy-based approach to describe brittle fracture, namely the works of

Griffith [9] and Irwin [15], as well as the variational formulations presented in [4, 8], can be

considered as the pillars of a well-established energy-based framework for brittle fracture. In

the past decades, many PFMs, which approximate the sharp edges of the crack by a diffusive

interface, have been developed. Due to their simple implementation, these models are able

to predict quasi-static and dynamic cases of brittle and ductile fracture, considering diferent

fracture modes and loadings, under several discretization schemes [4, 8, 3, 11, 22, 35, 19, 21].

Consequently, this research work pursues to establish a link between the understanding of brittle

fracture of a material at an atomistic scale and its macroscopic mechanical features. To this end,

an aragonite (CaCO3) tablet undergoing fracture is studied using both, MD and PFM. Herein,

the key mechanical properties (e. g., Young’s modulus, Poisson’s ratio), as well as the phase-

field transition width (ǫ) and the mechanical energy release rate (G) of an aragonite crystal

are obtained ab initio. These physical properties are subsequently employed to reproduce a

nanoscale model under a continuous PFM approach.

Given that PFM and MD are relatively new topics in the realm of mechanics, the second and

third sections of this work will briefly introduce the implementation of both methods. In the

fourth section, a thorough description and brief evaluation of the numerical experiments in MD,

as well as PFM are presented. The last section is dedicated to the conclusion and outlook of the

present work.

2 MATERIALS AND MD SIMULATIONS

In the present work, MD and PFM simulations are employed to describe the behavior under frac-

ture of Aragonite (CaCO3), a highly brittle ceramic and major constituent of nacre (95 % vol.).
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Tablets of this material were modeled, as seen in Fig. 1, by using the software Visual Molecular

Dynamics (VMD) [14]. One double-notched tablet model was built with length (l), width (w)

and height (h) of 15.38× 11.12× 4.30 nm3, respectively. The pulling layer thicknesses (pt)
was considered to be three atomic layers wide. For the subsequent MD simulations, the molec-

ular dynamics program GROMACS 5.0.4 package [33] was used. For aragonite interactions,

newly-developed CaCO3 forcefield [36], that describes angle, planar, dihedral, electrostatic and

van der Waals interactions, was implemented.

Figure 1: Double-notched all-atom model of an aragonite tablet. Oxygen and carbon atoms of carbonate groups

are shown in cyan and red beads, respectively. Calcium atoms are shown with green beads. The dimension

a (center) denotes the notch depth, while h, l, w and pt represent the height, length, width and pulling layer

thickness, respectively. Pulling directions are perpendicular to the notch depth, which is marked by red arrows.

Inset: enlargement of the front view of v-notch region.

The model in question was minimized and equilibrated in the NPT (isothermal-isobaric) ensem-

ble for 10 ns at 300 K and 1.013 bar. The tablet did not show any significant changes neither in

structural ordering nor in cell dimensions. The last frames were used to create notched systems

as follows: The simulation boxes were extended 12 nm along l and h, leaving as much empty

space as required to allow the tablet extension during pulling simulations. The periodic vector

through the width w was not extended, resulting in tablets of infinite length along w-direction.

Then, the v-shaped notches were introduced by removing atoms. The cut lines followed the

(101) and (1̄01) lattice planes, which resulted in an opening angle of 84.4 ◦. Such cut lines

impose the removal of one calcium atom per carbonate group, preserving the electroneutrality

of the systems.

In the MD calculations, the simulation box, in which the aragonite tablets were pulled, was

repeated periodically in all three dimensions using 2 fs time steps. Van der Waals interactions

were calculated using a cutoff of 1.0 nm. The Particle Mesh Ewald (PME) method [6] was

chosen to account for long-range electrostatic interactions. To increase the simulation time

step, a linear constraint solver for molecular simulations (LINCS) [12] was used to constrain all

bond vibrations. The Nosé-Hoover [24, 13] temperature coupling was applied with a coupling

time constant of 0.1 ps.

Fig. 1 shows an aragonite notched model with loading conditions and representative dimen-

sions. The aragonite tablet model was not constrained at any point (which allows for rigid

body motions) to capture a natural behavior in the simulations. The system was further equili-

brated in the NVT (canonical ensemble, amount of substance N, volume V and temperature T
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are conserved) for 10 ns at 300 K. To avoid tablet drifting, two cuboid volumes parallel to the

(100) lattice plane were restrained, each cuboid volume containing the three outermost layers

of CaCO3 atoms. This resulted in a system of 66,720 atoms.

Once the equilibration of the system was achieved, a force-probe Molecular Dynamics (FPMD)

simulation [10] was employed to enforce an external load. The restrained layers were released

and pulled axially outwards with a spring-like force applied to the outer surfaces, with a constant

velocity of 10 nm ns−1 and a spring constant of 1000 kJ mol−1 nm−2. FPMD simulations were

performed until tablet rupture, which usually occurred within 13 ns. Altogether, five FPMD

simulations were performed. The obtained results were later post-processed to obtain critical

material parameters, as well as the phase-field transition width and crack resistance energy.

Postulated in 1920, though still in force, the Griffith’s energy-based analysis of cracks [9] states

that the fracture strength is always lower than theoretical cohesive strength and attributes this

discrepancy to the inherent defects in brittle materials, leading to stress concentration.

One of the underlying principles of fracture mechanics is that crack propagation occurs when

the released elastic strain energy is at least equal to the energy required to generate new crack

surface. The Griffith’s energy criterion for fracture of brittle materials can then be written as

σf =
1

α

[

2Eγ

πa

]1/2

, (1)

where σf is the rupture strength, a is the notch depth, γ is the surface energy, E is the Young’s

modulus, and α is a geometry correction factor. For double edge notched tension of a semi-

infinite tablet with notch depth a and tablet height h, α reads [29]

α = 1.12 + 0.43
[a

h

]

− 4.79
[a

h

]2

+ 15.46
[a

h

]3

. (2)

It is now assumed that the available external and internal energy is transferred into surface

energy. In what brittle fracture regards, dissipation and kinetic energy are neglected. This

results in the so-called Griffith energy balance where the energy release rate G is equal to 2γ in

J/m2. The mechanical energy release rate in the CaCO3 geometry is the amount of energy per

unit area that is supplied by the elastic energy stored in the system.

The energy release rate can alternatively be calculated by integrating the stress-strain curve with

respect to strain [20, 17]

G = l

∫ ε

0

σ(ε′)dε′, (3)

where l is the model width in the loading direction, see Fig. 1, and σ is the loading direction

component of the stress well ahead of the crack tip. At a strain above εc, crack propagation at

constant velocity is achieved after an initial transient [20].

3 BRITTLE FRACTURE MODELING USING THE PFM APPROACH

The macroscopic modeling of brittle fracture is based on the PFM approach, which has been

widely discussed in several research works, see, e.g. [3, 22, 35] for an overview. In this, a

phenomenological phase-field variable φ is introduced, which approximates the sharp interface

of the crack by a diffusive transition zone. Thus, the global potential energy function F can be

written with the help of φ and its gradient as an integral over the whole body ([4, 8, 19, 21]) as

F (φ, gradφ, ε) =

∫

V

[Ψelast (φ, ε) +Ψcrack(φ, gradφ)] dv (4)
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with ε being the linear strain tensor. The phase-field variable φ ∈ [0, 1], in the sense of an

indicator function, represents the crack state, where φ = 0 for a cracked state and φ = 1 for an

undamaged state. The fracture energy Ψcrack is defined as

Ψcrack (φ, gradφ) =
G

4ǫ
(1− φ)2 +Gǫ |gradφ|2, (5)

where ǫ is an internal length related to the width of the diffusive crack transition zone. As

the degradation of the material is assumed to occur only under tension or shear, one applies

an additive splitting of the linear elastic energy into a positive part Ψ+

elast, that considers the

tension and shear responses, and a negative part Ψ−

elast, that considers the compression response.

Moreover, the degradation function g(φ) can simply be defined in a quadratic form as g(φ) =
[(1− η)(φ)2 + η] to obtain

Ψelast (φ, ε) = g(φ)Ψ+

elast +Ψ
−

elast . (6)

Here, η is a residual stiffness added for numerical stability purpose. The linear elastic stress σ

is obtained through the derivation of the phase-field potential with respect to the strain tensor,

see [23].

σ(φ, ε) =
∂F

∂ε
= g(φ)

∂Ψ+

elast

∂ε
+

∂Ψ−

elast

∂ε
. (7)

Furthermore, the momentum balance equation under the assumptions of a quasi-static state and

neglecting the body forces can be expressed as

divσ = 0 , (8)

allowing the computation of displacement field u. To this end, the evolution of the phase field

is derived using the Allen-Cahn model,which describes the process of crack evolution via a

reaction-diffusion equation as

φ̇ =
∂φ

∂t
= −M

∂F

δφ

= −M

[

2 (1− η)φΨ
+

elast −
G

2ǫ
(1− φ)− 2Gǫ div gradφ

]

, (9)

where M ≥ 0 represents a mobility constant.

For the numerical implementation of the PFM problem, an initial boundary-value problem of

mode-I fracture, illustrated in Figure 2, is solved using the finite element package FlexPDE.

The numerical solution is computed considering quadratic shape functions for the displacement

and the phase-field variable, and the time integration is applied using the 2nd-order backward

difference formula (BDF2), where a time-step automatic adaptivity is also employed. Moreover,

a fixed mesh, refined in the area between the notches, is implemented. A plane stress, linear

elastic model is used to reproduce the MD simulation. Under this setup, the stress is applied

until instantaneous rupture of the plate takes place.

The material parameters, E, ǫ and G, for the PFM of the aragonite plate were directly derived

from the outcomes of the MD simulations as will be discussed in the next section. Therewith,

the obtained values were E = 126 GPa for the Young’s modulus. The crack resistance (or

energy release rate) was found to be G = 2.091 J/m2 and the internal length scale ǫ = 0.05 nm.

The values of the mobility and the residual stiffness parameters were set to M = 10×109nm2/Ns
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a

pt d

l

h

Figure 2: Boundary conditions of the IBVP (load-controlled). For the boundary layers with width pt, ν = 0 and

zero-stress in vertical direction. In the middle of the extreme edges (left and right), two points are fixed in the

vertical direction to prevent a rigid body motion. The dimensions here are h=11.2 nm, l=15.3 nm, d=3.08 nm, and

a=1.84 nm.

and η = 10−5, respectively, whereas the applied Poisson’s ratio is ν = 0.44. The material

properties such as Possion’s ratio ν and the density ρ were benchmarked with the aragonite-

related literature ([1, 2, 7, 25]), whereas the mobility parameter M and the residual stiffness

parameter η are in good agreement with the ranges proposed in, e.g., [18, 23].

4 RESULTS AND DISCUSSION

As stated previously, to examine the fracture behavior at atomistic scale of aragonite, monotonic

tension tests were performed by means of FPMD. The molecular system was loaded by moving

virtual springs applied to the outer surfaces of the tablets with constant velocity. The force is

obtained directly from the resultant spring force at the boundaries. Accordingly, the stress is

computed by dividing the spring force by the cross sectional area comprehended between two

notches. Moreover, the relative displacement of atoms was measured between the center of mass

of both pulling layers. Here, the engineering strain is obtained by dividing the total displacement

of the center of mass of any pulling layer by the original distance between this layer and the

center of specimen. The crystals deformed during the FPMD simulations until the externally

applied stress reached the ultimate tensile strength σf , resulting in a sudden rupture. Due to the

chemical structure of calcium carbonate [Ca2+][CO2−

3 ], and its arrangement in compact crystal,

it is not always possible to have symmetric notches on both edges as well as notches at the exact

center of all tablets of CaCO3 models. Therefore, the v-notches in the tablets are not sharp, and

the notch tips can have, either, single or double CaCO3 units (enlarged view in Fig. 1). Thus,

different crack propagations were observed in the tablet models, e. g., the crack starts at the top

edge, bottom edge or at both edges simultaneously (shown in Fig. 3). For all simulations, the

cracks propagated with an s-shape along the (101) and (1̄01) lattice planes, as expected.

0.0 ns 13.056 ns 13.064 ns 13.066 ns 13.068 ns

Figure 3: Rupture of the double-notched aragonite tablets. The snapshots show the fracture of the aragonite tablets

under constant pulling velocity. As the two atom groups at the ends are pulled, the tablets slightly stretch and break

abruptly around the notch. Here, the crack initiates at the bottom, though, is propagated from both sides and with

an s-shape.
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Fig. 3 shows snapshots of the rupture processes observed in the CaCO3 tablet models. The

model was loaded with a constant velocity for 12.88 to 13.056 ns, without observing crack

initiation. However, the crack initiation took place during the following 0.012 ns, inducing an

instantaneous total failure.

The results describe a good agreement with the expectations. First of, the energy release rate G
can be calculated using the MD results together with either Griffith’s criterion given in Eq. (1)

or by use of Eq. (3). Both equations confirm that the fracture of the CaCO3 tablet occurs at a

value G≈ 2.091 J/m2. This value is slightly lower than the theoretical values of G for CaCO3

(2.10 – 3.74 J/m2), which can be found in the literature [1, 2, 7], though this difference is merely

negligible. Therefore, G= 2.091 J/m2 is adopted for the PFM.

To avoid model dependency in MD simulations, five different aragonite tablet models were

considered, and the stress-strain curves were jointly analyzed. The recovered elasticity modulus

E of aragonite ranges between 106 to 148 GPa, which is in the range of experimental and

theoretical studies, see [1, 2, 7]. With regard to the ultimate tensile strength, the resulting MD

simulations value of the aragonite notched samples is 4.6 GPa. This value is slightly lower than

the theoretical strength of flawless minerals, which was estimated to lie in the range of 5 to 10

GPa [32].

Fig. 4 shows the force-displacement curves of the continuous PFM (considering a Young’s

modulus of E = 126 GPa) and all-atom simulations. With regard to the force at failure, the

resulting MD simulations value of the aragonite notched samples is 47 µN and the nonlinear

behavior, which is due to the potential energy non-linearities, is clearly observed. Although,

a linear elastic model was considered for the PFM, an outstanding correlation of the results is

observed.

fo
rc

e
[µ

N
]

displacement [nm]

0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5

MD simulations
PFM str. ctrl.

Figure 4: Force-displacement curves for the aragonite tablet models. The red line is the averaged force-

displacement curve from the MD simulations, and the gray shaded area indicates the standard error deviation.

The green line indicate the force-displacement curves obtained from the PFM stress-controlled simulation.

Phenomenologically, the s-shaped crack propagation (along the (101) and (1̄01) lattice planes)

is obtained in both MD and PFM approaches. Moreover, the ultimate tensile strength obtained

in the PFM simulations falls perfectly into the ranges described in the all-atom simulations.

Nevertheless, a discrepancy between the two schemes can be seen which can be traced to two

main reasons: On the one side, the boundary conditions in the MD simulation allow for rigid

body rotations and translations, which are constrained in the continuum model by fixing the ver-

tical displacement of two points. This fixation causes an artificial symmetry and simultaneously
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stiffens the material. On the other side, the PFM considers a linear elastic material response,

which is not able to account for the inherent material non-linearities. As seen in Fig. 4, these

non-linearities are naturally captured in the atomistic simulations.

An important outcome, particularly for the phase-field parameters, is the theoretical and nu-

merical consistency of the critical energy release rate G, and a potential relationship between

the molecular transition (distortion) zone and the phase-field transition width governed by the

internal length parameter ǫ. The former can be estimated by means of the Griffith’s theory or by

integration of the stress-strain curve, yielding a value within the literature range (approximately

2.1 J/m2). The latter can be obtained by measuring the cracked surfaces in a straightforward

post-processing step. The results of the MD and PFM simulations are shown in Fig. 5. Taking

into account the density plot of the MD and overlapping it with the resultant intact-to-cracked

material transition of the PFM, as seen in Fig. 5, the phenomenological correlation is evident.

t = t0 + 12× 10−9 s t = t1 + 4.0× 10−7 s

1.0

ρ

0.0

1.0

φ

0.0

(A) (B)

Figure 5: Crack initiation and propagation comparison: (A) Density plots of atoms in MD simulations (ρ stands for

density). The s-shaped crack is illustrated with a dotted line, and the inset shows an all-atom simulation snapshot

of the crack propagated area. (B) PFM results for stress-controlled simulations ( φ stands for the damage phase-

field, blue corresponds to cracked material, and red refers to undamaged material). The times t0 and t1 are the

total loading times before crack initiation in MD (t0 = 13056 ps) and PFM stress-controlled (t1 = 0.0403089 s)

respectively.

5 CONCLUSIONS

As shown in this work, the efficiency of continuum mechanics allows to infer mechanical prop-

erties from the molecular scale, which is the key to understand a material’s interplay of the

atomic structure and its overall performance. Through an atomistic obtention of the material

parameters, the PFM presented in this work observes a fair convergence, and more important

remains qualitatively and quantitatively within the outcomes of MD simulations and the bench-

marked literature. Moreover, a correlation between the phase-field parameter ǫ (which is of

extreme importance for convergence) and an MD transition zone was captured for the first time.

Through further study, this could result in a physical meaning and obtention of the parameter

value, which is up to date ”fitted’́ according to each model. Moreover, the observed molecular

dissipative zone between the undamaged and cracked material allows to think that in fact, brittle

fracture observe a transition zone, under a purely atomistic standpoint.

As part of a novel approach, this work remains to have improvement areas. The outlook of

this research will firstly consist of implementing a non-linear elastic model in order to better

capture the material behavior from all-atom simulations. Moreover, further MD as well as

PFM simulations under different setups (shear, combined loadings, dynamic case, different
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geometries, etc.) are required. Deeper and extensive studies of the molecular dissipative zone

observed in the simulations of this work, are also to be carried over.
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Abstract. The direct integration of Computer Aided Geometric Design (CAGD) models into
a numerical simulation improves the accuracy of the geometrical representation of the problem
as well as the efficiency of the overall analysis process.

In this work, the complementary features of isogeometric analysis and boundary integral
equations are combined to obtain a coalescence of design and analysis which is based on a
boundary-only discretization. Following the isogeometric concept, the functions used by CAGD
are employed for the simulation. An independent field approximation is applied to obtain a
more flexible and efficient formulation. In addition, a procedure is presented which allows a
stable analysis of trimmed geometries and a straightforward positioning of collocation points.

Several numerical examples demonstrate the characteristics and benefits of the proposed
approach. In particular, the independent field approximation improves the computational ef-
ficiency and reduces the storage requirements without any loss of accuracy. The proposed
methodology permits a seamless integration of the most common design models into an analy-
sis of linear elasticity problems.
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1 INTRODUCTION

Isogeometric analysis aims to close the existing gap between the design process and anal-
ysis such that a simulation can be performed without generating a mesh. Consequently, the
accuracy and efficiency of the overall simulation process is improved, since meshing is time-
consuming [1, 2] and introduces additional (geometrical) approximation errors. In addition,
the basis functions used by design models, i.e. NURBS, provide further benefits such as high
continuity [3, 4].

However, during the last years, it has become clear that a true integration of design and anal-
ysis is far from trivial due to several reasons: first of all, most engineering design models are
based on a boundary representation (B-Rep) rather than a volume description. Secondly, three
dimensional B-Rep models are usually defined by a non-conforming partition of NURBS sur-
faces, i.e. their mathematical parametrizations have no explicit relation to each other. Thirdly,
each boundary surface is based on a tensor product structure which is a very efficient repre-
sentation but has limitations due to its four sided nature. As a result, almost all NURBS based
design models use trimming procedures to increase the flexibility of tensor product surfaces.
This means that only a certain area of a surface is visualized while the underlying mathematical
parametrization remains unchanged.

In this work, a coherent framework is presented which allows a seamless integration of
trimmed NURBS models into an analysis. In general, the governing equations of the problem
are expressed by means of boundary integral equations which are discretized by a numerical
approximation method. Here, the boundary element method (BEM) is used since it is the most
versatile approach. However, it should be pointed out that other schemes like the Nyström
method can be applied as well [5, 6]. An independent field approximation concept is introduced
in order to obtain a flexible BEM formulation. Furthermore, this allows the stabilization of
trimmed NURBS geometries by the application of extended B-splines. The following sections
provide an overview of the proposed methodology. They actually recap and unify the main
features presented in [6–8]. Hence, the interested reader is particularly referred to the first one
of these references for an in-depth discussion.

2 METHODOLOGY

2.1 Isogeometric Boundary Element Method

A linear elastic body Ω subject to external loading without body forces is considered. The
closed boundary of the domain is denoted by Γ and the surface normal n points outside. Using
Betti’s or Green’s theorem the following integral equation also known as Somigliana’s identity
is obtained

u(x) =

∫
Γ

U(x,y) t(y) dsy −
∫
Γ

T(x,y) u(y) dsy ∀x ∈ Ω, ∀y ∈ Γ (1)

where U and T are fundamental solutions for displacement and traction, respectively [9]. In
general, a fundamental solution U(x,y) provides the response at a field point y due to a unit
point source applied at x, which is denoted as source point. It should be noted that once the
Cauchy data, i.e. displacement u(y) and traction t(y), are known on the entire boundary Γ,
the representation formula (1) describes the displacement u(x) within the whole domain Ω. In
order to solve for unknown boundary values, the source points x are shifted to Γ leading to the
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boundary integral equation

c(x)u(x) =

∫
Γ

U(x,y) t(y) dsy −
∫
Γ

T(x,y) u(y) dsy ∀x,y ∈ Γ (2)

in which the coefficient c(x) depends on the geometrical angle of Γ at x and the Poisson’s ra-
tio [10]. Equation (2) represents the governing equations of the problem by means of an integral
over the boundary of the computational domain. Hence, corresponding numerical approxima-
tion methods like the BEM do not require a domain discretization.

In isogeometric boundary element formulations, the geometry as well as the boundary data
are represented by B-spline or NURBS basis functions. The boundary Γ of the computational
domain is specified by a disjoint set of patches (curves or surfaces) γ such that

Γ =
I⋃

i=1

γi (3)

which is equivalent to the representation of design models. Since this is the best geometry
representation available the computational boundary is described as accurate as possible.

Within each γ, the geometry x(ξ) is defined by a set of basis functions Bi,p of degree p
with corresponding coefficients in physical space ci which are denoted as control points. The
geometrical mapping χ from parameter space ξ to physical space is given by

χ(ξ) := x(ξ) =
I−1∑
i=0

Bi,p(ξ) ci (4)

with I representing the total number of basis functions. The main advantages of these patches
are that their continuity is directly controlled by the applied basis functions. The parameter
space ξ as well as the properties of this basis functions are determined by a knot vector Ξ which
is a non-decreasing sequence of parametric coordinates ξi. For more detailed information on
B-splines and NURBS the interested reader is referred to [2, 11]. Similar to the geometric
mapping (4), displacements and tractions of each γ are discretized by

Yu(ξ) := u(ξ) =
I−1∑
i=0

Bi(ξ) ũi and Yt(ξ) := t(ξ) =
J−1∑
j=0

Bj(ξ) t̃j. (5)

The coefficients ũi and t̃j are control parameters of the corresponding field and the related basis
functions are denoted by Bi and Bj .

The system of equations is set up using a collocation approach where the boundary integral
equation is enforced in a set of collocation points xc. In particular, each basis functionBi of the
unknown field is related to a certain xc

i . It has been demonstrated by several authors [7, 12, 13]
that the Greville abscissae

ξ̄i =
ξi+1 + ξi+2 + · · ·+ ξi+p

p
(6)

are a robust and accurate choice for the location of the collocation points, i.e. xc
i = χ(ξ̄i). For

each xc
i , the integrals of the boundary integral equation (2) with x = xc

i are evaluated using
numerical integration. Since each γ may contain non-smooth regions, it has to be subdivided
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into integration elements. Within those integration elements, the integrand is smooth and hence
numerical integration can be performed properly.

Usually, equation (6) leads to some collocation points located on the boundary of each γ.
Hence, they should be considered during the integration of adjacent γ as well. For two dimen-
sional problems, i.e. boundary curves, this is not challenging. However, in case of boundary
surfaces, detection of adjacent surfaces and determination of the collocation points’ intrinsic
coordinates within them may be very involved. Especially, if non-conforming partitions of
trimmed surfaces are considered. The application of discontinuous collocation is an elegant
remedy to this issue [6, 7]. Using such schemes, collocation points along the boundary of γ
are slightly shifted inside, thereby abolishing the link to adjacent surfaces. In general, this is
possible since interelement continuity is not necessarily required in BEM [14].

2.2 Independent Field Approximation

In the context of isogeometric BEM, the Cauchy data are discretized by means of B-splines
or NURBS. The related mappings (5) are denoted by Yu(ξ) and Yt(ξ) for displacements u and
traction t, respectively. In the following, the distinction between isoparametric and subpara-
metric patches is introduced. The former employs the isoparametric paradigm, i.e. all fields are
represented by the same basis functions, as it is generally the case in isogeometric analysis. The
latter utilizes the proposed independent field approximation. The term subparametric indicates
that less parameters are used for the description of the geometry than for the Cauchy data.

2.2.1 Isoparametric Patches

In an isoparametric discretization, the mappings Yu(ξ) and Yt(ξ) are equal to the geometri-
cal one χ(ξ). This implies some compromises. First of all, the same refinement is applied to all
fields. On the one hand, refinement of the unknown field is mandatory to improve the solution.
But as a consequence, the geometry and the known field are refined even though they may be
exactly represented by the initial basis functions. In addition to refinement aspects, the fields
have different continuity requirements along corners and edges. In particular, discontinuous
basis functions are required to describe traction jumps. However, they are not optimal for repre-
senting the displacement field, which should be continuous according to the physical constraint.
Furthermore, the number of basis functions would be increasing unnecessarily.

Thus, a preliminary conclusion is that an isoparametric discretization introduces superfluous
control variables. This increases the numerical effort and storage requirements for setting up
the system of equations, particularly for its right hand side. Moreover, refinement of CAGD
models affects the efficiency of all geometry evaluations performed during the analysis. These
points motivate the application of the proposed subparametric approach presented next.

2.2.2 Subparametric Patches

In this section, subparametric patches are introduced. The key idea is to treat each field
separately in order to fulfill their individual needs. In particular, the concept of a subparametric
element is adopted, i.e. more basis functions will be used to represent the field variables than for
the geometry representation. The basis functions of the geometry, the displacements, and the
tractions are defined by the knot vector Ξg, Ξu, and Ξt, respectively. Without loss of generality,
basis functions of the Cauchy data are defined as an extended version of Ξg, so that Ξg ⊂ Ξu

and Ξg ⊂ Ξt. This definition guarantees a proper partition of integration elements. It should,
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however, be noted that it allows the variation of basis functions types. For instance, the Cauchy
data over a NURBS patch may be approximated by B-splines. The resulting benefits are that the
evaluation of Cauchy data becomes more efficient and the refinement procedure is simplified.
Moreover, it has been demonstrated that the approximation quality is hardly effected by such a
combination [7, 13].

In the present implementation the geometry knot vector Ξg provides the initial basis for
all fields. Subsequently, basis functions are refined only if it is necessary. Discontinuous ba-
sis functions are introduced only for the traction field at non-smooth boundaries. The known
Cauchy data are classified as simple or complex boundary conditions as indicated in Figure 1.
The former can be exactly represented by Ξg, hence the corresponding discretization does not
need to be refined. Homogeneous boundary conditions or constant loading are examples for
such boundary conditions. The latter can only be approximated and the corresponding basis
functions have to be refined to improve the representation of the known Cauchy data. In such a
case, refinement is performed equally to the one for the approximation of the unknown field.

Ω

ΓN,complex

ΓN,simple

ΓN,∅

ΓD,∅

Figure 1: Examples of simple and complex boundary conditions applied to a cantilever beam. Homogeneous
boundary condition are denoted by the subscript ∅. Circles indicate the related Greville abscissae of the basis
functions which represent the known data.

To sum up, the main aim of independent field approximation is to avoid redundancies in the
discretization, leading to an enhanced isogeometric BEM formulation. At the same time, no
discretization errors are introduced and the initial design model remains unchanged during the
simulation which simplifies the interaction with CAGD software.

2.3 Stable Basis for Trimmed Geometries

In general, a trimmed parameter space has only a certain area which represents the part of an
object that is visualized. This part is denoted as valid domain Ωv for the remainder of this paper.
Usually, trimming is used for surfaces and in this case Ωv is determined by so-called trimming
curves which are defined within the parameter space of the surface.

There are two main aspects that have to be considered if trimmed geometries are integrated
into a numerical simulation: firstly, only the visualized part has to be considered for the anal-
ysis. Secondly, the trimmed parameter space has to be stabilized, because basis functions with
small support occur which may lead to ill-conditioned system matrices. Several different ap-
proaches [15–20] have been proposed to address the former issue. However, the latter has
hardly been considered in the literature so far. Hence, the current section focuses on this aspect.
In particular, it is proposed to stabilize trimmed parameter spaces by using so-called extended
B-splines which have been originally introduced in the context of fictitious domain – finite ele-
ment methods [21–24].
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Ξ :000 1 2 3 444

Ωv

Figure 2: Classification of basis function types in case of a trimmed parameter space: stable (continuous), degen-
erated (dashed), and exterior (dotted). The related Greville abscissae are illustrated by circles.

The basic idea of extended B-splines is to replace basis functions which may cause instabil-
ities by extrapolations of neighboring ones which have a sufficient large support. In order to
classify the B-splines of a trimmed parameter space, three types are introduced: stable, degen-
erated, and exterior. We propose to label B-splines Bi,p as stable if their corresponding Greville
abscissae is within the valid domain, i.e. ξ̄i ∈ Ωv. The support of exterior B-splines, on the
other hand, is entirely outside of Ωv. The remaining degenerated basis functions are partially
inside of Ωv but their Greville abscissae is outside, i.e. ξ̄i /∈ Ωv. These various types are shown
for an univariate parameter space in Figure 2. Once the degenerated B-splines are detected, the
functions within their support are substituted by extensions of the closest stable segments as il-
lustrated in Figure 3. The resulting extended B-splinesBe

i,p are defined by a linear combination
of the original ones

Be
i,p = Bi,p +

∑
j∈Ji

ei,jBj,p (7)

where Ji is an index-set of all degenerated B-splines Bj,p related to the current Be
i,p. For uni-

variate basis functions, the corresponding extrapolation weights ei,j are generally defined by the
so-called de Boor–Fix or dual functional (see e.g. [6, 23, 25]). In addition, a simplified formula
can be derived for uniform parameter spaces [22, 24]. In the bivariate case, the extrapolation
weights are simply determined by the tensor product of univariate values.

Extended B-splines inherit most properties of conventional B-splines and provide a stable
basis for the analysis of trimmed geometries. The proposed strategy for detecting degenerated
basis functions is particularly beneficial for collocation schemes, because the definition of the
collocation point locations within Ωv is straightforward, i.e. equal to the non-trimmed situation.

Ξ :000 1 2 3 444

Ωv

Figure 3: Extended B-splines
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The presented concept focuses on B-spline basis functions. However, if the geometry is defined
by trimmed NURBS, we take advantage of the independent field approximation and simply
approximate the Cauchy data by B-splines without modifying the geometrical representation.

3 NUMERICAL RESULTS

The following examples emphasize the benefits of the proposed methodology. Firstly, the
advantage of accurate geometry models is investigated. Secondly, the performance of isogeo-
metric and subparametric patches is compared. Finally, the approximation quality of extended
B-splines is studied.

3.1 Sphere

The excavation of a spherical cavity with radius rs = 5.0 m is investigated. An isotropic elas-
tic material is considered with Poisson’s ratio ν = 0.3 and Young’s modulus E = 1000 MPa.
Hydrostatic stress σ0 = 1.0 MPa is applied as loading which leads to a uniform internal pres-
sure along the excavation surface. The resulting radial displacement ur can be determined
analytically by

ur = σ0
1 + ν

2 E

r3
s

r2
(8)

where r denotes the distance of the point observed to the center of the sphere. Hence, the
reference solution for ur along the boundary, i.e. r = rs, is 3.25× 10−3 m.

The problem is solved by conventional and isogeometric BEM simulations. Both approaches
employ quadratic basis functions. The conventional BEM meshes approximate the boundary of
the computation domain with quadratic Serendipity elements. In the isogeometric case, NURBS
basis function of degree p = 2 are used. In fact, the geometry can be represented exactly by a
single NURBS patch which has degenerated edges at each pole of the sphere. This model has
been exported from the CAGD software Rhinoceros, where the precision of the exported data
was set to εe = 10−8. Discontinuous collocation is applied in order to deal with the degenerated
edges of the model.

The relative error of the radial displacement εur as well as the relative deviation of the geom-
etry representation to an analytical sphere εgeo are summarized for various degrees of freedom n
in Table 1. Further, three numerical results and their corresponding discretizations are illustrated
in Figure 5 and Figure 4, respectively.

Isogeometric BEM Conventional BEM
n εur εgeo n εur εgeo

216 1.74× 10−5 3.42× 10−8 483 1.61× 10−2 4.76× 10−1

288 2.65× 10−6 3.42× 10−8 2436 1.27× 10−3 1.53× 10−2

9312 5.58× 10−4 1.81× 10−3

12 120 4.42× 10−4 1.10× 10−3

21 858 1.49× 10−4 3.21× 10−4

38 886 7.52× 10−5 1.08× 10−4

Table 1: Relative error of solution εur
and geometry representation εgeo of the spherical excavation measured in

L2-norm due to an isogeometric and conventional BEM analysis with quadratic basis functions.
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(a) n = 288 (b) n = 483 (c) n = 38 886

Figure 4: Various unknown field discretizations of the spherical cavity with different degrees of freedom n:
(a) finest isogeometric BEM, (b) coarsest, and (c) finest conventional BEM analysis.

(a) n = 288 (b) n = 483 (c) n = 38 886

3.249 43× 10−3 3.250 03× 10−3

Figure 5: Radial displacement ur of various spherical excavation discretizations: (a) finest isogeometric BEM, (b)
coarsest, and (c) finest conventional BEM analysis.

The error εgeo demonstrates clearly the superiority of the isogeometric concept concerning
accurate geometry representations. The unrefined NURBS patch provides already a precise
geometric model, while a large number of Serendipity elements is required for an adequate ap-
proximation. Note that εgeo correlates to the accuracy of the input data εe in the isogeometric
case, hence it can be controlled by the user. Moreover, the isogeometric solution provides ex-
cellent results for ur despite of the low number of degrees of freedom n. It should, however,
be noted that the example suits NURBS basis functions ideally. Such remarkable differences
between isogeometric and conventional BEM solutions can not be expected in general. Never-
theless, conic sections and their three dimensional counterparts, e.g. spheres and cylinders, are
very common design elements for which NURBS surpass the approximation quality of conven-
tional basis functions.

3.2 Crankshaft

The concept of independent field approximation is applied to a crankshaft example. The ge-
ometry is defined by several regular NURBS patches and illustrated in Figure 6. Displacements
are fixed at the axle and flywheel, while the crank pins are subjected to vertical loading. These
boundary conditions are exactly represented by the initial discretization and do not require re-
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crank pins

flywheel

axle

Figure 6: Geometry model of the crankshaft.

finement. The material property is specified by E = 210 GPa and ν = 0.25.
Subparametric and isoparametric discretizations are applied to the problem. They differ not

only in the refinement procedure, but the type of basis function used for representing the Cauchy
data. In particular, B-splines are employed in the subparametric case. The degree of the basis
functions related to Cauchy data pc is either equal to the one of the geometry representation pg or
increased by means of degree elevation, i.e. pc = pg + 1. Subsequently, knot insertion is used to
improve the results, which is the equivalent to h-refinement in conventional analysis. For each
simulation, the analysis time ti and ts of the isoparametric and subparametric discretization are
compared. To be precise, the runtime for setting up the left hand side matrix L and the right
hand side matrix R of the system of equations is measured. Each analysis has been performed
single-threaded, concurrently for each ti and ts, and repeated several times.

The resulting speedup factors ti/ts are summarized in Figure 7. In addition, the displace-
ments corresponding to the third h-refinement step of the case where pc = pg are exemplarily
shown in Figure 8.

104 105
1

1.05

1.1

1.15

1.2

1.25

n

t i
/t

s

L

104 105

1

20

40

60

80

n

R

pc = pg pc = pg + 1

Figure 7: Computational time for the set up of L and R related to various discretization of the crankshaft example
as a function of the degrees of freedom n. The runtime of the isoparametric discretization ti is related to the
subparametric one ts.
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(a) Isoparametric

(b) Subparametric

0.000 1.607× 10−4

Figure 8: The absolute displacement |u| of the crankshaft example without degree elevation and three h-refinement
steps due to an (a) isoparametric BEM and (b) subparametric BEM discretization.

The shown results indicate that independent field approximation reduces the computational
effort, especially for the right hand side of the system of equations. The number of columns
of R is constant for all subparametric discretizations, because known Cauchy data do not need
to be refined. Hence, its storage requirement is linear with respect to the degrees of freedom n
which is the driving force for the enormous speedup with respect to R. The efficient geometry
evaluation as well as the substitution of NURBS by B-splines are the key factor regarding the
faster computation of L in the subparametric case. The former impact is clearly indicated by
the additional offset between the graphs related to pc = pg and pc = pg + 1 on the left hand side
of Figure 7.

3.3 Trimmed Cube

In order to investigate the approximation quality of extended B-splines in the context of an
isogeometric BEM analysis a unit cube is analyzed. The geometry is discretized by two different
models as illustrated in Figure 9. One is described by 6 regular patches, whereas 4 trimmed
patches are included in the other. Both represent the same geometry, i.e. `x = `y = `z = 1.0,

x̃`z

`x
`y

(a) Untrimmed

x̃`z

`x
`y

(b) Trimmed

Figure 9: Discretization of a unit cube by (a) regular patches and (b) trimmed patches.
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101 102 103 104

10−4

10−3

10−2

10−1

100

degrees of freedom n

‖ε
r
e
l‖

L
2

p = 1 untrimmed
p = 2 untrimmed
p = 1 trimmed
p = 2 trimmed

Figure 10: Relative L2-error of an exterior Neumann problem on the (trimmed) cube example with respect to the
number of degrees of freedom n.

which defines the boundary Γ of an infinite domain Ω. The boundary condition is given by

t(y) = T(x̃,y) y ∈ Γ, x̃ ∈ Ω− (9)

with Ω− denoting the void, i.e. x̃ /∈ Ω. In particular, a source point x̃ in the center of the cube
defines the boundary conditions for the exterior Neumann problem. The discretizations are set
up for different degrees p = {1, 2} and knot insertion is applied to improve the solutions. The
relative approximation error is determined by

εrel =
u(y)− U(x̃,y)

U(x̃,y)
∀y ∈ Γ, x̃ ∈ Ω− (10)

where u(y) is the obtained solution along the boundary. In Figure 10, the results measured
with respect to the L2-norm, i.e. ‖εrel‖L2 , are shown. It can be observed that the trimmed model
shows very good agreement with the untrimmed case.

4 CONCLUSIONS

A comprehensive concept for integrating design models into a numerical simulation has been
presented. The essential ingredient is that the isogeometric method applied is based on boundary
integral equations. This allows to overcome the challenge of deriving a volume discretization
from a design model, in a simple and elegant manner. In addition, no connectivity information
is required between adjacent patches. The proposed concept is completed by an independent
field approximation paradigm allowing a more flexible interaction with the design model and
a technique which stabilizes trimmed parameter space. These enhancements are by no means
restricted to the boundary element method used in this work.

The presented results demonstrate the superiority of isogeometric schemes regarding ac-
curate geometry description, the computational advantage of independent field approximation
related to conventional isoparametric formulations, and the suitability of the proposed stabiliza-
tion. The latter results are indeed very promising and deserves to be investigated in more detail.
For instance, the behavior for higher degree approximations has been neglected in the present
work and is of particular interest for further research.
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